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Abstract

Dynamic Traffic Assignment (DTA) models are important degissup-
port tools for transportation planning and real-time tcaffianagement. One
of the biggest obstacles of applying DTA in large-scale eks is the cal-
ibration of model parameters, which is essential for thdiséareplication
of the traffic condition. This paper proposes a methodolayyttie simul-
taneous demand-supply DTA calibration based on both agtgegeasure-
ments and disaggregate route choice observations to iraphevcalibration
accuracy. The calibration problem is formulated as a bélleenstrained op-
timization problem and an iterative solution algorithm reposed. A case
study in a highly congested urban area of Beijing using DyitaR®lis con-
ducted and the combined calibration method improves thtofgarveillance
data compared to the calibration based on aggregate measuiseonly.
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1 Introduction and Literature Overview

With the advance of mobile, sensor, and surveillance tdolggphigh quality
traffic data has become increasingly available. Trajeesofiom cell phones or
GPS-equipped vehicles, for example, are able to contilyquevide more accu-
rate travel time and route choice information for large s¢ednsportation network
than ever before.

The extensive deployment of Intelligent Transportatiorst&sns (ITS) in the
past few years has substantially increased the amount aiaigriraffic data. The
abundance of such information and the advances in compughtpower have
brought new opportunities and challenges to improve trantapon planning and
traffic management.

Dynamic Traffic Assignment (DTA) is one of the many promisingas that
would significantly benefit from the availability of new dat& DTA model in
general consists of an integration of models that can belelivinto two major
categories (Florian et al.; 2001; Cascetta; 2001): a setemand” models that
capture the time-dependent flow rates on the paths of theonetvased on trav-
eler behavior (such as travel mode, route choice, and depanne choice), and a
set of “supply” models for network loading and moving vebgl Advanced DTA
models, especially those simulation-based, are capabheodtling drivers’ be-
haviors (including their response to information), utiig the dynamic estimated
origin-destination (OD) flow, and capturing the complexnaictions between de-
mand and supply. They have been increasingly adopted isgoatation planning
(see, e.g., (Ben-Akiva et al.; 2007; Rathi et al.; 2008; Badana et al.; 2008;
Sundaram et al.; 2011; Florian et al.; 2001; Barcelo and £ 2€96; Ziliaskopou-
los et al.; 2004; Balakrishna et al.; 2009)), and have alsm lapplied by many
in real-time traffic managements, with great potential iovuing consistent traf-
fic predictions for various situations even when non-reenirincidents occur (see,
e.g., Ben-Akiva et al. (1997), Mahmassani (2001), Antoni@d04), Wen et al.
(2006), and Wen (2009)).

To realistically replicate the real traffic condition, howee lots of parameters
in the DTA model need to be calibrated before using the model new network.
The calibration is essentially the process of systemé&ti¢ahing the input pa-
rameters to ensure a DTA model could generate output thathesthe historical
observations. Except for extremely simple networks, a gmdithration is usually
a prerequisite for the model to reliably reproduce and pteadaffic conditions.

The calibration of a DTA model for a new network is a non-tilviask. It is
arguably the biggest obstacle besides the computationetiatyility for applying
DTA in large-scale networks. It requires not only a plethofaata over time, but
also methodologies that could effectively combine the treéecoherent way, as the



data would often come from various sources and could be smeeinconsistent
or imperfect.

Researchers have come up with various strategies to delib‘8A models.
For example, Peeta and Ziliaskopoulos (2001), Antonio042(Balakrishna et al.
(2005), and Balakrishna (2006) have reviewed and sumnthanmny early stud-
ies in the area. Particularly, Balakrishna (2006) providembmprehensive review
of the subject of calibrations by looking at related topiegshree broad classes:
(1) demand-supply calibration of DTA models, (2) estimataf supply models,
and (3) estimation of demand models. He concluded that,ior pesearch, de-
mand and supply models were calibrated independently ésgially); in addition,
OD flows and route choice model parameters were estimateetseally, with the
route choice parameters being estimated through maneabtigrid searches. He
proposed a methodology for the simultaneous demand-swagilyration of gen-
eral DTA models, and argued that such approach could leadtterbresults as it
did not ignore the effect of the interactions between densarttisupply models.

The simultaneous demand-supply calibration approach &ées the state-of-
the-art of aggregate calibration since then, and it has bdepted and extended
by others. Vaze et al. (2009), for example, extended the WwpRalakrishna et al.
(2007) to use multiple sources of data (including link ceuahd point-to-point
travel times) for the calibration. Their study also foundttthe joint demand and
supply calibration led to more accurate results than theathelonly calibration.

An important challenge that the existing studies have yeiddress is how
to effectively use disaggregate information, such as thiedtories of individual
vehicles, in the context of calibrations of DTA models. Agttime when those
studies were done, the quantity and quality of disaggredatie were rarely good
enough to be used directly and make a positive impact in thédalibration result.
Usually, the limited amount of disaggregate data would beveded into aggre-
gate form (e.g., computing average travel time from indigidmeasurements or
summing up the number of vehicles passing through a roadesggmto counts)
before they could be applied in the existing calibratiomrfesvork, where they are
typically used to measure the goodness-of-fit of the DTA risdeitput (which is
also converted to aggregate form for comparison) (Ben-Akival.; 2012). Such
coversions are useful in dealing with the noisy and incotepteature and other
deficiencies of disaggregate data, but they also lead toofdsgormation and fail
to fully utilize the data. As more and more sources of aceudigaggregate data
become available, a new approach should be adopted to teaatage of them.

In simulation-based DTA models, disaggregate data can &eé tesestimate
parameters that control the behavior of individual transel#t microscopic level.
Parameters used by the route choice model, for example cteatial beneficia-
ries of such data. Route choice captures travelers’ prafesein selecting a route
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from an origin to a destination (OD) in a road network. By litsa interesting re-
search topic, route choice is also an important part of timeashel models used by
simulation-based DTA systems. With sufficient disaggreghdta, whether from
survey by mail, telephone, and the Internet (Ben-Akiva etl&l84; Prato; 2004),
or from the more and more widely used GPS trajectories (fgefi; 2007; Hou;
2010), route choice parameters can be estimated usingetdischoice analysis
(Ben-Akiva and Lerman; 1985; Train; 2003), where a singlgeas selected from
a set of candidates (i.e., the “choice set”). In a real ndtwttre number of pos-
sible paths between a pair of OD can be large, and for compuégttractabil-
ity researchers may choose to use a smaller subset creatgiblne set gener-
ation algorithms, including the deterministic algorithsisch as link elimination
(Azevedo et al.; 1993), link penalty (de la Barra et al.; 192®d labeling (Ben-
Akiva et al.; 1984), etc., and stochastic path generatigordhms such as sim-
ulation (Ramming; 2002) and doubly stochastic choice seeggion (Bovy and
Fiorenzo-Catalano; 2006).

Once the choice set and the attributes about the alternatittes are available,
a route choice model can be developed to predict how travdicide which path
to take. The Multinomial Logit (MNL) model is one of the mostgular for real
applications due to its attractive features such as a cifisedformula to compute
the probability of choosing a path in the choice set. Its $ifyipg assumption that
the error terms must be identically and independently ibisted, however, limits
its use in networks where overlapping paths are common, le@iLogit model
(Cascetta et al.; 1996) and Path Size Logit model (Ben-A&id Bierlaire; 1999)
are proposed to solve this problem. The latter, for instahae been successfully
implemented in the DTA model of a congested area in the citBaifing (Ben-
Akiva et al.; 2012).

Researchers focusing route choice have also developedsomhesticated mod-
els such as Multinomial Probit (Yai et al.; 1997), Error Campnt model (Bolduc
and Ben-Akiva; 1991), subnetwork (Frejinger and Bierla2607), sampling of
alternatives (Frejinger et al.; 2009). Gao (2005) devealapeouting policy choice
model to capture the inherently uncertain nature of traffigesnics in a stochastic
time-dependent network. Bierlaire and Frejinger (2008ettped a latent choice
model to directly use network-free data. Fosgerau et allZP@roposed a logit
model for the choice among infinitely many route in a netwd@ke to their com-
plexity, those models have yet to be widely adopted in théedmof DTA.

This paper proposes an innovative methodology that takesnéabe of state-
of-the-art methodologies in both aggregate DTA calibradod disaggregate route
choice estimation and for the first time integrates them inrssistent framework
to improve the accuracy of the DTA modeling system. The doutions are two-
folded. Methodologically, a bi-level optimization probieis formulated for the
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combined calibration problem, and an iterative solutigogathm is designed. Em-
pirically, a real life case study is conducted to demonstthé practicality of the
method in highly congested networks.

In the remainder of the paper, section 2 illustrates thelprotformulation and
solution methodology. Section 3 provides a case study irCiheof Beijing and
Section 4 concludes.

2 Problem Formulation and Solution Methodologies

2.1 Framework for Combined Route Choice Model Estimation au
DTA Calibration

We extend the framework of simultaneous demand-supply Dalbration
based on aggregate observations introduced in Balakr{20@®), and incorporate
the disaggregate route choice observations to improvedliteration accuracy.

Let the time period of interest be divided into intervals= 1,2,..., H. All
variables are indexed by time, and the same variable wittheutime index rep-
resent a vector of the variables over all time periods. Thibregion variables at
the upper level include,, - the vector of OD flows departing from their respective
origins during time intervah, (3, - the vector of simulation supply model parame-
ters andy,, - the vector of route choice parameters. Note that even tinthegroute
choice parameters are indexed by time for the sake of no&dtimiformity, they
are in fact invariant over time of the day, as travel behassaenerally viewed as
stable within a day. The calibration problem is formulatedai-level constrained
optimization problem.



Aggregate Calibration and Disaggregate Estimation Problé®
Input : G,z%, B~ F™ w, A
Output: x, B,y

min - wy[|F* — F™|2 + wallz — 2% + ws]|8 — B2 + wally — 2 (1)

.8,
s.t. {F,F*} =DTA(G,z,3,v,C) 2)
C = (F,G) )

2f(1—=X) <ap <zf(1+X),Vhe{l,... H} 4

Br(l—X) < B, <BR1+N),Vhe{l,...,H} (5)

YA =A) < <A1+ N),Vhe {1,...,H} (6)

91(Br) =0,...,9n(Bp) =0,Vh € {1,... . H} (7)

v* = argmax, LL(I,C, F,~) (8)

The objective function (1) at the upper level is a weighteth saf distances
between time-dependent location-specific simulated agéeemeasurements and
field aggregate measurements (e.g., counts, speeds, &richliel times) and dis-
tances between calibrated variable values and their ridgpecpriori values. F**
andF™ are the vectors of simulated and observed aggregate mesierespec-
tively, andz®, 8%, v* the vectors of priori values of OD, supply and route choice
parameters respectivel priori OD trips are usually obtained from the planning
agency, who usually maintains a regional static planningehbased on which the
dynamic ODs can be generated and/or has access to OD sufv/gyiri supply
parameters are generated by experience,agpidori route choice parameters are
from the lower level problem. The weighisdepend on the relative confidence one
can attribute to the corresponding measurementsagmibri values. For example,
if sensors are not reliable, a lower weight might be put omtuT he weights also
depend on the order of magnitude of the measurement in ardeotd a situation
where a parameter with a bigger magnitude or more obsengatiominates the
others in the fitting function.

Constraint (2) is a simulation-based equilibrium DTA motlelt takes as in-
puts the network topologg:, OD tripsz, supply-demand parametessand~ and
route choice set§', and generates network performance measktiresich as time-
dependent counts, speeds, and link travel times. Generaliyulation-based DTA
model has stochastic elements, and generates differgnitswith different input
random seeds. In this cadé,should be viewed as the average over multiple DTA



runs. Also note that the simulated aggregate measureni€nis the objective
function can be derived directly froif.

Constraint (3) is a choice set generation mode)) (that takes as inputs the
network topologyG and performance measurés and generates a choice set of
alternative routes between each OD pair. An overview of tiethodologies to
generate route choice sets will be provided in Section 2.2.1

Constraints (4) through (6) impose upper and lower bound®brtrips and
supply/demand parametersis a fractional number between 0 and 1, which spec-
ifies how far we allow the calibration variables to deviatafirtheira priori values.

Constraints (7) specifies the physical relationships betwbe model param-
eters, e.g., the free flow speed cannot be smaller than thienomim speed at jam
density in a speed-density relationshipis the number of such physical relation-
ship expressions.

Thea priori values of route choice parameters are derived from the lavel
route choice estimation problem (8), where the likelihododlmserving the disag-
gregate route observations (e.g. from GPS traéés)maximized. The likelihood
function L L is based on a discrete choice model with route choice(Setrd at-
tributes generated from performance measufe#\n overview of the estimation
problem will be provided in Section 2.2.3.

2.2 Solution Algorithm

The bi-level calibration/estimation problem will be savBy an iterative pro-
cess that alternates between three sub-problems: the apgdower level prob-
lems and the choice set generation model. We further defan¢htiee problems
separately. Inputs to these problems are divided into twaps: the first (before
the semicolon) contains inputs to the overall probl&mand the other (after the
semicolon) contains inputs generated by the other two soblgms.

Route Choice Set Generation Problen®;

Input : G; F
Output: C
C = PG, F)



Aggregate Calibration ProblempP,
Input : G,z% B F™ w, \; Co~°
Output: x, 8,7 F

min - wy||F* — F™|2 + wallz — 2% + ws]|8 — B2 + wally — 7|

6,7
s.t. {F,F*} =DTA(G,z,3,v,C)
2f(1=X) <ap <zf(1+X),Vhe{l,... H}
Bl —=X) < Bp <Br(1+N),Vhe{l,... H}
YA =A) < <Ayp(1+N),Vhe {1,...,H}
(

g1 5h)=0,...,gn(5h):0,Vh€{1,...,H}

Compared to the combined probleR) in the aggregate calibration probleR
the lower level problem (8) and the choice set generationein@) are removed.
Route choice set§' and parameters® are instead used as inputs to the problem.

Disaggregate Route Choice Estimation Problef?

Input: L;F,C
Output: ~*
max LL(I,C,F,~)

Y

Figure 1 gives a flow chart of the process. Note that all végiahbscripts are
for iteration numbers, as the variables are already treade¢ectors covering all
time periods and the time indices are omitted. Note alsoitipaits to the overall
problem P are omitted from the diagram to more clearly present theact®ns
between the three sub-problems.

To initialize, choice set€’y are generated based on free flow or static traffic as-
signment link travel timegj. A base route choice model is assumed with a simple
utility function specification, e.g., one that only inclisdéhe travel time as the ex-
planatory variable. Tha priori parameter valueg; are assumed based on existing
empirical studies in the literature, rather than estim#tmh the disaggregate route
choice observations. The aggregate calibration prokifens then solved, and the
iteration counterk is set to 1. Outputs fron®, include the calibrated OD trips
Tk, supply parameters;, route choice parametetg, and network performance
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P1 . Route choice set generation problem
P2 : Aggregate calibration problem
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Figure 1: Flow Chart of the Solution Algorithm



measured,. Choice sets are then updated according’to= P;(G; Fy). The
disaggregate estimation problef is then solved based on the newly generated
choice set<’;, and performance measurgégs. The estimated route choice param-
eters are then used as th@riori valuesy; for the aggregate calibration problem
Ps in the next iteratiork = k£ + 1. The iteration continues until a convergence is
reached, usually measured as the relative difference betivee time-dependent
link travel times from two consecutive iterations.

2.2.1 Choice Set Generation and Evaluation

The route choice set generation probleRy)(takes the network topology and
performance measures as inputs and generates a choice alatrpétive paths
between each OD pair. The choice set generation algoritaimée classified into
two groups: deterministic and stochastic.

Deterministic approaches include the link elimination #n# penalty algo-
rithms. In the link elimination algorithm, the shortestIpad first found between
a pair of OD. Then for each link in the shortest path, the atigar will remove it
from the network, find a new shortest path, test it for unigssrand store it in the
choice set if it is unique.

As the link elimination algorithm only removes one link atkateration, it is
possible that the newly generated path only differs fronotiiginal one by a short
detour around the removed link, and paths far from the aaigime are unlikely
to be generated. The link penalty algorithm could potelgti@solve the problem,
where the costs of all links included in the choice set areemeed in every iteration
until the costs reach a threshold. After the threshold ishred, link costs will be set
to the normal values and increased in future iterationsclvbnsures the diversity
of the choice set.

Stochastic approaches include the simulation and doubthastic algorithm.
The simulation algorithm determines a distribution for tust of every link in
the network, for example, normal distribution. For eacmijaraw of link costs,
a shortest path is generated and incorporated in the cheidkitsis unique. The
rationale for this method is that travelers might have getfoa errors of travel
times (Burrell; 1968; Daganzo and Sheffi; 1977). The numbaamples is pre-
determined, and can be adjusted empirically dependingenetwork settings.

The doubly stochastic algorithm is similar to the simulataigorithm. The
cost functions are specified like utilities and both the paeters and the attributes
are randomly generated, and minimum cost paths are cadulssed on these
doubly stochastic generalized costs (Bovy and Fiorenzai@zo; 2006).

The evaluation of the generated choice set mainly involwesdriteria: cov-
erage and computational time. Define overlap as the degnebith a generated
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routez matches the observed route.

Overlan — L; s  overlap distance between generated and observed paths
h= Lops distance of observed path

)
When complete routes are not observable, e.g., those froBt@ees with gaps
due to the limitation of time resolution, we calculate the&p by dividing the
overlap distance between generated and actually obseaaabstoy the total length
of the observed traces.

Coverage is the percent of observed routes for which a gegkraute at a
specified overlap threshold exists. It represents the tgualithe choice set gener-
ation algorithm, and high coverage is desired.

For any real life application, the choice set generatiorblem will be solved
for a large number of OD pairs. Furthermore, in the itergticgcess introduced in
Figure 1, the choice set generation problem for many OD p&iyswill be solved
multiple times. Therefore the computational efficiencyha algorithm is also an
important consideration in its evaluation.

2.2.2 Aggregate Calibration Problem: SPSA

The aggregate calibration problef is a minimization problem where the
evaluation of the objective function requires a simulation of the DTA model.
We use th&simultaneous Perturbation Stochastic Approxima{feRSA) algorithm
to solve the problem, which is originally developed by Sa898), and later ap-
plied to DTA calibration by Balakrishna (2006). The SPSAcaithm is attractive
for large problems because of its efficient gradient apjpnaxion by perturbing all
variables at once. It is also designed for stochastic prnabland allows for inputs
corrupted by noise, which is usually the case in simulatiased DTA models.

The SPSA algorithm works in an iterative fashion, whereagtionk, a mov-
ing direction from the current solution (the gradient in adjent-based method)
is determined. Lef be the vector of calibration variables, including the Opgri
x, supply parameter8 and route choice parameteysand the size ofl is n. To
calculate the gradient numerically,evaluations of the objective function need to
be carried out, which are prohibitively expensive for a ridal DTA calibration
problem wheren is usually very large. The SPSA algorithm does not calcutate
gradient exactly; instead an approximation is calculatgdwo perturbations of
the parameters. The approximate gradient estimate of'thealibration variable
at iterationk, denoted ag;(6y), is calculated as follows:

20 + cp @ Ap) — 2(0k — cx @ Ag)
2¢p; A

9i(0r) = (10)

11



whereAp={Ax1, Ako, ...Ag, } is generated based on an appropriate random vari-
able distribution, e.g., the Bernoulli distribution,={c1, ck2, ...ckn} is the size
vector for the random perturbatiory, is the component-by-component multipli-
cation of two vectors and(#) is the objective function value with the calibration
variable vectob.

The gradient approximation at iteratiéns theng(6y,)={g1 (0x), 92(0x), -..gn(0%) },
which only requires two computations of the objective fumtct

2.2.3 Disaggregate Route Choice Estimation: Latent Choice

Disaggregate route choice models are usually developeer uhne framework
of discrete choice analysis, where a decision maker is asgumchoose from a
choice set (see Section 2.2.1) a route with the maximuntytvhich is the sum of
a function of explanatory variables with unknown paranseterd a random term.
Parameters of the model are obtained by maximizing theili@et of observing
the chosen routes, namely, solving the problem

Sometimes the chosen routes cannot be unambiguouslyfiddng.g., when
there are large gaps between consecutive GPS readingse Belfing case study
that will be introduced in detail in Section 3, the GPS regdimare at least one
minute apart during which the vehicle most likely has traeer multiple links.
One solution to this problem is to fill the gaps artificiallytiwvishortest paths or
other pre-specified types of paths. However, the compleit mbtained with this
method is not necessarily the real chosen route and mayddaidded estimation.
For example, the coefficient of the shortest path dummy indliée choice model
would be artificially boosted if we fill these gaps with shettpaths.

Following Bierlaire and Frejinger (2008), we treat the dmosoutes as latent
that are not observable. The estimation problem is therdo@aséhe observed GPS
traces, defined as a series of links matched from GPS poattaté not necessarily
connected. Therefore each GPS trace might correspond tiplaubutes, and the
likelihood of observing a GPS traeefor individual n with a given choice set’,,,
Pn(r|Cy) can be written as the sum of likelihoods of observing all paththe
choice set that are consistent with the trace. Formally,

i€Ch
i is a route in the choice seR,,(i|C,,) is the route choice model that predicts the
probability of choosing route for individual n out of a choice set’,,, andd(r|:)
is a binary variable, which equals one if rodtpasses through the links in trage
in the same sequence, and zero otherwise. Figure 2 illesteasituation where a
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tracer corresponds to multiple paths, where purple links are eleseaind red ones
are gaps.
A path-size Logit is used for predicting route choice praligbthat is,

exp(In(PS) + Vi)
> jec, expn(PS) + Vi;)’

whereV,,; is the systematic utility of alternativefor individual n, PS is the path
size of alternative that describes the level of overlapping of the alternativid w
all other alternatives in the choice €6t (Ben-Akiva and Bierlaire; 1999). P%
equal to 1 if alternative does not overlap with any other alternatives, ajd if it
completely overlaps witlf — 1 other alternatives. This is a deterministic correction
to the IIA problem of a Logit model in predicting choice prdaiddies of correlated
alternatives (Ramming; 2002).

Pu(ilCn) = (12)

Path inconsistent with the observation

Origin i, A Destination
v Nl A

Possible paths given the observation

Figure 2: The Latent Choice Problem

3 Case Study

3.1 Introduction

In this section we discuss a case study in the City of Beijisipgithe frame-
work proposed above. We first introduce DynaMIT-P, the DTAdelaused in this
case study, and the network settings in Section 3.2. We tiimvduce the data pro-
cessing in Section 3.3. Section 3.4 describes the specifielmi@nd algorithms
used in the case study under the combined calibration framig\and presents the
results in comparison with a previous study where only agageecalibration was
conducted.
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3.2 DynaMIT-P and Network Settings

DynaMIT-P (Dynamic Network Assignment for the Managemehinforma-
tion to Travelers-Planning Version) is a state-of-thesartulation based DTA sys-
tem (Ben-Akiva et al.; 1997, 2001) designed to evaluatdligémt Transportation
Systems at the planning level. With a built-in microscopamadnd simulator, a
mesoscopic supply simulator, and a learning model to caphe complex inter-
actions between traffic demand and supply, it can predicttolalay evolution of
travel demand, network conditions and within-day traffittqras.

DynaMIT-P and its corresponding real-time version havenbagplied suc-
cessfully in major cities in the US, such as Los Angeles, f@alia (Wen et al.;
2006), Lower Westchester County, New York (Rathi et al.; ®0@&nd Boston,
Massachusetts (Balakrishna et al.; 2008). The Beijingysisidhowever, the first
highly congested urban network DynaMIT-P was applied toveBe congestion
was initially observed in the simulation due to the comglexif network and the
large traffic volume. Several enhancements were then ddbgrtaMIT-P to solve
this problem, including enhancing the route choice modeinfra simple Logit
model to a Path-size Logit model, introducing lane groups \eariable capacity
to the supply model, and doing special treatments to shus lio avoid artificial
gridlock (Ben-Akiva et al.; 2012).

As shown in Figure 3, the Beijing network consists of a sedksng roads
connected by arterial roads with frequent on- and off-ran@ug study area is the
West 2nd Ring Road network and its northern and southermsixias, the area in-
cluded in the rectangle. The computer representation ®fthidy network consists
of 1,698 nodes connected by 3,129 links. Using results frooséhold surveys, a
historical static demand dataset containing 2,927 origistination (OD) pairs are
generated. The simulation time period is from 6:00:00 an0t6@:00 am.

3.3 Data

The aggregate surveillance data and GPS vehicle trajed&iaywere obtained
from Beijing Transportation Research Center (BTRC).

3.3.1 Surveillance Data for Aggregate Calibration

We used traffic counts and link travel times from six weekddysng Decem-
ber 2007 between 6am and 10am as the surveillance data figadg calibration.

The traffic counts were obtained from Remote Traffic Microe@ensors (RTMS).
There were 154 RTMS detectors deployed in our study area4bdflithem were
functioning normally to provide traffic flow information ctinuously. Most of
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The 2nd Ring Road
The 3rd Ring Road
The 4th Ring Road

The 5th Ring Road
D Study Area

Figure 3: The study area

them (the triangles shown in Figure 4) were on the expresswilye sensor counts
were aggregated with a 15-minute interval by BTRC.

The link travel times were extracted from Floating Car D&@ID), which were
obtained from Global Positioning Systems (GPS) in taxisDFeGver nearly 90%
of all the major roads in Beijing, including arterials anaddbroads where there
is a lack of sensor counts data. The FCD were provided asga®ia 5-minute
intervals.

3.3.2 GPS Data for Route Choice Estimation

GPS devices installed in taxis in Beijing record the posgi@nd speeds of
taxis with a time interval of one minute. BTRC matched the @BiBts to certain
positions on links. A GPS trace starts when a taxi servicensegnd ends when
the passenger gets off the taxi. A vacant taxi driver's rathieice behavior is
conceivably significantly different from a regular driver(e.g., circling to look
for customers), and thus excluded from the analysis. Inrgé@etaxi driver has
better spatial knowledge than a regular driver, which mightain important factor
in route choice. We focus on the morning peak where the nigjofidrivers are
commuters, who conceivably have good knowledge of theirmating routes.
Therefore itis reasonable to use taxi drivers’ data to sggarecommuters’ behavior
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in this particular study. The proposed methodology is noitéd and can be easily
applied to regular drivers’ data once they are available.

Each GPS entry contains the taxi ID, link ID, time, speedatied traversed
length on the current link, service number and GPS numbeichmecords the
order of GPS points within the same service.

In total, we obtained two sets of GPS data from BTRC which spdmine
days. The first set of data includes GPS traces 24 hours/dayocotays: April 24,
2008 (Thursday) and April 25, 2008 (Friday). The second kéata includes GPS
traces from 6:00am to 10:00am (which matches the DynaMIifFRilation time)
on seven days, May 20, 2008 (Tuesday) through May 23, 2008aHrand May
26, 2008 (Monday) through May 28, 2008 (Wednesday).

Table 1 shows the overall statistics of the GPS data.

Table 1: Overall statistics of the GPS data

Number of GPS entries Number of taxis Number of traces
8.9 million 10,412 578,857

As the study area is only a sub-network within the Beijingwuek, we fil-
tered out outside traces and obtained 11,317 traces thatoeerplete in the study
area. As DynaMIT-P simulations are from 6:00am to 10:00amd, the time de-
pendent travel times used for the route choice model estmate generated from
DynaMIT-P, we only included traces within this time interirathe estimation.

A large number of the traces had very short travel times. @asepractical
experience of the local planners from BTRC, an effectivettgxin Beijing should
be more than five minutes in most cases. Therefore, we delétbe traces shorter
than five minutes to ensure a more accurate estimation.

We further eliminated traces that clearly contained mistale.g., Figure 5a
shows a GPS trace that may have a GPS mapping mistake askthéthra yellow
mark in the middle is directed from the destination to theiori Figure 5b is an
example of those GPS traces that make no sense and for whicanmet find any
convincing explanation.

We finally obtained 1,097 consistent and reasonable tragbgwthe simula-
tion time period for the route choice model estimation. Fegbl details the spatial
distribution of the traces. From left to right, the first thngictures show the 100,
200, 500 most frequently used links and the fourth one shdwbelinks that
were included. The traces concentrated in the northern waith is reasonable
since that is the most congested area. Meanwhile, the trazesed almost the
complete network and were deemed adequate to reflect the chaice behavior
in the whole study area.

17



I

a1,

T H

M\ e
Vv | ‘

(a) A possible GPS mismatch  (b) A trace with mistakes

Figure 5: Unreasonable GPS traces

I
vaa
Tt

Figure 6: Spatial distributions of traces

18



3.4 The Combined Calibration of DynaMIT-P
3.4.1 Initial Aggregate Calibration

In our previous study (Ben-Akiva et al.; 2012), the DynaMRBeijing model
had been calibrated using the SPSA algorithm against theegaig surveillance
data. The route choice model was a Path-size Logit with oméyexplanatory vari-
able, the time-dependent travel time. Its parameter walsratdd simultaneously
with other calibration variables against the aggregate daty. The systematic
utility function was not tested or estimated using disaggte GPS traces, and
likely to be oversimplified.

We use this result as the base case to evaluate the calibratprovements
from combining the disaggregate route choice estimatidh aggregate calibra-
tion of DynaMIT-P.

3.4.2 Route choice Set Generation

We simultaneously apply three algorithms in DynaMIT-P tograte the choice
set, namely link elimination, simulation and link penaltyime-dependent link
travel times are used instead of static link lengths in tHeutation of shortest
paths. To capture people’s varying attitudes toward thbvay, we implemented
a highway bias, namely, multiplying highway link travel by a certain weight
in the generation of a choice set. When the weight is greh#ar 1, the paths are
more likely to include fewer highways. Conversely, whenweight is less than
1, paths including more highways are generated. The linkbaurbias was also
introduced to capture people’s attitudes toward inteisest since oftentimes the
more intersections in a path, the larger the number of linkhé path. This was
implemented by adding a constant to each link travel timd,tans a path with a
larger number of links would be penalized more. The constantd be adjusted
to reflect different levels of bias.

Choice sets of all OD pairs consisted of 48,796 paths. Thermuar number
of paths in a choice set was 222, with a mean of 27.6 paths pep&mDand a
standard deviation of 35.6 paths. The maximum number ofspathsistent with
the GPS trace for an OD pair was 68, the mean was 3.12, anditigastl deviation
was 5.8 paths.

The coverage test results are shown in Table 2. The highageendicates that
the choice set we generated is of high quality and the algostwe implemented
can be trusted to generate choice sets for other OD pairg iDTA simulation.
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Table 2: Coverage tests for the choice set generated by DyREM

Overlap 100% 90% 80%
Coverage 80.0% 85.9% 91.5%

3.4.3 Route Choice Model Specification and Estimation

We specified and compared several models and finally arrivelddeautility
function as follows:

Vp =61 - TimeDepedentTravelTime, + In(pathsize,)

+ B2 - ShortestPathy, + 3 - FastestPath, + B4 - MostHighway,
(13)

Time-Dependent Travel Time
Based on time-dependent link travel times from the late# Rih, and con-
sidering the start time of each GPS trace, we computed thediependent
travel time for each path with a unit of 1000 seconds.

Path-size
PS is a number betweely.J and 1 whereJ is the size of the choice set.
When PS is equal td/.J, all alternatives are completely overlapping. When
PSis equal to 1, a path is not overlapping with any other paths

Shortest Path Dummy
This is a dummy variable that is 1 for the path with the leatdltiength
among all paths with the same OD pair.

Fastest Path Dummy
This is a dummy variable that is 1 for the path with the lowestage travel
time among all paths with the same OD pair.

Most Highway Dummy
This is a dummy variable that is 1 for the path with the highrasib of its
length spent on the highway, among all paths with the same @D p

The model is estimated with Biogeme and the estimation trés@hown in
Table 3.

3.4.4 DTA Re-calibration and Iteration

We implemented the estimated route choice model in DynaRIldrd ran
SPSA calibration again for this new model. With the newlylralted output travel
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Table 3: The result of route choice model estimation

Parameter Coefficient Robust t-test
Time dependent travel time (1000 seconds) -0.0089 -17.99
Pathsize(fixed) 1 N/A
Shortest path dummy 0.842 5.91
Fastest path dummy 0.467 3.08

Most highway dummy 0.426 2.80
Number of observations 1097

Number of parameters 4

Final log-likelihood -1747.480

Adjusted rho-squared 0.285

times from DynaMIT-P, we generated a new choice set and attthra new route
choice model based on the latest choice set and travel tiow#inued carrying
out the iterations as described in Section 2, until the dutawel times of the two
consecutive aggregate calibrations are close enough.

Table 4 shows the route choice model in the DynaMIT-P baseetant the
route choice model of our final calibrated model.

Table 4: The route choice model in DynaMIT-P base model aral Galibrated
model

Parameter Base model Final calibrated model
Time-dependent travel time -0.0183 -0.011

Path-size 1.00(fixed)  1.00(fixed)

Shortest path dummy N/A 0.893

Fastest path dummy N/A 0.504

Most highway dummy N/A 0.345

Figure 7 compares the RMSN (Root mean squared errors naadafor counts
from the base case and combined calibration. The first (tftjrgroup is the over-
all calibration result, and other three groups are link$wigh flows (more than
1400veh/15min), medium flows (1000-1400 veh/15min) and flomws (0-1000
veh/15min) respectively. We can see more improvementsnis hvith low and
medium flows than high flows. Figure 8 compares the RMSN foentesl link
travel times from FCD in the base case and combined calitorafi he first group
is the overall calibration result, and there are four groapsording to the link
travel time: 0-20 seconds, 20-40 seconds, 40-60 secondmarelthan 60 sec-
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onds. We can see more improvements in links with very shattvany long travel
times.
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Overall 0-1000 1000-1400 >1400
Group by Link Flow (veh/15min)

Figure 7: Fit to Counts Statistics of the Base Case (Blue)@mmibined Calibra-
tion (Red)

The overall calibration results are also reported in Tabl&the improvement
in RMSN for counts is 7.8% and the improvement in RMSN for flogicar travel
time is 8.3%. The improvement could have been larger corisgi¢he following
facts:

e Compared to the scale of the network, the number of sensgesydimited
(only around 120 sensors). At the same time, the distribubiothese sen-
sors is limited to expressways, which leads to a failure pturéng possible
significant improvements in other type of roads in the nekwor

e The route choice model specification is still simple. Onkgthmore dummy
variables are included compared to the base model. A rowtieeimodel
that captures more influencing factors could possibly makiaér improve-
ments, for example, the reliability of travel time. Howevbe calculation
of reliability measures require data to derive travel timebgbilistic dis-
tributions, which are not yet available from the project.aléo calls for a
potential significant change to the DTA model to explicitigat travel times
as random variables, which will be included in our future kvor
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Table 5: Comparisons of Overall Calibration Results

No. of Observations RMSE RMSN

. Base Case 383.8  0.308
Counts(Ve/15min) -~ 1ined Calibration 1,680 3531 0.284
Base Case 17.30 0.436

Travel Time(s) 52,545

Combined Calibration 15.85 0.400
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For a closer look, Figure 9 gives the fit-to-count comparisetween the base
case and the combined calibration during the peak perioB6#8-8:45AM for a
specific count station. The x-axis is the observed sensarts@nd the y-axis is the
simulated ones. A 45-degree line indicates a perfect magtliden the observed
and the simulated data, and the closer the dots are to thegtealline the better
the fit. We can see that the combined calibration gives bftttan the base case.
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Figure 9: Fit-to-count Comparison between the Base Modgltaa New Model

4 Conclusions and Future Directions

In this paper, we extend on the framework of simultaneousaaehsupply
DTA calibration based on aggregate observations, andpocate the disaggregate
route choice observations to improve the calibration amur We formulate the
calibration problem as a bi-level constrained optimizagwoblem. The objective
function is a weighted sum of distances between time-dep#ndcation-specic
simulated aggregate measurements and eld aggregate greasts (e.g., counts,
speeds, and link travel times) and distances between a@ibrariable values and
their respective a priori values. Constraints include (&naulation-based equilib-
rium DTA model; (2) a choice set generation model; (3) upperlawer bounds on
OD trips and supply/demand parameters; (4) the physicaioekhips between the
model parameters; (5) the route choice estimation probienere the likelihood
of observing the disaggregate route observations (e.gn GB&S traces) is maxi-
mized. A priori values of route choice parameters are ddrx@m the lower level
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route choice estimation problem. The likelihood functigrbased on a discrete
choice model with route choice sets and attributes gereerfaben performance
measures.

The bi-level calibration/estimation problem is solved by igerative process
that alternates between three sub-problems: the upperoarat level problems
and the choice set generation model. A case study is cordlirctee City of Bei-
jing using DynaMIT-P, a state-of-the-art simulation-t$2TA model, using the
proposed methodology. The SPSA algorithm is used in theeggtg calibration
process. A Path-size Logit route choice model is estimasauyithe disaggregate
GPS trajectories and a latent choice model is implementesidering the discon-
tinuity of the GPS data. The utility function specificatiortiudes time-dependent
travel time, Path Size, shortest path dummy, fastest patimduand most high-
way dummy. Compared to the base case where only aggregatslisunce data
are used, the combined calibration shows an improved ancimaerms of fit to
observed link flow and link travel time data. Better data aetldr designed route
choice model specification may help in achieving more sigaifi enhancement.

In future work, the framework can be extended to incorporatee types of
data other than disaggregate trajectories and aggregdfie ttata. For example,
with the development of data mining technologies, onlindadmetworking web-
sites could be analyzed and provide information for deguiraffic demand, es-
pecially when special events take place. How to fuse data fiifferent sources
with different forms and provide a consistent calibratidrib@A models will be a
challenging, yet meaningful topic.
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