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Abstract This paper presents new recursive dynamics algo-
rithms that enable operational-space control of floating-base
systems to be performed at faster rates. This type of con-
trol approach requires the computation of operational-space
quantities and suffers from high computational order when
these quantities are directly computed through the use of the
mass matrix and Jacobian from the joint-space formulation.
While many efforts have focused on efficient computation of
the operational-space inertia matrixΛ, this paper provides a
recursive algorithm to compute all quantities required for
floating-base control of a tree-structure mechanism. This in-
cludes the first recursive algorithm to compute the dynami-
cally consistent pseudoinverse of the JacobianJ̄ for a tree-
structure system. This algorithm is extended to handle ar-
bitrary contact constraints with the ground, which are often
found in legged systems, and uses effective ground contact
dynamics approximations to retain computational efficiency.
The usefulness of the algorithm is demonstrated through ap-
plication to control of a high-speed quadruped trot in simu-
lation. Our contact-consistent algorithm demonstrates pitch
and roll stabilization for a large dog-sized quadruped run-
ning at 3.6 m/s without any contact force sensing, and is
shown to outperform a simpler Raibert-style posture con-
troller. In addition, the operational-space control approach
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allows the dynamic effects of the swing legs to be effectively
accounted for at this high speed.

Keywords recursive dynamics algorithms· operational-
space control· quadruped trot· dynamically consistent
Jacobian pseudoinverse

1 Introduction

Recursive dynamics algorithms have provided computa-
tional benefits to the solution of many difficult prob-
lems within rigid-body dynamics. This class of algo-
rithms has been applied to solve problems in for-
ward (Walker and Orin 1982; Featherstone 1983), in-
verse (Luh et al. 1980), operational-space (Rodriguez et al.
1992; Wensing et al. 2012), and centroidal (Orin et al. 2013)
dynamics with computational efficiency. Through succes-
sive consideration of the dynamics of rigid-body subsys-
tems, these algorithms are able to achieve low computational
order. This low computational order often enables these al-
gorithms to outperform competing nonrecursive algorithms
in terms of their computational requirements.

This paper presents new recursive dynamics algorithms
which compute the operational-space dynamics of floating-
base tree-structure systems. Specifically, the paper includes
the first method to recursively compute the dynamically
consistent Jacobian pseudoinverse when the position and
orientation of a privileged body (namely the torso, in this
work) are selected as the task. Additionally, the methods are
the first to provide fully-recursive dynamics algorithms for
the operational-space dynamics of tree-structure systemsin
ground contact. The applicability of the algorithms is shown
for torso control during a quadruped run for a large dog-
sized model at 3.6 m/s in simulation. This speed represents
a fast trot, as it is just slightly under the trot-to-gallop tran-
sition speed of 3.91 m/s that would be expected in a biologi-
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cal quadruped of this size (Heglund and Taylor 1988). While
the results here highlight torso control for the quadruped,the
algorithms are general to provide operational-space control
of any single body during periods of ground support.

The control of manipulators and legged machines in
task space (also known as operational space) has enjoyed
widespread application since its introduction more than 25
years ago (Khatib 1987). Application of operational-space
control allows a controller to focus on the most impor-
tant aspects of a motion, and offers principled methods
to coordinate the contributions of many actuators in high
degree-of-freedom systems. In systems with redundancy to
achieve a specified task, this method also allows, in prin-
ciple, for the decoupling of task and null-space dynamics.
While the operational-space formalism was originally de-
veloped to describe the dynamics of a single unconstrained
end-effector, it has been extended to accommodate general
task spaces that depend on the motion of more than one body
(Russakow et al. 1995), and to handle holonomic constraints
(de Sapio and Khatib 2005).

More recent work has also demonstrated the promise
of the operational-space formalism to the control of
constrained and underactuated systems.Sentis and Khatib
(2005) demonstrated an extension of the operational-space
framework to control floating-base humanoid systems in
flight. Exploiting conservation of angular momentum in
flight, these methods were able to handle the coupling
that each limb’s motion has on the motion of the float-
ing system as a whole.Park and Khatib(2006) built upon
de Sapio and Khatib(2005) to enable operational-space
control of humanoids in ground contact.Sentis et al.(2010)
later extended this work for control of internal contact
forces. For humanoids in double support, the large foot-
print provides contact force redundancy to perform any mo-
tion (Wensing et al. 2013). By incorporating model infor-
mation at the dynamics level, these operational-space con-
trol methods have much more authority to modify con-
tact forces than is capable through other position control
schemes. Other model-based methods, such as those de-
scribed inMistry and Righetti(2011), address the control of
contact forces as well through the use of projected inverse
dynamics.

In addition to application for humanoids, these control
methods for systems in contact have been applied to simu-
lated quadruped walking on challenging terrain (Hutter et al.
2012). For legs in closed-kinematic chains with the ground,
the use of operational-space control to select stance torques
has great benefit over position controlled approaches, as
small positional errors at the feet do not lead to large in-
ternal forces between the feet. From a practical standpoint,
recent hardware implementation of whole-body operational-
space control methods has provided new hardware proof of
whole-body control concepts (Sentis et al. 2013). By pro-

viding model-based control at the dynamics level, these con-
trol approaches have the ability to operate more compliantly
than with stiff position servos. From a broad perspective,
the continued development of these methods provides great
potential applicability in next-generation compliant torque-
controlled robotic systems.

Over the years, many efficient algorithms have been
developed to compute the operational-space dynamic
equations of motion in order to support these con-
trol approaches. The largest body of work has concen-
trated on unconstrained manipulators, with original algo-
rithms by Lilly (1989), Kreutz-Delgado et al.(1991), and
Lilly and Orin (1993). More recent approaches have been
provided byBhalerao et al.(2013). These approaches have
been extended to a more general operational space that
may include multiple end-effectors (Rodriguez et al. 1992;
Chang and Khatib 2001; Wensing et al. 2012). As a com-
mon theme across these approaches, novel restructuring of
the efficient recursive structure of the Articulated-Body Al-
gorithm (Featherstone 1983) enables fast computation of
operational-space dynamics in each of these settings.

However, despite this large body of work, algorithms for
the dynamically consistent Jacobian pseudoinverse remain
largely unstudied, with no fully-recursive algorithm avail-
able in the literature. This quantity can be helpful to coor-
dinate many actuators for task control by providing a link
between individual joint torques and effective forces at a
task point. In addition, recursive algorithms for operational-
space dynamics under constraints have not yet emerged
to support the new developments that enable operational-
space control to be applied for systems with legs in contact.
A recent exception is the work byJain (2013) which has
provided partially recursive algorithms for the operational-
space inertia alone, in systems with internal loops.

Although operational-space dynamics algorithms for
systems under constraints have not been studied to any
significant degree, the dynamic simulation problem for
constrained systems has received much attention.Lathrop
(1986) described how constraint-propagationmethods could
be used to simulate tree-structure systems under contact
constraints as well as internal loop-closure constraints.
Parallelized constraint-propagation methods (Featherstone
1999a,b) have been developed to utilize multiple pro-
cessors, when available. A comparative summary of
these and other methods is provided in a recent re-
view (Yamane and Nakamura 2009). Other algorithms have
been developed for the simulation of simple closed-chain
structures wherein the loop closures generated by contact
can be broken through the removal of a single body (Lilly
1993; McMillan et al. 1994). The use of these algorithms as
a starting point for operational-space dynamics under con-
straints provides an alternative approach to the one taken
here. Instead, through the new application of approximated
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ground contact constraints, the algorithm here exhibits effi-
cient computational performance while retaining computa-
tional accuracy.

The recursive algorithms developed in this paper
are applied to the control of a quadruped trot. The
trot is characterized by diagonal leg pairs operating
in sync throughout the stride. The symmetry of this
footfall pattern simplifies the mechanics of the trot
in comparison to asymmetric gaits such as the gallop
(Schmiedeler and Waldron 1999), but requires the efforts
of the stance legs to remain coordinated during the en-
tire stance. Many trot control approaches utilize compli-
ant mechanisms in the legs to conserve energy during
the running step (Raibert 1990; Schmiedeler and Waldron
2002; Hyon and Mita 2002; Raibert et al. 2008), among
other benefits (McMahon 1985). Step-to-step control algo-
rithms for these systems often seek to control the leg pa-
rameters, such as its length, stiffness and angle with re-
spect to the ground at touchdown and then allow the sys-
tem to operate passively during stance (Ahmadi and Buehler
1997; Palmer et al. 2003; Marhefka et al. 2003; Nichol et al.
2004). Due to the absence of continuous in-stride feedback
control of the torso orientation, these footstep algorithms are
very sensitive to the proper selection of leg touchdown pa-
rameters. This sensitivity places a large burden on the foot-
step controller and further prevents its use when ground con-
tact is uncertain or the terrain is highly unpredictable.

Continuous in-stride stabilization of a dynamic trot
presents other challenges. Multiple degrees of freedom in
each leg must be coordinated to propel the torso, stabilize
and reverse its vertical momentum. Further, these coordi-
nated actions are only able to occur during the short periods
of foot-ground support. This coordination is complicated by
leg articulation, which causes the dynamically-coupled ef-
fects of the leg torques to be configuration dependent.

In order to address these difficulties, a dynamically con-
sistent Jacobian pseudoinverse will be used in this work for
continuous torso control. By relating joint torques of the
legs in contact to corrective forces transmitted to the torso,
the use of this quantity provides a crisp method to perform
configuration-dependent coordination of the leg actuators.
As an additional complexity, these stance torques must ac-
count for the return legs, which swing forward rapidly in
preparation for their next contact phase. The algorithms used
here account for the dynamic effects of these swing legs,
enabling the operational-space torso controller to maintain
trot stability even with crude high-level footstep control. To
show the benefits of the operational-space torso control ap-
proach, the results are compared to a Raibert-style posture
controller that uses roll and pitch hip torques to correct torso
orientation through a decoupled control law.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly outlines the notation and conventions used to
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Fig. 1 An example numbering for a rigid-body system withNB = 9.
Joint1 is a virtual 6-DoF joint that connects the fixed base (Body 0) to
the floating base (Body 1).

describe the kinematics and dynamics of tree-structure sys-
tems. Section3 provides a review of the operational-space
equations of motion for both unconstrained (open-chain)
and constrained (closed-chain) systems. While the formu-
lae in this section can be used to perform operational-space
control directly, their computational order isO(n3 + m3)
wheren is the number of degrees of freedom in the sys-
tem andm is the number of constraints. Section4 provides
two recursive algorithms to compute the operational-space
dynamics in the open-chain and constrained closed-chain
cases. Through judicious restructuring of the Articulated-
Body Algorithm recursions, these algorithms have an im-
proved order ofO(nd), whered is the maximum depth
of the kinematic connectivity tree. Section5 describes a
quadruped trot control example, while Section6 demon-
strates the accuracy, efficiency, and effectiveness of the
operational-space control algorithms proposed.

2 Conventions and Notation

This section outlines the conventions and notation that will
be used to describe the connectivity and dynamics of a
floating-base rigid-body system. The conventions in this pa-
per match those used in (Featherstone and Orin 2008) and
rely heavily on 6-D spatial vector algebra. The presentation
here provides the foundational material required to develop
the algorithms in Sections4 and5.

2.1 Connectivity

Any legged system can be represented by a series ofNB

bodies connected by a set of joints, each with up to 6 de-
grees of freedom (DoF). The system’s motion will be mea-
sured with respect to a fixed inertial frame, denoted as Body
0. A privileged body in the system, normally the torso or
trunk for legged systems, is selected as a “floating base” and
is denoted as Body 1. The remaining bodies are numbered
2 throughNB in any manner such that Bodyi’s predeces-
sor (towards the floating base), denotedp(i), is labeled less
thani. An example numbering is provided for a quadruped
style topology in Figure1. Connecting joints are labeled1
throughNB such that jointi connects Bodyp(i) to Bodyi.
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As shown in Figure1, Joint 1 is defined as a 6-DoF virtual
joint which connects the inertial frame to the floating base.

Given these conventions, a few additional definitions can
be made to aid the development of algorithms in subse-
quent sections. The setc(i) is defined as the set of chil-
dren for Bodyi andc∗(i) as the set of bodies in the subtree
rooted at Bodyi, excludingi itself. For example, in Figure
1,c(1) = {2, 4, 6, 8}, c∗(1) = {2, . . . , 9}, andc∗(4) = {5}.
At any instant, denoteC ⊂ {1, . . . , NB} as the set of bodies
in contact with the ground and denoteNc as the number of
bodies in contact. In this work, point contacts are assumed,
with the contact points labeled asci for eachi ∈ C. The
algorithms to be presented are general to handle other con-
straints, such as those introduced by line or planar contacts,
as described in the following sections.

2.2 Spatial Notation

6D spatial vectors provide a compact notation to describe
rigid-body dynamics and to develop rigid-body dynamics al-
gorithms. A short introduction is provided here, while the
interested reader may refer to (Featherstone 2010a,b) for
further details. A coordinate frame will be attached to each
body to describe motion conveniently with respect to a lo-
cal basis. The kinematic relationship between neighboring
bodies will be described with the general joint notation of
Roberson and Schwertassek(1988). Using this notation, the
spatial velocity of linki is related to its predecessor as

vi =

[

ωi

vi

]

= iXp(i)vp(i) + Φi q̇i , (1)

whereωi and vi are the angular and linear velocities of
Body i, and q̇i collects joint i’s joint rates1 . The ma-
trix iXp(i) above provides a transformation of spatial mo-
tion vectors from framep(i) to frame i. Φi ∈ R

6×ni

is a full-column-rank matrix that describes jointi’s free
modes of motion, whereni is its number of DoFs. This
matrix is dependent on joint type, but takes the simplified
formΦi = [0, 0, 1, 0, 0, 0]T for revolute joints following the
Denavit-Hartenberg convention. By completing a basis on
R

6, joint i’s constrained modes of motion are given byΦc
i .

The total number of degrees of freedomn possessed by the
system is given asn =

∑NB

i=1 ni.
The spatial transformation matrixiXp(i) in Eq.1 can be

formed from the position vectorp(i)pi (from the origin of
p(i) to the origin ofi) and the rotation matrixiRp(i) which
transforms 3D vectors fromp(i) coordinates toi coordinates

iXp(i) =

(

iRp(i) 0
iRp(i)S

(

p(i)pi

)T iRp(i)

)

. (2)

1 Upright charactersv andf will be used to represent a spatial ve-
locity and force, respectively. Script charactersv andf will be used
to denote the linear velocity or force component of a spatialquantity
(Featherstone and Orin 2008).

The quantityS(p) used here is the skew-symmetric cross
product matrix forp which satisfiesS(p)ω = p × ω for
anyω ∈ R

3. Similarly, the matrixiXT
p(i) provides a spatial

transformation of spatial forces fromi coordinates top(i)

coordinates.
Body i’s 6 × 6 inertia tensor,Ii, maps spatial motion

vectors to spatial force vectors and is represented as

Ii =

(

I cm
i + miS(ci)S(ci)

T miS(ci)

miS(ci)
T mi1

)

. (3)

The quantityci ∈ R
3 is the vector to Bodyi’s center of

mass (ini coordinates),mi is the body’s mass, andI cm
i is

the standard3 × 3 inertia tensor at the center of mass. An
important feature of the spatial inertia tensor is that it allows
both Newton’s and Euler’s rigid-body equations of motion
to be incorporated compactly as

fnet
i = Ii ai + vi ×∗ Ii vi (4)

wherefnet
i represents the net spatial force (moment and lin-

ear force) on Bodyi. The spatial motion-force cross product
operation×∗ is given from the formula

[

ω

v

]

×∗ f =

(

S(ω) S(v)
0 S(ω)

)

f . (5)

3 Operational-Space Dynamics

This section briefly introduces the quantities that describe
operational-space dynamics (Khatib 1987) and operational-
space dynamics under constraints (Park and Khatib 2006).
Given a rigid-body system, consider the standard dynamic
equations of motion (Featherstone and Orin 2008),

H(q)q̈ + C(q, q̇) + G(q) = τ̂ , (6)

whereH ∈ R
n×n, C ∈ R

n , andG ∈ R
n are the fa-

miliar mass matrix, velocity product term, and gravitational
term, respectively. Here, the generalized forceτ̂ ∈ R

n has
contributions from ground contact forcesF c ∈ R

3Nc , actu-
ated joint torquesτ ∈ R

na , as well a spatial force applied
directly on the torsoft ∈ R

6. In this case:

τ̂ = JT
c F c + ST τ + JT

t ft (7)

where S ∈ R
na×n encodes the system’s actuation, and

Jc ∈ R
3Nc×n is the combined contact Jacobian. The torso

JacobianJ t = [16×6 06×(n−6)] is a simple selector matrix.
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3.1 Task Dynamics

In this work, the floating-base position and orientation are
selected as the desired task, with the task velocity given as

ẋt =
[

ωT
1 ṗT

1

]T
. The torso JacobianJ t ∈ R

6×n provides
the common relationship

ẋt = J t(q)q̇ . (8)

The standard operational-space dynamic equations of mo-
tion (Khatib 1987) are then given as

Λt(q) ẍt + µt(q, q̇) + ρt(q) = F̂ t , (9)

where Λt(q) is the operational-space inertia matrix,
µt(q, q̇) is a velocity-dependent force bias, andρt(q) is
a gravity-dependent force bias.F̂ t is the operational force
vector, analogous tôτ , that includes the effects of actuated
joint torques and external forces. These quantities are given
by

Λt(q) =
(

J t H−1 JT
t

)−1

(10)

J̄ T
t (q) = Λt J t H−1 (11)

µt(q, q̇) = J̄ T
t C − Λt J̇ t q̇ (12)

ρt(q) = J̄ T
t G (13)

F̂ t = J̄ T
t τ̂ (14)

= J̄ T
t JT

c F c + J̄ T
t ST τ + ft . (15)

3.2 Task Dynamics with Contact Constraints

When portions of the system are in hard contact with the
environment, the actuated joint torques and other external
forces directly affect the ground reaction forces. The deriva-
tion of the task dynamics in this case is repeated from
Park and Khatib(2006) to illustrate the effect of these hard
contacts. Given a collection ofNc contact points, let their
collective positions be given byxc ∈ R

3Nc , with Jacobian
Jc. The assumption that each of the contact points is sta-
tionary provides

ẋc = Jc q̇ = 0

ẍc = Jc q̈ + J̇c q̇ = 0 . (16)

In this case, the contact forces can be determined as a
function of the the remainder of the forces on the system.
Through examination of the operational-space equations at
the contacts it can be shown that

F c = µc + ρc − J̄ T
c

(

ST τ + JT
t ft

)

. (17)

Here J̄ T
c , µc, and ρc arise from the operational-space

dynamics for the contact points, and can be obtained
through suitable modification of Eqs.11-13. Defining

NT
c = 1 − JT

c J̄ T
c and substituting Eq.17 into Eqs. 6

and7, the constrained system dynamics are then given by

Hq̈ + NT
c C + NT

c G + JT
c Λc J̇c q̇

= NT
c ST τ + NT

c JT
t ft . (18)

Due to the existence of closed kinematic loops in the con-
nectivity of the system, these equations may also be referred
to as the closed-chain system dynamics.

An analogous derivation to that for Eq.9 provides the
constrained operational-space equations of motion

Λ̃t ẍt + µ̃t + ρ̃t = ˜̄J T
t ST τ + ft, (19)

where

Λ̃t(q) =
(

J tH
−1NT

c JT
t

)−1

(20)

=
(

J tN cH
−1NT

c JT
t

)−1

(21)

˜̄J T
t = Λ̃t J t H−1 NT

c (22)

= Λ̃t J t N c H−1 (23)

= J t N c
T (24)

µ̃t(q, q̇) = ˜̄J T
t C + Λ̃t J t H−1 JT

c Λc J̇c q̇

= −Λ̃t J̇t q̇ (25)

ρ̃t(q) = ˜̄J T
t G . (26)

Throughout these equations, the constraint-consistent pro-
jection identities

N c H−1 = H−1 NT
c = N c H−1 NT

c

are used to bring them to recognized forms. WhileΛt in
Eq.9 is an inertia felt by a force at the torso with the contacts
free to accelerate,̃Λt is the inertia felt by a force at the torso
given that the contacts are pinned at their current location.

4 Recursive Algorithms for Floating-Base Task Control

This section provides the main contribution of the paper, re-
cursive algorithms for floating-base task control. Controlof
a main element, such as the torso, is important to locomotion
control for a variety of reasons. Maintaining proper pose of
the torso is required to provide the legs access to desired
footholds. At a high level, the task of legged locomotion is
generally to employ available appendages to move the torso
in a desired direction. The trot results in the following sec-
tions show that control of the torso during stance is sufficient
to provide stable locomotion when combined with simple
foot placement heuristics.
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ẍt

τ i

f
e

ci

Dynamic Equation for 

Torso Task 

ft

Λt ẍt + bt = J̄
T

t
S

T
τ + ft

Fig. 2 Dynamic equation for the torso task with ground reaction forces
measured at contacts. The bias forcebt includes the dynamic effects
for each of the contact forcesfe

ci
for i ∈ C. This term also contains

gravitational forces and velocity-dependent Coriolis andcentripetal
forces. The columns of the matrix̄J T

t describe the effective torso
forces created by each actuated joint torqueτ i.

4.1 Torso Control with Ground Force Sensing

In this section, it is assumed that the legged system is
equipped with contact sensors at each of its foot contact
points. It is assumed that these forces are instantaneously
fixed, which is in contrast to the closed-chain case wherein
contact forces are determined by the effects in Eq.17. The
contact sensors measure the spatial ground reaction force

fe
ci

=
[

ne T
ci

f e T
ci

]T

,

wherene
ci

∈ R
3 andfe

ci
∈ R

3 represent the external mo-
ment and force applied from the earthonto Body i at its
contact (measured in a local coordinate frame atci). Under
the assumption of point contacts at the feet,ne

ci
= 0 in all

cases. As a result, the pure forcesf
e
ci

are concatenated to
form F c. Defining

bt = µt + ρt − J̄ T
t JT

c F c (27)

provides the operational-space dynamics (Eq.9) at the float-
ing base as

Λt ẍt + bt = J̄ T
t ST τ + ft . (28)

The setting for these equations is described in Fig.2.
This section will provide a recursive algorithm to compute
J̄ T

t , Λt, andbt from knowledge ofF c, q, andq̇. This rep-
resents the first time a recursive algorithm has been used to
compute the quantitȳJT directly for a tree-structure system.
The algorithm to computēJ T

t is anO(nd) algorithm, where
d is the maximum depth of the connectivity tree. This rep-
resents a substantial order improvement over theO(n3) ap-
proach when Eq.11is used for closed-form numeric compu-
tation. For the quadruped example withn = 18 andd = 4,
the recursive algorithm is an order of magnitude faster.

The approach presented here is inspired by the effi-
cient recursions of the articulated-body algorithm (ABA)
(Featherstone 1983; Featherstone and Orin 2008). The ABA

proceeds with three algorithmic sweeps over the kinematic
tree. The first pass of the algorithm proceeds outward from
base to tips, and calculates body velocitiesvi and associated
velocity-dependent acceleration bias termsζi which satisfy

ai = iXp(i) ap(i) + Φi q̈i + ζi . (29)

The second pass of the algorithm, inward from tips to
base, then computes articulated-body inertiasIA

i and bias
forcespA

i . Considering the subtree rooted at Bodyi, the key
concept of the ABA is that the dynamics of this subtree can
be represented as (Featherstone and Orin 2008)

fi = IA
i ai + pA

i , (30)

wherefi is the interaction force transmitted to Bodyi from
its predecessor.

Intuitively, IA
i is the inertia felt by a force acting on the

subtree rooted ati and, as such, is an operational-space in-
ertia for this subtree. To see this more rigorously, note that
the subtree rooted ati is itself a rigid-body system, and thus
operational-space equations of motion, in the form of Eq.9,
can be derived with the position and orientation of Bodyi

taken as the task. The equivalence betweenΛ in this case
andIA

i can be observed as both quantities map accelerations
of Body i to the forces required for motion. This correspon-
dence is not as clear forpA

i however, as this bias force in-
cludes the combined effects of external forces, joint torques,
and velocity-dependent bias forces. A new inward pass de-
veloped here provides an efficient set of computations to re-
late the individual bias forces to each joint torque, which
allows ABA-inspired recursions to be leveraged to compute
the quantitiesbt andJ̄ T

t in Eq.28.
The third and final recursion of the ABA, once again

outward across the tree, calculates body accelerations. This
final pass is not used here, as the new algorithm recovers
Eq.28after the second pass.

The new inward pass begins through consideration of
Eq.4, the dynamic force balance equation for a single rigid
body, in a more detailed form

fi = Ii ai + βi +
∑

j∈c(i)

jXT
i fj . (31)

Hereβi = vi×∗Iivi−fe
i has contributions from a velocity-

dependent bias force and external forcefe
i defined by

fe
i =

{

−ciXT
i fe

ci
, if i ∈ C

0, otherwise.

It will be shown that the interaction forcesfj , which act on
each child of Bodyi, can be sequentially eliminated from
the more general force balance equation for each body

fi = IA
i ai + β

A
i +

∑

j∈s(i)

jXT
i fj −

∑

k∈c∗(i)

Bik τ k , (32)
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where initiallyIA
i = Ii, s(i) = c(i), βA

i = βi, and each
Bik = 0. This provides an exact match with Eq.31 at the
start of the algorithm. At each step of the algorithm, the set
s(i) contains the uneliminated forces between Bodyi and
each of its children, andBik describes the coupled force
effect that torquek, in the subtree of Bodyi, has on Body
i. Note that in the ABA algorithm for forward dynamics,
the joint torques are known so that the last term in Eq.32
is absorbed into the bias forceβA

i . Here in order to calcu-
late the dynamically consistent Jacobian pseudoinverseJ̄ ,
which gives the relationship between the torques and the
spatial force on the torso, the torques arenot known and
must be carried along through the last term in the general
force balance equation (Eq.32). The torque-force coupling
termsBik are new in this algorithm and are key to con-
structingJ̄ . The second (inward) pass of the algorithm here
can be used to eliminate each of the interaction forcesfj in
Eq.32similar to the ABA, and, as such, recursively provides
updates forIA

i , βA
i , and in this caseBik.

The process to eliminate an interaction force can occur
at any Bodyi with s(i) = {}. This property holds for at least
one body at the beginning of the algorithm, since it holds at
any leaf. At any such body, it is possible to computefi as a
function ofap(i), similar to the derivation of the ABA. This
process requires finding̈qi first as a function ofap(i). By
substitutingai from Eq.29into Eq.32and multiplying both
sides byΦT

i , the following is obtained

τ i = ΦT
i fi (33)

= ΦT
i

[

IA
i (iXp(i)ap(i) + Φiq̈i + ζi) + β

A
i

]

−
∑

k∈c∗(i)

ΦT
i Bikτ k (34)

which uses the fact thatτ i is equal to the component(s) of
the spatial force applied at jointi along its free mode(s) of
motion. The fact thats(i) = {} at this link allows for a
solution of q̈i that is not dependent on interaction forces.
The q̈i that satisfies Eq.34 can be inserted into Eq.29 to
obtainai as

ai =iXp(i)ap(i) + ΦiDiτ i + ζi

− Ki

[

IA
i (iXp(i)ap(i) + ζi) + βA

i

]

+
∑

k∈c∗(i)

KiBik τ k , (35)

whereDi = (ΦT
i IA

i Φi)
−1 and Ki = Φi Di Φ

T
i . This

result is finally combined with Eq.32 for Body i, which
results infi taking the form

fi = LT
i IA

i
iXp(i) ap(i) + LT

i

(

βA
i + IA

i ζi

)

+ IA
i Φi Di τ i −

∑

k∈c∗(i)

LT
i Bik τ k . (36)

EachLT
i is a force propagator across thei-th joint

LT
i = 16×6 − IA

i Ki . (37)

At this point,fi from Eq.36 can be substituted into the
force balance equation (Eq.32) for Bodyp(i). Through this
substitution, the interaction forcefi will no longer appear
in the force balance for Bodyp(i). Further, the following
updates, which account for the dynamic coupling between
bodiesp(i) andi, allow Eq.32 to continue to hold

IA
p(i) := IA

p(i) + iXT
p(i) LT

i IA
i

iXp(i)

β
A
p(i) := β

A
p(i) + iXT

p(i) LT
i

(

β
A
i + IA

i ζi

)

Bp(i)i := −iXT
p(i) IA

i Φi Di

Bp(i)k := iXT
p(i) LT

i Bik ∀k ∈ c∗(i)

s (p(i)) := s (p(i)) \{i} .

By processing these updates starting from the highest
numbered body and counting downward, it follows when
Bodyi is reached,s(i) is necessarily empty (since each child
is numbered higher than its parent). Once this backwards re-
cursion process has completed, Eq.32for Body1 (the torso)
provides

IA
1 a1 + βA

1 =
∑

k∈c∗(1)

B1k τ k + f1 (38)

which closely resembles Eq.28. At this point,f1 = ft and
IA

1 = Λt. Likewise, eachB1k provides the column(s) of
J̄ T

t which correspond(s) to jointk.
Two small differences must be accounted for to re-

cover bt from βA
1 . These differences come from two

sources: the neglect of gravitational forces thus far, and
the fact thata1 is a spatial acceleration which is not
equivalent in general to the conventional acceleration vec-
tor [ω̇T

1 p̈T
1 ]T (Featherstone 2001). To handle the former,

a common approach is taken by biasing all accelerations
within the algorithm opposite that of gravitational acceler-
ation (Featherstone and Orin 2008). The difference between
spatial and conventional velocity is handled with a common
formula (Featherstone 2001). These modifications provide
a1 in terms ofẍt as

a1 = ẍt − 1ag −
[

0

ω1 × v1

]

, (39)

where1ag is the gravitational acceleration vector expressed
in torso coordinates. These substitutions provide

IA
1 ẍt + bt =

∑

k∈c∗(1)

B1k τ k + f1 , (40)

where

bt = βA
1 − IA

1

(

1ag +

[

0

ω1 × v1

])

. (41)
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This final correction recovers Eq.28, with the complete al-
gorithm provided in Table1.

4.2 Torso Control without Ground Force Sensing

This section extends the previous algorithm to relax the re-
quirement of sensing contact forcesfe

ci
. As described in Sec-

tion 3.2, when contact points are constrained, the system has
closed kinematic chains, and the contact forces are deter-
mined by the remainder of the forces in the system. Here,
the effects of these contact forces are determined recursively,
by considering theconstraineddynamics of articulated sub-
trees. The new closed-chain operational-space dynamics al-
gorithm is shown to result in comparable control results to
the case when contact force sensing is required.

v0 = 0

0X0 = 1

for i = 1 to NB do

ComputeiXp(i)(qi) andΦi(qi)
[see (Featherstone and Orin 2008)]

iX0 = iXp(i)
p(i)X0

vi = iXp(i)vp(i) + Φiq̇i

Computeζi(qi, q̇i,vi) [see (Featherstone and Orin 2008)]

βA
i = vi ×∗ Iivi − fe

i

IA
i = Ii

end for

for i = NB to 1 do

Di = (ΦT
i IA

i Φi)−1

Ki = Φi Di ΦT
i

LT
i = 16×6 − IA

i Ki

if p(i) 6= 0 then

IA
p(i) = IA

p(i) + iXT
p(i) LT

i IA
i

iXp(i)

βA
p(i) := βA

p(i) + iXT
p(i) LT

i

(

βA
i + IA

i ζi

)

Bp(i)i := −iXT
p(i) IA

i Φi Di

for all k ∈ c∗(i) do

Bp(i)k := iXT
p(i) LT

i Bik

end for k

end

end for i

Λt = IA
1

J̄ T
t =

[

1 B12 · · · B1NB

]

bt = βA
1 − IA

1

(

1X0
0ag +

[

0

ω1 × v1

])

Table 1 Recursive Operational-Space Dynamics Algorithm for a
Floating-Base Task

ẍt

τ i

Quantities in Modified 

Algorithm Approximate 

Contact Constraint 

ft

Spherical Joint Modeled  

at Point Contact 

Λ̃t ẍt + b̃t =
˜̄
J

T

t
S

T
τ + ft

Fig. 3 Dynamic equation for the torso task with constraints modeled at

contacts. The constraint-modified quantitiesb̃t, Λ̃t, and ˜̄J T
t include

the dynamic effects of the contact force without its explicit specifica-

tion. The columns of the matrix̃̄J T
t describe the effective torso forces

created by each actuated joint torqueτ i.

4.2.1 Constraint Approximation

Consider a constraint pointci, where the interface between
Bodyi and the ground is modeled through a virtual spherical
joint as shown in Fig.3. Other types of contacts may be con-
sidered by designing the joint atci such that its constrained
modes of motion correspond to the contact constraints. It is
assumed that contact pointci is stationary which requires

aci
= −ciag (42)

in the algorithm due to its acceleration bias. Instead of en-
forcing this constraint exactly, it can approximated by

fci
= Ici

(aci
+ ciag) , (43)

whereIci
represents the inertia of the ground at contactci,

andfci
is the forceexerted on the groundby the rest of the

system. By selectingIci
as a very massive inertia, the ex-

act constraint in Eq.42can be approximately enforced. As a
result, this approximation is called a big-ground-inertiaap-
proximation. The accuracy of this approximation with finite
ground inertia is demonstrated in Section6, while Appendix
A proves that this approximation admits exact replication of
the constrained dynamics in the limit as the contact inertia
becomes infinite. A similar approximation method has been
shown to be effective for the computation of the operational-
space inertia matrixΛ for manipulators byLilly and Orin
(1993) wherein velocity and torque effects were not consid-
ered. Finally, since the virtual joint atci is unactuated, this
provides

ΦT
ci
fci

= 0. (44)

4.2.2 Algorithm Modifications

Propagation of the dynamic equations from contactci back
to Bodyi can be derived similar to that described in the pre-
vious section. For each Bodyi in contact, this provides the
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Additional loop following outward recursion:
for i ∈ C do

ComputeciXi

ciX0 = ciXi
iX0

Kci
= Φci

(ΦT
ci

Ici
Φci

)−1 ΦT
ci

LT
ci

= 16×6 − Ici
Kci

β̃A
i = vi ×∗ Iivi + ciXT

i LT
ci

Ici

ciX0
0ag

ĨA
i = Ii + ciXT

i LT
ci

Ici

ciXi

end for

Modified Output:
Λ̃t = ĨA

1

˜̄J T
t =

[

1 B̃12 · · · B̃1NB

]

b̃t = β̃A
1 − ĨA

1

(

1X0
0ag +

[

0

ω1 × v1

])

Table 2 Modifications to Table1 for the Closed-Chain Operational-
Space Dynamics Algorithm

modified dynamic equations of motion as

fi = (I i + ciXT
i LT

ci
Ici

ciXi)ai+

βi + ciXT
i LT

ci
Ici

ciag , (45)

whereLT
ci

is defined as previously. To differentiate from the
non-constrained case,constraint-modifiedarticulated iner-

tias and articulated bias forces̃I
A

i andβ̃
A

i are initialized as

ĨA
i = Ii + ciXT

i LT
ci

Ici

ciXi (46)

and

β̃A
i = vi ×∗ Iivi + ciXT

i LT
ci

Ici

ciag (47)

at bodies in contact. With this definition, all other recur-
sions shown in Table1 are valid, provided thatIA

i , βA
i , and

Bik are replaced with constrained counterpartsĨA
i , β̃A

i , and
B̃ik, respectively. Keeping this in mind, the original algo-
rithm in Table1 is modified through addition of a loop im-
mediately following the outward recursion, shown in Table
2, to correctly initialize the dynamic equations for the bod-
ies in contact. Upon completing the inward recursion of the
algorithm, the listed modifications approximate the contact
constrained task dynamic equations of motion

Λ̃t ẍt + b̃t = ˜̄J T
t ST τ + ft (48)

whereb̃t = µ̃t + ρ̃t. The computational complexity of this
recursive approach for constraints remainsO(nd). When in-
stead forming the constrained operational-space equations
numerically, for instance to form Eq.24, the number of con-
straintsm does factor into theirO(n3 + m3) complexity.
The accuracy of the approximations that enable the recur-
sive algorithm to maintain its efficiency is demonstrated in
the results section to follow.

1

2
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4

5

6
8

7
9

0

Joint 1 

0

Joint 1 

2
1

Body Numbering  
for a Torso Task 

Body Numbering for  
an End-Effector Task 

3

4

5

6
8

7
9

(a) (b) 

Fig. 4 Body renumbering allows the algorithms here to be applicable
to operational-space tasks other than torso control. By renumbering the
tree such that any body of interest is Body 1, the algorithms could be
applied, for instance, to end-effector control of one limb while the other
limbs are in contact with the ground.

4.3 Applicability to the Control of Other Tasks

Both of the algorithms described thus far have been pre-
sented for torso control of a legged system. The algorithms,
however, are general to provide operational-space control
of any single body in the system through the application of
body renumbering. That is, in the algorithms presented, the
torso was selected as a privileged body, in the sense that
it was selected as body number 1 (the floating base) in the
kinematic connectivity tree. With this in mind, any body
could be selected as Body 1 in numbering the kinematic
connectivity tree. After an appropriate renumbering, the al-
gorithms here would provide the operational-space inertia
matrix, dynamically consistent Jacobian pseudoinverse, and
operational-space bias forces for control of the new Body 1.

Figure 4 shows a simple example of this renumber-
ing process for a quadrupedal morphology, with an orig-
inal body numbering for torso control given in Fig.4(a).
If one of the legs could instead operate as an end-effector,
then it may be desirable to perform operational-space con-
trol of that body. By applying the body renumbering shown
in Fig.4(b), the algorithms here would be applicable for end-
effector control. In particular, the closed-chain algorithm
could still efficiently handle ground contacts on other limbs.

5 Floating-Base Control for a Quadruped Trot

This section details the application of the recursive algo-
rithms presented to the control of a quadruped trot. Diag-
onal leg pairs are synchronized during the trot, undergoing
intermittent periods of stance during which leg forces are
generated to propel and stabilize the torso, followed by the
flight phase during which legs swing forward in preparation
for touchdown again. The articulated legs are modeled with
a series spring-actuation system acting around the knee. The
quadruped is shown in simulation in Fig.5(a), with com-
plete details of the system and its dynamic simulator in
Palmer and Orin(2010). The quadruped weighs 76 kg in to-
tal and stands 60 cm high with the knees in a slightly bent
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ẑ1

ŷ
1x̂1

Fig. 5 (a) Quadruped model in simulation.The position and orien-
tation of coordinate frame 1, attached to the torso, are usedas the
operational-space task to achieve stable trot control. (b)Connectivity
tree for quadruped. Each leg is comprised of hip, thigh, and shank bod-
ies that are each preceded by a1-DOF abduction/adduction, hip swing,
and knee joint, respectively.

configuration. The torso has a width of 35 cm and length of
1.2 m. The connectivity tree for the quadruped is shown in
Fig. 5(b), where each leg has three bodies: a hip, thigh and
shank. Each of these bodies is preceded by a single-DoF leg
abduction/adduction (ab/ad) joint, hip swing joint and knee
joint, respectively.

The system was simulated in the RobotBuilder environ-
ment developed byRodenbaugh(2003). Contact forces were
determined using a spring-damper penalty-based model of
contact. Tangential forces were limited by static and kinetic
friction coefficients of 0.75 and 0.6, respectively, where any
friction violation led to slipping in simulation.

The hybrid control approach for this system, dia-
grammed in Fig.6, decomposes the stabilization of a trot
similar to a classic Raibert-style controller (Raibert 1986).
This control system shares common characteristics with the
one used previously in (Palmer and Orin 2010). Both this
previous work and the work here used a high-level foot
placement controller with a continuous operational-space
torso controller. Previous work differed, in that it applied
a fuzzy controller to select step parameters for each stride.
This intelligent controller allowed for precise control ofthe
top-of-flight (TOF) state of the quadruped.

Here instead, a heuristic footstep controller is used,
which provides a much more primitive selection of the leg
parameters. A decoupled Raibert-style controller (Raibert
1986) is used to select leg parameters at TOF. Forward
and lateral velocities at TOF are controlled by adjusting
the desired fore-aft and lateral foot touchdown locations for
each leg with respect to its hip. Vertical motion control is
achieved through thrust by the knee actuators during stance,
which regulates the TOF height reached during the ballistic
flight phase. Yaw rate is controlled through a scissoring of
the fore and hind limbs before touchdown, which introduces
yaw moments during stance. For each control objective (for-
ward velocity, lateral velocity, height, and yaw rate) a simple
proportional controller is used to adjust its associated con-
trol action (forward leg swing angle, lateral leg angle, thrust,
or leg scissoring, respectively) away from a nominal value.

Quadruped 

Swing: Joint Servos 

Stance: Op. Sp. Torso 

Control 

Heuristic Foot 

Placement Controller 

τ st

τ sw

Discrete 

Continuous 

v1,d, hd v1, h, β, γ

q, q̇

βd, γd,θtd, E

Fig. 6 Hybrid control system. At Top of Flight (TOF), a heuristic step
controller selects desired leg touchdown angles (θtd), and stance leg
energy thrust (E) to be delivered at maximum leg compression. De-
sired pitch (βd) and roll (γd) setpoints are also specified on a step-
to-step basis. The continuous controller outputs joint torques based on
servo control for swing legs (τ sw) and based upon an operational-
space control algorithm for legs in stance (τ st). The external inputs to
the system are user-prescribed torso velocityv1,d and TOF heighthd.

This less sophisticated high-level controller places addi-
tional burden of stabilization on the low-level operational-
space torso control, which additionally must regulate pitch
and roll.

The operational-space torso control component differs
from (Palmer and Orin 2010) in that it considers constraints
at the feet through the closed-chain big-ground-inertia ap-
proximation. Additionally, this paper provides the first pre-
sentation of any of the operational-space algorithms that
have been important to the past and current results.

5.1 Continuous Operational-Space Torso Control

The format of the continuous operational-space floating-
base controller used here is based on a previous controller
by Palmer and Orin(2007). The controller from this pre-
vious work is recast into the operational-space framework
to provide connection to the new algorithms described in
this paper. During stance, swing leg torquesτ sw ∈ R

6 and
stance leg torquesτ st ∈ R

6 must be coordinated to con-
trol torso pose. Joint selector matricesSsw andSst are de-
fined such thatST

swτ sw andST
stτ st provide the generalized

forces created by the swing and stance torques, respectively.
Here, swing torques are selected through PD position servos
for the swing legs, leaving only the stance torques to achieve
the desired torso dynamics. Given a desired torso accelera-
tion ẍd, the desired operational-space dynamics are

Λ̃t ẍd + b̃t = ˜̄J T
t ST

swτ sw + ˜̄J T
t ST

stτ st (49)

where τ st remains to be selected. The ability to sense
ground force may or may not be available for an experimen-
tal system. The work below assumes no such ground force
sensor, but a similar approach can be taken if contact forces
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are known through the use of the original algorithm, and
modification of Eq.49 to

Λt ẍd + bt = J̄ T
t ST

swτ sw + J̄ T
t ST

stτ st . (50)

The desired acceleration̈xd during stance is computed
to achieve roll and pitch stability through proportional-
derivative feedback but without affecting the forward, lat-
eral, vertical and yaw motions predicted by the passive dy-
namics. The torso roll (γ) and pitch (β) axes correspond to
thex andy axes, respectively in the torso coordinate frame
(shown in Fig.5). Their desired accelerations are set as

ω̇x
1,d = kγ(γd − γ) + kγ̇(γ̇d − γ̇) (51)

ω̇
y
1,d = kβ(βd − β) + kβ̇(β̇d − β̇) (52)

wherekγ , kγ̇ , kβ , andkβ̇ are control gains. Desired quanti-

tiesγd, βd, γ̇d, andβ̇d are computed from cubic spline tra-
jectories on the roll and pitch angles. These splines are ini-
tialized at the beginning of stance to match the pitch and roll
setpoints selected at TOF. Desired accelerations for the re-
maining components seek to replicate the passive dynamics
of the system. More specifically, the torso accelerations are
found through dynamics computation withτ sw = 0, and
a passive stance torqueτ st,p which only includes torques
from the passive knee springs. The resultant floating-base
acceleration for this passive input is found as
[

ω̇1,p

p̈1,p

]

= Λ̃
−1

t

(

˜̄J T
t ST

stτ st,p − b̃t

)

. (53)

The desired yaw acceleration and cartesian accelerations are
set asω̇z

1,d = ω̇z
1,p and p̈1,d = p̈1,p, which completes

ẍd = [ω̇T
1,d p̈T

1,d]
T . It can be shown that Eq.49 cannot be

satisfied exactly since the matrix̄̃J T
t ST

st does not have full
rank. This property is linked to the fact that the legs do not
have redundancy to fulfill the contact constraints and the
fact that external forces at the feet can produce no net mo-
ment about the line between the foot contact points. To ac-
count for the inability to track all desired accelerations,an
operational-force weighting matrix is introduced

W = diag([wωx
wωy

wωz
wvx

wvy
wvz

]) (54)

to weight the different components of Eq.49. An SVD of
the matrixW ˜̄J T

t ST
st is finally used to computeτ st:

τ st =
(

W ˜̄J T
t ST

st

)†

W (Λ̃t ẍd + b̃t − ˜̄J T
t ST

swτ sw). (55)

For numerical stability, all singular valuesσi < 1
100σmax

are discarded prior to computing the Moore-Penrose pseu-
doinverse(· · · )†. Since poor roll and pitch tracking leads to
more immediate destabilization than failure to track other
desired quantities,wωx

andwωy
are generally chosen to be

of a greater magnitude than other weightings.

5.2 Continuous Torso Control Through Hip Torque
Adjustment

As a simpler alternative to operational-space control, a
second controller option, based on direct proportional-
derivative control of torso orientation, is used for compar-
ison. As in traditional Raibert-style control (Raibert 1986),
posture control can be carried out in stance by using torque
at the hip/shoulder. For this approach, the knee torque gen-
erated by the passive knee spring is left unmodified, while
the ab/ad torque (τa) is used to control torso roll, and the
hip/shoulder swing torque (τs) is used to control torso pitch.

τa = Kγ(γd − γ) + Kγ̇(γ̇d − γ̇) (56)

τs = Kβ(βd − β) + Kβ̇(β̇d − β̇) . (57)

Despite similarity to Eqs.51 and52, it is important to note
that these torques are applied directly. In contrast, the de-
sired accelerations specified in Eqs.51 and 52 are real-
ized through the use of the dynamically consistent pseudo-
inverse which addresses any task couplings that may exist.

6 Results

This section presents both computational results for the
closed-chain algorithm itself and simulation results for the
quadruped trot example described in the previous section.
The first subsection demonstrates the accuracy and effi-
ciency of the closed-chain recursive dynamics algorithm.
The second subsection shows the effectiveness of using
operational-space control to provide continuous orientation
control of the torso during the trot. The control algorithm
without force sensors (closed-chain) is found to provide
torso control that is comparable to the case when force sen-
sors are required (open-chain). Additionally, the use of the
operational-space control is shown to outperform the hip
torque adjustment approach in terms of gait stability.

6.1 Computational Results

While a proof of the validity of the big-ground-inertia ap-
proximation is given in AppendixA, additional analysis
was carried out to verify the accuracy of the resulting al-
gorithm when double precision arithmetic was used in its
computation. The recursive dynamics algorithm was run us-
ing ground masses for the big-ground-inertia approxima-
tion which varied from10−4 to 108 times the total mass of
the quadruped. The algorithm outputsΛ̃t, ˜̄J T

t , and b̃t (=

µ̃t + ρ̃t) were then compared to their closed-form numeric
values from Eqs.20-26. The errors in the algorithm outputs
are shown as a function of the normalized ground mass in
Fig. 7. All computations were completed on the quadruped
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model at mid-stance during a trot. It can be seen that up to a
point, additional ground mass allows the recursive algorithm
to more closely match the numeric computations.

There is a practical limit to the benefit of increasing the
ground mass in the big-ground-inertia approximation, as nu-
merical precision errors begin to degrade the accuracy of the
algorithm outputs. More specifically, when the ground iner-
tia is propagated to a leg link, for instance through Eq.46,
a larger ground mass will result in proportionally larger
rounding errors during floating-point operations within the
algorithm2 . In contrast, the theoretical accuracy of the algo-
rithm scales proportional to the inverse of the ground mass.
Thus, to roughly balance the tradeoff between these effects,
the ground mass can be selected as

Mground =
mmin√
ǫmach

(58)

where ǫmach is the machine epsilon of the floating-
point computations (Higham 2002) and mmin is the
smallest body mass in the leg. The smallest body mass
is used in this heuristic since it is most sensitive to
floating-point rounding errors. The location of this heuris-
tically constructed breakdown point is shown in Fig.7
for ǫmach = 2−52 ≈ 2.2 × 10−16 . Although the heuristic
doesn’t exactly provide the point of minimum error for all
plots, both the bias and inertia errors attain their minima at
ground masses which are within one order of magnitude of
the heuristic optimum
[

mmin

10
√

ǫmach

,
10 mmin√

ǫmach

]

. (59)

For other configurations, the error exhibits the same trends,
although the minimum error occurs at different ground
masses. However, for 500 randomly sampled quadruped
configurations within the limits of the joint angles attained
during a trot, the points of minimum inertia and bias errors
were found to lie within this same range (Eq.59) for every
configuration.

The dynamically consistent Jacobian pseduoinverse
does not break down with increased ground mass in this
case. It does experience a similar breakdown when applied
to systems that possess redundancy in the leg to satisfy
the contact constraint. The fact that the Jacobian pseudoin-
verse does not break down in this example does not have
any implications on the selection of the proper ground mass
though, as the first quantity to break down governs proper
selection.

2 Definingfl(x op y) as the floating-point value returned by a stan-
dard arithmetic operation (addition, multiplication, etc.), IEEE stan-
dard arithmetic satisfiesfl(x op y) = (x op y)(1 + δ) where
|δ| ≤ ǫmach/2 represents a normalized rounding error (Higham
2002). ǫmach is themachine epsilonwhich provides an upper bound
on the maximum normalized distance from any floating-point number
to a neighboring floating-point number.
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Fig. 7 Differences between the numeric computation ofΛ̃t, ˜̄J T
t and

b̃t (Eqs.20-26) and their computation with the closed-chain algorithm
using the big-ground-inertia approximation. The accuracyof the ap-
proximation improves up to the point that machine precisionissues be-
gin to affect the recursive computation. The traditional Euclidean norm
is used to measure the error forb̃t, while the Frobenius norm is used
for Λ̃t and ˜̄J T

t .

Although the small errors in the recursive algorithm may
be seen as a downside, the algorithm’s computational speed
vastly outperforms the closed-form numeric computations
(Eqs.20-26). This speed is important, as the operational-
space control loops proposed here constitute a rather foun-
dational system component, upon which higher-level per-
ception/action loops would rely. Thus, this operational-
space control loop would need to be closed as quickly as
possible in order to leave time for other processor inten-
sive tasks, such as vision or planning, which would exist
in a physical robot. Additionally, a fast control loop would
provide benefit when used with learning or adaptation algo-
rithms in simulation where the time to evaluate a rollout is
important to rapid learning. The full recursive algorithm is
over 13 times faster than the numeric computation for this
system on a 2.3 GHz i5 MacBook Pro. The computation of
the recursive algorithm requires13.1 µs and the closed-form
numeric computation requires173 µs on average using the
Eigen matrix libraries (Eigen 2014). The computation of the
control law (Eqs.53 and55) then takes12.6 µs on average.
This control law cost is dominated by the computation of the
SVD which is necessary in this underactuated example.

The computational requirements of the recursive al-
gorithm scale better than the closed-form numeric com-
putations when morphologies with more bodies or con-
tacts are considered. Figure8 shows the required number
of floating point operations (FLOPs) for each algorithm.
For the recursive computations, these numbers used anal-
ysis similar to our previous work (Wensing et al. 2012).
Similar analysis was also used to determine computation
costs for the mass matrixH, Coriolis and gravity terms
C + G, as well as all required Jacobian matricesJc

andJ t needed by the numeric computations. The cost for
these quantities reflects the use of common efficient al-
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Fig. 8 Required number of Floating Point Operations (FLOPs) for
theO(nd) closed-chain recursive algorithm and theO(n3 + m3) nu-
meric computation versus the number of links in the system. The bot-
tom left points denoted by squares represent the case of a quadruped
studied here with 4 legs and 3 links per leg (NB = 13, n = 18, and
d = 4). Starting then from a case⋆ of a quadruped with 4 legs and 4
bodies per leg, 4 additional links are added per data point. Links are
added either within the legs, which increasesn andd, or to create an-
other leg in contact, which increasesn andm. Based on the timing of
the quadruped studied here, 200 kiloFLOPs represents the maximum
number of FLOPs that would still allow the numeric algorithmto run
at approximately 1 kHz.

gorithms summarized inWaldron and Schmiedeler(2008)
and Featherstone and Orin(2008). Costs for all other ma-
trix computations (Eqs.20-26) are then included as well.
The upper limit of this graph,200 kiloFLOPs, represents
a bound for the number of operations that could be com-
pleted that would still allow the numeric algorithm to run at
1 kHz. This bound was determined based on the timing and
FLOP requirements for the quadruped model studied here.
Well beyond the cases when the numeric algorithm breaks
this FLOP bound, the recursive algorithm still provides a
substantial amount of available computation time for other
real-time tasks to complete on a 1 kHz schedule.

6.2 Trot Operational-Space Control Results

Both the closed-chain algorithm using the big-ground-
inertia approximation as well as the open-chain algorithm
for torso control lead to stable trotting at a variety of speeds.
All the results here are presented for a forward speed of
3.6 m/s. This speed represents a fast trot, just slightly
under the trot-to-gallop transition speed of 3.91 m/s that
would be expected in a biological quadruped of this mass
(Heglund and Taylor 1988).

The tracking performance of the closed-chain torso-
control algorithm is shown in Fig.9 and demonstrates tight
control of the torso roll and pitch within a tenth of a degree
during stance. During flight, the dynamics of the legs cre-
ate pitch and roll disturbances, which are then eliminated in
the following stance. At the beginning of stance, the feet
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Fig. 9 Velocity, height, roll, and pitch trajectories over 2.5 steps. For
this case, task weightings of[wωx

wωy
wωz

wvx
wvy

wvz
]T =

[10, 10, 1, 1, 1, 1]T are employed to emphasize the tracking of criti-
cal components of orientation (roll and pitch) over tracking of other
torso commands.

may slip with respect to the ground. After friction slows
the stance feet and firm footholds are achieved, a desired
roll and pitch spline is computed, and the operational-space
controller starts operation. The desired pitch spline is gener-
ated to center the pitch trajectory aroundβ = 0◦ in steady
state while the roll spline is generated to return the system
to γ = 0◦ at liftoff. Following liftoff and until the next pair
of footholds is secured, no operational-space control is per-
formed, and no desired roll or pitch is specified. For these
results, task weightings of[wωx

wωy
wωz

wvx
wvy

wvz
]T =

[10, 10, 1, 1, 1, 1]T were hand-selected to track the desired
dynamics on the pitch and roll axes more closely than the
passive translational and yaw dynamics. This higher task
weight on pitch and roll is needed, since poor tracking on
these axes allows the flight disturbances from leg swing to
accumulate which results in rapid instability.

As mentioned previously, the torso dynamics remain un-
deractuated when two legs are on the ground and modifi-
cations to only the stance torques are considered to influ-
ence the task dynamics. This result is due to the rank defi-
ciency in ˜̄J T

t ST
st. Fundamentally, this underactuation limits

the degree to which the roll dynamics and lateral dynam-
ics may be independently controlled. In order to affect the
roll dynamics, a roll moment must be created on the torso,
which for the most part, is created by lateral ground reaction
forces. As a result, the lateral dynamics are strongly cou-
pled to the roll dynamics. This coupling can be understood
further by examining the results of the controller when dif-
ferent task weightings are employed. The results in Fig.10
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Fig. 10 Velocity, height, roll, and pitch trajectories over 2.5 steps. For
this case, task weightings of[wωx

wωy
wωz

wvx
wvy

wvz
]T =

[2, 2, 1, 1, 3, 1]T are employed to emphasize the tracking of the pas-
sive lateral velocity dynamics. Critical components of orientation (roll
and pitch) are given less emphasis.

employ decreased task weighting for the roll and pitch mo-
tions along with increased task weighting for the lateral mo-
tion. By more closely following the passive lateral dynam-
ics, this controller experiences60% less peak-to-peak oscil-
lation in its lateral velocity (vy), yet experiences over120%

larger roll oscillations in comparison to the previous exam-
ple. These roll oscillations are due to roll tracking errors
of up to 1◦ which do not stabilize to zero prior to liftoff.
There is little coupling between the roll and the pitch track-
ing, as the pitch tracking remains again within a tenth of a
degree. In this case, the system converges to a steady state
gait. However, if the weightings on roll and pitch motion
are decreased further, the system does experience rapid roll
instability.

Although the closed-chain algorithm does not require
contact force sensing, the ground reaction forces (GRFs)
that result are very close to those achieved by the open-
chain algorithm with contact force sensing. This result is
due to the use of the passive dynamics for the majority of
the desired task dynamics. The use of the passive dynamics
also helps to keep the GRFs within their frictional limits3 .
The measured GRFs for each of the control algorithms are
shown in Fig.11. Torso control is enabled at approximately
0.04s, when the feet have achieved a solid foothold. The
GRFs in the forwardx and verticalz direction are nearly
indistinguishable, as both controllers replicate the passive

3 Cases which require active modification of the GRFs to comply
with frictional limits would be able to fall back on more complex task-
space control approaches byWensing and Orin(2013).
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Fig. 11 Ground reaction force (GRF) comparison over one step for ap-
plication of the control using the closed-chain algorithm without con-
tact force sensing, versus the open-chain algorithm with contact force
sensing. At maximum leg compression (0.085 s), force level changes
are due to the impulsive injection of actuator energy at the knee.

dynamics in these directions. In they direction however the
closed-chain controller achieves a faster response of the lat-
eral force, which provides slightly improved roll tracking.

Just as the resultant trajectories are not sensitive to the
choice of an open-chain or closed-chain algorithm, they are
also insensitive to the choice of big-ground mass. For the
results shown, a normalized big-ground mass of1.3 × 104

(106 kg) was conservatively selected for use. Within 3 or-
ders of magnitude away from the heuristic optimum selec-
tion of ground mass (Eq.58), the trajectories have no visual
differences. This observation is due at least partially to the
presence of feedback components in the controller. Further,
despite non-zero contact accelerations in the control model
when light ground masses are used, physical contact in the
simulation model prevents any contact position drift. At the
torque level, even down to a normalized big-ground mass of
5.2 × 100 (400 kg), none of the resultant control torques at
mid-stance vary by more than10% from those achieved with
the heuristic optimum. However, if the contact approxima-
tion is removed entirely, such that a big-ground-inertia of0

is used, these torques change by as much as2000%. These
results show some of the robustness of the control approach
to selections of the ground mass near the heuristically con-
structed optimum.

The need for the more complex operational-space con-
trol is highlighted by the failure of the simpler PD hip torque
adjustment strategy (Raibert 1986). The sagittal plane dy-
namics for this controller are shown in Fig.12. The dy-
namics are shown following roughly 20 steps of a trot, dur-
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Fig. 12 Tracking of the sagittal plane dynamics with the hip torque
adjustment strategy (Raibert 1986). Pitch magnitude grows from step
to step and forward velocity is poorly regulated. Since the hip torque
strategy does not consider the coupling between hip torque and forward
velocity, these motions are not well regulated and lead to instability.

ing which the quadruped did not reach any limit-cycle be-
havior. Prior to hand tuning of the gains in Eqs.56 and
57, the quadruped was only able to run for 2 steps be-
fore pitch and roll became unstable. Raibert’s controller
is model-free and thus may be tuned, in practice, to per-
form better at low speeds than the model-based approach
pursed here. Still, at the high speeds considered in this work,
the model-free approach was unable to be tuned to provide
stable locomotion. In the steps shown leading to a fall in
Fig. 12, the quadruped experiences a pitch trajectory of in-
creasing magnitude. As hip torques are applied to correct
these pitch disturbances, coupling from the hip torque to the
forward motion of the quadruped causes the system to speed
up well beyond the 3.6 m/s setpoint. These higher speeds
require larger swing leg trajectories to place the feet for-
ward and slow the quadruped down. Yet, these very swing
leg motions contribute to increased pitch disturbances. The
failure to address this pitch/forward velocity coupling in-
evitably leads to a fall, as the extremely pitched configu-
ration causes the quadruped to slip irrecoverably. This ex-
ample highlights the challenge to manage the many coupled
task dynamics through coordinated leg behavior. Further, it
showcases the power of the dynamically consistent Jacobian
pseudoinverse and operational-space control to efficiently
handle these challenges.

7 Summary

This paper has presented an algorithm for efficient com-
putation of the terms of operational-space dynamics in
floating-base legged systems. The algorithm includes the
first method for the recursive computation of the dynami-
cally consistent Jacobian pseudoinverse in branched kine-
matic trees. The low order of a second, closed-chain algo-
rithm, which uses a big-ground-inertia approximation, is en-

abled through the extension of methods from operational-
space dynamics for manipulators to the case of branched
kinematic trees with grounded elements. This new approach
allows the operational-space dynamics of constrained sys-
tems to be computed more than an order-of-magnitude faster
than direct computation approaches for a quadruped trot ex-
ample. The new algorithm also has a reduced order, from
O(n3 + m3) for the direct computation toO(nd) wheren

is the total number of degrees of freedom in the system,
m is the number of constraints, andd is the depth of its
kinematic connectivity tree. Through understanding the con-
strained dynamics of the system, control algorithms based
on this approach can operate without contact force sensors
at constraint points.

The correctness of the algorithm has been demonstrated
through control of a simulated quadruped trot at a speed of
3.6 m/s. Despite underactuation inherent in the problem, the
torso controller applied during stance is able to coordinate
many actuators in the legs to stabilize the most critical com-
ponents of the system state (roll and pitch) while tracking
the passive dynamics of the torso in other components. The
use of the dynamically consistent Jacobian pseudoinverse
has been shown to provide better torso stabilization in com-
parison to simpler PD control orientation controllers which
do not account for coupled effects that leg torques have on
multiple components of the task motion.

Future work has potential to exploit parallel computa-
tion in order to provide further computational benefits to the
algorithms proposed. As concurrent advances continue in
system actuation and inertial state sensing, the application
of model-based dynamic control to physical robotic systems
will be an exciting area of future work. Through the use of
efficient algorithms to provide foundational control, these
future systems will have computational availability to focus
on important higher-level planning and control.
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A Validity of the Big-Ground-Inertia Approximation

This section provides a proof that the closed-chain algorithm with the
big-ground-inertia approximation computes the correct termsΛ̃t, b̃t,

and ˜̄J T
t in the limit when the contact inertiasIcj

become infinite.
Throughout this section it is assumed that the floating base for the
contact-constrained system has a full 6 degrees of motion freedom. To
assist in the proof,̃ΛM is defined according to its matrix definition in
Eq.20andΛ̃t(ǫ) is defined as the output of the closed-chain algorithm
with Icj

= ǫ−11 for each contactj. It will be shown that

lim
ǫ→0

Λ̃t(ǫ) = Λ̃M . (60)
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Proof is provided here for̃Λt since its recursive computation is the
simplest algebraically, and proof that the algorithm achieves the correct

limits for b̃t and ˜̄J T
t follows through identical arguments.

While the algorithms thus far have been derived from uncon-
strained dynamic equations of motion, recursive constrained dynam-
ics can be derived exactly (not approximately as done here for the
modified algorithm) using alternative constraint-propagation methods
in (Featherstone 2008). These alternative algorithms are composed in
terms of inverse inertias, denoted here asĪi = I

−1
i , and articulated

inverse inertias̄IA
i .

Although the standard articulated-body equations of motion are
only valid when an articulated subsystem has a full 6 degreesof motion
freedom, the more general equations

ai = ĪA
i fi + bA

i +
∑

k∈c∗(i)

Aikτ k (61)

apply when constraints limit motion freedom. In the case that the sub-

system rooted ati has 6 degrees of motion freedom̄IA
i =

(

ĨA
i

)

−1

and Eq.61can be rearranged to the articulated inertia relationship used
in the main text

fi = ĨA
i ai + β̃A

i +
∑

k∈c∗(i)

B̃ikτk.

At each contactci, the constraint thataci
= −ciag , imposed

approximately by Eq.43, can be imposed exactly selectinḡIA
ci

= 0

and seeding an inverse inertia recursion with the equation

aci
= ĪA

ci
fci

− ciag . (62)

The articulated-body inertia recursions used in the main text of this
paper could then be replaced with analogous recursions on the inverse
inertia (Featherstone 2008) that follow

ĪA
p(i) = ĪA

p(i) − ĪA
p(i)ϕi

(

ϕT
i (ĪA

p(i) + ĪA
i )ϕi

)

−1
ϕT

i ĪA
p(i)

(63)

whereϕi = Φc
i (the matrix describing the constrained modes of mo-

tion for joint i). While coordinate transformations are omitted in this
equation for clarity, they would be required for implementation. These
recursions, while more general than the usual articulated-body recur-
sions, are more computationally costly since the quantity

(

ϕT
i (ĪA

p(i) + ĪA
i )ϕi

)

−1

requires a5 × 5 matrix inverse for common revolute joints. The mo-
tivation to approximate these recursions through a constraint approx-
imation, is that it allows the use of standard articulated inertia recur-
sions which are more computationally amenable. Recursionsfor bA

i

andAik can be derived analogous to those forβ̃A
i andB̃ik.

Proof of Eq.60:
Let Īcj

= ǫ1 for each contact and denotēIA
i (ǫ) as the final value

of ĪA
i obtained from the recursions of Eq.63. In the case whenǫ = 0

the following exact relationship holds

Λ̃M =
(

ĪA
1 (0)

)

−1 (64)

since Eq.62 imposes an exact constraint at the contact in this case.
Additionally whenǫ 6= 0 the inverse inertia algorithm and the regular
inertia algorithm provide equivalent output. That is

Λ̃t(ǫ) =
(

ĪA
1 (ǫ)

)

−1
, ∀ ǫ > 0 . (65)

Yet, the recursion equation Eq.63 is comprised of matrix inverses, ad-
ditions, and multiplies, which are all continuous with respect to their
arguments. Thus, all quantities̄IA

i (ǫ) obey

lim
ǫ→0

ĪA
i (ǫ) = ĪA

i (0) . (66)

Combination of these relationships provides

lim
ǫ→0

Λ̃t(ǫ) = lim
ǫ→0

(

ĪA
1 (ǫ)

)

−1

=
(

lim
ǫ→0

ĪA
1 (ǫ)

)

−1

=
(

ĪA
1 (0)

)

−1
= Λ̃M (67)

where once again the continuity of the matrix inverse ofĪA
1 (ǫ) at ǫ =

0 was used in going from line 1 to line 2.
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