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Abstract This paper presents new recursive dynamics algoallows the dynamicféects of the swing legs to béfectively
rithms that enable operational-space control of floatingeb accounted for at this high speed.
systems to be performed at faster rates. This type of Corkeywords recursive dynamics algorithmsperational-
trol approach requires the computation of operationatspa . i

- . . space control quadruped trot dynamically consistent
quantities and dters from high computational order when Jacobian pseudoinverse
these quantities are directly computed through the useeof th
mass matrix and Jacobian from the joint-space formulation.
While many éforts have focused orfiicient computation of - 1 | ntroduction
the operational-space inertia matfix this paper provides a
recursive algorithm to compute all quantities required forRecursive dynamics algorithms have provided computa-
floating-base control of a tree-structure mechanism. This i tional benefits to the solution of many fiicult prob-
cludes the first recursive algorithm to compute the dynamitems within rigid-body dynamics. This class of algo-
cally consistent pseudoinverse of the Jacobfdor a tree-  rithms has been applied to solve problems in for-
structure system. This algorithm is extended to handle afygrq Walker and Orin 1982 Featherstone 1983 in-
bitrary contact constraints with the ground, which aremfte ygrse Luh et al. 198), operational-spaceRpdriguez et al.
found in legged systems, and usékeetive ground contact 1992 Wensing et al. 201)2and centroidal@rin et al. 2013
dynamics approximations to retain computatiodBt&ncy.  dynamics with computationalfiéciency. Through succes-
The usefulness of the algorithm is demonstrated through agijve consideration of the dynamics of rigid-body subsys-
plication to control of a high-speed quadruped trot in simu+tems, these algorithms are able to achieve low computdtiona
lation. Our contact-consistent algorithm demonstrateipi  order. This low computational order often enables these al-
and roll stabilization for a large dog-sized quadruped rungorithms to outperform competing nonrecursive algorithms
ning at 3.6 s without any contact force sensing, and isin terms of their computational requirements.
shown to outperform a simpler Raibert-style posture con-  Thjs paper presents new recursive dynamics algorithms
troller. In addition, the operational-space control ag@o  \which compute the operational-space dynamics of floating-

base tree-structure systems. Specifically, the paperdaslu
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cal quadruped of this sizéleglund and Taylor 1998While  viding model-based control at the dynamics level, these con
the results here highlight torso control for the quadrugieel, trol approaches have the ability to operate more compiantl
algorithms are general to provide operational-space ebntr than with stif position servos. From a broad perspective,
of any single body during periods of ground support. the continued development of these methods provides great

The control of manipulators and legged machines irPotential applicability in next-generation compliantdae-
task space (also known as operational space) has enjoyég@ntrolled robotic systems.
widespread application since its introduction more than 25 Over the years, manyflicient algorithms have been
years ago Khatib 1987. Application of operational-space developed to compute the operational-space dynamic
control allows a controller to focus on the most impor-equations of motion in order to support these con-
tant aspects of a motion, andfers principled methods trol approaches. The largest body of work has concen-
to coordinate the contributions of many actuators in hightrated on unconstrained manipulators, with original algo-
degree-of-freedom systems. In systems with redundancy tithms by Lilly (1989, Kreutz-Delgado et al(1991), and
achieve a specified task, this method also allows, in prinkilly and Orin (1993. More recent approaches have been
ciple, for the decoupling of task and null-space dynamicsprovided byBhalerao et al(2013. These approaches have
While the operational-space formalism was originally de-been extended to a more general operational space that
veloped to describe the dynamics of a single unconstrainemiay include multiple endfgectors Rodriguez et al. 1992
end-dfector, it has been extended to accommodate gener@hang and Khatib 20Q02Wensing et al. 2012 As a com-
task spaces that depend on the motion of more than one bodyon theme across these approaches, novel restructuring of
(Russakow et al. 199pand to handle holonomic constraints the dficient recursive structure of the Articulated-Body Al-
(de Sapio and Khatib 2005 gorithm (Featherstone 1983nables fast computation of

More recent work has also demonstrated the promiseperational-space dynamics in each of these settings.
of the operational-space formalism to the control of However, despite this large body of work, algorithms for
constrained and underactuated syste8entis and Khatib the dynamically consistent Jacobian pseudoinverse remain
(20095 demonstrated an extension of the operational-spadargely unstudied, with no fully-recursive algorithm avai
framework to control floating-base humanoid systems irable in the literature. This quantity can be helpful to coor-
flight. Exploiting conservation of angular momentum in dinate many actuators for task control by providing a link
flight, these methods were able to handle the couplindpetween individual joint torques andtective forces at a
that each limb’s motion has on the motion of the float-task point. In addition, recursive algorithms for operatib
ing system as a wholdark and Khatib(2006 built upon  space dynamics under constraints have not yet emerged
de Sapio and Khatib(2005 to enable operational-space to support the new developments that enable operational-
control of humanoids in ground contaBentis et al(201Q  space control to be applied for systems with legs in contact.
later extended this work for control of internal contactA recent exception is the work bJain (2013 which has
forces. For humanoids in double support, the large footprovided partially recursive algorithms for the operatibn
print provides contact force redundancy to perform any mospace inertia alone, in systems with internal loops.
tion (Wensing et al. 2013 By incorporating model infor- Although operational-space dynamics algorithms for
mation at the dynamics level, these operational-space coBystems under constraints have not been studied to any
trol methods have much more authority to modify con-sjgnificant degree, the dynamic simulation problem for
tact forces than is capable through other position contrafonstrained systems has received much attentiathrop
schemes. Other model-based methods, such as those de98¢ described how constraint-propagation methods could
scribed inMistry and Righett(2011), address the control of pe used to simulate tree-structure systems under contact
contact forces as well through the use of projected inversgonstraints as well as internal loop-closure constraints.
dynamics. Parallelized constraint-propagation metho#edtherstone

In addition to application for humanoids, these control1999ab) have been developed to utilize multiple pro-
methods for systems in contact have been applied to sime@essors, when available. A comparative summary of
lated quadruped walking on challenging terrdilufter et al.  these and other methods is provided in a recent re-
2012. For legs in closed-kinematic chains with the ground,view (Yamane and Nakamura 200®@ther algorithms have
the use of operational-space control to select stanced¢srqubeen developed for the simulation of simple closed-chain
has great benefit over position controlled approaches, adructures wherein the loop closures generated by contact
small positional errors at the feet do not lead to large incan be broken through the removal of a single bddify(
ternal forces between the feet. From a practical standpoint993 McMillan et al. 1994. The use of these algorithms as
recent hardware implementation of whole-body operationala starting point for operational-space dynamics under con-
space control methods has provided new hardware proof afraints provides an alternative approach to the one taken
whole-body control conceptsSéntis et al. 2003 By pro-  here. Instead, through the new application of approximated
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ground contact constraints, the algorithm here exhilfits e Jomnt 1 -

qent computational performance while retaining computa- . 7777 \
tional accuracy. /

The recursive algorithms developed in this paper , \

are applied to the control of a quadruped trot. The
trot is characterized by diagonal leg pairs operatmg;i:ig_1An example numbering for a rigid-body system with; — 9.

in sync throthO_Ut t_h_e stride. The Symmetry of this j5int1 is a virtual 6-DoF joint that connects the fixed base (Bodyo0) t
footfall pattern simplifies the mechanics of the trotthe floating base (Body 1).
in comparison to asymmetric gaits such as the gallop

(Schmiedeler and Waldron 199%ut requires the féorts ibe the ki ) ) ¢
of the stance legs to remain coordinated during the enc_iescrlbet e kinematics and dynamics of tree-structure sys

tire stance. Many trot control approaches utilize Compli_tems. Sectior8 provides a review of the operational-space

ant mechanisms in the legs to conserve energy duringjquations of motion for both unconstrained _(open-chain)

the running stepRaibert 1990 Schmiedeler and Waldron and constrained (closed-chain) systems. While the formu-
2002 Hyon and Mita 2002 Raibert etal. 2008 among lae in this section can be used to perform operational-space
other benefitsNicMahon 198%. Step-to-step control algo- control directly, their computational order @(n” +m?)

rithms for these systems often seek to control the leg pav_vheren |s.theh number of fdegrees.of freedqm n the Sys-
rameters, such as its length, ftess and angle with re- tem andm is the number of constraints. Sectidprovides

spect to the ground at touchdown and then allow the sydWO recursive algorithms to compute the operational-space
tem to operate passively during stanatiadi and Buehler dYnamics in the open-chain and constrained closed-chain
1997 Palmer et al. 200Marhefka et al. 200Nichol etal,  C2S€s: Thrqugh ]udlcpus restructuring pf the Artlculat_ed
2004. Due to the absence of continuous in-stride feedback®dY Algorithm recursions, these algorithms have an im-
control of the torso orientation, these footstep algorigtare  Proved order ofO(nd), whered is the maximum depth
very sensitive to the proper selection of leg touchdown pagf the kinematic connectivity tree. Sectmﬁwd_escnbes a
rameters. This sensitivity places a large burden on the fooguadruped trot control gxample, while Sechﬁrdemon-
step controller and further prevents its use when ground cor?trates, the accuracyffieiency, .and fectiveness of the
tact is uncertain or the terrain is highly unpredictable. operational-space control algorithms proposed.

Continuous in-stride stabilization of a dynamic trot
presents other challenges. Multiple degrees of freedom iE Conventions and Notation
each leg must be coordinated to propel the torso, stabilize

and reverse its vertical momentum. Fgrther, these Coc?rd‘l‘his section outlines the conventions and notation thdt wil
nated actions are only able to occur during the short penoc§e used to describe the connectivity and dynamics of a
of foot-ground support. This coordination is complicatgd b floating-base rigid-body system. The conventions in this pa
leg articulation, which causes the_ dynz_imically-coupled efper match those used ifF¢atherstone and Orin 2008nd
fects of the leg torques to be configuration dependent. rely heavily on 6-D spatial vector algebra. The presentatio

~ Inorder to address thesefidgulties, a dynamically con- here provides the foundational material required to dgvelo
sistent Jacobian pseudoinverse will be used in this work fofhe aigorithms in Sectionsands.

continuous torso control. By relating joint torques of the

legs in contact to corrective forces transmitted to theapors

the use of this quantity provides a crisp method to perfornp 1 Connectivity

configuration-dependent coordination of the leg actuators

As an additional complexity, these stance torques must agsny legged system can be represented by a serigsof

count for the return legs, which swing forward rapidly in bodies connected by a set of joints, each with up to 6 de-

preparation for their next contact phase. The algorithreslus grees of freedom (DoF). The system’s motion will be mea-

here account for the dynamidfects of these swing legs, sured with respect to a fixed inertial frame, denoted as Body

enabling the operational-space torso controller to mainta 0. A privileged body in the system, normally the torso or

trot stability even with crude high-level footstep contrfd  trunk for legged systems, is selected as a “floating base” and

show the benefits of the operational-space torso control aps denoted as Body 1. The remaining bodies are numbered

proach, the results are compared to a Raibert-style postupethrough N in any manner such that Bodss predeces-

controller that uses roll and pitch hip torques to corrextdo  sor (towards the floating base), denotéd), is labeled less

orientation through a decoupled control law. thani. An example numbering is provided for a quadruped
The remainder of the paper is organized as follows. Secstyle topology in Figurel. Connecting joints are labeled

tion 2 briefly outlines the notation and conventions used tadhroughNp such that joint connects Body(i) to Body:.
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As shown in Figurel, Joint 1 is defined as a 6-DoF virtual The quantityS(p) used here is the skew-symmetric cross

joint which connects the inertial frame to the floating base. product matrix forp which satisfiesS(p) w = p x w for
Given these conventions, a few additional definitions caranyw € R2. Similarly, the matrixiXpT(i) provides a spatial

be made to aid the development of algorithms in subsetransformation of spatial forces froicoordinates tg(7)

quent sections. The seti) is defined as the set of chil- coordinates.

dren for Body: andc*(7) as the set of bodies in the subtree  Body i's 6 x 6 inertia tensor,I;, maps spatial motion

rooted at Bodyi, excluding: itself. For example, in Figure vectors to spatial force vectors and is represented as

1,¢(1)={2,4,6,8},¢*(1) ={2,...,9},andc*(4) = {5}.

At anyinstar?t, denoté C {1, ..., Ng} asthe setof bodies I+ m;S(c;)S(ei)” miS(c;)

in contact with the ground and denad& as the number of I; = ( miS(ei)” mil )

bodies in contact. In this work, point contacts are assumed,

with the contact points labeled as for eachi € C. The ) )

algorithms to be presented are general to handle other cofl'® auantityc; < R? is the vector to Body's center of

o ; ; ) cm ;
straints, such as those introduced by line or planar castact™ass (ini coordinates)n; is the body’s mass, anfi;™ is
as described in the following sections. the standard@ x 3 inertia tensor at the center of mass. An

important feature of the spatial inertia tensor is thatldvas
_ . both Newton’s and Euler’s rigid-body equations of motion
2.2 Spatial Notation to be incorporated compactly as

3)

6D spatial vectors provide a compact notation to describe, . .
rigid-body dynamics and to develop rigid-body dynamicsalfi = Li @i + Vi X" L;vi 4)
gorithms. A short introduction is provided here, while the

interested reader may refer tBeatherstone 201@) for ~ wheref"** represents the net spatial force (momentand lin-
further details. A coordinate frame will be attached to eacltear force) on Body. The spatial motion-force cross product
body to describe motion conveniently with respect to a lo-operationx* is given from the formula
cal basis. The kinematic relationship between neighboring

bodies will be described with the general joint notation of [,,] S(w) S(v)

Roberson and Schwertas4@l©88. Using this notation, the { } X f= ( 0 S(Q_,)) f.

spatial velocity of linki is related to its predecessor as

(5)

v = {wl} = "Xpi)Vpi) + Pi Qs (1)
3 Operational-Space Dynamics

wherew,; and v; are the angular and linear velocities of

Body 4, and ¢, collects jointi's joint rates. The ma-  This section briefly introduces the quantities that degcrib

trix *X,,(;) above provides a transformation of spatial mo-gperational-space dynamidét(atib 1987 and operational-

tion vectors from framep(i) to framei. ®; € RO space dynamics under constrain®afk and Khatib 2006

is a full-column-rank matrix that describes joifit free  Gjven a rigid-body system, consider the standard dynamic

modes of motion, where; is its number of DoFs. This equations of motionReatherstone and Orin 2008
matrix is dependent on joint type, but takes the simplified

form®; = [0,0,1,0,0,0]” for revolute joints following the . . .

Denavit-HaErtenberg colwention. By completing a basis onH(q)q +C(q.q) +Glq) =T, (6)

RS, joint i’s constrained modes of motion are given®y.

The total number of degrees of freedenpossessed by the whereH € R™*", C € R" , andG € R" are the fa-

system is given as = 32 n;. miliar mass matrix, velocity product term, and gravitabn
The spatial transformation matriX,,; in Eq.1can be  term, respectively. Here, the generalized fofce R" has

formed from the position vectdt?p, (from the origin of ~ contributions from ground contact forc#s. € R*"<, actu-

p(i) to the origin ofi) and the rotation matris®,,;) which ~ ated joint torques- € R"-, as well a spatial force applied

transforms 3D vectors frop(i) coordinates té coordinates ~ directly on the torsd; € R. In this case:

) ‘R, 0
X = o . @  +=JIF. +S"r+JE, 7
" <lRP(i)S(p(l)pi) Ry T e Te e T @

! Upright charactersr andf will be used to represent a spatial ve- \yhere § ¢ R™ X" encodes the system’s actuation, and
locity and force, respectively. Script characterand f will be used 3N.xn ; . . ’
to denote the linear velocity or force component of a spafigintity Je € R is the Comblned_contfict Jacobian. The tprso
(Featherstone and Orin 2008 JacobianJ; = [16x6 Osx(n—¢)] IS @ simple selector matrix.



Efficient Recursive Dynamics Algorithms for Operational-Sp@ontrol with Application to Legged Locomotion 5

3.1 Task Dynamics N?T =1-J7J7 and substituting Eq17 into Egs. 6
and7, the constrained system dynamics are then given by
In this work, the floating-base position and orientation are
selected as the desired task, with the task velocity given afl g + NZC + NZG + JZAC Jeq
&, = [w] 'T]T The torso Jacobiad; € R6*" provides T gT T 3T
t 1P -1 : t P =N.S'"T+N_J/ f. (18)
the common relationship
. . Due to the existence of closed kinematic loops in the con-
& = J(q)q- (8 iy .
nectivity of the system, these equations may also be referre
The standard operational-space dynamic equations of made as the closed-chain system dynamics.
tion (Khatib 1987 are then given as An analogous derivation to that for E§.provides the

. . . constrained operational-space equations of motion
Ai(q) &+ pi(q.q) + pi(q) = F, 9)

where A(q) is the operational-space inertia matrix, At & + i, + p, = J/ ST T + £, (19)
(g, q) is a velocity-dependent force bias, apgq) is

a gravity-dependent force biaB', is the operational force Where
vector, analogous t@, that includes theféects of actuated

~ —1
joint torques and external forces. These quantities aengiv.- A;(q) = (JtHlethT) (20)
by -1
» - (JtNCH*NZJtT ) (21)
Ala) = (1. HIT) (10) —_
a) = (1o H ] JT— A, J,H'NT (22)
T N —1 -
J@=AJd H (11) ~AJ N H (23)
pi(a,q) = {i C—Aidig (12) =T N (24)
=Jr'Gg 13 . . = ~ _ -
pt(;) 75 E14; (a:q) = J/C+ AT H I AT g
= T e y .
. = ~Avdid (25)
=J/J. F.+J S'T+1f. (15) ~ =
pi(q)=J; G. (26)
3.2 Task Dynamics with Contact Constraints Throughout these equations, the constraint-consistent pr

jection identities
When portions of the system are in hard contact with the
environment, the actuated joint torques and other externaN. H ' = H ' N' = N, H' N7
forces directly &ect the ground reaction forces. The deriva-
tion of the task dynamics in this case is repeated fromare used to bring them to recognized forms. Whilg in
Park and Khati{20089 to illustrate the &ect of these hard Eq.9is an inertia felt by a force at the torso with the contacts
contacts. Given a collection a¥, contact points, let their freeto accelerate), is the inertia felt by a force at the torso
collective positions be given by, € R3Ve, with Jacobian given that the contacts are pinned at their current location
J .. The assumption that each of the contact points is sta-
tionary provides

io=J.qg=0 4 Recursive Algorithmsfor Floating-Base Task Control
Zc=Jcq+J.q=0. (16)  This section provides the main contribution of the paper, re
: . cursive algorithms for floating-base task control. Contrfol

In this case, the contact forces can be determined as a

function of the the remainder of the forces on the systemf.i main element,_such as the torso, 'S |m_p(_)rtantto locomotion
ntrol for a variety of reasons. Maintaining proper pose of

Through examination of the operational-space equations%ﬁ) " . red t ide the | to desired
the contacts it can be shown that e torso is required to provide the legs access to desire

footholds. At a high level, the task of legged locomotion is
F.=p.+p, —J" (STT + JtTft) ) (17)  generally to employ available appendages to move the torso

in a desired direction. The trot results in the following-sec
Here JI, pn., and p, arise from the operational-space tions show that control of the torso during stance i&sient
dynamics for the contact points, and can be obtainetb provide stable locomotion when combined with simple
through suitable modification of Eqsl1-13. Defining foot placement heuristics.
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¢ proceeds with three algorithmic sweeps over the kinematic
tree. The first pass of the algorithm proceeds outward from
base to tips, and calculates body velocitieand associated

f; velocity-dependent acceleration bias tepsvhich satisfy

a; = "Xy api) + ®id; + ¢ - (29)

The second pass of the algorithm, inward from tips to
Dynamic Equation for . . .
Torso Task base, then computes articulated-body merIiésand bias
Ay +by =TI ST+, forcesp:*. Considering the subtree rooted at Baghe key
Fig. 2 Dynamic equation for the torso task with ground reactiooédsr concept of the ABA is that the dynamics of this subtree can

measured at contacts. The bias fotgeincludes the dynamicfiects be represented aB¢atherstone and Orin 2008
for each of the contact forcefs for i € C. This term also contains

gravitational forces and velocity-dependent Coriolis aethtripetal f, = IiA a; + piA, (30)
forces. The columns of the matriX,” describe the fective torso
forces created by each actuated joint torgue wheref; is the interaction force transmitted to Bod§rom

its predecessor.
Intuitively, If‘ is the inertia felt by a force acting on the
subtree rooted atand, as such, is an operational-space in-

In this section, it is assumed that the legged system igrtia for this subtree. To see this more rigorously, not¢ tha

equipped with contact sensors at each of its foot conta&he subtree rooted ais |t§elfa r|g|d-k?0dy.system, and thus
points. It is assumed that these forces are instantaneouéwerat'onal_'SpaC? equatlons_ (_)f motion, '_n the_form onT;q.
fixed, which is in contrast to the closed-chain case whereif&" be derived with the position and orientation of Bady

contact forces are determined by tieeets in Eq.17. The takenAas the task. The equivalence betwaeim this case
contact sensors measure the spatial ground reaction force@ndZ;’ can be observed as both quantities map accelerations
of Body to the forces required for motion. This correspon-

£ — {neT eT}T dence is not as clear fgr* however, as this bias force in-

“ oo ’ cludes the combinedtects of external forces, joint torques,
wheren¢, € R* andfS € R® represent the external mo- and velocity-dependent bias forces. A new inward pass de-
ment and force applied from the eantihto Body i at its veloped here provides afffieient set of computations to re-
contact (measured in a local coordinate frame, atUnder late the individual bias forces to each joint torque, which
the assumption of point contacts at the fegt, = 0 in all allows ABA-inspired recursions to be leveraged to compute
cases. As a result, the pure forgg§ are concatenated to the quantitied, andJ;" in Eq.28.

4.1 Torso Control with Ground Force Sensing

form F.. Defining The third and final recursion of the ABA, once again
I outward across the tree, calculates body accelerations. Th
by =p,+p,—J; J. Fe (27)  final pass is not used here, as the new algorithm recovers

Eq. 28 after the second pass.

rovides the operational-space dynamics t the float- . . .
P P P y Ba The new inward pass begins through consideration of

ing base as ) . . -
g Eq. 4, the dynamic force balance equation for a single rigid
A, +b, =T STT +1,. (28)  body, in a more detailed form
The setting for these equations is described in Big. f; = I, a; + 3, + Z ixls; . (31)
This section will provide a recursive algorithm to compute jee(d)

JI', A, andb, from knowledge ofF'., g, andg. This rep- o _
resents the first time a recursive algorithm has been used {¢€1€3: = vix"I;v;—f; has contributions from a velocity-
compute the quantity 7 directly for a tree-structure system. dependentbias force and external foftelefined by

The algorithm to computé;! is anO(nd) algorithm, where {CiX_Tfe ticce

d is the maximum depth of the connectivity tree. This rep-ff = 0

resents a substantial order improvement ovei@he®) ap-
proachwhen Edl1is used for closed-form numeric compu-
tation. For the quadruped example with= 18 andd = 4,
the recursive algorithm is an order of magnitude faster.

The approach presented here is inspired by tfie e
cient recursions of the articulated-body algorithm (ABA) £, — 14 a, + g2 + Z ixTe — Z Biti, (32
(Featherstone 198Beatherstone and Orin 2008 he ABA jes(i) ke (i)

otherwise

3

It will be shown that the interaction forcég, which act on
each child of Bodyi, can be sequentially eliminated from
the more general force balance equation for each body
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where initially I = I;, s(i) = ¢(i), 82 = 3,, and each
B = 0. This provides an exact match with E3{l at the

start of the algorithm. At each step of the algorithm, the se

s(i) contains the uneliminated forces between Bedynd
each of its children, and3;; describes the coupled force
effect that torqué, in the subtree of Body, has on Body
7. Note that in the ABA algorithm for forward dynamics,
the joint torques are known so that the last term in &2).
is absorbed into the bias forg". Here in order to calcu-
late the dynamically consistent Jacobian pseudoinvérse

which gives the relationship between the torques and the

spatial force on the torso, the torques a known and

must be carried along through the last term in the general

force balance equation (E82). The torque-force coupling
terms B, are new in this algorithm and are key to con-

structing.J. The second (inward) pass of the algorithm here B,k

can be used to eliminate each of the interaction fofgés

Eq.32similar to the ABA, and, as such, recursively providess (p(4))

updates fodf‘, ﬁf, and in this casd;y.

EachL] is a force propagator across théh joint

Ll =1loxe — I7 K;. (37)

At this point, f; from Eq.36 can be substituted into the
force balance equation (E82) for Body p(i). Through this
substitution, the interaction fordg will no longer appear
in the force balance for Body(:). Further, the following
updates, which account for the dynamic coupling between
bodiesp(i) ands, allow Eq.32to continue to hold

A v T
p(3) Xo(i

A
'Bp(i)

B

A
Iy +

T yA1q
yLi I "Xy

ﬁﬁ(i) + iXpT(i) L] (ﬁf +1 Ci)

iyl A
~iX1, I ®; D;

p(i)i
X,
s (p(#)) \{i} .

By processing these updates starting from the highest

LI By, Vke (i)

The process to eliminate an interaction force can occuf,mpered body and counting downward, it follows when

at any Bodyi with s(i) = {}. This property holds for at least

Bodyi is reacheds(i) is necessarily empty (since each child

one body at the beginning of the algorithm, since it holds afs nympered higher than its parent). Once this backwards re-

any leaf. At any such body, it is possible to compfjtas a
function ofa,,;), similar to the derivation of the ABA. This
process requires finding; first as a function ok, ;). By
substitutinga; from Eq.29into Eq.32 and multiplying both

sides by®? , the following is obtained

T =®f (33)
=] I (X, a4 + ®id; +C;) +51-A}
- Y ® B (34)
kece (i)

which uses the fact that; is equal to the component(s) of
the spatial force applied at jointalong its free mode(s) of
motion. The fact thak(i) = {} at this link allows for a

solution of g, that is not dependent on interaction forces.

The g, that satisfies E¢34 can be inserted into EQ9 to
obtaina; as

a; ='Xp()ap(i) + ®:DiTi + ¢
- K; [IZA(iXp(i)ap(i) +¢i)+ ﬁiA}

+ Z KB, 7,
kece* (i)

(35)

whereD; = (®71/®,)"! and K; = &; D; ®!. This
result is finally combined with Eq32 for Body 4, which
results inf; taking the form

fi = LT I Xy a0 + LT (B + 11 ¢))

kec* (i)

+I1'®,D;T; — (36)

cursion process has completed, Bgfor Body 1 (the torso)
provides

Ita, + 87 = Z By, + 11

keex(1)

(38)

which closely resembles EG8. At this point,f; = f; and
I = A,. Likewise, eachB;, provides the column(s) of
JI' which correspond(s) to joirit.

Two small diferences must be accounted for to re-
cover b; from Bf‘. These dierences come from two
sources: the neglect of gravitational forces thus far, and
the fact thata; is a spatial acceleration which is not
equivalent in general to the conventional acceleration vec
tor [w] pT]" (Featherstone 2091To handle the former,

a common approach is taken by biasing all accelerations
within the algorithm opposite that of gravitational acecele
ation (Featherstone and Orin 2008 he diference between
spatial and conventional velocity is handled with a common
formula (Featherstone 2001These modifications provide
aj in terms ofz; as

where'a, is the gravitational acceleration vector expressed
in torso coordinates. These substitutions provide

0

w1 X V1 (39)

alitlag[

e, +b= > Butp+fi, (40)
kec* (1)
where
_aA  7A (1 0
b =87 — I ( a, + Ll 9 le : (41)
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This final correction recovers E&8, with the complete al-
gorithm provided in Tabl4.

4.2 Torso Control without Ground Force Sensing

This section extends the previous algorithm to relax the re-
quirement of sensing contact ford&s As described in Sec-
tion 3.2, when contact points are constrained, the system has
closed kinematic chains, and the contact forces are deter-
mined by the remainder of the forces in the system. Here
the dfects of these contact forces are determined recursivelg

x

Spherical Joint Modeled
at Point Contact

i

Quantities in Modified
Algorithm Approximate
Contact Constraint

At i:t‘i’i)t :jtT STTJrft

Fig. 3 Dynamic equation for the torso task with constraints matiate
dntacts. The constraint-modified quantities A, andJ,” include

by considering theonstraineddynamics of articulated sub- the dynamic &ects of the contact force without its explicit specifica-

trees. The new Closed'Cha'_n operational-space dynamics glyn. The columns of the matrif” describe the féective torso forces
gorithm is shown to result in comparable control results tacreated by each actuated joint torgug

the case when contact force sensing is required.

4.2.1 Constraint Approximation

V():O
0Xp=1
for: =1to Np do

Compute’X,,(;)(gq;) and®;(q;)
[see Featherstone and Orin 2008

Xo = "Xp(:) PP Xo
vi="Xpi)Vps) T Pig;

Consider a constraint poirf, where the interface between
Body: and the ground is modeled through a virtual spherical
joint as shown in Fig3. Other types of contacts may be con-
sidered by designing the joint at such that its constrained
modes of motion correspond to the contact constraints. It is
assumed that contact pointis stationary which requires

Computeg; (q,, q;, Vi) [see Featherstone and Orin 2008 Ac; = Qg (42)
Bt =vix* Iivi —ff in the algorithm due to its acceleration bias. Instead of en-
If=1,; forcing this constraint exactly, it can approximated by
end for _
f., =1, (a; +“ay), (43)

for i = Nptoldo
D, = (8TIA®,) !
K.=® D; &7
LT =166 — I*K;
if p(i) # 0 then
I = I + X6 LT I X0

A ._ A i T T (gA A
’Bp(i) = ’Bp(i) + Xp('i) L; (’61 + I CZ)

wherel ., represents the inertia of the ground at contagct
andf,, is the forceexerted on the grounby the rest of the
system. By selectind., as a very massive inertia, the ex-
act constraint in Eq42 can be approximately enforced. As a
result, this approximation is called a big-ground-ineata
proximation. The accuracy of this approximation with finite
ground inertia is demonstrated in Sect&nwvhile Appendix

— 1 A . .
By = —'X1, I#®; D,

for all k € ¢*(i) do

By (iyk = "X,y LT B

end for k£

end for ¢
Ay =17
JI'=[1Bi2--- Bin,|

0
by = ﬁf o If <1X00a9 + Ln X v1}>

Table 1 Recursive Operational-Space Dynamics Algorithm for a
Floating-Base Task

A proves that this approximation admits exact replication of
the constrained dynamics in the limit as the contact inertia
becomes infinite. A similar approximation method has been
shown to be fective for the computation of the operational-
space inertia matrixA for manipulators byLilly and Orin
(1993 wherein velocity and torqueffects were not consid-
ered. Finally, since the virtual joint @t is unactuated, this
provides

®lf., =0. (44)
4.2.2 Algorithm Modifications
Propagation of the dynamic equations from contadiack

to Body: can be derived similar to that described in the pre-
vious section. For each Bodyin contact, this provides the
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Additional loop following outward recursion:
for i € C do
Compute®iX;
C"X() — c"Xi iXO
K. =%, (*PZ:IQ@Q)*I <I>f
Lz-: = 16><6 - I01K¢21
B =vix* Iivi + “XTLTI.%X,%,
IA=1,+XTLTI. X,
end for

Modified Output:
A =17

'I:tT =[1 Bi2 -+ Bin,]

T 0
b= Bt =1t (5000, + [, 2,

Table 2 Modifications to Tablel for the Closed-Chain Operational-
Space Dynamics Algorithm

modified dynamic equations of motion as

£, = (I +“X; L 1..9X;)a;+

B+ XL I “a,, (45)

whereLCTi is defined as previously. Toftierentiate from the
non-constrained casepnstraint-modifiedarticulated iner-

. . . ~A ~A R
tias and articulated bias forcds andg3, are initialized as

I =1 +°X"LT1.°X; (46)
and
B =v; x* Iv; + CiXiTLZ; I.“a, (“47)

Body Numbering
for a Torso Task

0 EE
(a) ﬁ a \ (b)

Fig. 4 Body renumbering allows the algorithms here to be appleabl
to operational-space tasks other than torso control. Byméering the
tree such that any body of interest is Body 1, the algorithmgdccbe
applied, for instance, to endfector control of one limb while the other
limbs are in contact with the ground.

Body Numbering for
an End-Effector Task

{Joint 1

0

4.3 Applicability to the Control of Other Tasks

Both of the algorithms described thus far have been pre-
sented for torso control of a legged system. The algorithms,
however, are general to provide operational-space control
of any single body in the system through the application of
body renumbering. That is, in the algorithms presented, the
torso was selected as a privileged body, in the sense that
it was selected as body number 1 (the floating base) in the
kinematic connectivity tree. With this in mind, any body
could be selected as Body 1 in numbering the kinematic
connectivity tree. After an appropriate renumbering, the a
gorithms here would provide the operational-space inertia
matrix, dynamically consistent Jacobian pseudoinverse, a
operational-space bias forces for control of the new Body 1.
Figure 4 shows a simple example of this renumber-
ing process for a quadrupedal morphology, with an orig-
inal body numbering for torso control given in Fig(a).
If one of the legs could instead operate as an diettor,

at bodies in contact. With this definition, all other recur-then it may be desirable to perform operational-space con-

sions shown in Tablé are valid, provided that;", 3;', and
B, are replaced with constrained counterp:{flsﬁf‘, and

trol of that body. By applying the body renumbering shown
in Fig. 4(b), the algorithms here would be applicable for end-

B, respectively. Keeping this in mind, the original algo- effector control. In particular, the closed-chain algorithm
rithm in Tablel is modified through addition of a loop im- could still ficiently handle ground contacts on other limbs.
mediately following the outward recursion, shown in Table

2, to correctly initialize the dynamic equations for the bod-

ies in contact. Upon completing the inward recursion of the> Floating-Base Control for a Quadruped Trot

algorithm, the listed modifications approximate the contac

constrained task dynamic equations of motion This section details the application of the recursive algo-

rithms presented to the control of a quadruped trot. Diag-
onal leg pairs are synchronized during the trot, undergoing

Atiit+l~)t:jtTSTT+ft . . . . :
intermittent periods of stance during which leg forces are

(48)

whereb, = o, + p,. The computational complexity of this
recursive approach for constraints remaif{sd). When in-

generated to propel and stabilize the torso, followed by the
flight phase during which legs swing forward in preparation

stead forming the constrained operational-space equatioifor touchdown again. The articulated legs are modeled with

numerically, for instance to form EQ4, the number of con-
straintsm does factor into theiO(n3 + m3) complexity.

a series spring-actuation system acting around the knee. Th
guadruped is shown in simulation in Fig(a), with com-

The accuracy of the approximations that enable the recuplete details of the system and its dynamic simulator in

sive algorithm to maintain itsficiency is demonstrated in
the results section to follow.

Palmer and Orirf2010. The quadruped weighs 76 kg in to-
tal and stands 60 cm high with the knees in a slightly bent
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V17h757’7

5 <
Z1 IE‘ & % Heuristic Foot
Placement Controller
@1 gl
5(17 ’Yd, 0td’ E Discrete
, Continuous
Swing: Joint Servos Tsw
) . ) ) . . Stance: Op. Sp. Torso T

Fig. 5 (a) Quadruped model in simulation.The position and orien- Control st
tation of coordinate frame 1, attached to the torso, are asethe
operational-space task to achieve stable trot controlCgimnectivity q, q
tree for quadruped. Each leg is comprised of hip, thigh, &uadis bod-

ies that are each preceded by-BOF abductiofadduction, hip swing,  Fig 6 Hybrid control system. At Top of Flight (TOF), a heuristiept

and knee joint, respectively. controller selects desired leg touchdown angis;}, and stance leg
energy thrust £) to be delivered at maximum leg compression. De-
sired pitch 34) and roll ¢y4) setpoints are also specified on a step-

configuration. The torso has a width of 35 cm and length ofo-step basis. The continuous controller outputs joirgues based on

1.2 m. The connectivity tree for the quadruped is shown irpervo control for swing legsr(..,) and based upon an operational-

Fig. 5(b), where each leg has three bodies: a hip, thigh an ace control algorithm for_legs in staneese_). The external inputs to

oo . e system are user-prescribed torso veloeity; and TOF height;.

shank. Each of these bodies is preceded by a single-DoF leg

abductioriadduction (afad) joint, hip swing joint and knee

joint, respectively. This less sophisticated high-level controller places addi

The system was simulated in the RobotBuilder environtional burden of stabilization on the low-level operatibna
ment developed bRodenbaugt2003. Contact forces were space torso control, which additionally must regulatetpitc
determined using a spring-damper penalty-based model @nd roll.
contact. Tangential forces were limited by static and kinet ~ The operational-space torso control componeffets
friction codficients of 0.75 and 0.6, respectively, where anyfrom (Palmer and Orin 200n that it considers constraints
friction violation led to slipping in simulation. at the feet through the closed-chain big-ground-inertia ap

The hybrid control approach for this system, dia-Proximation. Additionally, this paper provides the firsepr
grammed in Fig6, decomposes the stabilization of a trot Séntation of any of the operational-space algorithms that
similar to a classic Raibert-style controlld®dibert 1985  have been important to the past and current results.

This control system shares common characteristics with the

one used previously inPalmer and Orin 2090 Both this _ _

previous work and the work here used a high-level foor-1 Continuous Operational-Space Torso Control
placement controller with a continuous operational-spac
torso controller. Previous work filéred, in that it applied
a fuzzy controller to select step parameters for each strid
This intelligent controller allowed for precise controltbi
top-of-flight (TOF) state of the quadruped.

Here instead, a heuristic footstep controller is used
which provides a much more primitive selection of the leg
parameters. A decoupled Raibert-style controlRaibert
1986 is used to select leg parameters at TOF. Forwar
and lateral velocities at TOF are controlled by adjustin

erhe format of the continuous operational-space floating-
base controller used here is based on a previous controller
%y Palmer and Orin2007). The controller from this pre-
vious work is recast into the operational-space framework
to provide connection to the new algorithms described in
this paper. During stance, swing leg torques, € R° and
stance leg torques,; € RS must be coordinated to con-
¢r0I torso pose. Joint selector matric8s, andS,; are de-
grlned such thas?, r., andS? ., provide the generalized
. . orces created by the swing and stance torques, respgctivel
the desired fore-aft and lateral foot touchdown locatians f . y 9 q espge
. L . . ._Here, swing torques are selected through PD position servos

each leg with respect to its hip. Vertical motion control is . . :

_ . for the swing legs, leaving only the stance torques to aehiev
achieved through thrust by the knee actuators during slancteﬁ . X . :

) . ) -_..lhe desired torso dynamics. Given a desired torso accelera-
which regulates the TOF height reached during the ballistic. .. . . .

. . , . %on &4, the desired operational-space dynamics are

flight phase. Yaw rate is controlled through a scissoring o
the fore and hind I!mbs before touchdown, Whlchllntrgduceg&t g+ by =JLST 7o+ STy, (49)
yaw moments during stance. For each control objective (for-
ward velocity, lateral velocity, height, and yaw rate) agien  where 7, remains to be selected. The ability to sense
proportional controller is used to adjust its associataa- co ground force may or may not be available for an experimen-
trol action (forward leg swing angle, lateral leg angleysty  tal system. The work below assumes no such ground force

or leg scissoring, respectively) away from a nominal valuesensor, but a similar approach can be taken if contact forces
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are known through the use of the original algorithm, ands.2 Continuous Torso Control Through Hip Torque

modification of Eq49to Adjustment
. 7T QT 7T QT . . .
AvZg+b=J; SeuTow+Jy SiTat- (50)  As a simpler alternative to operational-space control, a

second controller option, based on direct proportional-

The desired acceleratiaiy during stance is computed L . L
. : - . derivative control of torso orientation, is used for compar
to achieve roll and pitch stability through proportional- ison. As in traditional Raibert-style contrdRéibert 1988
derivative feedback but withoutfaecting the forward, lat- : y

eral, vertical and yaw motions predicted by the passive dyposture control can be carried out in stance by using torque

namics. The torso rolk() and pitch (3) axes correspond to at the higshoulder. _For this approac_h, the knee tg_rque gen-
. . . erated by the passive knee spring is left unmodified, while
thex andy axes, respectively in the torso coordinate frame

(shown in Fig 5). Their desired accelerations are set as the abjad torque_ fa) is used _to control torso roll, anq the
hip/shoulder swing torque() is used to control torso pitch.

Ta = Koy (va — ) + K5 (Ya — ) (56)
7o = Kp(Ba — B) + K;(Ba — B) .- (57)

Wig=ky(va—7) + k(5 — %) (51)
WY g =kp(Ba—B) + ky(Ba — B) (52)

wherek.,, ks, kg, andk:B are control gains. Desired quanti- S o
Despite similarity to Eqss1 and52, it is important to note

ties v, (g, ja, andf3, are computed from cubic spline tra- S o o torques are applied directly. In contrast, the de
jectories on the roll and pitch angles. These splines are ini

. . . ired accelerations specified in Edsl and 52 are real-
tialized at the beginning of stance to match the pitch and roI.S P . .
: . . ized through the use of the dynamically consistent pseudo-

setpoints selected at TOF. Desired accelerations for the re . : .

L . . .Inverse which addresses any task couplings that may exist.
maining components seek to replicate the passive dynamics
of the system. More specifically, the torso accelerations ar
found through dynamics computation with,, = 0, and

a passive stance torque, , which only includes torques

from the passive knee springs. The resultant floating-basgyis section presents both computational results for the
acceleration for this passive inputis found as closed-chain algorithm itself and simulation results fue t
@1, . - quadr.uped trot egample described in the previous section.
L..)“J =A, (Jt STstp — bt) : (53)  The first subsection demonstrates the accuracy dhd e

' ciency of the closed-chain recursive dynamics algorithm.
The desired yaw acceleration and cartesian acceleratiens arhe second subsection shows theetiveness of using
set aswj, = wj, andp, , = p;,, Which completes operational-space control to provide continuous oriémtat
iq = [w] 4 P71 47 It can be shown that Eat9 cannot be control of the torso during the trot. The control algorithm
satisfied exactly since the matrj%TSSTt does not have full Without force Sensors (closed-chain) is found to provide
rank. This property is linked to the fact that the legs do nofOrso control that is comparable to the case when force sen-
have redundancy to fulfill the contact constraints and thé©rs are required (open-chain). Additionally, the use ef th
fact that external forces at the feet can produce no net m@Perational-space control is shown to outperform the hip
ment about the line between the foot contact points. To adOraue adjustment approach in terms of gait stability.

count for the inability to track all desired acceleratioas,
operational-force weighting matrix is introduced

6 Results

6.1 Computational Results
W = diag[w.,, Wy, Wy, Wy, Wy, Wy, ]) (54)

While a proof of the validity of the big-ground-inertia ap-
to weight the diferent components of E49. An SVD of  proximation is given in Appendid, additional analysis
the matrixW.J 87, is finally used to compute;: was carried out to verify the accuracy of the resulting al-

B ; B gorithm when double precision arithmetic was used in its
Tt = (thT SZ;) W (A iq+ b, —JFST r.,). (55) computation. The recursive dynamics algorithm was run us-
ing ground masses for the big-ground-inertia approxima-
For numerical stability, all singular values < i5omas  tion which varied fromi0~* to 10% times the total mass of
are discarded prior to computing the Moore-Penrose psetthe quadruped. The algorithm outputs, J;7, andb; (=
doinverse- - - )T. Since poor roll and pitch tracking leads to fi, + p,) were then compared to their closed-form numeric
more immediate destabilization than failure to track othewalues from Eqs20-26. The errors in the algorithm outputs
desired quantitiesy,,, andw,,, are generally chosen to be are shown as a function of the normalized ground mass in
of a greater magnitude than other weightings. Fig. 7. All computations were completed on the quadruped
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10°

model at mid-stance during a trot. It can be seen thatup to a -

point, additional ground mass allows the recursive alfaorit o= |7 A
to more closely match the numeric computations. |7 77°
There is a practical limit to the benefit of increasing the o

ground mass in the big-ground-inertia approximation, as nu
merical precision errors begin to degrade the accuracyeof th
algorithm outputs. More specifically, when the ground iner- “
tia is propagated to a leg link, for instance through &6, .

a larger ground mass will result in proportionally larger \
rounding errors during floating-point operations withir th e
algorithn® . In contrast, the theoretical accuracy of the algo- Normalized Ground Mass

rithm scales proportional to the inverse of the ground masssig 7 pifferences between the numeric computatioref J;”and
Thus, to roughly balance the tradEbetween thesefkects,  p, (Egs.20-26) and their computation with the closed-chain algorithm

the ground mass can be selected as using the big-ground-inertia approximation. The accuratyhe ap-
proximation improves up to the point that machine precisssnes be-
_ _Mmin gin to dfect the recursive computation. The traditional Euclideamm
Mground — (58) A ~ . . N
/€mach is used to measure the error fo, while the Frobenius norm is used

. . _ . for A; andJ L.
where €., IS the machine epsilon of the floating-

point computations Higham 2002 and m,,;, is the

smallest body mass in the leg. The smallest body mass a|though the small errors in the recursive algorithm may
is used in this heuristic since it is most sensitive tope seen as a downside, the algorithm’s computational speed
floating-point rounding errors. The location of this heuris vastly outperforms the closed-form numeric computations
tically constructed breakdown point is shown in Fig. (Egs. 20-26). This speed is important, as the operational-
for €macn =272 & 2.2 x 107 . Although the heuristic  gpace control loops proposed here constitute a rather foun-
doesn’t exactly provide the point of minimum error for all §ational system component, upon which higher-level per-
plots, both the bias and inertia errors attain their minitna ceptionaction loops would rely. Thus, this operational-
ground Mmasses .WhiCh are within one order of magnitude a§pace control loop would need to be closed as quickly as
the heuristic optimum possible in order to leave time for other processor inten-
sive tasks, such as vision or planning, which would exist
5 . (59)  in a physical robot. Additionally, a fast control loop would
10 emach " v/emach provide benefit when used with learning or adaptart)ion algo-
For other configurations, the error exhibits the same trendsithms in simulation where the time to evaluate a rollout is
although the minimum error occurs atfféirent ground important to rapid learning. The full recursive algorithen i
masses. However, for 500 randomly sampled quadrupealver 13 times faster than the numeric computation for this
configurations within the limits of the joint angles attaine system on a 2.3 GHz i5 MacBook Pro. The computation of
during a trot, the points of minimum inertia and bias errorsthe recursive algorithm requiré8.1 ;s and the closed-form
were found to lie within this same range (Ex®) for every  numeric computation requirds3 s on average using the
configuration. Eigen matrix librariesigen 2014. The computation of the
The dynamically consistent Jacobian pseduoinverseontrol law (Eqs53 and55) then taked 2.6 us on average.
does not break down with increased ground mass in thi$his control law cost is dominated by the computation of the
case. It does experience a similar breakdown when applie®VD which is necessary in this underactuated example.
to systems that possess redundancy in the leg to satisfy The computational requirements of the recursive al-
the contact constraint. The fact that the Jacobian pseudoigorithm scale better than the closed-form numeric com-
verse does not break down in this example does not ha§tations when morphologies with more bodies or con-
any implications on the selection of the proper ground masgacts are considered. FiguBeshows the required number
though, as the first quantity to break down governs propegf floating point operations (FLOPs) for each algorithm.
selection. For the recursive computations, these numbers used anal-
2 Defining fI(z op y) as the floating-point value returned by a stan- ysis similar to our previous workWensing et al. 2012
dard arithmetic operation (addition, multiplication, $tdEEE stan-  Similar analysis was also used to determine computation
d(;’ird<arithmetiC;atiSfie#l(tw op y) =| (ﬂé op y()j(l + 533“_""“‘3@ costs for the mass matri#l, Coriolis and gravity terms
(s, o 2 epresets & rormaized uing TG | C 4 G, a5 wel as al required Jacobian matrcds
on the maximum normalized distance from any floating-poinnber ~ @nd.J; needed by the numeric computations. The cost for
to a neighboring floating-point number. these quantities reflects the use of commdiicient al-

Error Norm
3
- Heuristic Breakdown Point
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@] (n‘; + m“)
200
/ B Quadruped with 3 Bodies per Leg
180 >k Quadruped with 4 Bodies per Leg
/ Added Legs in Contact (Recursive)
160 - = = = Added Bodies per Leg (Recursive)
nt,m? Added Legs in Contact (Numeric)
140 n T Added Bodies per Leg (Numeric)
& 120
Q
: 100 .
3 tdt
= n -
480 > <
/ " 0(md)
-

nt

0 10 20 30 40 50 60 70 80 90
Number of Bodies (Np)

Fig. 8 Required number of Floating Point Operations (FLOPs) for
the O(nd) closed-chain recursive algorithm and thén3 + m?) nu-
meric computation versus the number of links in the systeine. Got-
tom left points denoted by squares represent the case ofdaupeal
studied here with 4 legs and 3 links per le§£ = 13, n = 18, and

d = 4). Starting then from a caseof a quadruped with 4 legs and 4
bodies per leg, 4 additional links are added per data poinksLare
added either within the legs, which increaseandd, or to create an-
other leg in contact, which increasesandm. Based on the timing of
the quadruped studied here, 200 kiloFLOPs represents tkanmia
number of FLOPs that would still allow the numeric algoritbonrun

at approximately 1 kHz.

gorithms summarized iWaldron and Schmiedelg2008
and Featherstone and Orif2008. Costs for all other ma-
trix computations (Eqs20-26) are then included as well.

100

++ Stance Begins
= = Flight Begins
T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
_r \ . \ — — — Desired \
5 I I Actual |
2 op : .

s ! : ! : !
. L L L L ! L L L !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
s 1k 1 1 1
s I I I
= or
=) N M
o T I ! I I I I ! I il I !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)
Fig. 9 Velocity, height, roll, and pitch trajectories over 2.5pgeFor
this case, task weightings §fv.,, ww, we, we, W, wy |7 =
[10,10,1,1,1,1]T are employed to emphasize the tracking of criti-
cal components of orientation (roll and pitch) over tragkiof other
torso commands.

may slip with respect to the ground. After friction slows
the stance feet and firm footholds are achieved, a desired

The upper limit of this graph200 kiloFLOPs, represents roll and pitch spline is computed, and the operational-spac
a bound for the number of operations that could be comeontroller starts operation. The desired pitch spline isege
pleted that would still allow the numeric algorithm to run at ated to center the pitch trajectory aroufid= 0° in steady

1 kHz. This bound was determined based on the timing angtate while the roll spline is generated to return the system
FLOP requirements for the quadruped model studied hergo v = 0° at liftoff. Following liftoff and until the next pair
Well beyond the cases when the numeric algorithm breaksf footholds is secured, no operational-space controliis pe
this FLOP bound, the recursive algorithm still provides aformed, and no desired roll or pitch is specified. For these
substantial amount of available computation time for otheresults, task weightings ¢fv,,, W, Wey, Wy, Wy, w,, T =

real-time tasks to complete on a 1 kHz schedule.

6.2 Trot Operational-Space Control Results

[10,10,1,1,1,1]T were hand-selected to track the desired
dynamics on the pitch and roll axes more closely than the
passive translational and yaw dynamics. This higher task
weight on pitch and roll is needed, since poor tracking on
these axes allows the flight disturbances from leg swing to

Both the closed-chain algorithm using the big-ground-&ccumulate which results in rapid instability.

inertia approximation as well as the open-chain algorithm As mentioned previously, the torso dynamics remain un-
for torso control lead to stable trotting at a variety of sfeee  deractuated when two legs are on the ground and modifi-
All the results here are presented for a forward speed dfations to only the stance torques are considered to influ-
3.6 m's. This speed represents a fast trot, just slightlyence the task dynamics. This result is due to the rank defi-

under the trot-to-gallop transition speed of 3.9]srthat

ciency inJ;”' S7,. Fundamentally, this underactuation limits

would be expected in a biological quadruped of this masshe degree to which the roll dynamics and lateral dynam-

(Heglund and Taylor 1988

ics may be independently controlled. In order fteat the

The tracking performance of the closed-chain torso+oll dynamics, a roll moment must be created on the torso,
control algorithm is shown in Fig and demonstrates tight which for the most part, is created by lateral ground reactio
control of the torso roll and pitch within a tenth of a degreeforces. As a result, the lateral dynamics are strongly cou-
during stance. During flight, the dynamics of the legs crepled to the roll dynamics. This coupling can be understood
ate pitch and roll disturbances, which are then eliminated i further by examining the results of the controller when dif-
the following stance. At the beginning of stance, the feeferent task weightings are employed. The results in Q.
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*+++ Stance Begins — — — Closed-Chain Alg.
- = Flight Begins 40071 —— Open-Chain Alg. 50

| 200 Force Difference

0 0.05 0.1 0.15 0 0.05 0.1 0.15

400 50

200 Control Begins
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Fig. 10 Velocity, height, roll, and pitch trajectories over 2.5meFor  Fig. 11 Ground reaction force (GRF) comparison over one step for ap-
this case, task weightings ¢fv.,, ww, ww. wy, we, we. ] = plication of the control using the closed-chain algorithitheut con-
[2,2,1,1,3,1] are employed to emphasize the tracking of the pas-act force sensing, versus the open-chain algorithm wittam force
sive lateral velocity dynamics. Critical components okatation (roll  sensing. At maximum leg compression (0.085 s), force leiehges
and pitch) are given less emphasis. are due to the impulsive injection of actuator energy at tieek

employ decreased task weighting for the roll and pitch mogynamics in these directions. In thelirection however the
tions along with increased task weighting for the laterat mo cjosed-chain controller achieves a faster response ofthe |
tion. By more closely following the passive lateral dynam-era| force, which provides slightly improved roll tracking
ics, this controller experienc€8’; less peak-to-peak oscil-  y,5t a5 the resultant trajectories are not sensitive to the
lation in its lateral velocity ¢, ), yet experiences ové20%  cpoice of an open-chain or closed-chain algorithm, they are
larger roll oscillations in comparison to the previous exam 5154 insensitive to the choice of big-ground mass. For the
ple. These roll oscillations are due to roll tracking errors,qqits shown, a normalized big-ground mass .6fx 10*
of up to 1° which do not stabilize to zero prior to liffo (146 kg) was conservatively selected for use. Within 3 or-
There is little coupling between the roll and the pitch track yorg of magnitude away from the heuristic optimum selec-
ing, as the pitch tracking remains again within a tenth of &;4 of ground mass (E8), the trajectories have no visual
degree. In this case, the system converges to a steady St@ferences. This observation is due at least partially to the
gait. However, if the weightings on roll and pitch motion resence of feedback components in the controller. Fyrther
are dggreased further, the system does experience rabid rHEspite non-zero contact accelerations in the control inode
instability. when light ground masses are used, physical contact in the
Although the closed-chain algorithm does not requiresimylation model prevents any contact position drift. A th
contact force sensing, the ground reaction forces (GRFsjrque level, even down to a normalized big-ground mass of
that result are very close to those achieved by the open; s . 100 (400 kg), none of the resultant control torques at
chain algorithm with contact force sensing. This result iSyjg-stance vary by more than% from those achieved with
due to the use of the passive dynamics for the majority ofne heuristic optimum. However, if the contact approxima-
the desired task dynamics. The use of the passive dynamigg, js removed entirely, such that a big-ground-inertia of
also helps to keep the GRFs within their frictional linits 5 ysed, these torques change by as muct0e8%. These
The measured GRFs for each of the control algorithms argssyits show some of the robustness of the control approach

shown in Fig.11 Torso control is enabled at approximately 1o selections of the ground mass near the heuristically con-
0.04s, when the feet have achieved a solid foothold. Thgycted optimum.

GRFs in the forward: and verticalz direction are nearly

o ) i The need for the more complex operational-space con-
indistinguishable, as both controllers replicate the jpass

trol is highlighted by the failure of the simpler PD hip toequ

3 Cases which require active modification of the GRFs to complyadJUStment strategyRaibert 1985 The sagittal plane dy-

with frictional limits would be able to fall back on more coteptask- namics for this controller are shown in Fig2 The dy-
space control approaches Wensing and Orirf2013. namics are shown following roughly 20 steps of a trot, dur-
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7 7 S abled through the extension of methods from operational-

space dynamics for manipulators to the case of branched
kinematic trees with grounded elements. This new approach
allows the operational-space dynamics of constrained sys-
tems to be computed more than an order-of-magnitude faster
than direct computation approaches for a quadruped trot ex-
ample. The new algorithm also has a reduced order, from
O(n® + m3) for the direct computation t®(nd) wheren
is the total number of degrees of freedom in the system,
: : , m is the number of constraints, andis the depth of its
L — 5 5 : 5 - kinematic connectivity tree. Through understanding the co
Time (5) strained dynamics of the system, control algorithms based

Fig. 12 Tracking of the sagittal plane dynamics with the hip torque on this approach can operate without contact force sensors
adjustment strategyR@ibert 1985. Pitch magnitude grows from step gt constraint points.

to step and forward velocity is poorly regulated. Since thgetbrque .
strategy does not consider the coupling between hip tomgiécaward The correctness of the algorithm has been demonstrated

velocity, these motions are not well regulated and leadstalility. through control of a simulated quadruped trot at a speed of
3.6 my's. Despite underactuation inherent in the problem, the
) ) ] o torso controller applied during stance is able to coordinat
ing which the quadruped did not reach any limit-cycle be-any actuators in the legs to stabilize the most critical-com
havior. Prior to hand tuning of the gains in Eq® and  y5nents of the system state (roll and pitch) while tracking
57, the quadruped was only able to run for 2 steps bege passive dynamics of the torso in other components. The
fore pitch and roll became unstable. Raibert's controllef,se of the dynamically consistent Jacobian pseudoinverse
is model-free and thus may be tuned, in practice, t0 Pefhas heen shown to provide better torso stabilization in com-
form better at low speeds than the model-based approagfyison to simpler PD control orientation controllers whic
pursed here. Still, at the high speeds considered in thik,wor 44 1ot account for couplediects that leg torques have on
the model-free approach was unable to be tuned to provi%umme components of the task motion.
st.able locomotion. In the ste.ps shownlleading to a faII.in Future work has potential to exploit parallel computa-
Fig. 12, the quadruped experiences a pitch trajectory of "Ntion in order to provide further computational benefits te th

creasing magnltude. As hip to.rques are applled to Corre%gorithms proposed. As concurrent advances continue in
these pitch disturbances, coupling from the hip torqueeo thSystem actuation and inertial state sensing, the apicati

forward motion of the quadruped causes the s_ystem 10 SPeRY model-based dynamic control to physical robotic systems
up well beyond the 368 s_etp0|r_1t. These higher speeds, ;i e o exciting area of future work. Through the use of
require larger swing leg trajectories to place the feet for'eﬂ-icient algorithms to provide foundational control, these

ward aqd slow th? quadrgped down. _Yet, these very SWingture systems will have computational availability to disc
leg motions contribute to increased pitch disturbances. ThOn important higher-level planning and control

failure to address this pit¢orward velocity coupling in-
evitably leads to a fall, as the extremely pitched configu-
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pseudoinverse and operational-space controlfficiently
handle these challenges.
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A Validity of the Big-Ground-Inertia Approximation

7 Summary This section provides a proof that the closed-chain algoriwith the
big-ground-inertia approximation computes the correghteA, by,

This paper has presented an algorithm féiicent com-  andJ7 in the limit when the contact inertiaé., become infinite.

putation of the terms of operational-space dynamics irffhroughout this section it is assumed that the floating basehie

floating-base legged systems. The algorithm includes thgPntact-constrained system has a full 6 degrees of motiom. To
. assist in the proofA »; is defined according to its matrix definition in

first meth(?d for the re?urSive COmDUtatior_‘ of the dynam"Eq.ZOandfxt(e) is defined as the output of the closed-chain algorithm
cally consistent Jacobian pseudoinverse in branched kinith 1., = ¢~'1 for each contagj. It will be shown that

matic trees. The low order of a second, closed-chain algo-
rithm, which uses a big-ground-inertiaapproximationyis e lim A¢(e) = Anr. (60)



16

Patrick M. Wensing et al.

Proof is provided here foA; since its recursive computation is the
simplest algebraically, and proof that the algorithm aabsethe correct

limits for b, andjtT follows through identical arguments.

While the algorithms thus far have been derived from uncon-

strained dynamic equations of motion, recursive congthitlynam-
ics can be derived exactly (not approximately as done haréhfo
modified algorithm) using alternative constraint-progagamethods

in (Featherstone 2008These alternative algorithms are composed in

terms of inverse inertias, denoted herelas= I; ', and articulated
inverse inertiad 1.

Although the standard articulated-body equations of nmotice
only valid when an articulated subsystem has a full 6 degréestion
freedom, the more general equations
ai =TI +b+ ) ATy (61)
kece* (i)

apply when constraints limit motion freedom. In the case tha sub-
- ~ —1
system rooted at has 6 degrees of motion freedahf = (I#

and Eq61 can be rearranged to the articulated inertia relationsseol u
in the main text

fi =Ita, + B4 + Z BikTk.
kec* (1)

At each contact;, the constraint thah., —Cag, imposed
approximately by Eq43, can be imposed exactly selectiﬂgt =0
and seeding an inverse inertia recursion with the equation
ac, =I2f., —“a,. (62)
The articulated-body inertia recursions used in the maih @é this

paper could then be replaced with analogous recursionseoimibrse
inertia Featherstone 200Q8hat follow

FA  _ 7A FA T FA FA “1 ria
Iy = Ih0y — Ih)Ps (% (I + I )‘Pi) wi I,
(63)

wherep, = ®¢ (the matrix describing the constrained modes of mo-

Yet, the recursion equation EG3is comprised of matrix inverses, ad-
ditions, and multiplies, which are all continuous with respto their
arguments. Thus, all quantitids® (¢) obey

lim IA(e) = I12(0). (66)
Combination of these relationships provides
. It . = —1
lim A, () = lim (I{())
— —1
= (lim 100)
= (I{40) ' =Am (67)

where once again the continuity of the matrix inversd ¢f(¢) ate =
0 was used in going from line 1 to line 2.
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