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Abstract

In the first part of this thesis, we present a new technique for the design of transformation-
optics devices based on large-scale optimization to achieve the optimal effective isotropic
dielectric materials within prescribed index bounds. In addition to the optimization, a
key point is the identification of the correct boundary conditions to ensure reflectionless
coupling to untransformed regions while allowing maximum flexibility in the optimiza-
tion. We apply our technique to the design of multimode waveguide bends and mode
squeezers, in which all modes are transported equally without scattering. In the second
part of this thesis, we introduce a direct, efficient, and flexible method for solving
the non-linear lasing equations of the steady-state ab initio laser theory (SALT). We
validate this approach in one-dimensional as well as in cylindrical systems, and demon-
strate its scalability to full-vector three-dimensional calculations in photonic-crystal
slabs. Our method paves the way for efficient and accurate simulations of microlasers
which were previously inaccessible. In the third part of this thesis, we introduce a
theory of degenerate lasing modes based on SALT. We present an analytical method
to determine the stable superposition of lasing modes, and also a numerical method
for cases in which the degeneracy is unphysically broken by the discretization. We
demonstrate these ideas in examples such as a uniform dielectric cylinder, a metallic
rectangular cavity, and a hexagonal cavity made of air holes.
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4-21 Intensity profiles for even-m lasing mode and its second passive pole at

d = 100. The intensity of the lasing mode (left) differs imperceptibly

from that of that of the passive eigenfunction. This difference is un-

physical because it is solely due to discretization error, and is usually

so small that it can be neglected. . . . . . . . . . . . . . . . . . . . . 145

4-22 Dielectric function for hexagonal cavity. This cavity has C6, symmetry

and supports a pair of degenerate TE (E - Ei + Egy:) modes that

transform as x and y under symmetry operations. All but two rows

of holes have been removed to create a lower-Q structure. A PML is

added to the boundaries to capture the radiation loss. The axes of the

hexagon have been aligned with the diagonals rather than the x and y

axes, because the finite-difference discretization happens to only have

mirror symmetry along the diagonals. . . . . . . . . . . . . . . . . . 146

4-23 Magnetic fields H, for pair of degenerate TE threshold modes for

hexagonal cavity. The modes are not simple 90-degree rotations of one

another, because that rotation is not a member of the C6, symmetry

group. However, these modes can be constructed by taking linear

combinations of threefold and sixfold rotations of each other. Not

shown are the imaginary parts of H, which are non-negligible because

this is not a high-Q cavity. . . . . . . . . . . . . . . . . . . . . . . . . 146

4-24 Dielectric perturbation obtained from QP procedure for hexagonal

cavity. Since the mode is TE (E = E.k + Ey), we have allowed

the perturbation to be a diagonally-anisotropic tenosr, as in Eq. 4.32.

Shown here are the real (left) and imaginary (right) parts of 6E,,. The

6sE, looks similar except rotated by 60 degrees. . . . . . . . . . . . . 147
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4-25 Intensity pattern for stable lasing mode for hexagonal cavity. The

pattern appears to be six-fold symmetric, which is expected. Unlike

in the right panel of Fig. 4-11 however, the chirality is not significant

enough to be visible because the Q ~ 100 is much higher. In the ideal

system, the second pole 6w' stays degenerate with the lasing eigenvalue

6w, and this linear combination stays stable for all pump strengths

above threshold. In the discretized system, there is not a true C6v

symmetry, so there is a small splitting similar to that of the even-m

cylinder modes. Again, this splitting is too small to affect physically

meaningful results of the simulation, but can be removed using the QP

procedure if desired. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4-26 Threshold modes for metallic rectangle with forced degeneracy. A

90 x 70 cell with Dirichlet boundary conditions was used to simulate

the cavity. A uniform loss of o- 0.01 was chosen while the gain was

chosen to be w0 = wt and i = 1. While the rectangle's dimensions

are chosen so that the modes O13 and 022 have the same frequency at

threshold, there is no symmetry operation that takes one mode to the

other; this is forced degeneracy. . . . . . . . . . . . . . . . . . . . . . 149

4-27 Above-threshold splitting in real and imaginary parts of 6w' for forced

degeneracy in metallic rectangle. While perturbation theory predicts

that this mode will be stable to first order in d slightly above threshold,

the broken symmetry in the intensity profile gives it a very small but

nonlinearly growing instability as the pump strength is further increased

(there is not a simple power-law dependence of the instability on d,

however). The real part of 6w' also splits away from 6w above threshold

due to the forced degeneracy being broken. The perturbation theory

prediction is consistent with the fact that the slopes of both curves are

close to zero near d = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 150
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4-28 Intensity profiles for lasing mode and its second passive pole at d = 100.

The intensity pattern of the lasing mode413 + i02 2 (left) differs slightly

from that of that of the passive eigenfunction. The latter has an

eigenvalue 6w' that grows slowly with pump strength, as seen in Fig.

4-2 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1

4-29 Steady-state behavior (after running for a long time) of FDTD simula-

tion of id lasing ring with two-fold degeneracy. The field E is shown at

two different times, and the prediction of the amplitude from SALT is

shown in dotted line. The geometry is Id with 20 grid points and peri-

odic boundary conditions. The SALT parameters were wa = 6.25810,

-L = 0.05, -y = 0.01, o- = 0.01/w, and pump strength Do = 2 x 10-4. 153

4-30 Envelopes (max E over each optical cycle) for electric field E(xo, t)

chosen at arbitrary point xO = 0.1 for id ring obtained in FDTD for

Do slightly above threshold. For the blue curve, there was a small

perturbation 6E = 0.01 cos(47rx) that splits the frequencies between the

sine and cosine modes. The beating frequency here is Wbeating a 0.0294,

while two-mode SALT predicts a frequency splitting of sin - Wcos '

0.0284. The beating is an oscillation between left and right-circulating

SALT-like solutions (but not with the correct SALT amplitudes). Not

shown are the rapid oscillations at wa ~ 27r. The same envelope with no

perturbation (and hence no beating) is shown, as well as the amplitude

predicted by SALT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4-31 Envelopes (max E over each optical cycle) at same point xO = 0.1

and same parameters as in Fig. 4-30 (with perturbed E to split the

degeneracy), except with pump strength Do ten times higher. Unlike the

previous figure in which the beating is a simple sinusoid, the oscillations

here have a sawtooth shape due to the strong nonlinearities. The

behavior is not a SALT-like steady state, but appears to be a stable

lim it cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
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Chapter 1

Introduction

In physics and applied mathematics, a very common recurring theme is the idea of

a linear approximation of something that is nonlinear. In classical mechanics, one

describes a mass on a spring with a linear differential equation, Hooke's Law, when in

reality the behavior is nonlinear and contains terms to all powers in the displacement

of the mass. In electrodynamics, one describes electromagnetic fields with Maxwell's

equations in linear media, when in reality all media have some degree of nonlinearity

and there are second and higher-order terms (it just takes very large fields for the

higher-order terms to become noticeable). In quantum mechanics, one finds energy

shifts due to minor modifications to a Hamiltonian by using perturbation theory to

find the linear part of a response that has terms of all orders. In numerical analysis,

one optimizes nonlinear functions by taking linear approximations of the function

at each iteration to find the best step size and direction. One also finds solutions to

nonlinear equations by approximating them by a sequence of linear equations (this is

Newton's method [1-31).

This thesis is about the numerical solution of complex problems in electromagnetism,

but the most interesting part of any numerical algorithm is typically the analytical

work to formulate the problem effectively and derive the algorithm, and in our

case the interplay between linear and nonlinear behaviors is at the heart of this

analysis. For many design problems in photonics, Maxwell's equations can be treated

as approximately linear in the electromagnetic fields, but the solutions are highly
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nonlinear as a function of the geometric arrangement of materials. Optimization-based

design, as in chapter 2 and in many other works 14-151, typically revolves around a

sequence of linearizations of this geometric nonlinearity, but in chapter 2 we go further

and eliminate the solution of Maxwell's equations entirely by combining large-scale

optimization and a design technique called "transformation optics" [16-22] for the

first time. The resulting theoretical design for a multi-mode integrated bend with

unprecedented low intermode crosstalk was experimentally fabricated and validated

by our collaborators in the Lipson group at Cornell [23]. In chapters 3 and 4, we

turn to a problem in which Maxwell's equations are nonlinear in the electric field

as well-the SALT (steady-state ab-initio lasing theory) equations of steady-state

lasing [24-28], in which the laser gain saturates for a strong field. SALT provides the

most tractable formulation of lasing theory, but even so it had only been previously

solved in Id and relatively simple 2d systems 125-27, 29-31]. To solve the nonlinear

SALT equations tractably in 3d for the first time, the key (in chapter 3) was to combine

SALT, modern computational-electromagnetism techniques, and the right choice of

linearization so that we could solve the exact nonlinear problem (in 105 variables or

more) by a tractable sequence of sparse linear problems. However, SALT theory itself

required modification (in chapter 4) to generally handle the common case of lasing

modes with degeneracies (pairs of equal-frequency solutions), such as the left and

right-circulating modes in a ring laser [26,29,32,33]. Obtaining a correct, general SALT

model capable of handling arbitrary degeneracies numerically required the technique

of linearization in multiple guises. To solve the lasing problem near threshold (at the

lowest powers where lasing occurs), we employed a variant of perturbation theory in

the laser "pump" strength, and we were able to analytically derive a number of key

properties of the degenerate lasing modes. This near-threshold solution is also the

key to numerical solvers, because it forms the starting "guess" for the abovementioned

Newton solvers at higher laser powers where the nonlinearity is strong. But at these

powers, we had to invent a second linearization technique to correct for numerical

degeneracy-splitting that arises from the computational discretization--these splittings

are a familiar minor annoyance in the solution of linear wave resonances [34], but
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turn into a major obstacle in the nonlinear context of SALT for reasons described

in chapter 4. In the remaining introduction, we introduce each of these topics from

the later chapters at a less-technical level, and we will try to provide some of the

background necessary to understand the problems that we solved and the state of the

art before our contributions.

1.1 Steering light with coordinate transformations

Optical devices are everywhere in modern technology, and a key requirement is to steer

light where you want to go: bending, warping, focusing, expanding, and otherwise

distorting electromagnetic waves in prescribed ways. To do this, one uses the geometry:

one has a menu of available materials (glass, Silicon, etc.) with different indices of

refractions n = V5it (where 6 is the dielectric permittivity and p is the magnetic

permeability) that one can put in different places with different shapes. Modern

fabrication technologies such as the lithography used to make computer chips [35]
give us remarkable freedom in the arrangement and shaping of materials, even near

nanometer scales. The design challenge is to come up with the arrangement of materials

that makes light do what you want. For any given arrangement, powerful computational

techniques are available to solve for the electromagnetic wave behaviors [36-39], so one

approach is to simply try different geometries until the solution is what you want. Of

course, there are too many possibilities to try all of them, but one can use a combination

of intuition, exact or approximate analytical results, symmetry, and computational

search to hone in on a good design. Thousands of papers in optics have been published

with designs based on these ideas. Most recently, many authors have been beginning to

employ computational methods that can vary thousands or even millions of parameters

to "discover" a structure that optimizes some optical behavior [4, 12,13, 15, 40-441,

but typical "inverse design" methods of this sort are extremely expensive (requiring a

complete solution of Maxwell's equations at each parameter step) and therefore can

only optimize relatively small regions of space compared to the wavelength of light

(e.g. regions that are at most tens of wavelengths in diameter, and usually only a few
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wavelengths in 3d). We wanted to employ computational design for large multimode

structures that could be 100 wavelengths in diameter, and so we came up with a

new approach based on an idea called "transformation optics" (TO) which had not

previously been employed for inverse design.

TO is a relatively new area of photonics that deals with how to design materials

that warp light geometrically. It relies on an elegant mathematical equivalence in

Maxwell's equations between coordinate transformations and material transformations

[16-18, 21, 22,451. Maxwell's equations in the frequency (w) domain (for linear time-

invariant materials) in the electric E and magnetic H fields from the current J

and charge p = -V -J densities, and for electric permittivity E(x, w) and magnetic

permeability p(x, w) are given by

V x H -iwEE + J

V x E = iwpH(.)

These equations, which are written in the Cartesian coordinates x, can be rewritten

in arbitrary coordinates x' (with Jacobian matrix J), without changing their form, by

making the substitutions V = J 1 V, E' = J-1 E, H' = J 1 H, and J' = JTJ/ det J.

The equations are then rearranged in the form

V' x H' -icjj E'+ J'
(det J)

V' x E' = iw j)H' (1.2)
(detJ )

Amazingly, Eqs. 2.1 and 1.2 have the same form, with the only difference being that

the effective permittivity e and permeability p become complex tensors involving the

Jacobian in Eq. 1.2. Initially, TO began as a computational tool to solve problems

more easily {16, 46]. For example, by applying a numerical solver in a Cartesian box

to domains with other shapes (e.g. bend /cylindrical domains and other distortions),

one can solve the distorted problem using the equivalent dielectric and magnetic

material rather than reconstructing the solver for the new coordinate system, which
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requires considerably more work. Another example is the perfectly matched layer

(PML) technique [38,47,48], which is a computational tool for numerical discretiza-

tions designed to accurately model infinitely large computational cells with outgoing

radiation. The PML formulation is given by a complex coordinate transformation

at the boundaries that is designed to "absorb" outgoing radiation; using TO, this

transformation can be mapped to an artificial absorbing boundary material layer that

effectively does the same thing. Consequently, a frequency-domain solver that handles

arbitrary anisotropic E and [ can implement a PML with no underlying changes.

More recently, TO has emerged as a computational tool to design real-life devices

with useful photonic properties. Examples of devices designed using TO include

spherical cloaks [17, 49, 50], ground-plane "carpet" cloaks 151-55], lenses [56-60],

waveguide bends 141, 61-65], splitters, and many others . A useful and desired

transformation of light, such as bending a light beam in a semicircle or spatially

squeezing a guided wave, can be attained by simply filling the space where we would

like the transformation effect to happen with the appropriate dielectric and magnetic

material provided by the TO recipe. This recipe can be used without having to

worry about the nature of the light; that is, all solutions of Maxwell's equations

are transformed in the same way, as schematically shown in Fig 1-1. This quality

makes TO an especially attractive design option for multimode systems, which involve

many channels of data being carried in a single device, such as a multimode fiber [661.

Today's telecommunications systems are largely driven by integrated photonics [67],

which is the optical analogy of electronic circuits, with the signals carried by on-chip

waveguides rather than electronic interconnects. One major issue with on-chip photonic

components is that they are almost exclusively single-mode, because they can only be

routed effectively for a very narrow range of bandwidths: the turns must be designed

for a small range of frequencies in mind; any other frequency would require a different

construction. However, high-bandwidth applications have recently become increasingly

important, due to the ability to carry much more data in multiple channels 1661. A

crucial requirement for effective handling of multimode propagation is the prevention

of crosstalk, or mixing between the different modes. Because TO-based devices are
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Figure 1-2: Two cloak designs based on transformation optics: spherical
from Ref. [171) and ground-plane carpet cloak (right, from Ref. [511).

cloak (left,

designed to transform all solutions of Maxwell's equations in the same geometric way,

regardless of frequency, TO provides an especially attractive design option for dealing

with multimode applications. However, previous work such as bends 162,65,68] and

carpet cloaking [51,54,691 turned out to have both serious unaddressed problems with

interface reflections (they only transform a certain region of space, but when light hits

the boundary of that region it can have large reflections) and was highly suboptimal

(the design was overconstrained in some ways, and underconstrained in others), as

explained in chapter 2.

When one applies TO as a computational tool (e.g. for PML [48,70]), whether the

transformed E and p are physical or not are irrelevant; the computer does riot care.

However, if we want a design for a structure, like a cloak or a bend, that we actually
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Figure 1-3: Examples of metamaterials. Left: resonant anisotropic magnetic structures,
from Ref. [741; Right: effective dielectric-only material using silicon pillars, from
Ref. [751.

want to fabricate in the real world, then we have to obtain these materials somehow.

In practice, the materials required for most of the arbitrary transformations we can

think of are highly anisotropic, with all nine elements of both dielectric and magnetic

tensors varying continuously in space. Needless to say, such control over material

parameters is a very difficult engineering problem, though progress has been made on

this point using resonant metamaterials [71-74], which are formed from subwavelength

structures that can be tailored to create an effective anisotropic material with desired

properties. While metamaterials have many exciting effective properties, they suffer

from some notable shortcomings as well. First, for very anisotropic materials with

large spatial variations, the nanostructures needed can be prohibitively difficult to

fabricate accurately, and the avoidable imperfections and disorder that comes from

limitations of the fabrication process can completely disrupt the intended effect [181.

Additionally, if we wanted truly universal geometric manipulation (that works for

light of many frequencies), we would need dispersion-less (frequency-independent

E and p) materials, which is almost impossible to realize in the resonant magnetic

nanostructures 1731 and lossy metals (for optical scales) that are typically needed.

One way around this significant roadblock is to try to find a transformation with an

approximately scalar E > 1, which can be realized by using methods such as grayscale

31



lithography [76-791 or variable-radius air holes in a dielectric slab [80] to create an

effective scalar index that varies continuously in some range. For some arbitrary desired

distortion of light, e.g. a cloaked object or a bend, some numerical computation [81,82]

is required to find a near-isotropic transformation that can be approximated by a

scalar E. However, in order to obtain the simplest possible computation, previous

authors over-constrained the problem in some ways (they required the entire boundary

shape of the transformation to be specified), and under-constrained it in others

(they completely ignored the interface discontinuity), resulting in designs that had

suboptimal performance. In particular, a multimode bend [62,63,65,68,83,841 designed

in this way has unacceptably large interface reflections, and a carpet cloak [51] designed

in this way requires an enormous "cloak" region compared to the size of the object

being cloaked.

So instead, we start by examining the actual conditions for this scalarization

to work: first, the transformation should be confined to a plane (i.e. with the z-

coordinate unchanged) and with the in-plane transformation x'(x, y), y'(x, y) satisfying

(or satisfying as closely as possible) the Cauchy-Riemann equations of complex analysis

(which give conformal maps) [85,86]. This is because the Cauchy-Riemann equations

happen to be mathematically equivalent to the condition that TO gives a nonmagnetic

material with scalar E for 2d transformations [871. Second, the transformation should be

continuous at the interfaces; that is, couple smoothly to untransformed regions at the

boundaries. If this condition is not satisfied, i.e. there are jumps in the transformation

or the Jacobian, then there will be singularities in the required materials which will

lead to large scattering. Most work in TO dealing with designing isotropic dielectric

materials [51,62,87-90] has focused on satisfying the first condition, without a serious

treatment of the second condition. As explained in chapter 2, the second condition

is at least as important as the first for properly designing TO devices with minimal

scattering, and these two conditions cannot both be satisfied perfectly [86]. Thus, we

have devised a powerful procedure, based on large-scale nonlinear optimization [91-94],
to find the transformations that satisfy these two conditions as closely as possible,

while at the same time parameterizing [95] and constraining the problem in just
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the right way. Using this procedure, we present a framework for design of isotropic

dielectric TO devices that satisfy the essential conditions of having a realizable TO

material, which has not been done in previous work.

1.2 Using a sequence of linear equations to solve a

nonlinear laser equation

A laser [96,97] consists of three essential components, as shown in Fig. 1-4: a resonant

cavity that traps light, a gain medium that amplifies the light trapped by the cavity

through stimulated emission [33J, and an external power source that pumps the gain

medium to induce population inversion (having a large number of atoms in the excited

state versus the ground state). To get a good sense of this process, we examine

a simplified picture of a laser. For a resonant cavity without gain, the source-free

solutions of Maxwell's equations are known as resonances, and their frequencies W

lie in the complex plane below the real axis (technically, the resonances are poles in

the Green's function) as schematically shown in Fig. 1-5. These modes have a finite

lifetime, defined in the positive quantity

Rew
ImWo

because their energy leaks out of the cavity over time; that is, the confinement is

not perfect. As one increases the gain by pumping the cavity using an external

power source, gain cancels loss and the resonances approach the real-w axis (their

lifetime increases). At a certain pump strength, the resonant mode actually reaches

the real axis, and at this pump strength, called the "threshold", is when lasing starts

happening. Instead of continuing up the complex plane past the real axis, the mode

acquires a finite lasing amplitude, which saturates the gain and causes the system to

reach a steady-state, with the gain (from the external pump and stimulated emission)

balancing the loss (from energy radiating away from the imperfect confinement of the

cavity).
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Figure 1-4: Schematic of the essential components of a laser. A laser consists of 1) a

resonant cavity that traps light, 2) a gain medium embedded in that cavity, and 3) an

external source that pumps the atoms of the gain to population inversion. When we

have these three things, as in this setup consisting of two mirrors, we have a cavity

mode in a steady lasing state, resulting in stimulated emission of coherent light.
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Figure 1-5: Simplified picture of resonant cavity. An oscillating dipole source, strongly

peaked around wo, is placed inside the box, and energy "leaks" out through the hole.

The resonances (technically poles of the Greens function) are shown on the complex

plane below the real axis, with the lifetime of this leakage related to the imaginary

part 'Yo.
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The simplest model of a gain medium is an ensemble of electrons in two-level

atoms, and a crucial component of the stimulated emission leading to lasing is the

population inversion of this ensemble of atoms. The semiclassical theory of lasers, which

treats the electromagnetic fields classically using Maxwell's equations, and treats the

dynamics of the atomic electrons quantum mechanically, was developed in the 1960's

by Haken [33,98] and also independently by Lamb [991. The central equations of this

theory are known as the Maxwell-Bloch (MB) equations (the "Bloch" part allegedly

coming from the fact that the two-level atom part of the model mathematically

resembled the quantum problem of spins in a magnetic field studied by the physicist

Felix Bloch). It was the first truly ab-initio theory of lasers, describing a wide range

of phenomena not captured by simpler models previously used (such as utilizing rate

equations to describe photon number and population inversion, which is essentially a

mean-field treatment).

While the MB equations were intended to describe real-world complex lasers with

as few approximations as possible, somewhat ironically the first people to use the

equations always began by greatly simplifying them and making drastic approximations

to get the equations into a tractable form [100j, often with the end goal of having an

exact solution of a much simpler set of equations. This was because the MB equations,

in their original form, are very difficult to solve even with the help of computers. First,

there are multiple fields that one has to keep track of: in addition to the electric field

E(x, t), there is the gain polarization P(x, t) and the population inversion D(x, t)

(the density of atoms that are in the excited state). More importantly, all three

fields are both space and time-dependent, so a very large amount of computational

work is needed in order to solve the three coupled partial-differential equations that

describe their time evolution. Finally, the dynamics of the laser contain multiple

time scales that happen to be very separated in magnitude: for example, the optical

frequency is much faster than the relaxation of polarization, which in turn is much

faster than the relaxation of the population inversion. Because full time-domain

simulation [37,101,102] must capture all three of these time scales, it may take an

extremely long period of real-world computing time for the simulation to reach the
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Figure 1-6: Time-domain simulation of cylindrical photonic crystal laser from Ref. [1031:
An incident field (as seen in the left panel) excites a lasing mode which eventually
reaches steady state (as seen in the right panel). Due to the presence of three different
physical time-scales, it takes a very long time for the simulation to reach the steady
state.

steady-state which gives us the most useful information about a laser (an example is

shown and described in Fig. 1-6). Even with today's hardware, a full MB simulation of

a 3d microlaser geometry, such as the examples in Fig. 1-7, is prohibitively expensive

and would require a very large amount of computing power that is often not accessible

to typical practitioners of laser theory.

To address these issues, Doug Stone's group at Yale University introduced the

steady-state ab-initio lasing theory (SALT) in 2006 128]. In a nutshell, SALT converts

the three time-dependent partial-differential equations in three fields of MB into a

single time-independent equation in a single field, E, greatly reducing the compu-

tational complexity for the solution. It does so by making a series of well-founded

approximations (with minimal loss of generality) and an ansatz that the total electric

field E is composed of a sum of steady-state lasing modes. The lasing modes are

obtained by tracking the "passive" resonances (as explained above) to the real axis

as the pump strength is increased, and then finding the steady-state lasing mode

once the pole reaches the real axis. (Technically, the familiar "leaky mode" picture

of resonances as slowly decaying "eigenfunctions" is only a local approximation for

Imw < Rew solutions, and the SALT model handles more general resonances [301.)
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While SALT is much easier to solve computationally than MB, it is still a nonlinear

eigenproblem with a nonlinear dependence on both the eigenfrequency w and the

eigenfunction E. In the numerical analysis literature, there are many algorithms that

deal with how to solve the nonlinear eigenvalue problem [104]

L(w)E = 0,

where L is an operator (or a matrix) that depends in a nonlinear way on the eigen-

frequency w, and E is an eigenfunction. However, the SALT equation is of the

form

L(w, E 12 )E = 0, (1.3)

with the matrix depending also on the eigenfunction. The most common problem of

this form that is solved are the equations of density function theory (DFT) [105-107],

but the methods of that theory cannot be applied here because unlike DFT, the SALT

solution E does not minimize a functional, and also L is not hermitian. This diffulty

presented a challenge to the first people who tried to solve SALT: they devised a

method using basis functions known as "constant-flux" states to expand E [26,281, and

solved a reduced version of Eq. 1.3 for the coefficients in the expansion of E. However,

a major issue with this method was that the construction of a specialized basis for

each geometry was often unwieldy and not scalable to 3d complex geometries that are

of the most interest to the laser community.

The closest thing to a standard method to solve general nonlinear equations is

Newton's method [1,31. but this method requires an initial guess that is already very

near the root. Without such a guess, convergence to a root is at best extremely slow

and at worst not even guaranteed. In our case however, we can exploit an important

fact about lasers: the lasing solution is part of a continuous family of solutions as the

pump strength is varied, starting from a linear (in E) eigenproblem at threshold. This

means that the solution for one pump strength will be very close to that for a nearby

pump strength. Hence, one solution provides the perfect initial guess for Newton's

method when solving for the nearby solution. When the gain is completely turned off,
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Figure 1-7: Two examples of experimentally fabricated lasers. Left: a microdisk laser
from Ref. [108], and right: a photonic crystal laser from Ref. [1091.

the problem is linear, so this provides a natural starting point, and the rest can be

obtained by slowly increasing the pump strength, and successively using the previous

solution as an initial guess. A second key point is that for a general discretization

scheme such as finite-difference frequency-domain (FDFD) 138,1101 or finite-element

method (FEM) [39,111], there are often up to 107 unknowns, but the linear equations

of each iteration of Newton's method are sparse [112]: that is, the matrix of coefficients

contains mostly zeros. This is an advantage because there exists many fast algorithms

for solving sparse linear problems [113,114]. In Chapter 3, we put all of these points

together and describe a framework for solving SALT directly (as opposed to indirectly

using a specialized basis, as was done before), and we demonstrate the scalability of

our method to the 3d complex geometries that were previously inaccessible.

1.3 Degenerate modes in the presence of a lasing

nonlinearity

The third part of our thesis, which is an extension of the second area described above,

deals with the fascinating problem of degeneracies in lasers with symmetric geometries.

For equations in which the operator does not depend on the eigenfunction, whenever

there there is a degeneracy and two eigenfunctions solve an equation with the same
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eigenfrequency:

L(w)E = 0

(w)E2 = 0,

then it is easy to see that any superposition of the two modes also solves the equation

with that frequency:

L(w)(a1E1 + a2 E 2 ) = 0. (1.4)

When the equations are nonlinear in the eigenfunctions (as in Eq. 1.3, and as they

are in SALT), then it is no longer true that any superposition also solves the equation:

that is, for

L(w, ja1E1 + a2 E 2 12 )(a 1 E1 + a 2 E2 )= 0, (1.5)

the choice of a1 and a2 is not arbitrary, as it is in Eq. 1.4. Finding the correct

coefficients in the two-mode superposition then becomes an important problem in

obtaining the field-pattern of the mode that actually lases. The classical example

of a degenerate pair of lasing modes is the ring resonator [32,115]. The whispering-

gallery modes come in pairs: standing-wave cos m# and sin m# modes (or alternatively,

e im*k circulating modes). It is well-established that the steady-state superposition

observed both experimentally and in time-domain simulations are the circulating

e iMO modes 11161. This result also makes sense physically, because the circulating

modes are the ones that utilize the gain medium most uniformly and efficiently: JE1 2

is #-invariant for e imO modes, whereas standing-wave modes have zeros in # where E

is not using the gain.

However, whispering-gallery modes are only one of many possible degeneracies that

can occur in the resonant cavities of lasers. There has been relatively little work in the

laser literature on degenerate lasing modes other than whispering gallery modes for

cylinders and rings. In general, degeneracies arise for two reasons. First, a degeneracy,

known as an "accidental" degeneracy [34], can arise from a delicate balance in some

parameters that has been carefully tuned. For example, a dielectric rectangle's aspect
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ratio can be adjusted such that two non-degenerate modes coalesce. However, any

disruption of this careful tuning will also break the degeneracy. Since a consequence

of lasing is that the gain (modelled in SALT by a complex dielectric) changes in

a spatially complex way due to hole-burning, we expect such degeneracies to split

above threshold. Second, the degeneracy may come from a geometric symmetry of

the system [117, 118]. Examples include dipole modes in a cavity shaped like an

equilateral triangle, or quadrupole modes in a hexagonal cavity. If there is a way

for the superposition of degenerate modes to respect the original symmetry above

threshold, then the degeneracy is maintained. It turns out that this is not the full

story: as we will see in chapter 4, the intensity pattern for the correct superposition

actually breaks mirror symmetry, but not rotational symmetry, so that the gain

actually acquires chirality. In principle, this chirality should break the degeneracy

(which can be seen with representation theory arguments). However, due to an elegant

and somewhat unexpected consequence of a property known as Lorentz reciprocity of

Maxwell's equations [1191, the degeneracy actually remains.

Using this fact, we obtain an analytic form for the stable circulating solution in

all geometries with the same symmetry group as regular polygons, known as the C,

symmetry group [117,118] (or the group with n-fold rotational symmetry along with

mirror planes through each of the edges and faces of the regular polygon), and the same

methods are extensible to other symmetry groups. We also show the validity of this

solution (as well as the instability of others) by developing a threshold perturbation

theory that casts the near-threshold SALT problem into a much smaller 2 x 2 nonlinear

eigenproblem for the complex coefficients a1 and a2 in the superposition of degenerate

threshold modes (Eq. 1.5). This eigenproblem is simple enough that it can be solved

analytically to give both the lasing coefficients and the "passive" poles in the presence

of the lasing nonlinearity, providing a powerful and general way to test the stability of

any given lasing mode candidate. By using the symmetry arguments and perturbation

theory described above in conjunction with the numerical solver we presented in

chapter 3, we give a comprehensive procedure to obtain the stable lasing mode for

two-fold degeneracies in any geometry with the Cv symmetry of a regular polygon,
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opening up the SALT formalism to areas previously only minimally explored.

Finally, in the last part of chapter 4, we address an important point in the solution

of degenerate systems using generic numerical discretization schemes such as finite-

difference frequency-domain (FDFD) 138,110], which was used for our numerical solver

in chapter 3. While regular polygon can have n-fold symmetry for any n, the Cartesian

x-y grid used for FDFD is restricted to C4v symmetry. As a result, degenerate modes

can split when projected onto the grid, because the grid no longer has the symmetry

responsible for the degeneracy in the first place. This presents a major problem for our

procedure, because no superposition of two nearly degenerate modes solves Eq. 1.5,

even if we take care to construct the stable circulating solution using symmetry and

perturbation theory. To address this issue, we developed a method to artificially restore

the degeneracy using a perturbation 6E(x) to the dielectric function. Using a method

known as quadratic programming [91], we find the smallest-normed perturbation that

restores the degeneracy, which guarantees that our method converges to 6E(x) = 0 in

the infinite-resolution limit.
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Chapter 2

Transformation Inverse Design

2.1 Overview

In this chapter, which was published in Ref. 1120], we introduce the technique of

transformation inverse design, which combines the elegance of transformation optics

[16-19] (TO) with the power of large-scale optimization (inverse design), enabling

automatic discovery of the best possible transformation for given design criteria and

material constraints. We illustrate our technique by designing multimode waveguide

bends [62,63,65,68,83,84, 88,121-126] and mode squeezers [83,84,127-129], then

measuring their performance with finite element method (FEM) simulations. Most

designs in transformation optics use either hand-chosen transformations [17,20,63,68,

74,88,126,127,130-1351 (which often require nearly unattainable anisotropic materials),

or quasiconformal and conformal maps [22,51-54,57,58,69,75,89,121-125,127,136-144

which can automatically generate nearly-isotropic transformations (either by solving

partial differential equations or by using grid generation techniques) but still require

a priori specification of the entire boundary shape of the transformation. Further,

neither technique can directly incorporate refractive-index bounds. On the other hand,

most inverse design in photonics involves repeatedly solving computationally expensive

Maxwell equations for different designs [4-15,40-44,145-147]. Transformation inverse

design combines elements of both transformation optics and inverse design while

overcoming their limitations. First, the use of optimization allows us to incorporate
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ansfor tion x

Figure 2-1: Three possible applications of transformation optics for multimode waveg-
uides: squeezer, expander, and bend. Dark areas indicate higher refractive index.

arbitrary fabrication constraints while at the same time searching the correct space

of transformations without unnecessarily underconstraining or overconstraining the

problem. Second, instead of solving Maxwell's equations, we require only simple

derivatives to be computed at each optimization step. This is because transformation

optics works by using a coordinate transformation x'(x) that warps light in a desired

way (e.g. mapping a straight waveguide to a bend, or mapping an object to a point or

the ground for cloaking applications [17, 50-55,1391) and then employing transformed

materials which are given in terms of the Jacobian Jij = O</axi to mathematically

mimic the effect of the coordinate transformation. This transforms all solutions of

Maxwell's equations in the same way (as opposed to non-TO multimode devices

which often have limited bandwidth and/or do not preserve relative phase between

modes 111, 41,61,64, 148-154j), and is therefore particularly attractive for designing

multimode optical devices [22, 45,83, 87,1551 (such as mode squeezers, expanders,

splitters, couplers, and multiniode bends) with no intermuodal scattering. Examples of

such transformations are shown in Fig. 2-1.
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One major difficulty with transformation optics is that most functions x'(x) yield

highly anisotropic and magnetic materials. In principle, these transformed designs

can be fabricated with anisotropic microstructures 171-74] or naturally birefringent

materials 1130,134]. However, in the infrared regime (where metals are lossy) it is

far easier to instead fabricate effectively isotropic dielectric materials, provided that

the refractive index falls within the given bounds nmin and nmax of the fabrication

process (for example, subwavelength nanostructures [53-55,58,71,75,80,139,156,157]

or waveguides with variable thickness [59, 60,79, 158-160]). This requirement means

that we would prefer to consider the subset of transformations that can be mapped to

approximately isotropic dielectric materials.

The theory of transformation optics with nearly isotropic materials is intimately con-

nected to the subjects of conformal maps (which are isotropic by definition [85,86]) and

quasiconformal maps [which in mathematical analysis are defined as any orientation-

preserving transformation with bounded anisotropy (as quantified in Sec. 2.2.4)].

However, in transformation optics the term "quasiconformal" has become confusingly

associated with only a single choice of quasiconformal map suggested by Li and

Pendry 151]. In that work, Li and Pendry proposed minimizing a mean anisotropy

with "slipping" boundary conditions (defined in Sec.2.2.4), which turns out to yield

a transformation that is essentially conformal up to a constant stretching (and thus

anisotropy) everywhere. This map, which also happens to minimize the peak anisotropy

given the slipping boundary conditions [51,161], is sometimes confusingly called "the

quasiconformal map" [53, 54, 57,121, 137]. However, we point out in Sec. 2.2.4 that

slipping boundary conditions are not the correct choice if one wishes to ensure a

reflectionless interface between transformed and untransformed regions. Instead, for

interfaces to be reflectionless requires at least continuity of the transformation x' at

the interface [90,155,162,163] and, as we show in Sec. 2.2.3 for the case of isotropic

dielectric media, continuity of the Jacobian J as well. If one fixes the transformation

on part or all of the boundary (instead of just the corners) and minimizes the peak

anisotropy, the result is called (in analysis) an extremal quasiconformal map [164-169].

We point out in Sec. 2.2.2 that this extremal quasiconformal map can never be
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conformal except in trivial cases. Additionally, previous work in quasiconformal

transformation optics underconstrained the space of transformations in one way but

overconstrained it in another. Li and Pendry's method, along with other work on

extremal quasiconformal maps in mathematical analysis, assumed that the entire

boundary shape of the transformed domain is specified a priori (even if the value of the

transformation at the boundary is not specified). In contrast, transformation inverse

design allows parts of the boundary shape to be freely chosen by the optimization,

only fixing aspects of the boundary that are determined by the underlying problem

(e.g. the input/output facets of the boundary in Fig. 2-1) as explained in Secs. 2.3.2,

allowing a much larger space of transformations to be searched. Also, for such stricter

boundary conditions, minimizing the mean anisotropy is not equivalent to minimizing

the peak anisotropy [165,170-1721, and we argue below that the peak anisotropy is a

better figure of merit for transformation optics in general.

We solve all of these problems by using large-scale numerical optimization to

find the transformation with minimal peak anisotropy that exactly obeys continuity

conditions at the boundary with untransformed regions. This allows the input/output

interfaces to transition smoothly and continuously into untransformed devices while

also satisfying fabrication constraints (e.g. bounds on the attainable refractive indices

and bend radiii). A large space of arbitrary smoothly varying transformations (that

satisfy the continuity conditions and fabrication constraints) is explored quickly and

efficiently by parametrizing in a "spectral" basis 191, 95] of Fourier harmonics and

Chebyshev polynomials. The optimized transformation is then scalarized (as in the

case of previous work on quasiconformal transformation optics) into an isotropic

dielectric material that guides modes with minimal intermodal scattering and loss.

In the case of a multimode bend, for which our design was recently fabricated and

characterized [23], we achieve intermodal scattering at least an order of magnitude

smaller than a conventional non-TO bend.

In Sec. 2.2.1, we review the equations of transformation optics. In Sec. 2.2.2, we

describe situations where the transformation-designed material can be mapped to

isotropic media. In Sec. 2.2.3, we point out that such isotropic transformations, due
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to their analyticity, always have undesirable interface discontinuities when coupled

into untransformed regions. In Secs. 2.2.4 and 2.2.5, we review the techniques of

quasiconformal mapping (as used in both the transformation optics and mathematical

analysis literature) and scalarization of nearly isotropic transformations. We show

that the inherent restrictions of quasiconformal mapping can be circumvented by

directly optimizing the map using transformation inverse design. In Secs. 2.3.1 and

2.3.2, we design a nearly isotropic transformation for a 90'-bend by perturbing from

the highly anisotropic circular bend transformation. In Secs. 2.3.3 and 2.3.4, we set

up the bend optimization problem and the spectral parameterization. In Sec. 2.4,

we present the optimized structure, which reduces anisotropy by several orders of

magnitude compared to the circular TO bend. In Sec. 2.4.1, we present finite element

simulation results comparing our optimized design to the conventional non-TO bend

and the circular TO bend. In Secs. 2.4.2 we show that minimizing the mean anisotropy

can lead to pockets of high anisotropy (which in turn leads to greater intermodal

scattering) while minimizing the peak does not. In Secs. 2.4.3, we discuss the tradeoff

between the bend radius and the optimized anisotropy. In Sec. 2.6 we briefly present

methods and results for applying transformation inverse design to optimize mode

squeezers.

2.2 Mathematical preliminaries

2.2.1 Transformation optics

The frequency domain Maxwell equations (fields ~ e-t), without sources or currents,

in linear isotropic dielectric media [e = 6(x), p =po] are

V x H = -iwE(x)E

V x E = iPoH. (2.1)

Consider a coordinate transformation x' (x) with Jacobian Ji = . We define the

primed gradient vector as V' = 7, 7, ) = ) J V and the primed fields as
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E' I J- 1 E and H' J '-'H. One can then rewrite Eq. 2.1, after some rearrangement

[16,21], as

V' x H' =-ie'E'

V' x E' = iwp'H', (2.2)

where the effects of the coordinate transformation have been mapped to the equivalent

tensor materials

T = EX T = x).(2.3)
Audet J det J

This equivalence has become known as transformation optics (TO).

Most useful applications of TO require that the transformation be coupled to

untransformed regions (e.g. the input and output straight waveguides in the case of

a bend transformation, or the surrounding air region for the case of a ground-plane

cloaking transformation). However, in order for TO to guarantee that the interface

between transformed and untransformed regions be reflectionless, the transformation

must be equivalent to a continuous transformation of all space that is the iden-

tity x'(x) = x in the "untransformed" regions, as depicted in Fig. 2-2. More generally,

the untransformed regions can be simple rotations or translations, but when examining

a particular interface, we can always choose the coordinates to be x' = x at that

interface. It is clear by construction that continuous x' is sufficient for reflectionless

interfaces [155,162,163], and this is in fact a necessary condition as well [901. Although

a general anisotropic transformation need only have x'(x) continuous at the interface ,

we show below that an isotropic transformation will also have a continuous J at the

interface. These boundary conditions are essential for designing useful transformations

without interface reflections.

2.2.2 Transformations to isotropic dielectric materials

For the vast majority of transformations, the materials in Eq. 2.3 are anisotropic tensors.

However, for certain transformations, the tensors are effectively scalar. Suppose that
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y .

x/

Figure 2-2: The interface between the transformed and untransformed region must
have x' continuous in order for there not to be any interface reflections.

the transformation x'(x) is 2D (z' = z and L = 0), making J block-diagonal (with

the zz element independent of the xy block). Then, the wy block of JTJ is isotropic

if and only if the diagonal elements are equal and the off-diagonal elements vanish:

Vx' Vy= 0. (2.4)

17x' - Vy' =0. (2.4)

In this case, the J part of Eq. 2.3 becomes

JT J
det J

d1

1 (2.5)

det'T

This isotropy has different implications for transverse-magnetic (TM) polarized

modes in 2D (which have E = E and H - = 0) versus transverse-electric (TE)

polarized modes (which have E - = 0 and H = He). For TM-polarized modes,

the fields E', H' in the primed coordinate system are also TM-polarized and Eq. 2.2
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becomes

V' x H' =-i () E'
det J

V' x E' =iwpoH'.

Hence, for TM modes, an isotropic transformation can be exactly mapped to an

isotropic dielectric material. Similarly, for TE-polarized modes the equivalent material

is isotropic and magnetic. However, if det J varies slowly compared to the wavelengths

of the fields, then the transformation can approximately still be mapped to an isotropic

dielectric material by making an eikonal approximation (as in Ref. 173 Ch. 8.10) and

commuting 1/p' with one of the curls in the Maxwell equations. In particular, Eq. 2.2

can be written:

V' x V' x E' = w 2 oPo(det J)E' + O(V det J),

where the last term can be neglected for slowly varying transformations. Because

the TM case is conceptually simpler and does not require this extra approximation,

we work with it exclusively for the rest of this paper. Also, because the non-trivial

aspects of the transformation occur in the xy plane, we hereafter use J to denote the

xy block.

2.2.3 Conformal maps and uniqueness

If a transformation has an isotropic J, then the transformation preserves angles in the

xy plane. Additionally, if det J > 0, then the transformation also preserves handness

and orientation. The combination of these two properties is called a conformal

map 185], and is the only case where the situation in Sec. 2.2.2 can be realized. We

only consider transformations with det J > 0 in order to restrict ourselves to dielectric

materials. Also, a det J > 0 transformation coupled continuously to an untransformed

(det J = 1) region would require singularities (det J = 0) at some points. Conformal

maps are described by analytic functions, which are of the form x' + iy' = w'(w)

50



(where w = x + iy is the untransformed complex coordinate) and whose real and

imaginary parts satisfy the Cauchy-Riemann equations of complex analysis [85,861.

However, true conformal maps cannot directly be used for transformation optics in

typical applications, because of the impossibility of coupling them to untransformed

regions with the boundary conditions discussed in Sec. 2.2.1. In particular, the

uniqueness theorem of analytic functions [86, Thm. 10.39] tells us that if w'(w) = w in

some region, then w'(w) = w everywhere (similarly for a simple rotation or translation

in some regions).

As a corollary, in the limit where a transformation becomes more and more isotropic

in the neighborhood of an interface, it must have a continuous J, not just a continuous

x'(x). It is easy to see this explicitly in the example of Fig. 2-2: continuity of x'(x) at

the interface requires that 2 = (1, 0) on both sides of the interface, which determines

the first row of J. The isotropy of JTJ then forces J = f. Therefore, in the sections

that follow (where we search for approximately isotropic maps), we will impose the

condition of continuous J as a boundary condition on our transformations. The

resulting transformations are nearly isotropic in the interior and exactly isotropic on

the interfaces. This condition, discussed at the end of Sec. 2.2.5, also has the useful

consequence of producing a continuous refractive index n' = V'Ef.

2.2.4 Quasiconformal maps and measures of anisotropy

Because true conformal maps cannot be used, one widely used alternative is to search

for a nearly isotropic transformation, which can be approximated by an isotropic

material at the cost of some scattering corrections to the exactly transformed modes

of the nearly isotropic material. To do this, one must first quantify the measure of

anisotropy that is to be minimized. The isotropy condition (Eq. 2.4) is equivalent to

A, A2 , where AI(x, y) > A 2 (x, y) are the two eigenvalues of jTJ. While A, - A2

works as a measure of anisotropy, it is convenient for optimization purposes to define

differentiable measures that can be expressed directly in terms of the trace arid

determinant of J, and precisely such quantities have been developed in the literature

on quasiconformal maps 1164,165,169,174, 175].
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A general transformation is an arbitrary function of x and y or, equivalently, an

arbitrary function w'(w, cv), of w and C = x - iy, which may not be analytic in w.

The anisotropy can be related to the Beltrami coefficient 1165,169]

PB (w , ) ---- --~-- -

The term quasiconformal map refers to any map that has bounded [PB < 1, which

includes all non-singular sense preserving (det J > 0) transformations. It can be

shown that the linear distortion K [164,165] satisfies

K + [B 1 A1
1 -|- ->21- /'BJ A2 -

Various other measures of anisotropy have been defined in the grid generation literature

[81,821, including the Winslow and Modified Liao functionals, which are given by

(D f d 2x (K + I) and (D - f d 2x (K2 + -), respectively. However, for the rest

of this work we refer to the quantity K - 1 > 0 as the "anisotropy", where K is the

distortion function 1164,1651, defined as

1 1 trJTJK (x, y) - K + = j (2.6)2 K 2 det j

The tensor j7j is known as the distortion tensor 11651.det J

As mentioned in the introduction, an extremal quasiconformal map is one that

minimizes the peak anisotropy, given the shape of the transformed region and the

values of the transformation on some or all of the boundary [164,165,169,1741. Because

K, K - 1, K, and IPB are all monotonic functions of one another, they are equivalent

for the purpose of finding an extremal quasiconformal map. However, K is numerically

convenient because it is a differentiable function of the entries of J. These quantities

are not generally equivalent for minimizing the mean anisotropy [165,170-172], and

we argue in Sec. 2.4.2 that the peak anisotropy is a better figure of merit. However, in

the special case where the value of the transformation is only fixed at the corners of

the domain and is allowed to vary freely in between (a "slipping"' boundary condition),
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Li and Pendry showed that it is equivalent to minimize the mean (either Winslow

or modified-Liao) or the peak anisotropy, and that these yield a constant-anisotropy

map (a uniform scaling of a conformal map) [161] that they and other authors have

used for transformation optics [22, 52-54,57, 58, 69, 75,89, 121, 127, 136-1411. However,

the slipping boundary will generally lead to reflections at the interface between the

transformed and untransformed regions because of the resulting discontinuity in the

transformation, which can only be reduced by making the transformation domain very

large in cases (e.g. cloaking) with localized deformations. In order to design compact

transformation-optics devices, especially for applications such as bends where the

deformation is nonlocalized, we will instead impose continuity of the transformation

and/or its Jacobian on the input/output facets of the domain, while at the same time

allowing the shape of some or all of the boundary to vary (unlike all previous work on

quasiconformal maps, to our knowledge).

2.2.5 Scalarization errors for nearly isotropic materials

The minimum-anisotropy quasiconformal map is then scalarized (as in Ref. 51) by

approximating it with an isotropic dielectric material. As shown in Sec. 2.2.2, a

perfectly isotropic 2D transformation of a geometry with an isotropic dielectric material

that guides TM modes E0 , HO can be mapped to a transformed material and geometry

that is also isotropic dielectric and guides TM modes E', H'. This is exact for K = 1,

but for a nearly isotropic transformation with K > 1, the equivalent permeability

is p' = Ei+ Alt, where the anisotropic part AIL is proportional to K - 1 to lowest

order. While Atp' # 0 cannot be fabricated using dielectric gradient index processes,

one can neglect this small correction so that the actual fabricated material has

permeability 'approx =I. In practice, we absorb any Ap' into E' by multiplying E' by

the average eigenvalue of tt'

( A' + A2 ) (2.7)
2/k AA2 - 2det (

but this does not change the 0 (K - 1) error.
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A Born approximation [176-1781 tells us that, given an exact transformation with

no scattering, any small error of AE and Ap will generically lead to scattered fields

with magnitudes of O(AeJ+ |AI) and scattered power of O(IAE 2 + IAit2). The

modes of the approximate scalarized material p' , E' are then the exact guided

modes plus scattered power corrections of 0(|Ap1
2) = 0[(K - 1)2].

A similar analysis explains why we must explicitly impose continuity of J at the

input/output facets of the domain. As explained in Sec. 2.2.3, a purely isotropic

transformation in the neighborhood of the interface, along with a continuity of x',

would automatically yield continuous J, so one might hope that minimizing anisotropy

would suffice to obtain a nearly continuous J. Unfortunately, as we show below, the

resulting discontinuity in det J (and hence the discontinuity in the refractive index)

is of order O(v'K -1), which would lead to O(K - 1) power loss due to reflections,

much larger than the 0[(K - 1)2] power scattering from anisotropy in the interior.

This would make it pointless to minimize the anisotropy in the interior, since the

boundary reflections would dominate. In fact, our initial implementation of the bend

optimization in Sec. 2.3.4 did not enforce continuity of J, and we obtained a large 2%

index discontinuity at the endfacets for max, K - 1 ~ 0.0005. Therefore, in Sec. 2.3.4

we impose continuity of J explicitly.

Here, we briefly derive the fact that the endfacet discontinuity scales much worse

with anisotropy than the scalarization errors in the transformation interior, which

leads us to impose an explicit continuity constraint on the Jacobian J. In particular,

we examine the Jacobian J for nearly isotropic transformations (K ~ 1) that also

have x' = x explicitly constrained at the interfaces. (The following analysis can also

be straightfowardly extended to situations where x' is a simple rotation of x on the

interface, or where the interface has an arbitrary shape.) In this case, the Jacobian is

1 0o~( 1x)A
where 6 a and A - - 1 are small quantities (< 1) if jTJ is nearly isotropic.Oy a
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The anisotropy (Eq. 2.6) is then:

K I+ 62 + (1 + A)2

2 (1 + A)

2(62 + A2) + 0 (6 2 A + ) (2.8)

The determinant then satisfies

detj- 1= A

= '2(K - 1) - 62 + (62A + A3)

= -(v/K- 1).

This square-root dependence is also reflected in the refractive index n' = Vi7

and leads to O(K - 1) power loss due to interface reflections that overwhelm the

0[(K - 1)2] corrections to scattered power due to the scalarization of nearly isotropic

transformations (as explained in Sec. 2.2.5). Hence, it becomes necessary to explicitly

constrain J I[ in addition to x' = x.

2.2.6 General optimization of anisotropy

In this paper, we directly minimize K using large-scale numerical optimization while

keeping track of constraints on the transformation x' and its Jacobian J, as well as

the engineering fabrication bounds nmin and nmax. By using numerical optimization,

we can in principle achieve both a lower mean anisotropy and a lower peak anisotropy

than by traditional quasiconformal mapping, since the optimization is also free to

vary the boundary shape (with at most the input/output interfaces fixed, although in

some cases their locations and shapes are allowed to vary as well). The minimization

problem can be written, for example, as

x', 5 continuous at input/output interfaces

x'(x) nmin n'(x) < nmax
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where |IK(x) is a functional norm taken over the domain of x'(x). We consider two

possible norms: the L 1 norm (the mean (KC)), and the L, norm (maxx K). We show

in Sec. 2.4.2 that minimizing the mean can lead to pockets of high anisotropy which

can cause increased scattering. Directly optimizing the peak anisotropy on the other

hand, avoids such pockets while simultaneously keeping the mean nearly as low. The

continuity of x' and J at the input/output interfaces, as well as other constraints

on the interface locations, are imposed implicitly by the parametrization of x'(x) (as

explained in Sec. 2.3.4).

2.3 Multimode Bend design

In this section, we design a bend transformation (depicted in Fig. 2-3) using general

methods to (locally) solve the optimization problem of Eq. 2.9. In contrast, previous

work on TO bend design either utilized materials that were either anisotropic or

consisted of multiple stacked isotropic layers [63,65,68,83, 84,88,126] or employed

slipping boundary conditions [121-125] (which result in endfacet reflections when

coupled to untransformed waveguide).

2.3.1 Simple circular bends

First, we consider a simple circular bend transformation (which we refer to hereafter

as the circular TO bend) that maps a rectangular segment of length L and width

unity (in arbitrary distance units to be determined later) into a bend with inner

radius R and outer radius R + 1 (as shown in Fig. 2-3). For convenience, we choose

the untransformed coordinates to be R < x < R + 1 and -L < y < ;, with the

untransformed segment length L = equal to the inner arclength of the bend. The
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transformation x'(x) can be written as

x' = r cos 0

y' = r sinO

Z' = z, (2.10)

where r = x and 0 - . While x' is continuous at the input/output interfaces y = t

R /otu nefcs 2'

one issue is that J is not continuous there, which can be seen from det J = x #
1. Another issue is that it' : p01 is highly anisotropic. The anisotropy for this

transformation is K(x, y) - 1 =IL + - 1, which has a peak value max, K -1 ~ e-2

for R >> 1 at the outer radius x = R+ 1. Note that one can instead choose r = exp(E),

which gives the conformal bend x'+ iy' = exp[-(x + iy)]. As explained in Sec. 2.2.3,

this map has zero anisotropy, but neither x' nor ;T are continuous at the input/output

interfaces, leading to large reflections there.

2.3.2 Generalized bend transformations

In order to address the problems of the circular TO bend, we look for minimum

anisotropy and continuous-interface transformations of the form of Eq. 2.10, where

the intermediate polar coordinates are now arbitrary functions r(x, y) and O(x, y).

The ratio L/R is now an optimization parameter. The Jacobian then satisfies

trJ7J = |Vr| 2 + |rVOI 2

det J = IVr x rV0.

We find that the optimization always seems to prefer a symmetric bend (and if the

optimum is unique, it must be symmetric), so we impose a mirror symmetry in order

to halve our search space:

r (x, y) r(x, -y)

O(X, y) =-O(X, -y). (2.11)
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We also require interface continuity of x' and J (as discussed in Sec. 2.2.3, which give

the conditions at y

r= x

Or 0
Dy
D0 1 (2.12)
Dy x

2.3.3 Numerical optimization problem

Besides minimizing the objective function K, the optimization must keep track of

several constraints. First, any fabrication method will bound the overall refractive

index n' to lie between some values nmin and nmax. We choose units so that the width of

the transformed region is unity (R < x < R + 1), and consider transforming a straight

waveguide of width Aw < 1. A, should be small enough so that the exponential

tails of the waveguide modes are negligible outside the transformed region. In the

straight waveguide segment to be transformed (as well as the straight waveguides

to be coupled into the input and output interfaces of the bend), n(x) is high in the

core Ix - R - fl < w and low in the cladding Ix - R - | 1> A. For convenience,

we write this refractive index as a product n(x) = nop(x) of an overall refractive

index no and a normalized profile p(x) that is unity in the cladding and some value

greater than unity in the core (determined by the ratio of the high and low index

regions of the straight waveguide). The transformed refractive index is given by

trJ TJ
n' (x) = =nop (x) 2

2 (det ,j)2

where the average eigenvalue p' of the magnetic permeability (Eq. 2.7) has been

absorbed into the dielectric index. The overall refractive-index scaling no is then

allowed to freely vary as a parameter in the optimization. Second, like the circular TO

bend, the optimum TO bend is expected to have a tradeoff between the bend radius
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and anisotropy. Because of this expected tradeoff, we can choose to either minimize R

while keeping K fixed, or minimize K while keeping R fixed. We focus on the latter

choice, since the bend radius is the more intuitive target quantity to know beforehand.

Also, we find empirically that optimizing K converges much faster than optimizing R

while yielding the same local minima.

With these constraints, there are several ways to set up the optimization problem,

depending on which norm we are minimizing. One method is to minimize the peak

anisotropy max, K with x E G for some grid G of some points to be defined in

Sec. 2.3.4. However, the peak (the L, norm) is not a differentiable function of the

design parameters, so it should not be directly used as the objective function. Instead,

we perform a standard transformation [911: we introduce a dummy variable t and

indirectly minimize the peak K using a differentiable inequality constraint between t

and K(x) at all x E G:

continuity conditions 2.11, 2.12

nmin <i nop(x) W< nJmax for x C G
min t subject to :V<). (2.13)

r(x),O(x),no, L,t R = Ro

K(x) < tforx E G

For comparison, we explain in Sec. 2.4.2 why the L, norm is better to minimize than

the L1 norm (the mean anisotropy).

The minimization of the L1 norm, (K)= f K dx dy/area [which is differentiable

in terms of the parameters r(x), 6(x), no, and L] is implemented as

continuity conditions 2.11, 2.12

min (K). subject to: nmin < nop (x) / J< nmax forx E G
r(x), 0(x), no, L V 2(det 3)

R Ro
(2.14)

We use the circular bend r = x, 6 = -= as a starting guess, and search the 2L R

space of general transformations r(x), 6(x) by perturbing from this base case. (We
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untransformed circular bend circular bend optimized bend
with perturbations otmzdbn

L

8 (X, y)

Figure 2-3: In the transformation process, the untransformed straight waveguide is
bent, perturbed, and optimized. Darker regions indicate higher refractive index

only perform local optimization; not global optimization, but comment in Sec. 2.4.3

on a simple technique to avoid being trapped in poor local minima.) As explained

in Sec. 2.3.4, the perturbations will be parameterized such that the symmetry and

continuity constraints are satisfied automatically. Fig. 2-3 shows a schematic of the

bend transformation optimization process. First, the straight region is mapped to a

circular bend. Then, the intermediate polar coordinates r and 0 for every point x are

perturbed, using an optimization algorithm described at the end of Sec. 2.3.4, and

the desired norm (either L1 and L,,) of the anisotropy is computed. This process is

repeated at each optimization step until the structure converges to a local minimum

in |KJ|.

2.3.4 Spectral parameterization

To faciliate efficient computation of the objective and constraints, the functions r and

O can be written as the circular bend transformation plus perturbations parametrized

in the spectral basis 191,95]:

Ne, No,
2m7y

r (x, y) x + CimTe(2x - 2R - 1) cos,,,T L

7ry 1 Ne Nm 2m7y
0 (x, y) + Z ClmTe(2x - 2R - 1) sin , (2.15)

2L x sin Lf, m
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where the coordinate 2x-2R-1 has been centered appropriately for the domain [-1, 1]

of degree-f Chebyshev polynomials Tj. The sines and cosines have been chosen to

satisfy the mirror-symmetry conditions of Eq. 2.11. The sine series also automatically

satisfies the second continuity condition of Eq. 2.12. In order to satisfy the rest of the

conditions, the following constraints are also imposed:

N.

S Cm (-1)M = 0
m

Nm87 
400 M

Cm (-1)" M { . (2.16)

These equations are solved to simply eliminate the Cr,0 coefficients before optimization.

Many nonlinear optimization algorithms allow both inequality constraints and equality

constraints. In principle, an explicit equality constraint forcing the Jacobian to be

continuous is also possible. In practice, this method does not work nearly as well as

eliminating Fourier coefficients, as we have done here. The reason is that the region

satisfying the equality constraint is usually a very small and disconnected region

embedded in a much larger space of optimization parameters. Imposing an equality

constraint does not strictly force the algorithm to stay within the subregion; there

is often a penalty function associated with violating the constraint and consequently

some straying away from the region is allowed. This makes convergence much slower

than simply eliminating some of the degrees of freedom.

This spectral parametrization has several advantages over finite-element discretiza-

tions such as the piecewise-linear parameterization of Ref. 164. First, the spectral basis

converges exponentially for smooth functions [95. We found that only a small number

(Ne x Nm < 100) of spectral coefficients Cr, are needed to achieve very low-anisotropy

(K - 1 ~ 10-4) transformations. Second, if the fabrication process favors slowly

varying transformations (or if these are needed to make the eikonal approximation for

the TE polarization, as in Sec. 2.2.2), this constraint may be imposed simply by using
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smaller Ne and Nm.

With this spectral parameterization, the formulation of the optimization problem

(Eq. 2.13) becomes

constraint 2.16

nmin noP (x) trJT < nmax for x c G
min t subject to V2(det J)7 (2.17)

{C},r to, L, t R = Ro

K(x) < tforx E G

The local optimization was performed using the derivative-free COBYLA non-linear

optimization algorithm [93,179] in the NLopt package [94]. In principle, we can make

the optimization faster by analytically computing the derivatives of the objective

and constraints with respect to the design parameters and using a gradient-based

optimization algorithm, but that is not necessary because both trJTJ and det J, which

determine all the non-trivial objective and constraint functions in this optimization

problem, are so computationally inexpensive to evaluate that the convergence rate is

not a practical concern.

2.4 Optimization results

2.4.1 Minimal peak anisotropy

A min||KI,, design is shown in Fig. 2-4, along with the scalarized circular TO bend

for comparison. The bend radius was R = 2 and the number of spectral coefficients

was N = 5, Nm = 8. The objective and constraints were evaluated on a 100 x 140

grid G in x (Chebyshev points in the x direction and a uniform grid in the y direction).

This design had maxx K - 1 5 x 10-4 and mean (K) - 1 e 10-4. In comparison,

the circular TO bend of the same radius has max, K - 1 ~ 0.1 and (K) - 1 10-2.

The R = 2 optimized design structure was compared in finite-element Maxwell

simulations (using the FEniCS code [39]), with the conventional non-TO bend [simply
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Figure 2-4: Optimization decreases anisotropy by a factor of 10-, while dramatically

improving the scattered-power matrix.

bending the waveguide profile around a circular arc with n'(x') = n(x)] and the

scalarized circular TO bend. The four lowest-frequency modes of a multimode straight

waveguide were injected at the input interface y - L, and the scattered-power

matrix T was computed using the measured fields at the output interface y - -

The scattered-power matrix is defined as

R+1 2

Ti = dx -(E0 x Hi)

R L

where - is the propagation direction of the guided modes, EQ is the normalized

electric field of the jth exactly guided mode of the non-scalarized material (p', g'),

and Hi is the actual magnetic field of the approximate scalarized material at the

interface after injecting a normalized mode E0 at the input interface. This makes Tij

equal to the power scattered into the jth output mode from the ith input mode. For

a straight waveguide, which has no intermodal scattering, T E. Fig. 2-4 shows a

dramatically improved T for the scalarized and optimized TO bend compared to the

scalarized circular TO bend. [The rows and columns of T for the circular bend add up

to less than one because some power has either been scattered out of the waveguide

entirely, or some power has been scattered into fifth or higher-order modes. The rows
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refractive in -+
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Figure 2-5: FEM field profiles show heavy scattering in the conventional non-TO and
scalarized circular bends, but very little scattering in the optimized bend.

and columns of T for the optimized bend add up to nearly 1, with the small deficiency

due to the 0 (K - 1) out-of-bend and higher-order intermodal scattering as well as

mesh-descretization error.1

The electric-field profiles for the fundamental mode, displayed in Fig. 2-5, show a

dramatic difference in the performance of the optimized structure versus the other

structures. Both the conventional and circular TO bend show heavy intermuodal

scattering in the bend region, while the optimized transformation displays very little

scattering.

2.4.2 Minimizing max versus minimizing mean

We found a clear difference between minimizing the peak anisotropy versus minimizing

the mean. The results of an optimization run with R = 2.5, Ne = 3, and Nm,, - 6

are shown in Fig. 2-6. Both structures had very low mean anisotropy (K)X - 1. The

mean-minimized structure, at (K) - 1 10-5-, had a slightly lower mean than the

peak-minimized structure which had (K) - 1 ~ 1.5 x 10-5. However, in terms of

the peak anisotropy, the peak-minimized structure is the clear winner by a factor

of 2.5, with maxx K - 1 - 2 x 10- as opposed to maxx K - I P 5 x 10' for the

mean-optimized structure. Both structures were scalarized and tested in finite-element

Maxwell simulations of the four lowest-frequency modes of the straight waveguide.

The scattered-power matrix shows that the difference in maxx K resulted in an order
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Figure 2-6: Anisotropy profile and scattered-power matrices for optimized designs
that minimize the mean and the peak, with R = 2.5, Ne = 3, and N, = 6.

of magnitude reduction in the intermodal scattering (as shown in the off-diagonal

elements) and noticeably improved transmission, (especially in the element T44 = 0.89

for the fourth mode).

2.4.3 Tradeoff between anisotropy and radius

In optimized structures, we found that max, K for the optimized bend, similar to the

circular TO bend, decreases monotonically with R (as shown in Fig. 2-7). Unlike the

circular bend, however, this tradeoff seems asymptotically exponential rather than

O(R- 2). In particular, there are two clearly different regimes for this tradeoff: a power

law K - 1 ~ R 4 at small R < 3 and an exponential decay K - 1 - exp(-0.34R), at

larger R. The second regime was only attained after using successive optimization,

because with only one independent optimization run the algorithm tended to get stuck

in local minima. For successive optimization, the optimum structure is used as a

starting guess for the next run, and the initial step size is set large enough so that the

algorithm can reach better local minima than the previous one.

For R <j 3, we found that there are multiple local minima and that independent

optimizations for different R tend to be trapped in suboptimal local minima, as shown
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Tradeoff between peak anisotropy and bend radius
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10-2 unoptimized
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10

10 ~ succe ssive optlmiation
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Figure 2-7: Successive optimization with Ne = 5, Nm= 8 results in a power law

decaying tradeoff max,, K - 1 ~ R- 4 at low R and an exponentially decaying tradeoff

at higher R. For comparison, the unoptimized anisotropy for the circular TO bend is

shown above.

by the open dots in Fig. 2-7. To avoid this problem, we used a "successive optimization"

technique in which the optimal structure for smaller R is rescaled as the starting guess

for local optima at a larger R, in order to stay along the exponential-tradeoff curve.

(Another possible heuristic is "successive refinement" [180--183], in which optima for

smaller N,m are used as starting points for optimizing using larger N,mr.)

2.5 Experimental realization

In this section, we present experimental results published in Ref. [23]. The design is

based on the curving of a virtual space containing the straight multimode waveguide

into a 900 bend, such that light travels along the curve as it would on the original

straight waveguide, i.e., with minimal inter-mode coupling. It is important to observe

that not only the modal distribution is preserved throughout the bend, but so is the
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phase relationship between modes, a key factor for any phase-sensitive application.

The modal superposition excited in multimode bends is exemplified in fig. 2-8,

where we show the field distribution of a 4pm wide waveguide (supporting 16 modes)

excited by the fundamental mode at A = 1.55pum and bent with 78.8pm radius. One

can see that the bending of the waveguide leads to a superposition of many higher

modes at the output, which in turn introduce penalties to the bandwidth of this

channel. In the 4pm waveguide shown in fig. 2-8, the limit in bandwidth-distance

product that can be supported due only to difference in group velocities between the

fundamental and second order mode is below 16 Gb-m/s (for complete symbol overlap),

between the fundamental and third order mode is 6 Gb-m/s, and so on. Therefore, any

device that couples a significant amount of power into these modes, such as the circular

bend simulated here (71% of the power input in the fundamental mode is coupled to

the second order mode and 23% to the third), will severely limit the communication

data rate of the system. One way to minimize the mode mixing would be to use very

large bending radii. For the 4ptm waveguide, in order to ensure that 95% of power is

coupled back to the fundamental mode of the straight waveguide, a bending radius of

more than 1 mm is necessary, which is unacceptably large for photonics integration.

I I I I I I I I I I I I I I I I I I I I I I I Tgo a Input -- b C
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Figure 2-8: Finite element simulations of a multimode bend. The figure shows
the magnetic field magnitude squared (H1 2 ) for a conventional multimode bend
when excited with the first three modes of the input multimode waveguide (a to c,
respectively). The input modes (blue cross-sections, on the upper-right endpoints) are
coupled to many other modes, as evidenced by the cross-section plots at the outputs

(red, on the lower left endpoints). The waveguides are 4pm wide and the bends have
78.8pm radius. The simulations were performed using the FEniCS solver t391.
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2.5.1 Design challenges

There are two main challenges in designing a waveguide bend via TO in a silicon

photonics platform, in contrast to arbitrary metamaterials [62, 87, 123, 126]. The

first design challenge is the need to employ only isotropic materials with refractive

indices limited to values between the index of Si and the index of SiO 2 (roughly

1.5 < n < 3.5). Although in principle anisotropic materials, such as SiC, can be

used in silicon photonics, TO requires in general a gradient anisotropy, which is much

more complex to achieve. Note that one could also use photonic crystals [56,71,80,
156] or grooves [73,157] to tailor the index and anisotropy, however these discrete

structures result in additional field scattering and inter-mode coupling due to the

finite wavelength/period ratio (typically around 10:1). Instead, we use a grayscale-

lithography technique described below that produces smooth gradients but is limited

to mostly-isotropic effective indices. The second design challenge is to match the

refractive index and the geometry of the device at its end facets to the multimode

waveguides connected to it. If the connection is not matched, each mode from the

straight waveguide will couple to many modes in the bend, similarly to the case of

a conventional bend (fig. 2-8), immediately introducing inter-mode coupling, even

if the bend itself doesn't. This means that the bend transformation must smoothly

transition from the same shape of the input waveguides at its end facets to the required

curve in its interior.

2.5.2 Final design and fabrication

The optimized multimode bend obtained has an effective radius of curvature of 19.7

times the width of the waveguide. Using a 4pm wide waveguide then results in a

radius of 78.8pm, which we also used in the simulations of fig. 2-8 for comparison. In

fig. 2-9 we show the first three propagating modes of the input waveguide traveling

almost undisturbed through the optimized bend. The optimized bend's effective-index

profile can be seen in fig. 2-10a.

The fabrication of this multimode bend is achieved using grayscale e-beam lithog-
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Figure 2-9: Finite element simulations of our optimized TO multimode multimode
bend. The figure shows the magnetic field magnitude squared (I H 2) for the cases when
the bend is excited with the first three modes of the input multimode waveguide (a to
c, respectively). The input modes (blue cross-sections, on the upper-right endpoints)
are preserved throughout the bends, showing minimal inter-mode coupling at the
outputs (red, on the lower left endpoints). The waveguides are 4pm wide and the
bends have 78.8pm radius.

raphy, on a silicon-on-insulator (SOI) wafer with 3pm buried SiO 2 and 500 nm Si

layer. We create the required non-uniform refractive index medium using the effective

propagation index for our vertical slab structure, composed by the buried SiO 2 layer,

the guiding Si layer and a cladding layer of SiO 2 deposited via plasma-enhanced

chemical vapor deposition (PECVD). The effective propagation index of this structure

is controlled by the thickness of the Si layer f59, 60,159,184,1851, such that the index

map from the TO optimization (fig. 2-10a) is translated into a thickness map to be

fabricated via grayscale lithography (fig. 2-10b). The grayscale lithography is achieved

via dose modulation for patterning the photonic device with vertical resolution of

approximately 10 nm. Note that while similar processes are employed in the fabrication

of diffractive optical elements, micro-electro-mechanical structures, and lower contrast

graded-index lenses 176-79,1861 with relatively weak height variations of 80 nm over

distances of tens of microns, in our case the process enables strong height variations of

400 nm over less than lptm while maintaining precise control of both the resist height

profile on the nanometer scale. Figure 2-10 shows the grayscale patterned device with

a smooth surface profile in Si.
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Figure 2-10: TO design and fabrication. Optimized refractive index profile (a) for the
multimode bend and respective silicon layer thickness (b) to implement the bend. (c)
Cross-sections of the refractive index and thickness of the profiles at the endpoints
(blue) and at the center of the bend (red). (d) Scanning electron microscope images
of the fabricated graded-index bend (10pm scale). The smoothness obtained by our
grayscale process can be seen in (e) the close-ups of the bend interior (5pim scale),
and (f) the connection with a conventional multimode waveguide at the output (4pum
scale). (g) Atomic force microscope scan of a fabricated bend, showing the thickness
profile in the silicon layer.

2.5.3 Characterization

To evaluate the performance of our mode-preserving multimode bend, we compare

it to a circular multimode bend with rectangular profile and with same radius as

our device (78.8pm). We measure the transmission coefficient of the fundamental

mode through the bend, so that the presence of inter-mode coupling is evidenced

by low transmitted power in the system. To ensure we are exciting and collecting

only the fundamental waveguide mode, we couple light into our sample via a grating
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connected to a single mode waveguide, which, in turn, tapers very slowly (over 250pum)

to a 4pm wide multimode waveguide. This waveguide connects to the bend and the

output is once again slowly tapered down to a single mode waveguide, radiating away

any higher order modes that might have been excited along the bend. Light from

the single mode waveguide is coupled via another grating to a fiber which in turn

is connected to detector and a power meter. An optical microscope image of this

system is shown in fig. 2-11a. The results are displayed in the plots of fig. 2-11b,

where we show the histograms for measurements of 25 devices designed via TO and

11 conventional multimode bends.

The data presented in fig. 2-11b clearly show the vast improvement in transmission

from our TO multimode bends with respect to the conventional ones, a direct result

of the mode-preserving characteristic of our design. Moreover, the 2-dimesional

simulations in figures 2-8 and 2-9 show a difference in transmission for the fundamental

mode of 13.6 dB, closely agreeing with the experimental results.

It is also important to analyze the performance of our multimode bend against a

conventional single mode one to evaluate how much the grayscale fabrication impacts

in the total losses in the link. Measurements of 11 single mode waveguide bends on the

same sample showed an averaged normalized transmission coefficient of -2.6 dB, very

similar to our TO design (-2.5 dB). These numbers enforce our conclusions of minimal

inter-mode coupling in the optimized bend and indicate that any additional losses

introduced in the grayscale process are compensated by the naturally lower losses

found in multimode waveguides (due to less interaction of the fields with the core

interfaces). We note that the variations in the transmission seen in the measurements

of the TO bend are observed in the single mode devices as well, indicating that

the variations are due to fabrication steps common to all devices, which might have

introduced impurities in the sample, and not from the grayscale process itself.

Thus we demonstrate an optimized design and fabrication process for a multimode

photonic platform with very low inter-mode coupling. This platform can be used to

enable multimode photonics while also pointing towards the possibility of developments

in mode-multiplexing [187-191] for ultra-high bandwidth communications.
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Figure 2-11: Multimode bend experiment. (a) Optical microscope image of a tested
device. Due to the large length of the tapers, only the fundamental mode is excited at
the multimode bend input. Conversely, higher order modes excited along the bend
are radiated by the output taper, such that the power measured at the output grating
reflects how well the fundamental mode is preserved by the bend. (b) Histograms
of the measurements from our multimode bend design (blue) and a conventional
multimode bend with rectangular cross-section (red) with same radius. There is a
14.6 dB improvement in the average transmission coefficient for the fundamental mode
of the optimized bend with respect to the conventional one.
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2.6 Mode squeezer

We also applied transformation inverse design to another interesting geometry: a

mode squeezer that concentrates modes and their power in a small region in space,

again with minimal intermodal scattering (quite unlike a conventional lens, which is

intrinsically angle /mode-dependent), similar to the problem considered in Ref. 127

(which did not construct isotropic designs). We choose the untransformed region to

be -1 < x < 1 and 0 < y < L. The goal of this transformation x'(x) is to focus the

beam by minimizing the mid-beam width

w ~dx ( 120 )X 29-1 
Lz

As in Sec. 2.3.4, the transformation is written as a perturbation from the identity

transformation (which was used as the starting guess) and parameterized in the

spectral basis

Ne, N. . (2m+1)y

x(x, y) = + CixTn(X) sin L

Ne ,Nm (2m + 1) 7ry
y'(x, y) y + 13 CYmTe(x) sin L

The sine series automatically satisfies mirror symmetry about y = and continuity

of x' at the input/output interfaces y = 0, L. However, we found that constraining

the coefficients Cx y to enforce continuity of J (as in Sec. 2.3.4) was not necessary

(although it might give a better result) since the optimization algorithm only squeezed

the center region while leaving the interfaces and the regions around them relatively

untouched. In this problem, we could either minimize K for a fixed W or minimize W

for a fixed K, and we happened to choose the latter.
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(a) optimized transformation, T44 = 0.99

(b) gaussian taper, T44 = 0.63

(c) optimized, then stretched transformation, T4 4 = 0.92

Figure 2-12: Optimized squeezer outperforms gaussian taper and stretched optimized

squeezers in finite element simulations.

Finite-element Maxwell simulations, shown in Fig. 2-12, demonstrate that the

optimized design is greatly superior to a simple Gaussian taper transformation designed

by hand. The Gaussian transformation was given by x'(x) = x - xa exp[-3(y - I)2]

where 3 > 0 and 0 < a < 1. Superficially, the design seems similar to an "adiabatic"

taper between a wide low-index waveguide and a narrow high-index waveguide, and it

is known that any sufficiently gradual taper of this form would have low scattering

due to the adiabatic theorem 1192]. However, the optimized TO design is much too

short to be in this adiabatic regime. If it were in the adiabatic regime, then taking

the same design and simply stretching the index profile to be more gradual (a taper

twice as long) would reduce the scattering, but in Fig. 2-12 we perform precisely this

experiment and find that the stretched design increases the scattering.

2.7 Concluding remarks

The analytical simplicity of TO design---no Maxwell equations need be solved in

order to warp light in a prescribed way--paradoxically makes the application of
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computational techniques more attractive in order to discover the best transformation

by rapidly searching a large space of possibilities. Previous. work on TO design

used optimization to some extent, but overconstrained the transformation by fixing

the boundary shape while underconstraining the boundary conditions required for

reflectionless interfaces. In fact, even our present work imposes more constraints

than are strictly necessary-as long as we require continuous J at the input/output

interfaces, there is no conceptual reason why those interfaces need be flat. A better

bend, for example, might be designed by constraining the location of only two corners

(to fix the bend radius) and constraining only J on other parts of the endfacets.

However, we already achieve an exponential tradeoff between radius and anisotropy, so

we suspect that further relaxing the constraints would only gain a small constant factor

rather than yielding an asymptotically faster tradeoff. In the case of the mode squeezer,

one could certainly achieve better results by imposing the proper J constraints at the

endfacets. It would also be interesting to apply similar techniques to ground-plane

cloaking.

All TO techniques suffer from some limitations that should be kept in mind. First,

TO seems poorly suited for optical devices in which one wants to discriminate between

modes (e.g. a modal filter) or to scatter light between modes (e.g. a mode transformer).

TO is ideal for devices in which it is desirable that all modes be transported equally,

with no scattering. Even for the latter case (such as our multimode bend), however, TO

designs almost certainly trade off computational convenience for optimality, because

they impose a stronger constraint than is strictly required: TO is restricted to designs

where the solutions at all points in the design are coordinate transformations of

the original system, whereas most devices are only concerned with the solutions at

the endfacets. For example, it is conceivable that a more compact multimode bend

could be designed by allowing intermodal scattering within the bend as long as the

modes scatter back to their original configurations by the endfacet; the interior of

the bend might not even be a waveguide, and instead might be a resonant cavity of

some sort [9,148,149,193]. However, optimizing over such structures seems to require

solving Maxwell's equations in some form at each optimization step, which is far more
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computationally expensive than the TO design and, unlike the TO design, must be

repeated for different wavelengths and waveguide designs.

76



Chapter 3

Scalable numerical approach for the

steady-state ab initio laser theory

3.1 Overview

As lasers become increasingly complicated, especially in nanophotonic systems with

wavelength-scale features [109,194-196], there has been a corresponding increase in

the computational difficulty of solving for their nonlinear behavior, as described by

the Maxwell-Bloch (MB) equations [33]. To address this key challenge in the design

and understanding of lasers, a highly efficient approach to finding the non-linear

steady-state properties of complex laser systems has recently been introduced, known

by the acronym SALT (steady-state ab initio laser theory). In this chapter, which was

published in Ref. [1971, we present a technique to directly solve the SALT formulation

[26,28,30] of the steady-state MB equations (using finite-difference frequency-domain

(FDFD) 138, 110] or finite-element methods (FEM) [36]), and we demonstrate that,

unlike previous approaches to the SALT equations [26,30], our technique scales to full

three-dimensional (3D) low-symmetry geometries (such as photonic-crystal slabs [34]).

The SALT equations (reviewed in Sec. 3.2) simplify the general MB equations by

removing the time dependence for steady-state modes, which allows SALT solvers

to be potentially far more efficient than previous time-domain approaches [101,102],

while providing comparable accuracy [24,25]. However, all earlier approaches to SALT
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required the intermediate construction of a specialized constant-flux (CF) basis for

the laser modes. While efficient and yielding numerous insights in highly symmetric

geometries where it can be constructed semi-analytically, the CF basis becomes

unwieldy and numerically expensive for complex low-symmetry laser geometries,

especially in three dimensions. In our approach, we solve the SALT equations directly

as a set of coupled nonlinear partial differential equations (PDEs), using a combination

of Newton-Raphson [11, sparse-matrix solver 1113], and nonlinear eigenproblem [104]

algorithms in standard FDFD or FEM discretizations. In Sec. 3.4, we validate our

solver against previous CF solutions for one-dimensional (1D) and cylindrical systems,

while demonstrating that even in one dimension the CF basis rapidly becomes large

and expensive as the system is brought farther above threshold. Furthermore, we

show in Sec. 3.3.4 that analytical outgoing-radiation boundary conditions, which are

difficult to generalize to three dimensions [37], can be substituted by the standard PML

(perfectly matched layer) method 137,38, 481 which is equally effective at modeling

open systems. We also demonstrate multi-mode laser solutions in Sec. 3.4.2).

We conclude in Sec. 3.4.2 with full 3D vectorial laser-mode solutions for a photonic-

crystal slab microcavity [341. The appendixes provide further details on the computa-

tional techniques we use in this chapter, but in general any standard computational

method in electromagnetism could be combined with our nonlinear solver algorithms.

We believe that this computational approach provides a powerful tool to design and ex-

plore laser phenomena in the complex geometries accessible to modern nanofabrication,

which were previously intractable for accurate modeling.

The Maxwell-Bloch (MB) equations provide the most basic formulation of semi-

classical laser theory. The propagation of the electromagnetic field is given by the

classical Maxwell equations and only the interaction of the field with the gain medium,

represented by an ensemble of two-level atoms embedded in a cavity or background

linear medium, is treated quantum mechanically. The MB equations are a set of time-

dependent coupled nonlinear equations that are typically hard to solve analytically,

except by using many approximations and idealizations. In the generic case of laser

systems where such approximations are not valid, the MB equations have typically
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been solved using numerically expensive time-domain simulations [101, 102]. For the

case of steady-state lasing, as noted above, a much more efficient theory for calculating

the multi-periodic solutions of the MB equations is the steady-state ab-initio lasing

theory (SALT) [26--28]. This theory has proven to be a viable tool for describing laser

systems ranging from random lasers [30,198,199] to coupled laser systems [200] and

photonic-crystal lasers [201]. It makes no a priori assumptions about the geometry

of the laser system, treats the open (non-Hermitian) character of the laser system

exactly, and the non-linear hole-burning interactions between the laser modes to infinite

order. More realistic and quantitative laser modeling typically requires treating a gain

medium with three, four or more relevant atomic levels, but it has been shown that for

the steady-state properties, under the same assumptions as SALT, the semiclassical

equations can be reduced to an effective two-level (MB) system with renormalized

parameters and solved with essentially the same efficiency as two-level SALT [24,29J.

SALT can also be used to describe quantum properties of lasers by combining the

non-linear scattering matrix of SALT with input-output theory, leading specifically to

a general formula for the linewidth of each mode in the non-linear steady-state [2021.

For readers familiar with linear resonant cavities in photonics, which essentially

trap light for a long time in a small volume, a laser can be semiclassically understood

via the introduction of nonlinear gain (amplification) whose strength is determined

by an input-energy "pump" [2031. As the pump strength is increased, one eventually

reaches a "threshold" at which the gain balances the cavity loss and a steady-state

real-frequency lasing ("active") mode comes into existence. A key element is that the

gain is nonlinear: increasing the laser-mode amplitude depletes the excited states of

the gain medium (via a "hole-burning" term in the gain), and so at a given pump

strength above threshold there is a self-consistent stable laser amplitude. At higher

pump strengths, however, this picture is complicated by the introduction of additional

lasing modes, which interact nonlinearly and whose individual gains and losses are

balanced simultaneously by the SALT equations. Also, while a linear "resonant mode"

technically refers to a pole in the Green's function (or scattering matrix) at a complex

frequency lying slightly below the real axis, a lasing mode can arise from any pole that
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is pushed up to the real axis by the gain, even poles that start out far from the real

axis and do not resemble traditional resonant-cavity modes (for example, in random

lasers [30]).

The three relevant physical quantities for a laser, which enter the MB equations are

the electric field as well as the polarization and the inversion of the gain medium, all

of which can depend on space and time. By making a multi-mode steady-state ansatz

and further well-motivated approximations, this system is reduced to the non-linear

SALT equations for the electric field of the lasing modes. Lasing is conceived of as

the limit of an amplifying scattering process in which the input goes to zero, hence

it will correspond to purely outgoing solutions with real frequency or, equivalently,

to a pole in the relevant scattering matrix on the real axis. Until the external pump

is strong enough for the gain to balance the loss there will be no solution of this

type. However, when increasing the pump strength, non-trivial solutions appear at a

sequence of thresholds and at different frequencies. The non-linear interaction between

these solutions is through the spatial hole-burning and depletion of the gain medium:

each lasing mode extracts energy from the pump in a space-dependent manner which

in general makes it more difficult for subsequent modes to reach threshold, and also

effectively changes the index of refraction of the gain medium.

A strategy for efficiently solving the SALT equations was introduced in 127,30]

and significantly extended in [26]. These existing methods can be viewed as a spectral

integral-equation method [95]: they solve the nonlinear problem by first parametrizing

each laser mode in terms of a specialized "spectral" basis, called the "constant-flux

(CF) states", that solve a linear non-Hermitian Maxwell eigenproblem parametrized

by its (unknown) real lasing frequency. Because the frequency is required to be real

outside the cavity, the photon flux outside the laser cavity is conserved, unlike the

well-known quasi-bound states of the system, which are also purely outgoing, but

do not conserve flux. This basis is defined so that at the lasing threshold for each

mode, where the non-linear hole-burning interaction term is zero, one member of the

basis set is the lasing solution. Hence, by construction, the basis expansion for the

SALT solution above but near threshold converges rapidly even when the non-linear
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terms are taken into account, and the SALT equations reduce to finding a relatively

small number of expansion coefficients for each mode. In highly symmetric geometries

such as 1D or cylindrical systems with uniform pumping, the CF states can be found

semi-analytically in terms of known solutions of the Helmholtz equation in each

homogeneous region (e.g., in terms of sinusoid or Bessel functions), and such a basis

will typically converge exponentially quickly [95] to the SALT solutions. Furthermore,

the CF basis can be used as a starting point for other analyses of laser systems, such

as to identify the cause of mode suppression due to modal interactions [26, 30] and

exceptional points 1200,2041. However, the CF basis also has some disadvantages for

complex geometries or for lasers operating far above threshold where the nonlinearities

are strong and the convergence is not so rapid. In complex geometries where Helmholtz

solutions are not known analytically, the CF basis itself must be found numerically by a

generic discretization (e.g., FDFD or FEM) for many real frequencies (since the lasing

frequency is not known a priori above threshold) and for multiple CF eigenvalues

at each frequency in order to ensure convergence. The lack of separable solutions in

low-symmetry two-dimensional (2D) and 3D geometries also increases the number

of basis functions that are required (in contrast to cylindrical systems, for example,

where the solutions ~ ei"o can be solved one m at a time). In three dimensions, where

the discretization might have millions of points (e.g., on a 100 x 100 x 100 grid), even

storing a CF basis consisting of hundreds or thousands of modes becomes a challenge,

not to mention the expense of computing this many 3D eigenfunctions numerically or

of computing the resulting SALT equation terms. As a consequence, our approach in

this chapter is to abandon the construction of the intermediate CF basis and instead

to directly discretize and solve the nonlinear SALT PDEs. This approach enables us

to solve even low-symmetry 3D systems, and greatly enhances the power of the SALT

approach for modeling and for the design of realistic laser structures.
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3.2 Review of SALT

The origin of the SALT equations are the MB equations, which nonlinearly couple

an ensemble of two-level atoms with transition frequency ka (c = 1) to the electric

field 133,961:

-V x V x (E+) - Eg+ + (3.1)

-i(k, - iyi)P+ + ZE+D, (3.2)

D = myi(Do - D) - [ . (P+)* - P+ - (E+)*], (3.3)

Here, E+(x, t) and P+(x, t) are the positive-frequency components of the electric field

and polarization, respectively. The coupling to the negative-frequency components is

neglected in terms of a rotating wave approximation (RWA) which is both very useful

for simplifying the equations and very accurate under general conditions. Note that at

no point did we or will we assume the standard slowly-varying envelope approximation,

which, if used, reduces the accuracy of the MB solutions. The population inversion

of the medium D(x, t) is given by Do(x, d) in the absence of lasing, which is roughly

proportional to the external pumping rate and thus generally referred to as the pump

strength. One of the useful features of SALT is that this pump strength can have

an arbitrary spatial profile in addition to a varying global amplitude, such that one

can represent different experimental pumping protocols by evolving along a "pump

trajectory" which we parametrize here by d, following Ref. [200]. Note that if there

are gain atoms in unpumped regions of the laser, then the pump strength Do will be

negative in these regions and thus the SALT equations will automatically take into

account absorption due to unexcited gain atoms. -yL and -yI are the relaxation rates of

the polarization and inversion, respectively. The linear cavity dielectric function 5c(x)

is homogeneous outside the cavity region, and consequently a finite spatial domain can

be used for the laser system with an outgoing boundary condition. We have assumed

a scalar Ec(x) and dipole matrix element g, although in anisotropic gain media they

can be generalized to tensors.
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The attractive feature of SALT is that it provides access to the spatial profiles of

the lasing modes as well as to the lasing frequencies of a multi-mode microlaser at

very low computational costs. To achieve this high performance, SALT makes two

essential assumptions. First, it assumes that for a fixed pump strength the electric

field and polarization eventually reach a multi-periodic steady state,

M

E+(x, t) = 1: ,j(x)e- A-* (3.4)
j1=1

M

P+(x, t) = PP(x)e-ik1_L, (3.5)

with M unknown lasing modes 'I, and real lasing frequencies kk,. Second, SALT

makes the stationary inversion approximation (SIA), i.e, b ~ 0. In the single-mode

regime the SIA is not necessary, as the average inversion in steady-state is exactly

zero, but in the multimode regime the inversion is in general not stationary and only

under certain conditions is b ~ 0. However, the development of SALT was specifically

oriented towards describing novel solid state microlasers and the necessary conditions

are typically satisfied for such lasers, as we discuss in the following.

If the laser is operating in the multimode regime, then the term E(t) - P(t) in

Eq. (3.3) above will drive the inversion at all beat frequencies of active modes, which

is of order Ak, the free spectral range of the laser. In addition, the polarization can

respond at the rate -y1 and could additionally drive time variation in the inversion.

However, if the condition Ak, 7_ >> rn holds, then the inversion is being driven

non-resonantly and responds quite weakly, except to the dc part of the drive which

represents static gain saturation. The effects of the residual four-wave mixing can

be included perturbatively if desired, as was done in Ref. [25], but are neglected

in standard SALT. The condition -y" > 1, is satisfied in essentially all solid state

lasers due to strong dephasing, but the condition Ak > -y depends on the linear

dimensions and geometry of the laser cavity and is typically not satisfied for macro

scale tabletop lasers. However for a linear cavity it typically would be satisfied for

L < 100 pm and hence the SIA tends to be a good approximation for multimode

83



lasing in micro lasers. This general argument was made by Fu and Haken [100] in

1991 and was applied to Fabry-Perot lasers, for which they provided a stability proof

for the multimode state under these conditions. These assumptions leading to the

SIA allow the derivation of the much more general SALT equations, which were

then tested extensively in comparison to full FDTD simulations for many multimode

lasing structures in Refs. [24, 25, 200J. A general linear stability analysis in the SALT

framework is challenging due to the necessity of testing stability against all possible

spatial fluctuations, something not ever done in standard analyses, where the spatial

degrees of freedom are frozen. However, work in this direction is in progress and

partial results have been obtained.

Using these well-motivated approximations, Eq. (3.1) can then be written for each

lasing mode xP,(x) as

- x V x +k 2E(x) + k 2(kl,)D II,(x) = 0, (3.6)

where the two-level active gain material is described by the non-linear susceptibility

'y(k,,)D. Here, -y(kg), is the Lorentzian gain curve, where

(k1) - . ,L 1(3.7)

and D the population inversion. The latter contains the spatial hole-burning term

that nonlinearly couples all lasing modes,

Do(x, d)D(x, d, {k, *V}) = + ' 2 (3.8)
1+ : 1- y(kv)W()

where the xP,(x) are in their natural unit e, = 2g/hvlT'Y.

The non-linear SALT equations, Eq. (3.6), for the electric field of the lasing modes,

XFL(x), and for the associated lasing frequencies k, can be conceived of as the limit of

an amplifying scattering process in which the input goes to zero, corresponding to

purely outgoing solutions with real frequency or, equivalently, to a pole in the relevant

scattering matrix on the real axis. Until the external pump is strong enough for the
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gain to balance the loss there will be no solution of this type, i.e., %F,1 (x) = 0. However,

when increasing the pump strength, non-trivial solutions appear at a sequence of

thresholds and at different frequencies k. The non-linear interaction between these

solutions is through the spatial hole-burning and depletion of the gain medium, Eq.(3.8):

each lasing mode extracts energy from the pump in a space-dependent manner which

in general makes it more difficult for subsequent modes to reach threshold, and also

effectively changes the index of refraction of the gain medium.

As already noted, Eq. (3.6) has been solved in ID and 2D geometries, where either

the electric or the magnetic field can be treated as scalar, for diverse systems such as

random, microdisk or photonic crystal lasers using an algorithm based on expansion of

the solutions in the CF basis 1261. In the most recent and most efficient formulation,

the linear non-Hermitian eigenvalue problem,

[-V x V x + kc(x) + k 2 ,(k)f (x)] u,(x; k) = 0, (3.9)

is used to define the optimal set of threshold CF states us(x; k) and eigenvalues r,(k).

The function f(x) adapts the basis to the spatial pump profile of the experiment

of interest and is nonzero only inside the gain medium. The u (x; k) form a complete

basis and satisfy a biorthogonality relation at any frequency k. Equation (3.6) is solved

by projecting the lasing modes 4,i(x) into the CF basis. The resulting non-linear

eigenvalue equation can only be satisfied at discrete frequencies which hence determine

the lasing frequencies, k.. In principle one does not need to pre-calculate and store

the CF basis at different real values of k but it is numerically favorable to do so in

general. However, the wider the Lorentzian gain curve, Eq. (3.7), is compared to the

free spectral range, the more memory intensive the storage of the CF basis becomes,

which makes calculations problematic in two and three dimensions. Moreover, if

the pump profile f (x) is fixed and only its amplitude is varied experimentally, then

CF states need only be calculated for various k values, but if the pump profile also

varies along a pump trajectory then one has to calculate new CF states also for

many values of d [2001. For a limited set of highly symmetric cavities, including
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piecewise-homogeneous ID slabs and uniform cylinders, the solution of Eq. (3.9) is

known semi-analytically at any k. However, for all other geometries, Eq. (3.9) must

be solved numerically for all relevant k needed to build a basis. Consequently, for

a fully-vectorial treatment of SALT in arbitrary cavities, CF bases cannot be used

without significant computational costs. Our direct solution method eliminates the

computation and storage of CF bases and scales easily to 3D geometries.

3.3 Solution method

3.3.1 Overview

The basic idea of our new solution method to obtain the lasing modes in the SALT

is as follows: We discretize Eq. (3.6), using standard discretization techniques like

FEM or FDFD, and iteratively solve for the lasing modes xF,, and their frequencies k,

at successively increasing values of the pump parameter d. This nonlinear coupled

problem is most conveniently solved by using the Newton-Raphson method. For initial

guesses, we use the modes at threshold when we are close above threshold, and the

modes at the previous pump step when we are far above threshold. In order to find the

first threshold and the corresponding solution, Eq. (3.6) is initially solved for d = 0 as

an eigenvalue problem (EVP). The solutions are the resonances or quasi bound states

xF, of the passive cavity, corresponding to the poles of the passive scattering matrix

(S matrix) [26] with frequencies k,, lying in the negative imaginary half plane (note

that we will label all quantities below threshold with overbars throughout the paper).

While increasing the pump d, Eq. (3.6) is solved without the nonlinearity in Eq. (3.8)

and the nonlasing modes near the gain frequency ka are tracked until the first k 0

reaches the real axis and turns the corresponding mode into an active lasing mode,

-Po -J 1. Once we have crossed the first threshold, we use the solutions for Xsn and

ko of the eigenvalue problem at threshold as a first guess for the solution of 'I1 and k1

in the non-linear Newton solver slightly above threshold. The latter already includes

the non-linearity D(x, d, {ki, xI'1}) which, once the Newton solver has converged, we
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treat as a fixed function like Ec(x) to examine the remaining non-lasing modes 41,, at

the current pump strength d. This has to be done in order to verify if further modes

cross the lasing threshold. For the non-lasing modes, Eq. (3.6) is thus only nonlinear

in k and linear in 'I'n, such that this problem can be cast into a nonlinear EVP [1041.

The procedure of increasing the pump is now continued by tracking the lasing mode

solving the nonlinear coupled SALT system, while the non-lasing modes are evaluated

from the corresponding nonlinear EVP until a second mode reaches threshold. At this

point the number of lasing modes is increased by 1 and the procedure continues with

two and more lasing modes in essentially the same way.

To illustrate this approach in more detail, we apply it to the simple one-dimensional

edge-emitting laser shown in Fig. 3-1(a) which already captures all the main features.

We pump the 1D slab cavity uniformly along its length L = 100 pm with a pump

strength Do(x, d) = d which, above the first threshold, leads to emission to the right.

Starting with d = 0, where the SALT system reduces to a simple resonance problem,

we increase d and observe that the resonance poles move upwards in the complex

plane; see Fig. 3-1(b) where the starting point d = 0 is marked by circles and the

pump value at the first threshold, d, = 0.267, is marked by triangles. Below this first

threshold no mode is lasing, such that the non-linear spatial hole-burning term is zero,

resulting in the following PDE for all non-lasing modes,

{-V x V x +I2[E(x) + y(kn)Do(x, d)]} eIn(x) = 0, (3.10)

which is linear with respect to J!, but into which the resonance values k enter

non-linearly. Starting at the first threshold, the terms 'J1 and k, of the first lasing

mode enter the spatial hole-burning denominator in Eq. (3.8) (where M = 1), resulting

in the following equation for the first lasing mode '1, and its wavenumber k1 ,

2 y(k)Do(x, d) } cx'i(x) = 0 (3.11)

which is now nonlinear with respect to both xF1 and k1 . When continuing to increase

the pump, the frequencies corresponding to the active modes are forced to stick to the
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Figure 3-1: (a) ID slab cavity laser of length L = 100 pm with purely reflecting
boundary on the left side and open boundary on the right side. The mode shown ill

red (gray) corresponds to the intensity profile of the first lasing mode at threshold.

(b) SALT eigenvalues corresponding to the scattering matrix poles for a uniform and
linearly increasing pump strength Do (x, d) = d applied inside the slab [Do (x, d) = 0
outside]. We use a refractive index VI--= 1.2 in the slab (,I-= I outside), a gain
frequency k,, = 100 mm-1 and a polarization relaxation rate - = 40 mm-'. The
trajectories start at d = 0 (circles) and move toward the real axis with different speed
when increasing d. The first lasing mode (dash-dotted red line) activates at d = 0.267
(triangles) with ki = 115.3 mm-1. The trajectories end at d = 1 (squares) where a
second lasing mode (dashed green line) turns active and the two other non-lasing
modes (blue dotted and yellow solid line) remain inactive.
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real axis, while the eigenvalues associated to all other inactive modes continue moving

upwards, see Fig. 3-1(b). To detect the activation of further modes, the inactive

modes have to be recalculated again, however, this time by additionally taking into

account the spatial hole burning contribution of the currently lasing active mode

('I1, k1) at a given pump strength d. For this, we insert the currently active mode into

the denominator of Eq. (3.11) which turns the above nonlinear problem into another

nonlinear (in k) eigenvalue problem,

V ( d) +IEC(x) + +1 n (x) = 0 (3.12)

which, however, has the same structure as Eq. (3.10). As soon as the imaginary part of

another eigenvalue k, reaches the real axis, a new laser mode XI'2 becomes active which

increases the size of the nonlinear problem by 1. For even higher pump strength and

a larger number of lasing modes this procedure continues accordingly. Note also, that

the case when a mode shuts down during the pumping process can be incorporated

without major effort.

To summarize, the solution of the SALT equations reduces essentially to computing

the full nonlinear (in ',IL and k,) system of PDEs through a Newton-Raphson method

and the computation of an EVP which is linear in +, but which still remains nonlinear

in k. Details of how to obtain the active or lasing solutions {',, k,} of the Newton

problem as well as the inactive or non-lasing solutions {I, +n } through the nonlinear

EVP are provided in the following two sections.

3.3.2 Lasing modes

For modes that are lasing, Eq. (3.6) is nonlinear in the unknowns {W'(x), k,}. As

theses modes are all coupled together through the spatial hole-burning interaction,

they must be solved simultaneously. In general, such systems of nonlinear equations

can be written in the form

f(v) = 0 (3.13)
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where the vector of equations f is an analytic nonlinear function of the unknown

solution vector v which again gathers all unknowns {*,'(x), k,}. This nonlinear

problem can generally be solved by using the Newton-Raphson method [1]. The basic

idea is that for a guess vo for the solution v, one can write

v - VO = -J(vo)-f(vo) + O( v - V012), (3.14)

where J is the Jacobian matrix of partial derivatives of f with respect to vo. A

solution v can usually be obtained by iterating Eq. (3.14) using only the linear

terms. This iterative algorithm converges "quadratically" (squaring the errors on each

step [1]) if |vo - vI is small. Further, we use an analytic evaluation for the Jacobian

J from Eq. (3.6), as described below, and do not need to compute it using numerical

differentiation schemes. Since J is then a sparse matrix each iteration can exploit

fast algorithms for sparse linear equations 1112,1141.

To solve Eq. (3.13) on a discrete level, we project the complex fields 41,'(x) of

each lasing mode onto a discrete N-component basis (for a FEM or FDFD approach).

Unlike the CF basis, we use a localized basis generated once from a grid or mesh. This

is the key to producing sparse matrices and hence makes the method scalable to the

larger bases required in two and three dimensions. The discretizations on such a basis

turn the fields Q, into complex coefficient vectors cp, while kt, is required to be purely

real. Because the SALT equations are not differentiable in the complex fields (due to

the complex conjugation), we split our unknown coefficient vectors c, (and the vector

function f accordingly) into their real and imaginary parts. The discretized version of

v then consists of (2N + 1)M real unknowns (fields and frequencies). However, we only

obtain 2NM real-valued equations from f. The underspecification comes from the fact

that the hole-burning term D(x, {Iy,, %F, }) happens to be invariant under global phase

rotations xP,(x) -+ e0,1 (x). In addition to the problem of underspecification, there

is also a problem of stability: for lasing modes slightly above threshold, the amplitude

is nearly zero, which would result in problems distinguishing between the solution

we want and the trivial solution 41(x) = 0. We resolve both issues by normalizing
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the amplitude and fixing the phase of all lasing modes while keeping track of their

amplitudes using a separate variable. This procedure results in both the number of

real unknowns and the number of real equations being (2N + 2)M.

Here, we provide further details on setting up the Newton-Raphson iteration for M

lasing modes. First, we describe how to fix the phase and normalization for each mode

(as mentioned in Sec. 3.3.2). We choose a point xO and a constant unit vector jal = 1

such that a -*'(xo) is nonzero for all lasing modes. This condition is usually satisfied

provided that xO is neither far outside the cavity nor a point of high symmetry. We

then define the quantity s, = Ia - *t(xo)I and rescale the field such that the physical

field becomes s-jIX,(x) and the rescaled field satisfies

a - *(xo) = 1. (3.15)

With this redefinition, the rescaled field %I',(x) has a fixed phase and a normalization

that distinguishes it from the trivial solution @,(x) = 0. Further we treat the

quantity s, as a separate unknown that contains the mode's amplitude. The spatial

hole-burning [Eq. (3.8)] then becomes

D(x, d, { kV, sj, *,(x)}) =o (,d 12S-1 + j 'y(k,)I, (x) 2 s-2

We note that as an extra optimization, we can also absorb the factor of 'y(k) I into

sV. This extra step simplifies the k,, derivatives of D that will be taken later, and we

can easily replace the extra factor of 1y(kv)l at the very end, when the problem has

been solved. However, for continuity and clarity, we skip this step here.

Now, we describe how to construct the vector of unknowns v which, after rescaling,

should contain I, 1(x), k,,, and s,. First, the discretized fields xI,'(x) are described

by N-component complex vectors b,. The 2N + 2 real unknowns for each mode can

91



then be written in block form as

V'V Re[b,]

VIm[b (3.16)
VV k,

4L S1,

The vector v we use for the Newton-Raphson method contains all vp in sequence, since

the lasing modes are all coupled together through the spatial hole-burning interaction

and thus must be solved simultaneously.

Next, we construct the equation vector f by discretizing the operator -V x

V x +k2 [Ec(x) + -(k,1 )D] into a sparse complex matrix S,. In the discrete basis,

Eq. (3.6) becomes S b, = 0 which gives N complex scalar equations, and the

normalization condition that fixes the phase [Eq. (3.15)] becomes the complex scalar

equation eTb, = 0, where e" is the discrete-basis representation of the vector function

consisting of the unit vector a at point x0 and zero everywhere else. The real and

imaginary parts of these N + 1 complex equations can be written in block form as

f 1,Re [S, b,,]

pt .ImSb (3.17)

ffp Re [eT b,] - 1

\ !$ \ Im [eTb,]

The vector f we use for the Newton-Raphson method contains all fl, in sequence, due

to the intermodal coupling.

Finally, we describe how to construct the (real) Jacobian matrix j (which is real),

which consists of M2 blocks JIv that each have size 2N + 2 and have the block form

DVV
j

We explicitly construct these blocks by taking derivatives of column blocks of fi' with

respect to row blocks of (v,)T, as defined in Eqs. (3.16) and (3.17). First, we see that
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Ji" = A = eT, while all other blocks of J4" with i 3,4 are zero. Second, we

have the columns

Je" Re 'S
=OS b,

2t3 Im -Okv

and

( Ti Re b]

J2t"Ts Im SV

where the derivatives of S, are diagonal complex matrices that can be obtained

straightforwardly by discretizing the same derivatives of the complex scalar function

k [Ec(x) + -(kj,)D]. (In the case that exact outgoing radiation conditions are used

for S,, the matrix for -V x V x may also depend on k, and this dependence must

also be included in the derivative.)

Finally, the remaining blocks are given by

( JIjI" J Re -ImJ11 1 U 12SP61-v + 5AV
J' J'2" Im Re )

where 6., is the Kronecker 6, and S,,, is the matrix discretization of the real 6 x 6

tensor function

2k 2(kt) OD 12 (x) IFV(x)
& I'I'(x)|

with the outer product 0 taken over the real and imaginary parts of the vector

components of V(x).

For finite-difference calculations shown in the main text, the discretization code

implemented in [205,206] was used. The complex electric fields AF,, were discretized on

an N, x N x N pixel grid of equally spaced points with the -V x V x operator being

conveniently discretized using second-order centered differences on a Yee lattice [371.

To impose outgoing boundary conditions, additional pixels of PML were added at the

boundaries with the appropriate absorption, as explained in Sec. 3.3.4. For each mirror

symmetry in a geometry, we were able to halve the computational domain by replacing

the PML at the lower walls with the corresponding boundary conditions of the mirror
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plane. Furthermore, for the cases of TM (E, = 0) and TE polarization (Ez = 0), the

problem size can be reduced by factors of 3 and 3/2, respectively, by projecting S,

and bA into the nonzero field components only. Additionally, 2D calculations were

performed by setting N = 1 and the boundary condition in the z direction to be

periodic. 1D calculations were performed by doing so for both the z and y directions.

Note that for the Newton-Raphson iteration to be scalable to higher dimensions

and to high-resolution meshes, it is also important to use a scalable solver (in our case,

the sparse direct solver 1114] PaStiX [113] was called from the PETSc library [207

because the Jacobian is sparse). For very large-scale 3D systems, it may become

necessary to use iterative linear solvers [112] for each Newton step instead, in which

case it is important to select certain PML formulations [48].

3.3.3 Non-lasing modes

In order to find the first pump threshold and the corresponding lasing solution as well as

to verify when a new mode activates, the non-lasing modes have to be monitored while

changing the pump. These non-lasing modes %F, are defined as complex-frequency

solutions to Eq. (3.6) that do not enter into the nonlinear hole burning term in

D(x, d, {k , 91}), see Eq. (3.8). Due to causality constraints, the complex eigenvalues

associated with non-lasing modes, k always feature Im(k) < 0, and usually approach

the real axis as d is increased. When all lasing modes have been determined for a

particular d, the function D(x, d, {kv, xF, }) is known and can be treated as a fixed

function like Ec(x), see Eq. (3.12). As outlined in Sec. 3.3.1, this reduces Eq. (3.6)

to a non-Hermitian, nonlinear eigenvalue problem (NEVP) which is linear in the

eigenvectors I'(x), but nonlinear in the complex eigenvalues kn .

For situations where we are only interested in the behavior of a few lasing modes

in a small range of the pump parameter d, Newton's method is still a convenient

approach to determine the non-lasing modes and, in fact, the only viable method in

terms of computational cost for high resolution 2D or 3D computations. In this case,

we typically use standard EVP algorithms to solve Eq. (3.6) first for d = 0 (which is

usually either linear or quadratic in k, depending on the method for implementing
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the outgoing radiation condition). This provides us all the modes of interest which

we then track to threshold with Newton's method as d is increased. As in Sec. 3.3.2,

convergence is "quadratic", but, unlike for the lasing modes, Eq. (3.14) can be used

with complex unknowns and equations since Eq. (3.6) is differentiable in all unknowns

once D(x, d, {ky, @I}) is fixed. The downside of Newton's method is that, in the

absence of a good initial guess, it can be very unpredictable and slow to converge.

Such a situation arises, e.g., when the modes that can lase are not known a priori

as in the case where a large number of near-threshold modes are clustered together,

all with frequencies close to the gain center ka. In this instance, a more general and

comprehensive method for evaluating the non-lasing modes is required.

Such more general techniques exist in terms of NEVP solvers [104]. One conceptu-

ally simple method for our problem is to divide Eqs. (3.6) and 3.12) by 7-(k), turning

the rational EVP into a cubic EVP which can then be linearized at the expense of

making the problem three times as large and possibly also very ill-conditioned. Other,

more sophisticated solution methods include "trimmed" linearization [21, Newton [31,
Jacobi-Davidson 1208], rational Krylov [2091, and nonlinear Arnoldi 12101. Indepen-

dently of the chosen solution strategy, we can take into account that only modes

which have a spectral overlap with the gain curve -y(k) near its center frequency ka

are expected to be candidates for active laser modes. In addition, the Lorentzian

gain curve of width -i- produces a singularity in the NEVP at k = ka - i1 1 which

may result in spurious numerical solutions. Combining these observations, we restrict

our attention to those eigenvalues k that are in the following cropped subpart of

the complex plane: {z E C Im(z) > --7y A Re(z) E [ka - yi, ka + 7y1]}. A suitable

method that allows us to conveniently include such auxiliary restrictions is the contour

integral method presented recently in [211,212]. There, the search for eigenvalues is

restricted to a region within a smooth contour such as a circle or an ellipse. By using

the residue theorem, all poles of the inverse of the differential operator, which are

equivalent to the eigenvalues of the same operator, are obtained within the specified

contour. This feature is not only useful for employing this method as a stand-alone

solver for non-lasing modes, but also as a complementary tool to check if, in addition
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Figure 3-2: Comparison between the laser output using SALT with exact outgoing
boundary conditions and PML absorbing layers, on the one hand, and a full time
integration of the MB equations using FDTD, on the other hand. We study the
first and second TM lasing modes of a 1D slab cavity which is similar to the one
above. The applied pump is uniform, Do(x, d) = d, the cavity has a uniform dielectric

= 2 a length L = 100 pm, and gain parameters -y= 3 mm -, k= 300 mm- 1 .
For the FDTD simulations additionally i 0.001 mm- 1 was used. The PML method
is nearly as accurate as the outgoing boundary condition, but has the advantage of
being easily generalizable to two and three-dimensional calculations [37]. The times to
reach d = 0.11 are shown for the two methods (with identical spatial resolution). The
FDTD computation was done on the Yale BulldogK cluster with E5410 Intel Xeon
CPUs, while the SALT computations were done on a Macbook Air.

to the limited set of non-lasing modes that are tracked with a Newton solver, no new

modes have entered the region of interest within the chosen contour.

3.3.4 Outgoing radiation condition

For numerical computations, the outgoing radiation condition must be implemented

within a truncated, finite domain. In one dimension, the radiation condition can

be expressed exactly 1213]. This also allows us to shift the boundary of the domain

right to the border of the cavity, which decreases the computational cost. This

method is, however, not easily generalizable to two and three dimensions [37]. An
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efficient and robust alternative is to use the standard perfectly matched layer (PML)

technique [47, 70] in which an artificial material is placed at the boundaries. The

material has a certain complex permittivity and permeability such that it is absorbing

and analytically reflectionless. In one dimension, the PML technique can be tested

against an exact outgoing boundary condition, and the two methods yield results that

are nearly indistinguishable, as shown in Fig. 3-2. Also shown in Fig. 3-2 is a comparison

with conventional methods of solving the MB equations using finite difference time

domain (FDTD) simulations demonstrating the validity of the stationary inversion

approximation used in the derivation of the SALT equations. Both the quantitative

agreement between SALT and FDTD solutions as well as the former's substantial

numerical efficiency over the latter have been previously documented [24, 25]. Of

course, the precise computation times depend on many factors, including hardware

details, parameter choices in the algorithms, and software implementation quality, but

the magnitude of the difference here makes it unlikely that any FDTD implementation

could be competitive with the SALT approach.

3.4 Assessment and application of the solution method

In this section we will validate our solution strategy against the traditional method

based on CF states and we will show first results for prototypical laser cavities.

3.4.1 ID slab laser as test case

We demonstrate here the accuracy of the presented direct solver method by studying

in more detail the ID edge-emitting slab laser introduced in Sec. 3.3.1. One of the

advantages of the direct solver, as compared to the CF method, is the accuracy of

its solutions far above the threshold. In this regime the CF basis becomes a poorer

match for the lasing modes and, as explained in Sec. 3.1, a large number NCF of basis

functions is required for convergence compared to near threshold. This is especially

relevant for low-Q (short-lifetime) laser resonators such as random lasers or cavities

featuring gain-induced states, as considered, e.g., in [214] . In Fig. 3-3 the intensity
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Figure 3-3: Output intensity vs pump strength in a ID resonator with reflecting
boundary on the left side and outgoing radiation on the right side; see Fig. 3-1(a).
The cavity has length 100 jim with a refractive index n = 1.01. The gain curve has
its peak at ka = 250 im- 1 and a width 2_ = 15 mmn 1 . The output intensity is
given by IX12 evaluated at the right boundary x = L. The pump is constant in the
entire cavity. Solid lines describe the results of our solution method. Comparing them
to the solutions of the CF-state formalism with 30 (long dashed), 20 (dashed), and
15 (dash-dotted) CF-basis functions, one observes that the two approaches converge
towards each other for a sufficiently high number of CF states being included.
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of such a low-Q cavity is plotted with respect to an overall pump strength d for a

constant spatial pump profile. The figure contains both the results of the direct and of

the CF state solver. For the latter the solution for different numbers NCF of CF states

are depicted, demonstrating that for a larger basis the solution converges towards the

solution of the direct solver. Our solution method thus leads to an accuracy far above

threshold which can only be achieved by the traditional approach with a considerably

large number of CF states.

3.4.2 Scalability to full-vector 2D and 3D calculations

In this section we briefly explore the applicability of our solution strategy to 2D and

3D setups by considering the following prototypical examples: In the 2D case we

investigate a circular dielectric resonator and in the 3D case a photonic-crystal slab.

In the former situation we study a circular disk with uniform index, which is

routinely used in the experiment due to its long-lived resonances associated with

"whispering gallery modes" 1116]. For this system we study lasing based on TM

polarized modes and compare the Newton method presented here (based on FDFD)

with the previously developed CF-state method [26,28,291. Due to the azimuthal

symmetry, the resonant TM modes [28,1151 are exact solutions of the Bessel equation

characterized by an azimuthal phase el"O (with f being an integer angular-momentum

quantum number) and subject to outgoing boundary conditions. Due to the circular

symmetry, each of the modes with a given value of f comes with a degenerate partner

mode, characterized by the quantum number -f. In the presence of the lasing

nonlinearities, a preferred superposition will typically be selected as the stable solution,

e.g., the circulating modes e io , rather than the sin(eO) and cos(M) standing waves.

The determination of this stable solution in a degenerate lasing cavity is a complex

problem that we plan to address in future work. For validation and demonstration

purposes in this chapter, we simply select a priori a single solution from each degenerate

pair by imposing corresponding symmetry boundary conditions. In the case of the

circular cavity, we choose the circulating modes with a phase e-"o for comparison

with the CF solutions. We obtain these by solving for both the sine and cosine modes
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Figure 3-4: Validation of the 2D Newton solver based on FDFD against the CF-state

approach (using 20 CF basis states) in a circular cavity with radius R = 100 pIm and
dielectric index n =IT = 2 + 0.01i. TM-polarized modes are considered and the
following gain parameters are used: y = 10 mm-1, k= 48.3 mm- 1 . Increasing the

strength of the uniform pump Do(x, d) = d , we encounter strong non-linear modal
competition between the first two lasing modes with the result that for sufficiently
large pump strength the second lasing mode is found to suppress the first one (see top
panel). The internal intensity is defined as the integral over the cavity f J'(x) 2dx.
The real part of the lasing mode profile 'I(x) at the first threshold is shown for both

the exact Bessel solution (' ~ e-O) and for the finite difference solution (see bottom
panel, where blue/white /red color corresponds to negative/ zero/ positive values). As

the pump strength is increased, this profile does not change appreciably apart from

its overall amplitude.
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Figure 3-5: 3D calculation of a lasing mode created by a "defect" in a photonic-crystal
slab 1341: a period-a hexagonal lattice of air holes (with a = 1 mm and radius 0.3 mm)
in a dielectric medium with index n = = 3.4 with a cavity formed by seven
holes of radius 0.2 mm in which a doubly-degenerate mode is confined by a photonic
bandgap (one of these degenerate modes is selected by symmetry, see text). The gain
has - = 2.0 mm- 1, ka= 1.5 mm-1, and non-uniform pump Do(x, d) = f(x)d, where
the pump profile f(x) = 1 in the hexagonal region of height 2 mm in the y-direction,
and f(x) = 0 outside that region and in all air holes. The slab has a finite thickness
0.5 mm with air above and below into which the mode can radiate (terminated by
PML absorbers). The inset shows magnetic field H, (~ OEy - oyE.) of the TE-like
mode at the z = 0 plane.
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(using the appropriate boundary conditions at the x = 0 and y = 0 symmetry planes)

and by combining them to construct the exponentially circulating mode.

Under these premises, we find that for uniform pump the first mode turns on at

d ~ 0.075 and increases linearly in intensity, as seen in Fig. 3-4. The second mode

turns on at about twice the pump strength as the first threshold. As the intensity

of the second mode increases, we observe a reduction and ultimately a complete

suppression of the first mode intensity. This mode competition can be attributed

to the following two effects: The two modes have a significant spatial overlap, such

that they compete for the same gain through non-linear spatial hole burning which is

fully incorporated in SALT. In addition, as being spectrally closer to the peak of the

gain curve -y(k), the second mode can profit more strongly from the gain in the disk

than the first mode. As a result, the second mode prevails against the first mode in

this non-linear competition. This behavior of interaction-induced mode switching is

general and can be found in other laser configurations and nonlinear media as well 1311.

In Fig. 3-4 we show that this behavior is faithfully reproduced with our approach,

not only in terms of the modal intensities as a function of the applied pump (see

top panel), but also in terms of the corresponding lasing modes which mirror those

obtained with the CF-state technique very accurately (see bottom panel).

The second example we consider is a photonic crystal slab with a "defect" (see inset

Fig. 3-5) engineered to efficiently trap a mode [215]. The photonic crystal is formed in

a dielectric slab by holes which are arranged in a hexagonal lattice and the defect is

created by decreasing the radius of seven of the holes in the center. In our study, we

focus on a TE-like lasing mode, situated at the defect (spatially) and in the bandgap

of the lattice (spectrally). To select one of the degenerate standing-wave solutions,

we impose even and odd symmetry at x = 0 and y = 0, respectively, as well as an

even symmetry at z - 0. Staying close to a potential experimental realization, we

choose the pump profile Do(x, d) to be uniform inside the slab material's defect region

but zero outside and in the air holes. Increasing the overall amplitude of this pump

profile, we find the lasing behavior shown in Fig. 3-5 (main panel). This calculation

was performed with 16 nodes (using one CPU per node) of the Kraken Cray XT5
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at the University of Tennessee. With 144 x 120 x 40 pixels (the mirror conditions

effectively halve these), the total wall-clock time for the computation, from passive

resonance at d = 0 to lasing above threshold at d - 0.18, was 5.9 min. Pump steps of

6d = 0.02 were taken, with three to four Newton iterations per pump value.

3.5 Concluding Remarks

In this chapter, we have presented an algorithm for solving the SALT equations which

describe the steady-state lasing modes and frequencies of lasers with a free spectral

range and a dephasing rate that are both large as compared to the population decay

rate and the relaxation oscillation frequency. These conditions are typically satisfied by

microlasers with a linear dimension that does not exceed a few hundred wavelengths.

Our solution strategy proceeds by a direct discretization using standard methods as

FEM or FDFD, without the need for an intermediate CF basis. The resulting increase

in efficiency lets our approach scale to complex 2D and 3D lasing structures, which

paves the way for future work in a number of directions.

First, it is now possible to study lasing in much more complex geometries than

could previously be readily simulated, offering the possibility of discovering geometries

that induce unexpected new lasing phenomena. Going one step further, future

computations could search a huge space of lasing structures via large-scale optimization

("inverse design"), which has already been applied to the design of linear microcavities

192, 216,217]. Since our approach is only more expensive than the solution of linear

cavity modes by a small constant factor (e.g., the number of modes and the number

of Newton iterations) it will be the ideal tool for this purpose. More complicated

gain profiles, lineshapes, and other material properties can easily be incorporated

into our approach as well. SALT can, e.g., be coupled to a diffusion equation in

order to model the migration of excited atoms in molecular-gas lasers [218, 219].

Based on the mathematical relation of the multimode lasing equations to incoherent

vector solitons, we believe that numerical methods commonly used in soliton theory

can also be adopted to efficiently solve the multimode SALT equations. Another
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intriguing direction of research is the development of a more systematic approach to

modeling lasers with degenerate linear modes, which requires a technique to evaluate

the stability of the solution and evolve an unstable mode to a stable mode. Finally,

many refinements are possible to the numerical methods, such as efficient iterative

solvers and preconditioners for the Newton iterations of the lasing modes or criteria to

alternate between systematic contour-integral evaluation and simpler Newton-inverse

tracking of the non-lasing modes. In this sense our approach has more in common

with standard sparse discretization methods used to solve other nonlinear PDEs than

the CF-basis approach (which is specialized to the SALT problem) and thus opens the

door for more outside researchers and numerical specialists to study lasing problems.
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Chapter 4

Degenerate modes in SALT

In chapter 3, we presented a direct method to solve the equations of steady-state

ab-initio lasing theory (SALT). So far, most cases in which SALT has been applied has

dealt with either single lasing modes or multimode regimes in which frequencies are

far apart. This is necessary for SALT because the stationary-inversion approximation

requires that any beating-terms average out over time . When frequencies are close but

not exactly degenerate, there is non-negligible beating and SALT is invalid. However,

when two lasing modes are exactly degenerate, it turns out that SALT is still perfectly

valid, because there is an exact steady-state solution of the MB equations (for a single-

mode pair), provided that interference between the two degenerate modes is taken into

account. Of course, it is possible that a degeneracy in the linear regime may split in the

presence of the laser nonlinearity above threshold. However, if a degeneracy persists

(and we have consistently observed this for symmetry-induced degeneracies), our

method will find it. The literature on degenerate lasing modes has almost invariably

dealt with whispering-gallery modes in microdisks and ring resonators [31,32,220,2211.

Many of these earlier works discussed the stability of travelling-wave modes in ring

resonators under perturbations that break the symmetry [222-226]. A very limited

number of other works on degenerate and nearly-degenerate lasing modes exist, such

as Ref. [2271. However, the microdisk is only a single example of a setting where one

can find degenerate resonant modes that can lase: there is a great variety of other

symmetric geometries where degeneracies can occur [228]. So far, the problem of
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degenerate modes in lasers has not been studied systematically for the general case.

The Maxwell-Bloch equation describing the inversion is

Do - D - D E (E, E*ce4U"-W-N - cc) . (4.1)

Currently, SALT assumes that all distinct modes have distinct frequencies, i.e. WA 7 W,

when p 4 v, which gives the stationary-inversion expression

D = .o (4.2)
1 + E JEt2

when higher-frequency wkl - W, (v p) terms are dropped. However, when there

are degeneracies, Eq. 4.1 will have terms of the form E, - E* where p ? v, since

WA = WV and one can no longer drop the eiow-wvN term. The correct expression for

the stationary inversion will then be

D = , ,(4.3)
I + EtE, -E*

where E' indicates a summation over all A and v for which w, = we, not just for

p = v. To illustrate the difference between the two, we examine a case in which there

are three lasing modes, two of which are degenerate with each other (W 1 = W2 / W3).

Eq. 4.2 will have

JE12 + |E2 
2 + E312

in the denominator, while eq. 4.3 will have

|E1 + E2 +E 3
2 . (4.4)

From Eq. 4.4 we see that the degenerate pair can be thought of as a single-mode

that is a superposition of E1 and E2. This equivalence means that the solution to

the lasing degenerate problem can be thought of in two equivalent pictures. First, we

can think of the linear combination E = Ei + E2 as a single mode that satisfies the
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equation

-V x V x E w 2 (ec + DF-y(w)H) E (4.5)

1H 12

1 +|El 2 '
where E, is the "cold cavity" permittivity. However, if there were originally a degenerate

pair of modes at threshold and we only have one lasing on pole on the real-w axis, it

may be unstable if the other pole is above the real axis. Second, we can think of the

two modes as separately satisfying the equations

-V x V x E, w 2 (E, + DFy(w)H) E. (4.6)

1
H 12.

1 + JE1 + E 2
2

Eq. 4.5 is a less strict condition than Eq. 4.6. Not all solutions that satisfy the former

satisfy the latter. If a lasing mode E satisfies the former there may be a second pole

above the real-w axis, rendering the lasing mode unstable to the second pole coming

in. However, if a pair of solutions satisfy Eq. 4.6, then both degenerate modes are

accounted for and lie on the real-w axis, and there is at least no instability due to the

degeneracy. We now describe this idea in detail.

Prior to lasing, suppose that we have a 2-fold degenerate solution, corresponding to

a double pole in the Green function. As the gain increases, and even when the system

passes threshold and becomes nonlinear, poles can shift (and degeneracies may split)

but poles do not appear or disappear discontinuously, so we should always expect

there to be two poles (in the linearized Green's function around the SALT solution)

arising from the original degenerate pair. Given this fact, if we solve the single-mode

SALT equations as in Eq. 4.5, there is the danger that the other pole is pushed above

the real-w axis, in which case the lasing solution is unstable. We given an example of

this (an unstable "standing-wave" SALT solution) in Sec. 4.1.5. On the other hand, if

we find a solution of the two-mode SALT equations as in Eq. 4.6, then by construction

we have placed both poles together on the real-w axis and the degeneracy is not a
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source of instability (and the overall stability of the Maxwell--Bloch equations can be

checked as in Ref. [229]). However, Eq. 4.6 has a drawback: the hole-burning term

now depends on the relative phase of E1 and E2. In the original SALT equations,

even for multimode problems, the phase was irrelevant and was chosen arbitrarily

in order to obtain a solvable system of equations. If we remove the arbitrary phase

choice, our equations (from chapter 3) become undetermined, so in this chapter we

will need to devise a modified approach to solve Eq. 4.6. Equivalently, if we solve

the single-mode equation (Eq. 4.5) but simultaneously constrain the other pole (the

linearly independent degenerate partner) to be degenerate with the lasing pole, then

we will effectively have solved Eq. 4.6, and in the following sections we will explain

how to implement this constraint.

Overall, our approach to solving for degenerate SALT solutions has three conceptual

pieces: (i) using perturbation theory to find the approximate solution near threshold

in Sec. 4.1, (ii) solving the nonlinear single-mode problem 4.5 above threshold in

cases where symmetry guarantees the degeneracy, and (iii) restoring the degeneracy

in cases where it is artificially broken (e.g. by the discretization of space in the

numerical solver) in Sec. 4.2.2. As described in chapter 3, we can employ Newton's

method to solve the SALT equations because we can continuously vary the solution

starting from the linear solution at threshold, which guarantees convergence if a small

enough increment of the pump strength is chosen (since Newton always converges

whenever the initial guess is sufficiently close to the root). In the case where the

threshold solution is degenerate, however, in order to obtain an appropriate initial

guess for the Newton iteration we must choose the correct linear combination of

the degenerate modes. We find this linear combination analytically in Sec. 4.1 by

employing perturbation theory in the pump strength around threshold. Furthermore,

we analyze the stability, and we show that mirror-symmetric standing-wave solutions

are always unstable, and that "circulating" solutions (like eimo, but more generally a

'01 + i4' 2 combination of orthogonal standing-wave solutions) are the correct (stable)

choice in typical Cn, symmetry groups. Given this initial solution, in cases where

the degeneracy arises from symmetry it turns out that the above-threshold nonlinear
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solutions preserve the degeneracy. However, a problem arises when the Maxwell-Bloch

equations are discretized (e.g. with finite-difference or finite-element methods): often,

the discretization will break the symmetry and hence the degeneracy, preventing us

from finding a degenerate solution to Eqs. 4.5 or 4.6. For example, a finite-difference

grid typically has square symmetry, but breaks the sixfold symmetry of a hexagonal

cavity as in the photonic-crystal example from chapter 3. To solve this problem, we

describe a general and convergent technique in Sec. 4.2.2 to restore the degeneracy:

we find the smallest perturbation 6E(x) that coalesces the poles (with only slightly

more computational effort than the ordinary SALT solver). For simplicity, most of our

discussion will focus on the case of a single degenerate lasing mode. Once this case is

solved, however, we show in Sec. 4.5 that the extension to multiple degenerate and

non-degenerate lasing modes is straightforward, and is closely analogous to standard

multi-mode SALT.

4.1 Threshold perturbation theory

Because degenerate pairs of lasing modes can always be thought of as a single-mode

superposition, we solve the single mode case slightly above threshold. The equation is

0 -V x V x E + w 2SE (4.7)

+ Do-y(w)F (4.8)
1 + |E 1

W - Wa + V'/ ~

Suppose that at threshold (Do = D'), the solutions are E' and Et, both with frequency

wt and zero amplitude. Now perturb the pump to Do = D' (1 + d), and we expect

the single-mode solution to be

E = v'd (aE' + a 2Et) + 6E

W = Wt + 6W.
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Insert into Eq. 4.8 and we have

5 = c + D'-(wt)F 1+ d- d aE + (wt) 6 w + 0(d 2 ).

Now multiply both sides of Eq. 4.7 by Et and integrate. Note that

Et -VxVx6E=J E . [W2c + Dy(wt)F] 6E.

This is because the operators are complex-symmetric and can be transposed to act to

the left, annihilating Et because it solves the SALT equation at threshold. Hence, all

6E terms vanish after integration, and we have

0 = W ( Att + F B/I) + BPV - ECp,,,-,apa* a., (4.9)

which is a 2 x 2 nonlinear eigenproblem in the unknown eigenvector at and eigenvalue

6w, in terms of the known coefficients:

2 Y(wt)

2
Ay Et - cE',

WtD trK(wt) J E

fEt -FE,

CP7vW E (Et - E *) (E -FEt). (4.10)

4.1.1 Existence

We now show that only certain linear combinations of the threshold modes solve

the single-mode SALT equation. Eq. 4.9 is an eigenvalue problem that is linear

in the eigenvalue 6w (which in this case is constrained to be real) and cubic in the

components of the eigenvector a,. In general, Eq. 4.9 could be solved numerically by

a low-dimensional root-finding algorithm. In fact, it has the same structure (number

of unknowns) as the SALT equation (with two "spatial" degrees of freedom) and can
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therefore be solved with the same techniques as chapter 3 (but much more quickly). In

practice, however, realistic degeneracies will almost always arise from symmetry, and

in this case we can solve Eq. 4.9 analytically. (Degeneracies that do not arise from

symmetry are known as "accidental" [117,118], and because accidental degeneracies

are broken by generic perturbations they will generally not survive above threshold

unless there is some other constraint that enforces the degeneracy as in Appendix A.)

In this case, E1 and E2 at threshold are "partner functions" [117] of an irreducible

representation of the symmetry group, and several of the integrals in Eq. 4.9 vanish

by symmetry.

In particular, the most common symmetry groups exhibiting degeneracies (via

two-dimensional irreducible representations [117,118]) are n-fold rotational symmetries

combined with mirror symmetries, the C., groups: the C, group of the circle, the

C3, group of the equilateral triangle, the C4, group of the square, and so on. (The

photonic-crystal cavity of chapter 3 has C6, symmetry.) For these symmetry groups,

there is always a mirror symmetry plane such that E1 is even and E2 is odd (or vice

versa). The reason is that the Cn, group is a subgroup of Co,, and the latter has

partner functions sin mo and cos m#, which form 2d irreps of C,, for all m > 0. Since

sin m# and cos m# always have opposite mirror symmetry about the line # = 0, and

the 2d irreps of Cn, induce 2d irreps of C,, and use the same partner functions [230],

we can always choose the line with angle 0 = 0 such that the partner functions of

Cn, have opposite mirror symmetries. For example, Figs. 4-1 and 4-2 show examples

of degenerate pairs from a metallic square cavity and a dielectric cylinder satisfying

opposite mirror conditions. Hence, those integrals in Eq. 4.9 with an odd number of

both l's and 2's are zero. Eq. 4.9 then becomes

C2 12 a*a = (All + PB11) + B11 - C1111 la 1 2 - (C2211 + C1212) a 2 121 a1. (4.11)

(All equations in this section hold also when l's and 2's are exchanged.) We list all
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Figure 4-1: Threshold modes E' = 32 i and E' = ' 2 3i for metallic square. The

modes are ' rotations from each other, and this operation is also exact symmetry of
2

the discretized grid, so there is an exact degeneracy even for the numerical solution.

w*
OWiA

00U%

Figure 4-2: Odd-m threshold modes for dielectric cylinder. The real part of E has

been plotted. Like in the metallic square, the modes are 2 rotations from each other

so there is an exact degeneracy even for the numerical solution. This is true for all

odd-m whispering gallery modes, but not for even-rn modes. We treat the latter in

Sec. 4.2.
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the solutions of this equation. First, the a,-only solution is

2 (All + FBI,) + B(4
ail C (4.12)

a2  0

=W - IM Im 0
d Cnni Cnn'i

where the last line can be obtained from noting that the first line is real.

The case in which both aA are nonzero can be examined by writing a, = 1aIeiol

and Eq. 4.11 becomes

Cni |a1|i +[C2211 + C1212 + C2 11 2 e 2 (2 )] |a2|
2 = d(Al + FBI,) + B1.

and the solution is

la = (G-U1  [ (Avv + FBv) + Bvv (4.13)

where we define the matrix

C1111 C2211 + C1212 + C211 2e2i(0 2 0 1)

G C1122 + C2121 + C221e-2i(2-01) C2222

The relative phase 02 - 01 and frequency shift 6w can then be determined as the real

numbers that result in the Eq. 4.13 being real and positive. (G is almost always

invertible, except for the case of e2
i(2-

0
1) = 1 for a geometry with C., symmetry, such

as the uniform cylinder which we will treat later). These conditions almost always

mean that there are only discrete sets of linear combinations that satisfy the single-

mode SALT equations; i.e. there is not a continuous manifold of linear combinations

(not including the overall phase choice or an arbitrary continuous rotation in C.,).
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4.1.2 Stability

Not all solutions are stable, however. To determine stability of a lasing solution

with coefficients ap, we need to solve for the "passive" mode arising from the other

degenerate partner: it is necessary to solve the eigenvalue problem

o~Z[i(Av+F wi)B~i~c ,,,iapa*] a/, (4.15)

which resembles Eq. 4.9 except for two differences: the eigenvalue 6w' is now allowed

to be complex, and the equation is linear in the eigenvector coefficients a', because the

lasing coefficients a, are already known. By inspection, a', av, 6w' 6 6w is clearly a

solution to Eq. 4.15. The question is whether the other eigenvalue 6w' is above the real

axis. If so, then the lasing coefficients ap give an unstable linear combination. Another

(stable) possibility would be if 6w' were below the real axis, but have not encountered

any such cases. This situation is not expected to occur frequently, because it would

require a passive pole to hit the threshold and then immediately turn back, which is

unlikely given the analytical nature of the SALT equations. A third possibility is for

6w' to lie on the real axis, but with value differing from 6w. This situation occurs if

the threshold degeneracy was forced (accidental) by tuning (e.g. the geometry), with

the splitting arising from the spatial hole-burning breaking the degeneracy. For such

small splittings, SALT (stationary inversion) breaks down and new physics is needed.

We discuss the details and implications of this case in a later section. The final case is

if the second eigenvalue is also 6w' = 6w. This case is the stable two-mode degenerate

lasing solution: a passive pole coincides with the lasing pole.

For mirror-symmetric threshold modes, Eq. 4.15 becomes

(C2 n1 2 a2 a* + C12 12 aga*) a' = Wd (All + FB 1 ) + B 1 - C 1 n1 |a1 2 - C2211 a 2 12 a'.

(4.16)

We now show an important result about purely standing waves with mirror symmetry,

in which a 2 = 0 (or alternatively a, = 0), which has the solution given in Eq. 4.12.
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Inserting these into Eq. 4.16 and its counterpart with l's and 2's exchanged, we have

0=6W 6W (All +PB1 )a'
d

0= PB'B C1 22 (6 N0 (A22 +B 2 2 )+B22- C [All +PBn]l+B ij a'
Id Cnn1 d2

The trivial eigenpair has 6w' = 6w and a'2 = 0, but the other eigenvalue is

6w' 01122 [ (All + FB1 ) + Bil] - B2 2

d A 22 + F B22

with a' = 0. It appears that this eigenvalue is always above the real axis (we can

confirm this fact on a case-by-case basis, but a general proof is beyond the scope of

the thesis). Hence, one of the standing modes will never by itself be the stable lasing

field because it will always be unstable to the second mode (which has the opposite

mirror symmetry) coming in. In the absence of a general proof that Im6w' > 0,

one can easily check Eq. 4.17 as a small part of solving degenerate SALT problems.

The intuitive reason why standing-wave modes are unstable is known from the ring-

resonator case 132]: the nodes in the standing wave represent unused gain that the

degenerate partner "wants" to grow into. There are, however, exceptions: the authors

of Ref. [2291 found interesting examples of single-mode solutions with passive poles

above the real axis that were shown to be stable from both stability analysis and

brute-force time-domain simulation. These examples suggest many new possibilities

for stable single-mode lasing, and we plan to examine them in future work.

4.1.3 Stability of circulating solutions

In the case of the ring resonator, it is known that the "circulating" solutions e im

are the stable solutions, and it turns out that a close analogue of this result holds

for any C., symmetry group. As above, we use El and E2 to denote the degenerate

eigenfunctions (at threshold) chosen to be even/odd with respect to one of the

mirror planes, analogous to cos m and sin m# in the C,, group. In terms of these

eigenfunctions, the generalized "circulating" modes are E = E1 iE2 , and it turns
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out that writing the solution in terms of this always yields a stable lasing mode with

a degenerate passive mode.

Before we show stability, we must first check that the circulating modes are solutions.

One possible method is to work in the basis E1 and E2 and exploit the mirror symmetry

so that many matrix elements A,,, B, and Cp,,,, vanish by symmetry. This method

has two disadvantages: first, in cases in which E1 and E2 are not simple 1 rotations2

of each other (for example, dipole partners in Cnv for any n that is not a multiple of

4) the relation between matrix elements such as C1111 and C2222 is more complicated.

Second, when El and E2 are no longer mirror symmetric (as we will see in Sec. 4.5, in

the case where gain is already chiral, with C, symmetry rather than C.,), the matrix

elements that usually vanish by symmetry no longer do.

Fortunately, working in the basis E greatly simplifies the calculations. Analogous

to Sec. 4.1.1, we look for the solution a+E+ + aE_ with a+ # 0 and a = 0 or vice

versa. First, we see that A and B both involve integrals of E -E = E - (E*)*.

Since El transforms as the irrep with opposite chirality from E , and partner functions

of different irreps have zero (conjugated) inner product due to the great orthogonality

theorem [117,118], both A and B vanish. Inserting these facts and a = 0 into

Eq. 4.9, we have the two equations (/ = 1, 2)

0 = C++++

0 = o (A-+ + FB-+) + B-+ - C++-+ |a+ 2
d

The first equation is satisfied because C++++ = f F IE+ 2 E+ - (E*)* = 0 by the great

orthogonality theorem again (since E+ 2 has C, symmetry; equivalently, one could

use product representation theory [1171). The real and imaginary parts of the second

equation exactly specify the values of the two real unknowns 6W and Ja+-

Now, to show that E+ is stable, we can exploit some group theory combined with

a recent result regarding degeneracies in chiral structures [119] that is reviewed and

generalized in appendix A. In representation-theory terms, the circulating modes E

diagonalize the rotation operations Rk with eigenvalues eT2,7imk/n, or equivalently are
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partners of Id irreducible representations (irreps) of the C, subgroup (the rotation

symmetries without the mirror planes). In order to understand the passive mode

of the E+ lasing solution above threshold, the key point is to realize that |E+1 2 has

C,,, symmetry (because rotation is just a phase shift) but does not in general have

Cs, symmetry: the intensity pattern of the radiation from a circulating mode is

typically a "spiral" pattern (as shown e.g. in Sec. 4.1.5 for a dielectric-square cavity)

that breaks the mirror symmetries. Naively, since the Cn group does not have 2d

irreps [117,118], we should not expect a degenerate passive mode, or any degeneracies

for that matter. However, as was recently shown in Ref. [119] and is reviewed in

appendix A, the C, symmetry group combined with Lorentz reciprocity (the fact

that the Maxwell operator is complex-symmetric for symmetric matrices E and /)

means that the circulating modes are in fact degenerate. This degeneracy (which is

technically "accidental" since it does not arise from symmetry alone [341) guarantees

stability of the E_ partner.

More specifically, as the pump strength varies continuously from d = 0 to d > 0 and

C., (but not C,,) symmetry is preserved, the solutions cannot jump discontinuously

from one irrep of Cn to another. The E+ and E_ degenerate partners at threshold fall

into the D(k) = exp (T 2limk) irreps of the C, group and the above-threshold solutions

therefore stay in these complex-conjugate irreps. As reviewed in appendix A , whenever

there is an eigenfunction of the reciprocal Maxwell operator in a complex irrep D(k)

(such as the E+ + 6E+ lasing solution), there is always a degenerate (equal-frequency)

eigenfunction in the complex-conjugated irrep D(k). (Remarkably, these degenerate

eigenfunction are not mirror flips of one another, because the degeneracy does not

arise arise from geometric symmetry alone.) So, there must a passive pole coinciding

with the lasing solution. Since the poles move continuously with pump strength, and

at d = 0 E+ was degenerate with E, this other passive pole must be the E_ + 6E_

solution (which is a partner of the conjugated irrep). Hence, the poles must stick

together as the pump is increased continuously, even though the two solutions are no

longer mirror images of one another.

Of course, there is also a mirror-image lasing solution that can be found, exactly as
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above, by starting with a+ = 0. Because of the symmetry of the underlying problem,

this is simply the mirror flip of the E+ + 6E+ lasing solution. It is important not to

confuse this mirror-flipped lasing solution with the E_ + 6E_ passive solution above,

which is not the mirror flip of the lasing solution. The system is nonlinear, so the

passive left-circulating solution of the right-circulating lasing mode is not a solution

for the left-circulating lasing mode.

As a practical matter, in order to obtain the E+ and E_ solutions at threshold,

one must remember that a numerical eigensolver will generally return a random an

arbitrary superposition E of E1 and E2 . But, given such a superposition, one can

obtain E+ merely by acting the projection operator [117] of that irrep of the C, group

on E:
n-1

E+ = exp im R kE,
n

k=0

where R, is the operator rotating by 27r/n. In a numerical grid that breaks the

C, symmetry as in Fig. 4-22, implementing R, requires rotating the grid and then

interpolating back to the original grid, but the small interpolation errors introduced

by this process are irrelevant--for the Newton solver to converge, all we need is a

solution that is sufficiently close to the "true" E+. The key point, as discussed in Sec.

4.1.1, is that the stable and unstable solutions above threshold are not connected by a

continuous manifold, so if you are close to a stable solution then there is no nearby

unstable solution for Newton to find. Note also that the choice of m in the projection

depends on which irrep one is projecting into, and this can be determined easily by

inspection of the E: m =1 for a dipole-like mode, m = 2 for quadrupole-like, etcetera.

Alternatively, a completely automated procedure would be to simply try projecting

for m 1, 2, ... , floor( 1 ): for all but the correct m, the projected function should

be nearly zero.

Given E+ via the projection operator, the mirror flip of E+ is E_ (because at

threshold these are partners of Cn, not just Ca). From these two eigenfunctions, one

can construct E, = E++E- and E1 = E++E- if desired, e.g. for checking the instability2 2 I

of the standing-wave mode from Sec. 4.1.2. It is best to apply the perturbation
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theory to either even/odd or circulating partner functions, and not just to whatever

random superposition a numerical eigensolver produces, because this basis leads to

the simplest analytical results.

4.1.4 Obtaining the stable superposition directly from E1 and

E2

In this section, we provide an alternative method to get the stable lasing superposition

in terms of the standing partner functions El and E2. Although this treatment

is redundant with that given in Sec. 4.1.3, it has the advantage of not requiring

implementation of rotational operators (and the associated interpolation, as explained

in Sec. 4.1.3) to construct the E+ and E_ circulating solutions-for mirror symmetric

geometries, E1 and E2 can be obtained much more easily than Ea by using mirror-

flip operations, which are much simpler to implement and require no interpolation.

However, a disadvantage is that E2 obtained this way, without any further processing,

is usually not normalized correctly [the inner products (Ei, Ei) are different for i = 1, 2]

and does not have the correct overall phase (E2 = eio E -E, where 0 is some arbitrary2i I

phase found by the solver). Consequently, the results in this section are mainly

valuable as a validity check on results obtained by the method of Sec. 4.1.3.

For a 2 x 2 generalized linear eigenvalue problem such as Eq. 4.15 to have degenerate

eigenvalues, the matrix elements must individually satisfy the eigenequation, which is

a stricter condition than the eigenequation itself. Hence, for the stable combination

we have
6w

0 = (AlI + FB11) + BAV - E Cpuapa* (4.18)

In practice, if we wanted the stable linear combination, we can simply solve this

equation directly rather than finding all the solutions of Eq. 4.9 and categorizing their
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stability using Eq. 4.15. For mirror-symmetric partner functions, 4.18 becomes

0 =W (All + F BI) + B1 - C1111 la 1
2 - C2211 a2 |2  (4.19)

0 C12 1 2aia + C2u 2a 2a*, (4.20)

Eq. 4.19 has the closed-form solution

C2222 -C2211 All + FBn + Bn 1
a 1 |2 -C1122 C1111 A 22 + FB22  B22

a2|2 C111C2222 - C2211C1122

From this expression, 6w can also be obtained: it is simply the real frequency shift

that makes the right-hand side real, since by definition la1 2 must be a real number.

Eq. 4.20 gives the phase between the two coefficients for the stable linear combination.

Eqs. 4.20 and 4.21 are very most useful because they provide a guess for the

Newton solver slightly above threshold. Once we find the two orthogonal modes at

threshold, we form the linear combination provided by these equations and then use

it as an initial guess. Since there is only a discrete set of solutions that solve the

single-mode SALT equations, there is no threat of converging to a nearby unstable

solution; as long as our initial guess is reasonably close, Newton will always converge

to the stable linear combination.

We do not generally expect the intensity pattern of the stable lasing mode to be

mirror symmetric unless 'b is real or can be separated into a complex factor that

is unchanged under R, and a real factor that changes under R,. From this fact,

we can conclude that most degenerate lasing pairs will exhibit a nonzero amount of

chirality, not just in their mode profiles, but in their intensity patterns as well (with

the exception of the whispering-gallery modes of C , whose partner functions can be

separated into a complex part that depends only on the radial coordinate, and hence

is invariant under all rotations, and a azimuthal dependence that can be chosen to

be entirely real, as in sin m# and cos mO). High-Q pairs will only be slightly chiral

because they field profiles can be chosen to be nearly real. This chirality will be very
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evident in low-Q degenerate lasing modes, as we will see later in Sec. 4.1.5, because

their field patterns have a significant amount of both real and complex parts.

4.1.5 Threshold perturbation examples

Now, we illustrate the ideas of threshold perturbation theory with several simple

examples of symmetric geometries with degeneracies: a metallic square, a dielectric

cylinder, and a dielectric square. We first present the threshold modes (solutions of

a linear problem at threshold) which are exactly degenerate. Then, we compute the

matrix elements Ap,, B,,, and C in the perturbation theory. Next, we solve Eq.

4.11 for the existing lasing modes, then use Eq. 4.16 to find the passive poles and

check their stability. Alternatively, we apply Eq. 4.21 to E1 and E2 and check that

it produces the circulating modes predicted in Sec. 4.1.3. We compare the results

obtained by perturbation theory to numerical solution of the SALT equation.

Metallic square

For example, consider TM modes (E = V/) in a metallic LX x L. rectangle with

uniform gain F(x) = 1 and uniform lossy dielectric ec(x) = 1 + iu-. For or-= 0 and

Do = 0, the modes and frequencies would be

sin (1wx) sin (nly) (4.22)
(Lx b

m 2  n2
Wmn L2  L 2

x y

Choose Lx = LY = 1, and we have wmn Wnm. Now we choose a pair m 7 n, and

set the gain center to be wa = Wmn (the results in this section are independent of

the choice of m and n, as long as they are different integers). The profiles are shown

in Fig. 4-1 for m = 3, n = 2. Since the gain and loss profiles are the same, the

threshold for this pair of modes will be DI = o-, with frequency wt= Wmn. We also

have -y(wt) = -i and y'(wt) = 1/1y, which result in F + - The threshold modes

are Et= 'mni and E /= Onmi. Note that the following analysis can alternatively be
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done with any linear combination of these two modes as a basis, as long as we use the

general equations 4.9, 4.15, and 4.18. However, this particular choice is convenient

because it falls under the category of degenerate pairs satisfying mirror symmetries.

The nonzero matrix elements in the threshold perturbation theory are

A 11  2w - i
1

A n =11 - - -

1164

C1 1 2 2 =C1212 - C1221 16

and the same equations hold with l's and 2's exchanged. Eq. 4.11 then becomes

a*a2 =[i"W + 4 - - 1ai2 - 2 a2 ] a1 , (4.23)
1 2d 4 lIa ,(.3

where we have defined FO = 8 + --. We now solve this equation to obtain the lasing

solutions, including unstable ones. First, if a2 = 0, then 6w = 0 and 16 = 9 ai 2

giving the lasing mode E = (a second lasing mode with E = V d\nmi can

trivially be obtained by setting a, = 0 instead). From Eq. 4.17, we see that this mode

is unstable to the second mode coming in, with a frequency eigenvalue 6w' 2id as

expected.

Now consider the case that both a1 and a2 are nonzero. Eq. 4.13 then gives

( a, 2 zfp2w + 4 1 - e 2 i(2-
0 1)

2) 4

a 2  - 4 cos(20 2 -201) - e2i(9 -0 2)

For this expression to be real, we must have 6w = 0 and 2(02 - 01) must be an integer

multiple of w. For even multiplies of w, we have a t, 2 = 16, giving the lasing mode

E =4 2 (<mn Onm) i, and for odd multiples of ir we have ja ' 2 =3 , giving the

lasing mode E = 4 T3( m i4'nm) 2. Fig. 4-3 shows simulation results compared

to theory for the modes from Fig. 4-1.
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Figure 4-3: Lasing amplitudes for metallic square. Three types of lasing modes were
used as initial guesses at threshold: a single standing (vertically and horizontally
mirror-symmetric) mode lasing by itself, a circulating mode (two standing waves
with a relative phase of i), and a "diagonal" standing-wave mode (diagonally mirror
symmetric). The theoretical lines were obtained from Eq. 4.23: as expected, the
perturbation theory is correct to first order in d.
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We test the stability of these solutions using Eq. 4.16. Inserting the matrix

elements, we have

iro& -' 9 12 12 a/(.4(a2a* + aia*) a' =F + 4 - - |aij - a2 2' (4.24)

d 6d 4

For E = 4 , (V) mn + /nm) i, the other eigenvalue is 6w' 64id with an eigenvector

of (1 1). Hence, this mode is unstable to the second mode proportional to Vmn -

10,m coming in. The unstable intensity patterns are shown in Fig. 4-5. For E

4 C (/mn + i/nm) i, on the other hand, Eq. 4.24 reduces to 0 = 6w'a, so both

eigenvalues vanish and this lasing mode is stable. This stability is guaranteed by

symmetry (as described in appendix A) since the passive solution is a circulating mode

of the opposite chirality. Fig. 4-4 shows simulation results compared to theory for

passive eigenpairs of the lasing modes from Fig. 4-3. While the above is an exhaustive

procedure that is guaranteed to find all lasing modes and categorize them into stable

and unstable, in practice it is much easier to directly find the stable circulating

superposition as in Sec. 4.1.3.

Dielectric cylinder

As another example, we consider an infinite cylinder with uniform "cold cavity"

dielectric F, = n2 and gain profile F = 1 inside p < 1 and air outside (we use

cylindrical coordinates p, q, z here). Here, we consider the example of z-invariant TM

(E = 7i) solutions. The passive resonances are exactly solvable [115] and are given

by $7m(P, q) =eimBNm(p) , where

{Jm (TWNmP) , p9 m
BNm (P)< (4.25)

T/NmHm (WNmP), P> 1

and Jm is a Bessel function of the first kind, Hm is an outgoing Hankel function, and

INm and wNm are chosen so that both 0 and 2 are continuous at p. For Do = 0, the

poles WNm will lie below the real axis. Now suppose that we choose w and - such
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Figure 4-4: Imaginary part of the "passive" pole (degenerate partner of the lasing
mode at threshold) for metallic square. For the simulation data points, the nonlinear
problem for E was first solved with the initial guesses in Fig. 4-3, and the result was
used in the spatial hole-burning term for a linear problem. Only the lasing mode
proportional to E' + iE' is stable. The theoretical lines were obtained from Eq. 4.24:
as expected, the perturbation theory is correct to first order in d.

Figure 4-5: Intensity profiles for unstable lasing modes of metallic square. The
intensity vd132 (left) has nodes that make it unstable to a 423 mode. The intensity

for 4 | 1032 + V)23 
2 (right) has nodes that makes it unstable to a 032-023 mode. Note

that both intensity patterns break the symmetry that connected the two degenerate
modes in Fig. 4-1.
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Figure 4-6: Intensity profile for stable lasing mode 4 d ('032 + i'023) of square. This

pattern maintains the C, symmetry of the original system that connected the two
threshold modes, unlike those in Fig. 4-5.

that a certain <nm lases first at some pump strength D', and WNm Wt hits the real

axis. The threshold lasing mode will have the radial dependence given in Eq. 4.25,

except with the index inside given by the complex number nt = rn2 + Dy(wt).

To analyze the lasing modes above threshold, we choose Et = BNm,(p) cos(mnp)

and Et = BNm(P) sin(m). The nonzero matrix elements are then

2!n23 in + 2! 3out
An =

Wt D Y (O)

Bil = in

C1111  3

C11 22 C 1212 = C122 1
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where the equalities still hold with l's and 2's exchanged, and we have defined

1

Ain 1rf pdpJm (ntwt p)2

0
00

3 out 7T f pdprl 2mHM (wtp) 2

1

Sf pdpJm (nwItp)2 Jn(ntwtp)1 2 .

0

We now find the lasing solutions, and test their stability. First, consider the pure

cosine mode. From Eq. 4.12, we have the lasing mode

Ad
E = r BNm COS MO

6W Im A l+ in Im An (4.26)

where we have defined

A - (All + F~in) + A".
6d f

From Eq. 4.17, we see that there will be unstable pole with eigenfrequency

6w' 6w 2i-W =6- - .A (4.27)
d 3d 3(A i F (.in)2

We now turn to Eq. 4.13, which becomes

(1 2 ( 3 2 + e2(1) 1 2

A 1 J 2 + 2 (
2 1

) 3 ) a 2 )

By inspection, 2(02 - 01) must be an integer multiple of 7r, and the frequency shift

is given again by Eq. 4.26. For even integer, the matrix G in Eq. 4.14 becomes

singular, and we have jai 2 + Ja22 3, giving the manifold of lasing modes E =

z rBNm(P) cos(m# + #o), where qo is an arbitrary angle. These modes are just

rotations of the purely standing-wave solutions above, so are unstable to a passive pole
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Figure 4-7: Lasing amplitudes for dielectric cylinder. The simulation was performed
with a grid of 121 x 121, with a homogeneous cylinder of radius 1 and dielectric index
F, = 8. The gain was chosen to be wa = 4.3 and - = 1. Both threshold modes had
frequency wt = 4.267. The purely sinusoidal lasing mode has a slightly higher lasing
amplitude than the circulating solution. The theoretical lines were obtained from Eq.
4.12 and Eq. 4.28.

with eigenvalue given by Eq. 4.27 and profile sin(rm#o-+ o). The case in which 2(02 -01)

is an odd multiple of 7r gives la, 2 = ', giving the lasing modes E= i ABN(P)

Now check the stability of this lasing mode. From Eq. 4.16, we have 0 =(w' - 6w)a',,

so both eigenvalues here are 6w' = 6w, and this circulating mode is stable. Again, a

much quicker way to obtain the stable linear combination here is to use Eq. 4.20 to

see that the relative phase between a, and a2 must be i, and Eq. 4.21 directly gives

the amplitude la, 12  .

Dielectric square

To see an example in which the interference term of the two-mode SALT equation has

a very noticeable effect, we look at a pair of low-Q modes of a homogeneous dielectric
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Figure 4-8: Stability eigenvalues for dielectric cylinder. The simulation data points we

obtained using the same method as in Fig. 4-4. The circulating mode is clearly stable

while the sinusoidal mode is not. The theoretical lines were obtained from Eq. 4.16.

Figure 4-9: Intensity profiles for cylinder lasing modes. The intensity of the cosine

mode (left) has nodes that make it unstable to the sine mode. The intensity for

the circulating mode (right) does not have such nodes. It is also stable because it

maintains the original symmetry that connected the two threshold modes (Cov in the

ideal system and C4v for the discretized geometry).
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Figure 4-10: A pair of low-Q modes (Q 15) at threshold for dielectric square and
homogeneous dielectric Ec, 5. The square has a side of 1, and the lasing parameters
have been chosen to be w, = 3.5, n 1.0. The ! rotation is an exact symmetry of
the geometry, so there is an exact degeneracy even for the numerical grid.

square (Q is defined as the ratio Rew'/Imw' of the cold cavity at zero pump strength).

Unlike the metal square, the equation for the electric field is not separable in the x

and y directions. The modes E1 and E2 are shown in Fig. 4-10.

Numerically performing the perturbation theory to obtain the stable mode, we

verify that Eq. 4.20 gives a prediction for the stable linear combination of E o E1 iE2 ,

which is the circulating mode predicted by Sec. 4.1.3. Although the field is neither real

nor separable, the relative phase is still i because of the four-fold rotation symmetry.

From the fact that E2 = R4E1 (where R4 is a four-fold rotation), we see that

El + i*E2 0( (1 + iR4 - R 2 - iR 3) E1,

and this intensity pattern is chiral (with C4 symmetry rather than C4v). This chirality

is an important consequence of including the interference terms in the degenerate

formulation of SALT. Fig. 4-11 shows the intensity pattern for the result without

interference compared to the correct solution. Fig. 4-12 shows the intensity pattern of

the degenerate partner. Since this degeneracy does not come from geometric symmetry

along, there is no clear symmetry operation that takes the lasing mode (right panel of

Fig. 4-11) to its degenerate partner (Fig. 4-12), but there is still an exact degeneracy
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Figure 4-11: The incorrect (left) intensity pattern and correct (right) intensity pattern
for the pair of low-Q dielectric square modes, slightly above threshold. The left intensity
pattern was obtained by solving two-mode SALT without any interference effects,
while the right pattern was obtained by constructing the stable linear combination
predicted by symmetry and perturbation theory and then solving single-mode SALT.
The correct pattern clearly has a chirality, which the incorrect pattern lacks.

as explained in appendix A.

4.2 Symmetries broken by discretization

In many cases the geometry we are trying to solve has some symmetry, which results

in a pair of degenerate modes, but the degeneracy is broken when the geometry

is projected onto the discretized grid, since the grid no longer has the symmetry.

For linear equations, this unphysical splitting is not an issue because it is usually

straightforward to tell whether a pair of modes is "really" degenerate, and since

all linear superpositions solve the equation in the infinite-resolution limit, we can

construct arbitrary superpositions after solving for both of the modes. However,

for SALT (which is nonlinear), the coefficients of the superposition is a physical

quantity that must be found by our solution method, as explained in Secs. 4.1.3

and 4.1.4. As explained in chapter 3, the process for solving for lasing modes begin

with the linear problem for the passive poles. Because both the real and imaginary

parts of the passive poles are split by the discretization error, the modes will lase

at different pump strengths, and even after both modes lase we cannot construct a
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Figure 4-12: Degenerate passive mode of opposite chirality of low-Q dielectric square
for lasing very high above threshold (Do 100D ). The profile is not simply a mirror
flip of the lasing intensity pattern in Fig. 4-11, since there is no symmetry that
connects the two modes.

linear combination of them because the two modes satisfy equations with different

real eigenfrequencies. Consequently, degeneracy-splitting caused by discretization is a

major practical problem for our SALT solver and requires a nontrivial solution.

A good example is the uniform cylinder projected onto a square grid, which has

C4, symmetry but not the Coc symmetry of the cylinder (another example, as we will

see later in Sec. 4.2.2 and in Fig. 4-22, is a hexagonal photonic crystal defect cavity

that has Cev symmetry). For odd angular momentum whispering-gallery modes, the

sine mode is simply a 90-degree rotation of the cosine mode, as seen in Fig. 4-2. This

symmetry is still exact for the grid, so odd angular momentum modes are exactly

degenerate even when discretized. However, for even angular momentum modes, the

operation that takes sine to cosine is not a member of C4, Hence, there is a small

splitting in both the real and imaginary parts of the frequencies. Fig. 4-13 gives an

example of this effect. There are two potential methods to solve this problem: one is

to solve a two-mode equation with an interference term in the spatial hole-burning

denominator, while allowing the frequencies to split. This method is conceptually

simpler, but is more difficult to use in practice because it is difficult to choose the

correct relative phase. The second method is to construct a small perturbation to the

dielectric function to force a degeneracy in both the pump strength and the frequencies
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Figure 4-13: Even-rn threshold modes for dielectric cylinder. The real part of E has
been plotted. The geometry and parameters are the same as in Fig. 4-2, except with
the gain shifted to wa = 3.8, which is near the threshold frequency for the even-m
modes. Unlike in the previous case, however, the discretized modes are not E rotations
from each other. Consequently, there is an unphysical splitting of 0.11% in Re(wi -w 2)
and 11.5% in Im(wI - w2) (the latter being larger only because these are high-Q modes

and Im,-, is already very small). A difference in imaginary parts also means a splitting
in the threshold pump strength Dt.

at threshold. We discuss both methods below.

4.2.1 Solving a two-mode equation with splitting

Because the symmetry is broken by the grid, the two modes are only nearly degenerate

and cannot be combined in the stable linear combination, or any linear combination

for that matter, to solve single-mode SALT. However, the modes will satisfy a modified

two-mode SALT equation

-V x V x E W, =w [E + Dm(o)FH] E. (4.29)

1
H =2

1 + JE1 + eiE2

with the two frequencies w1 7 W2 . The relative phase 0 here is a physical quantity

because we have fixed the phase of both E1 and E2 , as explained in the previous chapter

on the solution method for SALT. Note that here we are including the interference

term E1 - Eje i- + cc even though the frequencies are slightly different (the splitting
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Figure 4-14: Splitting in degeneracy due to discretization error for even-M modes of
dielectric cylinder versus the resolution 1/h of the discretization, where h is the distance
between adjacent gridpoints. The oscillations, which are due to the discontinuous
interfaces between dielectric and air that "jump" when the resolution is changed, could
in principle be smoothed by using subpixel averaging techniques for the discretization
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will be on the order of the discretization error), because this is an approximation for

the true (physical) symmetrical system when the modes are degenerate, and we are

solving Eq. 4.3.

Eq. 4.29 is difficult to solve because of the relative phase 9. If we incorporate it as

an extra unknown, the nonlinear problem becomes underspecified, making Newton's

method much less straightforward to apply. Another option is to incorporate 0 as a

"known" parameter that we specify before solving. This method keeps the Jacobian

square and the problem exactly specified, but greatly constricts the two-mode solution

space in which we are searching for a root, since we are essentially specifying the

exact value, to machine precision, of one of the components of E2 at the point x2

where we fixed its phase. Consequently, some ranges of values of 9 often do not have a

solution to Eq. 4.29, and even when there is a solution, the resulting intensity pattern

E1 + ei9E2 2 will vary significantly with 0 and it is unclear which 9 is the closest one

to the stable lasing intensity pattern. Fig. 4-15 shows the intensity patterns for two

choices of 0.

In principle, there may be some additional equation that determines the value of

9, but it is not clear what this equation may be. In order to discover that equation is

needed to constrain theta, one possible approach is to simply fix 9 at some arbitrary

value and solve Eq. 4.29 in the remain unknowns by a Newton method analogous to

chapter 3. Then, by comparing these solutions for different values of 0, we might hope

to notice some obvious reason why one solution is "more correct" (or more stable)

than the other solutions, and use this observation to determine theta (ideally as

an additional equation introduced into the Newton solver). Even this approach is

immediately problematic, because we find that Newton does not even converge for

all values of theta, and it is not clear how to find which 9 are solvable except by

brute-force search. Even when there is a solution, we often find solutions that are

"stable" (two on-axis poles of Eq. 4.29) for multiple values of 0, but whose intensity

patterns vary greatly. (If the numerical solver does have an exact degeneracy, then

the choice of 9 is irrelevant: because E1 and E2 solve the same eigenproblem with the

same eigenvalue, the solver can just replace E1 and E2 by arbitrary superpositions of
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Figure 4-15: Intensity profiles for solutions Eq. 4.29 with 0 = 1.3 (left) and 0 = 1.57
(right). The intensity pattern on the left is unphysical because we have chosen the
wrong 0 as a parameter. On the right, the intensity pattern looks almost rotationally
invariant, and that is because we chose a value of 0 close to the known correct value
of 0 = .

one another as needed.)

For example, Fig. 4-15 shows two different intensity patterns for the dielectric

cylinder lasing solutions (for even n where the grid breaks the degeneracy) obtained

for different values of 0 in Eq. 4.29. We know from previous work [32] that the

physical solution (corresponding to an exact degeneracy for the circular symmetry)

is the solution shown at the right (the "circulating" mode with a rotation-invariant

intensity pattern). The mode shown at the left is closer to a standing-wave solution

and is not a solution of the single-mode SALT equations in the exact symmetry group.

Because both of these solutions are (numerically) non-degenerate, however, and it is

difficult to determine which one of the two converges to an exact stable solution of

the single-mode SALT equations in the limit of infinite resolution (where symmetry is

restored). The basic problem is that Eq. 4-15 is not a physical SALT equation except

in the limit of an exact degeneracy, and so we can obtain unphysical solutions for an

incorrect 0.

For many cases we encountered, there is a simple heuristic that often leads to a

value of 0 that is very close to the known stable value. For the exactly degenerate

case (w, - W2), the intensity pattern JE1 + eiE2
2 will be completely independent
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of 0; the solver can freely mix between E1 and E2 because the two equations have

the same frequency anyway. For the non-degenerate case, this will no longer be true.

However, if we were to find a 6 in which H is stationary, i.e. H = 0, then both

the frequencies w, will also be stationary as well. To see this, we expand 4.29 for

some phase 0 + 60. The new modes with this small phase change will be E,, + 6EI,

with frequencies w,, + 6w,,. Inserting into Eq. 4.29, multiplying both sides by E, and

integrating, we have

6W Loll f (Ejj -E,) D7(Lj,)F6H
2 f (E, -El) (Ec + D [ +() 'y'(w,)] FH)

Hence, if 6H(x) 0, then also 6w,, 0. Using this as a heuristic, we can often obtain

the correct phase between the pair of nearly degenerate lasing modes. For example,

Fig. 4-16 shows this method applied to the even-m cylinder modes from Fig. 4-13.

However, this method is difficult to implement, because we need to solve Eq. 4.29 at

many values of 6 (many for which the solution may not even exist, as explained above)

and identify the extremal point. Second, this extremal point may not even exist in

some cases. Third, we have no proof that this always works: it is based purely on

intuition and experimentation. For these reasons, we look for a more reliable solution

to the problem of unphysical degeneracy splittings.

4.2.2 Forcing the degeneracy using a dielectric perturbation

The basic idea is that we construct an artificial perturbation 6E(x) to the dielectric

that forces the degeneracy in both the frequency and threshold, and then we solve the

perturbed single-mode SALT equation. There are infinitely many possible functions

that do this, so we look for the one with the smallest L 2 norm 116E(x)H = f 6E(x)1 2 .

This is also reasonable because in the limit of infinite resolution, the perturbation

required to force the degeneracy must approach zero. We construct the perturbation by

solving a quadratic program with linear constraints which we obtain using perturbation

theory.

Not only does this uniquely (and cheaply) determine 6E, as described below, but it
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Figure 4-16: Lasing frequencies vs. relative phase for even-m cylinder modes above
threshold obtained from numerical solution of Eq. 4.29. The actual splitting W2 -W1 ~
0.004 is much greater than the variation shown here. For clarity, the frequencies
plotted have been shifted and centered at their values at 0 = 1.57, which is near the
stationary point (as expected, since we know the correct phase to be 0 = ').
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also guarantees convergence to the solution of the unperturbed (physical) single-mode

SALT equation in the limit of infinite resolution. The reason it guarantees convergence

is that the frequency splitting vanishes in the limit of infinite resolution, and so the

minimum-norm 6E to force a degeneracy also vanishes in the limit of infinite resolution,

recovering the unperturbed SALT.

It turns out that determining the minimum-norm 6E requires only that we solve

a sequence of "quadratic programming" (QP) [91] problems: minimizing a convex

quadratic function (6E11 2) of 6E subject to an affine constraint on 6E. QPs are

" convex'" optimization problems with a unique global minimum that can be efficiently

found simply by solving a system of linear equations [91]. In particular, the affine

constraint (the equation on 6E that makes it coalesce the eigenvalues) can be derived

from perturbation theory as explained below. Because the perturbation theory is

only first-order, however, the 6E that we find by solving the QP only approximately

eliminate the degeneracy, but we can simply re-solve SALT and solve a new QP,

iterating the process a few times (twice is typically enough) to force a degeneracy to

machine precision.

We analyze the effect of a small 6E on the eigenfrequencies (of the lasing mode

and the passive pole) by well-known first-order perturbation theory for Maxwell's

equations [34], but some modification is required to handle the nonlinearity of the

hole-burning term above threshold. However, we begin by forcing the degeneracy

below threshold (repeating as needed as the pump strength is increased), so that both

passive poles reach threshold simultaneously. (In practice, we achieved the fastest

convergence by allowing passive poles to have positive imaginary parts, and then

setting the pump strength so that the two poles "straddle" the real axis; this way,

when they meet in the middle they are both exactly at threshold.) Below threshold,

the eigenproblem is linear, and we can apply standard perturbation theory (albeit for

a complex-symmetric operator, not a Hermitian operator) as follows:
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Consider two nonlasing modes that satisfy

0 =-V x V x E + w2E

EP =E + Do-y(w,)F

Adding a perturbation to the dielectric 6E will result in corresponding responses 6E,

and 6w,. As in the threshold perturbation theory, we multiply both sides by E, and

keep only first-order terms. Terms involving 6EA again vanish because the operators

act to the left, and we are left with 1232-234]

f E, - eEP(-0
JE = S&E4 (4.30)f Ep - 2"+ aE p

We write this frequency shift as an inner product

6w, = -p T6. (4.31)

As an aside, while it is fine to use a scalar 6E function for this procedure, in the case

when the E. are TE modes or fully-vectorial fields, then it is also possible to allow

5c(x) to be a diagonally anisotropic tensor

( " 6 (x) 0 0

4(x) = 0 . (4.32)

0 0 6E (x)9

The column-vector form of 6E in Eq. 4.31 would then have as its elements all the
+-_4

real and imaginary components of 6E (x) at each Yee point [37] [6E,,(x), 6Fyy(x), and

6 Ezz(x) for all the grid points xl, while the row-vector p would have as its elements

the real and imaginary parts of E,(x) 2, Ey(x) 2, and E,(x) 2 at all the grid points. If

we take this option, then the norm we minimize would be

2 f dx 6E (X) F
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where the Frobenius norm [1121 at each point x is defined as

E (x) =EX(x)12 + 16E&' (x) 2 + 16_zz(X)12
F

Whether we take 6E to be scalar or tensor, the degeneracy-forcing condition w1 + 6w1

W2 + 6W2 then becomes

(P2 - P1)'6E = W2 - W1.

It turns out that the solution of a quadratic program with equality constraints can be

obtained directly by solving a linear dual problem [911, which in this case is

1 0 Req Imq Re6E 0

0 1 -Imq Req Im6E 0

ReqT -ImqT 0 0 A, Re(W2 - WI)

ImqT ReqT 0 0 A2  Im (W2 - wi)

Here, we have defined q P2 - pi, and the A1 ,2 are Lagrange multipliers that are

not needed. When w 2 is very close to wi, we can improve the condition number of

the matrix by freely multiplying the second-to-last row and column of the matrix

by a constant factor, provided that the second-to-last element of the right-hand side

is divided by the same factor. The same can be done for the last row and column,

with the last element of the right-hand side. The resulting 6E of this procedure

applied to the odd-m threshold modes in Fig. 4-13 are shown in Fig. 4-17, and the

convergence of the splitting to zero is shown in Fig. 4-18. As verified in Fig. 4-19,

the L2 norm decreases with higher resolution, satisfying our requirement that the

dielectric perturbation should go to zero in the continuum limit.

Note that even after the thresholds and threshold frequencies have been made

exactly degenerate using the QP procedure illustrated above, we are still in principle

forcing the degeneracy. Above threshold, the delicate balance created by 6E to force

the frequencies together is slightly broken. This results in an approximate degeneracy

that is maintained very far above threshold, as shown in Fig. 4-20, with only a 10-8
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Figure 4-17: Dielectric perturbation 6& obtained by solving QP for even-ru threshold
modes. The real part (left) has a dependence cos(21n), while the imaginary part
(right) is a more complicated function. Only two iterations of QP were required to
obtain a 10-15 degeneracy in both the threshold frequency wt and the threshold pump
strength Dt.
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Figure 4-18: Relative splitting in threshold pump strength and frequency for even-m
cylinder modes after QP iterations. The relative splitting in frequency is defined in

the usual way as 2 WW2 , and similarly for the pump strength. Two solves for 6E is

all that is needed to force the degeneracy.
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Figure 4-19: L 2 norm of resulting 6E(x) function obtained from QP procedure versus

discretization resolution 1/h for nearly degenerate even-m modes of cylinder, where h

is the spacing between adjacent gridpoints. The same resolutions as in Fig. 4-14 were

used, and the oscillations resemble the curve for splitting very closely. This is because
the larger the splitting w2 - W1, the larger the 6E(x) function needed to enforce the

degeneracy. The fact that 116EI1 appears to be going to zero as the resolution increases

indicates that our QP procedure is convergent.
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splitting for pump strengths up to 100 times threshold. In practice, these results

are already accurate enough to give all the desired physical information about the

degenerate pair. If we wanted to be absolutely correct and force the degeneracy to

machine precision (as it was in the exactly symmetric case for odd-m modes), we could

simply perform QP again at some given d > 0 to force 6w and 6w' back together. One

extra caveat in this case is that 6w is now a lasing pole, so the spatial hole-burning

term need to be taken account for the perturbation theory (6w' is still a passive pole,

so the previous perturbation theory still applies), and instead of Eq. 4.30 we now have

f E - (6s + Doy(w,)F6H) E
fE - + E) E

E =E + Do-y(w)FH

6H 1 - 1
1 +IE +6E 12 1 + E 12

Here, 6H is the change in the spatial-hole burning term arising from the dielectric

perturbation 6E. However, since there is no easy way to determine 6E without

numerically solving the full problem, 6H is hard to determine semi-analytically. A

simple work-around is to set 6H = 0 above, which makes this procedure no longer a

true first-order perturbation theory. However, since the splitting is already so small

as shown in Fig. 4-20, the 6E needed is also extremely small, so 6H is also negligible.

Although 6w is not zero to first order, the 6H = 0 approximation is enough to find a

6E that greatly decreases 6w. We find empirically that it usually takes one iteration of

this above-threshold QP procedure to restore the degeneracy of the lasing pole W and

its passive mode w' to machine precision, since 6w is already very small. Practically

speaking, this entire extra step is rarely needed since the solutions obtained from

6E for the linear problem below threshold are already close enough for most pump

strengths of physical interest.

We show another example, of a hexagonal cavity as shown in Fig. 4-22. This

geometry was adapted from an infinite lattice of period a with air holes of radius 0.3a.

A single hole in the middle has a reduced radius 0.2a to create a defect in the band
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Figure 4-20: Above-threshold splitting in real and imaginary parts of 6w' after per-
forming QP procedure for even-m modes. The magnitude is very small because the

intensity profile, as shown in Fig. 4-21, is very close to rotationally symmetric.

Figure 4-21: Intensity profiles for even-r lasing mode and its second passive pole at
d = 100. The intensity of the lasing mode (left) differs imperceptibly from that of

that of the passive eigenfunction. This difference is unphysical because it is solely due

to discretization error, and is usually so small that it can be neglected.
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Figure 4-22: Dielectric function for hexagonal cavity. This cavity has Cov symmetry
and supports a pair of degenerate TE (E = Exx + E.y) modes that transform as

x and y under symmetry operations. All but two rows of holes have been removed

to create a lower-Q structure. A PML is added to the boundaries to capture the

radiation loss. The axes of the hexagon have been aligned with the diagonals rather

than the x and y axes, because the finite-difference discretization happens to only

have mirror symmetry along the diagonals.

gap. The dielectric is E, = 11.56 everywhere except in the holes, where there is air.

Here, the lasing modes are TE (electric field in-plane and magnetic field out of plane),

but there is a pair of degenerate threshold modes from the hexagon's Cov symmetry,

as shown in Fig. 4-23.

The two are related to each other by linear combinations of sixfold and threefold

rotations. However, these operations do not belong in the C symmetry group of the

discretized grid, so the degeneracy here is again only approximate. For a 100 x 100

finite-difference discretization, there is about a 1.5% splitting between the threshold

eigenvalues, so again we must use the QP procedure to force the threshold degeneracy.

Since these are TE modes, we now have two components of the electric field, and

consequently we may treat 6E as a tensor, as in Eq. 4.32. We only consider the

diagonal components 6s, and 6Ey here for simplicity. Again, only two iterations of

QP are necessary to force the degeneracy down to machine precision. We use Eq. 4.21

to predict the stable linear combination above threshold to use as an initial guess.

The intensity pattern obtained in simulation is shown in Fig. 4-25.
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Figure 4-23: Magnetic fields H, for pair of degenerate TE threshold modes for
hexagonal cavity. The modes are not simple 90-degree rotations of one another,
because that rotation is not a member of the C6v symmetry group. However, these
modes can be constructed by taking linear combinations of threefold and sixfold
rotations of each other. Not shown are the imaginary parts of H, which are non-
negligible because this is not a high-Q cavity.
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Figure 4-24: Dielectric perturbation obtained from QP procedure for hexagonal cavity.
Since the mode is TE (E = Erft + Egy), we have allowed the perturbation to be
a diagonally-anisotropic tenosr, as in Eq. 4.32. Shown here are the real (left) and
imaginary (right) parts of 63. The key, looks similar except rotated by 60 degrees.
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Figure 4-25: Intensity pattern for stable lasing mode for hexagonal cavity. The pattern

appears to be six-fold symmetric, which is expected. Unlike in the right panel of

Fig. 4-11 however, the chirality is not significant enough to be visible because the

Q ~ 100 is much higher. In the ideal system, the second pole &w' stays degenerate
with the lasing eigenvalue &w, and this linear combination stays stable for all pump

strengths above threshold. In the discretized system, there is not a true C6 symmetry,
so there is a small splitting similar to that of the even-m cylinder modes. Again, this

splitting is too small to affect physically meaningful results of the simulation, but can

be removed using the QP procedure if desired.

4.3 Forced degeneracies

There are two types of degeneracies: those that come from symmetry, and forced

degeneracies. For the passive cavity, if both the dielectric Ec(x) and the gain profile

F(x) are invariant under operations in some symmetry group, then pairs of degenerate

modes will stay degenerate for all pump strengths under threshold. When a pair starts

lasing, the gain profile will become

F(x)

1 + IE1 (x) + E2((X)

If the total intensity E1 + E2 2 maintains the original symmetry or a sufficiently large

subgroup (e.g. C, as in Sec. 4.1.3), then the degeneracy will also be maintained.

A simple example is the dielectric cylinder, which has C,,, symmetry. The stable

linear combination has an azimuthal dependence cim, so its intensity pattern is also

azimuthally symmetric. This can be shown using the threshold perturbation theory,
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Figure 4-26: Threshold modes for metallic rectangle with forced degeneracy. A 90 x 70
cell with Dirichlet boundary conditions was used to simulate the cavity. A uniform
loss of o- 0.01 was chosen while the gain was chosen to be w, = w, and y = 1.
While the rectangle's dimensions are chosen so that the modes V)13 and 4'22 have the
same frequency at threshold, there is no symmetry operation that takes one mode to
the other; this is forced degeneracy.

except with F(x) replaced by Eq. 4.33. Hence, whispering gallery modes will always

stay degenerate above threshold, as long as there are no imperfections in the geometry.

See also Sec. 4.1.3 for more general circulating modes in C, symmetry structures.

A forced degeneracy, on the other hand, will in general split with lasing. This is

because whatever delicate tuning in E(x) and F(x) necessary to cause the degeneracy

will most likely be broken by the spatial hole-burning. For example, we again consider

the modes of the metallic rectangle in Eq. 4.22. This time we choose L, = 1 and

Lv = V7, such that W13 = W22. The threshold modes b13 and '022 are shown in Fig.

4-26. Threshold perturbation theory predicts an intensity pattern proportional to

1013 + i022 . However, this spatial hole-burning breaks the delicate tuning required

to force the degeneracy. Hence, the two modes will immediately split above threshold

(as seen in Fig. 4-27) and SALT will no longer be valid because there will be slowly

beating terms in the inversion. This splitting also has a second consequence: the

Q13 + i 22 mode does not have a second linear eigenvalue 6w' that is exactly zero, as it

did in the case of the square in Fig. 4-4 and the cylinder in Fig. 4-8. Fig. 4-27 shows

this second value is small, but it has a positive imaginary part which grows. The

intensity pattern for this passive pole and the lasing mode are shown in Fig. 4-28.
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Figure 4-27: Above-threshold splitting in real and imaginary parts of 6w' for forced
degeneracy in metallic rectangle. While perturbation theory predicts that this mode
will be stable to first order in d slightly above threshold, the broken symmetry in
the intensity profile gives it a very small but nonlinearly growing instability as the
pump strength is further increased (there is not a simple power-law dependence of the
instability on d, however). The real part of 6w' also splits away from 6w above threshold
due to the forced degeneracy being broken. The perturbation theory prediction is
consistent with the fact that the slopes of both curves are close to zero near d = 0.
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Figure 4-28: Intensity profiles for lasing mode and its second passive pole at d = 100.
The intensity pattern of the lasing mode V 13 + i' 22 (left) differs slightly from that of
that of the passive eigenfunction. The latter has an eigenvalue &w' that grows slowly
with pump strength, as seen in Fig. 4-27.

4.4 Dynamics of slightly broken degeneracies

To illustrate what physically happens in the case that two lasing modes have slightly

different frequencies, we perform brute-force finite-difference time-domain (FDTD)

simulations of a Id version of the Maxwell-Bloch equations [33] (similar to those

performed in Ref. 1235]) for scalar fields E(x, t), P(x, t) and D(x, t) on a Id ring

0 < x < 1 with periodic boundary conditions:

+- d2E+

dx
2  -

P+ (yi + iJa)P+ - iE+D (4.34)

b = y1(Do - D) + 2i [E+P+* - cc],

where E, is the "cold cavity" permittivity and the plus symbols indicate the "positive

frequency" components, i.e. E - E+ + cc where E+(x, t) = EO+(x, t)e-iat with EO+

varying much less rapidly than e-a't (and similar for P). The dielectric is given

by E = 1 + io, where a > 0 provides a loss mechanism. The corresponding SALT
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equation [281 is given by

d 2 2 E,+Doy(w)F)
dX2 1+ IC12

and the steady-state solution to Eq. 4.34 is

E+(x,t) C L "rI 0(x)eiWt.
|y(w)| 2

For the FDTD simulation, we numerically integrated Eqs. 4.34 on a grid of 20 points

(to keep track of only the real, physical fields E and P, we simply added the complex

conjugates of Eq. 4.34 and numerically integrated the equations for k and P). This

system is numerically tractable and captures many of the essential characteristics

of degenerate lasing modes in SALT. Since the number of grid points was small, a

simple second-order Euler method was enough to integrate with satisfactory accuracy.

In Fig. 4-29, we show the dynamics of the field after it has reached a steady state.

Initially, random noise was used for the fields E, P and D, and the simulation was

run for a long time so that all transient behavior died out and only the steady-state

lasing mode (if any) remained. As expected, in the degenerate case we obtain a

steady-state circulating mode (a travelling sine wave in the +x direction). In Fig. 4-30,

we show the dynamics, for a pump strength chosen to be slightly above the threshold

given by SALT, of the envelope (peaks in E of all the fast oscillations at the optical

frequency) of the field at an arbitrarily chosen point x0 when a small perturbation

is added to the dielectric, so that the latter is Ec(x) =1 + i- + 0.01 cos(47rx). The

field exhibits beating, in which there is a slow oscillation at approximately 0.0047Wa

between the left and right-circulating SALT solutions with different amplitudes. Since

there are two frequencies that are very near to but not exactly equal to one another,

the stationary-inversion approximation is invalid because there is a slowly beating term

in Eq. 4.1. However, the magnitude of this term is small, which leads to the beating

being nearly sinusoidal. On the other hand, when we are further above threshold and

the magnitude of the beating term in the inversion is larger, the beating is no longer

sinusoidal, but rather exhibits limit cycle behavior as seen in Fig. 4-31.
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Figure 4-29: Steady-state behavior (after running for a long time) of FDTD simulation
of id lasing ring with two-fold degeneracy. The field E is shown at two different
times, and the prediction of the amplitude from SALT is shown in dotted line. The
geometry is id with 20 grid points and periodic boundary conditions. The SALT
parameters were wa = 6.25810, gy 0.05, -q = 0.01, o- 0.01/w, and pump strength
Do - 2 x 10-4.
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Figure 4-30: Envelopes (max E over each optical cycle) for electric field E(xo, t)
chosen at arbitrary point xO = 0.1 for id ring obtained in FDTD for Do slightly above
threshold. For the blue curve, there was a small perturbation k =_ 0.01 cos(47x)
that splits the frequencies between the sine and cosine modes. The beating frequency
here is Wbeating ~ 0.0294, while two-mode SALT predicts a frequency splitting of
Wsin - Wcos ~ 0.0284. The beating is an oscillation between left and right-circulating
SALT-like solutions (but not with the correct SALT amplitudes). Not shown are the
rapid oscillations at w, ~ 27r. The same envelope with no perturbation (and hence no
beating) is shown, as well as the amplitude predicted by SALT.
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Figure 4-31: Envelopes (max E over each optical cycle) at same point xO 0.1 and
same parameters as in Fig. 4-30 (with perturbed F to split the degeneracy), except
with pump strength Do ten times higher. Unlike the previous figure in which the
beating is a simple sinusoid, the oscillations here have a sawtooth shape due to the
strong nonlinearities. The behavior is not a SALT-like steady state, but appears to be
a stable limit cycle.

155



The dynamics shown in Fig. 4-30 and Fig. 4-31 indicate that the degeneracy-

breaking perturbation causes there to no longer be a stable single-mode lasing solution

above threshold. This can be seen from the slow beating periods in those figures: if

there were a single-mode solution, then the optical period 27/Wa ~1 would be the

only time scale in the problem. However, Ref. [229] has shown an interesting result in

which a point scatterer was placed on the ring (which breaks the degeneracy between

sine and cosine modes as expected), but a pair of degenerate "semi-circulating" lasing

modes (SALT solutions) branch off from one of the unstable standing modes at higher

pump strengths. We have confirmed this fact using our direct solver. Further, the

authors of that work have shown, using both stability analysis and FDTD simulation,

that under certain parameter regimes, these single-mode solutions are actually stable.

These discoveries provide an interesting and unexpected example of degenerate modes

when the symmetry has been broken.

4.5 Multi-mode degenerate lasing

So far, the discussion and examples in this chapter have dealt with the case in which

only one pair of degenerate modes are lasing. The generalization to the case of

multimode lasing (i.e. multiple nondegenerate and degenerate lasing modes all lasing

simultaneously) is straightforward. Since our method combines degenerate pairs into

a single mode that is the stable linear combination (as given by the perturbation

theory in Sec. 4.1, the multimode treatment is exactly the same as for SALT without

degeneracies: the degenerate pairs are always treated as a single mode. As in previous

work on SALT [26,28,197], all lasing modes are solved simultaneously at first, and

there the collective effect of their spatial hole-burning is used to track the passive

modes and add any mode (degenerate or nondegenerate) that crosses threshold to

the list of lasing modes. The only aspects of our method requiring generalization are

the threshold perturbation theory of Sec. 4.1 and the QP method of Sec. 4.2.2. For

both aspects, we describe small tweaks to the methods presented in those sections

that make them valid for the case of multimode lasing.
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A general situation in which multimode-lasing is occuring can be described by the

equations from chapter 3 126,281

0= (V x V x -W E,) E (4.35)

EAEc + DoFy(w1)H

H 1
1 + >EE

where there are M lasing modes (p = 1, 2, ... , Al). If we start with C,, symmetry and

have lasing modes that are either circulating modes (as in Sec. 4.1.3) or non-degenerate

modes [partners of real id irreps D(k) without a corresponding complex-conjugate

irrep D(k) of the opposite chirality], then each of the JE,12 terms has at least C,

symmetry, so H has C, symmetry. Suppose that the pump strength is at the threshold

of mode M so that this mode has just started lasing, and the sum in H ranges from

v = 1 to v = M - 1. Then all results in Sec. 4.1 still hold, except with gain profile

F(x) replaced by FH. While the gain profile is now C, symmetric rather than Cnv,

the presence of chiral degenerate pairs (which requires only C, symmetry and Lorentz

reciprocity, as explained in appendix A) still remains, as explained in Sec. 4.1.3 (the

arguments in that section do not assume Cm., symmetry, so they still hold even if F(x)

is replaced by a function with only C, symmetry.

Now we consider how to treat the problem of discretization-broken symmetry (Sec.

4.2) in the case of multimode lasing. The method of Sec. 4.2.2 gives a 6E(x) that

forces the threshold degeneracy for a single mode pair. When there are multiple pairs

of nearly degenerate modes the generalization is straightforward: we allow each pair to

have its own kp,, so that their degeneracies can be forced independently. As a result,

the dielectric for each pair in Eq. 4.35 will become

Eli = E + 6E, + DoFy(wl)H.

Since our QP method finds the &-P with the lowest L 2 norm (as described in Sec.

4.2.2) and the splitting decreases with resolution as seen in Fig. 4-14, each 6, will
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independently go to zero as we increase the resolution, so this generalized method

is also convergent: the unphysical frequency-dependent &EP vanishes with increasing

resolution.

Appendix A

We review the result, given in Ref. [119], of the fact that there are two-fold degeneracies

(due to Lorentz reciprocity) in geometries with C, but not Cs, symmetry, even though

there are only one-dimensional irreps. We give a slightly simpler and more general

proof by exploiting the differential form of Maxwell's equations, as opposed to the

integral form in Ref. 1119].

Consider a field E+ that satisfies the equation L(w+)E+ = 0, where we define the

linear operator (as in Ref. 12341)

=(w) -V x 2L~~w) -iT, IW) X +W w (x,W)

where w is the eigenfrequency and E and y have C, symmetry: that is, R, R;-1

where R, is an n-fold rotation and Rn = 1, the identity operator. Suppose that the

field transforms like one of the chiral irreps of Cn: that is, RE+ exp (_2rm) E+,

with 0 < Iml < floor("-y-i). We want to show that there exists some other function

E- that transforms according to the irrep of the opposite chirality and has the same

eigenfrequency: that is, RnE- = exp (2"m) E- and L(w+)E- = 0.

The key step is to use the right basis: we could find the Maxwell eigenfrequencies

(Green's-function poles) by solving the nonlinear (in w) eigenvalue problem L(w)E = 0.

However, these make a poor basis because they diagonalize different operators L(w)

with w / w+. Instead, we fix w - w+ and examine the set of eigenfunctions EJ that

satisfy L(w+)EJ A1 E- and that transform as the exp (21"M) irrep. Note that Aj

are not squared eigenfrequencies and Ej are not Maxwell solutions, except for Aj = 0.

Because this set is a complete basis for functions of this chirality, the function (E+)*

(which transforms in the same way as Ej because the rotation operator R, is real)
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can be expanded in this basis:

(E+)* = bjEl,

assuming that L(w+) is diagonalizable (which is generically true for matrices except at

exceptional points; the situation for infinite-dimensional operators is more complicated,

but diagonalizability is typically assumed there too in physics). We will now show

that at least one of these E7 is exactly the E- satisfying L(w+)E- = 0 that we are

looking for.

First, we define the unconjugated inner product (f, g) f dxf - g. Then, for

appropriate boundary conditions, L(w+) is complex symmetric, that is: (f, Lg) =

(Lf, g) for reciprocal materials - = El, = AT, and this is known as Lorentz

reciprocity [34]. Because L(w+) is complex symmetric, its eigenfunctions with distinct

eigenvalues are orthogonal; that is: (E, E) 0 for Ai # A3. Now write

IE+ 2  b (E+, E).

If all E had Aj # 0, then (E+ By) = 0 for all j. However, the left-hand side is

obviously positive, so at least one term in the sum on the right-hand side must be

non-vanishing. Hence, this term has the eigenvalue Aj = 0, and it is precisely the E-

that is degenerate to E+.
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Chapter 5

Concluding remarks

In this thesis, we have developed new tools for nonlinear design in nanophotonics. On

the topic of transformation optics (TO) [16-22], which is a design method based on

coordinate invariance of Maxwell's equations, we have developed a framework that

combines previously-used quasiconformal mapping with large-scale inverse design,

which solves previously unaddressed issues with optimization constraints and interface

continuity. For the equations of steady-state ab-initio lasing theory (SALT), we

have developed a procedure, based on Newton's method 11, 3], that directly solves

the nonlinear partial-differential equation. Our method circumvents the previously

used method of constant-flux basis states, and unlike that method, is scalable to

complex 3d geometries of practical interest to the laser community. Examples of work

enabled by our numerical tools can be seen in some recent analytical results on laser

linewidths 1234,2361.

Using this new set of tools, we have shed new light on the fascinating topic of

degenerate lasing modes. We have shown that in degenerate lasers, degeneracy and

stability are two mutually-dependent qualities, and that just as in the linear problem,

there must be a geometric symmetry in the nonlinear problem for there to be stability.

We have extended the knowledge about degenerate modes from whispering-gallery

modes in cylindrical geometries to chiral lasing modes in arbitrary regular polygons,

and have formalized our arguments using a new threshold perturbation theory. We

have also devised a numerical procedure that artificially restores broken degeneracies,
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allowing study of degenerate modes arising from arbitrary symmetry groups using

generic grids (such as finite-difference frequency-domain [FDFD [38, 110]) that do not

have that symmetry.

While the tools and methods we have developed are general and open up paths

for design and characterization of arbitrary transformation-optical devices and laser

geometries, the work in these fields has only just begun. First, there are many

improvements to our design method that can be applied, such as allowing interfaces

to move freely as long as the Jacobian is continuous. Another area to explore would

be to use bases other than Fourier/ Chebyshev [951 to parametrize transformations,

or algorithms other than COBYLA 193] to optimize these parameters; we made

these choices because they seemed reasonable, but there may be others with better

performance for transformation inverse design. One may also think about bringing

transformation inverse design "to the masses" and creating an interface that can be

used by optical physicists or engineers who are not experts in spectral methods or

nonlinear optimization, so that they can design any desired integrated component

with one click.

We can even go beyond further optimizations on current design method and think

about new directions to take. One intriguing possibility is for our transformation

inverse-design method to be applied to splitters, expanders, cylindrical cloaks, and

another other conceivable 2d geometries. 3d geometries would be a logical next step,

and a necessary task to tackle initially would be to extend the connection between 2d

conformal transformations and isotropic scalar dielectric media to the third dimension.

One can even consider abandoning the isotropic condition entirely, and exploring

materials with anisotropy that is still easy to fabricate, which our inverse design method

can certainly discover. Finally, we stress that the frequency-independent performance

of transformation-optical devices is an idealization; real-world materials always have a

non-zero amount of dispersion, so even with a completely isotropic (or even anisotropic)

transformation with continuous Jacobian at interfaces, the performance would never

be perfect for all frequencies. To this effect, we can conceive of using transformation

optics not as a rule set in stone, but more as a guideline: transformation inverse design
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could be used in tandem with other design and optimization methods that are more

frequency or polarization-dependent to create metamaterials and photonic devices

with truly optimal performance.

As for our work on lasing modes and SALT, there are several further improvements

and directions that immediately come to mind. First, as mentioned in chapter 3, we

may consider using iterative solvers [1121 (which have much lower memory and time

requirements than direct solvers) combined with appropriate preconditioners for each

linear Newton step, allowing even larger and complex 3d geometries to be explored.

Second, another useful extension would be to interface our nonlinear solver with

nonlinear optimization algorithms [94] in order to perform large-scale inverse design

of laser geometries. While this type of lasing design would involve solving Maxwell's

equations, unlike in transformation inverse design, the computational cost would be

comparable to inverse design that involves solving linear Maxwell's equations, since

each step the optimization algorithm takes will only change the lasing parameters by

a small amount, so the Newton algorithm will always only require a few linear solves

to update the Maxwell solution. Finally, just as in the case of transformation inverse

design, it will be advantageous, once some of these optimization and improvements are

implemented, to combine them into a software package that brings SALT-based laser

design "to the masses" who are not experts in nonlinear eigenproblems or semiclassical

laser theory.

Our work on degenerate lasing modes has raised some interesting physics questions

as well. First, in Sec. 4.5, we briefly discussed the case of multimode lasing with many

degenerate pairs of lasing modes. Theoretically, since a degenerate lasing pair can be

thought of as a single mode with the correct stable superposition of the 2d subspace

of threshold solutions, the case of degenerate multimode lasing should in principle be

similar to the nondegenerate multimode case. However, because we never explicitly

investigated this regime, there could in principle be behavior that is qualitatively

different from the nondegenerate case, and it could be a subject of future of work.

Second, our entire work here deals only with 2d geometries, which can only have

symmetry groups with 2d irreps and hence two-fold degeneracies [117,118]. For 3d
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lasing geometries with the symmetry group of regular polyhedrons, there will be 3d

irreps and three-fold degeneracies. The 2x2 perturbation theory that we introduced in

Sec. 4.1. would also need to be extended to the 3d case, and since the dimensionality

of the degenerate subspace is now three, the resulting first-order equations would

involve 3x3 matrices. It remains a fascinating open question whether any interesting

physics can happen in such cases. Finally, in Sec. 4.4, we presented time-domain

simulations of a slightly-broken degeneracy in a Id ring laser. We saw the breakdown

of SALT behavior, which was somewhat expected due to the stationary-inversion

approximation clearly being violated in this regime. However, a comprehensive theory

for the near-degenerate regime is an ongoing work, although headway has be made

recently in Ref. 1229]. An extreme example would be the case of vertical-cavity

surface-emitting lasers [237], in which a continuum of modes near a photonic-crystal

band edge all lase more or less simultaneously. While we predict exactly degenerate

chiral lasing modes for n-fold symmetric systems in chapter 4, perfect symmetry never

exists in real-world fabricated systems. There is always disorder, flaws, and geometric

asymmetry. It remains an open question what effects such asymmetry will have on

the dynamics of lasers.
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