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Abstract

Controlled transport of energy and information is of paramount importance. It remains chal-

lenging, however, partially from the difficulty in controlling their physical carriers. Steering

electrons and photons is now routine, yet atomic vibrations (quantized as phonons) are hard

to control. This is partly due to the centrality of phonons in the disordered transport of en-

ergy as heat, but even in ordered sound waves problems persist. Phonons can readily couple

to each other or to other degrees of freedom, degrading their energy or information content.

Reversing these couplings, thereby regulating atomic motion, only recently became plausi-

ble. This increased control would reduce parasitic losses and turn phonons into information

carriers. Dynamical effects are a crucial and under-examined aspect of this control as static

devices are insufficient for changing external conditions. Dynamical control adds flexibility

and versatility to phononic systems. Essentially, dynamical control requires tunable mate-

rials, materials whose physical properties depend on an external signal. Dynamical tuning

is sensitive to the relative frequencies of the tuning signal and the controlled phonons. We

develop an intuitive framework of the temporal modulation regimes.

In low frequency tuning, phonons can adapt adiabatically to the material's changes. A va-

riety of signals can be temporally and spatially modulated to tune phonon transport in this

regime. We apply this adiabatic perspective to analyze dynamical effects in thermal cloaks.

Tuning signals near the frequency of some phonon mode can produce resonant couplings.

This hybridization can produce large changes in phonon properties. We apply this hy-

bridization to develop a rigorously nonreciprocal phononic computer using magneto-acoustic

materials that can outperform conventional computers in some tasks. At high frequencies,

phonons can only respond perturbatively to the tuning signal's changes. This regime is

generally limited to optical control but it opens up new avenues for control. Employing

an alternative approach to optical coupling, we develop a model of inverse acousto-optics

(tuning the speed of sound with optical intensity) and dynamical phonon localization.

Thesis Supervisor: Jeffrey C. Grossman

Title: Professor of Materials Science and Engineering





Chapter 1

Introduction

Although they are immaterial (i.e. they do not possess mass), energy and information are

integral to every physical process. The controlled transport and storage of energy has been

a paramount concern of the last two hundred years, while the processing and memory of

information rose to similar prominence in the last century. These efforts, broadly speaking,

face two challenges: change and degradation. Change because most devices exist in a world

of changing conditions, and degradation because not all energy or information is of equivalent

quality.

To adapt to changing conditions requires devices that can, in some sense, measure external

conditions and change their internal state accordingly. This adaptation is often thought of

in terms of feedback, active systems, smart materials, and control theory. However, these

forms of controlled adaptation are the more complex manifestations of a much more basic

phenomenon. A material will often change under changing external conditions. It can be

as simple and mundane as mercury rising in a thermometer along with the temperature,

the buckling of a beam under pressure, or the alignment of spins in a magnetic field. When

a material property is responsive to external conditions, it is tunable. This tunability can

provide a measure of stability against changing conditions, a la Le Chatelier's principle and

homeostasis. It can also provide information processing, assuming that the condition it

is responding to carries information (e.g. a tree's shadow can indicate time). Tunability

even allows us an avenue for controlling a material's properties, and therefore the response
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of a device. After all, changing conditions do not only come from effects outside of our

control. It is possible to actively tune a material's response or use the information from a

transmitted signal to adaptively tune a material through feedback. Thus, developing tools

to tune material parameters is an important step to controlling the transport of energy and

information.

Not all information or energy is of the same quality, however. For both energy and informa-

tion, the quality is measured by entropy - specifically the entropy contained by the system

transporting the signal. For example, the energy transported by laser light is lower entropy

than that of an incandescent light bulb. As the system acquires configurational variety 1, the

entropy increases. Such a process happens naturally, as the second law of thermodynamics

implies that entropy cannot be reduced except at the cost of an even greater increase in

entropy elsewhere. The highest entropy form of energy is heat, which is noisy (i.e. low infor-

mation) and disordered (in a physical but not necessarily anthropic sense). It can take many

forms, but is typically transported by light (quantized as photons), electricity (quantized

as electrons), and sound (quantized as phonons). A variety of tools and techniques have

been developed over the years for controlling the movement of photons and electrons, but

controlling sound remains a challenge. This is particularly true in solids, where the phonons

take the form of a vibrating atomic lattice. The development of controlled phonon transport

in solids, called phononics, is still in its early stages [1, 21. As it advances, though, it will

allow greater control of energy transport, particularly at the higher entropy range where

phonons tend to dominate. It even raises the possibility of creating lower entropy phonon

signals (i.e. well-defined sound waves), much like the introduction of the laser revolutionized

the utilization of light [3, 4]. To do this, though, it is important to expand the tools available

for controlling phonons. Tunable phononic devices and materials, in particular, are essential

for this task. Understanding these systems within a unified framework and designing their

applications will be the focus of this work.

'Configurational variety is often manifested in physical systems as disorder, however the anthropic as-
sessment of order is distinct from the physical order measured by Boltzmann entropy. Boltzmann entropy
implies that aligned planes of smetic or chiral liquid crystals, chemical waves in the Belousov-Zhabotinsky
reaction, and other forms of pattern formation are more disordered than the intuitively disordered states
are. Similarly, a random message is more disordered in the sense of Chaitin-Kolmogorov complexity but the
detailed account of the random process that created it is information, just not information that is anthrop-
ically meaningful. A network can have high Shannon entropy an transmit messages with optimal encoding
but the message may seem like noise to the recipient. Intuitive assessments of disorder and entropy do not
necessarily coincide with the manifestations of entropy in nature.
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Figure 1-1: Classical model of a mechanical vibration normal modes problem. The circles
denote mass of value m joined by springs (denoted by the linked diagonal lines) of value K.
In (a) the masses are joined in periodic boundary conditions, which are frequently assumed
in the calculation of phonon modes. In (b) the masses are held in place through clamped
boundary conditions (i.e. attached to a wall, denoted by dashed lines, by perfectly stiff
springs, denoted by Ke = oc), which are often more relevant for classical standing waves.

To begin, though, it is helpful to start with some basic aspects of phonons as they will guide

our later considerations. Classically, the governing equation for a one-dimensional chain of

masses linked by harmonic oscillators (see Fig. 1-1) is

mIi = -K(ui - ui+1 ) - K(ui - N_ 1 ) (1.1)

where m is the mass, u is the atomic displacement from equilibrium, K is the spring constant,

and i is the site index. This equation can be solved by Fourier transform to give solutions

of the form

Uk = Akeika (1.2)

where

Wk - sin ka (1.3)

is the eigenfrequency, a is the separation between equilibrium sites, and k is the wave vector.

Since the chain is made up of discrete masses, the wave vector is itself limited to discrete
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wavelengths and takes the form

k = 2p (1.4)
Na

where N is the number of sites in the chain and p is an integer between -N/2 and N/2. In

the limit of N -+ oc, a -÷ 0 the discrete wavelengths become continuous and so the allowed

frequencies become a continuous function (i.e. an energy band). In this case, the equation

of motion (eq. 1.1) becomes redefined as

&2

where p is the density (transformed mass), eij = (&ui/&x + &uj/&x)/2 is the strain (trans-

formed displacement), Cijkl is the stiffness (transformed spring constant), and Einstein sum-

mation conventions have been used (repeated indices are summed over). Additionally, the

behavior of this chain is not greatly changed in moving from classical to quantum mechan-

ics, except that in the quantum limit the amplitude of the displacements becomes quantized

to discrete values and so the energy of the system is Esk = hWk(nk + 1/2). Allowing the

displacement to occur along an arbitrary direction means that there are now multiple eigen-

frequencies for each wave vector. These eigenmodes can be distinguished as longitudinal

modes (whose displacement is along the direction of propagation, i.e. hjjk where h is the

polarization vector) and transverse modes (displacement orthogonal to propagation, h _L k).

In three dimensions there will be two transverse modes and one longitudinal mode for each

wave vector. These eigenmodes constitute additional energy bands in the phonon spectrum.

Allowing the mass or spring constants to vary with some periodicity will also introduce

additional bands. Unlike the previously discussed longitudinal and transverse modes, whose

frequencies fall to 0 as k -+ 0, these new modes retain non-zero frequency in the limit of

infinite wavelength. This means that these modes can interact with light, and so the previ-

ous set of bands are called acoustic bands while these new bands are called optical bands.

In general, for a lattice of N atoms there will be three acoustic bands and 3(N - 1) op-

tical bands. These results are summarized in Fig. 1-2, which illustrates the phonon band

structure.

Because phonons are composed of arrays of coupled harmonic oscillators, we can therefore

get some intuition towards how phonons will react to a changing environment by studying the
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Figure 1-2: An illustration of a typical phonon band structure. The red solid line is the

longitudinal acoustic mode, the blue solid line is the pair of degenerate transverse acoustic

modes, the red dashed line is the longitudinal optical mode, and the blue dashed line is

the degenerate transverse optical mode. The modes of Fig. 1-1 would be at four discrete

points along the acoustic branches. For Fig. 1-la (i.e. the periodic boundary conditions

employed in developing this phonon band structure) these discrete points would be equally

spaced along the interval ka/7r E [-1, 1] and include k = 0 (Note that k = r/a is equivalent

to k = -7r/a). We denote these points with open circles. On the other hand, for Fig. 1-lb

these points would be equally spaced along the same interval and not include the origin. We

denote these points with squares.
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behavior of a simple harmonic oscillator under changing conditions. Consider the equation

of motion for a harmonically forced, undamped harmonic oscillator

mu + mwou = F sin(wdt) (1.6)

where w = K/rn. The response will be

F 1
U = -- 2 2 sin(wdt). (1.7)

W0 d

Note that, for a driving frequency wd below the natural resonance frequency wo, the response

function will be in phase with the driving force. On the other hand, when the driving

frequency is greater than the resonance frequency, the response function changes sign and

is 7r radians out of phase. Driving at the resonance frequency, the response function's phase

is not well defined as it blows up to oc. These three frequency regimes for the driving

function suggest a general framework for considering the response of a phononic system to

a changing environment 2. If the changes occur at some time scale r, we can divide up

the response into three regimes depending upon the dimensionless variable w-r. If Wr > 1

then just as the harmonic oscillator is able to keep up with the driving, so a generic solid

material will be able to respond effectively instantaneously. So far as the phonons are

concerned, in this regime the tuned parameters are either constant or adiabatically varying.

If Wr 1 then there is a resonance and strong coupling between the driving signal the

response dynamics. The phonons will be particularly sensitive to perturbations at this

frequency and the band structure may change dramatically. Finally, if Wr < 1 then the

harmonic oscillator is unable to keep up with the driving and the material will not be able

to adapt smoothly. In this regime, the parameters become functions of time that can vary

faster than the phonon frequency and so act as perturbations to the phonon Hamiltonian.

These regimes, summarized in table 1.1 will guide the organization of this paper. Each

chapter will consider some aspect of tuning phononic response in a regime of Wr.

2 In moving to this more general framework we drop the subscript 0, which referred to the specific harmonic

oscillator modeled in eq. 1.6
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Regime SHO Tuning

W > 1 = 0 Adiabatic
Wr~ 1 u - oo Resonant

wr < 1 6 = 7r Perturbation

Table 1.1: Different regimes of the response function, organized by the product of the
system's natural frequency (w) and the time-scale of the driving signal (r). Responses are
given for the classical simple harmonic oscillator (SHO) and tuned material response. 0
refers to the phase difference between the driving signal's oscillating amplitude and the
phonon amplitude (u).
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Chapter 2

Slow Tuning Limit

As explained in Ch. 1, when the tuning of material properties is significantly slower than the

phonon frequency, the phonons will experience an effectively static medium. This means that

the tuning of parameters will not noticeably perturb the phonon dynamics and hence that

adiabatic tuning can be understood by considering a succession of static cases. We therefore

begin this chapter with an overview of various techniques for adiabatically tuning phonon

band structure, starting with a sampling of the static case. These techniques are versatile,

spanning a broad range of tuning signals and with applications including noise isolation,

thermal insulation, acoustic waveguide design, frequency filtering phonons, steerable acoustic

antennae, and acoustic measurement of tuning signals. Following this, we will consider the

problem of relating linear, anisotropic, inhomogeneous, symmetric transport parameters to

actual transport dynamics. This will focus particularly on the use of the transformation

media technique. Finally, we will use this technique to illustrate cases where tuning is

unnecessary for adaptive materials and where a lack of tuning and adaption results in system

failure. In particular, we will consider the performance of thermal cloaking devices, as their

incoherent, diffusive phonon transport arises from the frequent scattering of extremely high

frequency phonons (e.g. THz).
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2.1 Quasistatic Phonon Tuning

2.1.1 Static Tuning

The case of stationary modifications to a material structure to induce some specific change

in the acoustic properties of a material was first investigated by Rytov in the 1950s [5, 6].

There, he analyzed the behavior of phonons in "artificial thin laminates" and found the

folding of band structures now commonly associated with superlattices [7]. Essentially, as

the periodicity of the system is extended, the maximum reduced. In reciprocal space, this

is equivalent to zone folding. This effect was experimentally confirmed in Colvard et al. [8].

Contemporary interest in the problem was sparked by improvements in nanofabrication, al-

lowing nanostructured materials that greatly modify the phonon band structure. Balandin

and Wang, for example, studied the effects of phonon confinement on the density of states

and group velocity [9]. Zou and Balandin then demonstrated that these effects change the

phonon relaxation dynamics and therefore the thermal conductivity 110]. Pokatilov et al.

111] demonstrate that in sufficiently thin heterostructures, the hybridization of phonons

across the interface can lose out to the localization of different phonon branches to different

heterostructure layers. For example, in Fig. 2-1 there is a GaN layer sandwiched between

two AlN layers. At different wave vectors, individual shear modes become localized to either

the central or edge regions, giving them group velocities characteristic of the respective bulk

material. Other polarizations exhibit similar effects [13]. Localization is studied for a variety

of structures in Balandin et al. [131, which reviews work on this problem and on engineering

electron-phonon couplings. On the thermal (i.e. disordered phonons) side, transport engi-

neering has been reviewed by Norris et al. 114]. They pay particular attention to the role

of interfacial scattering and how it can be used to engineer thermal boundary resistance. A

particularly popular tuning technique not mentioned there is the use of phononic crystals

(artificial lattices whose properties arise from the arrangement of the elements not their

properties) which can be rotated [15, 16, 17] to change their effective spring constants and

therefore band structure. Goffaux and Vigneron [15] developed this technique for a square

lattice of rectangular rods arranged to be face to face or corner to corner. They find that an

acoustic band gap (frequency range in which phonons cannot propagate) forms as a function
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Figure 2-1: Phonon localization. Phonon group velocities of shear polarized phonon modes

versus wave vector. (a) A 6 nm width semiconductor GaN slab, for reference. (b) A
AlN/GaN/AlN three-layered heterostructure with dimensions 2.5/1/2.5 nm. When the

group velocity of a given mode approaches the asymptotes of the bulk material, phonons

become localized. Reprinted from E. P. Pokatilov et al., Superlatt. Microstruct. 33, 155

(2003). Copyright 2003, Elsevier 112].

of the rods' orientation angle. Kuang et al. [16] extend this technique to a wider array of

lattice symmetries and constituent elements. Lin and Huang [17] further extend it to the

case of anisotropic constituents. Hou et al. 118] and Yao et al. [19] consider a fixed phononic

crystal with mobile inclusions. Another approach to engineering thermal transport by tun-

ing phonon band structure, which shall come back in later chapters (notably Ch. 3.2), was

reviewed by Roberts and Walker [201 and by Li et al. [1]. There, they are concerned with

the amplification of thermal rectification (the preferential flow of heat along one direction

rather than the reverse), which can be tuned by the preferential placement and structuring

of defects [1, 20].

2.1.2 Mechanical Tuning

Moving from static tuning to nonstationary effects, the first technique that was considered

was the use of external forces. This can take the form of stress or strain as the controlled

variable, the effect is generally similar. Hsieh et al. [21], for example, use pressure to increase

the bond strength at interfaces, and thereby tune the elasticity and thermal conductivity.

Bertoldi and Boyce [22] introduced this technique to phononic crystals, using an array of
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holes in an elastic matrix. Applying strain changed the arrangement and shape of the holes,

which gave a functional means of introducing directional and complete band gaps through

applied strains of various strength and orientation. The theory in this case was somewhat

complicated, as the transformations relied upon mechanical instabilities that greatly change

the equation of motion. The theory of such transformations was sketched out in Bertoldi

and Boyce [23]. Rather than applying stress as a boundary condition, Jang et al. [24]

replace the air in the pores with a solvent. Various extensions of this technique have been

developed to cover different instability mechanisms (uniaxial compression [25], elongation

126], buckling [27], folding [28], and wrinkling 129]), three-dimensional phononic crystals

[30, 31], nonlinear materials (in addition to the geometric nonlinearity than induces the

mechanical instability) [32], and more complex patterns [33]. A typical example of this

effect is shown in Fig. 2-2. In many of these cases, the mechanical instability implies that

the stable configuration suddenly switches (i.e. the stability bifurcates), and so varying the

applied stress has a highly nonlinear effect on the phononic band structure. On the other

hand, systems lacking these mechanical instabilities have continuous response functions to

applied stresses. A particularly well-studied case is the class of materials known as granular

phononic crystals, which are constructed of beads placed in Hertzian contact (i.e. their

forces go as (Au) 3 / 2 where u is displacement from equilibrium). This nonlinearity can be

exploited by the application of uniform stress fields that compresses the beads, changing

the effective spring constant. Various configurations of granular phononic crystal lattices

have been shown to have tunable band gaps through this effect, particularly one-dimensional

chains of various periodicity [34, 35, 36] (similar effects have been observed for other related

systems, such as Refs. [37, 38]). This analysis has also gone beyond the simple harmonic

picture, such as the tuning of solitons (highly nonlinear, particle-like wave packets). Daraio

et al. [39] find that the soliton envelope and speed are significantly modified with the

modulation of the granular phononic crystal's compression. Spadoni and Daraio [40] as well

as Donahue et al. [41] experimentally demonstrated that these lattices constitute an acoustic

lens of tunable focal length. Spadoni and Daraio [40] focused on soliton packets in arrays

of granular chains, while Donahue et al. [41] focused on soliton packets in two dimensional

granular phononic crystals. Boechler et al. [42] also demonstrate that granular chains can

serve as an acoustic switch.
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Figure 2-2: Effect of deformation on a mechanically unstable structure. (a), (c), and (e)

are the dispersion relations for unstrained, e = -0.065, and E = -0.10, respectively. Shear

modes are blue, longitudinal are red, rotational are black, and band gaps are grey. Defor-

mations induced by the lowest four modes at high symmetry points in the Brillouin zone
are shown in (b), (d), and (f) for E = 0, f = -0.065, and c = -0.10, respectively. Color

indicates magnitude of displacement. Reprinted figure with permission from P. Wang, F.

Casadei, S. Shan, J. C. Weaver, and K. Bertoldi, Phys. Rev. Lett. 113, 014301 (2014).

Copyright 2014 by the American Physical Society [271.
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2.1.3 Thermal Tuning

Thermal effects on phonon band structure are generally weak, but there have been some

efforts to find systems where temperature can strongly tune phononic properties. Huang and

Wu [43] studied the temperature dependence of density, elasticity, and thermal expansion

of a phononic crystal array in air. The combination of solid and gas allows for a greater

change of material parameters (notably thermal expansion) than would occur for a purely

solid state device. They similarly show that this effect can tune the size and location of

the band gaps, although they found that some gaps widened and others narrowed as a

function of temperature. Using a similar system, Wu et al. [44] studied the effects of

changing air density and speed of sound on diffraction. To amplify the effects of temperature,

other researchers have focused on the role of phase transitions. Jim et al. [45] and Xu et

al. [461 study the onset of a ferroelectric phase transition for Bao.7Sro. 3TiO 3 for bulk and

surface waves, respectively. They find a significant shift in the band gaps of the bulk

modes and a shift in the location of the Lamb wave surface modes. Similar work for the

shift in gaps between Lamb modes was done by Cheng et al. [47] for one-dimensional

structures and Yao et al. [48] for two-dimensional structures. Yao et al. [48] and Bian

et al. [491 present analytic descriptions of this effect. Sato et al. [501 extend this to

liquid-solid phase transitions, while Zheng et al. [51] apply the liquid-solid transition to

the tuning of thermal conductivity. Wang et al. [52] investigated the role of liquid-solid

phase transitions at high temperatures as an avenue to thermal energy storage. For solid-

solid phase transitions, the most popular material is V0 2 , which undergoes a transition

between tetragonal and monoclinic structures that can be induced by a wide variety of

forces (thermal, mechanical, electrical, optical) [53, 54, 55, 56, 57, 58]. Sepilveda et al. [59],

for example, studied the shift of Young's modulus near the transition temperature. Chen

160] studied the formation of band gaps and omnidirectional reflection in one-dimensional

nitrinol and epoxy phononic crystals as nitrinol undergoes a structural phase transition from

martensite to austenite. Walker et al. [61] considered a phononic crystal of metal rods in a

polymer matrix. Using infrared radiation, they heated the polymer, causing it to undergo

a structural phase transition that markedly changed its volume. Ruzzene and Baz [62, 63]

added shape memory materials (whose structure undergoes controlled transformations as

a function of temperature) to control the elastic constants of the phononic crystal and

18



subsequently tune their band structures.

2.1.4 Electrical Tuning

The tuning parameter does not have to be thermal or mechanical. While there are fairly

general mechanisms to couple mechanical or thermal forces to acoustic and elastic prop-

erties, there also exist classes of materials with strong couplings to electric and magnetic

fields. For electric field induced tuning of phonon band structure, multiple approaches exist.

By far the most popular has been the use of piezoelectric inclusions in a phononic crystal,

first studied by Hou et al. [64]. This effect is somewhat limited by the need to make a large

fraction of the phononic crystal a piezoelectric, as demonstrated by Wang et al. [651, but

Zou et al. [66] has demonstrated that it can still successfully open band gaps. Interestingly,

since the properties of the system are sensitive to the magnitude and polarization of electric

field, Rupp et al. 167] show that spatial variations of the electric field can be used to create

patterned phononic crystals. In particular, they consider a system composed of elements

where an electric field can be applied or withheld, and use the patterned application of the

field to design filters, waveguides, actuators, and energy harvesting. Oh et al. [68] use this

approach to construct a waveguide of arbitrary geometry. Celli and Gonella [69, 70], use a

two-dimensional hexagonal lattice linked by piezoelectric elements. By asymmetrically tun-

ing impedances applied to the linkages, they can reduce the overall symmetry of the lattice

and thereby modulate the band structure. They exploit this induced anisotropy to control

the angle of transmitted phonons at a given frequency, as illustrated in Fig. 2-3, and reduce

the diffraction of phonons traversing the phononic crystal. Kusenko et al. [71] consider a

one-dimensional piezoelectric phononic crystal, which they show can be described by effec-

tive elasticity and density functions. These effective parameters depend upon the strength

of the electric field and are in general complex scalars. Hsu [721, Chen et al. [731, and De-

graeve et al. [741 also consider piezoelectric systems of various geometries (two-dimensional

phononic crystal, beam with piezoelectric patches, and uniform piezoelectric rods, respec-

tively). However, rather than tuning the applied field, they change the impedance applied

to each piezoelectric. As we will see in chapter 3.1.2, this approach can lead to resonant

mode mixing, however in these works they are more concerned with the periodicity-induced

Bragg scattering, which opens up phononic band gaps. An alternative approach to coupling
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Figure 2-3: Piezoelectric tuning of phonon transport. Lattice is piezoelectric cells shown

in (a) and (b). (a) Piezoelectric cell in the 30' configuration, where the dark lines indicate

the component piezoelectrics that have been connected to a capacitor (i.e. shunted). (b)

Open circuit configuration, no element of the piezoelectric cell is shunted. (c) Band diagram:

continuous and dashed lines denote 300 and open cases. (d) and (e) Isofrequency contours

of the fourth dispersion surface for the 30' and open cases. The deviation from circular

contours is indicative of anisotropic transport, with the 30' case in (d) displaying markedly

less angular symmetry than the open circuit case in (e). (f) and (g) Phase velocity of the

fourth branch their respective configurations at various frequencies Q. As frequency increases

in (f) the contours move from circles (isotropic transport) to lobes (anisotropic transport).

(h) and (i) potential energy fields of the open circuit (h) and 30' (g) configurations with a

point source driving. Reprinted with permission from P. Celli and S. Gonella, Appl. Phys.

Lett. 106, 091905 (2015). Copyright 2015, AIP Publishing LLC [701.
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with electric fields is to exploit the volume change induced by an applied field on a dielec-

tric. This approach was taken in Yang and Chen [75] and Yang et al. [76] for spherical and

cylindrical dielectric elements, while Wu et al. [77] used a single layer in a one-dimensional

phononic crystal to create a band-pass filter. In a third approach, Ihlefeld et al. [78] use

a ferroelastic material to change the distance between grain boundaries in a superlattice,

thereby tuning the thermal conductivity. The final approach to electric field couplings is the

use of electrorheological fluids, which change their viscosity under applied field. Since this

effect only changes the shear modulus, only transverse phonons can be tuned through this

method. Using thin layers of electrorheological fluid sandwiched between solid cells alone

179, 80] or as the basic unit of a phononic crystal lattice [81], the transmission, directivity,

and band gaps can all be controlled by an applied electric field.

2.1.5 Magnetic Tuning

On the magnetic side, the use of magneto-acoustic materials (variously referred to as mag-

netoelastic and magnetostrictive materials) has been the most common technique. These

are materials where an applied magnetic field can strongly couple to the (generally neutral

or weakly charged) atomic lattice. This effect will be explained in detail in the following

chapter (Ch. 3.3), as it can be used to generate phonon resonances. For much of the work

in the field of phonon band structure engineering, however, these resonance effects have

been neglected, instead focusing on the role of magnetostriciton (the modulation of volume

by an applied magnetic field) or magnetoelasticity (the modulation of elasticity constants

by an applied field). Robillard et al. [82] began this field by considering piezomagnetic

effects (stresses induced by applied fields and magnetic fields induced by applied strains) in

arrays of Terfenol-D rods (a giant magnetostrictive material). They found that the band

gaps could be controlled by the strength of an applied field, including the closing of the

band gap. Because of the nature of the coupling that they considered, they also found that

only some of the phonon modes would couple to the magnetic field (in particular the shear

modes, i.e. transverse phonons, could couple). Bou Matar et al. [83] extended this model

to include the effect of spin reorientation under an applied field. This allows them to con-

sider the effect of changing the field direction, in addition to changing the field strength. In

addition to finding a tunable band structure, they derive expressions for effective material
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parameters as a function of applied field. Unlike the previous work, they demonstrate that

all the modes can be tuned by the applied field, including longitudinal phonons. Vasseur

et al. [84] consider the same system, where they exploit the tunability to design switchable

frequency filters, reconfigurable waveguides, and frequency multiplexers/demultiplexers (the

combination/separation of signals at multiple frequencies), as shown in Fig. 2-4. This last

effect works because the location of the band gap can undergo large shifts for small changes

in field strength, so using local variations in field allows for the distinction of various modes.

The downside to this approach is that it generally requires relatively large magnetic fields

(at least 1 kOe). To get similar effective band structure control with weaker fields, Yang

et al. [851 use the bending of magnetostrictive rods in air. Later, Yang et al. [86] use the

bending of a beam with magnetostrictive plates to similar purpose. Schaeffer and Ruzzene

[87] consider a magnetoelastic lattice composed of magnetic dipoles, with particular atten-

tion to how an applied magnetic field can induce structural instabilities that change the

lattice to a new structure of different symmetry (much like the work on mechanical insta-

bilities under applied stress). An alternative approach to magnetic tuning was developed

by Baumgartl et al. [88] for a colloidal crystal with paramagnetic inclusions. For that

matter, the use of magnetorheological fluids (the magnetic equivalent of electrorheological

fluids) for controlling phonon band structure, was developed by Wu et al. [89]. Hashem-

inejad and Shabanimotlagh [901 use a magnetorheological elastomer for similar effect but

with the advantage of behaving as a solid under ambient conditions. Xu et al. [91] extend

this to a two-dimensional phononic crystal embedded within a magnetorheological elastomer

matrix.

2.1.6 Mixed Tuning

Obviously, there is no a priori reason to prefer one tuning parameter over another. In

fact, there has been further work on the use of multiple parameters to tune phonon band

structure. Wang et al. [921 use a combination of electric and magnetic fields on a piezo-

electric/piezomagnetic phononic crystal. Huang et al. [93] use a combination of strain and

electric field on a piezoelectric phononic crystal, while Kambali et al. [94] use laser heating

and electric fields to tune the eigenfrequency modes of a mechanical resonator. Jang et al.

[95] use a combination of thermal transitions in a shape memory polymer and mechanical
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Figure 2-4: Demultiplexer (a) Waveguide schematic. Cylinders indicate Terfenol-D with

different magnetic fields applied along the z direction: 1 kOe (blue rods), 2 kOe (green rods),

and 20 kOe (red rods). Phonon displacement at (b) 1023 kHz, and (c) 960 kHz. From J. 0.

Vasseur, 0. Bou Matar, J. F. Robillard, A.-C. Hladky-Hennion, and P. A. Deymier, "Band

structures tunability of bulk 2D phononic crystals made of magneto-elastic materials." AIP

Advances 1, 041904 (2011). Available under a Creative Commons Attribution 4.0 license

[84].
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instability under applied strain. Zhang et al. [96] use a combination of thermal and mag-

netic effects in a Terfenol-D /epoxy phononic crystal, including the effects of temperature on

both the total magnetization and the elastic modulus. The most widely studied combination

is the use of simultaneous mechanical and magnetic control. Ding et al. 1971 considered a

one-dimensional phononic crystal with a new model of magnetostrictive constitutive relation

that incorporated both applied stress and magnetic field. Their focus was particularly on

the tuning of band gaps for logitudinal modes. Bayat and Gordaninejad [98] extend this

method to materials with mechanical instabilities. While that work was for magnetoelastic

materials, Bayat and Gordaninejad 199] performed similar analysis for magnetorheological

materials.

24



2.2 Methods: Transformation Materials

As we have seen, there are a great many ways of controlling the phonon band structure and

tuning it to take certain values at certain frequencies. Much of the existing literature has

focused on tuning band gaps and controlling which frequencies can propagate and which

are damped, but there have also been efforts to define effective material parameters as a

function of tuning signal, control the speed of sound, or control the angle of diffraction. To

move towards more complex devices, however, it is useful to have a sense of how material

parameters affect phonon dynamics - particularly in the case of effective material parame-

ters. The intuition that is built up from conventional materials does not necessarily apply

herc, as the material can possess such features as strong anisotropy (angular dependence)

and inhomogeneity (spatial variation) and more exotic effects like complex-valued proper-

ties, singularities, negative phase velocities, or negative mass (or mass density matrices). A

certain degree of useful intuition can be gained from a technique known as transformation

materials. In addition to giving intuition, it is also a fruitful technique for determining what

material parameters are necessary for generating an arbitrary effect.

2.2.1 Transformation Acoustics

To understand the operation of transformation materials, let's begin by considering the

propagation of sound waves (the technique was originally developed for light waves [100,

101, 102]). Expressing equation 1.5 in terms of pressure rather than strain gives

1 a2

-aPt2P = V - P ) (2.1)

where A is the bulk modulus tensor (cijkk = 3A6ij, ij is the Kronecker delta), p is the

pressure (scalar), and p is the mass density tensor. If we transform to a new coordinate

system using the Jacobian transformation matrix Jij (x -* x') = 8x'/&xj this becomes

1 a2  (j-iglT 1
a2P = V - det VP J (2.2)

A 09t2 det J )det J
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which is equivalent to the original equation if we make the substitutions (p--1)' = jj IjT / det J

and A' = A det J. Crucially, p' = p so this transformation leaves the pressure field unchanged

even as the material is modified [103, 1041. This means that the material parameters ef-

fectively define a geometric transformation. Note that this relationship between materials

and geometry can be expressed in other terms, as in Leonhardt [1011. A particularly fruit-

ful one 1 is to relate the equation for an inhomogeneous, anisotropic material in Euclidean

space

tp= a ((Pjl)iia p) (2.3)

to that of a homogeneous, isotropic medium (denoted by subscript 0) in curvilinear space

aeap = 19 (p1-g ajp) (2.4)
A0

we get the transformation A = A/.F/ and (p-1)ij = p-fjig'j. Thus an arbitrary anisotropic,

inhomogeneous medium can be mapped to a purely geometric effect, as illustrated in Fig.

2-5. In this picture, to understand how waves propagate in some complicated medium it is

not necessary to worry about any details beyond the geometry. This can reduce the problem

of understanding wave transport considerably.

2.2.2 Cloaking Transform

Conversely, we can take a geometry that has interesting or unique effects on wave propaga-

tion and translate that into a material prescription. This gives an easy way of ascertaining

the needed materials for complex or novel devices. By far the most common transformation

considered [100, 101, 102, 103, 104, 1051 is the expansion of a point to a finite volume

r' =a+(b-a)*r/b (2.5)

where r is the radial component, a is the radius of the new volume (inner radius of the

transformed geometry), and b is the outer radius of the transformed geometry (for r > b,

the system returns to Euclidean coordinates). Thinking of this transformation in the reverse

(r = b * (r' - a)/(b - a)), anything within the finite region r < a gets mapped to the point

'An approach taken from Leonhardt and Philbin 11021 and adapted to acoustics in Sklan [1051. See also
Chen and Chan [104] for a more general overview and Greenleaf et al. [1061 for a more technical derivation.
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Figure 2-5: Illustration of transformation materials concept. In both (a) and (b) a wave

travels in a straight line, but in (b) the geometry is transformed to give a new geodesic.

From J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 5781, 1780-1782 (2006).

Reprinted with permission from AAAS [1001.

r = 0. This has the effect of rendering that entire region invisible, as illustrated in Fig. 2-6.

Because the transformation matches the external geometry for r > b and is purely geometric

for a < r < b, waves within the transformed region are radially compressed while waves

outside the transformed region are left undeformed. In particular, there is no scattering off

of any boundaries - the geometries are matched at r = b and smoothly transform inside

the compressed region. This transformation therefore renders a finite region invisible while

hiding the evidence of this effect from an external observer. It is therefore referred to as

cloaking or a cloak of invisibility.

We now consider the translation of this transformation into a material. For curvilinear

coordinates such as are used in the radial transformation, J becomes

J I 9uu &Ug-'-' (9'
9UU OU

9_' dv'

gw, Ow'
gvv aV

gv'v' QU

gWW Ow .. (2.6)

where g is the metric tensor for each coordinate system (primed and unprimed), expressed

in terms of a Euclidian reference frame. In the special case of the coordinate systems merely
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Figure 2-6: Illustration of the cloaking transformation. (a) Cross-section view of the trans-
formed geodesics. (b) Three-dimensional simulation of the geodesics. From J. B. Pendry, D.
Schurig, and D. R. Smith, Science 312, 5781, 1780-1782 (2006). Reprinted with permission
from AAAS [100].

being a rescaling, as we consider here,

J = diag gu'u' Ou gv'v' OV
guu OU ,vv O '

gw'w' aw'
gww Ow

(2.7)

which allows us to express the metric tensor in terms of these coordinate transforma-

tions

g = J .2 (2.8)

For a cylindrical transformation, grr = 1 = gzz, goo = r while grr = 1 = gz'z', go'o' = r,

Oz/Oz' = 1 = 00/00' and Or/Or'

J

Plugging everything in gives

b/(b - a) or

= diag
b b r' - a

b-a'r' b-a

P PGr' -a

r'-a
Po = Po ,r

b- a 2

Pz = po (b )

r'

r, -a

\ Ao b -_a
2  / r

k b ) r' -a
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where, again, r' refers to the radial component between a and b in the cloaked frame.

Note that in the special case of a two-dimensional transformation, pz is neglected as there

is no spatial variation of the waves along this axis. On the other hand, for a spherical

transformation

b-a (r'\
P0 = a ,/ (2.11a)b (r - a

no Po(2.-bP0 P0 ba (2.11b)

b

\ \ b a ) 3  r ) 2 . (2.11d)
(b r -a)

In practice, these equations are sufficiently similar that most theoretical work is done for

the two-dimensional cloak, while most experimental work is done for the spherical cloak

(although there are other approaches, such as the carpet cloak first proposed by Li and

Pendry [107, 108, 109] or the use of complementary media and external cloaks developed by

Lai et al. [110, 111, 112]).

2.2.3 Realistic Cloaks

There are several important features to these transformation equations. They require an

anisotropic mass density matrix, something that often requires artificially structured (meta-

materials) materials to achieve. They also necessitate continuous functions to go from their

background values at r = b to singular values at r = a. The requirement of a singularity

at the boundary, however, is particularly difficult to achieve. In optics, this sort of singu-

larity impossible for more than individual frequencies, as it implies a velocity in excess of

the speed of light (since light must travel a longer distance around the cloaked region and

still be faster than passing through the cloaked region). While acoustics is not so stringent,

in practice this singularity is often relaxed. This can induce errors in the transformation

equation, such as the lack of phase matching in Leonhardt and Tyc's non-Euclidean cloak

[113]. It has been shown in multiple ways [114, 115] that a perfect cloak is truly perfect,

and will block any component aside from a constant corresponding to the mean value of its
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surrounding field (e.g. electric potential, pressure) 2 [116, 117, 105]. To help characterize

the effect of errors in a perfect cloak, Ruan et al. [118] considered the effect of removing a

thin layer of thickness 6 from the inner lining of the cloak and then using scattering theory

to determine how the magnitude of the scattering depends upon 6. They found that the

scattering field converges to 0, but does so extremely slowly - less than o(6). Isi6 et al.

[119] perform a similar analysis and show that it decays like 1/ ln 6. We will illustrate their

methods more explicitly in Ch. 2.3.5, where there will be a concrete example to consider.

Zhang et al. [120] studies the creation of surface modes on the inner boundary of the cloak

and the development of zero power transmitting penetrating modes.

2.2.4 Thermal Cloaks

Concurrent with these efforts to understand the behavior of electromagnetic and acoustic

cloaks, other people were seeking to extend these techniques. Devices like a concentrator

(which does the opposite of a cloak and pulls waves towards the center [121, 122]), rotators

[123, 124, 1251, illusion techniques (making an object appear like another, or like multi-

ple copies of itself [126, 127, 128, 129, 130, 131, 132]), and space-time cloaks (extending

the formalism to allow for temporal transformations from moving media, thereby cloaking

events rather than objects [133]) were developed using other coordinate transformations.

Additionally, the transformation materials was applied to other classes of wave phenomena

[134, 135, 136, 137, 138, 139, 140, 141, 142] and to diffusion effects [143, 144, 145]. In par-

ticular, it was shown that both the ballistic transport of phonons illustrated in the acoustics

examples above, but also the diffusive transport of phonons by the heat equation met the

transformation materials requirements [146, 147, 148, 149, 150, 151, 152, 153]. Guenneau

et al. [147] first proposed the transformation, Schittny et al. [148] and Ma et al. [150] de-

veloped designs for the cloak. Narayana et al. [149] developed a design for quasistatic heat

flux rather than temperature Narayana and Sato [151] experimentally tested this design. Li

et al. [153] developed a simultaneous cloak for light and temperature. Guenneau and Amra

[154] designed a thermal rotator (also tested in Naranaya and Sato TC6). He and Wu [155]

2 This can be seen by noting that the steady state mean value takes the form V 2f = 0, or Laplace's equa-
tion. This eigenvalue equation obeys the property f(ro) = ffs() fdA/ ffs(ro) dA for any sphere centered at

ro (i.e. S(ro). In other words, the value at the center of a sphere is necessarily equal to the mean value over
the sphere's surface.
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designed a thermal illusion device.

To demonstrate the transformation materials prescription for diffusive phonon transport, we

begin with the heat equation

pcpatT = a, (rx0a.T) (2.12)

where p is the density, cp the specific heat capacity, T temperature, and K the thermal

conductivity. Following the standard method, we change coordinates

,fgp'c'at T -= az (nfrgb8jaT) . (2.13)

So

-= no V'giJ (2.14a)

P'p = Pocpov/gg (2.14b)

Taking the two-dimensional circular cloak for concreteness gives

Kr = r/ a (2.15a)

-O = no / (2.15b)
r -a

pc, = pocpo (,b a) 2 r a (2.15c)

Note that these have different forms than the material parameters of equation 2.10a-c,

but there are clear similarities due to their shared geometric origin. In particular, these

similarities allow theoretical work on cylindrical cloaks to be applied to experimentally

realized spherical cloaks with only minor modification.
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2.3 Testing the Accuracy of Diffusive Cloaks

While the transformations involved in the construction of a thermal cloak bear some resem-

blance to those used in other cloaking devices, it is important to remember that they are

not the same. Not only are the materials different, but the equations are fundamentally

different. Prior to the treatment of the heat equation, all transformation media techniques

had been applied solely to the wave equation (a hyperbolic partial differential equation) or

Laplace's equation (an elliptic partial differential equation). The heat equation is a diffusion

equation, and therefore a parabolic partial differential equation. What this means is that

signals propagate differently for the thermal cloak than for the previously analyzed cloaks.

The standard picture of far-field scattering does not necessarily apply. This difference is

exacerbated by the material differences between the acoustic or optical wave equations and

the heat equation. The range of available materials and the need to achieve something

approaching a singularity at the inner boundary necessarily limits the performance of any

cloak.

To make a realizable cloak, previous researchers [148, 150, 151] have focused particularly

on the engineering of the thermal conductivity l. While it was clearly understood that

the necessity of using real materials kept them from reaching the perfect inner boundary,

improved fabrication techniques allowed them to push the limits of what had been achieved

3. The need to engineer the volumetric heat capacity pcp, on the other hand, was assumed to

be negligible. In part, this was due to the choice of experimental tests applied to the thermal

cloak, namely the application of fixed temperatures at opposite sides of a domain surrounding

the cloak (see Fig. 2-7). Since pcp only appears in conjunction with time derivatives of the

temperature, the onset of a stationary steady state solution eliminates the heat capacity.

It has no effect on the steady state temperature distribution, just the transient component.

On the other hand, the utility of a cloak that only works in an unchanging environment is

fairly limited. At most, it can regulate temperature distributions; say by acting as a thermal

insulator.

3 In particular the ability to fabricate micron and nanoscale resonators led to the development of metama-
terials (materials whose properties are determined by their structure not their chemical composition). Meta-
materials were essential in providing the material properties required for the earliest cloaks [100]. Similarly,
greater resolution in nanofabrication allows for greater flexibility in engineering the thermal conductivity.
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Figure 2-7: Model for finding the location of a thermal cloak of radius b with cloaked domain

of radius a. Two heat baths (red and blue rectangles) are placed at opposite sides of the

cloak, which is confined to a thermally isolated domain. Heat flows between the baths (red

lines), passing through a perfect cloak without distortion. For an imperfect cloak, however,

heat is also scattered from the boundaries of the cloak. Although the scattered heat diffuses,

a thermometer near the cloakAA2s surface can detect it. From Sklan et al. 11561.

In recognition of this fact, many researchers have focused on the transient effects 147,

148, 1501. There too, the testing of the cloak's performance has been largely qualitative.

Moreover, they have assumed that the replacement of an inhomogeneous heat capacity with

a constant one is negligible even in this regime. Schittny et al. 11481, for example, em-

ploy an approximate cloak design developed in Guenneau et al. 11471 (where constant pcp

was explicitly assumed) while still claiming to achieve transient thermal cloaking. Indeed,

they even observed in their experiments that the specific heat was not constant in their

device, but they sought to correct for this deviation from their homogeneous pcp model.

Additionally, Ma et al. 11501, simplify their transient cloak design by assuming that pcp

commutes with spatial derivatives to good approximation, which immediately implies that

pcp is approximately homogeneous. Due to this confusion, other researchers have sought to

extend thermal cloaking to other diffusive transport problems, particularly chemical diffu-

sion. Chemical diffusion obeys the equation ten = V - (DnVn) for chemical concentration

n and diffusion constant Dn. Researchers [143, 1441 have again assumed that, because pcp

was negligible for w - 0 steady state thermal cloaks, the steady state thermal cloak designs
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translate directly into time-dependent chemical diffusion cloaks (despite the fact that such

an analogy maps pcp to unity everywhere).

In this section, we therefore analyze the performance of this class of thermal cloaking (i.e.

cloaks which rely upon engineering K but neglect pcp), which we term the steady state

cloak.

2.3.1 Scattering Solutions to the Cloaked Heat Equation

Understanding the perfect cloak's connection to the background medium is foundational

to understanding the steady state cloak Starting from equation 2.12, we can take the

Fourier transform in time and use a separable solution (in polar coordinates) T(r, 0, t) =

R(r)e(O)T(t) to get
iWPoCpoR = d d 12WPC R = (r dR) - -2R (2.16)

KO r dr dr r2

where 1 is the eigenvalue to the 9 dependent portion of the separated equation, W is the

eigenvalue of the time dependent portion of the separated equation, pocpo is the volumetric

specific heat of the background medium, io is the thermal conductivity of the background

medium, and i is v/-1. This can be re-written as the differential equation defining the

modified Bessel functions (either Ii(z) or Ki(z) 11581) by making a change of variables

z = 0r for 0. Hence, the time-dependent (i.e. the transient regime) solution has

eigenfunctions of the form

T (r, w) = (a 11(z) + b1K1(z)) e'1O2w. (2.17)1 (r 0,

with al and bj being arbitrary constants determined by the initial and boundary condi-

tions.

On the other hand, when w = 0 (i.e. the steady state) the temperature distribution becomes

defined by the solution to Laplace's equation

T(SS)(r 0) = (Air' + Bir') ei19 (2.18)
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for 1 7 0 (Al and B1 are generalizations of al and bl) and

T(ss) = A0 + Bo ln(r) (2.19)

for 1 = 0. Thus, the general solution can be written T(r, 6, w) = EG T(ss) + (tr)
hz=0 1 1~r

When considering the perfect cloak (PC) defined by equation 2.15a, we can use the old

coordinate transformation of
b

r' = (r - a) (2.20)
b - a

(again, b is the exterior radius of the cloak, a is the radius of the cloaked domain, r' is

the coordinate system - in real space - inside the cloak, r is the coordinate system of the

mathematically equivalent geometry defined in Ch. 2.2) to reduce the solution in the primed

coordinates to the homogeneous case defined be equation 2.12. Specifically, we use solutions

that depend upon the new effective position z = v//(b - a) * kor, where ko = rwpocpo/ho

is the effective thermal wave vector of the homogeneous background.

For a steady state cloak (SSC) the material parameters are

o = / -a (2.21a)
r'

R = no I r/(2.21b)r -a

pp = PoCPo (b T (2.21c)

where rl measures the impedance mismatch between the cloak's outer boundary and the

background (7 = 1 is impedance matched). We can no longer use the coordinate transfor-

mation trick but instead must brute-force the solution (following Sklan et al. [156]). Using

a new effective position variable x = fiwpocporb/so(b - a)(r - a) and again assuming a

separable solution gives
12

0= ax(xcR)- [+x +Ka R (2.22)

where K = fiwpocporb/o(b - a). We solve this equation by means of the method of

Frobenius Rl(x) = Eb x'7I1 with recurrence relation [156]

1
b 21) (Kab:' 1 + b:). (2.23)
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Cloak [ , / no 1o/o I pCp/pOcpO

PC (r - a)/r r/(r - a) [b/(b - a)] 2 (r - a)/r
SSC (M) (r - a)/r r/(r - a) b/(b - a)
SSC(Mis) (r - a)/r r/(r - a) [b/(b - a)]2

BC {r E (a, ri)} Ii/io Kj/KO plcpI/PocpO
BC {r c (ri, b)} K2/KO K2/ KO P2Cp2/POCpO

Table 2.1: Parameters for the cloaks considered in this section. Perfect cloak (PC),
impedance matched steady state cloak (SSC (M)), impedance mismatched SSC (SSC (Mis))
(rj -- b/(b - a)), and bilayer cloak (BC). The inner layer of the cloak has radius a while the
outer layer radius b, as in Fig. 2-7. From Sklan et al. [156]

This recurrence relation is gives the exact solution, but we can gain some additional insight

through expanding the solution by powers of Ka. Even terms in the series become

b+(01) + 0 ([Ka]2 ) (2.24)2m,'1 2m(2m 21 ) 2m-2,1

which is the same as series expansion for I1 (for +) and K (for -). Whereas, for odd terms

the relation depends upon every lower-power even term and so becomes

b = KaZ 2n - 11!! (2n t 21 - 1)!! b + ([Ka] 3) (2.25)2m+1,1 _ (2m + 1)!! (2m t 21 + 1)!! 2n,1
n=O

(!! is the factorial of only odd terms). Because b (O is completely determined by b

the odd terms are therefore a function of the modified Bessel functions. Ergo, we term

these components F[Ri(x)] 1156]. 4 Unfortunately, F[Rl(x)] is not a tabulated function, so

this is as far as we can get by purely analytical techniques. Note, though, that F[Rl(x)] is

an additional term in the solution whose presence reveals a deviation from the background

(even in the impedance matched case). This is therefore the equivalent of the scattering field

for the steady state cloak. Note too that the strength of the scattering field is determined

by the perturbative expansion of Ka, a dimensionless parameter that depends upon the

size of the cloaked region. Decreasing the size of the cloaked domain therefore improves the

performance of the cloak. For reference, the various cloaks considered in this section are

summarized in Table 2.1

4 For spherical cloaks, the derivation is equivalent save for the replacement of 1 with 1 + 1/2.
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2.3.2 Simulation of the SSC

To proceed with analyzing this scattering field F[Ri (x)], we turn to COMSOL multiphysics

[157], a finite element simulation method. To aid in comparison with experiments, we use

a rectangular domain (dimensions L =70 mm by L 1 =50 mm) centered around a cloak

(dimension a =13 mm, b =20 mm) with one pair of edges at fixed temperature and the

other pair thermally insulating (Fig. 2-7). Given the linearity of eq. 2.12, one boundary's

temperature is set to 0 (as is the initial T) while the other's is set to 1 (so AT - 1). It is

helpful to use the natural units of L (the separation of the heat sources) and the diffusion time

TD = L2 pocpo/Ko. Since the background medium is io = 71.4W/m -K, po = 2100kg/m 3,

and cpo = 1000J/kg - K, the diffusivity is D = to/pocpo = 3.4 - 10 5 m2 /s and therefore the

diffusion timescale is TD = L2 /D = 144.12s.

Using these conditions, our simulations give Fig. 2-8, where each column is a snapshot at

a different time. The first row is the case of a homogeneous background, such as would be

observed if the cloak were absent. The second is the solution to SSC (with 7 = b/(b - a)

to increase contrast), i.e. what would be observed with the cloak present. The third is the

difference between the first and second rows 6T = T(SSC) (r, t) - T(H) (r-, t). This signal ST

is the deviation from the expected background and as such is the signal whose detection is

tantamount to the detection of a thermal cloak. ST is initially small and principally confined

to the region of the cloak's surface that has been heated (see Fig. 2-8g). However, in Fig.

2-8h ST later grows and becomes observable to outside observers. When the solution reaches

steady state in Fig. 2-8i, invisibility is restored; as would be expected for a steady state

cloak (SSC) (ST ? 0 is confined to within the cloak).

2.3.3 Time and Space Dependences of the Deviation of the SSC

To gain a better sense of what is going on between snapshots, we analyze 6T for several

points outside the cloak. In particular, in Fig. 2-9 we compare ST for the SSC with 77 = 1

(i.e. impedance matched case, where the cloak has the same properties as a PC at r = b),

1 = b/(b - a) > 1 (impedance mismatched but with Vi1ks = kc), and the PC. As 6T = 0

outside of a perfect cloak (this will be proven in Ch. 2.3.5), any deviation for the PC must be
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Figure 2-8: Simulation of detecting the temperature profile of a mismatched SSC (rj

b/(b - a)). Columns correspond to 2.08TD/100, 2 .08TD/10, and 2 .0 8 TD respectively. Rows

correspond to the homogeneous case (no cloak), SSC, and T(ssc) - T(H). Black circles

denote the location of the cloak (for reference in the homogeneous case), colored domains

are isotherms, and grey lines are constant separation isotherms. From Sklan et al. [1561.
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Figure 2-9: Time evolution of the temperature deviation 6T at representative points outside

the cloak. Black (a), blue (b), and red (c) curves denote the PC, impedance matched SSC,
and impedance mismatched SSC. Line styles correspond to individual points, shown in the

insets. From Sklan et al. [1561.

a numerical artifact of discretizing r, and thereby removing io -+ 00 5. However, regardless

of impedance 3T(ssc) > 6T(PC) outside the cloak, i.e. the SSC performs worse. This is the

signature of relying upon a homogeneous pcp.

Somewhat surprisingly, the position dependence of 6T is approximately just a scaling factor

and so the extrema at different locations all nearly coincide instead of being separated by

a propagation time. To clarify this, in Fig. 2-10 we examine several slices of 6T along

y =constant for t = 2 .08TD 100, 2 .OSTD/10, and 2.08TD (or 3s, 30s, and 300s) (blue, green,

and red lines, respectively) to observe the spatial dependence more precisely. The slices are

chosen to be centered on the cloak, slightly offset, and outside the cloak. The perturbation

is initially limited to where the cloak that has been reached by the applied heat current.

As time passes and heat spreads, 6T too grows and spreads throughout the domain. When

everything approaches steady state, 6T falls. The linear dependence inside the cloak for

5 In 2.3.5 we show that removal of this singularity introduces scattering fields which scale to lowest order

like 1/ ln kc6, where 3 is the deviation at the inner boundary and kc = b/(b - a)ko
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steady state implies that T(SSC) inside this domain is essentially constant. Outside the

cloak 6T is effectively a sine curve. This is clearest for the slice outside the cloak 6, but even

for the other two their linear drop-off away from the surface of the cloak corresponds to the

linear section of a sine curve.

2.3.4 Time-dependence of the Temperature Difference

The results of Figs. 2-9 and 2-10 make for a surprising result. Unlike in the conventional

wave picture, our scattering field here does not actually propagate. Instead, it is closer

to a damped standing wave pattern. To see how such a phenomenon could arise, consider

equation 2.12 for some arbitrary domain

pCOtT = V - (rVT) (2.26a)

T(F, 0) = T (2.26b)

T(Or, t) = Tr (2.26c)

where Or are the boundaries of the domain and the boundary conditions are stationary. In

this case, there exists a steady state profile OtT(ss) = 0 that uniquely satisfies the boundary

conditions. By linearity, T = T(ss) + TCtr) where the transient term is defined by

pCOtT(tr) = V. (IVT(tr) (2.27a)

T(tr) (F, 0) = T - T(SS) (2.27b)

T(tr)(Or, t) = 0. (2.27c)

Assuming that, for some frame, the materials are everywhere homogeneous, we can Fourier

transform over space (V 2 T(tr) - k 2 T(tr)) to get

T (t)(-F t ) = T , o* ,)e _k2Dt e-ikr dn 2Tr)(, t) I T(tr) (k(27,)n/ 2  (2.28a)

T(k)(k, 0) = eikr [Ti - T(SS) (r] (2 ,rn/ 2 , (2.28b)

6Except for the initial curve, which contains higher terms that decay faster than the fundamental mode
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where D= Ko/Pocpo is the thermal diffusivity. If two systems only differ in pcp, their

temperature difference becomes

ST(r, t; AD) J (ek2Dat _ ek2Dbt eikr(tr) (k n
((272)n/2

Ergo, the time dependence is a sum of the difference of exponentially decaying terms. So for

short times 6T is approximately linear while for long time scales it decays exponentially. If

only one Fourier mode is excited then 6T is separable. If a small number of well separated

Fourier modes dominate T(tr) (k, 0) then 6T is approximately separable, as we see in Fig.

2-9.

2.3.5 Sensitivity of a Cloak to the Inner Boundary

To determine the role of the discretization in our simulations, we next turn a direct extension

of the scattering solutions used in Ruan et al. 1181 to consider a PC that has lost a section

of the inner boundary of thickness 6. We showed with equation 2.17 that the solution for

w 4 0 takes the form

T (r, 0, w) = (ali (z) + bl.Ki(z)) e lO+it (2.30)

Whereas the steady state of w 0 has solutions following equation 2.18

T)(r, 0) = (Air + Bir-) eil (2.31)

for 1 f 0 and equation 2.19

T(ss) - A0 + B0 ln(r) (2.32)

for 1 0. The domains I, II, III are defined to be external to the cloak, inside the cloak,

and the cloaked region. The boundary conditions (continuity of T and hi. tVT) relating
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these domains are

a, I(Vi kBb) + b 'IKl(vikBb)

KokB [a(') fl(V'-kb) + b(') K ( ikBb)]

a I )kB [

KokBa I(\ikB[a + 6])

a,1), (Vi-kc [b -a])
a 1

+bj" K(v/ ikc[b - a]) (2.33a)

Krkc [a(")Il ikc[b - a])

+bj" KVikc[b - a])] (2.33b)

a, a"(v kc6) b(" Ki(v/Ykc6)(2.33c)

Krkc [a(")I (ivkc6)

-+b ()K (vkc6) , (2.33d)

where kB = WiPocPO/IO and (b - a)kc = bkB (the diffusive wave vector for 2.21a). In

particular, the incident field is a(I), the scattered field is b(I), and the penetrating field is

a(,,,). Note that we have expanded our solution using the eigenfunctions found in Sec. 2.3.1

and that b("') is tautologically 0 since KI(0) diverges. Using these definitions of k and K

from 2.21a the first boundary conditions can be rewritten

a I (/kBb) + bI)'K(xIi kBb)

a, I (kBb) + b(I) 'K1j(vkBb)

- a,"Ii (Ji kBb) + bI" Ki ( ikBb)

- a,'II1(Vi-kBb) + b'IKj (V'kBb),

which, for an arbitrary cloak radius b implies that a (II) = a(I) and bI) = b). Using thea 1  an 1  Usn1h

last two boundary conditions and the identity for the Wronskian of modified Bessel functions

W[Ij(z),K(z)] = -1/z [158] gives

a

b Ma1

b(I)
a1

- (v/kBa)~1

K(V"Skc6)I(Vz"kB[a + 6]) - I(vzkB[a + 6])Ki(N1 kc6)

II(V kc6)Ij/(v7kB[a + 6]) - e -c6)Vi + 6])

K1(5 b kci6)Ii(AkB[a + 6]) - /(v4 zkB (a + 6])K, i/kc6)

(2.35a)

(2.35b)

which can be expanded in the limit 6 -* 0. When 1 : 0 this becomes

a

b(

(Ivikc6)1 (vkBa-
(1 - 1)! l(+kBaB +Ij'QrkBa)

2 ( * kc6) 21 l(VSkBa> 1Il(VikBa) - I,'(x/IkBa) I

l[(l - 1)!]2 4l( zkBa)-1I(kBa) + Il(VikBa)

(2.36a)

(2.36b)
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which vanish at 6 = 0. Whereas for 1 = 0 this becomes

(III) , 1 a )(aoj (N/4ikBa)I6O(C kBa) In kC6 (2.37a)

In kC6 , (2.37b)

which converges more slowly but again vanishes at 6 = 0. For w = 0 repeating this procedure

gives

A - b AI) (2.38a)

A 2b-2a b 6 A(,) (2.38b)
2b-a b-aa 

B - a b 6) A() (2.38c)
2b-a (b-a

B - a 621A(') (2.38d)
2b-a

for 1 # 0 and A") =A() = A B = B ) = 0 for 1 = 0 [156]. Ergo, when 6 -÷ 0A0  -0 -

the temperature inside the cloak is constant and the there is no scattering. We therefore see

that, as the name implies, a PC is a perfect cloak but even slight deviations from this can

create strong scattering.

2.3.6 Experimental Test of SSC Deviations: The Bilayer Cloak

While the SSC model uses a realistic pcp, it still contains an idealized K. Thus, to compare

with experiments we must use discretized rings of constant r'. Specifically, we consider the

bilayer cloak (BC) [159] 7. Simulations were done using a rectangular domain of dimensions

L =45 mm by L 1 =45 mm centered around a cloak with parameters given by Table 2.2.

This gives a diffusivity of Do = IO/pocpo = 7.67. 10- 7m2 /s and diffusion timescale 7D" -

L 2/D = 2641.3s. The initial temperature was 273.15K with thermal baths at 333.15K,

and To =273.15K giving a AT of 60K [1561. Experiments on the BC used this setup, and

the method from Han et al. [159], to give Fig. 2-11. Fig. 2-12 compares the normalized

temperature deviation of the simulated and experimental BCs. They show good agreement,

with only a slight discrepancy near the system's boundaries. This comes from a slightly

7The BC is particularly interesting as it was derived without relying upon transformation media methods.
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Figure 2-11: Measured temperature in the BC. Columns denote 30s (1.1 4 TD/10 0 ), 300s

(1.14rD/10), and 3000s (L.14D) respectively. Rows denote the homogeneous case (no cloak),
BC, and T(BC) - T(H). Color denotes temperature. From Sklan et al. [156].
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iment respectively. From Sklan et al. [1561.

uneven heating in the experimental setup for both the BC and homogeneous cases.

2.3.7 Thermal Cloak as Thermal Insulator

Finally, we consider the problem of detecting objects hidden within a cloak. Both the PC

and SSC have i - KVT = 0 at the boundary (r, = 0), so there no heat should be transferred

and no signal should be detected 8. For the BC, however, changing the hidden material

effects the temperature distribution. Boundary conditions like those considered above mean

that heat must traverse the cloak twice (entering and exiting), so the cloak is more effective

in this case than in disguising its presence. In particular, simulations of the BC with varying

cloaked materials differs by under0.1% (see Fig. 2-13). For a thermometer with sensitivity

of 0.2K, more than a 200K gradient is required for the determination of the hidden material

(whereas just detecting the BC requires a gradient of merely 3.64K).

Alternatively, one could try detecting a hidden temperature distribution, rather than a ma-

8Although, as in Ruan et al. [1181, this is extremely sensitive to deviations of r, from 0 and as in Refs.

1116, 117, 1051 even a PC will transmit the mean value of T at the boundary
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key). From Sklan et al. [1561.
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terial. Here, initially confined heat diffuses out and only passes through the cloak once.

Simulations in this case show a detectable signal of 1.5% (see Fig. 2-14), so a thermometer

of similar sensitivity could detect a temperature gradient of at least 13.3K from the back-

ground. Hence, heat sources can likely be detected through the cloak, i.e. it is an imperfect

insulator. Comparing the efficacy of the BC as an insulator with a thermal insulator possess-

ing properties equal to the BC's insulating layer (basically, removing a layer) indicates that

the BC is no better than a single layer insulator at suppressing this diffusion of heat into

the environment. Thus, the realizable cloaks (i.e. those without a perfectly insulating inner

boundary) are likely no better than conventional insulators at maintaining a temperature

gradient. Moreover, even a PC [116, 117] with perfectly insulation at the inner boundary

cannot prevent the matching of the average temperature inside and outside of the cloak, so

the system will eventually equilibrate. For the PC, though, this would take much longer

and produce a smaller leakage current, so the lack of a perfect insulating boundary increases

detectability of an internal temperature distribution.

48



0.015

0.014

0.013

0.012

0.011

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0
0 0.1 0.2 0.3

0.95

0.9
08

0.8

0.75

0.7

0.65

0.6

0.55
0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05 -

0
-0.5 -0.4 -0.3

0.4 0.5 0.6 0.7 0.8
ttro

.........................

0.2 -0.1 0 0.1x/L

0.9 1. -1. (0413

0.2

1.1 1.2 1.3

_10S
-370s

-- 7305
1090S

- 1450S

-- 2170S
-2530S

2890s
~. 3250s

0.3 0.4 0.5

Figure 2-14: Temperature response of the BC used as an insulator. Plot (a) shows the

time dependence of a representative point outside the cloak while plot (b) shows the spatial

dependence of a slice through the cloak (see inset) at various times (in seconds). The fluc-

tuation near the inner boundary is a numerical artifact of the discontinuity in temperature.

From Sklan et al. [156].

49

0.9 1

5,



2.4 Thermal Cloaking Conclusions

As we have seen, the standard approach to thermal cloaking renders the cloak detectable

via a transient (u # 0) signal. This signal is due to neglecting the needed inhomogeneity of

the volumetric heat capacity. Unfortunately, the range of values of pcp found in nature is

quite limited, as it relates to the number of degrees of freedom possessed by the material.

This means that perfect thermal cloaking is unlikely to be realizable even in the case of a

perfectly engineered steady state cloak.

In the context of tuning, the behavior of the steady state cloak reveals several interesting

aspects. It clearly fails because it cannot adapt to changing conditions. However, the

prescription for an adaptive cloak that works at all frequencies is not a tunable material

but an inhomogeneous one. Tunability, such as was discussed in Ch. 2.1 is an important

tool but it is not the only issue for regulating transport. Tuning tends to be important

when the operation of a device should change under changing conditions. In the context of

cloaking, that is prescription for a space-time cloak [1331. In the failure of the steady state

cloak, however, we also see the failure of a device to adapt to conditions varying beyond

a specific frequency range. This is the same issue as is found in the use of non-tunable

devices to circumstances requiring tunability (albeit here the specific frequency range is

W = 0, much lower and narrower than what is found in tunable devices). A device that

fails to adapt to changing conditions will produce inaccurate responses such as revealing

a cloak's presence. Furthermore, devices will often face constraints that imply that they

cannot perform perfectly, as in the physical limits on pcp. For both spatial and temporal

tuning, the solution is typically to mitigate the effects of these errors (e.g. reducing the

effective scattering strength Ka) or working around the problem (e.g. using multiple signals

to tune a device [92, 93, 95, 96, 97, 98, 99]). Exploiting the thermal tunability of pcp

and r therefore offers the potential for restoring the operation of a thermal cloak, albeit a

challenging one.
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Chapter 3

Resonant Tuning

In Ch. 1, we showed that driving a system at or near its resonant frequency results in

qualitatively different behavior than driving it far from the resonant frequency. In particular,

at the resonant frequency an infinitesimal driving force can produce a finite response. For

an energy band, when a tuning signal results in a resonant coupling, a qualitatively distinct

phenomenon again occurs. Since the driving signal is producing waves at the same frequency

as some phonon mode, these modes can hybridize, resulting in avoided crossings in the

band structure and a modification of the phonon spectrum. Because this hybridization is

controlled by the tuning signal, the location of the resonance may itself be tunable. In this

chapter, we shall examine some forms of phonon resonance and how they have been used

to various ends. We will then consider the question of whether information in phonons is

accessible, and if so is it possible to construct phononic information processing elements or a

phononic computer. Finally, we will combine these two threads by using resonant couplings

to design a new class of phononic computers, one with some unusual properties.
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3.1 Overview of Resonant Tuning Techniques

To illustrate the effects of mode mixing, we follow an example given in Deymier [7]. Consider

a pair of one-dimensional harmonic oscillator chains coupled in the following manner

miiui K1 (ui+1 - 2ui + uj4-) + KC (vi - uj) (3.la)

m 2vj K (vi+1 - 2vi + vi_ 1) - KC (vi - uj) (3.1b)

where v refers to the displacement of the second chain and kc is the coupling constant

(all other parameters defined from equation 1.1). Assuming solutions of the form u, =

uoeiwt+ikna =o * vn/vo gives the matrix equation

4K, sin2 k+ KC - mW2 -Kc
det [4Kin2-KC 4K2 sin2 + Kc - M22 0 (3.2)

which can be solved to give (setting our unit of w to VKi/mi, m to mi, and K to K1 , so

that we define m = m2/mi and U2 = VK2 /m 2 )

2 = (1 )Kc +2(1 + W2) sin2 kaW +m )2 2 2
ka)sn4 +( 1 .ka 1 K0

4(1 - k)2 sin a + 2(1 - 1 )(1 -W)Kc sin -+ (1 + 1)2( )2. (3.3)2 m 2 m 2

We plot this dispersion relation for m = 2, K2  K1, KC = 0.1 in Fig. 3.1, where the

dotted lines indicate the decoupled modes. Note that these bands, which had previously

intersected at the origin, have now split into two, with a higher energy band having finite W

at k = 0. These modes then approach their decoupled limits for larger k. To elucidate this

effect, we repeat these calculations, replacing the harmonic coupling of the second lattice

(K(u,+1 + Un-i - 2un)) with an array of decoupled oscillators (-Kun). This essentially

replaces the Debye approximation of this lattice with an Einstein approximation, i.e. one

where all the oscillations for a lattice occur at a fixed frequency. The new band structure

is plotted in 3.1, where we again see the ,lifting of the phonon bands. We also see that

the bending of the band structures from their decoupled limit is strongest around the point

where the decoupled modes intersect. This bending is a manifestation of level repulsion and
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is also referred to as mode mixing since it implies that the excitations are a hybridization of

the two constituent modes. When two modes are resonant with each other (same frequency

and wave vector), a small interaction between the two will break the degeneracy and bend

the bands away from each other. This effect is quite general, as typically the modes need to

be non-degenerate in some other conserved quantity (e.g. inversion symmetry) for a crossing

to persist.

3.1.1 Optical Resonance

Surprisingly, the first class of phonon resonances discovered occurred with photons. Even

though the speed of light is several orders of magnitude larger than the speed of sound, the

presence of optical phonon modes with non-zero frequency at the Gamma point (k = 0)

means that there are still resonances to be exploited. These hybrid modes are referred to as

"phonon polaritons" and were first discovered by Tolpygo [160] and Fano [161]. The coupling

here arises because the crystal lattice is composed of ions and so can possess a finite dipole

moment. The oscillation of this polarization (or polarization wave, hence polariton) can be

driven by either acoustic of optical excitation. While this gives a very strong resonance in

many materials, the difference between photons and phonons does have some drawbacks.

In particular, photon modes are difficult to dynamically tune (although the use of phoxonic

or optomechanical devices, discussed in Sec 4.2.2 show some promise for static control). As

such, controlling the optical signal has little effect on the phonon band structure, although

it can be used to amplify phonon modes and produce controllable phonon [162, 163, 164,

165, 166] or phonon polariton [1671 wavefronts. A fruitful approach to tuning the phonon

resonance is possible, however. Rather than tuning the resonance through varying the

frequency of the optical excitation, the photon frequency is held fixed and its effective

wavelength is modulated. This was done by Katayama et al. [168], who placed a transmission

grating between the light source and the material, then varied its position to control the

wavelength of excited phonon polaritons (which have wavelengths equal to the light intensity

pattern projected onto the material) and thereby tune the location of the phonon resonance.

Poolman et al. [169], on the other hand, used acoustic phonons to tune phonon polaritons.

Specifically, they used the Autler-Townes effect to induce resonant gaps in the polariton

spectrum. This occurs because the acoustic phonons are anharmonic, creating an effective
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grating that can scatter polaritons. As the intensity of the acoustic phonons increases,

this can lead to the generation of higher frequency phonons from anharmonic combination

of acoustic phonons or the parametric driving of the lattice grating. This means that the

phonon intensity becomes a parameter that can tune the location of the resonant band gaps,

changing the location of the polariton resonance and therefore the frequency of the photons

radiated from the system (Poolman et al. were specifically interested in using this technique

for generating THz photons). Recently, a new approach to polariton tuning was developed

that exploits the existence of multiple polariton modes. There also exist plasmon polariton

modes. These plasmon polaritons are the result of electronic charge density oscillations

producing a wave of varying polarization, and these plasmon polaritons can couple to the

phonon polaritons. Brar et al. [1701 showed that plasmons and phonons can hybridize,

which was applied to polaritons by Kumar et al. [171] and Dai et al. [172] (with later

additions by Sun et al. [173] and Wu [174]), Since the plasmons are electronic excitations,

they can easily be tuned by applying a voltage across the sample, and thereby tune the

resonance between plasmon polaritons and phonon polaritons (their hybridization is termed

plasmon-phonon polariton). This effect is shown in Fig. 3-2, where an applied voltage drives

the band structure from (d) to (e).

3.1.2 Electric Resonances

In Ch. 2.1.4, a DC or low frequency electric field was applied to control the properties

of a piezoelectric or electrorheological material. However, when working with AC or higher

frequency field, the waves of alternating voltage can create resonance effects with the phonon

modes. This was first exploited by Wang et al. [175] (and later improved upon by Chen et

al. [176] and Casadei et al. [177]) to tune the phonon band structure via an effective, tunable

Young's modulus (E 9AG/(3A + G) where cijkk = 3A ii defines the bulk modulus and the

shear modulus 2G6ij = Cijkk - cijkk/3). They used a phononic crystal composed of a beam

with piezoelectric patches attached to inductive circuits (thereby allowing the propagation

of waves of voltage oscillations). Bergamini et al. [178] show the connection between these

resonances and the resonances of an LC (inductor-capacitor) circuit, as the piezoelectric

itself acts as a capacitor, while Hou and Assouar [179] develop an analytic expression for

the one-dimensional band structure of an LC piezoelectric phononic material. By changing
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Figure 3-2: Plasmon-phonon polariton resonance tuned with electric field. (a) Experimental
setup, black arrows denote infrared beams incident on and scattered from an atomic force
microscope tip. (b) Measured spectra -of the structure. (c) Calculated dispersion of the
surface plasmon polaritons in freestanding graphene for Fermi energies 0.08, 0.15, and 0.37
eV. (d) Calculated hyperbolic phonon polaritons (HP 2 ) in hexagonal boron nitride (h-BN),
black line is predicted to have the strongest coupling to the AFM while the green rectangles
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strate. (e) As (d) but with a Fermi energy of 0.37 eV, yielding hyperbolic plasmon-phonon
polaritons (HP3 ) and surface plasmon-phonon polaritons (SP 3 ). Figure from S. Dai, Q. Ma,
M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi,
M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S-E. Zhu, P. Jarillo-Herrero, M. M. Fogler,
D. N. Basov, Nat. Nanotechnol. 10, 682-686 (2015) reprinted by permission from Macmillan
Publishers Ltd: Nature Nanotechnology, copyright 2015 [172].
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the frequency of these oscillations (either by changing the frequency of the applied AC

voltage [1751 or by changing the applied inductance/impedance [178]), the location of the

phonon resonance could be tuned. This is shown in Fig. 3-3. Note the presence of the

backwards bending dispersion relation in Fig. 3-3a and Fig. 3-3c. This is a generalization

from Fig. 3.1 to include finite lifetimes, which turns the wave vector complex and bridges

the gap with short lifetime modes. A similar effect was used in Zhou and Chen [1801, where

they used locally resonant phononic crystals filled with an electrorheological materials (as

in Liu and Shaw 1181]). These locally resonant phononic crystals are metamaterials whose

structural resonances can induce phonon band gaps at much lower frequencies than the Bragg

scattering phononic crystals used in Ch. 2.1. Their use of electrorheological inclusions in

the locally resonant phononic crystal meant that they could tune the shear modulus of

the crystal, thereby tuning the size of the band gaps. The location and number of the

gaps, however, was defined by the local geometry and so was not changed by this resonant

coupling. These two approaches are reviewed in Chen and Huang [182], whereas Kwon et

al. [1831 combine them and use an array of piezoelectric locally resonant metamaterials in

a phononic crystal array with inductive shunts. Chen et al. [184] showed how such active

elastic metamaterials allowed for tuning material properties in a way that satisfied the

requirements of transformation acoustics (explained in Ch. 2.2). Krylov et al. [1851, on the

other hand, used an array of micron-scale cantilevers. The vibrations of these cantilevers was

parametrically driven (explained in more detail in Ch. 4.1) by an electric field. When the

field's frequency was slowly varied past the resonant frequency of the beams, they observed

the sudden onset of multiple instabilities. This changed the standing wave pattern of the

cantilevers. Each of the instabilities corresponded to the onset of a new standing wave

pattern with a different wavelength.

In addition to using electric fields in isolation to tune electron-phonon resonances, there

has also been work on the effects of static magnetic fields and varying electric fields. This

was principally done for strong magnetic fields on graphene, where the magnetic field cre-

ates Landau levels. Changing the electric field changes the Fermi level, and thereby the

occupancy of the highest occupied Landau level. Filling the highest Landau level can block

electronic transitions. These transitions can resonate with the phonon modes, giving rise to

an effect termed magneto-phonon resonance. As such, tuning the Fermi level can have strong
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effects on the magneto-phonon resonance, as demonstrated theoretically in Ando [193 and

experimentally in Leszczynski et al. [194].

3.1.3 Magnetic Resonance

The investigation of resonant effects between magnetic fields and phonons has necessarily

relied upon indirect couplings. Phonons, being much more massive than electrons and hav-

ing their ionic charges screened by the surrounding electrons, have only very weak direct

couplings to applied magnetic fields. Hence, the first proposed magnetic resonance effect

was for spin waves in ferromagnetic crystals, i.e. a magneto-acoustic effect. The resonant

aspects of this were proposed by Kittel 11951, although phenomenological work for these sys-

tems was simultaneously developed by Vlasov [196]. These effects relied upon the existence

of magnons (spin waves) in magnetic materials. These magnons can resonantly couple to

phonons. Moreover, the magnon modes can be shifted by means of an applied magnetic

field (which gives them a finite frequency at k = 0), thereby shifting the location of the

magnon-phonon resonance. Unlike the other couplings described in this section, magnon

resonance has not been used to tune band structures. Magnon coupling is found in other

contexts. Early experimental tests of this resonance were done in yttrium iron garnet (YIG),

a ferrimagnet, for example Matthews and LeCraw 1197]. Furthermore, these resonances have

been observed in antiferromagnets (as in Boiteux et al. 11981 and Turov 11991) or molecular

paramagnets (Kochelaev [200], Tucker [201], and Tokman et al. [202]). On the phonon

side, all of the resonances considered here were for acoustic phonons, while Sytcheva et al.

[203] observed an anomalous form of phonon resonance which Thalmeier [204] argued was

indicative of phonon resonance from an optical phonon. Ando [205], meanwhile, considered

optical phonons in graphene, which can couple to electronic transitions between Landau

levels in strong magnetic fields (i.e. magneto-phonon resonance). Paramagnetic materials,

in contrast with magnetically ordered materials (ferromagnets, antiferromagnets, ferrimag-

nets, etc.), do not possess well-defined magnon modes. Instead, the resonances that arise

in paramagnets are due to couplings to field polarized electron spins 1202], electronic or-

bital angular momentum [2041, or electronic orbital transitions [205]. In addition to these

couplings, though, there have been additional phonon resonances observed in nonmagnetic

materials due to the existence of narrow ranges where electromagnetic waves can propagate
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unimpeded. These can arise from Doppler-shifted cyclotron resonance (that is, the rota-

tional motion of electrons around extrema of the Fermi surface can permit the propagation

of photons within a Doppler-shift sized window of its frequency, see Mertsching [206] for

a review) 12071, helicons (circularly polarized photons propagating through uncompensated

metals, see Petrashov t2081 for a review) 12091, and dopplerons (the same, but for com-

pensated metals [2101) [211, 212]. These effects are summarized in Gudkov and Gavenda

[213].

3.1.4 Phonon-Phonon Resonance

The exploitation of phonon anharmonicity to control phonon transport properties is distinct

from other forms of resonant tuning. This is because this effect is strongest in highly

anharmonic materials, i.e. ones where the simple phonon band picture is less applicable. In

this regime, harmonic phonon signals will induce additional components at other frequencies,

resulting in a wave packet containing many different frequency components. As such, it

makes more sense to speak of phonon transmission properties here than to define phonon

band structures. This is the approach taken by Li et al. [190], where they use a granular

phononic crystal driven by a frequency w, above the cutoff of the acoustic band. While this

frequency would normally be blocked, they add a second signal W, below the cutoff, where

the anharmonicity induces additional frequencies of the form nw0  mW (n, m integers).

Since some of these signals are below the cutoff, they can propagate. While they propagate

they will also interact again with the control signal, generating frequencies inside the band

gap. This includes the original signal at w0, and so the signal within the band gap can

propagate. Similar techniques exist for nanoelectromechanical resonators, anharmonic fluids,

and helicoidal phononic crystals (Hatanaka et al. [186, 187], Campos-Pozuelo [1881 and Liang

et al. [1891, and Li et al. [191], respectively). While these are not, strictly speaking, resonant

effects (w, is necessarily different from w,), this approach leads to a purely phononic resonant

switch. Ganesh and Gonella 1192] drive a granular phononic crystal at a single frequency

in the lowest acoustic band. Because of the material's anharmonicity, as they increase

the amplitude of the phonon current additional modes at integer multiples of the original

frequency are produced. Since these frequencies are in other branches (higher acoustic

branches or optical branches), they can have very different properties even at the same wave
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vector. In particular, their group velocities can have different magnitude and direction. This

allows them to tune the angular distribution of the transmitted waves, as well as to make

the low frequency phonons take on properties associated with higher frequency modes (such

as the direction of polarization and form of the displacement). This last effect is illustrated

in Fig. 3-4c,d
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3.2 Phonon Computing

In Ch. 2.3 we considered the problem of detecting a thermal cloak. This was done by

applying a temperature profile and then analyzing the heat current that was scattered back.

Depending upon where the heat current had been inside of the cloak we could learn different

things. In particular, currents that penetrated the inner boundary of the cloak would contain

information about the nature of the cloaked object, while currents that merely scattered off

the outer boundary of the cloak did no more than disclose the location and existence of

the cloak. Thus we see that heat currents can transport information. Given that this

is the case, the possibility of information processing with heat seems a natural extension.

Some work has been done on this [2], particularly on the heat carrier-agnostic approach

(reviewed by Li et al. [11) that only considers temperature profiles. Here, however, we

shall take a narrower approach and just review aspects of phonon computing that address

phonon transport directly (both these topics and some related ones like quantum phononic

computers are reviewed in Sklan [21). We will also postpone a discussion of optomechanical

phonon computers to Ch. 4.2.2, as they use light of higher frequency than phonons and are

therefore a high frequency phenomenon.

The idea of using vibrations for computation actually arose in the design of early forms

of RAM, where acoustic waves in fluid delay lines were briefly used [2141. This approach

then lay forgotten save for a lone attempt to use destructive interference of surface acoustic

waves to construct logic gates in the 1970s [2151. Modern attempts at phononic computers,

however, have been chiefly concerned with the creation of diodes (i.e. to allow a current

to pass in one direction but not the reverse). This remains a controversial topic, as the

majority of these diodes do not violate reciprocity and so do not meet the strictest criteria

for a diode [216]. Reciprocity here means that, if we send some arbitrary signal through a

generic system and allow it to scatter, the time-reversed scattered signal will reproduce the

original input. It is possible to break reciprocity by breaking time-reversal symmetry, or

more weakly by adding nonlinearity (whether nonlinear phononic diodes meet the criteria

for being a diode remains particularly contentious). However, as these approaches can be

difficult, it is often easier to break some spatial symmetry (normally parity symmetry),

which means that the signal used for the "reverse" configuration passes through a different
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Figure 3-5: Proposed phonon diode designs. (a) An array of triangular scatterers. (b) Mode

converting diode. Converts an antisymmetric plate mode (A) into a symmetric mode (S)

and a selective mirror with high reflectivity for the A mode and high transmission for the

S mode. Reprinted from Wave Motion, 50, A. A. Maznev, A. G. Every, and 0. B. Wright,
Reciprocity in reflection and transmission: What is a 'phonon diode'?, 776-784, Copyright

(2013), with permission from Elsevier 12161.

channel than the output signal in the "forward" configuration. For example, in Fig. 3-5a,

the signal transmitted by the triangular scatterers leaves at an angle while the inputs in

both configurations approach head on.

3.2.1 Parity-Breaking Phononic Diodes

Essentially the basic approach to constructing parity break phononic diodes is, as laid out in

Fig. 3-5, to use some asymmetric scattering to guide the transport of two "dual" signals. Tri-

angular scatters 12171 are a common approach, as the resultant bottleneck is rather intuitive

and rectification (preferential flow) can be experimentally confirmed in real-time as demon-

strated by Danworaphong et al. [218] for surface acoustic waves (SAW) in porous silicon

and Alagoz 12191 for sound in air with wooden rods. In analogy to triangular scatters, there

is the use of asymmetric surface roughness in layered media. Sun et al. 12201 and Jia et al.

[2211 both use this approach layers of textured steel planes in water. Specifically, the planes

are smooth on one side and have periodic rectangular bumps on the other. The textured

side converts incident waves into modes that can propagate through the steel plate, while

the smooth side does not. Texturing need not be attached to the layer (see Fig. 3-6b), as

shown by Sun and Zhang [222] with a layer of spherical scatters in front of a series of smooth

planes. Zhu et al. 12231 use a pair of phononic crystals in a wire to construct a Lamb wave

rectifier. One phononic crystal is a one-dimensional antisymmetric array (top-bottom-top)

while the other is a symmetric array. Antisymmetric waves incident upon the antisymmetric

grating hybridize and create symmetric excitations; whereas the symmetric grating blocks
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Figure 3-6: Acoustic Diodes. (A) Nonlinear diode using a nonlinear medium and phononic

crystal filter. As in Liang et al. 12301. (B) Linear diode using asymmetric scattering, as in

Sun et al. [2201. (C) Nonlinear diode using a nonlinear granular lattice, with defect serving

as mode conversion and lattice serving as filter. As in Boechler et al. 1421. Figure from M.

Maldovan, Nature 503, 209-217 (2013) reprinted by permission from Macmillan Publishers

Ltd: Nature, copyright 2013 12241.

asymmetric waves but transmits symmetric waves. Changing the stress loading on the rod,

these transmission characteristics can be changed to swap the roles of the symmetric and

antisymmetric modes.

Phonon scattering in phononic crystals creates other avenues for rectification. Yuan et al.

[2281, study a phononic crystal inside a bent waveguide. The phononic crystal is designed

to have a partial band gap along the LX direction of the Brillouin zone but not the FM

direction. Hence, waves incident normal to the phononic crystal are blocked by the partial

band gap and waves incident along the bent segment of the waveguide lie within the partial

band gap. Another method of angle-dependent phononic crystal rectification was developed

by Cicek et al. [229] for a pair of phononic crystals. The phononic crystals are designed to

have very different Brillouin zones and are oriented along different angles at the interface.

Thus incident waves from each side will be at different angles and so correspond to different

vectors in the Brillouin zone. In the forward configuration, the first phononic crystal rescales

the phonon wave vector without altering its direction. This wave vector is refracted in the

second phononic crystal to produce a transmitted signal at a new angle 1. In the reverse

direction, though, waves incident on the second phononic crystal are blocked by a partial

'And another transmitted signal with k vector separated by a reciprocal lattice vector from the primary

transmission peak
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band gap.

A popular approach to breaking reciprocity with these scattering designs is to incorporate

nonlinear elements. Liang et al. [230] is typical of this method. Their system is a phononic

crystal superlattice (layers of water and glass) connected to a nonlinear fluid medium (see

Fig. 3-6a). At the frequency of the incident phonons, the phononic crystal has a gap.

In the nonlinear medium, however, phonons at this frequency also excite modes at twice

the frequency. If the phonons hit the phononic crystal first, they are damped and cannot

excite this anharmonic frequency doubling. On the other hand, if the phonons hit the

nonlinear medium first, they excite the second mode, which can then traverse the phononic

crystal. The frequency dependence of this technique was studied further in Liang et al.

12311, where they examined the role of the different band gaps in the phononic crystal.

Liang et al. 12321 experimentally confirmed this approach 2 using an ultrasound contrast

agent (UCA) microbubble suspension as their nonlinear medium. These bubbles expand or

contract with acoustic excitation (see Guo et al. [2331), thereby creating the nonlinearity

necessary for second harmonic generation. Ma et al. [234] extend this approach to a solid

one or two dimensional lattice of harmonic oscillators. In particular, they create a lattice

with a particular fundamental mode in the gap and its integer multiples in an optical band.

They then incorporate a nonlinear oscillator to produce a third harmonic signal, thereby

creating a band of strong rectification.

Boechler et al. [42] developed another approach to nonlinear acoustic rectification. They

use a one-dimensional lattice of macroscopic metal spheres with Hertzian contact, also a

granular crystal. Through changing the initial compression force applied to the spheres,

their stationary deformation can be changed, thereby modulating the contact force's non-

linearity. In addition, the granular crystal lattice has a band gap above a critical frequency.

Incorporating a defect (a sphere with a different diameter) results in a localized mode with

a frequency inside the band gap (see Fig. 3-6c). If the defect is close to an edge, it can be

excited easily, at which point nonlinear effects from the rest of the lattice will down-convert

the signal into propagating modes within the acoustic pass band. Conversely, driving the

lattice at the defect frequency far from the defect will not excite any appreciable amplitude

vibration. Thus, no down-conversion occurs and the signal cannot propagate. This system

2 And later numerically optimized in Liang et al. [233]
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also exhibits an amplitude dependent bifurcation in the forward configuration. Low ampli-

tude driving will be insufficient for down-conversion, and so will not propagate. Merkel et

al. [2351 examine a three dimensional extension of this system. In addition to the role of

compression, they also incorporate gravity in their treatment. Because each layer is subject

to a force from the weight of the layers above it, there is an inhomogeneous compression.

They experimentally and numerically observe that this yields rectification of longitudinal

modes moving with or against the direction of gravity. This effect can be partially tuned

through controlling the initial compression.

3.2.2 Time-reversal Breaking Diodes

Time-reversal breaking phononic diodes are clear cases of diode-like behavior that unambigu-

ously break reciprocity. However, there are far fewer means of locally break time-reversal

symmetry, being essentially limited to magnetic fields, rotational motion, and active driving.

One example of such a magnetic field based system will be explored in the following section

(Ch. 3.3), but the others will be explored here. Fleury et al. [236] use a rotating frame

for acoustic waves in air. Rotation is produced using a fan inside a circular chamber that

is then linked up to three equally spaced channels. Waves entering one channel will travel

along both the clockwise and counterclockwise paths to reach the exits. The phase difference

between the clockwise and counterclockwise components at each exit can be tuned through

fan speed, thereby tuning the transmission through each exit. This is because waves moving

with or against the direction of rotation effectively experience Doppler shifts to frequency

w wcor. They numerically (see Fig. 3-7) and experimentally observe that the rotation

speed can be optimized, to eliminate transmission through one exit (say, channel 1 to 3)

and enhanced transmission through the other (say, channel 1 to channel 2). Permutations

of the incident phonon channel results in a similar operation.

Zanjani et al. [237] study a plate acoustic waveguide incorporating a modulation domain.

Within this modulation domain, the material parameters (e.g. stiffness, density) are spa-

tially and temporally modulated via a traveling wave 3. Phonons of the appropriate fre-

quency propagating with the modulation wave will be converted to a new mode, while

3 This temporal modulation breaks time reversal symmetry
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Figure 3-7: Rotational rectification. (A) When the ring is stationary, signals propagate
symmetrically through each branch. (B) When the ring rotates, the broken symmetry
blocks transmission along one branch. Figure from R. Fleury, D. L. Sounas, C. F. Sieck, M.
R. Haberman, and A. Ali Science 343, 516 (2014). Reprinted with permission from AAAS
[236].

phonons propagating against the modulation wave will not. Upon isolating the direction

of propagation in this way, filtering allows the selective passage of only one direction of

phonons.

Finally, Popa and Cummer [2381 consider a metamaterial composed of a piezoelectric mem-

brane sandwiched between two asymmetric Helmholtz resonator cavities. The asymmetry

of the cavities means that they transmit different frequency modes. The piezoelectric is

attached to a nonlinear electronic circuit that takes the measured signal from the desired di-

rection and converts it into the signal needed to pass through the other cavity. Signals from

the opposite direction, however, are filtered out by the resonator and the electronics.

3.2.3 Phononic Transistors

Phononic transistors are devices that make the transmission of one phonon current depen-

dent upon the state of another. Their operation is less controversial than that of phononic

diodes and they can be divided into two classes: direct (where the tuning of phonon transmis-

sion is due to phonon-phonon coupling) and indirect (where the tuning is mediated through

some other signal). The former are essentially examples of phonon-phonon resonance, which

we reviewed in Ch. 3.1.4. The latter are also closely related to the technology of phononic

switches, where the transmission of phonons is contingent upon another (non-phononic) sig-

nal. The tuning techniques considered throughout this text are often used in the operation

of phononic switches, as the control of phonon velocity, amplitude, and phase are the most
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basic aspects of phononic transistors. Not every switch design is a transistor, though, since it

is also necessary that the phonon modes can be converted into some means of controlling the

other signal. The problem of phonon transduction (e.g. piezoelectric effects, optomechanics)

will not be considered here, however, as there most common forms are already considered

in the context of tuning.

3.2.4 Phononic Logic

The first phononic logic gates used destructive interference. As mentioned earlier, this field

was initiated by Owens and Sallee 1215] for surface acoustic waves. For example, a NOT gate

used two signals traversing a piezoelectric. The first signal was a predefined clock signal,

the other carried information. When this second signal was applied, it would necessarily

be completely out of phase with the clock, resulting in destructive interference that would

prevent the transmission of either signal. Withholding this signal, on the other hand, allowed

the clock signal to be transmitted. NAND and OR gates were created in a similar manner

by allowing additional clock signals and inputs. Masmanidas et al. 1239] independently

hit upon this approach many years later in a somewhat more limited fashion. They used

a pair of orthogonal NEM (nanoelectromechanical) cantilevers where the cantilevers were

driven by out of phase AC currents. If either current were applied in isolation, then the

cantilevers would oscillate. However, if both or neither current were applied then there would

be no oscillation. Thus they constructed an XOR gate but did not seek to develop other

logic gates. It was not until Bringuier et al. [240] that the approach of Owens and Sallee

[2151 was fully updated. Since they used a phononic crystal, periodicity gave them more

flexibility in constructing destructive interference. If two waves differ by a reciprocal lattice

vector, then even if they are at different angles they can be mapped onto the same point

in the Brillouin zone. This can be exploited to control the phase each wave will gain while

traversing the phononic crystal. Upon leaving the phononic crystal, the two waves will again

diverge and so the transmitted beam will split. However, the wavefronts of these beams will

still overlap, and so there will be destructive interference at along a family of hyperboloids.

Placing a detector at a location of destructive interference allows the logic gates to work

in much the same way as before. For each logical input there will be a pair of signals -

one containing information and one fixed reference (a generalization of Owen and Sallee's
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clock signal). Again, like Owens and Sallee [215], the application of the information-bearing

signal will induce destructive interference at the detector, such as in a NOT gate (shown in

Fig. 3-8). With two distinct logical inputs and two in phase reference signals, the resultant

device is a NAND gate. With two distinct logical inputs and two out of phase reference

signals, the resultant device is an XOR gate. Using NAND and NOT gates, de Morgan's

laws show that it is possible to construct any arbitrary classical logic operation. In addition,

using a phononic crystal allows for more flexibility in the incident angles of various inputs

while simultaneously making for a more compact interference based computer.

A different approach to phononic logic comes from the supplementary materials of Boechler

et al. [42]. In their main text they developed a nonlinear granular phononic crystal that

could serve as a rectifier through the asymmetric placement of a defect with a localized

mode in the band gap. Since this design relied upon nonlinear interactions, the amplitude

of oscillations in the defect mode had to exceed some critical value. An AND gate could

therefore be constructed by using a pair of phase-matched signals that are individually too

weak to be transmitted but whose total amplitude exceeds the critical threshold. For an

OR gate, on the other hand, they used a pair of defects in a y-shaped lattice, so that

each defect could be addressed individually by a different signal. As such, having either

signal exceed threshold allowed the signal to be transmitted. However, one limitation of this

approach is that a NOT gate could not be constructed without the spontateous generation

of oscillations when none are applied. Li et al. [190] attempted to solve this problem by

designing logic gates out of granular crystal transistors, whereas Boecheler et al. [421 only

considered granular crystal rectifiers. While Boechler et al. [42] required a defect, Li et

al. [1901 had several signals at different frequencies and used their nonlinear interactions to

the induce transmission of a phonon current for a frequency inside the band gap. In this,

they follow the approach Mahboob et al. [241] (discussed in the next paragraph) and used

three signals of incommensurate frequency (i.e. no fa #, nfb + mfc for any rational n, m).

Specifically, two of the signals were of low frequency modes that fell within the acoustic

band (the inputs) while the last one was a high frequency mode that fell inside the band gap

(the reference). Anharmonicity allows the two low frequency modes to combine and create

a high frequency mode at a distinct frequency, which can be detected as an AND operation.

Anharmonic coupling of either low frequency mode with the high frequency one will allow
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Figure 3-8: A NOT gate using destructive interference and a phononic crystal. (A)
Schematic showing input signal I, reference source S, and output detector D (and a truth

table of the logic operation). (B) Intensity profile predicted at D if signal I is absent. (C)
Intensity profile predicted at D if signal I is present. Figure reprinted with permission from

S. Bringuier, N. Swinteck, J. 0. Vasseur, J.-F. Robillard, K. Runge, K. Muralidharan, and

P. A. Deymier, J. Acoust. Soc. Am. 130, 4 (2011). Copyright 2011, Acoustic Society of

America [240].

71

Ijy PC 1. 01
2. 1 0

Si ___%*A



the high frequency mode the propagate, and so its detection is an OR operation. For a NOT

gate, on the other hand, additional signals at the low frequencies are again necessary. These

signals are once again out of phase with the previous ones, creating destructive interference

(as in Refs. [215, 239, 240]).

Using phonons as an information carrier, due to their strong nonlinearity and wave nature,

allows for interesting new avenues in nonlinear classical information processing. Mahboob et

al. [241] developed one form of frequency-domain parallel computing (another is presented

in Ch. 3.4.5) using an NEM resonator. This is distinct from the more common frequency

domain multiplexing (i.e. the simultaneous transmission of information over multiple fre-

quencies), as performing logic operations upon elements of a multiplexed signal remains

difficult. In most cases, the signal is simply demultiplexed (say, by using a series of filters to

select out different frequencies), performing separate logic operations on each of them, and

then recombining them. The need to demultiplex is eliminated here however, through the

exploitation of the phonon's anharmonicity. In their setup, they use a piezoelectric mechan-

ical resonator with multiple electronic contacts. One contacts contains a two-dimensional

electron gas, which they initially drive at twice the NEM resonator's fundamental frequency

so as to input information (they call this driving the pump, in analogy with parametric

amplification). Directly above the electron gas is a second electrical input, which is initially

driven at precisely the fundamental mode (they call this driving the signal) (see Fig. 3-9a).

The signal can excite a finite phonon population, whereas the pump is too weak to do so.

By allowing the pump or signal input to drift from their initial frequencies, their anhar-

monic interaction can create excitations at new, incommensurate frequencies. The creation

of different frequencies corresponds to different combinations of driving signals, which in

turn allows them to distinguish the outputs of different logic operations (see Fig. 3-9b). For

the resonator to act as an AND gate, two pump inputs are used at 2fo i A (where fo is the

resonator's fundamental mode) and a single signal is driven at fo - 6. When these inputs

interact new so-called "idler" modes are excited at the frequency differences (fo A - 6)

which can in turn create second order excitations at fo 2A + 6. These second order idler

modes will be excited only if both pump signals are applied, and as such their presence

denotes an AND operation (see Fig. 3-9c). On the other hand, to create an OR gate, two

signal inputs at fo A + 3 are used in conjunction with the previous pump inputs. Either
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pump input can now couple to its corresponding signal to excite an fo - 6 mode, thereby

denoting an OR operation. In addition, using destructive interference of the two fo - 6

signals converts the OR operation into an XOR (see Fig. 3-9d). The authors then claim

that AND, OR, and XOR allow them to create all classical logic operations, but de Morgan's

laws require that there is also a NOT gate. However, if one of the inputs in the XOR gate

is fixed (as in Owens and Sallee [215j and Masmanidis et al. [239]), then a NOT gate can

be constructed. Since this approach relies upon each logic output having a separate, distin-

guishable frequency, needing to fix some frequency inputs is a drawback here. On the other

hand, their method can perform all 2 N+1 N-bit logic operations to be performed within

a single circuit element. This presents a notable reduction in circuit size while increasing

parallel information processing.

3.2.5 Phononic Memory

Since phonons can generally couple to other information carriers and sometimes possess

longer lifetimes than they do, phononic information storage has arisen in a number of un-

related fields. A great deal of focus went into the transduction of electronic signals (and

optical signals, covered in Ch. 4.2.2) to vibrations of a nanoelectromechanical (NEM) os-

cillator. The early work in this field generally relied upon static deformations of NEM via

an electric field, such as Rueckes et al. [2421 with carbon nanotube (CNT) arrays, but fur-

ther development extended this to non-stationary phonon modes. Cleland and Geller [243],

used a piezoelectric membrane separating two Josephson junctions to store and transform

signals. Rabl et al. [2441 take a similar approach to the coupling of spins separated by

magnetized NEMs. Most research this field, however, has focused on classical electronics

and optomechanics (Ch. 4.2.2).

Badzey et al. [2451 extended Rueckes' approach [2421 to a non-stationary setup. They

experimentally verify that driving a CNT with an AC current makes it behave like a Duffing

oscillator

+ 2-y- + wox k3
3 = F cos wt. (3.4)

The nonlinearity of a Duffing oscillator is exhibited by its bistability, as it exhibits hys-

teresis and jumps between two states as a function of amplitude and frequency. These
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jumps imply that a low amplitude, low frequency modulation can induce switching in the

oscillator between its high and low amplitude states (these are maintained via a constant

amplitude, high frequency driving force). Venstra et al. [2461 find a similar bistable mem-

ory due to mechanical nonlinearity using microcantilevers. Khovanova and Windelen [247]

used the Pontryagin control method to optimize the energy pulse needed to switch these res-

onators between states. Mahboob and Yamaguchi [2481 took a suspended silicon nanoribbon

placed between two two-dimensional electron systems to create the mechanical analog of a

"parametron," which is a bistable harmonic oscillator that was proposed as a logic device

in the early stages of computer development. They found that the mechanical resonant

frequency could be tuned using a DC piezoelectric coupling. The NEM exhibited resonance

when driven at the resonant frequency and a parametric resonance of a modulated signal

at twice the resonant frequency (as expected due to parametric resonance, discussed in Ch.

4.1). Upon driving the oscillator, it has almost no displacement for driving signals below the

resonant frequency (and so is monostable), large net displacement (due to buckling, which

can be positive (0 phase) or negative (7r phases), and so is bistable) around the resonant

frequency, and tristable (0 or 7r phase buckling as well as no displacement) at frequencies

above the resonant. Since 0 and ir phases are bistable, they exhibit hysteresis and therefore

can be used for reading, writing, and storage of information. They demonstrate this by

using an initially monostable oscillator, selecting a phase using a weak resonant frequency

biasing signal, and finally switching to the desire state (0 or 1) through applying a larger

amplitude parametric actuator pulse at the parametric resonance (twice the fundamental

resonance). Once the biasing pulse ends, the system retains a stable buckling, whereas when

the parametric pulse ends it relaxes to the no displacement state. They extended this work

in Mahboob et al. [2491, where they identify additional parametric resonances. These fre-

quencies can be individually addressed using the same algorithm to store one bit of data in

the displaced oscillations of these resonances. Moreover, the information can be swapped

between resonant frequencies through the anharmonic interactions between the parametric

pulses.

As we have seen, phononic storage principally used acoustic resonators. The study of the

acoustic properties of these systems has constituted a separate branch of study, principally

as a means of evaluating the nature of phonon dissipation. There are a plethora of phonon
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dissipation mechanisms, the understanding and minimizing of which are crucial to construct

stable phononic memory. Direct measure of dissipation in nanoscale resonators was under-

taken by Hill et al. [250]. There, they used suspended nanobeams of varying lengths as well

as planar structured nanobeams (i.e. torsional rotators). Through analyzing the magnetic

field and temperature dependence of the low temperature dissipation, they could differenti-

ate between the various factors dissipation mechanisms and their relative strengths. To do

this, they needed to minimize extrinsic loss mechanisms: (1) Purely mechanical effects such

as clamping (that is, loss induced by the strain from a mechanical support), surface rough-

ness, and internal dislocations. (2) Thermal effects like localized heating (particular that

produced by Kapitza resistance), thermoelastic loss (strain induced local temperature gra-

dients), and thermal expansion. (3) Phonon anharmonicity (made negligible by only using

small amplitude phonons) and gas friction (obviated through working in a vacuum). This

allowed them to isolate the intrinsic dissipation mechanisms. These are principally due to

defects (e.g. chemical contamination or surface effects) and can take often be approximated

as two level systems (transitions between localized defect states) or D - x centers (where

donor atoms couple to an unknown defect). In particular, they determined that the princi-

ple loss mechanism in their resonators arose from internal defect motion. In addition, they

determined that while surface effects became increasingly important as they reduced sys-

tem size, this could not be simply explained by a change in the surface-to-volume ratio but

constituted a purely nanoscale effect. One use feature of acoustic resonators for information

storage is their exceptionally large quality factors, an important measure of the resilience

of the confined phonons against decay. However, these quality factors tend to reduce dra-

matically in smaller systems or for higher frequencies. Thus, Sun et al. [251] can find a

quality factor of the order 103 at GHz frequencies (principally due to losses through the

mechanical support of their microdisk resonator). While Goryachev et al. 12521 work with a

bulk acoustic wave resonator (a high quality crystal slab with curved edges to confine waves

to the center of the resonator) and find a quality factor of the order 10 9 at MHz (at ultralow

temperature). Finally Chakram et al. [253] studied a room temperature mesoscale resonator

at MHz frequencies and found a quality factor of order 107 (principal losses from coupling

to the mechanical support). An overview of the various loss mechanisms in a bulk acoustic

wave resonator, their functional dependences, and their control was given in Goryachev et

al. [254].
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3.3 Methods: Magneto-acoustics

In this section we will derive the analytic expressions for the equation of motion of phonons

in magneto-acoustic materials. In particular, we will consider ferromagnetic materials (the

most common class of magneto-acoustic). Our derivation will initially follow the approach

of Boiteux et al. [198] for antiferromagnets, i.e. a purely quantum model. We will then turn

to a classical model, taken from Gudkov and Gavenda 1213].

3.3.1 Quantum Model of Magneto-acoustic Interaction

To begin, let's consider the volumetric energy -W f HdV of a ferromagnet in an inhomoge-

neous magnetic field B = (-B'x, -B'y, B(z)) where B' = dB(z)/dz. Ignoring the electronic

orbital contributions

H = 3 hwf(q) a((q)af(q) + -+ J(JRi, Rj)Si - Si + g1B (BxSx + y Sy - BSz)
phonon spin

(3.5)

where af is the phonon destruction operator of mode f, J(Ri, Rj) is the exchange coupling,

Ri is the ith lattice site's location, S is spin, g is the spin g factor, and [1B is the Bohr mag-

neton. Since J(Ri, Rj) depends upon the locations of atoms in the lattice, it has an implicit

functional dependence on phonons through the atomic displacement. Taylor expanding this

in terms of ionic displacement from equilibrium gives

Hspin JijSi -Sj + gpB B1XS YSy - BSz )+ E G, 3 )S, ( S s (3.6)
spin a3y(6,i

where Jij is the equilibrium exchange coupling and G is the magnetoelastic coupling tensor

4. Its value for different geometries is given by Dobrov [2551, but for Oh group materials like

4 Boiteux et al. [198] make a mistake in their version of this equation, which reads S' S.
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garnets (i.e. common magneto-acoustics), it takes the form:

G
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G 1312
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1

From this we rewrite our spin-phonon Hamiltonian in terms of the anticommutator operator)

as

Hs, =p [Gyz,yo{Sy, Sz} + Gxz,y{Sx, Sz} + Gxy,,y 6{S, Sy} + GxyS + Gyy,-y6S2

+ Gzz"y6Sz] 2

= Z [G23-y{Sy, Szj + G 13 sSx, Sz} -+ G12 -{S, Sy} + Gil-16S2 + G22yo y

+ G33-ys2] E-Y

= [{sy, SzEyz+ {s, SzEZ + {s, S}Exy] + 2 [3 (SxE + S + Sz )

+ -S 2 ,, i . (3.8)

We now make use of the lowest order Holstein-Primakoff coordinates for magnon modes

Sz= 2S - acai ~ v/ 2Saj (3.9a)

Si = 2S - ta at v 2 Sat (3.9b)

Sz = S - atai ~ S (3.9c)
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where S+ = S, iSy and a is the magnon mode destruction operator. Terms proportional

to S2 introduce a static magnetic energy correction to the phonon band structure but do not

couple magnons to phonons to lowest order in magnon modes. This correction is typically

ignored. Terms proportional to S2, S2, or {So, Sy} are quadratic in a and therefore are also

neglected to lowest order in a. Only the terms proportional to {Sx, Sz} or {Sy, Sz} are

nontrivial and give

Hs = ({SY, Sz }y + {Sx, Sz}EXz). (3.10)

This can be Fourier transformed in Holstein-Primakoff coordinates to give

H = hwi(q) a (q)ai (q) + + hw(q)at(q)a(q)

+ g/PBB(z) (x (-q)a(q) + x+(_q)a (q)) 9IBB(z)S

+ A at(q) ay(q) + a (-q)) - at(-q) at(q) + ay(-q) + h.c.

+ iA [at (q) (ax(q) + at(-q)) - at (-q) (at (q) + ax(-q)) ] + h.c. (3.11a)

where i is now mode index, A = -G44/ hwS 3 /Mc, (M is mass and c. is speed of sound),

-E = - iQ is a function of the electronic orbitals 5, and h.c. is short for "Hermitian

conjugate." We can now write the equation of motion for the creation and destruction

operators

a+ (q) hWP -2iA a+ (q)

a+(M)-hwy 2iA a+t)

id at M) -iA* -iA* -IoS at M(31)
dt a_(q) hwP -2iA* a_(q)

at_(g) -hwp 2iA* at_(;)

a(q) iA iA hwS a(q)

where a a iay, wp is the dispersion of the decoupled phonon branch (i.e. ck to lowest

order), and w, is the dispersion of the decoupled magnon branch (i.e. gPBB to lowest order).

5 This is typically negligible compared to the magnetic contribution in ferromagnets or antiferromagnets.

In paramagnets or diamagnets this couples to the electrons in partially occupied p orbitals.
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This can be solved to give

(h2W2 - hW2)(hO hWs) 41AI2hWP = 0. (3.13)

(Note that JA1 2 has a factor of wp). This implicitly defines the dispersion relation for the

right and left circularly polarized modes. The difference between them defines gives the

circular birefringence, which produces the acoustic Faraday effect.

In fact, the acoustic Faraday effect is not the most general form of the magneto-acoustic

interaction, as it only arises for certain geometries. Specifically, it assumes that the phonon

wave vector is oriented along the direction of magnetic field (i.e. ). This geometry, we

will see, gives a linear rather than a circular birefringence and is referred to as the Cotton-

Mouton effect. However, to properly express the Couton-Mouton effect, and its connection

with acoustic Faraday effect, we need additional terms that are more easily expressed in

classical rather than quantum models of magneto-acoustics.

3.3.2 Classical Model of Magneto-acoustic Interactions

Following Gudkov and Gavenda, their most general form of linear magneto-acoustic inter-

action is

Melast

-iyb 2 k3  -- iyb 2 k 2

i-yb2 ki

i -

7(H + 2 k2 )

-iw

-ik

--7(H + 2a k2)
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where

c1111k' + c131 3 (k 2 + kj) (cu 2 2 + ci3 13 )kik2  (c1122 + cii3 )kik3

Melast (c 1 122 + c131 3 )kik2  ciink2 + ci13(k2 + k2) (cu 22 + c 13 13 )k 2 k3

(c 112 2 + ci13 3 )kik3  (c11 2 2 + c131 3 )k2 k3  c 111 k3 + c1313(ki + k2)

+ PW2 1 , (3.15)

(ki, k 2 , k3 ) (kx, ky, kz), y = gUB/h is the gyromagnetic ratio, b2 is the magneto-acoustic

constant 2G44  S3pMo/h-yM (G is the magnetoelastic constant, S is atomic spin, Mo is

net magnetization, M is phonon effective mass, p is density), H is the applied magnetic

field, a is the magnetic exchange energy (typically neglected), MO is the net magnetization

(assumed to be along z), and m are the fluctuations about this net magnetization (necessarily

transverse to lowest order). Note that this model still makes some assumptions (neglecting

magnetic anisotropy, phonon dispersion, and optical phonon modes). Nevertheless, it is the

most general formalism developed for addressing magneto-acoustic effects.

Recognizing that our system is symmetric for rotations about the z axis, we can simplify

this to only phonons along wave vectors of the form k(sin 0, 0, cos 0) to get

0 (pw 2 
- ciiiik2) [(PW2 - c 13 13k2) 2 (W2 _ WsWm)

(pw2 ik 2 ) Y k2 (Wm cos 2 0 + W8 cos 2 2 - 42 k cos 2 O cos 2

b11k -2 - b 0) 2 -2

- (pW 2 - ci13 3k 2 ) _ 2 k 2 Los (P 2 - c1 3 i3 k2) sin 2 20 + -- 2 k 2 cos 2 0 sin 2 20 (3.16)

where

Wm 2a k2 + H + 47rM sin2o) =ws + 47ryMo sin2 o. (3.17)
(MO

This determinant defines the dispersion relation along an arbitrary direction, which we plot

in Fig. 3-10. Notice that this includes multiple hybridizations of the magnon modes with

the phonons, one for the longitudinal modes and one for the transverse modes. In general,

these hybridizations have no particular symmetry.

However, along high symmetry directions (0 = 0, 7r/2), things simplify a great deal. Along
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Figure 3-10: Magneto-acoustic dispersion relation near band crossings for the low symmetry

case. Bands are linear elsewhere. Note the hybridization of the magnon and LA phonon

modes as well its hybridization with one of the TA phonon modes.
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0 = 0 eq. 3.17 becomes

0 = (pw 2 
- c1Ilk 2) [(PW2 - c13 13 k2) 2 (w 2 _ 2) - 2 (pW 2 - c13 13k 2) osY k 2 _ 22 k4

(3.18)

6 which can be factored as

(pO 2Cik 2 ) - C1313k2) + s) + (p2 - c1313 k 2 ) (W - ) -

(3.19)

to get the same equations as eq. 3.13. We therefore see that the two approaches give

equivalent results.

On the other hand, when 6 =r/2 we have

0 = (pW 2 - ci1ik2 ) (PL 2 
- c13 13k 2) [(PL2 - c13i 3 k2 ) (L 2 

- wswm) - b k2s . (3.20)

Notice that now two of the phonon modes have decoupled from the magnon modes in this

case. Specifically, the Q polarized transverse phonons, which are perpendicular to both k

and H have no coupling to the magnetic field and so are unaffected, while the - polarized

phonons are strongly coupled to the magnons. This is the Cotton-Mouton effect, i.e. linear

birefringence. The dispersions for both high symmetry cases are shown in Fig. 3-11. Unlike

in Fig. 3-10, along the high symmetry direction the bands only hybridize once. The lon-

gitudinal modes do not hybridize because they are symmetry protected in these directions,

either by mirror symmetry (Cotton-Mouton regime) or rotational symmetry about the

axis (Faraday regime). This latter regime is also important because the eigenmodes of the

transverse phonons (and hybridized magnons) are circularly polarized, indicative of a strong

time-reversal symmetry breaking.

3.3.3 Acoustic Faraday Effect

Before going any further in analyzing the specifics of the magneto-acoustic interaction,

there is one final correction that the model in Gudkov and Gavenda [2131 failed to account

for, namely the existence of finite lifetimes. Phonons have comparatively long lifetimes

6 Gudkov and Gavenda [2131 have an error in their form of this equation, which reads (pW 2 - c1 3 13 k 2 )(W 2 _

WsWm).
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Figure 3-11: Magneto-acoustic dispersion relation near band crossings for the high symmetry

case. Bands are linear elsewhere. Note the crossing of the magnon and LA phonon modes

(unlike in Fig. 3-10), as well as the hybridization of one TA phonon mode with the magnon

mode. The resonant frequency is slightly shifted between this figure and the general case in

Fig. 3-10 because of the magnon mode's angular dependence.
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in magneto-acoustics, with their chief dissipation mechanism being due to finite magnon

lifetimes. This can be modeled by adding a finite lifetime term to the magnon modes (of the

form ri = -m/T where T is the lifetime). Adding that term to the dispersion relation (and

dropping the magnon dispersion correction as negligible), we can solve for the dispersion (as

k(w) rather than the standard w(k))

k = w (3.21)
C1313 1 b 2 b 2

-yH (w-I) C1313 MO

which we can simplify in terms of dimensionless quantities Q WT, Q =-yrH, =

-ybTI/c131 3Mo, p = 47tyrMo and 1 = V'c1313T2 /p to give

k I (- I - 1 2 . (3.22)

When a linearly polarized wave enters a circularly birefringent medium, it acquires a phase

difference that we can express as

u(z) I [ Z u] ( (3.23)
2~ e ik' z-k" z I -i uV (0)

1 e[ikuz-k"z (0) + y(0)+ eikz-k"z[ux(O) - i()
k -(3.24)

-ieik zk'z [a (0) + iu(O)] + ie(k z-k"z 1u(0) - iuv(0)]

where z is the position an arbitrary distance along the magneto-acoustic and k ka + ik".

Since we're interested in the phase acquired, we set the initial polarization to be # = 0 (i.e.

u(0) = uz(0)), giving

cosh[k" - k" ]z - cos[k' - k'_z [k+ - k_]z [k* - k* ]z
tan 2o + = = tan -tan . (3.25)

cosh[k - k" z + cos[k' - k]z 2 2

Neglecting circular dichroism gives

k+ k- L (3.26)
2

where L is the total length of the magneto-acoustic. This is the standard form of the acoustic

Faraday effect, which rotates the angle of polarization. Materials that realize this effect are
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called gyrators. Illustrative cases of real and imaginary Ak are shown in Fig. 3-12 which is

approximately Lorentzian.

3.3.4 Cotton-Mouton Effect

Using the formalism developed for the acoustic Faraday effect, the dispersion relation for

the Cotton-Mouton effect is

k = 1 (3.27)
C1 3 13  2H_-b 2 b

1 (i + )2+_y2H(H+47rMo) C1313 MO

or

S (,Q + 1)2 + 0(0 + (3)8

The other transverse polarization is just k = w1p/c1313 = Q/l. The difference between

these wave vectors gives the linear birefringence for the real part and linear dichroism for

the imaginary part. Note, though, that the imaginary part is solely from the polarization

coupled to the magnetic field (i.e. when ftll). Thus any dichroic losses in this regime are

due solely to that polarization, and the material acts like a perfect linear polarizer. The

dependence of this dispersion relation's real and imaginary parts is illustrated in Fig. 3-13.
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Figure 3-12: Functional dependence of the acoustic Faraday effect. (A) Frequency depen-

dence for H = 0.05T. Approximately Lorentzian. (B) Magnetic field strength dependence

for w = 10 GHz. Again approximately Lorentzian.
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Figure 3-13: Functional dependence of the Cotton-Mouton effect. (A) Frequency dependence

for H = 0.01T. Note linearity of real and imaginary parts. (B) Magnetic field strength

dependence for w = 10 GHz. Approximately Lorentzian. Real part decays much more

slowly than imaginary part.
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3.4 Magneto-acoustic Phonon Computing

The techniques for phonon computing considered in Ch. 3.2, with very few exceptions,

suffer from the limitations imposed on reciprocal devices. The nonreciprocal approaches to

phonon computing, on the other hand, have been limited by the use of moving parts 1236]

or complicated driving methods [237, 238]. Similar limitations also apply to computing

elements using thermal phonons (such as thermal diodes, transistors, logic, and memory [1,

257, 258, 259, 260, 2611). One contributing factor keeping phononic computers constrained

to reciprocal devices has been the assumption that a phononic computer would act like

an electronic one. In particular, for electronics information is encoded in a scalar voltage

intensity (high or low voltage = logical 1 or 0) and as such it was seen as natural that

phononic information would be encoded in the same way - as a scalar temperature (hot or

cold = logical 1 or 0) or intensity (present or absent = logical 1 or 0). Moreover, electronic

circuits rely more upon breaking spatial symmetries and interfacial effects (e.g. pn junctions)

for constructing circuits, ergo phononic circuits principally were designed around engineering

interfaces or asymmetric scattering. This has led to a focus on nanostructures [262, 263] or

ID nonlinear materials [1, 257, 258, 264] to boost the surface-to-volume ratio, however these

devices are difficult to fabricate.

By moving past the presumption of a strict analogy between electronic and phononic com-

puting, we can construct alternative phononic computing architectures that more directly

address the challenges of phononic transport control. In this section, we illustrate this prin-

ciple by making an analogy with an information carrier that bears little resemblance to

electrons, namely photonic computing. As such, it is natural for us to encode information

using the phonon's polarization for a current of transverse acoustic phonons (in particular

we define transverse vertical as logical 1, transverse horizontal as logical 0, and leave the

longitudinal phonons unused as we restrict ourselves to purely transverse or longitudinal

magnetic fields where LA modes are decoupled from the magnetic field, see Ch. 3.3). Our

circuit elements must therefore modify some arbitrary transverse, elliptic polarization, and

therefore we require gyrators (which rotate the polarization angle, also called Faraday ro-

tators in photonics) and polarizers (which filter out a linear polarization) from which to

construct diodes (also called isolators or Faraday isolators in photonics [265]) and transis-
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Figure 3-14: Decomposition of abstract logic elements into their constitutive components
in electronics, optics, and phononics. Circles denotes the classes of information carriers:
electronic, optical, phononic, and (abstract) logical. Each circle contains a list of elemen-
tary devices that control these information carriers. For electronics, optics, and phononics,
the basic elements are typically a single material or interface while for logical signals are
more abstract and as such defined by their effect on information. Arrows indicate which
the relation between the basic material elements and their composition into abstract logic
elements. From S. R. Sklan and J. C. Grossman, New J. Phys. 16, 053029 (2014) [256].

tors. The decomposition of abstract logic elements into the basic devices of electronics,

optics, and phononics is illustrated in Fig. 3-14. To make sure that our devices fall into

the strong reciprocity breaking regime, we require systems that unambiguously break time-

reversal, rather than reflection, symmetry - and as such we will make use of magnetic

fields. For there to be a strong coupling between magnetic fields and a phonon current, we

use magneto-acoustic materials (see Ch. 3.3).

3.4.1 Magneto-acoustic Phonon Isolators

In optics, isolators are constructed though sandwiching a 7r/4 gyrator between a pair of

linear polarizers that are rotated by 7r/4 with respect to each other (see Fig. 3-15)) [265]. In

the forward configuration, a signal enters, becomes polarized along first polarizer, acquires

a rotated polarization from the gyrator, and emerges with a polarization parallel to the

second polarizer's. Conversely, in the reverse configuration the signal becomes polarized and

then acquires the same rotation in polarization, thereby emerging orthogonal to the second

polarizer. Using the Cotton-Mouton effect for polarizers and the acoustic Faraday effect

for gyrators, we are able to construct both polarizers and gyrators from magneto-acoustics

just by sculpting the magnetic field's strength and orientation. To optimize an isolator

for a single frequency input, one must select magnetic field strengths such that dichroism is

minimized in the gyrator (as even weak circular dichroism can render destructive interference
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imperfect) and strong dichroism for the polarizers.

In designing our gyrators and polarizers we can independently select the field strength,

phonon frequency, and magneto-acoustic length. We do not concern ourselves with optimiz-

ing the properties of the magneto-acoustic, taking them to be fixed and using values from

a representative experiment [266]. We select a phonon frequency of 10 GHz, which slightly

larger than that in Guermeur et al. [2661 but more clearly reveals the operation of our

circuits. k(H) is then analytically calculated and numerically evaluated for each element's

dispersion and these are used to select realizable magnetic fields strengths that simultane-

ously give desirable amounts of birefringence and dichroism (0.01T for the polarizers and

0.1T for the gyrator). Finally, we select lengths such that the gyration (9 = L(k' - k')/2)

is as close to 7r/4 as possible and that the filtering (a = exp(-kI'L)) of the undesired po-

larization is strong. The resulting isolator is then evaluated numerically by calculating the

phase acquired by the phonon current as it traverses each element. The intensity profiles

of the different combinations of input polarizations and directions are plotted in Fig. 3-15,

which reveals that the circuit unambiguously blocks (with more than a 95% loss of inten-

sity) all inputs except for the desired polarization and direction. Since the right and left

circularly polarized eigenmodes in the acoustic Faraday effect regime have opposite signs in

their imaginary components 7, the amplification observed in the forward configuration is to

be expected.

3.4.2 Magneto-acoustic Phonon Transistors

Designing a transistor necessitates that we use a more sophisticated approach than was

needed for the isolator. In particular, having some form of measurement operator is necessary

for the creation of a transistor in our framework. Measurement of polarization-dependent

phonon intensity is somewhat challenging at high frequencies and while we don't consider this

problem in detail Fig. 3-16 illustrates a heuristic approach. It is quite likely there are more

efficient or more sensitive experimental realizations of a measurement operator, however the

form we sketch here is conceptually simple and sufficiently functional for designing a proof of

concept phonon transistor. In particular, our measurement operator can be separated into

7the exponentially growing component arising from the extraction of energy from the magnetic field via

the magnons.
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Figure 3-15: Operation of an isolator (A), (B): Model schematic of an isolator constructed
from a gyrator (cylinder) placed between by two polarizers (rectangles, where the gaps

denote the polarization that is not blocked). Blue and red lines denote the x and y polar-

izations, with the purple line (in (B) only) constituting a superposition of both. The Green

lines indicate the direction of signal propagation (that is, the wave vector, k). (A) Forward

configuration. Unpolarized signal enters, becomes polarized, gyrated, and then leaves. (B)

Backward configuration. Unpolarized signal enters, becomes polarized, gyrated, and then

blocked. (C)-(F): Simulation of the isolator in operation. Blue and red lines are the inten-

sities of their respective polarizations. Grey rectangles indicate magneto-acoustic material,
which is arranged in the same pattern as in (A) and (B). (C) and (D) have the incident sig-

nal x-polarized (the allowed input polarization), while (E) and (F) have the incident signal

y-polarized. In (C) and (E) the signal approaches in the forward configuration, whereas in

(D) and (F) the signal approaches from the reverse configuration. Only in (C) is the signal

transmitted without appreciable loss in intensity. From S. R. Sklan and J. C. Grossman,
"Phonon diodes and transistors from magneto-acoustics." New J. Phys. 16, 053029 (2014).

Available under a Creative Commons Attribution 3.0 license [2561.

92



phonons
_ _ _ _ - - piezoelectric

RV Riow

R9

-- Rhigh electromagnet

Figure 3-16: Heuristic measurement operator. Phonon current traverses piezoelectric, which
transduces an electronic signal that is proportional to the amplitude of one phonon polar-
ization polarized. The resultant AC voltage is then rectified with a diode and amplified
via an op amp to produce a constant DC voltage. This voltage is used to switch between
applying or suppressing (Rhgh > Rjow) a current that drives an electromagnet (producing
a magnetic field). In this figure, a magnetic field withheld upon the application of a phonon
current exceeding a threshold value. From S. R. Sklan and J. C. Grossman, "Phonon diodes
and transistors from magneto-acoustics." New J. Phys. 16, 053029 (2014). Available under
a Creative Commons Attribution 3.0 license [2561.

multiple steps: detection and transduction (piezoelectric), rectification (electronic diode),

amplification (op amp), and application (electronic transistor, electromagnet). These steps

are all differentiated and each is in principle realizable.

Once we have a measurement operator, we can construct a transistor by sending a fixed

logical 0 signal into a gyrator and then selecting whether or not a magnetic field should

be applied via measuring a second phonon current's polarized intensity. If the polarized

intensity exceeds the threshold then a magnetic field is withheld (the gyration is strongest

as B -+ 0 8.) Remanence magnetization (also called residual magnetization) within the

magneto-acoustic thus supplies the magnetic field to required for the operation of the gyrator

working. On the other hand, when the polarized intensity falls below the threshold, a

magnetic field will be applied to the magneto-acoustic, thereby suppressing the circular

birefringence and partially cancelling the gyration (perfect cancellation requires B --+ oc).

Fig. 3-17a,b summarizes the operation of the transistor in these two cases. Since the

transistor input signal is not the same as the output signal, it is possible for a relatively

8 1n actuality a small, non-zero field is probably preferable as this model does not include thermal fluctu-
ations reducing the magneto-acoustic's remanence magnetization from the saturation magnetization
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modest intensity input to produce a high intensity output. This effectively amplifies the

information-carrying current, as is typical for a transistor 9.

If the transistor is to work as a logic operation in our basis, the gyration should ideally be

r/2. Repeating the process previously used to design the isolator (magnetic field of 10- 4 T

for off and 0.5T for on), we model the transistor in Fig. 3-17c,d. In these simulations we

abstract the measurement device and instead focus upon the effect of applying or withholding

a magnetic field.

3.4.3 Error Sensitivity

While these circuit elements clearly perform their desired operations, there remain are im-

perfections for each element. For example, when a field is applied to the transistor and so

the gyrator is off, the relatively weak field intensity allows a small gyration to persist. On

the other hand, when no field is applied and the gyrator is on, circular dichroism prevents

perfect destructive interference between the left and right circularly polarized modes, which

results in a small horizontally polarized remnant signal. In particular, for an incoming sig-

nal at 0j, = 0 and the magneto-acoustic length optimized for 7J5 = r/2, the outgoing

polarization angle is limited by

,( Im[ k+_-k|
tan q$=coth 2 Refk - k]) (3.29)

(2 Re[k+ - k_]

10. This error can be compensated for by allowing some fuzziness in our definitions of the

polarization angles encoded as logical 0 or 1 (this is especially reasonable as the piezoelectric

transduction method used in in Fig. 3-16 is rather insensitive to the undesired polarization),

there is a more stringent limit implied by these errors. Because the erroneous phases acquired

9Circular dichroism in the gyrator could, in principle, also induce amplification of a current passing from
source to drain of. However, the amplified component would be necessarily circularly (and not linearly)
polarized, and therefore it would need a greater complexity in the circuit design. In particular, it would
require polarizers also that would also be driven by the measurement gate (i.e. error-correction) to maintain
the linearly polarized logical one and zero basis that we have been using. A circular basis, on the other hand,
could exploit this amplification, however it would also complicate the design, particularly the measurement
operator.

'oNumerical results slightly exceed this limit, and we observe numerically that the maximum of # occurs
using a transistor that is slightly thinner than would be predicted by L = 7r/(k' -k' ) (the length we assume
in eq. 3.29). This is fairly negligible, however, and in most scenarios the estimated length is sufficiently
accurate for our designs.
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Figure 3-17: Simulation of a phonon transistor. Conventions are the same as Fig. 3-15.

(A) Schematic model of the transistor in the on state. The black box labeled M indicates

the measurement operator, a heuristic of which is presented in Fig. 3-16. (B) Schematic

model of the transistor in the off state. The magnets represent the creation of a magnetic

field (dark red lines) applied to the gyrator. (C) Simulation of the transistor in the on

state (where no suppressing field), switching the phonon current from 0 to 1 as it goes from

source to drain. (D) Simulation of the transistor in the off state (where the suppressing field

is applied), and no switching of the phonon polarization occurs. From S. R. Sklan and J.

C. Grossman, "Phonon diodes and transistors from magneto-acoustics." New J. Phys. 16,
053029 (2014). Available under a Creative Commons Attribution 3.0 license [2561.
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by a signal traversing a transistor in the off state will accumulate, there exists a maximum

total length of a series transistors that can be chained while simultaneously maintaining well-

separated logic states. In practice, this difficulty can be partially mitigated by introducing

repeater circuits (which maps a noisy input to a specific, less noisy value, such as we observe

in our transistor design when the signal is sent to the gate, not the source) in sufficiently long

operations. Thinking of each gyrator in a series as being tied to a different measurement gate,

then this length constraint also determines the maximum number of independent inputs in

a logic operation that can be performed without requiring a repeater. It is possible exceed

this limit, however, as multiple phonon currents can superimpose, an approach we exploit

in Ch. 3.4.5. To make the practical effects of this constraint more concrete, we need to

define a specific encoding for a range of polarizations instead of just perfectly horizontally

or vertically polarized. In particular, we now define logical 0 as [0,7r/5] and logical 1 as

[37r/10,7r/2] (with the other quadrants mapped into the 1st by reflection symmetry). For

this encoding and using our previous parameter values for a transistor, we find that the

number of (fixed length) gyrators goes as

N = floor [6.4H2 - 0.0591H| - 0.0047] , (3.30)

where N is the maximum number of gyrators, floor is a function that rounds down to the

nearest integer, and H the applied field strength in Tesla. For variable length gyrators

we can increase the number of transistors, but the total length of the series remains the

fundamental constraint. From this relation we can also determine that minimum allowable

field strength for the off state is therefore 0.4T. A similar limit for the on state also exists,

but the fact that B ~ 0 for this regime makes it a weaker constraint on the number of stages

and field strengths.

The existence of circular dichroism in the acoustic Faraday effect thus yields a systematic

error which constrains computational power. In addition to such systematic errors, random

errors can also degrade an isolator or transistor's operation. Although sufficiently thick

polarizers are notably insensitive to such errors due to their exponential damping, gyrators

can be extremely sensitive. Generally, this sensitivity is a function of frequency and magnetic

field intensity. To evaluate the sensitivity of an arbitrary gyrator, we use the linearized

equation of uncertainty propagation. When expressed in terms of fractional uncertainties,
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Polarizer Gyrator Transistor

6H 81.5pG 3.42G 25.OG
6w 3.32kHz 34.2MHz 49.5MHz
6L 30.0pam 12.0pum 10.0pm

Table 3.1: Maximum acceptable tolerances for errors in the independent parameters, given
an assumption of 1% operational error. Each calculation is done for an error in isolation,
i.e. assuming that all other errors are 0. The "polarizer" and "gyrator" columns correspond
to the elements of the isolator. Tolerances for the transistor are calculated in the off state,
where the constraints are more stringent. From S. R. Sklan and J. C. Grossman, "Phonon
diodes and transistors from magneto-acoustics." New J. Phys. 16, 053029 (2014). Available
under a Creative Commons Attribution 3.0 license [256].

this gives the result:

OAkL 2 OL ) 2 + k 2 (H 2 Ak 2  2

AkL L ) H H ) w W

This approach overestimates the effects of random errors, as it does not differentiate between

contributions to the real and imaginary parts of the dispersion. To determine the maximum

tolerance for a given source of error, we consider each of the errors acting in isolation. The

results of this calculation are summarized in Table 3.1. The noticeably lower tolerances for

the polarizers in the isolator come from a reliance upon resonant losses, which constrains

B(T). However, this is not too problematic as the operation of the polarizers is typically

the least integral part of the isolator. So long as they yield appreciable losses, their precise

magnitude is unimportant. Ergo we can more easily accept errors in our polarizers than

in any other part of the circuit. Furthermore, the performance of a polarizer can be eas-

ily improved just by increasing its thickness until the undesired polarization is completely

blocked.

3.4.4 Logic Gates

From diodes and transistors, it is possible to create arbitrary logic gates. We illustrate this

with the circuit diagrams of all the two-input logic gates in Fig. 3-18, where the white

dots are 7r/2 rotators, the black dots vertically activated control elements (no rotation when

vertical polarization absent, 7r/2 rotation when present, similar to a controlled NOT gate),

the two binary inputs are labeled X and Y and the output is Z. Notice that all of these

97



x
Y
0 C__-XY 0 XY

Y
0-0- X

-o-ox 0YY

0-o-o-XY 0 XYO0 V-o 0 CX+YY
0 CE--AY CH EeY 0Y 0 -+

0-o ---O- 0 -- +Y 0 CD +Y O 0 1

Figure 3-18: Table of all the two-terminal logic operations Z(X, Y) implemented in the
magneto-acoustic architecture. White dots are 7r/2 rotations and black dots are vertically
activated control elements. Logic functions are denoted at the lower right corner (the output
terminal) for each box in the table.

gates share basic similarities. In principle, we could create a gate containing controls and

gyrators at every location, and then choose which ones to activate at a given time. This

would be an arbitrary, programmable logic gate.

3.4.5 Frequency-domain Parallel Computing

We can even take this a step further by considering multiple frequencies of phonons mul-

tiplexed into a single signal. Since rotations are continuous and cumulative, any desired

rotation can be split up into several smaller rotations that are controlled by several inputs.

The nonlinearity of k+ - k- in the acoustic Faraday effect (see Fig. 3-12 of Ch. 3.3) implies

that the gyration is a nonlinear function of frequency. As such, splitting up the rotation

means that each sum will in turn be different according to the relation

(3.32)4I(WQ) ) (wi, Hj)Lj

where <D is total rotation, # is rotation per unit length, H is effective magnetic field strength

of the jth element, and Lj is its length. For there to be sufficient degrees of freedom that

arbitrary rotations are possible at each frequency, it is necessary that 9 is not separable

(i.e. cannot be written in the form f(w)g(H)) and that there are at least as many elements
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as there are frequencies (i.e. that j > i). In actuality 3.32 only works in the limit of no

circular dichroism in the acoustic Faraday effect, which is at best an approximation. A more

accurate calculation incorporating losses gives

Ejkj+ - k _] Lj Ej [kj*+ - kj_] L
tan2 <(wg) tan tan

2 2

cosh ( Akj'Lj) - cos AkjLj)
(3.33)

cosh (E Akjf'Lj) + cos Ak'Lj)

where k is the wave vector, Ak is the difference or right and left circular polarization

k+ - k_, k' is the real part of k, and k". Given the complexity of this relation, it is helpful

to numerically evaluate this dispersion relation and the resulting rotations. As such, we

again use the same experimental results used in Sklan and Grossman [256] and proceed to

the simplest case of two frequencies.

To begin designing the two-frequency gate, it was helpful to consider the fixed parameters

of element length and frequency. In particular the chosen frequencies must have sufficiently

different nonlinear responses for a given magnetic field strength. Moreover, we also seek to

minimize the overall length. To tackle this problem, we considered the rotation produced

in the 0 applied field limit, where all the magnetic field is due to the internal magnetic

field of YIG. The resulting gyration as a function of frequency and length is plotted in Fig.

3-19. This shows three operating regimes. In the low frequency, thin element limit there

is no rotation, as expected. In the thick element limit there is strong circular dichroism,

which damps the signal to the point that no logic operation can be performed and leaves

a 7r/4 polarization. Lastly, in the triangle of high frequency, thin element, there are bands

of maximum and minimum rotation. We select thicknesses of 0.13 and 0.27 cm, near the

center of the first two bands and adding up to the third band when combined. Frequencies

are chosen as 10 and 20 GHz, both frequencies falling within the peak of the first and second

bands but only the higher frequency hitting the maximum rotation peak of the third band.

That is, if only one element is active, both frequencies get affected, but if they are both

active only one frequency is affected.

Given this determination of w and L, the magnetic field is now varied to create more precise

control of the out-going polarizations (and determine the required values of H). For this
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Figure 3-19: Rotation of a magneto-acoustic YIG gyrator in the intrinsic field limit. Length
of the element is plotted along y, frequency of phonon current is along x. Color contours
denote angle of rotation.
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Figure 3-20: Logic outputs of the magneto-acoustic gate as function of applied field

strengths. Part (a) is for 10 GHz and part (b) is for 20 GHz. The blue domain is for

no rotation (logical 0 output), red is full rotation (logical 1 output) and white is intermedi-

ate (undefined logic value). Part (c) is the combination of the phase of parts (a) and (b),
with logic states (f(10), g(20)) = (0, 0) for dark blue, (N/A,0) for blue, (1,0) for purple,
(0,N/A) for cyan, (N/A,N/A) for white, (1,N/A) for yellow, (0,1) for magenta, (N/A,1) for
red, and (1,1) for dark red.

to be useful, though, we must again broaden our logic states from precisely vertically or

horizontally polarized signals. Instead, a range of acceptable polarizations defines each of

the states. For this problem we select [0, ir/6) as logical 1 and (wr/3, 7r/2] as logical 0, leaving

the intermediate region as a buffer. This allows us to define the logical output for a set input

frequency and polarization as a function of total rotation vs. magnetic field strengths, which

we plot in Fig. 3-20. Parts a and b of Fig. 3-20 are of the two frequencies individually and

are colored to show the logic states in each part of the phase diagram. Part c overlays the

phase boundaries of the previous parts, the intersections of which define regions where the

magnetic fields are tuned to produce the desired logic operations on each frequency. The

size of the domains also determines the error tolerance of the magnetic fields (similarly, the

bands in Fig. 3-19 determine the error tolerances for lengths and frequencies).

Hence, selecting magnetic fields of (Hi, H2 ) = 0.25, 0.01 T for an output of (4I1, 12) = (0, 0),
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Figure 3-21: Numerical simulations of signals passing through the two stage gyrator. Plots

are phonon intensity vs. position. The blue line denotes horizontal polarization and the

red line denotes vertical polarization. Shaded regions are the magneto-acoustically active

domains. Columns denote frequency - 10 GHz for the first and 20 GHz for the second.

Rows are different logic operations, corresponding to different magnetic field strengths.

(0.16, 0.01) T for (0,7r/2), (0.02, 0.2) T for (7r/2, 0), and (0.02,0.32) T for (7r/2,7r/2) allows

us to map out all the two frequency operations. We plot the simulations of our. circuit in Fig.

3-21, the columns being for a fixed frequency and the rows being for fixed field strengths. The

individual plots use the same conventions as Fig. 3-15 and Fig. 3-17. Crucially, while the

outgoing polarizations are not perfectly horizontal or vertical, they are well within the range

of accuracy required for stable logic values. Should further refinement be needed, though,

there is always the option of using the Cotton-Mouton effect to eliminate the extraneous

polarization.

It is perhaps illustrative to compare these results with those of Mahboob et al. [241]. In both

approaches, a frequency domain multiplexed signal was sent to a nonlinear phononic device
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used to perform multiple logic operations. The approach considered here, however, is more

flexible in its frequency scaling (increasing as N rather than 2 N for N frequency inputs).

Furthermore, the technique in Mahboob et al. [2411 requires the nonlinear interaction of

different frequencies to produce additional frequency components, while our parallelization

method goes the opposite extreme and does not assume any interaction between frequen-

cies.
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3.5 Magneto-acoustic Phonon Computing Conclusions

We have shown that, when phonons are resonant with another signal, there is a strong mixing

of modes resulting in hybridization of phonons with the other signal and level repulsion

between them (which can open up band gaps). The resonance itself can in turn be tuned by

means of a third signal, which is not necessarily at resonance but is coupled to one of the

resonant modes. This effect is well illustrated in phonon computing, where the magneto-

acoustic phonon computer that we described explicitly relied upon the hybridization of

resonant phonons and magnons. With the phonon isolator, however, these resonances were

fixed. As such, the phonon isolator was intrinsically a static device; it would do one operation

regardless of conditions. The phonon transistor, on the other hand, used a tunable resonance

and therefore was dynamically controllable. The same signal at the source of the transistor

would not necessarily produce the same signal at the drain. This distinction between the

transistor and the isolator is one of the major advantages of dynamical tuning, the ability to

respond to changing requirements. Moreover, as the transistor was a nonlinear device, we

were able to create a form of dynamical control that allowed for arbitrary logic operations

across multiple independent frequencies, thereby opening up a new form of frequency domain

parallel computing. This technique exploited multiple tunable resonances and could not be

easily reproduced with a stationary device or linear operation. It also constitutes a potential

avenue where exploiting the information content of phonon is preferable to other forms of

information processing.

From the example of phonon computing, we also see another limitation of the band structure

picture of solid-state dynamics. Because the band structure only shows the real part of the

dispersion, it is unable to account for losses in the imaginary term. This is crucial when

designing practical devices, as losses can affect the stability of an operation. The acoustic

Faraday effect, for example, is often described as if circular dichroism does not exist; yet it

proved unavoidable in designing realistic gyrators. Even more crucial, though, is the inability

of the band structure to present information about the spatial wave functions. While the

dispersion illustrates frequency and wave vector (the direction of propagation), it does not

represent polarization. But polarization is not negligible, particularly when considering

mode mixing as an avenue to breaking degeneracies. The band structures in the Cotton-
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Mouton and acoustic Faraday regimes are superficially equivalent yet the transverse acoustic

phonons' degeneracies are broken by different forms of symmetry breaking (rotational vs.

time-reversal) in these cases. This in turn leads to very different effects of a magneto-

acoustic for the same frequency resonance. The ability to tune polarizations or eigenmodes

would therefore be a potentially valuable form of tuning beyond the simple band structure

picture.
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Chapter 4

High Frequency Tuning

In Ch. 1 we demonstrated that a system driven above its resonant frequency will be unable

to keep up with the changes imposed by the tuning signal. This can lead to novel phenomena,

as the system is unable to relax back to a steady state between changes. It can also produce

additional resonances under the correct circumstances (i.e. parametric resonance) or to

affect sudden changes to the band structure. These sudden changes can produce scattering

(i.e. anharmonic perturbations that mix modes), an effect not seen at lower frequencies.

However, because we require high frequencies, these effects are generally just the result of

optical couplings, rather than the panoply of couplings we saw in previous chapters. In

this chapter we will review parametric driving, ionic Raman as a means of producing non-

equilibrium ground states, optomechanical control of phonons, and a means of modeling

piecewise-deterministic Markov processes. We will then illustrate these principles with a

means of optically tuning the phonon band structure to create opto-phononic switches and

the inverse acousto-optic effect.
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4.1 Parametric Driving

Back in eq. 1.6 we considered a simple harmonic oscillator driven by an external force. While

this is a very common way of driving a system, it is not the only way. An alternative is to

vary the parameters of the system by some external driving. This results in a generalization

of the simple harmonic oscillator, such as

ii + f (t)u = 0 (4.1)

where f(t) is a periodic function. This is the Hill equation, although a simple change of

variables allows us to redefine it as the Floquet equation

S= A(t)w (4.2)

for periodic A(t) [158]. The Floquet equation is the temporal equivalent of the Bloch equa-

tion, both admit solutions of the form

Wi(t) = CeiAt XMt (4.3)

with periodic function X and complex eigenvalue A. The imaginary part of A indicates

exponential growth or decay of the solutions. Exponential growth, as always, is a sign

of resonance. Unlike in the simple driving picture, parametric resonances can occur at

frequencies away from the natural resonance frequency. This can be seen with the special

case of the Hill equation

i 0 + (w -2AW2 cos 2Qt)u = 0 (4.4)

which is the Mathieu equation [158]. The Mathieu equation is the specific form generally

considered for parametric oscillators, although the Hill equation is also often used [267]. The

solutions to the Mathieu equation are (surprisingly enough) Mathieu functions, the proper-

ties of which are explained in detail in Abremowitz and Stegun [158]. But if we assume that

the perturbation of Ao 2 is small, then we can approximate u(t) cos(2Qt) as uo(t) cos(2Qt)

where uO is the solution to the simple harmonic oscillator (eq. 1.6), i.e. sin(wot + <) We can
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therefore rewrite our equation of motion with this approximation as

0 + wo= 2Aw2uO cos(2Qt) sin(wot + #) (4.5)

This is resonant whenever cos(2Qt) sin(wot) has frequency wo. Since in general the product

of cos 0 and sin 0 (or two cosines or two sines) can be expressed in terms of cos(# 9), our

resonance condition for weak parametric driving becomes

2Q wo = wo (4.6)

which admits solutions Q = 0, Q = wo. The first solution is the standard driving resonance

effect while the second is a parametric resonance. Note that this resonance occurs when the

parameter is varied at twice the resonant frequency and is therefore a high frequency driving

effect. Using aperiodic functions (e.g. functions of random variables, such as we consider in

Ch. 4.4) eliminates these resonances while revealing other high frequency effects.
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4.2 Ultrafast Photon-Phonon Effects

4.2.1 Photoinduced Phase Transitions

An aspect of phonon-photon coupling that has recently gained particular prominence is

the ionic Raman effect due to its ability to induce transitions to non-equilibrium states.

Although this effect was first predicted many years ago by Wallis and Maradudin [268] and

Martin and Genzel [269], it was not until Fdrst et al. [270] experimentally confirmed it

that ionic Raman became significant. Ionic Raman works similarly to stimulated Raman,

where phonons at a particular mode are driven by a coupling with a different, optically

driven mode. In stimulated Raman, the optically driven mode is typically electronic, while

in ionic Raman the driven mode is infrared phonons. These phonons then anharmonically

couple to the Raman modes, which are at a much lower frequency than the infrared phonons.

Hence, a photon-phonon resonance in the infrared is used to control low frequency phonons.

Specifically,

2 e*Eo
ul + w uj = sin(wjt)F(t) (4.7)

iR + WRUR =Aui (4.8)

where ul is the infrared mode's displacement, e* is the effective charge, Eo the electric

field, F(t) the pulse shape, M- the effective mass, UR is the Raman mode, and A is the

anharmonicity constant. Because the force driving the UR phonon oscillation is proportional

to

ul oc sin2 (wit) Oc (I - cos(2wit)) 1/2 (4.9)

the Raman mode will experience a constant force over a timescale of 1/WR > 1/Wi. This

will cause a finite displacement of the lattice to some new equilibrium position. But because

this equilibrium is contingent upon a large enough population of coherent infrared phonons

to destabilize the Raman mode's equilibrium, it is an intrinsically non-perturbative, out of

thermodynamic equilibrium effect (as shown by Subedi et al. [271]). This means that the

new ground state can display properties not found in thermodynamic ground states such as

the hidden states of Ichikawa et al. 1274] (shown in Fig. 4-1), and so the effect is termed
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a photoinduced phase transition. It is also a coherent perturbation and so not same as

photoinduced heating producing a thermal phase transition, a much more conventional effect.

Not only does that pathway lead to only thermodynamic ground states, but the time-scale

involved in that transition is much longer than in the photoinduced transition 1272, 2731.

Much of the interest in photoinduced phase transitions has been on how this effects the

electronic ground states (reviewed in Gamalyn and Rode [2721 and Yonemitsu and Nasu

[2731), but lattice effects are also interesting. For example, these transitions can change the

symmetry of the lattice and thereby change the band structure (as demonstrated by Wall et

al. [275, 276]). In addition, while the phase transition is initially athermal, thermal effects

are not entirely absent as the system equilibrates. Garl et al. [277] observed a photoinduced

thermal expansion of bismuth, which in turn induced a photon fluence dependent red-shift

of some of the phonon modes. This deviated from the standard form as the phonons were

out of thermal equilibrium with the electrons. The effect was limited, however, by their

system melting, as this sort of phonon softening is an expected signature of materials near

a structural, thermal phase transition [278]. Indeed, the system's temperature was above

the melting point, and it was only in probing the sample on ultrafast time scales (i.e. faster

than it can melt and reach equilibrium) that this effect could be isolated. It is also similar

to the earlier work of Gump et al. [279] on chalcogenide glasses, where the photosoftening

was associated again with the approach of a glass-liquid melting transition.

While ionic Raman is a lattice effect (arising from phonon modes), a similar effect exists

in molecules. There are a class of polymers known as photoisomers where the application

of optical driving can induce a new ground state. Generally, this is irrelevant to phonon

dynamics, but when photoisomers are allowed to crystallize this can yield another avenue

to photoinduced phase transitions. This was done with Petr et al. [280] and Verploegen

et al. [281] for a crystal composed of liquid crystal elastomers with photoisomer additions.

When light was applied, the photoisomers would bend into a new configuration, changing

the shape of the elastomer elements and thereby changing the lattice symmetry. This was

used to switch the acoustic properties between those of the completely photoexcited and

completely relaxed states.
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Figure 4-1: Schematic of electronic order of Ndo.5 Sro.5MnO 3 for various phases. In the lower

left corner is the ground state structure, and above it is the thermodynamic equilibrium

phase achieved with raising temperature. To the right is the hidden, non-equilibrium phase

achieved with photoexcitation. Intermediate between each of these are unstable interme-

diate states. Schematic energy diagrams illustrate the nature of these reactions. Note the

difference in structure between the equilibrium and non-equilibrium states. Reprinted by

permission from Macmillan Publishers Ltd: Nature Materials. H. Ichikawa, S. Nozawa, T.

Sato, A. Tomita, K. Ichiyanagi, M. Chollet, L. Guerin, N. Dean, A Cavalleri, S.-I. Adachi,
T.-H. Arima, H. Sawa, Y. Ogimoto, M. Nakamura, R. Tamaki, K Miyano, and S.-Y. Koshi-

hara, Nature. Mater. 10, 101-105 (2011). Copyright 2011 12741.
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4.2.2 Optomechanics

Even when not in resonance, photons can still couple to phonon modes by means of radiation

pressure. Specifically, when photons impinge upon an object, they can scatter and impart

momentum to it. This force is the radiation pressure. In elastic scattering the momentum

transfer is greatest when photons reverse direction, so the radiation pressure is maximized

for a mirror, or more typically a pair of mirrors facing each other. As the mirrors gain mo-

mentum they will vibrate (that is, excite phonons) and thereby causing the optical standing

wave pattern to change, which feeds back into the radiation pressure experienced by the

mirrors. This setup is an optomechanical cavity, one of the most common schematics for

optomechanics 1. The radiation pressure imparts an average force 12821

(F) = 2h'cav t) (4.10)
L

in the formalism of optomechanics Wca, is the cavity optical resonance (Wcav,m m7rc/L

integer m), L length, and & the photon destruction operator. In terms of the Hamiltonian

[282, 283]

H = tlcav 1i& + hQmbtb (4.11)

(where Q is the phonon mode's frequency and b is the phonon destruction operator), the

principle effect of radiation pressure is to perturb the length of the cavity and thereby change

the optical cavity resonance Wcav. Taylor expanding Wcav in terms of the deviation gives the

optomechanical coupling

H h,, = hgb(+ bt). (4.12)

This is the fundamental form of the optomechanical interaction, although other forms of

this equation have been used (see Aspelmeyer et al. [282] for a review). For photons of

much higher frequency than the phonon frequency, the position of the mirror is effectively

constant. Changes in the mirror's position will result in effectively instantaneous changes to

the optical field, thereby applying a restoring force that can trap the mechanical resonator.

While this requires an isolated mechanical resonator as it is analogous to atomic trapping,

it can create an effective spring constant that modifies the vibrational frequency for the

'In practice the arrangement can be more complicated, but it is typically reducible to an optical cavity
with movable mirrors
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Figure 4-2: Bistability of the optomechanically induced effective mechanical potential.

Reprinted figure with permission from M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt,

Rev. Mod. Phys. 86, 1391 (2014). Copyright 2014 by the American Physical Society [282].

isolated oscillator [282, 284, 285, 286, 287, 2881. This effect can additionally introduce

multiple stable states, leading to bistability or multistability of the isolated oscillator (see

Fig. 4-2). More generally, the optical field will introduce a self-energy correction to the

band structure.

In addition to this arbitrary frequency effect, additional effects arise when the cavity is

driven by frequencies slightly off of cavity, i.e. when IWL - Wcavl = Al = O(Qm) (A is the

detuning). In this regime, Raman scattering will enhance the coupling of different modes and

induce normal mode splitting when A e -Qm (analogous to the polariton effects explored in

Ch. 3.1). When A ~ 0, the effect of Raman scattering on phonon self-energy is to shift the

frequencies of the discrete mechanical modes (phonons) by a factor approximately linear with
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A 2. This is the dynamical form of the optical spring effect. Since it depends upon the laser

intensity (i.e. photon density in the cavity) as well as its frequency, tuning the intensity gives

rise to additional effects. In particular, parametric oscillations in the i.ntensity can be used to

create squeezed phonon modes and test the quantum nature of phonons [282]. Additionally,

when multiple distinct phonon modes (i.e. modes of different oscillators or different modes

of the same oscillator) are coupled to the same optical field will be indirectly coupled. This

effective interaction can be used to entangle phonons [290, 291, 2921.

These quantum interactions of phonons led to consideration of phonons in quantum comput-

ing architectures. The initial approach was primarily concerned with photonic qubits and

only used phononic elements as a form of memory (such as were discussed in Ch. 3.2). Zhu

et al. [293] introduced this approach, where they sought to the convert an optical pulse into

an acoustic excitation. To do so they relied upon stimulated Brillouin scattering, which is a

nonlinear electrostriction process (photon-phonon coupling) induced by an interaction with

a second optical signal 3. The information-bearing optical signal uses a higher frequency

than the read/write command-bearing optical signal. The difference between these two fre-

quencies is the excited phonon's frequency. If the information-bearing signal is composed

of multiple frequencies, then they will in principle each be converted into phonons without

dispersion. Thus a wide spectrum of information may be stored as phonons, although in

experiments on optical fibers the highest frequency components of the optical wave packet

are lost in the conversion (see Fig. 4-3). Moreover, this technique allows the phononic

storage of multiple photonic wave packets within a single optical fiber. However, phonons

themselves will also decay exponentially (albeit on a longer time scale than stored photons),

and so wave packets could only be stored for intervals shorter than the phonon lifetime (i.e.

nanoseconds for their system). In contrast, Safavi-Naeini and Painter [294] and Change et

al. [295] developed a different approach. Specifically, they stored information within an

optomechanical crystal (also called a phoxonic crystal, a material which is simultaneously a

photonic crystal and a phononic crystal) rather than an optical fiber. An optical waveguide

is located adjacent to the optomechanical crystal so that as photons traverse the waveguide

2The Raman coupling regime is also significant in other contexts and values of A because the detuned

laser can induce radiative cooling of mechanical motion, which is outside the scope of this work but reviewed

in Asplemeyer et al. [282].
3 Brillouin scattering essentially arises from the same physical interactions as Raman scattering, albeit

for a much lower frequency of phonons.
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the become coupled to the optomechanical crystal, where their radiation pressure creates a

phonon population that contains their information (and can be reversibly converted back

into photons) (see Fig. 4-4). Fiore et al. [296] also used radiation pressure, although they

relied upon a single optomechanical resonator. The advantage of this approach is that the

phonon lifetimes are significantly longer than in Zhu et al. [2931. As in Zhu et al. [293] , the

incident photons were detuned from the mechanical resonant frequencies but could be freely

converted to or from the mechanical vibration via a second optical signal. Moreover, the

frequency of the photons that reads out the stored information did not need to be the same

as the frequency of phonons that wrote it. Thus, their storage technique also constituted a

photonic frequency converter. The phononic memory achieved here should in principle have

been a perfect record of both the amplitude and phase of the incident photons (i.e. their

full quantum state), however in practice the thermal background destroyed this coherence in

their experiments. This difficulty was resolved by Verhagen et al. [297] using a mechanical

resonator that had been cooled to near its quantum ground state. As an example of photonic

conversion, they also examined their system as an optical-to-microwave photon translator.

Palomaki et al. [2981 focused on treating this quantum coherent state transfer protocol in

the microwave regime. They used an optical waveguide that was coupled to a superconduct-

ing circuit, which in turn was coupled to a mechanical oscillator. Such an indirect coupling

scheme facilitated an increased tunability and control of the photon-phonon coupling. An-

other mixed photon-electron-phonon approach was developed by McGee et al. [2991 using

a bilayer membrane that was metal on one side and dielectric on the other. The bilayer

allowed them to store electrical and optical signals in the phonon modes on different sides of

the membrane and in addition to convert between them. Hill et al. [30.0] combined the op-

tomechanical crystal and waveguide approaches by adding an array of pores to a waveguide.

In doing so, they were able to store and convert visible frequency photons. The conver-

sion between photons and phonons was analyzed by Wang and Clerk [3011, where it was

found classically [282] that the combination of photons at different frequencies will produce

low-frequency beats suitable to resonantly excite mechanical vibrations. Finally, Galland

et al. [302] provided a theoretical analysis of the feasibility of storing a single phonon in a

mechanical resonator.

Stannigel et al. [303] took the photon-phonon interactions used in optomechanical stor-
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Figure 4-3: Photon storage as phonons via stimulated Brillouin scattering. (top) Schematic

diagram of before (A) and after (B) writing and before (C) and after (D) reading. (bottom)

Comparison of experiment (A)-(B) vs. theory (C)-(D) for storing and retrieving a rectangu-

lar ((A) and (C)) and a smooth ((B) and (D)) pulse. Figure from Z. M. Zhu, D. J. Gauthier,

and R. W. Boyd, Science 318, 1748 (2007). Reprinted with permission from AAAS [2931.
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Figure 4-4: Photon storage as phonons within an optomechanical crystal using radiation

pressure. (A) Schematic of the phoxonic crystal with photonic waveguides (blue) cou-
pled two phononic waveguides (brown) via simultaneous localization to defect modes. (B)
Photonic energy density (Poynting vector). (C) Phononic energy density. Figure from A.
H. Safavi-Naeini and 0. Painter, "Proposal for an optomechanical traveling wave phonon-

photon translator." New J. Phys. 13, 013017 (2011). Available under a Creative Commons
Attribution 3.0 license [294].
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age and extended them to phononic quantum computing. They used a pair of multimode

optomechanical waveguides where low frequency phonons were used for linearly translating

between photonic and phononic encodings and high frequency phonons were used to perform

nonlinear gate operations on photons. Additionally, they also constructed a photon transis-

tor where the effective photon-photon interaction was mediated via optomechanical coupling

to the phonon. More relevant to our focus on phonons, they also studied gate operations be-

tween pairs of phonons induced by their mutual coupling to a shared optical mode. Through

tuning the photon density (classical amplitude) of the shared optical mode, they were able to

tune the nonlinearity of the effective phonon-phonon coupling. Schmidt et al. [304] focused

on this last case of phononic storage of information and photon-mediated effective couplings

between phonons. They modeled their system as an optomechanical crystal, confining the

phonons to cavities composed of localized defects within the crystal. The phonons in these

cavities can each be individually addressed by a laser, which constitutes their shared opti-

cal coupling. The interaction of the photon and phonon modes yields an effective coupling

between phonons addressed by the same laser, where the strength of the interaction can be

tuned by (again) controlling the classical amplitude. By varying the combinations of fre-

quencies composing the laser pulse, the effective interaction can have various effects. When

the photon frequency equals half the difference of the phonon frequencies

H(2w = Q, - Q2 ) = hJ(bt b1 + bb2 ) (4.13)

(2w = Qj - QG where w is the optical frequency, Qj the phonon frequency of mode i, J the

effective phonon-phonon coupling strength, and b the phonon destruction operator), this

interaction swaps the phonon populations of two modes. Alternatively, the photon field can

entangle pairs of phonons when the optical driving frequency is the average of two phonon

modes 2w = Qi + Qj. The resultant Hamiltonian is

H(2w = Q1 + Q 2 ) = hJ(b1b2 + blb41). (4.14)

Lastly, when photons and phonons are in resonance (w Qj), the optical field will drive the

phonons into a squeezed mode via

H(w = Qy) = h(J/2)(b2 + b 2). (4.15)
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Figure 4-5: Schematic of an optomechanical phononic quantum computing algorithm. (A)

Single photonic cavity (blue) with a single directly addressable auxiliary phonon mode (or-

ange) and multiple indirectly accessible phonon modes (yellow). (B) Frequency diagram.

Low frequency photons swap populations of between some specific phonon mode and the

auxiliary mode, whereas high frequency modes entangle some specific phonon mode with

the auxiliary. (C) Protocol to entangle a pair of phonons in different optomechanical cavi-

ties. Figure from M. Schmidt, M. Ludwig, and F. Marquardt, "Optomechanical circuits for

nanomechanical continuous variable quantum state processing." New J. Phys. 14, 125005

(2012). Available under a Creative Commons Attribution 3.0 license [3041.

Because of the flexibility of the possible interactions, the strength of effective photon-phonon

coupling has to be sufficiently low as to avoid unwanted operations but also sufficiently his

as to prevent the thermalization /decay of the phonons. Although their model is theoretical,

they seek to make it easy to experimentally realize (and scale to useful numbers of qubits)

by confining the phonon modes intended for memory to a series of well-separated frequency

bands and then introducing a set of high frequency auxiliary modes for accessing that mem-

ory. To perform an operation like, for example, entangling two storage modes is done by

swapping them into the auxiliaries (a low frequency operation), entangling these auxiliaries

(a high frequency operation), and then swapping them back to their original modes (see Fig.

4-5).

Rips and Hartmann 13051 consider a similar array-based approach to phononic quantum

computing. Instead of a phoxonic crystal, though, they use an array of nanobeams reso-

nantly coupled to one photon mode of an optical cavity. Each beam can be also individually

electronically controlled through an array of electrodes. They use this array tune the non-

linearity of the beams so as to allow only a single phonon transition to be feasibly induced
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by the photon-phonon coupling. As such, each beam can be treated as a two level sys-

tem and hence can be considered a binary qubit. An arbitrary quantum logic gate can be

decomposed into one non-trivial two qubit gate and the basis set of one qubit gates (for

example, the Pauli spin basis of a-t, ay, O). As such, they construct Pauli spin gates using

AC electric fields generated by the electrodes, with V generating a o_ rotation and V,,y

generating linear combinations of oar, oy (decoupled for purely horizontal or vertical fields).

For two qubit gates, they use the interaction with the shared photon mode. First, the two

specified qubits must be detuned to have a single transition frequency that is distinct from

the transition frequencies of the other qubits. As in Schmidt et al. [304], the effective

phonon-phonon coupling is mediated via the photon field. The photon field induces hop-

ping between sites, from which they construct a non-trivial two qubit entangling gate - the

ISWAP gate. Specifically, the optical coupling generates v ISWAP. To create the ISWAP

gate, then, they must apply vISWAP between the pair of qubits, then a 7r rotation about

z on the first qubit, v-ISWAP (i.e. the inverse of the first operation), and finally a -7r

rotation about z on the same qubit. This will entangle the selected pair of phonons but not

affect the others.

121



4.3 Methods: Piecewise-deterministic Markov Processes

Consider an equation of the form

L[y(t); t,T] = 0 (4.16)

where L is a (not necessarily linear) differential operator, y(t) are a set of unknown functions,

t is a continuous time variable, and r is the mean waiting time of some stochastic (i.e.

random) process. Crucially, L does not depend upon the history of y(t), just on its current

state and so the stochastic process is a Markov process. Given that the random process only

occurs at discrete times, we can always define intervals (Ti, Ti+1) that obey the relation

(T+1 - T) =,T. (4.17)

For times in these domains (i.e. t E (Ti, Ti+1), our equation for y(t) becomes

LD[0);t] 0 (4.18)

where LD is a deterministic functional. This is significant because there are many analytic

and computational methods to solve deterministic differential equations. There are also

computational algorithms for generating intervals obeying eq. 4.17. Thus, we can solve for

y(t) through the simple algorithm of repeatedly finding the time till the next random event,

deterministically integrating y(t) to that time, performing the random process, and updating

T. In Ch. 4.4 we will use this algorithm for the specific case of r characterizing a set of

Poisson-distributed processes which depend upon a set of auxiliary functions z(t) (as outlined

in Sklan and Grossman [306]). These auxiliary functions are characterized by a mapping

w[y(t; z(t))] which transforms the continuous functions y(t) and the discrete auxiliaries z(t)

into a a set of discrete states. As such, our entire system can be characterized as moving

stochastically and without memory between discrete states, i.e. as a Markov chain. The

algorithm for handling a stochastic process of this form is the Gillespie algorithm 13071,

which we modify slightly to account for the piecewise-deterministic nature of our equation

of motion.

For concreteness, let's say that there are N auxiliary variables zi(t) which can collectively be
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used to map N of the y(t) functions to two states (let's call them 0 and 1) via w[yi(t; z(t))]

4 5. There are rate constants r+ for randomly converting w[yi] from 0 to 1 and r_ for the

reverse. The total rate of conversion from 0 to 1 for the entire system will be

R+ = r+No/N (4.19)

where No is the population of yi(t) in the 0 state (R_ can be defined similarly). The total

rate of stochastic events is therefore

No N1  No
R=R++RR_= +rN =(r+-r-) +r_ (4.20)

since No + N = N. With this quantity defined we can now outline the Gillespie algo-

rithm:

1. Initialize the system at Ti, y(T), z(T) with i = 0. Calculate No(T), Ni(T).

2. Calculate R(T) using eq. 4.20.

3. Generate a random waiting time from a Poisson distribution by taking a random

number from the interval qj E [0, 1] and using

(4.21)

4. Using the deterministic equation of motion LD [Y, t; z(Ti)], integrate y to T+1 (or to

the end of the simulation interval if Tend < Ti+1 ), update i = i + 1.

5. Perform the stochastic step:

(a) Determine if the stochastic event was to increase or decrease No by generating a

4 This mapping assumes of each element y depends upon the state of all z. Assuming locality, however,
we use the simplified form w[y (t; zi(t))], i.e. that each element of zi is associated with an element of y.

5 Note that there can be more than i elements in y, but there is often some particular subset of i elements

that is relevant for w. The notation used assumes that this is y is ordered such that these elements come

first in the list of y functions. In the event that the list is not ordered in this way, it can be reordered using
a linear operator.
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new random number ij E [0, 1]

0 -+1 if r < R+/R
(4.22)

1 -0 if > R+ R

(b) Select which element from Na (a =0 for 0 -÷ 1 or 1 for 1 -÷ 0) is to be flipped by

selecting a random integer q C (0, Na]. Go to that element of the ordered set of

auxiliary variables z and switch it to a new state.

6. Update No(T), N(T).

7. Go to step 2 if t < Tend.

This is based upon the standard form of the Gillespie algorithm, which uses R = R+ + R_

to generate a single waiting time and then determines the identity of the stochastic event.

An alternative formulation would be to generate multiple waiting times for each class of

stochastic event (i.e. to generate T+I = - In i /R ) and then use whichever is smaller. For

stationary equations for R , such as we considered above, these approaches are equivalent.

When this is not the case (particularly when the two rate constants vary with different time

scales), the alternative formulation is preferable.

124



4.4 Phonon Transport in Photoswitchable Lattices

Photon-phonon interactions, as we have seen, can have a variety of effects and applications.

In general, however, the focus in developing photon-phonon coupling techniques has not

been to tune phonon transport. For example, ionic Raman scattering has been used control

electronic properties more than phononic [272, 308, 309]. For purely coupling photons and

phonons, the focus in optomechanics has principally been the conversion phonons to photons

and vice versa [310, 311], as have the related phenomena of Raman scattering [312, 313],

vibronic scattering [314], and black-body radiation [313]. This can be thought of as changing

occupancies of different modes but not changing the properties of those modes. On the other

hand, when the possibility of using photon-phonon interactions in non-resonant tuning has

been studied, the focus was the use of phonons to change the index of refraction (as in

acousto-optics [315, 316, 317]). Those times that the photonic tuning of phonons has been

considered, it has been limited to phonon polariton resonances (discussed in Ch. 3.1.1),

modification of localized phonons' spring constant [282, 284, 285, 286, 287, 288], phonon state

preparation (discussed in Ch. 4.2.2), the onset of melting transitions [277, 279], or switching

between two discrete states (fully illuminated or no illumination) [280, 281, 318]. The most

basic forms of tuning, the modification of the speed of sound or phonon transmission as

functions of optical driving, have not been considered for traveling waves [306]. This is an

important aspect of tuning, as a continuous response to a changing variable is more flexible

than the discrete responses of Refs. [280, 281, 318]. In particular, just as the use of Brillouin

scattering [315, 316, 317] allowed for the creation of acousto-optic filters and modulators,

demonstrating this sort of tunability would constitute an inverse acousto-optic effect. This

sort of opto-phononic tuning would therefore be outside of the existing framework of light-

matter interactions (i.e. not just a change of population levels or a tuning of photonic

transport), as summarized in Table 4.1

In this section we examine one approach to this form of tuning. We specifically seek to control

the speed of sound ce via optical intensity. To accomplish this, we shall consider a toy model6

of an array of generic photoswitches and use it to modulate the phonon band structure,

6 That is, a simplified model which focuses more upon understanding an effect than modeling a specific
system. However, to the extent that this model can be applied to a variety of systems, this simplicity gives
it added generality.
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Create/Destroy I Harden/Soften

Photon-Phonon Optomechanics, Raman ???
Phonon-*Photon Vibronic, Fluorescence Acousto-Optics

Table 4.1: The quadrants of light-matter interaction. First row is photons used to control
phonons, second is phonons used to control photons. First column is changing populations,
second is tuning dispersion. Reprinted table with permission from S. R. Sklan and J. C.
Grossman, Phys. Rev. B, 92, 165107 (2015). Copyright 2015 by the American Physical
Society [306].

thereby tuning c. In addition, we shall show numerically that additional effects arise at

high frequencies, particularly phonon confinement which may be useful for vibrational energy

storage or phononic transistors (see Ch. 3.2).

To begin, let us consider a solid under illumination - there should be three distinct photon-

phonon coupling mechanisms. If material is composed of polar atoms of molecules, then

localized vibrations will induce fluctuations in the polarization that will in turn create a

coupling to the electromagnetic field (this is direct Raman, the inverse process of varying

electromagnetic fields inducing localized vibrations is also possible). Alternatively, if the

material has an infrared-active phonon mode, then photons can excite that mode directly

and thereby anharmonically drive other modes (this is ionic Raman, see Ch. 4.2.1). If

neither of these coupling mechanisms is present, photon-phonon couplings can still exist

as light can also excite electrons, which then excite phonons via electron-phonon coupling

(this is indirect or stimulated Raman). Subsequent to the initial excitation of a single

phonon mode, nonlinearities (typically electron-phonon coupling or phonon anharmonicity)

will eventually disperse this energy into a thermal phonon population. For some materials,

the excitation of a coherent phonon population can also induce a structural change (as in

Ch. 4.2.1), particularly by inducing oscillations about some new equilibrium position in ionic

Raman or softening some phonon mode in stimulated Raman. These structural changes must

necessarily change the phonon band structure, although these changes are not necessarily

large. To distinguish the creation of thermalized phonons and the tuning of the band

structure (effects which are clearly distinct for sufficiently weak phonon anharmonicity, 7), we

7 Thermalization and velocity modulation are distinct effects given a lattice of no more than weak non-
linearity. To illustrate this, consider a phonon current of the form J = Enivi, Thermalization changes
occupancy and hence perturbs phonons ni, whereas structural changes will tune the velocity vi. It is only if
anharmonicity is so strong that the band structure is intensity dependent that this distinction breaks down.
And even in this highly anharmonic regime, the use of sufficiently low amplitude acoustic excitations or low
temperatures makes this negligible.
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concentrate on the non-photoactive modes and neglect thermalization except for its effect in

structural transitions. For consistency, this entails neglecting phonon-phonon couplings and

so we must restrict our attention to harmonic phonons. Ergo we can henceforward confine

our attention to a one-dimensional chain of simple harmonic oscillators (SHOs) without any

further loss of generality.

Given this assumption, we model our system as n masses (m - 1) joined to N = n + 1

photoswitcheable SHOs (with a ground state spring constant of KD, and an excited state

spring constant of Ku) subject to a mechanical driving force F = FO cos(wot) at frequency wO

applied to the first site along the photoswitchable chain. The mechanical driving is equivalent

to pumping a constant supply of energy into the system, so to prevent unrealistically large

excitations it is helpful to use a modified form of the standard clamped boundary conditions

(uo = 0 = Un, where u is displacement) by sandwiching this system between impedance

matched systems of n damped (damping rate -y 1) SHOs (K = KD) and then clamping

these ends (shown in Fig. 4-6). For generality, we consider the photoexcitation of any

spring to be a localized event that does not induce switching elsewhere (i.e. there are no

cascades). This is a plausible assumption for sufficiently separated photoisomers as well as

for composite or multilayered structures where only some portion is photosensitive (see the

bottom of Fig. 4-6). However, if there are no cascades to drive collective dynamics, then the

order and timing of the excitations and de-excitations can have non-trivial impact upon the

phonon dynamics. To avoid a biased pattern of excitations, we assume that the switching is

randomized with Poisson statistics (an excitation rate of RD = BDUH and a de-excitation

rate of RU = A8pont + BUDH, where H is the photon fluence at a point and A and B

are the Einstein coefficients [313]). Such an assumption is most rigorous under conditions

of sufficiently low intensity photoexcitation where the photon's shot noise dominates (i.e.

individual photon trajectories are relevant and we are not dealing with an ensemble of

photons) but this assumption is also a technique for ensuring the robustness of the response

to deviations in the switching order. The dynamics of an individual photoswitching event is

typically complicated, but because the photoexcitation is much faster than any structural

rearrangement, these complexities can be neglected (to lowest order) by integrating out the

shorter time-scales to give the approximation

k(t) = -7K(K(t) - Kss(w)) (4.23)
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where -YK determines the rate of the structural reaction (typically O(wo)) and KSS is the

new steady state, w denotes the stochastic variable describing switching 8. In principle the

equilibrium position of the lattice sites could also change. However, because our system

models a photoswitch embedded inside of a matrix and does not address the (realization-

specific) dynamics of phonons with wavelengths shorter than one supercell, these shifts are

negligible. Hence, the displacement obeys

iii(t) = Ki(t) [ui_1(t) - ui (t)] + Ki+1(t) [ui+1(t) - ui(t)] (4.24)

where i indexes the site (note the similarity to eq. 1.1 except that now K(t) is a parametric

function, as discussed in Ch. 4.1).

In the steady state the probability distribution of this system's eigenmodes is exactly solv-

able using Random Matrix Theory [319]. However, we are interested in the dynamics of

this system and RMT does not describe the effects of changing composition (i.e. traversing

the RMT's solution space 9). Moreover, the eigenfunctions for a single index in eq. 4.24

can be solved exactly - exponential wave functions when no switching is occurring and

modified Bessel functions of imaginary order10 when switching is occurring - but the in-

consistency of this basis set impedes an analytic solution for any non-trivial realization. As

such, we focus on integrating the solutions numerically. The switching times and locations

8 This switching model neglects some of the details found in real photoswitchable materials, but it is close
enough to capture the nature of the perturbation upon the phonon dynamics

9 Changing compositions is also equivalent to traversing different realizations of a glassy or disordered
medium or to taking an ensemble average over disorder.

loInserting the solution for K(t) into the differential equation of an isolated harmonic oscillator gives

i = - [Ks + (Ko - Kss)e-4K1 u (4.25)

where KS, is the steady state value of K(t), Ko its initial value, and YK its rate of switching. Making a
change of variable = 2e--Kt/2 /|K0 - K.SS/YK and b( ) = u(t) gives

" + b' + ( (2 - (ia)2) 4 = 0 (4.26)

where a = 2/ SS/-K and the sign of is given by the sign of (Ko - K,,). This is the Bessel equation (or
modified Bessel equation for the negative root). We can solve for the different cases of possible signs of i
and whether or not a is an integer to get the basis functions

Ji. (0), Ya( ) +, a E N

' - W ,I0VN (4.27)
IA s(), Kch (l) -, ue fE N

Ii ( ), I-a ( -- , (0 _'

A similar change of variables is used for each i in eq. 4.24
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Mechanical

KD K

Figure 4-6: Schematic of photoswitchable tuning setup. Photoswitches (green) are sand-

wiched between two damped regions (brown) that are clamped at the far ends. Photons

(orange curves) drive the photoswitches, which are also driven mechanically (blue arrow)

from one side to produce phonons. Photoswitches are modeled as a series of one-dimensional

SHOs composed of a photosensitive material (e.g. anthracene, see bottom) embedded in a

matrix, creating a bistable system with two spring constants. Reprinted figure with permis-

sion from S. R. Sklan and J. C. Grossman, Phys. Rev. B, 92, 165107 (2015). Copyright

2015 by the American Physical Society [3061.
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are stochastic variables and so are computed using the Gillespie algorithm [307], with the

system deterministically evolving between these switchings (see Ch. 4.3). The initial con-

ditions are u(x, 0) = 0 = it(x, 0), Ki(0) = KD . We use the following natural units: a the

equilibrium site separation is the natural length scale and t. = 1/u for is our time scale.

Using KD = 1/t2, KU = 2/t2, RU = 1.5/tI RD = 2/tY, Fo = la/t2, a sample of size n =29

(N = 30) is calculated for interval T = 100ty giving u(x, t) and k(x, t) at various wo.

Because the dynamics of u(x, t) is greatly influenced by the evolution of K(x, t), plot-

ting them simultaneously is integral to understanding u(x, t). To make this pair of three-

dimensional functions intelligible through a single two-dimensional plot, we turn to an un-

usual visualization method in Figs. 4-7, 4-8, and 4-9. The x-axis denotes position along the

chain (from 0 to N), the y-axis denotes time, colored contours denote constant amplitude

isoval lines of the oscillator amplitude u, and rectangles denote the variation of spring con-

stants K (grey = ground state, white = excited 11). As this plotting technique is rather

rarified, Fig. 4-7 includes a supplement of two subplots 12. The bottom subplot displays

the evolution of a site, i.e. u(i, t) and K(i 1, t) for fixed position i. The side subplot

displays a single snapshot, i.e. u(x, to) and K(x, to) for fixed time to. As this is snapshot

is sufficiently early in our simulation, the mechanical driving from x = 0 has not yet had

time to propagated along the lattice (leaving the displacement ahead of the wavefront in

its initial condition). Given that at low frequencies (as in Fig. 4-7) we expect wavelengths

A >> a, the material will appear homogeneous to the phonons. As such, we see switching

merely serves as a weak perturbation which distorts then envelope of u. For shorter wave-

lengths (Fig. 4-8) on the order of A > a, on the other hand, the solutions become quite

sensitive to the composition of K and may be scattered by changes of K (reflecting incident

phonons from the boundary between lattice compositions). Given our stochastic driving,

the composition of K fluctuates, resulting in intervals of strong transmission or reflection.

To the extent that these intervals are controllable, this represents an alternative method

of ultrafast optical control of thermal conductivity for phonons in this frequency rage. For

even higher frequencies (Fig. 4-9) in this wavelength range, the driving signal lies above the

band edge of one state but not the other (i.e. above wmirl(Kmax) W Wg = 2/t-). Phonons in

"Gradiations and shadings between the grey and white blocks is indicative of a transition state
1
2 The supplementary materials of Sklan and Grossman [306] contains movies of lattice dynamics of Figs.

4-7, 4-8, and 4-9 as an alternative visualization scheme.
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this regime exponentially decay (i.e. tunnel) when propagating along springs in one state

but propagate without loss in the other. For this frequency regime, changing composition

of K allows phonons to be confined as standing waves and so could potentially store or dy-

namically steer vibrations. This trapping has the potential to construct phononic memory

or phononic switch (an indirect phononic transistor in the parlance of Ch. 3.2). Lastly, for

frequencies in the band gap of both configurations (w > 2V'-/tY, not shown), no propagation

as phonons decay regardless of lattice composition.

From Figs. 4-7, 4-8, and 4-9, we can see that that photoswitching has a large impact upon the

transmission and dynamics of u(x, t; wo). To understand the effect of photoswitching upon cs,

however, we must examine the dispersion w(q). This can be done by Fourier transforming

u(x, t) to get u(q, w), where the maxima of u(q, w) occurs at w(q) (the dominant mode

excited by driving at wo). (To approximate the smooth dispersion of an infinite lattice using

the calculated discrete normal modes of a finite lattice, n =124 is used.) For each wo, the

calculation of w(q) is repeated for Nrep =10 times over an interval of T = 200t, to ensure

ergodicity, and w and q are averaged 13. However, this method also introduces artifacts that

need to be corrected for. Because high frequency driving produces phonons that are often

narrowly confined, there will be artificial Fourier components introduced near the F point

(i.e. q ~ 0 ~ w). Since these components are not a property of the phonons themselves,

but rather of their confinement, we exclude these terms from the average even when they

become the dominant peak. By repeating the calculation of the average (w(q; wo)) phonon

excitation for multiple driving frequencies wo, we can create the full dispersion relation,

the calculation of which is then repeated for various combinations of RU/RD in Fig. 4-

10 (which illustrates the dependence of the dispersion upon optical driving). Note that,

when confinement effects are particularly strong (i.e. for weak driving), the dispersion

relation will display a pronounced drop in q as w rises above w. (i.e. enters the confinement

regime). This is an artifact of the exponentially decaying tails that border the standing wave

domains, as these lower the effective wavelength. Thus, this jump in q is an implication of

limited applicability of a defined wavelength in a highly heterogeneous system. Ergo, in

fitting the dispersion w(q; RU/RD) to a sine curve cs,eff sin(affq)/aeff (the dispersion for

a homogeneous ID chain, cs,eff and aeff are fitting parameters) we see that excluding this

1 3Increasing Nep, is the same as increasing T for an ergodic system. This combination was selected to aid

visualization and to keep computation times manageable.
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Figure 4-7: Simulation of phonon and spring constant dynamics under photoswitching. The
x-axis indicates the distance along the one-dimensional chain while the y-axis indicates
time. Colored contour lines are isoval curves of constant phonon amplitude ui(t) (magnitude
indicated in the sidebar). The grey segments denote the ground state (no illumination, K =
KD), white segments denote the excited state (illuminated, K = KU), and the gradients
denote the transition states. (a) Low frequency phonon driving (w = 0.5/t,). The bottom
inset (red, vertical slice) shows u(N/2, t) (red, solid curve) and K(N/2, t), K(N/2 + 1, t)
(black, dashed curves) as functions of time. The side inset (blue, horizontal slice) shows
a snapshot u(x, to) (blue, solid curve) and K(x, to) (black dots) as functions of position.
Reprinted figure with permission from S. R. Sklan and J. C. Grossman, Phys. Rev. B, 92,
165107 (2015). Copyright 2015 by the American Physical Society [306].
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Figure 4-8: Simulation of phonon and spring constant dynamics under photoswitching.
Conventions same as Fig. 4-7 (b) Mid frequency phonon driving (W = 1.5/t). Reprinted
figure with permission from S. R. Sklan and J. C. Grossman, Phys. Rev. B, 92, 165107
(2015). Copyright 2015 by the American Physical Society [306].
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Figure 4-9: Simulation of phonon and spring constant dynamics under photoswitching.
Conventions same as Fig. 4-7 (c) High frequency phonon driving (W = 2.5/t.). Reprinted
figure with permission from S. R. Sklan and J. C. Grossman, Phys. Rev. B, 92, 165107
(2015). Copyright 2015 by the American Physical Society [3061.
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points produces a more physical dispersion.

These fitted dispersions allow us to extract the effective speed of sound as a function of

composition cs,eff(Nu/N) by Taylor expanding the dispersion for small q to get (in units

of a/tY)

cs,eff = 0.997 + 0.177Nu/N + 0.227 (Nu/N)2  (4.28)

(where NU is the excited state's population, and for reference the ground state has a speed

of sound cs,D = la/t. while the excited state has speed of sound c.,u = v/2a/ty (see Fig.

4-10 inset)). Using the master equation

ND -RDND + RUNu (4.29a)

N u +RDND - RuNu (4.29b)

and setting Tu = 0 = ND gives the steady state composition

Nu RD _ (9U/9D)H
N RD + Ru S(wv) + (1 + gu/gu)H

where 9U,D are the degeneracies of the two states, S = 2hW3/7rc3 , and w, is the photon fre-

quency. (last relation comes from detailed balance of the Einstein coefficients [3131). Varying

RU/RD controls NU/ND, so increasing the optical intensity increases the equilibrium pop-

ulation in the excited state (up to some limiting fraction given by the mode degeneracies,

although fluctuations about the equilibrium value can result in transient states with even

higher populations in the excited state). Hence, tuning the intensity of the illumination

gives direct control of cs, as desired for an inverse acousto-optic effect.

To understand the nature of this control, consider a simple kinetic model of phonon prop-

agation, where c, in the ground (excited) state is cs,D (cs,U). For kinetic transport in an

inhomogeneous system, the average speed would simply be the weighted average cs,DND/N+

cSUNU/N or

cSkin) = cs,D - (cs,U - cs,D)Nu/N (4.31)

i.e. linear with composition. This model differs from the relation we observed in eq. 4.28,

which falls below this kinetic limit except for the homogeneous cases of Na/N = 0 or 1

where both models recapitulate the analytic result of a homogeneous lattice to within 99%
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Figure 4-10: The dispersion relation w(q) for a one-dimensional photoswitchable chain.

Color indicates the illumination intensity rising from blue (a state of no illumination and

all springs in their ground state) through red (a state full illumination and all springs in

their excited state). The dots with error bars denote raw numerical results (dotted lines

between them are a guide for the eye). Conversely, solid lines indicate the numerical fitted

sinusoid dispersion relation. (inset) The speed of sound as a function of fraction of the

chain in the photoexcited configuration. Colored, solid line denotes results derived from

the numerically fitted dispersions (color corresponds to dispersion relation's color) while the

black, dashed line denotes the analytic result predicted by a simple kinetic model. Reprinted

figure with permission from S. R. Sklan and J. C. Grossman, Phys. Rev. B, 92, 165107

(2015). Copyright 2015 by the American Physical Society 13061.
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accuracy (see Fig. 4-10 inset). This deviation is expected, though, as scattering at the

interfaces will delay a pulse and thereby decrease its effective velocity.

Finally, let us return our attention to the confined regime. For the homogeneous cases the

transmittivity of a sufficiently thick sample should be nearly 1 (i.e. no loss, driving frequency

is below the band edge) or 0 (i.e. perfect damping, driving frequency is above the band

edge). Switching between these homogeneous compositions (which possible when gu > gD

and photon intensity is large, or stochastically plausible for RD > RU and N = gU/9D)

results in photoillumination controlled switching between discrete states of transmission

and reflection. Dynamically changing RD/RU therefore results in switchable controlled

phonon transmission. This tuning mechanism constitutes a phonon switch and is therefore

a potential phononic transistor using the optical analog indirect control scheme presented

in 1256] (i.e. a light source instead replaces the electromagnet). This form of indirect

transistor is more easily tuned than the direct designs, which as discussed in Ch. 3.2 rely

upon phonon-phonon couplings [186] that are difficult to control. To demonstrate this

proposal's feasibility, we repeat our simulations of the lattice dynamics, this time using a

pulsed illumination (R = 4/tyRf = 0). As mentioned in Ch. 4.3, this requires a

slightly different form of the Gillespie algorithm [3071, as the rates in the illuminated and

dark intervals are not comparable 1. We select pulse widths such that a homogeneous

composition is likely to be achieved for each illumination state. Since complete, monotonic

switching of a sample has the expectation value

N 1

RU,D = N I = NHN ~ NlnN (4.32)
1

where HN is the harmonic function, we use a sample size of n =9 for these simulations

(illumination period 200tY, dark period 200t-Y, total run time 2000t^, RD 4/t = 8Ru).

In Fig. 4-11 we illustrate the switching dynamics by plotting the amplitude at the far end

of the sample (normalizing it to the maximum amplitude at the far end that is achieved

without damping max[uo(L, t)]) for a driving frequency of w = 2.1/ry. The horizontal lines

1 4 In particular, the case of the calculated time to the next photoexcitation being longer than the remainder
of the illuminated interval requires special attention. Given the ergodicity of photoexcitations, we chose to
translate this waiting time ahead by the Tdark, but other methods are possible for this literal edge case.
Similar concerns also exist near the start of the illuminated interval, although that can be accounted for by
recalculating the rates at the times of changing illumination.
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Figure 4-11: Transmitted phonon current as a function of normalized amplitude vs. time
for a lattice of photoswitches driven by a pulsed laser in a switch/transistor regime. The
blue curve denotes the calculated response, the black lines are the rms averaged amplitude
over the dark intervals, and the red lines are the rms averaged amplitude over illuminated
intervals. The separation between the black and red curves is the switch's figure of merit.
Reprinted figure with permission from S. R. Sklan and J. C. Grossman, Phys. Rev. B, 92,
165107 (2015). Copyright 2015 by the American Physical Society [306].

denote the rms averaged amplitude for each period of darkness or illumination (these also

include the intermediate intervals, therein underestimating the difference between the dark

and illuminated states). For frequencies below wg there is transmission regardless of the

presence of light so the ratio of these averages is nearly 1 (not shown). For frequencies just

above wg, on the other hand, there exists a considerable difference between the states and

so a large separation is observed (Fig. 4-11). As frequency increases above Wg, transmission

in the illuminated state drops and the ratio again approaches 1 (not shown). In comparing

these results with Fig. 4-9 it is clear that there exists a cross-over from confinement to

transmission with increasing photon intensity. Ergo, for confinement to be effective there

should be narrow domains of propagating configuration, something that is best achieved

using weak driving.
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4.5 Photoswitchable Transport Conclusions

The case of high frequency tuning is in many respects the inverse of low frequency tuning.

Here, the tuning signal can adapt to changes in the phonon distribution much faster than

the distribution can change. This can be used to create artificial effective couplings between

phonon modes (as in [303, 304, 305]). It can also used to change the dynamical properties

of phonon transport on very short timescales, as we demonstrated with the inverse acousto-

optic effect and the opto-phononic switch. Moreover, the operation of dynamical phonon

confinement/ steering illustrated in Fig. 4-9 is indicative of these fast changes. The ability to

quickly open and close domains of allowed phonon propagation is integral to the operation

of such a device.

On the other hand, from the perspective of the phonon field high frequency tuning is dis-

tinct from low frequency tuning. Because the phonons can constantly adapt to the changing

conditions in low frequency tuning, the operation is approximately adiabatic and pertur-

bations to the phonon field are negligible. Whereas for high frequency tuning the effects

are strongly perturbative and can introduce phonon scattering terms. This scattering will

depend upon the spatial distribution of the tuning, as illustrated by contrasting the long

wavelength/low frequency phonon response of Fig. 4-7 with the comparable wavelength/mid

frequency phonon response of Fig. 4-8. In the latter, the presence of multiple reflections

is clearly indicative of scattering induced by the stochastic parametric driving. While the

situation illustrated in Fig. 4-8 couples modes of wave vector k to those of -k, this is an

artifact of assuming a one-dimensional, harmonic system. Relaxing these constraints would

likely increase the scattering and induce a perturbative coupling of these phonons to other

phonon modes. All of these effects are, notably, not captured by the band structure picture

of phonon transport (which assumes perfectly decoupled modes of infinite lifetime). Just

as we saw that the band structure is insufficient to determine the eigenmode's spatial sym-

metries, this is another case where controlling transport requires going beyond the band

structure picture. This is not to say that the band structure has no bearing on the scat-

tering of anharmonic phonons, as it is often a good guide to what modes can be excited.

In particular, when looking at the spectral intensity distribution of phonons in nonlinear

media, the band structure persists and produces clear signatures [192, 320]. Studying the
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tunability of these distributions for various initial phonon populations, in addition to the

band structure, is crucial for understanding the transport of phonons in the anharmonic,

high-frequency tuning regime.
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Chapter 5

Outlook

Tunable materials, we have seen, are a powerful tool for controlling transport under changing

conditions. By applying control signals at different frequencies, it is possible to modulate

the phonon band structure, induce resonant mode mixing between multiple degrees of free-

dom, and scatter phonons into new states. These shifts can create or transform band gaps

(blocking transmission), shift the speed of sound, and introduce phase differences between

signals. In many situations, the phonon density of states is approximately continuous with

frequency or spans many discrete frequencies. In this case, a single harmonic tuning signal

will influence these various modes differently depending upon their relative frequencies. As

such, it is entirely possible to have all of these different responses existing within a single

material.

The effect of tuning goes beyond just shifting the band structure, however. As we have seen,

there are many situations where a simple band structure picture is insufficient to understand

the effect of tuning. Transport dynamics, especially in the diffusive limit, do not always in-

tuitively map to band structure. And even then, the effect of non-stationary materials

on transport can non-trivially affect their dynamics. Failure to account for non-stationary

driving or changing boundary conditions can impact the operation of many devices. Further-

more, band structures do not contain information about the spatial properties of the eigen-

modes. The ability to tune eigenmodes, especially their symmetry properties, is generally

important (particularly for spatially inhomogeneous systems). Annotating band diagrams
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to denote their eigenmode's symmetry properties would go some ways to elucidating the ef-

fects of tuning upon this aspect of transport 1. Lastly, the assumption of harmonicity needs

to be understood as merely an approximation in many cases. Incorporating finite lifetimes,

and the resultant complex wave vectors or population redistribution, would illuminate this

under-examined aspect of transport. The context of tunable materials is a particularly fruit-

ful one for this extension, as the ability to tune mode lifetimes or control decay dynamics

would open up new avenues for controlling transport.

While the analysis presented here divided the effects of tuning upon dynamics by time scale

(i.e. by Wr, as in Tabl.e 1.1), this is not the only way to think about tuning. The ability to

focus upon individual modes and draw analogies with simple harmonic oscillators makes it

an important tool for clarifying dynamical regimes, but the spatial extent of tuning is also

important. It is somewhat complicated by the existence of multiple length scales (sample

size, mean free path, coherence length, and wavelength), not all of which are significant when

just considering time scales. The topic has been considered in the context of static tuning

[13], but in many cases one is interested in using spatio-temporal modulation of transport

through tuning signals. Spatio-temporal modulation is already an important tool in gener-

ating phonon wave packets with desired amplitudes, but an extension of this technique to

tuning would potentially open up new classes of phononic devices.

It is also worth bearing in mind that the control of energy transport has different constraints

than control of information transport. Energy tends to be transported over broad ranges

of frequencies, entailing the control of multiple branches. It also tends to be less sensitive

to things like spatial symmetries or coherence, and so does not require as fine a degree of

control. Lifetimes are still important, particularly to the extent that modes in the controlled

frequency range are decaying into modes outside of one's control. Information, on the other

hand, is generally carried by much narrower frequency packets. Phase and coherence matter

more here, so it is often necessary to account for non-band structure effects like spatial

symmetries and lifetimes. While there are some aspects of tuning where the requirements

for energy and information overlap (i.e. decay routes) and the transport of either energy or

information entails the transport of the other, in many applications they have quite different

requirements.

'Computationally, Wannier wave functions are an important tool for this problem.
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This contrast between the requirements of energy and information reveals that, when seeking

to create new means of controlling phonon transport, it is important to recognize not only

what the technique can do but also what context it is intended for. For example, an obvious

extension of phonon computing would be to create a quantum phonon computer. However,

this is challenging due to the need to eliminate every form of amplitude or phase decay to pre-

serve qubit states. On the other hand, the elimination of every decay pathway would make

the qubit impossible to read or write (and therefore useless for a computing architecture),

and so some form of interaction must remain. This is particularly true for hybrid quantum

computing designs (see Ch. 4.2.2 and Refs. [293, 294, 295, 296, 297, 298, 299, 300, 301, 3021),

where phonons are used as an interface between different computing architectures 2. Con-

trast this with trying to improve thermal cloaking (primarily an issue of energy transport),

discussed in Ch. 2.3. There, decay is utterly unimportant except as a constraint upon

thermodynamic equilibrium. Instead, the greatest challenge is materials design, specifically

the engineering of specific heat. This is equivalent to a concern with the number of de-

grees of freedom that are thermally accessible, rather than how those degrees of freedom

relate to each other (i.e. decay). In further contrast, the phonon transport considered in

photoswitchable materials (see Ch. 4.4) was purely ballistic and no decay needed to be con-

sidered. If we were to extrapolate this work by incorporating decay, the phenomena that we

observed would still exist but the entire picture would become more complicated. Thermal

phonon populations induced by photoexcitation would not change the band structure and

so the inverse acousto-optic effect should be robust. Scattering and the stochastic transmis-

sion/reflection of phonons at intermediate frequencies (an energy transport problem) as well

as high frequency phonon confinement (an information transport problem) would, however,

be in competition with thermal equilibration in this case. In both scattering and confinement

the control of decay becomes crucial - for the entire middle frequency phonon spectrum in

the case of scattering and for specific high frequency modes in the case of confinement.

This interplay between the transport of information and sound and the competition between

decay and coupling is one which tuning is particularly adept at addressing. While this aspect

of tuning has gone under-examined, it is especially promising and not without precedent.

2Phononic computing using mediated interactions, as Refs. [303, 304, 305] consider, do not circumvent
this challenge as the existence of an interaction pathway implies the existence of a decay pathway.
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It was once believed 3 that in the far North lay the island of Nova Zembla, which grew so

cold in the winter that words would freeze in mid-air and could not be heard until they

thawed in the summer. This is thermally tunable transport applied to acoustic lifetimes

and velocity. By tuning materials, we can get beyond the need for a perfect device that has

ideal characteristics in all circumstances and turn instead to making devices that can adapt

to differing requirements. The flexibility of tunable materials is perhaps the most promising

tool for guiding phonons with specificity and turning their tendency to couple almost every

other information or energy carrier from a detriment to an advantage.

3Plutarch, for example, confidently proclaimed this fact.
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