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ABSTRACT

The production of a new drug is an inherently risky process. While there are many

causes for failure, a number of these are due to the many potential degradation pathways a
protein can undergo. Often these reactions are slow and negligible. However, there are times

where any one of these reactions can be significant enough to delay or prevent a drug's
development. Testing for all of these degradation routes can be difficult in the early stages of

drug development due to small amount of available protein and the long times needed to sample
these reactions. In order to reduce the risk to the drug development process, in silico methods
have been developed to predict the likelihood of these reactions, without the need for any
material. This work focuses on two degradation routes; the aggregation pathway and the acid-

catalyzed, non-enzymatic hydrolysis of peptide bonds. Aggregation of antibodies can be a
limiting factor for liquid formulations; however, two major factors control this reaction: the

surface hydrophobicity and the protein charge. These two factors were combined into a new
tool, called the Developability Index, to predict protein aggregation rates. This tool was

successfully applied to both antibody and individual antibody domains.

The non-enzymatic, acid-catalyzed hydrolysis of an amide bond following an aspartic
or glutamic acid residue is controlled by a wider range of factors. These include: the secondary

structure, the surface exposure of the amide bond, relative orientation of the sidechain, and the

availability of the sidechain. These four factors impact the first two steps of the hydrolysis
mechanism: the addition of the proton to the peptide bond and the addition of the sidechain to

the peptide backbone. The secondary structure and surface exposure of the peptide bond

impact the ability of the proton to add to the peptide bond, and thus start the reaction, while the

orientation and availability of the sidechain impact the ability of the sidechain to cyclize and

form a ring. These factors can be combined to produce a method to predict the reactivity of

peptide bonds with high accuracy.
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In Silico Tools for the Development of Biotherapeutics

1. INTRODUCTION

While there is a great deal of controversy about the exact cost of making a new drug,

most agree on one fact: it is expensive. One estimate of the cost per new chemical entity is

$802 million (1), another estimate places the cost at $1.3 billion for biopharmaceuticals (2),

while yet another estimate places it between $0.5 and $2 billion depending on the company

developing the drug and type of therapy being produced (3). Not only is this process costly,

but it is a long process that often fails. One estimate places the time needed to produce a new

drug at more than a decade, with only 5% of attempts succeeding (4). As the long time and

high failure rate contribute to the high cost of new drugs, several strategies have been proposed

to decrease these, one of the frequently considered methods for reducing the cost of the process

is through the use of in silico prediction methods (4).

In silico prediction methods/tools encompass a wide range of computational tools that

can be used to predict protein properties based on some computational models. These predicted

properties can be used in conjunction with experimental results to increase the knowledge about

the behavior of the protein before substantial money is invested in its production. As a group,

these tools often have a number of useful properties including: no material needed to make

prediction, high throughput, rapid results, and these tools can even suggest sources of

instability in addition to predicting the likelihood of instability. There are several issues with

these tools; the two most significant are that they require expertise that companies may be

lacking and accurate in silico tools are needed. These tools require either large experimental

data sets to validate or a strong foundation in the physics of the reaction.

There are many potential degradation routes for proteins. In general, these stabilities

are classified into two main categories: chemical instabilities and physical instabilities.

Chemical instabilities are those that involve creating or destroying chemical bonds; these

include such pathways as oxidation, hydrolysis, proteolysis, and deamidation (5,6). Physical

instabilities are those pathways that do not alter the chemical bonds of the proteins, such as

aggregation, denaturation, surface adsorption, and precipitation (5,6). While all proteins are

susceptible to all of the degradation routes, they may not be significant in all cases.

This study will present in silico tools to predict two of these pathways, the aggregation

pathway (a physical instability pathway) and the hydrolysis pathway (a chemical instability).
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2. DEVELOPABILITY INDEX: A RAPID IN SILICO TOOL FOR THE SCREENING

OF ANTIBODY AGGREGATION PROPENSITY

2.1. Introduction

Monoclonal antibodies (mAbs) represent a growing portion of pharmaceuticals.

Currently, there are over twenty antibody-based drugs on the market (7), with many more

antibody-based drugs at various stages of development. MAbs have several advantages over

other types of drug substances, including high specificity for their target and long serum half-

life (8). However, there are a number of factors that impede their use, such as restriction to

antigens that are either in serum or on the cell surface and the high dose that is frequently

required for treatment. The high mAb concentrations required to treat patients leads to

challenges in their long-term storage, in particular the risk of aggregation. For mAbs, and

therapeutic proteins in general, aggregation is an important degradation pathway. It can

compromise product integrity, and the aggregates may elicit an immunological response (9).

One of the challenges in the development of an antibody-based drug is selecting a

suitable lead candidate among many possible mAbs that will bind to the target antigen. Among

others, aggregation propensity is a property that is often quantified during the development

phase to select mAb with lower aggregation propensity. Because there are many possible

candidates to be used for a potential drug, each of these mAbs is tested for aggregation

propensity to determine which would be the best candidate for use as a drug. The current

practice in the industry is to infer the aggregation propensity of the mAb via a number of

biophysical experiments; however, these tests need to be done quickly with small amounts of

protein, so it is difficult to truly capture the long-term stability properties of a mAb, particularly

if the mAb is to be stored at a high concentration. In this work, we present a novel, high-

throughput, in silico tool to predict relative stability, with respect to aggregation, of a mAb

based on its structure.

Several tools already exist to predict protein aggregation (10), (11), (12), (13). The

majority of these tools are based on the protein's primary sequence and have been developed

based on the knowledge gained from amyloid formation of short peptides. These sequence-

based tools generate predictions using a number of amino acid characteristics, such as their

propensity to form different secondary structures, charge, polarity, and solubility. A few of

these methods have been applied to mAbs (14); however, minimal information is available in

the open literature on the validation of these tools. Moreover, none of these tools have been

applied to screen and rank mAbs according to their aggregation propensity.
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There are many properties that affect protein aggregation, including hydrophobicity,

charge, propensity to form p-sheets, and the propensity to form a-helical structures.

Hydrophobicity is thought to be of major importance during protein aggregation (15).

Recently, a tool called Spatial-Aggregation-Propensity (SAP) was developed in our group to

identify the aggregation prone regions of proteins (13), (16), (17), (18), (19). SAP is a measure

of the local hydrophobicity of surface patches (either static or dynamically exposed), which

identifies regions responsible for hydrophobic interactions. Electrostatic interactions are also

quite important as electrostatics can have an important role in solution phase reactions. To

incorporate the competing effects of electrostatic interactions and hydrophobic interactions, we

developed a new parameter, termed the Developability Index (DI). The DI provides a rapid in

silico predictive tool to rank mAbs according to their aggregation propensities (see Figure 2-1

for more details).

Primary Sequences

Homology Modeling, X-Ray Crystal Structure,
Protein NMR, etc.

Full Antibody
Structure

SAP Calculation PROPKA

SAP Residue pKa
Values values

SAP Antibody Formulation
Score Net Charge pH values

Developability
Index

Ranking of Antibody Candidates

Figure 2-1 - The procedure for the calculation of the Developability Index (Dl) from a primary
sequence. The primary sequence of the mAb, homology modeling (See Section 2.2.2) or other
methods can be used to determine the structure of the mAb. This structure can then be used to
calculate the net charge (See Section 2.2.5) through the use of PROPKA. Concurrently, the SAP Score

of the mAb (See Section 2.2.3) can also be calculated. Using the value of the SAP Score and the net
charge, the DI can then be computed and used to rank mAbs (See Section 2.3.3).

DI = [Antibody SAP Score] + fl x [Antibody Net Charge]2

Equation 2-1
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The DI, mathematically defined in Equation 2-1 is the combination of a mAb's SAP

score and the square of the mAb's net charge. There are many functions that can combine a

mAb's SAP score and net charge into a single value, and any of these functions are possible.

A high value of DI is indicative of higher aggregation propensity and vice-versa.

In Equation 2-1, the SAP Score accounts for hydrophobic interactions during the

aggregation process, while the mAb net charge accounts for the electrostatic interactions during

aggregation. The weighting factor, /, can be determined through data regression of long-term

stability data with SAP Score and net charge. This factor is necessary due to the numerical

difference in the scales of the SAP Score and the square of the net charge as well as the

possibility that either of the two variables may have a dominant role in the determination of the

aggregation rate. Additionally, the weighting factor, f, may be system dependent and could

vary with formulation conditions, such as concentration of salts or other additives.

One challenge of using SAP and the structure-based net charge to measure protein-

protein interactions is that both require a known structure of the protein. However, there are a

number of freely available tools that can be used to create reasonably accurate models of Fv

regions of mAbs from their primary sequence, including WAM (20), PIGS (21), and Rosetta

(22). While these modeling algorithms may take several hours, user input is not required once

the modeling has begun, and multiple mAbs can be run in parallel. As there are a number of

tools and procedures to generate a reasonably accurate structure from the sequence for mAbs,

the use of structure-based variables to calculate DI is not considered limiting to its use.

2.2. Methods

2.2.1. Long-Term Stability Data

To determine the experimental aggregation propensity, defined here as the rate constant

for the aggregation reaction, long-term stability studies were performed on nine IgG1 mAbs,

one IgG2 mAb, and two IgG4 mAbs. These studies consisted of storage of mAbs for long

times, up to two years, under controlled conditions. The mAb samples were stored in controlled

environments (either 25 'C at 60% relative humidity or 40 'C at 75% relative humidity) until

a sample was removed for size-exclusion chromatography.

There was some variability in the data due to slight differences in procedures over the

time that the different stability studies were started and the individual performing the study.

These differences included slight variability in the formulations, variability in the time of

measurement (i.e. additional measurements at different times), and variability in the initial

concentrations of mAb and aggregates. All mAbs were stored in L-histidine solutions at a

9
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concentration of either 10 mM or 20 mM. The initial mAb concentration also varied across

samples and ranged from 40 mg/mL to 150 mg/mL; similarly, the initial percent of aggregates

varied from 0.3% to 3%. Finally, the pH of the formulation varied between experiments,

ranging from 5.5 to 6.5. Further details on the experimental conditions are available in the

supplemental section 10.6.

To determine a measure for the stability, i.e., formation of aggregates, a kinetic model

was proposed. For simplicity and relative accuracy, a second order model (Equation 2-2) is

assumed.

dCM C2_

dt kAgCM

Equation 2-2

Here, Cm is the concentration of non-aggregated mAbs, kAgg is the aggregation rate constant

(aggregation propensity), and t is time.

This model does not capture all of the aspects of the complex aggregation process.

While more complicated models exist to describe protein aggregation (23), this model captures

the data suitably well given the accuracy of the long-term measurements. The initial mAb

concentration is included in the model because many of the mAbs are studied at multiple

concentrations and the aggregation rate appears to be dependent on the initial concentration of

mAb. The amount of aggregated product and drug product are measured using size-exclusion

chromatography. The values for the kinetic rate constants are determined using ordinary least

squares linear regression, using all available data for each mAb. Using the experimental data

at 25 'C and 40 'C, a rate constant is calculated for each temperature.

Due to the uncertainty in the experimental values for the aggregation rate constants, we

restricted ourselves to predict the stability class of each mAb instead of the actual aggregation

rate. The mAbs were clustered into three groups, low stability (high aggregation propensity),

medium stability, and high stability (low aggregation propensity), based on the value of their

aggregation rate constant. The cluster centroids were determined by minimizing the sum of

the square of the distance between the data and the nearest centroid using MATLAB's® kmeans

algorithm. This procedure was performed independently for the two temperature data sets so

that the classifications at either temperature were not influenced by the other.

2.2.2. Homology Modeling

As these mAbs are in various stages of development, the structures of these mAbs are

not known experimentally. In the past, it had been found that the use of the WAM modeling

tool (20), a mixture of homology and canonical structure modeling, generated a structure for
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the aglycosylated mAb to an acceptable accuracy (17). This information was used in

conjunction with the known crystal structure (PDB ID: 1HZH (24)) for an IgG1 mAb with a

kappa light chain, which serves as the basis for the full body structure of all IgG1 mAbs. The

1 HZH served as the basis for the constant regions of all the mAbs used in this work, and it was

also used as the basis for the constant regions of the K side chains for mAbs mAbl, mAb2,

mAb3, mAb5, and mAb6. To model the constant regions of light chains for those mAbs with

k light chains, mAb4 and mAb7, the model 1ZVO from the RCSB database was used (25),

which also has a k light chain. The structures generated were used for both the SAP

calculations and the mAb net charge calculations. A list of the properties of the mAbs used in

this study is given in Table 2-1 in Section 2.3.3, including SAP Scores, net charges, aggregation

propensities, the IgG subclass, and the type of light chain.

In addition to the seven IgG1 mAbs, five other mAbs were also tested to validate the

DI. While the constant light regions are similar between all mAbs, different models are used

to model the constant regions of the heavy chains due to the different structures of the IgG

subtypes. The two IgGI mAbs, mAb8, and mAb9, were modeled using the same method as

the other IgGi mAbs, mAbI to mAb7. The two IgG4 mAbs, mAblO and mAb 1I, were

modeled using the structure available for PDB ID: 1ADQ (26). The constant region of the

heavy chain of the last mAb, mAbl2, was modeled using PDB ID: 1FC1 (27).

2.2.3. SAP Score and SAP definition
The SAP tool was developed to identify regions of hydrophobic patches on the surface

of a protein. In the past papers, the SAP tool has been applied to a number of proteins, including

mAbs (16,13,17,19,18). These papers showed that SAP could be used to predict aggregation-

prone regions of a protein. SAP is defined as:

SAA of side chain atoms

SAPatom = within radius R
atom S A A of side chain atoms

Simulation Residues with at
Average least one atom of fully exposed residue

1within R of atom i

Residue
xHydrophobicity

Equation 2-3
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where

1) SAA is the 'solvent accessible area' of side chain atoms contained within radius R from

the central atom.

2) SAA of side chain of fully exposed residue (for amino acid 'X') is obtained by

calculating the SAA of the side chain of the middle residue in the fully extended

conformation of tripeptide 'Ala-X-Ala'.

3) Residue Hydrophobicity is obtained from the hydrophobicity scale of Black and Mould

(28). The scale is normalized such that glycine has a hydrophobicity of zero, the most

hydrophobic residue (i.e., PHE) has a value of 0.5, and the least hydrophobic residue

(i.e., ARG) has a value of -0.5. Hydrophobic residues have residue hydrophobicity

values greater than 0. Residue hydrophobicity values less than zero are less

hydrophobic than Glycine.

4) The simulation average is not a requirement. Static SAP also gives good results (see

Figure 2-2 and Section 2.3.1 for more details).

One difficulty in using SAP for ranking mAb aggregation is that the original SAP

method generates a value for each individual atom, not a single value for the protein. To

convert the SAP values for the atoms of a mAb into a single value for the mAb, the SAP Score

was developed. The SAP Score of a mAb is determined by the sum of all positive SAP values

of the atoms in the CDR of the mAb. The definition of the CDR that is used throughout this

work is the definition used by the WAM homology algorithm (20).

SAP Score = (SAPatom i)
All atoms in CDR
with SAP Value>0

Equation 2-4

The summation only includes the CDR because the CDR are the regions where the

greatest variation in IgG mAb is observed. The benefit of only considering the atoms in the

CDR is that SAP only needs to be calculated for a relatively small section of the mAb. The

inclusion of only those atoms in the CDR is also limiting in that it does not include the effect

of mutations in the framework or in the constant regions. However only including the CDR

atoms would make comparisons across subtypes difficult, such as comparing an IgGI mAb to

an IgG2 mAb. Other differences, such as those in the framework of the Fv region, are not

accounted for directly by SAP. These differences may affect the SAP values in the CDR if the

affected residue is sufficiently close to the CDR. However, including regions beyond the CDR

12
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do not appear to affect the ranking of mAbs by SAP, for more details see supplement Section

10.5.

There were two changes to the SAP procedure compared to the previous work 7; one is

the selection of a slightly different radius, and the other is the use of only the static structure in

the determination of SAP. A SAP radius of 5 A was used because it is approximately averaging

over the nearest neighbors. Other radii were attempted, such as 10 A and 15 A as in past work,

but 5 A was among the best performing radii (see Figure 10-2). Dynamic SAP calculations are

discussed further in the next section (Section 2.2.4).

2.2.4. Dynamic SAP Calculations

In previous papers (13), (16), (17), (18), (19), SAP was determined over the course of a

molecular dynamics (MD) simulation; however, all atom MD simulations are computationally

costly. To increase the utility of the DI, SAP calculations for the DI are based solely on the

static structure. By using only, the static structure, the DI can therefore be used in the early

development process to rapidly screen a large number of potential mAbs. To determine if the

SAP Score derived from the static structure is sufficient to determine the ranking, four Fab

segment MD simulations were performed. These simulations were run for a total of 10 ns, 2 ns

for equilibration and 8 ns for property calculations, using the Fab segments of each mAb in an

explicit solvent.

The simulations were setup and analyzed using the CHARMM simulation package (29).

These simulations were performed using NAMD (30) using the CHARMM22 fully atomistic

force field (31) with the TIP3P solvent model for water (32). The charges of the histidine

residues were determined based on the distance to nearby negatively charged residues. The

simulation was run as an NPT ensemble, with the temperature fixed at 298 K and the pressure

fixed at 1 atm. The mAb Fab was solvated in an orthorhombic box, with periodic boundary

conditions in 3 directions and an 8 A water solvation shell around the mAb fragment. Ions

were added as needed to neutralize the net charge of the system, as required by the Ewald

summation technique for the calculation of the electrostatic contribution. After the mAb was

solvated, the energy was initially minimized with steepest descents (SD) by fixing the protein

to allow the water to relax around the protein. Then, the restraints were removed, and the

structure was further minimized with SD and the adopted basis Newton-Raphson. The system

was then slowly heated to room temperature with 5 'C increments every 0.5 ps using a 1 fs

time step. The system was then equilibrated for 2 ns before starting to compute the various

13
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properties from simulation. The configurations were saved every 0.1 ns during the simulation

for further analysis.
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Figure 2-2 - SAP Score based on molecular dynamics simulation vs. the SAP Score based on the initial

static structure for mAbs (in order of increasing SAP Score based on static structure) mAbi, mAb2,

mAb1O, and mAb3. The dashed line is the linear regression between the SAP Score based on the

initial static structure, from homology modeling, and the 10 ns molecular dynamics simulation (R 2

of 98.8%).
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Figure 2-3 - Variations in SAP Score [solid black line; average of 49.6] and Net Charge [dashed gray

line; average of 4.1] over the 10 ns molecular dynamics simulation for mAb3.

2.2.5. Antibody Net Charge

To take electrostatic interactions into account, the mAb net charge was used. The pKa

of individual residues was determined using PROPKA 1.0 (33), (34) with the full mAb

structure. PROPKA uses the local environment of a residue, including electrostatic interactions
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of nearby charged residues, hydrogen bonding, and desolvation effects, to determine its pKa

value. These pKa values were then used to determine the charge of each amino acid. Because

this pH range contains the pKa of free histidine, the pKa of each residue that could be charged

was used to compute the partial charge using equations derived from the Henderson-

Hasselbalch equation. A similar process has been used before (35), where all arginine,

histidine, lysine, aspartic acid, glutamic acid, and tyrosine residues were considered chargeable

and included in the net charge. In addition to these residues, unbound cysteine residues were

also included in the net charge. The glycosyl group was not considered in the net charge as

there are a number of different possible glycosylation patterns, and the distribution of these

patterns is dependent on many variables outside the structure of the mAb.

In past works, it has been found that the calculated net charge and the measured net

charge could vary significantly. However, it has also been found that the net charge from

calculations based on the amino acid sequence results in the same ranking of mAbs as was

determined from experiments (36).

We used the partial charge of each residue instead of the discrete charge in which a

residue is either charged or not charged. The first reason for this approach was that there are

several histidine residues in the mAb, particularly in the heavy chain used for the main data

set. If a discrete charge is used, there is a large jump in charge in the pH range of interest

because it crosses the pKa of histidine. However, this change is less severe if the partial charge

is used. Another reason for the use of partial charge is that it allows for greater differentiation

between similar residues and similar mAbs. For instance, at a pH of 6, both histidine and

arginine are positively charged, but as the pH nears the pKa of histidine, only a fraction of

those in solution will be charged, while virtually all the arginine would still be charged. This

differentiation makes comparison between similar mAbs possible.

Another effect that the variable protonation state of histidine has is that it requires the

inclusion of the entire mAb structure in the net charge calculation. In the case of the SAP

Score, the SAP of the constant regions is the same for all mAbs. In the case of the net charge,

the variable protonation state of histidine can substantially change the net charge of the mAb

because of the histidine residues in the constant region of the heavy chain and the range of pH

values tested.
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2.2.6. Determination of P
To determine the relative importance of mAb net charge and the SAP Score to the

aggregation propensity, possible values of 8 were iterated through, from hydrophobic

controlled (a /8 of zero) to charge controlled (high #). At each attempted value for #, the DI

value for each mAb was computed using Equation 2-1, and the centroids were scaled to the

centroids of the fitted aggregation data. The magnitude of the scaling was determined by

minimizing the root mean square distance between the DI values and the nearest centroid. The

centroids were scaled by Equation 2-5:

pDI ~ pk X C

Equation 2-5

where IUK and pD, are the centroids for the aggregation rate constants and the centroids for the

DI, respectively. The factor c is a scaling factor. The function was minimized using the

MATLAB function fmincon. The mAbs were then put into clusters based on their DI values

and the scaled cluster centroids. After the new clustering was determined, it was compared to

the actual clustering, and the number of correctly classified mAbs was computed. The optimal

range of/3 was the range that resulted in the largest number of correct classifications.

This fitting was done with a few assumptions mainly that the formulation conditions

and the constant regions are identical or similar enough among all the mAbs to be directly

comparable. To address these concerns, the mAbs used to determine the value for P were

selected carefully. To maintain similar formulation conditions, only stability studies with the

same additives were used, although the concentration of these species did vary slightly.

Similarly, only long-term stability studies containing data for both 40 'C and 25 'C were

considered; at lower temperatures, the aggregation rate is often not substantial enough to be

measurable accurately in a reasonable period of time. Of the mAbs with stability reports that

met these requirements, only those that were IgGI with identical constant regions for the heavy

chain were considered. The constant region of the light chain followed one of two possibilities:

either K or k. There is only one isotype of either K or X.

2.3. Results

2.3.1. SAP: Static Structure vs. Dynamic Simulations

After the 10 ns simulations were performed, the SAP values of each atom were

computed over the final 8 ns simulation to allow the fragment to equilibrate. While the

magnitude of these numbers differed slightly, the values based on the static structure were close

to the value from the simulation. The SAP Score based on the static structure was, on average,
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4% greater than the simulation-based SAP Score. As can be seen in Figure 2-2, there is a

correlation between SAP derived from the static and SAP derived from the dynamic

simulations, so it was acceptable to use only the initial static structure generated from WAM

in the computation of the SAP score for the mAb.

To see how the DI would vary over the course of a simulation, a structure was generated

every 1 ns of the simulation and used to calculate the net charge and the SAP Score. The net

charge varied only slightly over the course of the simulation and only varied significantly at

two points (Figure 2-3). At these points, a histidine residue temporarily gained or lost a

hydrogen bond to another nearby residue, which greatly impacted the stability of the protonated

state. This effect was noticeable at a pH of 7, which is close to the model value for the pKa of

histidine residues. There were larger variations of the SAP Score over the course of the

simulation, up to 6% of the mean value. While both the SAP Score and the net charge varied

over the course of the simulation, the change in the DI was approximately the change in the

SAP Score, as the change in the net charge was small compared to the change in the SAP Score.

2.3.2. Sensitivity Analysis for SAP Score

To determine the DI of any given protein a number of variables must be set. These

variables are typically involved in the computation of the SAP Score. In particular, the cutoff

value for the atoms in the SAP Score, the summation of SAP values for atoms in the CDR, and

the SAP radius can be selected arbitrarily. To test the sensitivity of the resulting classifications

to these variables, they were varied and the changes in classifications were noted. Furthermore,

during the determination of the numeric value of the SAP Score used in the computation of the

DI, a minimum threshold value to include was defined. Originally, this was set at zero.

SAP Score of Antibody = Al (SAP Valueatom i)
All atoms in CDR

SAP Value>cutoff

Equation 2-6

Changes of less than 0.1 in the cutoff value had no effect on the final mAb

classifications (see Figure 10-2). This range of 0.1 contained the majority of SAP values;

approximately 60% of the observed SAP values fell within this range (see Figure 10-3).

The radius used to compute the SAP Score did have a substantial effect on the

classifications (see Figure 10-1). A SAP radius of 5 A was used throughout the rest of this

work because it resulted in the largest number of correct classifications and a SAP radius of

5 A roughly corresponded to the average of hydrophobicity over a residue's nearest neighbors.

However, a range of SAP radii from 4 to 7 A performed as well as 5 A.
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It is possible to compute the SAP Score of any region or portion of a protein. In this

case, as the remaining parts of the protein are constant or close to constant across the mAbs,

only those atoms in the CDR of the mAb were included because the CDR contains the majority

of the differences between the different mAbs. Overall, the SAP Score parameter was robust,

and a minor change in its parameters did not lead to major changes in the classifications of the

mAbs.

2.3.3. IgG1 Data Regression

A set of seven IgGI mAbs were used to determine the optimal value of the weighting

factor, 8, in Equation 2-1. The fitting was performed independently for both the 40 'C and the

25 'C point. The resulting DI classifications and the results from experiments are shown in

Figure 2-4. The values for the fitted parameters and the cluster values for the aggregation rates

are in Table 2-2. For a physical meaning of these values, see Figure 2-5. In general, the

classifications were quite good. However, it was unclear whether deviations were due to the

DI or inaccuracies in the experimental data.

DI Classifications of

Long-Term Stability

mb 25 *C 40 *C

Expt. DI Expt. DI

mAb I

mAb3

mAb4

mAb5

m~b6 Increasing Stability
mAb7M

Figure 2-4 - Experimental and DI-based classifications for long-term stability against aggregation for
the 7 mAbs used in the regression (mAbi, mAb2, mAb3, mAb4, mAb5, mAb6, and mAb7). Green
represents high stability, yellow represents medium stability, and red represents low stability.
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Figure 2-5 - Graphical representations of the stability classifications. A) and B) show the percent of
aggregates in solution as a function of time assuming an initial mAb concentration of 100 mg/mL
with 1% of the total protein in the aggregated state. The different classifications were determined
by the aggregation propensity values. A) shows the classifications of a mAb solution if stored at
40 *C and B) if the solution had been stored at 25 *C. C) and D) show the SAP Score and Net Charge
regions that map to the different stability classifications. C) is the classifications based on the 40 "C
data. D) is based on the 25 0C data. In A), B), C), and D), the red region is the region or predicated
region of low stability, the yellow region is the region of medium stability, and the green region is

the region of high stability.

Table 2-1 - List of the mAbs used in this study and their properties, including their IgG subclass, the
type of light chain, the values of their aggregation propensities at both 40 *C and 25 *C from long-
term stability experiments, and the computed values of their SAP Score and net charge at the
formulation pH of the studies used to determine the aggregation propensities.
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mAbI IgGI K 1.77 x 10' 7.17 x 10- 16.3 19.4

mAb2 IgGI K 9.51 x 10-6 6.42 x 10-' 23.9 20.1

mAb3 IgGI K 4.55 x 10-5  5.96 x 104  46.0 18.1

mAb4 IgGI k 5.54 x 10-6 5.40 x 10-5 24.1 28.9

mAb5 IgGI K 1.11 x 10-5 5.62 x 10-' 40.6 24.5

mAb6 IgGI K 6.94 x 10-5  2.15 x 10-4  35.6 23.9

mAb7 IgGI k 7.74 x 10-6 1.58 x 104 44.0 25.8

mAb8 IgGI K 1.21 x 10-5  1.19 x 10-4 35.2 24.4

mAb9 IgGI K 8.79 x 10-6 8.01 x 10-5  32.4 25.8

mAb10 IgG4 K 1.05 x 10-5 2.54 x 104 24.6 15.5

mAb11 IgG4 K 2.74 x 10-5  2.12 x 10-4 42.3 18.1

mAb12 IgG2 k 1.15 x 10-5  1.42 x 104  28.7 27.9

Table 2-2 - Values for fitting parameters at 40 *C and 25 *C, as derived from the regression of 7 IgG1
mAbs (mAbi, mAb2, mAb3, mAb4, mAb5, mAb6, and mAb7). I is the regressed parameter 1 in
Equation 2-1. The given Dl values and aggregation propensities correspond to the different

classifications (high, medium, and low stability) at 40 *C and 25 *C.

Values for 40 0 C Values for 25 C

High Stability DI < 5.8 DI < 9.4

DI values Weitm ,

Low Stability 18.4 < DI 19.4 < DI

-4 < 1 -
Medium Stability 1.24 x 10 4 k 2.79x 0 k

3.91 x 104  5.74 x iO4

2.3.4. Functional forms for the Developability Index

Many functions that include both SAP and electrostatics are possible for DI. The

primary method to differentiate the functions is the number of classifications that differ from

the experimental classifications at 40 'C. Other factors are also considered, such as their

actions at different limits, high charge, or numeric stability.
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Two of the best performing functions were:

DI = [Antibody SAP Score] + # x [Antibody Net Charge]2

Equation 2-7

DI = [Antibody SAP Score] + fl x [Antibody Net Charge]

Equation 2-8

Both resulted in one deviation from the 40 'C data. In addition, both resulted in the

same deviation; mAb5's stability was underestimated by predicting it to have medium stability

although it was observed to have high stability. As both were equally accurate, Equation 2-7

was used as the overall function for the DI because it was slightly more numerically stable

compared to Equation 2-8. Another benefit of using Equation 2-7 was that the square allowed

for the pH range to extend above the isoelectric point, although this case did not arise in the

available data set, as the electrostatic portion depends on the magnitude of the charge, not on

the sign of the charge. The following functions were also considered:

DI e [Antibody SAP Score]+ f x [Antibody Net Charge] 2

Equation 2-9

DI = e [Antibody SAP Score]+ fix [Antibody Net Charge]

Equation 2-10

Neither of these equations performed as well as the previous two functions, as these

both deviated from the data for two test mAbs. However, these functions are able to generate

the same predictions using the SAP Score of the Fv region as the predictions generated using

the CDR. Following a similar idea, the following equation could be used:

e fx[Antibody SAP Score]

DI = [Antibody Net Charge]2

Equation 2-11

This equation resulted in the same classifications as Equation 2-7 and its linearized

form, Equation 2-8. Because Equation 2-10 did not perform any better than Equation 2-7, it

was not used for further DI calculations. As was true with Equation 2-9 and Equation 2-10,

Equation 2-11 made the same predictions with either the SAP Score of the CDR or the SAP

Score of the Fv region. Other means can be used to account for the hydrophobicity and the

electrostatic interactions. The first of these is the replacement of the SAP Score in Equation

2-7 by the effective hydrophobicity, the residue hydrophobicity multiplied by the ratio of

solvent accessible surface area to a reference surface area. The positive effective

hydrophobicity values are summed over the CDR and then used as the basis for a new fitting.
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This case resulted in three deviations from experiments. Thus, the use of relative

hydrophobicity performed more poorly than SAP because it does not take into account

neighboring residues; two adjacent hydrophobic residues will have a greater effect on

aggregation than two separated residues. The second case replaces the mAb net charge in

Equation 2-8 with the isoelectric point (pI). The isoelectric point is determined using the

structure and the set of pKa values from PROPKA. The pH is varied until the net charge on

the whole mAb is zero, which resulted in two deviations from experimental values. The last

two possibilities for ranking the mAbs are the DI based solely on SAP or solely on charge. If

only net charge is considered, mAbI and mAb2 would be classified as low-stability mAbs, but

due to their low SAP Score, they are actually high-stability mAbs. Moreover, the use of the

SAP Score alone resulted in five correct classifications at 40 'C. Thus, the SAP Score only,

without any fitted parameter, was able to predict the long-term stability of mAbs to a good

accuracy, and this accuracy could be further improved by combining the charge and the SAP

Score (as in Equation 2-7).

There are many functions that can be used to compute a value for the DI. These can

either be simple linear combinations of terms, as is the case in Equation 2-7 and Equation 2-8,

or can be more complex ones, as is the case in Equation 2-9, Equation 2-10, and Equation 2-11.

There are also other possible parameters that could have been used in place of the SAP Score

and the net charge, but they do not perform as well as the SAP Score and the net charge. Lastly,

neither the SAP Score nor the net charge is sufficient on their own to explain the observed

differences in aggregation rate.
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DI Class ifCications of Long-Term Stability

f a b Et fuations: Equations: R e SAP + h ly d a e
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Figure 2-6 - Classifications of the stabilities for 7 mAbs based on different functions to determine
the D1. The first column is the value given by long-term stability studies. Later columns are
classifications based on different functions for the evaluation of the D1. All data and classifications

are at 40 *C. Green represents high stability, yellow represents medium stability, and red represents
low stability.

2.4. Discussion

2.4.1. Validation of the Developability Index

In addition to those mAbs used to determine #, five other mAbs were tested to validate

the DI tool. These five mAbs were not used in any way to determine any parameter or to

determine a step in our method. These mAbs included two IgG1 mAbs (mAb8, mAb9), two

IgG4 mAbs (mAbl0 and mAbl1) and one IgG2 mAb (mAbl2). Four of these mAbs (mAb8,

mAb9, mAb 11, and mAb 12) were stored in similar formulations to those used in the original

set of mAbs. For each of these mAbs, DI was applied using Equation 2-1 (see Figure 2-7).

The predictions were quite good given the uncertainty in the experimental data. Note that there

was a bias in the data toward high-stability mAbs because some of the unstable mAb candidates

were removed during the normal drug development process.
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mAb 25 C 40 oC

Expt. DI Expt. DI

mAb9

mAbIO

mAb11

Figure 2-7 - Predictions generated using the Developability Index for 5 test mAbs, 2 IgG1 (mAb8,
mAb9), 2 IgG4 (mAb10 and mAbli), and 1 lgG2 (mAb12), compared to their experimental stability.
Green represents high stability, yellow represents medium stability, and red represents low stability
with respect to aggregation.

When this process was applied to five additional mAbs (mAb8, mAb9, mAblO,

mAb 11, and mAb 12), the predictions worked well. In the case of the IgG 1 mAbs, mAb8 and

mAb9, both mAbs' aggregation propensity were correctly predicted at both temperatures. Of

the two IgG4 mAbs, mAbl0 and mAbi 1, mAb10 was correctly predicted at both 40 'C and

25 'C. However, mAbl 1's stability was underestimated at both temperatures. This result was

reasonable because IgG4 mAbs are more prone to aggregation than IgG1 mAbs (37). In this

case, the difference in stability of an IgG 1 and IgG4 could at least be partially explained by the

difference in the number of chargeable residues in the heavy chain, as an IgG4 mAb has a net

charge roughly 6 e lower than an IgGI mAb with the same variable region.

The IgG2 mAb, mAb12, was stored in the standard L-histidine buffer for the stability

studies. In this case, it was predicted to have high stability at both 40 'C and 25 'C. However,

experimentally, it had medium stability at 40 'C, while the prediction for 25 'C was correct.

As was the case with the IgG4, there was some evidence that IgG2 mAbs were also less stable

than IgG 1 mAbs (38), (39). This fact could explain the less accurate results obtained at 40 'C:

the DI predicted high stability, but experiments showed it to have medium stability. Because

the constant regions of the heavy chain and the light chain were assumed to be constant among

all the subtypes during the calculation of the DI, except for the calculation of the net charge,

the hydrophobicity of these uncounted regions might be the cause of these incorrect predictions.
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While DI gives the general trend of stabilities (Figure 2-7), there is a degree of error.

There are a number of differences that exist between the different subtypes of IgG mAbs that

could lead to reduced accuracy of prediction. These differences include different glycosylation

patterns between mAbs and different cysteine bond shuffling, among other factors. All of these

could lead to differences in the intrinsic rate of aggregation for the particular class of mAb or

even to differences in the aggregation pathways accessible in solution. Future work could be

performed to better understand the differences in the aggregation rates of IgG2 and IgG4 mAbs

compared to IgG1 mAbs and to adjust the DI to better account for the inherent differences

between the IgG subtypes.

2.4.2. pH dependence of the Developability Index

One of the strengths of the DI is that it is pH dependent. This dependence comes from

the effect that pH has on the charge of a residue. This fact is important because the range of

possible pH values for a liquid formulation leads to a very large range in net charge. As can

be seen in Figure 2-8, for mAb5, there is a wide range of possible mAb net charges. Most of

the drop in pH seen in this range (i.e., from 5 to 8) was due to the deprotonation of the histidine

residues, of which there are nine in the constant region of the IgG1 heavy chain. While the

pKa of most histidine residues falls between pH 6 and 6.5, the curve is smooth and does not

show a particularly sharp drop in that range due to the use of partial charges.

40
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Formulation pH

Figure 2-8 - Variation of mAb net charge as a function of the formulation pH for the moderately

charged mAb mAb5

This effect of pH on the net charge can have a large effect on the predicted stability of

mAbs. In Figure 2-9, this effect can be seen for two mAbs, one with low SAP and low charge,

and another with high SAP and low charge. As shown, even a high SAP protein can be

stabilized by greatly shifting the pH from the pI. This dependence can be useful in determining
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the optimal pH or possibly as an initial estimate for the optimal pH that a mAb should be stored

at without any experiments. However, the DI does not account for the possible change in other

degradation pathways that may be catalyzed by the change in pH.

The dependence on pH also leads to a difficulty that arises during the screening process,

where two mAbs might be classified the same at one pH and vary substantially at others. For

instance, as shown in Figure 2-9, at a pH of 5, both mAbs are highly stable, but as the pH

increases to 6.5, one mAb still has high stability, and the other mAb has changed to the low-

stability class. For comparison between mAbs during development, the dependence of stability

on pH could be easily overcome by calculating the DI for the mAbs at several pH values.

pH 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Figure 2-9 - The predicted long-term stability for two mAbs, mAbi (a low SAP, moderate charge
mAb) and mAb3 (a high SAP, low charge mAb), at various pH values. All predictions were made at
40 *C, and the definition of the stability classes is given in Table 2-2.

2.4.3. Application of the Developability Index in Protein Development

One of the difficulties in the development of a mAb-based drug is that there are many

possible mAbs that will bind to the target antigen. If there are many possible candidates to be

used for a potential drug, each of these mAbs needs to be tested to determine which mAb is the

best candidate. Currently, initial screening is done through a series of experiments that measure

various properties of a candidate mAb. However, these tests need to be done quickly with

small amounts of protein so that they cannot truly capture the long-term stability properties of

a mAb. The DI was therefore developed to predict the long-term stability properties of mAbs.

There are two distinct roles that the DI can fill in the development of mAb-based

pharmaceuticals. The DI can be used to prioritize mAb candidates for experimentation and as

a tool to guide the mutation of unstable mAbs. The prioritization of mAbs can be done several

ways, such as by the removal of low-stability candidates from the candidate pool or by ranking

the mAbs and using this rank to prioritize experiments. This prioritization allows for the earlier

identification of more stable drug candidates. While it is true that one (or more) of the

discarded mAbs may be stabilized to an acceptable level by the judicious choice of excipients,

some of these unstable mAbs may not be sufficiently stabilized for use in a drug. The benefit

of the DI is that it would allow for a more stable mAb to be selected in the discovery phase and

would help to minimize the time and money needed during the formulation development phase.
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The DI also allows for selection of mutants with increased stability relative to the

original mAb. These mutations are determined either through locating high SAP residues and

mutating these residues or through the mutation of a residue that is not charged to a residue

that can be charged. Through both of these methods, many potential mutations can be

identified, and the mutations can then be ranked by the DI to select the best without any

experiments.

One of the benefits of the DI is that it does not depend on any information about the

protein other than the structure, which can be determined from the primary sequence using

homology modeling. With the mAb structure, both SAP calculations and charge calculations

can be performed, and the DI can be calculated. While -this tool can help screen mAbs, it can

also be used to help guide mutations of less-stable mAbs to improve their stability. The DI

could also be used to evaluate the risk of the future development of specific mAbs. For

instance, if the current mAb were to have a high DI value, it would indicate the possibility that

more work would be required to stabilize the mAb during the formulation development stage.

It is important to note two of the limitations to the current DI tool: the applicability of

the DI to only mAbs and the neglect of other degradation pathways. Currently, this DI tool has

only been validated for mAbs, but it may be directly applicable to other classes of proteins, the

primary challenge to which would be obtaining an accurate 3-D structures. Another limitation

is that this tool only accounts for aggregation. However, there are a number of other factors

that also need to be considered when selecting a mAb from a set, such as protein expression,

mAb purification, interactions with the formulation, and other degradation pathways. These

other degradation pathways include oxidation of Methionine residues, deamidation reactions,

hydrolysis, and bonding of cysteine residues between mAbs (5,6). The effects of these other

factors need to be considered separately from DI.
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A) Current drug discovery process S tal

Unstable
mAbs

B) Developability Index Based Prioritization
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Figure 2-10 - A comparison of the proposed method of mAb development using the DI and the

existing method of mAb-based drug development during the discovery phase of drug development.

Part A represents the current state of drug discovery, where many mAbs are developed through a

range of experiments to separate stable mAbs (in green) and unstable mAbs (in purple). Part B of

the figure shows DI screening for prioritization, where the unstable mAbs are removed, and the

stable mAbs move on. Part C shows DI removing unstable mAbs from the candidate pool and then

using SAP and the net charge to select mutants of these mAbs for greater stability, which can then

be considered for drug development.

2.5. Conclusion

The Developability Index (DI) is a tool that allows for the rapid screening of mAbs for

their aggregation propensity without any experimental data. The DI is based on two

parameters: SAP Score of the CDR and net charge of the full-length mAb, to account for

hydrophobicity and electrostatic interactions, respectively. Both of these are dependent on the

tertiary structure of the mAb, which is a required input either from experimental data or

homology algorithms. Here, we present the details of the algorithm and its implementation. In

addition, we validate the DI on a number of mAbs. Seven were used to determine the P

parameter; another five were used to test the accuracy of the DI. The accuracy was very good,

considering the uncertainty in the experimental data. Therefore, the DI could be applied in the

discovery and early development phases to select for stability among candidates. It could also
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be used to estimate the risk in going forward with a particular candidate. Finally, it could help

guide mutations of a mAb to stabilize it against aggregation.
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3. APPLICATION OF SAP AND DI TO ANTIBODY FRAGMENTS

3.1. Introduction

Monoclonal antibodies are successful drugs because they exhibit significant

therapeutic potential with few side effects. However, antibodies are less stable than low

molecular weight chemical compounds and are prone to chemical and physical degradation

(40). Degraded antibodies can aggregate (41), and protein aggregates can exhibit low efficacy

and trigger immunogenic responses (9,42). The generation of higher quality antibody

therapeutics requires understanding the mechanisms underlying aggregation and establishing

production technologies that can strictly control aggregate formation.

The tendency of a protein to aggregate likely depends on its conformational and

colloidal stabilities (43,44). Proteins unfold upon exposure to stresses such as heat, pH, and

agitation, and then often aggregate (45)), suggesting that conformational stability towards such

stresses may decrease the propensity to aggregate. However, someproteins remain monomeric

and monodisperse in the unfolded state, suggesting that the colloidal stability of the unfolded

state would impact the propensity of a protein to aggregate. The conformational and colloidal

stabilities of a protein likely depend both on the protein (amino acid composition, sequence,

and structure) and environment (buffer, salts, and other solvent components) (46,47,48).

Consequently, assessing the propensity and exploring the mechanisms underlying aggregation

require the systematic investigation of both the conformational and colloidal stability of a

protein in a wide range of solution conditions.

Immunoglobulin G (IgG) is a multi-domain protein exhibiting complex molecular

behavior, but recent studies have reported a relationship between the aggregation reaction of

the antibody and the conformational and colloidal stabilities of its domains. Calorimetry

experiments showed that the CH2, CH3, and Fab regions unfold at different temperatures (49).

Enk et al. reported that thermally-unfolded aglycosylated CH2 region led to aggregation of Fc,

and that the presence of anions destabilized the CH2 region and accelerated the aggregation

reaction (49). Kim et al. reported that aggregation rates for intact antibody were strongly

influenced by the conformational stability of the Fab region (50). Furthermore, Buchner and

coworkers showed that murine IgGi domains (i.e., whole-IgGI, Fab, CH3, VH, VL, CH1, and

CL) form molten-globule-like intermediate structures under specific acidic conditions (pH 2

and 100 mM NaCl; CL: pH 2, 175 mM NaCl) (51,52,53,54). These intermediate structures,

also called the alternatively folded state (AFS), exhibit molecular properties unique from both

native and random coil conformations. Moreover, antibody domains in the AFS generally
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oligomerize, suggesting that the AFS is involved in antibody aggregation mechanisms. Taken

together, the evidence to date suggests that each antibody domain has the potential to induce

antibody aggregation, and that aggregation occurs through complicated interactions between

multiple antibody domains, each of which may have different conformational and colloidal

stabilities. Since understanding antibody aggregation mechanisms is clearly challenging, we

propose that an extensive investigation of the conformational and colloidal stabilities of

individual antibody domains is a useful approach towards understanding antibody aggregation

mechanisms.

3.2. Materials and Methods

3.2.1. Protein Preparation

Gene sequences for four constant domains (i.e., CHI, CH2, CH3, and CL) were

designed based on the amino acid sequence of human IgGI containing kappa light chain. The

N- and C-terminal amino acid residues of each domain were determined from IgGI crystal

structures (PDBID: 1N8Z and 3D6G). The C-terminal cysteine residues of CHI and CL were

deleted to prevent undesired dimerization. Each domain had a His-tag sequence at its N-

terminus. Codons were optimized for Escherichia coli expression, and cleavage sites for

restriction enzymes were extended to the 5'- and 3'-ends. CHI and CL gene fragments were

synthesized using overlap extension polymerase chain reaction (PCR). The CH2 and CH3 gene

fragments were obtained by PCR amplification of the pFUSE-hIgGI-Fcl plasmid (Invtrogen).

The CHI, CH2, and CL gene fragments were digested with NdeI/EcoRI and ligated into pET-

22b(+) (Novagen). The CH3 gene fragment was digested with NcoI/BamHI and ligated into

pET-16b (Novagen). Escherichia coli strain OrigamiT M B (DE3) (Novagen) was transformed

with plasmid vectors coding each domain and cultured in Luria-Bertani media containing 100

pg/mil ampicillin, 20 ptg/ml kanamycin, and 20 pg/ml tetracycline. Recombinant gene

expression was induced by the addition of isopropyl p-D-1-thiogalactopyranoside to a final

concentration of 0.5 mM at 25 'C. After overnight culture, cells were centrifuged and

sonicated. Domain proteins were purified from the cell lysates using His GraviTrap TM (GE

Healthcare). Purified domain proteins were solubilized in 20 mM MES pH 6.0 buffer by

dialysis and applied to a Resource S cation exchange chromatography column (GE Healthcare)

equilibrated with the same buffer as the sample. Purified proteins were concentrated by

ultrafiltration and applied to a Superdex 75 (10/300) gel filtration chromatography column (GE

Healthcare) equilibrated with 20 mM citrate-phosphate buffer, pH 7.0, containing 150 mM

NaCl. The purities of the samples were confirmed by tricine SDS-PAGE, and by mass
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spectrometry using an Axima-TOF2 (Shimazu) and 4700 Proteomics Analyzer (Applied

Biosystems). Cytochrome c (m/z, 12,362) and apomyoglobin (m/z, 16952) were used as

internal TOF mass standards.

CH1-CL heterodimer protein was synthesized by CHI and CL co-expression in

Escherichia coli. Based on the report by Corisdeo and Wang (55), a CH1-CL co-expression

gene fragment was designed, placing the CL gene sequence before the CH1 gene sequence,

and inserting spacer DNA and an additional ribosomal binding site between the two genes.

CHI and CL in the CH1-CL co-expression gene fragment both contained a C-terminal cysteine

residue to allow intermolecular disulfide bond formation. The CHI -CL co-expression gene

fragment was obtained by PCR amplification, digested with NdeI/EcoRI, ligated into pET-

22b(+) (Novagen), then used to transform Escherichia coli strain OrigamiT M B (DE3)

(Novagen). Protein expression and purification were performed as described for the other

domains.

Forty-nine sets of protein solutions (seven pH values (pH 2-8, at one unit intervals),

each at seven salt concentrations (NaCl 0-300 mM, at 50 mM intervals)) were prepared by

dialysis against 20 mM glycine-HCl buffer pH 2 or 20 mM citrate-phosphate buffer pH 3-8

containing 0-300 mM NaCl. Dialysis was performed for 18-20 hours at 4 'C using a micro

dialyzer (Toru-kun TOR-3K, Nippon Genetics).

3.2.2. Circular Dichroism Spectroscopy

Circular dichroism (CD) measurements were carried out using a J-805

spectropolarimeter (Jasco). Far-UV CD spectra were recorded from 195 nm to 260 nm at 1 nm

intervals at 20 'C with 50 pM protein in 0.2 mm pathlength quartz cuvettes. All spectra were

corrected by subtracting the buffer spectrum. Two independent measurements were made for

the pH 2 and pH 3 samples, and one for all other solution conditions.

3.2.3. Empirical Phase Diagrams

Empirical phase diagrams (EPDs) of each antibody domain were drawn according to

the reports of Middaugh and co-workers (48,56). First, the CD and fluorescence spectra were

normalized using the following equation:

~ _ (Xi pH, NaC1 Xi
Xi pHNaCi (.

S

where Xi,pH,NaCL and Xi,pH,NaC1 are the normalized and measured signal intensities,

respectively, at wavelength i for each combination of pH and NaCl concentration, and xiis the

signal intensity averaged for all solution conditions at wavelength i. The symbol s denotes the
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standard deviation of the intensities at all wavelengths and all solution conditions. Next, data

matrix A was constructed, containing all 49 normalized spectra: data matrix A for the CD data

consisted of 66 columns and 49 rows, while data matrix A for the fluorescence data consisted

of 151 columns and 49 rows. Singular value decomposition (SVD) of these data matrices was

conducted using the following equation:

A =USV T  (2.)

where U is the left singular vector whose columns contain orthonormal eigenvectors of

the column space information in A. Each column of U contains the significant spectral fractions.

S is the singular value which quantifies the relative importance of each vector in U and V. V is

the right singular vector whose columns contain orthonormal eigenvectors of the row space

information in A. Each column of V contains a titration profile for each corresponding column

of U. The superscript T denotes transposition of the matrix V (57). SVD calculations were

carried out using IGOR Pro (Wavemetrics).

Each EPD was drawn using the three most significant right singular vectors (Figure

3-3). If insignificant vectors apparently due to noise data were found, one or two significant

right singular vectors were selected and used for the EPD. Noise in the data was judged using

the values of a contribution ratio and an autocorrelation function calculated from the singular

values and the singular vectors, respectively.

To visualize the EPDs using a RGB color scheme, the values of the right singular

vectors were normalized using the following equation:

(V -V
pHNaC1 xi,pH,NaC min) x 256 (3.)

(Vimax - Kmin)

where Vi,pH,NaC1 and Vi,pH,NaC1 are the normalized and calculated values, respectively, of

the i-th right singular vector in each combinations of pH and NaCl concentration. Vi,mmn and

Vimax are the minimum and maximum values of the i-th right singular vector among all 49

solution conditions, respectively. RGB color schemes corresponding to the normalized values

of each i-th right singular vector were mapped for every solution condition, with the first,

second, and third right singular vectors shown as red, green, and blue, respectively. The RGB

color intensities correspond to the normalized values of the right singular vectors. No color was

used for data representing noise (insignificant singular vectors). For example, the RGB

representation of EPD would be black if all three normalized values were zero and white if

they were 256. Similar colors for the different solution conditions indicate that the protein

exists in similar conformational sub-states. The color scheme manipulation was carried out
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using Excel (Microsoft). Finally, to classify the 49 conformational sub-states into several

major-states, a hierarchical clustering analysis was carried out using R. The resulting classified

conformational major-states were separated by drawing a thick black or white line on each

EPD.

3.2.4. Dynamic Light Scattering

Dynamic light scattering (DLS) measurements were conducted using a Zetasizer Nano

S (Malvern). All measurements were performed at 20 'C using quartz microcells with a sample

volume of 12 piL at a protein concentration of 50 pM and a scattering angle of 1730. Samples

were filtered through a 0.22 pm centrifugal filter (Millipore). Two independent measurements

were made for the pH 2-4 samples, and one for all other solution conditions. The translational

diffusion coefficient and the particle size diameter were calculated from the autocorrelation

function using Zetasizer Software (Malvern).

3.2.5. Estimation of Aggregation Propensities from Various Parameters for Amino Acid
Composition, Sequence, and Surface Structure

Amino acid compositions and general protein characteristics were calculated according

to the reports by Goh et al. and Thomas et al. (58,59). Aggregation prone regions (APRs) as

representations of sequence characteristics were calculated using several sequence-based

aggregation prediction algorithms: Aggrescan (60), PASTA (61), Zyggregator (11), and Tango

(10). The calculations were performed using the default settings, except that the pH conditions

for Zyggregator and Tango were set to 3.0, and the temperature and ionic strength conditions

for Tango were set to 293.15 K and 0.3 M, respectively. Output scores for Na4 vSS (normalized

sum of averaged aggregation propensity value, Aggrescan), best energy (PASTA), Zagg

(Zyggregator), and the Agg parameter (Tango) were used as parameters for estimating the

aggregation tendency of the domains. The spatial aggregation propensity (SAP) and the

developability index (DI) were used as representations of structural surface properties (17,62).

SAP was calculated using the native structure of the domains extracted from the crystal

structures of Fab and Fc (PDBID: lN8Z (63) and 3D6G (64) respectively). The SAP score was

calculated using all atoms of each domain except for the N-terminal methionine and the His-

tag sequence. The SAP radius was set as 10 angstroms for all calculations. The pKa of

individual residues in the pH 3 condition was calculated using PROPKA 3.0 (65). The P value

for the 20 mM histidine solution, 25 'C condition was selected from known values (62)
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3.3. Results

3.3.1. Analysis of Secondary Structure of Antibody Domains Using CD Spectroscopy
To investigate the secondary structures of the domains, the far-UV CD spectra of the

proteins in 49 solvents (pH 2-8 and 0-300 mM NaCl) were measured (Figure 3-1). Acid-

induced unfolding of the secondary structure was observed for each domain. The CD spectra

of non-native states were affected by NaCl concentration.
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The CD spectra of CH3 from pH 4 to pH 8, 0 mM-300 mM NaCl, were almost identical,

indicating that CH3 retains its native secondary structure under these conditions (Figure 3-Ia).

The spectra showed a maximum intensity at 198 nm and two minimum intensities at 218 nm

and 229 nm. In contrast, at pH 2 and pH 3, 0 mM NaCl, the CD spectra were typical of a

random coil, with the minimums shifting to 200 nm. The absolute intensity of the minimum at

pH 2 was greater than that at pH 3 (Figure 3-Ib). At both pH 2 and pH 3, the minimum shifted

to longer wavelengths as the NaCl concentration increased up to 100 mM; above 100 mM

NaCl, the minimum remained around 205 nm and the spectra did not change.

The CD spectra of CH2 from pH 4 to pH 8, 0-300 mM NaCl, were almost identical

(Figure 3-1c) and were indicative of native secondary structure, showing maximum and

minimum intensities at 203 nm and 214 nm, respectively. In contrast, at pH 2 and pH 3, 0 mM

NaCl, the spectra were typical of a random coil, with the minimum shifting to 199 nm. The

absolute intensity of the minimum at pH 2 was larger than that at pH 3. At both pH 2 and pH

3, the absolute intensity of the minimum gradually decreased as the NaCl concentration

increased (Figure 3-id).

CD spectra of CL corresponding to native secondary structure were observed from pH

4 to pH 8, 0-300 mM NaCl (Figure 3-le), with maximum and minimum peaks at 202 nm and

217 nm, respectively. Although the wavelength of the maximum and minimum at pH 3

remained consistent with the native state, the absolute intensity of the maximum decreased as

the NaCl concentration increased from 0 mM to 50 mM (Figure 3-If). At pH 2, 0 mM NaCl,

the spectrum was indicative of a random coil, with the minimum shifting to 200 nm. The

absolute intensity of the minimum changed only slightly as the NaCl concentration increased,

in contrast to the much larger changes observed with CH2 and CH3.

The CD spectra of the CH1-CL dimer from pH 4 to pH 8, 0-300 mM NaCl, were almost

identical (Figure 3-1g), with maximum and minimum peaks at 202 nm and 217 nm,

respectively. No significant shifts in the maximum and minimum were observed at pH 3, but

their intensities changed as the NaCl concentration increased. The absolute intensity at the

maximum increased as the NaCl concentration increased from 0 mM to 50 mM and decreased

as the NaCl concentration increased from 50 mM to 300 mM (Figure 3-1h). At pH 2, 0 mM

NaCl, the spectrum was characteristic of a random coil, with the minimum shifting to 199 nm.

At pH 2 and pH' 3, the absolute intensity at the minimum decreased as the NaCl concentration

increased, but the decrease was small compared to those observed with CH3 and CH2 under

the same conditions.
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3.3.2. Analysis of the Tertiary Structure of the Antibody Domains Using Intrinsic
Tryptophan Fluorescence Spectroscopy

The intrinsic tryptophan fluorescence spectra of the four domains in the 49 pH/NaC1

solvent conditions were measured in order to investigate the tertiary structure of the domains

(Figure 3-2). CH2 and CH3 each contain two tryptophan residues (Trp277 and Trp313 in CH2;

Trp381 and Trp417 in CH3), while CHI and CL contain only one tryptophan residue (Trp161

in CHI; Trp148 in CL). Consistent with the secondary structure data obtained using CD, acid-

induced unfolding of the tertiary structure was observed for each domain. The fluorescence

spectra of the non-native states were also affected by NaCl concentration.
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The fluorescence spectra of CH3 from pH 4 to pH 8, 0-300 mM NaCl, were essentially

identical, indicating that CH3 retains its native tertiary structure under these conditions (Figure

3-2a). A fluorescence maximum was observed at 328 nm. At 0 mM NaCl, pH 2 and pH 3, the

maximum fluorescence shifted to 348 and 343 nm respectively (Figure 3-2b), whereas the

maximum wavelength decreased as the NaCl concentration increased. Above 100 mM NaCl,

the maximum fluorescence remained unchanged at around 335 nm.

The fluorescence spectra of CH2 from pH 6 to pH 8, 0-300 mM NaCl, were almost

identical (Figure 3-2c). Spectra corresponding to the native tertiary structure showed maximum

fluorescence at 334 nm. Little change was observed at pH 4 and pH 5 (see section below). At

pH 2 and pH 3, 0 mM NaCl, the maximum fluorescence shifted to 347 and 345 nm, respectively

(Figure 3-2d), but shifted to shorter wavelengths as the NaCl concentration increased. The

fluorescence maximum was 340 nm and 338 nm at pH 2 and pH 3, respectively, at 300 mM

NaCl.

The fluorescence spectra of CL corresponded to the native tertiary structure from pH 4

to pH 8, 0-300 mM NaCl (Figure 3-2e), with a fluorescence maximum at 311 nm. The

fluorescence intensity of the native state was very low because CL has only one tryptophan

residue whose fluorescence is quenched by an adjacent intrinsic disulfide bond (31). At pH 2

and pH 3, there was no fluorescence quenching and the maximum shifted to 349 and 347 nm,

respectively (Figure 3-2f). The wavelength maximum obtained at pH 3 was little affected by

NaCl concentration. The fluorescence intensity at pH 2 was higher than at pH 3 and shifted to

shorter wavelength as the NaCl concentration increased, reaching 346 nm in 300 mM NaCl.

The fluorescence spectra of CHI-CL dimer from pH 4 to pH 8, 0-300 mM NaCl, were

almost identical (Figure 3-2g), with a maximum observed at 320 nm. The fluorescence intensity

of the native state was very low, possibly due to fluorescence quenching of the CHI and CL

tryptophan residues. At pH 2 and pH 3, fluorescence quenching disappeared and the maximum

shifted to 349 and 347 nm, respectively. The fluorescence intensity was higher at pH 2 than at

pH 3, but at both pH conditions, the maximum fluorescence shifted to shorter wavelengths as

the NaCl concentration increased, to 343 nm and 344 nm, respectively, in 300 mM NaCl

(Figure 3-2).

3.3.3. Evaluation of the Conformational States of the Antibody Domains Using EPD

The conformational stability of the domains was visualized and characterized by

conducting singular value decomposition (SVD), and by drawing empirical phase diagrams

(EPDs) using CD and fluorescence spectral data (CD-EPD and FL-EPD, respectively) (Figure
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3-3). SVD analysis can remove noise from spectra, allowing extraction of more significant

components contributing to spectral changes (57). EPD is a visualization method for easily

recognizing to what degree the extracted components dominate the spectrum (56,48). Different

colors on EPDs indicate dissimilar conformations.
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EPDs for CH3 based on CD (Figure 3-3a) and fluorescence (Figure 3-3b) data allowed

the 49 conformational sub-states obtained at the 49 solvent conditions to be classified into three

conformational major-states. The major-state corresponding to the native conformation is

illustrated by the same color from pH 4 to pH 8 at all NaCl concentrations. Acid unfolding is

clearly recognized by differences in color between pH 3 and pH 4. Non-native sub-states at pH

2 and pH 3 could be classified into two distinct non-native major-states that are dependent on

the NaCl concentration: above 100 mM NaCl, the color remains constant, suggesting that CH3

adopts a unique conformation under these conditions.

The 49 conformational sub-states of CH2 were classified into three and four major-

states from the CD- and FL-EPDs, respectively (Figure 3-3c, d). A native major-state of CD-

EPD was found from pH 4 to pH 8 at all NaCl concentrations. FL-EPD showed a native major-

state at pH 6-8 at all NaCl concentrations, while another major-state was apparent at pH 4-5.

The presence of this alternative major-state was supported by the fluorescence peak shift from

334 nm to 335 nm (pH 4) or to 336 nm (pH 5) (Figure 3-3d) due to a partially distorted state

(see Additional Discussion in Supplementary Material for details). In both the CD- and FL-

EPDs, two non-native major-states were found at pH 2 and pH 3, and a gradual conformational

change expressed as a color gradient was observed as a function of NaCl concentration.

The CD- and FL-EPDs of CL revealed that the 49 conformational sub-states could be

classified into two and three major-states, respectively (Figure 3-3e, f). Both EPDs showed the

presence of a non-native major-state at pH 2 but a native major-state at pH 3. A minor color

change at pH 3 suggests the co-existence of a small number of unfolded molecules with the

native-fold protein. In the FL-EPD constructed using data obtained at pH 2, the colors gradually

changed depending on the NaCl concentration, and two non-native major-states were obtained.

The CD- and FL-EPDs of CH1-CL dimer allowed classification of the 49

conformational sub-states into two and three major-states, respectively (Figure 3-3g, h). Both

EPDs showed the presence of a non-native major-state at pH 3 but a native major-state at pH

4. In the FL-EPD using data obtained at pH 2, the colors gradually changed depending on the

NaCl concentration, and two non-native major-states were obtained.

In general, the color differences observed with CD-EPD correlated well with those of

FL-EPD, suggesting that the secondary and tertiary structures changed cooperatively in all

domains.
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3.3.4. Evaluation of the Colloidal States of the Antibody Domains Using DLS, SEC, and
BN-PAGE Measurements

To investigate the colloidal stability of the domains, we measured the particle size of

the domains in the 49 solvent conditions using DLS and drew particle size diagrams (PSDs)

(Figure 3-4a-d). A quantitative comparison is provided in Table 1, which shows the obtained

particle sizes of a native state (pH 7, 150 mM NaCl) and two non-native states (pH 2, 0 mM

NaCl, and pH 3, 300 mM NaCl). Furthermore, an oligomeric state of the domains under the

same three conditions was analyzed using BN-PAGE and SEC (Figure 3-5). BN-PAGE and

SEC measurements of the domains at pH 7, 150 mM NaCl, confirmed that CH2 and CL exist

as monomers, whereas CH3 and CHI-CL dimer exist as dimers (Figure 3-5a, b). At pH 2, 0

mM NaCl, CH3 eluted later than the other domains on SEC (Figure 3-5c), suggesting that the

CH3 homo-dimer dissociated into monomers during acid unfolding. The particle sizes obtained

from DLS and the elution times from SEC at pH 2, 0 mM NaCl (Figure 3-5c) indicate that non-

native CH2, CH3, and CL exist as monomers while the non-native CH1-CL dimer remained a

dimer, probably due to an inter-molecular disulfide bond. Higher-oligomeric states of CH3 and

CH2 were observed at pH 2 and pH 3 as the NaCl concentration increased (Figure 3-4a, b,

Figure 3-5d). Interestingly, the particle size of CH2 increased at pH 4, unique among the

domains (Figure 3-4b), even though its native secondary structure was retained (Figure 3-3c).

DLS measurements of CH2 at pH 4 showed a multimodal particle size distribution, whereas

oligomerized CH3 and CH2 at pH 2 and pH 3 provided single peaks. The particle sizes of CL

and CHI-CL dimer did not change even at pH 2 and pH 3 (Figure 3-4c, d), suggesting that CL

and CH1-CL dimer retain their monomeric and dimeric state, respectively, under the solvent

conditions tested.
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Figure 3-5 - Oligomeric state analyses using blue native gel polyacrylamide electrophoresis (BN-
PAGE) and size exclusion chromatography (SEC). (a) BN-PAGE of CH2 (Lane 1 and 5), CH3 (Lane 2 and
6), CL (Lane 3 and 7), and CH1-CL dimer (Lane 4 and 8) at pH 6.8. BN-PAGE was electrophoresed on
4-20% polyacrylamide gradient gels. The disulfide bonds of samples applied to lanes 1 to 4 were
reduced by treating with 5% beta-mercaptoethanol (M-ME) prior to analysis, whereas the cysteines
in the samples applied to lanes 5 to 8 were oxidized. SEC of the domains at pH 7, 150 mM NaCl (b),
pH 2, 0 mM NaCl (c), and pH 3, 300 mM NaCl (d)

3.4. Discussion

3.4.1. Generalized Phase Diagrams by Merging Conformational and Colloidal Major-
States

The conformational and colloidal stabilities of isolated antibody constant domains

under a wide range of pH and salt conditions were investigated by systematic biophysical

measurements, and the EPDs and PSDs of the domains were obtained (Figure 3-3 and Figure

3-4). Significant similarities were observed between these two matrixes. For example, the

distinguishable regions at low pH and high NaCI concentration in the EPDs of CH3 and CH2

were very close to the red regions in the PSDs of CH3 and CH2 (Figure 3-3a-d and Figure 3-4a,

b), indicating that the conformational change and oligomer formation resulting from ionic

effects are likely associated. We therefore classified the conformational and colloidal sub-states

of the domains under 49 solvent conditions into three conformational and colloidal major-states

(Figure 3-6). The first major-state is the native state (N state); this is the preferred state near

neutral pH and exhibits native conformation and monodispersity. The second major-state is the

monomeric monodispersed non-native state (MMNN state), observed preferentially at acidic

pH and low NaCl concentration. The third major-state is the polymeric polydispersed non-

native state (PPNN state), predominant at acidic pH and higher NaCl concentration. CH3

exhibited all three major-states (Figure 3-6a), whereas CL and CH1-CL dimer exhibited only

the N state and MMNN state under the conditions tested (Figure 3-6c, d). In addition to these

three major-states, CH2 exhibited another conformational major-state, a partially distorted state

(Figure 3-6b).
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Figure 3-6 - Generalized phase diagrams for the antibody constant domains. The N state, MMNN
state, PPNN state, and a partially distorted state in CH3 (a), CH2 (b), CL (c), and CH1-CL dimer (d) are
shown, as applicable

3.4.2. Determination of the Order of Conformational Instabilities among Antibody
Domains

The conformational transition from N state to non-native state(s) was observed at a

different acidic pH for each domain (Figure 3-3 and Figure 3-6). The EPDs show boundaries

between pH 3 and pH 4 for CH3, CH2, and CH1-CL dimer, but between pH 2 and pH 3 for

CL.

Conformational stability was evaluated quantitatively by performing two- or three-state

transition model fittings and calculating the fraction of the three conformational major-states

(N state, MMNN state, and PPNN state) against the CD spectra at pH 2 and pH 3 (Figure 3-7).

The CD spectra obtained at pH 7, 150 mM NaCl, pH 2, 0 mM NaCl, and pH 3, 300 mM NaCl,

were taken as pure spectra of the N state, MMNN state, and PPNN state, respectively (See

Materials and Methods). A three-state transition model fit the CH3 and CH2 data well and

allowed the fraction of each conformational major-state to be estimated (Figure 3-7a-d). The

two-state transition model fit the CL and CH1-CL dimer data well (Figure 3-7e-h). At pH 3, 0

mM NaCl, the fraction of N state was approximately 32% for CH3, 21% for CH2, 92% for CL,

and 61% for CH 1-CL dimer (Figure 3-7b, d, f, h), which suggests that each domain was
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partially unfolded to some extent. For CH3, the fraction of PPNN state rapidly increased as the

NaCl concentration increased, to over 80% at 100 mM NaCl (Figure 3-7a, b). For CH2, the

fraction of the PPNN state gradually increased as the NaCl concentration increased (Figure

3-7c, d). If the sum of the fraction of protein in the PPNN and MMNN state at pH 3, 0 mM

NaCl is taken as an indicator of conformational instability, then the order of the conformational

instability of the antibody constant domains is: CH3 > CH2 > CHl-CL dimer > CL (Figure

3-8a).
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Figure 3-8 - Conformational and colloidal instabilities of the domains. The values on the vertical axis
indicating conformational instability (a) were calculated by the sum of the fractions of the MMNN
and PPNN states in 0 mM NaCl, pH 3 solution. The values on the vertical axis indicating colloidal
instability (b) correspond to the particle size in 300 mM NaCl, pH 3 solution.

3.4.3. Aggregation Propensities of Antibody Domains Estimated from Several Protein
Properties

What characteristics contribute to the different aggregation propensities? Although the

structures of the four constant domains are almost identical (RMSD of backbone atoms < 1.5

angstrom), their sequence homology is relatively low (sequence identity < 30%). Therefore,

we hypothesized that the differences in colloidal stability might depend on the amino acid

composition, sequence, or surface charge characteristics.

The amino acid composition of each domain was analyzed first. It was reported that

several specific amino acid compositions affect protein solubility, so we calculated these

parameters for each domain in an effort to explain the differences in colloidal stability. The

results did not suggest any significant relationship between amino acid composition and the

observed colloidal instability of the domains.

We next searched the aggregation prone regions (APRs) of the domains using several

sequence-based aggregation prediction algorithms: Aggrescan, PASTA, Zyggregator, and

Tango. All programs predicted several APRs at approximately similar positions. However, the
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order of the output scores of three of the programs did not coincide with the experimentally-

observed order of colloidal instability (Figure 3-9): only Zyggregator provided an output

consistent with our experimental data.

Lastly, we assessed the aggregation propensities of the domains based on structural

surface properties using Spatial Aggregation Propensity (SAP) and Developability Index (DI)

algorithms (Figure 3-10). SAP searches for surface hydrophobic patches and DI evaluates the

propensity for protein aggregation based on the SAP score and surface charge. SAP and DI

calculations were performed on the native static structure of each domain. The SAP

calculations identified hydrophobic patches concentrated on the interface region of each

domain (Figure 3- 1Oa-d) and the DI calculation interestingly estimated the order of aggregation

propensity to be: CH3 > CH2 > CL > CH1-CL dimer; this order is very similar to the order of

colloidal instability determined in the present study (CH3 > CH2 > CH1-CL dimer z CL; Figs.

IIe and 9b).

The aggregation propensities predicted by SAP/DI calculations on the static crystal

structure agreed with our experimental results, despite the aggregation-prone conformation of

the PPNN state being clearly different from the native structure. This led to speculation that

domains in the PPNN state adopt particular conformations whose structural surface properties,

such as hydrophobicity and electrostatic potential, are similar to the native structure in the N

state. Therefore, the relationship between SAP/DI and Zyggregator with our experimental

result suggests that relatively small hydrophobic surface patches and/or short hydrophobic

sequence segments primarily participate in aggregate formation.

DI calculations suggested that the CH3 homodimer is less prone to aggregation than the

CH3 monomer (Figure 3- l0e). This correlates with our experimental results that CH3 remained

a stable, dispersed dimer in the absence of acid stress, and that the CH3 dimer dissociated into

monomers and oligomerized at pH 3 and below (Figure 3-3, Figure 3-4, and Figure 3-5).

Therefore, the dissociation of CH3 dimer by acidic conditions is strongly associated with the

higher aggregation propensity of CH3. This viewpoint raises the possibility that CHI

aggregates when the CH1-CL dimer is dissociated by acid conditions. Feige et al. reported that

murine CH1 formed oligomers at pH 2, 100 mM NaCl (54). However, CH1-CL dimer did not

form oligomers in the present experiments. The higher colloidal stability of CHI -CL dimer

may arise from the close proximity of CHI and CL, since the two domains are covalently

connected through their C terminal disulfide bond, allowing CL to function as a "solubility

tag" and improve the solubility of CHI.
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Figure 3-9 - Sequence-based estimation of aggregation propensity. Na4vSS (Aggrescan) (a), best

energy (PASTA) (b), Zagg (Zyggregator) (c), and the Agg parameter (Tango) (d) were plotted against

the experimental order of colloidal instability of each domain
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Figure 3-10 -Surface-based estimation of aggregation propensity. SAP values were mapped on the
structures of CH1 (a), CH2 (b), CH3 (c), and CL (d). "Interface side" and "Outer side" are illustrated
using the native structure of IgG (PDBID: 1n8z and 3d6g). Green regions represent hydrophobic
regions and white regions are hydrophilic regions. (e) The calculation results of the SAP score, net
charge, and DI of the domains.
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3.5. Conclusion

Taken together, the experimental data presented here showing the conformational and

colloidal stabilities of the isolated domains, and the good correlation of these data with SAP/DI

calculations, suggest not only why the various domains exhibit different stabilities, but also

how whole antibody aggregation occurs. We propose that antibody aggregation under acidic

conditions involves highly structured domains exhibiting essentially native-like surface

properties, rather than random coil conformations, and thus the aggregated protein is

structurally distinct from amorphous aggregates characteristic of simple polymers.
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4. A SYSTEMATIC STUDY OF THE TIME DEPENDENCE OF RESIDUE

AVERAGED SAP AND THE SAP SCORE DURING A MOLECULAR DYNAMICS

SIMULATION.

4.1. Introduction

Aggregation is a major degradation pathway for monoclonal antibodies (mAbs).

Several attempts have been made to predict the aggregation prone regions and the likelihood

that aggregation will present a problem for these proteins (10), (11), (12), (66), (13). One of

these tools is SAP, or spatial aggregation propensity (13), (16), (17), (18), (19). This was further

expanded with the SAP Score of a protein (62), which can used with the charge of an antibody

to predict its likelihood to aggregate. One of the features that sets SAP apart from most of the

other aggregation prediction methods, is that it is based on the 3-D structure of the protein,

rather than just the primary sequence of the protein. This allows for direct inclusion of

interchain interactions and other tertiary structure impacts that are not present in the protein's

sequence. However, a protein can adopt many different conformations in solution. In order to

accurately calculate SAP of a protein, a collection of structures must be used. One of the

simplest methods to gather a collection of structures is through an all-atom molecular dynamics

(MD) simulation.

Several of these works (13), (62), (67) have used an MD simulation to sample a number

of conformations, by which an average SAP can be computed, to better estimate an individual

residue's role in aggregation. However, they have not determined how long of an MD

simulation is needed to adequately sample the possible conformation space. Some works have

suggested to rely solely on a crystal or homology structure of the protein, (62), as short MD

does not appear to improve the average. It is unknown how accurately a single structure can

capture the ensemble of protein conformations in this regard. In order to address these concerns,

the correlation time of SAP and the SAP Score will be investigated to determine how long a

simulation is needed to sample many conformations, and then these simulation averages will

be compared to the crystal structure to quantify the error in using only a single structure rather

than the ensemble of conformations.

4.2. Methods

4.2.1. SAP Definition and Uses:

The SAP, spatial aggregation propensity, tool was developed to identify regions of

hydrophobic residues on the protein surface. It has been previously used to investigate a
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number of antibodies (13), (16), (17), (18), (19), and has been used to design mutants of

enhanced stability. The SAP score of an atom is defined as:

SASA of side chain atoms

SAPato i =N I within radius R Residue
SAZ..m =SASA of side chain atoms Hydrophobicity

Simulation Residues wit at
Average least one atom of fully exposed residueJJ

within R of atom i

Equation 4-1

where

5) SASA is the 'solvent accessible surface area' of side chain atoms contained within radius

R from atom i.

6) SASA of side chain of fully exposed residue is obtained by calculating the SASA

(solvent available surface area) of the side chain of the middle residue in the fully

extended conformation of tripeptide "Ala-X-Ala" (where X is the residue of atom i).

7) Residue Hydrophobicity is obtained from the hydrophobicity scale of Black and Mould

(28). The scale is normalized such that glycine has a hydrophobicity of zero, the most

hydrophobic residue (PHE) has a value of 0.5, and the least hydrophobic residue (ARG)

has a value of -0.5. Hydrophobic residues have residue hydrophobicity values greater

than 0. Residue hydrophobicity values less than zero are more hydrophilic.

SAP can be used in two ways, the first is to compute the average SAP value of a residue,

an average of the SAP values for each atom. This quantity can be used to select which residues

should be mutated to decrease aggregation propensity. The second use option is to compute

the SAP Score of the protein, the sum of all hydrophobic atoms. This is a measure that can be

used to rank proteins by their aggregation propensity.

SAP Score of Protein = (SAP Valueatom i)
All atoms

SAP Value>0

Equation 4-2

SAPrestdue = Z (SAP Valueatom i)
Natoms in Residue All atoms

in residue

Equation 4-3

4.2.2. Definition of Correlation Time and the Statistical Inefficiency

During the time evolution of a MD simulation, each step is based on its predecessor,

this causes the state at any step to be correlated to its predecessor, therefor when looking at

average properties over the course of a simulation, some number of steps must be skipped to
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avoid correlation between adjacent steps. Because the time a property is correlated varies

between different properties it must be computed separately for both the SAP Score and the

SAP value per residue each residue. In order to determine how long these properties are

correlated, the correlation time, the method presented by Allen and Tildesley (68) will be used.

This method is based on breaking the simulation in blocks of time. During each of these time

blocks computing average value of the property of interest will be calculated. This collection

of blocked averages will then be used to computing the statistical inefficiency which is defined

in Equation 4-4, where Tbis the number of steps being averaged over, a 2 ((A)) is the standard

deviation of the of the block averages of property A and U2(A) is the standard deviation of

the property during the entire simulation.

s = lim TbU 2 MW

Tb-*C U 2 (_i)

Equation 4-4

Equation 4-4 yields the statistical inefficiency. This is a measure of how many steps

are correlated, and thus processing these steps is inefficient and adds no new information to the

average. This is directly proportional to the correlation time, and can be converted between

using Equation 4-5 by using the physical amount of time passes between frames.

s
Tc = time)

2step)

Equation 4-5

4.2.3. Homology Modeling and Simulation Detail

In order to investigate correlation time for several cases, the antigen binding fragments

for 5 antibodies are simulated here. These five Fabs (labeled FabI, Fab2, Fab3, Fab4, and Fab5

from (69)) have very similar sequences (>95% identity to Fabl). Therefore, the homology

model for each Fab was based on the crystal structure for Fabl (PDBID: 4G6F (70)). These

structures were then used to carry out classical molecular dynamics simulations using the

Gromacs package (71). The protein was simulated using the AMBER99SB force field (72).

The protein was solvated by adding a solvent shell of 10 A. This water was modeled with the

TIP3P force field (32). The charges for histidine were assumed to be at pH 7, with a periodic

boundary condition was applied in all three dimensions. Sufficient ions were added to neutral

the system. First, the system was minimized. The minimized structure was used as a starting

point for a 150 ns NPT simulation, using a 2 fs time step with a temperature of 300 K, and a
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pressure of 1 bar. 30 ns of the simulation was used to equilibrate the protein, while the

remaining 120 ns was used to evaluate the property of interest.

4.3. Results

4.3.1. Stability of proteins

The RMSD (root mean square displacement) was used to quantify the stability of each

protein during the course of its simulation. Each protein was found to be stable during the

simulation. A sample RMSD graph for Fabl can be found in Figure 4-1. The first 30 ns of

simulation time was used to equilibrate the system while the final 120 ns of simulation was for

the following calculations.

8

7

6

05

3

2

1

0-
0 25 50 75 100 125 150

Time (ns)

Figure 4-1 - The root mean squared deviation of the structure for Fabi over the course of the
simulation

4.3.2. Correlation time of SAP Score

Correlation time measurements for all five Fabs were carried out. Examples of this can

be seen in Figure 4-2 and Figure 4-3. Figure 4-2 shows the range of SAP Scores sampled

during the simulation. Fabl showed a wide variation in SAP Score during the simulation, about

20% of average. This is much larger than the average seen in previous works of approximately

5% (62) of the SAP Score over the simulation. This was collection of SAP Scores was used to

determine the collation time, of about 3ns for Fabl's SAP Score at 5 A. A similar process was

followed for the remaining Fab segments and a table of the results can be found in Table 4-1.

In all cases the statistical inefficiency converges for the SAP Score, normally between 2 and

10 ns, depending on the SAP radius and the fragment being studied.
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Figure 4-2 - SAP Score at 5 Angstrom Over last 120 ns of simulation for Fabi. SAP Radius 5A.
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Figure 4-3 - Statistical inefficiency at various time block sizes. Blue dots are measures of the

statistical inefficiency for a given time block size, while the blue bars represent plus and minus 1

standard deviation at the given statistical inefficiency. The black line is an estimate of the

correlation time, based on the limit of the statistical inefficiency as the size of the blocks goes to

infinity. The red line is a present to show the general trend. All data gathered from simulation of

Fabi. SAP Radius 5 A.
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Table 4-1 - Comparison of SAP Score for the start of the MD run, the average SAP Score over the
final 120ns of simulation, and the standard deviation of the SAP Score over the course during the
final 120ns of simulation. All data presented using four different SAP radii 5, 7, 10, and 15A.

Fabi 191 285 337 213 187 281 350 234 5.71 10.5 24.6 45.4

Fab2l 175, 257 '305 188 '178, 2631 3115 16 7 62,~. 55 3.

Fab3 185 287 356 j216 178 264 325 184 6.98 13.4 31.9 40.4

Fab4 165, 24-5 298 120( 174 21_1_325 1178 jf2 11 21'12 2.6.6

Fab5 177 247 295 166 172147 5.97 116 18.3 32.7

4.3.3. Correlation Time of Residue's SAP Value

A similar procedure was carried out for each residue during the simulations. For

illustration purposes, select figures are shown. The relative frequency of statistical

inefficiencies for all residues in Fabl are shown in Figure 4-4. Closer inspection shows that

some of these are not be converged, see Figure 4-5, which shows the statistical inefficiency for

residue 147. Therefore the values in Figure 4-4, represent a lower bound on the statistical

inefficiencies, and some may have correlation times greater than those estimated here.

However, these make a small number of residues, as less than 2% of residues have a correlation

time more than 20ns.

A similar analysis was carried out on all residues for all fragments. A table containing

the average correlation times can be found in Table 4-2. Figure 4-6 shows the frequency for

various correlation times for all fragments. No correlation was found between the correlation

time and either the residue averaged SAP value or its standard deviation. The error between

the initial structure and the average is plotted in Figure 4-7. The average error was -0.00039

with a standard deviation of 0.018. The error is normally distributed, with a mean that is not

statistically different from zero.
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Figure 4-4 - Histogram of correlation times for the residue averaged SAP for all residues in Fabi. SAP
Radius 5 A.
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Figure 4-5 - Statistical inefficiency at various time block sizes. Blue dots are measures of the
statistical inefficiency for a given time block size, while the blue bars represent plus and minus 1
standard deviation at the given statistical inefficiency. The red line is a present to show the general
trend. All data gathered from simulation of Fabi residue 147 during equilibrated 120 ns of
simulation. A frame is 0.1 ns, and SAP Radius 5 A.
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Table 4-2 - Comparison of SAP correlation time for several conditions, the average correlation time

of all residues in protein, and the SAP Score.

5 A 7 A ioA i5A 5 A 7 A iA 15 A

Fabi 1.55 1.74 183 196 3,9 4.08 1.67 1.93

Fab2 1.48 1.83 2.25 2.61 3.25 2.46 1.88 1.40

ab3 1.97 2.25 2.93 3.67 5.08 3.74 3 67 8.42

Fab4 1.39 1.46 1.62 2.00 1.11 1.19 0.84 1.44

Fab5 1.50 1.74 1.83 1.77 1.62 2.28 2.17 3.35

All 1.58 1.80 2.10 2.40 2.83 2.75

All Residues SAP Correlation Time

700
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0r
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Figure 4-6 - The relative frequency of different correlation times for any residue in all five fragments.
SAP Radius 5 A
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Figure 4-7 - Relative frequency of the difference between the initial and simulation average for the
average SAP per residue

4.4. Discussion

When comparing the difference between SAP Score calculated by the initial structure

and the average SAP Score, two factors can be compared: the numeric values of the SAP Score,

and the resulting ranking of Fabs. The numeric value of the SAP Score, at 5 A, based on the

initial structure differs by up to 8 compared to the simulation average. This difference is

approximately equal to the standard deviation of the SAP Score during the simulation. While

this is a variation of only 4%, this could greatly impact the classification of the mAb. This

difference is about 20% of the original range of values seen in the DI paper (62). Meaning that

there can be substantial error associated with the use of the initial structure only when

evaluating the SAP Score, especially when being used to differentiate highly similar proteins.

However, it does give a rough estimate of the ordering.

While the numeric values changed considerably, it only changed the ordering of one

fragment, Fab5, when ordering the Fabs based on the SAP Score at 5 A. Based only on the

initial structure the order is: FabI > Fab3 > Fab5 > Fab2 > Fab4. When the ordering is based

on the simulation average it is: Fabi > Fab3 > Fab2 > Fab4 > Fab5. The initial structure missed

one Fab, Fab5, which the initial structure suggests has average stability but it is actually the

most stable fragment. A similar effect can be seen when looking at SAP Scores computed at

different radii. In general, the difference between initial value and the simulation value is
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approximately one standard deviation, calculated from the MD simulation. Additionally, the

sign of the difference between the simulation average and the initial value varies. These two

factors suggest that the error in using the initial value of the SAP Score is proportional to the

observed standard deviation of the SAP Score during the simulation. This also suggests that

the crystal structure is representative of the ensemble of solution protein structures. This is

most likely partially due to the quality of the available homology model, in this case the crystal

structure for Fabl is known, and all other Fabs are highly similar to Fabl (similarity > 95%

between the different variants). In cases such as this, where all of the Fabs or mAbs are similar,

a long MD would be required to accurately rank the proteins, however a rough ranking can be

done relatively quickly and cheaply.

This also holds for the residue averaged SAP. In this case, the correlation times sample

a much wider range of values compared to those seen in the fragments alone. This is likely

due to the increased number of samples; but the trend continues to hold. The difference

between the simulation average and the initial structure is most often within one standard

deviation calculated over the simulation for that residue. A graph of the difference of the

simulation average and the initial structure can be seen in Figure 4-7. The graph appears to be

relatively normal. The mean, while not exactly zero, is not statistically different from zero,

and the standard deviation of the errors is approximately equal to the standard deviation of the

SAP Score measured during the simulation (0.028 and 0.021 respectively). The relatively large

magnitude of this error can be an issue when selecting mutation sites. In particular, in cases

when most of the values are very similar, and the cost of experiments greatly restricts the

number of viable candidates that can be tested. In these cases, extensive MD simulations,

possibly measured in the hundreds of nanoseconds, could be required to quantify the difference

between two similar appearing residues.

One of the largest differences between the SAP Score and the residue averaged SAP

value is the wider range of correlation times seen in the residue averaged SAP. In the case of

the residue averaged SAP value, the correlation times range widely, from less than 1 ns to more

than 30 ns, see Figure 4-6. While the average is between 2 ns and 4 ns, depending on the

averaging radius, most values are small. Approximately 80% of all values are less than 2.5 ns,

and only 2% have a correlation time more than 1Ons. However, several of these residues, as

seen in Figure 4-5, have not converged to the final value, so the presented values are only a

lower bound estimate for the correlation times. No correlation was found between either the

magnitude of the simulation average of residue averaged SAP, the standard deviation of the

residues' averaged SAP, or its correlation time.
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4.5. Conclusion

The utility of MD simulations to evaluate SAP is highly dependent on its intended use,

and the desired accuracy. If a rough ranking of mAbs is desired, then no simulation may be

required, assuming a reasonable quality homology or crystal model is available. However, if

the desire is to accurately rank two mAbs with a high sequence identity, then a long MD

simulation would be needed, because SAP is correlated for a fairly long period of time,

approximately 3ns, and the high value of the standard deviation of the SAP Score during the

simulation. Similarly, the error in using the initial structure alone for the selection mutation

sites can be problematic, especially if no very residue averaged SAP values are available or if

only a couple experiments are possible.
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5. RATIONAL DESIGN OF THERAPEUTIC MABS THROUGH INTRODUCTION

OF GLYCOSYLIZATION SITES TO DECREASE PROTEIN AGGREGATION

5.1. Introduction

Monoclonal antibodies (mAbs) are the fastest growing area of biotherapeutics with an

average yearly market growth rate of 38% in 2012 (73). Their use as therapeutic agents has

generated unprecedented interest as these molecules can specifically target virtually any

molecules implicated in disease. mAbs are often required to be formulated in a very high

dosage (often over a hundred mg per mL for subcutaneous injection) and are often

manufactured and stored for extended periods of time in a liquid form. At these extreme

conditions, proteins stability becomes a greater concern and challenge. Aggregation is one of

the most prominent forms of antibody instability and can cause issues from manufacturing

failure (74) to fatal immunological responses (75,9) upon drug delivery through loss of

efficacy. Protein degradation is usually dealt with through appropriate manufacturing,

formulation and storage conditions of the drugs (45,76). These strategies, though effective, are

costly and time consuming and can lead to an inferior product. Another approach is to alter the

protein itself, typically by conjugation with a small molecule stabilizer (77,78) or through

substitutions of amino acids in aggregation prone regions (79). Molecular-based and

computational approaches for the rational design of these proteins, beyond trial and error,

permit the determination of protein developability at an early stage (12). The incorporation of

drug developability within the discovery phase would overall reduce the risk, time, and cost to

launch drugs on the market.

Protein aggregation is a complex phenomenon with no single established mechanism.

Several states of proteins (folded, partially unfolded, unfolded) can be involved in the

aggregation of monomers into small multimers and then into larger oligomeric structures in a

reversible or irreversible manner (75). Aggregation of macromolecules often involves the

dynamic exposure of aggregation prone regions (APRs), hydrophobic patches buried within

the folded state of the protein, but it can also occur through interactions of the APRs displayed

on the surface of the proteins. This duality renders the prediction of APRs for stable protein

engineering that much more complicated and challenging. A handful of computational tools

have been validated for the identification of APRs on antibody molecules (12). Sequence based

computational tools (TANGO and PAGE) allow the identification of several APRs in mAbs

including buried ones (80), but even though these tools are useful they provide relatively low

accuracy and coverage (12). The spatial aggregation propensity (SAP) tool (16,13,17,19,18)
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has been developed based on molecular dynamic simulations of protein structure and has

proven to be efficient in determining potential APRs on the surface of mAbs. Unlike other

methods, the SAP tool takes into account protein dynamic fluctuations and the spatial

clustering of residues to identify the hydrophobic dynamically exposed residues on the protein

surface and define APRs.

With the purpose of improving the stability of mAbs without a loss in efficacy, the SAP

tool has been applied to identify the aggregation prone regions on the surface of the fragment

antigen binding (Fab) domain of a model IgG1, the therapeutic antibody bevacizumab

(Avastin@ Genentech). Bevacizumab is an anti-VEGF-A (vascular endothelial growth factor)

recombinant humanized monoclonal IgGI used in the treatment of several cancers (81,82) as

well as against age-related macular degeneration. (83) This mAb is an interesting target to

rationally design biobetters with enhanced stability as bevacizumab is particularly unstable

with respect to aggregation. Bevacizumab is formulated at a low concentration and has

previously been shown to be highly aggregation prone (84,85), leading to not only a substantial

loss of activity (86) but also to large aggregates, which could potentially be harmful to patients.

Previous work has shown that the degree of glycosylation of biologics affects both their

biological and biophysical properties. In particular, it has been shown that N-glycans in

antibodies have an impact on the conformational and colloidal stability of mAbs, protecting

the protein from both thermal and chemical denaturation. Additionally, glycosylation can

stabilize the tertiary and quaternary structures of mAbs, and in the case of the Fc domain,

hydrophobic regions, which are aggregation prone, are covered by a glycosylation moiety

(87,88,89,90). Glycoengineering has proved to be effective in substantially increasing the

solubility of biotherapeutics (91,92) as well as reducing the aggregation propensity of mAbs.

It is well accepted that N-linked carbohydrates participated in the stabilization of mAbs against

aggregation by covering aggregation prone motifs and through steric hindrance that disrupts

intermolecular interactions (93,78). This strategy was investigated here to stabilize

bevacizumab against aggregation. Four glycosylation sites were independently introduced on

the surface of the constant region of the Fab domain of bevacizumab by single point mutation

in the CH1 and CL domains, which are far from the binding region.

5.2. Materials and methods

5.2.1. Molecular Simulation

Several Fab MD simulations were performed, one of the wild-type of bevacizumab and

one of each of the hyperglycosylated Fab variants (Li 18N, QI60N, Ql60s and E195N). All
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three simulations were based on the crystal structure of bevacizumab, which was obtained from

the RCSB PDB (PDB ID: IBJi) (94). Hydrogen atoms were added to this structure at pH 7

using the PSFGEN plugin of the VMD (95). Topology and structure files for the

hyperglycosylated Fab variants were generated using the Glycam website (96), assuming a GO

glycosylation pattern (GLYCAM notation: DGlcpNAcbl-2DManpal-6[DGlcpNAcbl-

2DManpal-3]DManpbl-4DGlcpNAcbl-4DGlcpNAcbl). For all simulations, the

AMBER 1 2SB (97) and Glycam06 (98) force fields were used for the protein and glycosylation,

respectively. A molecular-dynamics (MD) simulation was performed on each of these all-atom

structures of the Fab domain with an explicit TIP3P water model (32). Each Fab domain was

solvated in a cubic box with periodic boundary conditions in all three directions. The

dimensions of the water box were adjusted such that the surface of the Fab domain is at least

10 A away from any side of the box. The solvated system was made charge neutral by adding

chlorine ions. The system temperature and the pressure were maintained at 300 K and 1 atm,

respectively, by the Berendsen coupling scheme (99). The GROMACS (71) package was used

to perform the MD simulations in the NPT ensemble. The systems were initially minimized

and then equilibrated for 20 ns. Production runs of 80 ns were then performed and frames were

extracted at every 0.1 ns for further analysis. The average spatial aggregation propensity (SAP)

values of each residue at 5 A and 10 A were computed (13) over the 80 ns of the MD production

runs. The average effective hydrophobicity (Deff) value of each residue (100) was also

computed over these MD trajectories.

5.2.2. Identification of glycosylation sites to engineer

To identify potential glycosylation sites in the CHI and CL domains of bevacizumab, we

identified all of the high SAP residues in these domains as described above. Using the last

frame from the MD simulation, we then identified all Serine, Threonine and Asparagine

residues that are within 10 A of these high-SAP residues (the distance is the minimum distance

between all atom-pairs of two residues) and belong to the CHI and CL domains. For all of the

selected S/T/N residues, we chose a neighboring residue (in the sequence) for mutation to

generate an NXS or NXT glycosylation motif. We rejected all of the variants in which a GLY

or PRO needs to be mutated because mutation of these residues may cause a signification

perturbation in the structure of the domain. Furthermore, we also rejected all of the mutations

that lead to an N-P-S or N-P-T motif as this motif does not undergo N-glycosylation. To be

efficiently glycosylated, the side-chain of the ASN residue should be surface-exposed.

Therefore, we rejected all of the mutations where the exposed surface area of the side-chain
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atoms (of the ASN or the residue to be mutated to ASN) is less than 15 A2 . All residues oriented

on a different face relative to the high SAP value residues to be masked were dismissed as well.

Lastly, we rejected all of the mutations of high SAP residues. In order to explicitly show the

impact of coverage of aggregation prone regions by the glycan, only those variants in which

did not mutate high SAP residues were considered. In this work, we generated three such

variants: E195N, Li 18N and Q160N/S to test our hypothesis of whether the introduction of a

glycosylation site near a high SAP region leads to an overall reduction in the aggregation

propensity of the antibody.

5.2.3. Cloning, Generation of variants, Expression, and Purification of mAbs

The bevacizumab genes, synthesized by Genscript (Piscataway, NJ), were codon-

optimized for expression in mammalian cells and subsequently subcloned separately into the

vector gWiz (Genlantis, Torreyana San Diego) using the Gibson method, resulting in the

vectors gWiz-A-LC and gWiz-A-HC. bevacizumab variants were generated by site directed

mutagenesis and confirmed by sequencing. Oligonucleotides (IDT, Coralville, Iowa) were

designed to introduce single mutations on bevacizumab LC (Q160S, E195N) or on

bevacizumab HC (Li18N). WT bevacizumab and variants were expressed by transient

transfection of FreeStyle 293-F cells (Life Technologies, Grand Island, NY) grown in GIBCO

FreeStyle 293 Expression Medium (Life Technologies). Transfections were performed using

0.5 g of each heavy-chain and light-chain mAb-expressing vector and 2 mg of

polyethyleneimine (Polysciences, Inc., Warrington, PA) per liter of 106 FreeStyle 293-F cells.

After five to six days, the supernatant was collected and filtered (0.22 pm) prior to purification.

Expressed mAbs (8 to 25 mg) were purified first by affinity chromatography (protein A

sepharose from GE Healthcare, Piscataway, NJ), and then, concentrated on centrifugal filter

devices AMICON YM30 (EMD Millipore - division of Merck KGaA, Darmstadt, Germany)

for further purification by cation exchange. The pure proteins were buffer exchanged into 10

mM histidine (pH 6.0) and further concentrated to the desired concentration, as determined by

measuring the absorbance at 280 nm.

5.2.4. Stability of mAbs
The accelerated aggregation studies of bevacizumab and its variants were performed

within three days after formulation. A total of 50 mg/mL of protein in 10 mM histidine (pH

6.0) were incubated at 52'C in a Bio-Rad MyCycler Thermal Cycler (Hercules, CA).

Aggregation was stopped at several time points by diluting the sample down to 10 mg/mL in

cold 15 mM potassium phosphate buffer (pH 6.5), followed by a 10 min incubation in ice. Part
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of each sample was further diluted to 1 mg/mL for turbidity measurement by assessing the

absorbance at 320 nm. The extent of aggregation was measured at 22'C by size exclusion

chromatography (SEC-HPLC) performed on an Agilent 1200 LC (Santa Clara, CA) using a

Tosoh TSKgel super SW3000 column (Tokyo, Japan). Samples (10 mg/mL) were spun down

for 3 min at 6000 rpm to remove large insoluble aggregates prior to injection (5 pL) in the

SEC-HPLC. The proteins were eluted with a mobile phase of 150 mM potassium phosphate

buffer (pH 6.5) at a flow rate of 0.5 mL/min. Proteins were quantified by detection at 280 nm.

Areas of the peaks were integrated at each time point. The ratio of the aggregates peak to the

total peak area at each time provides the amount of soluble aggregates. The mass balance with

the initial concentration (t=0) allows the estimation of the amount of insoluble aggregates. Each

experiment was reproduced at least in duplicate with different batches of proteins. The standard

errors reported herein represent the deviation observed during the all mAb stability assessments

(production, purification/formulation, accelerated aggregation study).

A propagation of error was applied to calculate standard deviations reported for the

stability increase factor and the aggregation rate reduction. Aggregation rate constants were

extracted from the fitting of a second order function to the monomer loss measured over time.

Turbidity was estimated by measuring the absorbance at 320 nm of 50 mg/mL samples

previously stressed for 48 h at 52'C and diluted down to 1 mg/nL for measurement.

5.3. Results

5.3.1. Rational design of stabilizing hyperglycosylated variants

An alternate approach to increasing the stability of bevacizumab is to introduce

glycosylation sites near the identified aggregation prone regions to mask them. To introduce

these new sites, residues near each aforementioned aggregation prone region were considered.

Residues close to the antigen binding site were not considered to prevent any chance of altering

bevacizumab activity. Therefore, we did not investigate the introduction of a carbohydrate

moiety masking either the V5 or F50 high SAP value residues. To reduce the aggregation

propensity of bevacizumab, we intended to mask with a glycosylation motif the high SAP value

residues V110, L154, L180 and L201. Upon mutation in more hydrophilic and charged

residues, these residues have been shown to increase the stability of bevacizumab.

To generate a list of potential N-glycosylation sites, i.e., NXS or NXT (X is any amino

acid but P), close enough for the sugar group to mask those residues of interest, all of the serine,

threonine and asparagines (residue i) within 10 A of these high SAP value residues within the

constant domains of the Fab region of bevacizumab (CH1 and CL domains) were identified.
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The neighboring residues (residues i-2 and i+2) were then considered as candidates for

mutation to generate a foreseeable glycosylation site. All of the residues that can potentially be

mutated to generate glycosylation sites are listed in Table 5-1 in the column "Variants to

generate glycosylation site". The residue (i) T197 is located at a distance less than 10 A from

L154 and is highly surface exposed. If the residue (i-2) E195 is mutated into an asparagine, it

will create the sequence NXT1 97 (instead of EXT), making it a potential glycosylation site

(Table 5-1). The carbohydrate introduced in vivo during mAb expression in position N195 is

expected to mask the L154 residue (and its surrounding residues) and could potentially reduce

the aggregation propensity of bevacizumab. A large set of residues were identified and further

selective parameters were applied to ensure that feasible and efficient glycosylation would take

place. Figure 5-1 summarizes the different criteria which must be satisfied (details in the

Materials and Methods section). After dismissing mutations leading to glycosylation site

motifs, which would not undergo glycosylation, as well as mutations potentially affecting

protein structure, together with high SAP value residues, eight residues were identified for

directed site-mutagenesis to create potential glycosylation sites. Four different possible variants

have been identified which will introduce a glycosylation site to mask the V 10 high SAP

value residue, whereas the four other mutations identified should permit the masking of three

residues (L154, L180 and L201). With the aim of making our experiments more efficient and

ensuring that we chose pertinent glycosylation sites, we did not introduce any glycosylation

sites to mask the high SAP value residue V110. The V 10 residue has been shown to be

involved in aggregation, based on the observation that its mutation into lysine resulted in a 2.8-

fold stabilization of bevacizumab against aggregation. Nevertheless, this reduction in

aggregation is similar to that observed for variants L I54D and L201 K, and V 110 has one of

the lowest SAP scores among the above listed high SAP value residues, making its masking by

a carbohydrate moiety less attractive.
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Figure 5-1 - Rational selection of residues for mutation to introduce glycosylation sites on
the bevacizumab Fab domain

As a proof of principle, hyperglycosylated variants were generated to cover high SAP

residues L154, L180 and L201. Interestingly, there is an overlap of the potential glycosylation

sites (Table 5-1). L154 could be masked by a glycosylation motif introduced by the mutations

Q160S and E195N, which generate in bevacizumab LC the glycosylation sites NSS16o and

NVT 197, respectively. These two mutations generate a site with glycosylation moieties that

should mask not only residue L154 but also residue L201. The high SAP value residue L180

could be masked by a glycosylation motif introduced by either the substitution of the Q160
residue in asparagine generating here the glycosylation motif NES 162 or by the mutation of the
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residue Li 18 in asparagine introducing the glycosylation site NVT120 on the heavy chain of

bevacizumab.

Table 5-1 - List of residues for glycosylation site engineering. Identification of variants which are
likely to be glycosylated in the vicinity of high SAP regions. Residues in grey were not selected for
the reasons described in the footnotes.

Ser/Thr/Asn Variants to SAA of side-chain
High SAP A of generate atoms of Asn or
Residues residue to be

the high-SAP glycosylation
masked mutated to Asn

value residues site 2 )

L:N152 I..,:LI54S - 106.8
L:S156 L:L154NI 84.2

L:L154 L:N158 L:Q160S 53.22
(0eff L:S159 L:G 157N' 4  12.5
0.26) L:S177 L:L175N- 4 7.6

L:T197 L:E195N 33.9
L:T206 L:P204N' 56.9

L:T109 L:K107N 107.7
L:V110 L:N138 L:Y140S 67.8

(0eff L:S171 L:K169N 160.1
0.18) L:T172 L:D170N 57.3

L:S202 L:G 199N'- 12.3

US 114 L:AI 12N' 39.2
L:N137 LF139S 8.4

L:L201 L:T197 L:E195N 33.9
(eff= L:S202 L:G199N' 12.3
0.27) L:S203 L: L201N 2  85.2

L:N158 L:Q160S 53.2
L:S159 LG 1.57N 4  12.5

L:S162 L:Q160N 28.5
L:T178 L:S176N 4  1.56
L:T180 l:T178N 6.6

H:L180 H:T120 H:L118N 28.2
(0e8 = H:S122 1:T1 20N 4  10.3

H:S182 H:L I 8.N- 87.7
H:S183 1:Q 8 I N 4  12.0
H:S187 H:L I 85N 34.8

Reasons for rejections:
1. Residue to be mutated is either a glycine or a proline.
2. Residue to be mutated is a high SAP value residue. Only the effect of masking the

aggregation prone region was to be investigated, therefore, potential aggregation
prone residues must not be mutated.

3. Residue X of N-X-S/T is a proline. NPS/T are not substrates for glycosylases.
4. SAA of the side chain of asparagine or of the residue to be mutated in asparagines is

less than 15 A2 and not accessible to glycosylases.
5. NXS/T motif to be generated is oriented on a different face relative to the high SAP

value residue.
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5.3.2. Glycoengineered proteins for increased stability against aggregation

The four variants Li 18N, E195N and Q160N/S (like the WT and reduced SAP variants)

were produced in HEK293 human embryonic kidney cells, which are able to carry out the

original post-translational modifications and should produce mAbs with glycosylation at the

engineered sites. To test whether the introduction of an N-glycosylation site near a high SAP

region led to an overall reduction in the aggregation propensity of bevacizumab, the

hyperglycosylated variants were expressed, purified and characterized by DSC, turbidity

evaluation and SEC-HPLC. The incorporation of N-glycan on the Fab domain of our

bevacizumab variants was verified by reducing SDS-PAGE. The HC of L 1i8N and the LC of

E195N and Q160N/S have clearly higher molecular weights than those of the WT,

corresponding to the addition of an N-glycan (data not shown). All variants were tested by DSC

for their thermal stability. Three transition temperatures were extracted from the obtained

thermograms (Table 5-2). The introduction of the N-glycan motif on the Fab domain of

bevacizumab does not affect the melting transition of the CH3 domain (Tm3), which varied by

less than 0.7 0C. The Fab domain presents a higher thermal stability when hyperglycosylated at

one of the four positions tested in this work (Tm2 increased by 1.6'C to 2.3C). Surprisingly,

the melting temperature Tmi attributed to the CH2 domain4 5 is also affected. Glycosylation of

the sites N 195, N160 and N158 increased the CH2 domain stability by 1.6'C to 2.1 C, whereas

glycosylation of NI 18 reduced the CH2 domain thermal stability by 2.3 0C.

Table 5-2 - Bevacizumab stabilization by hyperglycosylation of the Fab domain. The amount of
monomer and soluble aggregates detectable by SEC-HPLC was measured at various time points up
to 48 h of incubation at 520C of 50 mg/mL (His 10 mM, pH 6.0) mAbs. The monomer percentage of
the WT and variants in the soluble fraction after 48 h heat is reported in the table. Data are the
mean SD (n=3 experiments with three different protein batches, *n=2 experiments with two
different protein batches). The kinetic data were fitted to a simple equation to extract a second
order rate constant ("Aggregation rate"). The monomer percentage at 48 h for each variant was
compared to the WT through the "Fold increase stability". For each hyperglycosylated variant, a MD
simulation was performed and a SAP score (the sum of all positive SAP values) at R=5 A was
computed in addition to the standard errors. The melting transition temperatures in degrees Celsius
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for the WT and each hyperglycosylated variant were obtained by fitting three Gaussians to each
thermogram.

Variant % Aggregation Fold SAP Score Melting KD (nM)
s monomer rate *10^-2 increase temperature ("C)

at 48 h (mol- stability Tmi Tm 2 Tm 3
1.L.min')

WT 68 2 31.3 5.6 1.0 0.1 164 1.04 70.4 71.8 82.4 0.85 0.28

L118N 85 3 9.4 5.5 2.2 0.5 149 0.41 68.1 74.1 83.1 0.45 0.06

Q160N 79 4 14.8 8.7 1.5 0.3 156 1.21 72.5 73.4 82.9 1.56 0.13

Q160S 90 3 4.2 0.9 3.2 1.1 159 1.05 72.3 73.4 83.0 1.72 0.15

E195N 89 4 5.5 2.9 2.9 1.2 155 0.66 72.0 73.4 82.5 0.59 0.04

Hyperglycosylated variants were tested for their stability through accelerated aggregation

studies at an elevated temperature. As with the reduced SAP variants, 52'C was chosen as the

temperature to induce aggregation, and monomer concentrations were monitored over a 48-h

period by SEC-HPLC (Figure 5-2). Our SEC-HPLC data are the measure of the monomer

concentration at various time points, and Figure 5-2 represents the average of three independent

experiments (i.e., three different protein production batches) unless stated otherwise. We

observed the presence of soluble aggregates in all samples from the beginning of the

experiment, which was certainly due to the high concentration formulation (50 mg/mL) that

was close to the solubility limit of bevacizumab. Our wild-type bevacizumab sample contained

8.5% soluble aggregates at t=0, whereas the variants Q160N, Q160S and E195N contained less

than 4% soluble aggregates at t=0. After 48 h incubation at 52'C, we observed 32% soluble

aggregates for the WT, whereas our best variant displayed less than 10% aggregates,

representing over a 3-fold increase in stabilization. The four hyperglycosylated variants are all

more stable than the WT bevacizumab against heat-induced aggregation, having a 1.5 to 3.2-

fold increase in stability (Table 5-2). A second order rate constant was extracted from the fitting

of the monomer loss measured over time for each variant. LI 18N, Q160S and E195N are the

three variants with the most stabilizing effect, and their aggregation rate was reduced by a

factor 3.3 to 7.4 (Table 5-2 and Figure 5-2).
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Figure 5-2 - Stability comparison of WT bevacizumab and variants by SEC-HPLC. Monomer loss for

WT and hyperglycosylated variants (50 mg/mL in histidine buffer, pH 6.0) was measured at various

time points upon heat stress at 520 C for 48 h. Data are the mean SD. (n=3 experiments with three

different protein batches * n=2 experiments with two different protein batches).

Using the SEC-HPLC data and by comparing the amount of monomer measured at each

time point (t=16 h, t=24 h, t=48 h) to the amount of monomer at t=0, one can estimate the

amount of insoluble aggregates which did not enter the separation column. Our best

hyperglycosylated variants, Q160N/S and E195N exhibited reduced insoluble aggregates (3-

5%) compared to the WT (-8%), whereas Ll 18N exhibited nearly double the amount of

insoluble aggregates (15%) clearly making the variant Ll 18N the least effective

hyperglycosylated variant overall (1.3-fold stabilization). This result was confirmed by

turbidity measurements: Abs32o0n=0.014 to 0.052 for our three best variants, Abs32onm=0.216

for Li 18N versus Abs 32o0nm=0.091 for WT.

As described above, the engineered mAbs must have at least the same affinity to the

target as the WT. The efficacy of our hyperglycosylated engineered bevacizumab was

estimated in vitro via a competitive ELISA developed in-house and allowing measurement of

the affinity of the WT and variants for the antigen, VEGF. Figure 2B shows the binding curve

of WT bevacizumab and the hyperglycosylated variants to VEGF-A. Our mAbs were

preincubated with VEGF, which were then incubated with anti-VEGF IgGi for further

detection by ELISA. A low absorbance at 450 nm indicates a low amount of VEGF bound to

the ELISA plate and a high amount of our mAb bound to VEGF. The corresponding
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dissociation constants (KD) are reported in Table 5-2. Our competitive assay results show that

all of the mutations introduced in the Fab fragment, far from the CDR, produce

hyperglycosylated variants which bind to VEGF with the same affinity as the commercial drug,

our WT bevacizumab. When glycosylation site locations are chosen carefully, N-glycans can

stabilize mAbs without compromising their activity in vitro.

To better understand the effect of glycosylating the Fab domain of bevacizumab on

aggregation, we performed molecular dynamics simulations of the Fab domains of the WT and

the four hyperglycosylated variants. Although the nature of the glycan structures (32 different

glycoforms) is of high importance, the heterogeneity and control of glycosylation pattern are

complex topics (101) and the identification of the N-glycosylation modification was not

investigated in this study for our hyperglycosylated variants. The glycosylation of mAbs is

highly dependent on the culture conditions (102); therefore, we assumed here the same

glycosylation pattern observed previously in our laboratory for mAbs produced in the same

conditions as our hyperglycosylated variants (93). Molecular dynamic simulations were

performed based on the crystal structure of the bevacizumab Fab domain (IBJI) and assuming

a GO glycosylation pattern. Figure 5-3 shows snap shots of typical simulation results obtained

for our four variants. In these simulations, Q160N bears a glycan moiety covering a large

surface of the Fab domain, resulting in a biobetter with a reduced SAP score (Table 5-2).

However, Li 18N, Q160S and E195N exhibit a carbohydrate moiety pointing away from the

surface of the Fab rather than covering it. The carbohydrate of these three variants are present

in various orientations (Figure 5-3), some unexpected, but all lead to a substantial reduction in

the SAP score of the Fab domain (Table 5-2).
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Figure 5-3 - Representative structures from the MD for the four MD simulations of the
hyperglycosylated variants. In all cases, the left of the image is the CDR and the right side is the
hinge region. The protein structure is shown in teal, the glycosylation moiety is shown in blue, and
the residues to be masked by the glycosylation motif are shown in red. (A) L118N hyperglycosylated
variant designed to cover L180. (B) Q160N hyperglycosylated variant designed to cover L180. (C)
E195N hyperglycosylated variant designed to cover L154 and L201. (D) Q160S hyperglycosylated
variant designed to cover L154 and L201.

5.4. Discussion

In the work presented here, we successfully engineered biobetters for the therapeutic

monoclonal antibody bevacizumab and designed mAbs with substantially reduced aggregation

propensity while maintaining high affinity to the target antigen. This was achieved by masking

the high SAP value residues with a carbohydrate motif to prevent protein-protein interactions.

The nature and degree of glycosylation of most biologics play an important role during the

design and development of biologics. It has been well established that oligosaccharide moieties

play an important role in therapeutic biological activity, effector functions such as antibody-

dependent cellular cytotoxicity and complement-dependent cytotoxicity, immunogenicity,

serum half-life, and clearance (103). In addition to those biological attributes, carbohydrate

groups participate in the integrity of the drug by reducing aggregation propensity, increasing

solubility, stabilizing the native conformation, protecting against various degradation pathways

(hydrolysis, oxidation) and overall stabilizing the macromolecules (91,103). This functionality

is particularly relevant for antibodies as all IgGs are naturally N-glycosylated at position N297

in each of the CH2 chains of the Fc domain. It has been demonstrated on several occasions that

79



In Silico Tools for the Development of Biotherapeutics

this N-glycan participates in the stabilization of mAbs against aggregation caused by various

stresses (78,87,89,90,104,105). Natural IgGs present in human serum are all glycosylated in

the Fc domain whereas only less than a third are glycosylated in the Fab domain (103). N-

glycans are found attached to the variable region of the LC, the HC or both. It is estimated that

approximately 20% of the variable region of mAbs bear an N-glycosylation site motif (106).

These Fab oligosaccharides are believed to affect mAb functions in a different way than the

sugar moiety at N297 in the Fc domain and could potentially have an impact on antigen binding

depending on the location of the glycosylation motif on the surface of the variable domain

(101,107). The natural occurrence of Fab glycosylation supports the idea that a glycoengineered

antibody might be viable as a biotherapeutic as well (108). For example, cetuximab, a chimeric

therapeutic mAb bears oligosaccharides in its VH region (109), and Fab domain

glycoengineering has already proved to be successful for solubility improvement (106) and

aggregation prevention (92).

In this study, we took advantage of the capacity of N-glycans to mask APRs to reduce

the aggregation of our model therapeutic mAb bevacizumab. The N-glycosylation sites NXS/T

were carefully chosen to fit a series of criteria, in particular to be introduced by a single point

mutation. In addition, the sites were chosen so that the N-glycans would not interfere with

bevacizumab antigen binding while masking high SAP residues shown to be involved in

aggregation. Four glycosylation sites were independently engineered: Li 18N, Q160N, Q160S

and E195N. The introduction of an N-glycan at position N160 in the Fab domain, which

masked the high SAP residue L180, appears to increase the solubility and to slow down the

aggregation propensity (2.1-fold reduction in aggregation rate). The L180 high SAP value

residue can also potentially be masked by another carbohydrate motif, the Li 18N mutation.

Introducing an N-glycan at this position actually reduces the aggregation rate by 3.3-fold.

Two leucine residues of high SAP value, L154 and L201, are on the same face of the

Fab domain of bevacizumab, toward the hinge region. Interestingly, two residues have been

identified as candidates for mutation to generate glycosylation substrate sites which could mask

both L154 and L201: Q160S, generating the motif NSS 16o and E195N introducing the NVT 197

glycosylation site (Table 5-1). Both of the hyperglycosylated variants present the highest

degree of stabilization (3-fold) and the slowest rate of aggregation (5 to 7-fold decrease), with

only approximately 10% soluble aggregates detected after 48 h of incubation at 52'C versus

32% for the WT. The correlation observed between the stability for the hyperglycosylated

variants and the reduced SAP mutants that were predicted to be covered suggests that the N-

glycans introduced on the Fab surface actually did mask the high SAP residue identified and
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attributed to be masked. Nevertheless, steric hindrance preventing protein-protein interactions

cannot be dismissed and may be part of the protective effect of the N-glycans.

The N-glycans could be shielding the aggregation prone residues (L154, L180, L201)

impacting initial aggregate formation by disrupting hydrophobic interactions. Furthermore, one

should consider that the N-glycans could also increase the colloidal stability of bevacizumab

by crowding or steric hindrance (106). The added glycan is a large moiety that could prevent

another molecule from interacting with the nearby residues, thus reducing their role in

aggregation. The simulation of the hyperglycosylated Fab domain shows a difference in the

behavior of the added carbohydrate moieties, whereas the structure of the Fab domain is only

minimally perturbed by the addition of the glycans, as the root mean squared displacements

(RMSD) of the proteins to the wild-type are comparable to that of the wild-type during its

simulation. The masking of hydrophobic residues was the original goal for the addition of

glycosylation sites, and it is present in all of the simulations. While masking is present in all

simulations, it is present to varying degrees, in particular when considering the masking of the

targeted residues. Typically, LI 18N and Q160N were engineered to introduce a carbohydrate

that masked L180, and both variants have a comparable effect on bevacizumab stability.

Interestingly, the carbohydrates behave very differently. On one hand, the Q1 60N carbohydrate

consistently covers a wide region of residues through its interaction with the Fab surface, but

at the cost of masking L180, with a negligible effect on its SAP value. On the other hand, the

L118N carbohydrate completely masked L180, whose SAP value dropped dramatically

(decreased to a fifth of its original value) and made one of the most hydrophobic regions nearly

hydrophilic with a decrease in Fab SAP score of approximately 15 units. Interestingly, the

LI 18N carbohydrate was forced to point away from the surface of the Fab domain and does

not reliably cover many other residues other than L180. In fact, many of the terminal sugars

spent a significant amount of time being fully solvated, suggesting that the L 118N carbohydrate

might acts as an exclude solute or stabilize bevacizumab through steric hindrance (Figure

5-3A). The same orientation of the carbohydrate was observed for the variant E195N, which

does not interact with the Fab surface. The glycan spends the vast majority of the simulation in

solution. While it does not mask the high SAP residues L154 and L201, it could prevent large

molecules from interacting with these APRs. While there was a reduction in the SAP score of

the E195N variant in comparison to the wild-type, it was not a large enough reduction to

account for the drastic reduction in aggregation propensity. Its rate constant is a third of the

rate of Q160N, which has a comparable SAP score but is more aggregation prone. The E195N

variant is also more stable than LI 18N, which presented the lowest SAP score. These results
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point to the possibility that crowding plays a major role in the stability of the E195N mAb. The

variant Q160S bears a carbohydrate interacting partially with the Fab domain surface and

pointing away from it as well. In this case, the carbohydrate does not cover the neighboring

high SAP residues L154 and L201, thereby reducing the SAP score to a smaller extent. The

reduced SAP score of the hyperglycosylated variants compared to the WT correlates well with

the change in the melting temperature of the Fab domain. This outcome supports the idea that

reducing the hydrophobicity of the Fab surface increases its conformational stability, which

can be predicted through the SAP Score. However, this stabilization is not the only factor

affecting the protein aggregation propensity. The best biobetters against aggregation do not

have the lowest SAP score, as seen for Q160S and E195N variants. This finding supports the

idea that masking the high SAP residues also participates in the stabilization of the mAb, but

the colloidal stabilization through a steric effect may be a major contributor. The

hyperglycosylated variants subject to a slower aggregation process are conformationally more

stable via the masking of hydrophobic patches and present increased colloidal stability as well

due to the steric hindrance caused by the large solvated glycosylation motif.

While the glycosylation sites were selected such that high SAP residues were not

mutated, to help distinguish the effect of high SAP mutations and hyperglycosylated variants,

any mutation will impact the SAP profile of the protein. In some cases, such as Q160N, this

change is minimal, as glutamine and asparagine are similar residues. However, in the case of

Li 18N, the change in hydrophobicity is more substantial and the mutation accounts for half of

the change of SAP score compare to that of the wild-type. Therefore, when possible, choosing

a glycosylation site of high SAP value would greatly aid in reducing the SAP score of the all

Fab domain and should be added to the guideline for selecting glycosylation sites. Furthermore,

the type of the carbohydrate could also play a role in destabilizing initial aggregate formation

by modifying the net charge of the Fab domain and impacting the overall SAP score of the

mAb domain.

Nonetheless, it is important to note that the nature of the glycoforms, both in the Fc and

Fab domains, was not investigated here. The nature of the glycoforms would need to be

controlled to ensure molecular homogeneity and limit undesirable immunological responses

(110). In particular, it has been reported that the mAb Fab domains are subject to a higher

degree of glycosylation than the Fc domain and with an extremely diverse composition of

glycoforms (108). This finding is probably due to a higher accessibility of the glycosylation

sites exposed on the Fab surface compared to the N297 residue buried at the interface of the

two CH2 domains. Combining methods to control the nature and homogeneity of glycoforms
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with a single point mutation to insert an N-Glycan on the Fab domain is an efficient general

approach to generate biotherapeutics and biobetters to enhance the biophysical properties as

well as chemical stability. The carbohydrates potentially protect the shield domain from

degradation pathways such as oxidation and hydrolysis. Glycosylation sites must be cautiously

chosen for each individual mAb, and clinical efficacy and immunogenicity need to be carefully

investigated upon mAb modification.

5.5. Conclusion

Overall, the masking of APRs raised the stability of bevacizumab to the same level of the

formulated drug. It is, therefore, likely that an appropriate formulation would further increase

the stability of our biobetters. The masking and crowding of APRs by glycosylation motifs

could potentially present further advantages over the removal of aggregation patches. The

added carbohydrate moiety could also stabilize the mAbs against other degradation routes such

as hydrolysis, oxidation or deamidation. Even though experimental high throughput screening

methods are being developed to identify developable mAbs, computational predictive

approaches remain attractive and competitive due to their low cost and no requirement for

materials. There is a clear incentive for the development of new in silico platforms for high

throughput screening of the developability and aggregation propensity of proteins with high

accuracy, such as the sequence-based statistical model used in Lonza's aggregation prediction

tool. Their implementation early on during the discovery phase allows the reduction of costs,

easier manufacturing, and the formulation of higher concentrations, opening the door for new

delivery routes or reduced dose administration, all to the advantage of the patients and

practitioners, with the benefits of a potentially safer drug and lower treatment costs.
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6. MOLECULAR INVESTIGATION INTO THE MECHANISM OF NON-

ENZYMATIC HYDROLYSIS OF PROTEINS AND PREDICTIVE ALGORITHM

FOR SUSCEPTIBILITY

6.1. Introduction

Under normal storage conditions, the rate of non-enzymatic hydrolysis of a typical

amide bond in biopharmaceutical products is extremely slow; the half-life of the amide bond

between two amino acids can be more than a hundred years (111). However, there are instances

in which the amide bond reacts much faster. In some cases the half-life can be as low as eleven

minutes (112). This presents a challenge for the pharmaceutical industry, as hydrolysis can

greatly reduce the drug's activity and therein efficacy, and it can increase the potential of

immunogenic effects (5,6,113). As is the case with many degradation routes, the loss in

efficacy can be through both direct and indirect routes (5,6). In the case of IgGI monoclonal

antibojies (mAbs), hydrolysis cleaves the amide bonds between residues within the hinge

region directly leading to the creation of undesirable protein fragments (114). In addition to

the direct creation of said byproduct, the hydrolysis of a amide bond can also accelerate many

of the other degradation routes, as was the case for an IgG2 antibody where hydrolysis of a

single site in the protein drastically increased the rate of aggregation (115). In order to

understand under what circumstances hydrolysis may be an issue and to develop ways to

stabilize biotherapeutics against hydrolysis, a better understanding of both the mechanism for

non-enzymatic hydrolysis and the factors controlling it, is needed.

Several studies have investigated non-enzymatic hydrolysis experimentally

(112,116,114,117,118,119). These studies have covered a wide range of proteins, from short

peptides (112) to large antibodies, (116). They have found that hydrolysis may occur at many

types of residues and structures. One of the common findings is the role of primary sequence.

Specifically, when an aspartic acid residue precedes or follows a amide bond, that bond

hydrolyzes at a rate at least ten times that of other amide bonds (112). Not only does an aspartic

acid increase the rate of hydrolysis, but the other adjacent residues may also impact the rate of

hydrolysis; ifor proline following aspartic acid, the rate of hydroysis can be increased by an

order of magnitude over the case in which another amino acid follows aspartic acid. However,

the primary sequence by itself cannot account for the wide range of reactivity seen in proteins,

as factors other than the primary sequence affect the rate of hydrolysis. One example of this

can be found in the hydrolysis of the hinge region of mAbs, where it was shown that if the
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sequence of the hinge region was expressed as a short peptide the rate of fragementation is five

times greater than that of the full protein (116).

Several studies have also reported investigation of the hydrolysis pathway with various

computational tools (120,121,122,123,124,125). However, many these studies have focused

on small model compounds that do not necessarily contain the complex interactions that are

present in proteins. In one study (120), the hydrolysis of formamide, the smallest molecule

that contains a amide bond, was studied. From this study, the reaction seems to proceed

through four steps; first, a proton adds to the amide bond's oxygen atom. This is followed by

the addition of a water molecule to the carbon, forming a diol and a proton. This proton forms

a hydronium ion in solution. Then, a proton from the hydronium ion binds to the nitrogen

atom, and, finally, the amide bond breaks and forms the two final products. While this

mechanism explains the energetics of formamide hydrolysis, it does not explain the effect of

sequence or secondary structure on the rate of hydrolysis in proteins.

In order to develop a better understanding of the non-enzymatic hydrolysis of protein

bonds and therein pave the way for a predictive algorithm, two topics are investigated: first,

identification of the most energetically favorable mechanism for the reaction and second, the

environmental factors which significantly influence this mechanism. To investigate these

topics, two different strategies are used. First, quantum chemistry methods are used to

investigate several potential non-enzymatic, acid-catalyzed hydrolysis mechanisms. Second,

molecular mechanics simulations are used to investigate the differences in amide bond

environments for reactive and non-reactive amide bonds. These two aspects are combined to

produce a predictive algorithm.

Many potential pathways connect the unreacted peptide to the cleaved amide bond

states. Several of these pathways for the non-enzymatic, acid-catalyzed hydrolysis of peptides

were studied in this work. Three said pathways are based on the mechanism for formamide, as

it is chemically similar to peptides, with the exception of other neighboring chemical moieties.

Because the rate-determining step of formamide hydrolysis is the disassociation of water, this

step was the focus of this study. One of the most significant differences between formamide

and a peptide is the presence of additional moieties, which could act as proton acceptors and

aid in this disassociation step or hinder steps of the process.

Four possible pathways are studied here (outlined in Figure 6-1). In the first pathway

(labeled as A in Figure 6-1), a backbone carbonyl site (other than the hydrolysis site) aids in

the disassociation of the water molecule, by acting as a proton acceptor for the proton produced

during the diol formation step. In the next pathway, labeled as B in Figure 6-1, the process is
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identical to the formamide case, where the surrounding waters act as a proton acceptor. In the

third pathway, labeled as C in Figure 6-1, the carboxylic acid on the aspartic acid acts as a

proton acceptor. In the fourth pathway, labeled as D in Figure 6-1 and similar to the third

pathway, rather than acting as a proton acceptor, the sidechain itself adds directly to the

backbone carbonyl carbon, forming a furan ring. Then the nitrogen is protonated, and then the

amide bond cleaved. The ring is then broken by the addition of a water molecule.
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Figure 6-1 - The tested pathways for hydrolysis. All pathways start with an unprotonated peptide
and hydronium ion. The next step for all pathways, the proton transfers to a backbone carbonyl
unit from the surrounding water. During the next step, the four pathways, labeled A through D,
diverge. Pathways A-C are similar and involve the formation of a diol intermediate and the

86



MIT

disassociation of a water molecule. The difference in pathways A-C is what chemical moiety acts as
proton acceptor, in A it is a backbone carbonyl, in B the surrounding water, and in C the sidechain.
The final pathway is D, where the sidechain adds to the backbone, forming a ring. The next step for
all pathways is the addition of a proton to the amide bond's nitrogen. Then the amide bond breaks;
this is the final step of pathways A-C, in pathway D, another step is required where a water adds
and opens the ring.

In order to investigate how aspartic acid and proline affect the mechanism of hydrolysis,

three peptide systems are studied. The first of these is proline - alanine - alanine (PAA)

tripeptide, with the hydrolysis occurring between the second and third residues, the two alanine

residues. The second peptide is selected to investigate the role of aspartic acid, proline -

aspartic acid -alanine (PDA), with hydrolysis occurring between the aspartic acid and the

alanine residues. The final peptide is the alanine - aspartic acid - proline tripeptide (ADP),

which was included to determine what role proline has in the hydrolysis reaction. To prevent

any long range charge-charge interactions, an acetyl group (-COCH 3) is attached to the N-

terminus, and a nitro-methyl group (-NHCH 3) is attached to the C-terminus.

6.2. Methods

6.2.1. Computational Methods

6.2.1.1. Ab Initio Quantum Chemistry Methods
Standard ab initio molecular orbital theory (126) and density functional theory (127)

are used. Gaussian 03 (128) is used for all structure optimizations, scans, and frequency

analyses, while QChem 4.1 (129) is used for all single-point energy evaluations and implicit

solvent evaluations. All structures are optimized using the Becke three parameter functional,

B3LYP (130), with a 6-31+G** basis set. In addition to some explicit waters, all optimizations

are done in an implicit solvent using the C-PCM (131) model. Frequency calculations are

performed on all optimized structures to assure that they have either zero (for stable species)

or one (for transition structures) imaginary frequency. Intrinsic reaction coordinate

calculations (132,133) and analysis of the imaginary frequencies are carried out to determine

if the transition states connected the appropriate minima on the potential energy surface. All

scans are performed using the same parameters as optimizations. Initial guesses for stable

species are obtained from a genetic algorithm (see below for more details). All density

functional theory calculations are carried out using the ultrafine integration grid (in the case of

Gaussian) or a grid involving 120 angular and 190 radial points (in case of QChem). Energy

evaluations are done using wB97X (134) functional with the 6-311++G(3df,3pd) basis set.

Solvation free energies were calculated using the sm12 (135) implicit solvent.
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In order to determine the impact of function and basis set choice on the energy and

structures, several functionals and basis sets are tested on the formamide system. In terms of

relative energy (AEo), the entire wB97 family of functionals performs well; all functions result

in energies (AEo) within 1 kcal/mol of those computed with CCSD(T)/6-31 1+G**. For this

reason, the energy of these system is evaluated using the wB97X/6-31 1++G(3df,3pd) which

differs from the CCSD(T)/6-31+G** by less than 0.05 kcal/mol on average. Similarly, the

impact of basis set on the optimized structure was investigated. Structure optimization using

B3LYP/6-31+G** reproduces the structures of B3LYP/6-31 1++G(3df,3pd) well; with errors

in relative energies of less than 1 kcal/mol and comparable imaginary frequencies and

associated motions. More details can be found in the supplemental information.

In order to minimize the variability between pathways, a genetic algorithm (GA) is used

to find the global minima structure for the complex of each peptide intermediate, surrounding

explicit waters, and hydronium. The GA is applied separately for all species in all pathways,

with either three or five solvating waters. The dihedral angles along the peptide backbone, the

relative orientation, and the relative locations of all species are all included and explicitly

optimized by the GA. The optimization is carried out using the GA developed by Wood,

Santiso, and Trout to find the global minimum of water clusters (136). In addition to the

standard mutation and crossover steps of the GA evolution, a short molecular dynamics (MD)

simulation, of 2 ps in length, is also performed every fifty generations. This increases the

chance that the system will leave the current local minima and explore neighboring minima.

To assure that all generated structures are physically meaningful, the forces for all structures

were evaluated at each step. Configurations with extremely high forces are removed, i.e. those

with a force greater than 300,000 U mol- nm'. These systems are artifacts of the optimization,

and arise when two atoms overlapped. Due to the number of energy evaluations that are

required to converge the GA and the computational cost, the structures are evaluated using

molecular mechanics. Therefore Gromacs (71) and Generalized AMBER force field (137) are

used to evaluate the energies of the individuals.

6.2.1.2. Protein Simulation and Stability

In order to determine the role of secondary structure, MD simulations are used to

determine the local environment for each aspartic acid and glutamic acid. All simulations are

carried out using Gromacs 4.5 (71). Homology models are produced for each protein, with

sufficient ions to neutralize the system. These structures and are initially minimized and then

used to carry out NPT molecular dynamics simulations. The temperature and pressure are
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controlled using the Berendsen weak coupling method (99), to maintain a temperature of 300K

and a pressure of lbar. A 15.0 A cut-off for nonbonded interactions is used in combination

with the Particle Mesh Ewald procedure for electrostatics (138). Periodicity is enforced in all

three directions throughout the simulation.

For prot-X, the initial structure is based on three crystal structures IXIW (139), 1IKQ

(140), and 2QHR (141). These are used to model the light chain, the toxin, and the heavy chain

respectively. A 500 ns NPT simulation is run using AMBER99SB (72) and the TIP3P

forcefield (32). A 90 ns simulation is run for each of the two mAbs, prot-Y and prot-Z. The

initial structure for prot-Y is generated using three crystal structures 1HZH (24), 2XQB (142),

and 3QEG (143), where 1HZH is used to model the CH2, CH3, 2XQB is used to model the

CH1 and heavy variable region, and 3QEG is used to model the light chain. The initial structure

for prot-Z is generated using three crystal structures, 1 HZH, 3EOA (144), 4G5Z (145), where

1HZH is used to model the CH2 and CH3, 3EOA is used to model the CHI and heavy variable

region, and 4G5Z is used to model the light chain. Both mAbs are glycosylated by GLYCAM

(96) with a GOf glycosylation pattern (DGlcpNAcbl-2DManpal-6[DGlcpNAcbl-2DManpal-

3]DManpbl-4DGlcpNAcbl-4[LFucpal-6]DGlcpNAcbl-OME) added to the CH2 to produce

stable proteins in simulation. The simulations for prot-Y and prot-Z are performed with the

AMBER12 (97), GLYCAM (98), and the TIP3P force fields. The first 50 ns is used to

equilibrate the system, with the remaining simulation time being used for property

measurements.

All averaging of properties is done using MATLAB ® (146). Averages for angular

quantities are done using the Circular Statistics Toolbox (147) to account for periodicity.

Simulation averages are made based on structures stored every 20 ps. In order to account for

the correlation of the properties over the time of the simulation and to evaluate the time needed

to evaluate accurately these properties, the correlation times for each property were calculated

using the block averaging method presented by Allen and Tildesley (68). These properties and

the experimental data are then used to determine the difference between reactive and non-

reactive residues in prot-X. This data is then used to develop an algorithm to separate the

reactive and non-reactive residues. This model is then validated using both experimental

cleavage site data and simulation derived properties for prot-Y and prot-Z.

6.2.2. Experimental Methods

To aid in the development of the predictive algorithm, and to test the developed

algorithm, the stability of three proteins are studied experimentally to determine cleavage sites.
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The three proteins studied are one immunotoxin, prot-X, and two IgG1 antibodies, prot-Y and

prot-Z. These proteins are stored at elevated temperatures for a period of time; the resulting

fragments are separated and studied. The formulation differed between proteins. Prot-X, the

immunotoxin, is stored at 1 mg/mL with 25 mM sodium phosphate, 4% sucrose, 8% glycine,

0.02% polysorbate 80, at pH 7.4 and a temperature of 25 'C. While both mAbs are stored at

40 'C and a pH of 6.0 with no excipients. The fragments are separated using reverse-phase

liquid chromatography. The mass of the separated fragments is then evaluated using mass

spectrometry to determine the location of fragmentation sites. While these methods do

produce quantitative data about the relative hydrolysis rates of different sites, due to the small

amount of the various fragments, we were only able to categorize each site as either "reactive"

or "unreactive".

6.3. Results

6.3.1. Investigations of Potential Hydrolysis Pathways

6.3.1.1. Gibbs Free Energies of Intermediate Species in Hydrolysis Pathways

The Gibbs free energies of all stable species are presented in Table 6-1. Due to the

strength of the carboxylic sidechain as a proton acceptor, several species have not been found

to be minima on the potential energy surface. Free energies vary depending on the number of

explicit, solvating, quantum waters, the primary sequence, and the pathway of interest.

However, several trends appear.

Solvation effects can be seen by comparing the Gibbs free energy of systems containing

three and five solvating, quantum waters. In general, the systems containing five explicit,

quantum waters are lower in Gibbs free energy than those evaluated with only three waters. In

some cases, such as most of the A pathways of PDA, this difference is large and can be as much

as 10 kcal/mol. However, this is not always the case, as many of the differences were

substantially smaller. In the case of species originating from the peptide PAA, the differences

with the number of waters is often 2 kcal/mol or less. While the larger differences between

five and three waters are likely significant and due to insufficient solvation, the small

differences seen in PAA are likely due to the inherit error associated with the energy evaluation

method. More details about these errors can be found in supplemental information section 11

and 11.2.

In addition to the larger solvation effects found in the aspartic acid containing peptide,

other variations can be seen. In general, for a given pathway, the reaction Gibbs free energy is

on average 6 kcal/mol higher when an aspartic acid was present compared to when the aspartic
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acid is absent. However, this difference between aspartic and non-aspartic peptides is not

constant across pathways, and varies from 3 kcallmol to more than 15 kcallmol. There are

several potential causes for this difference including insufficient solvation, and the impact of

the addition of the negative charge of the carboxylic acid. In addition to the increase in free

energy due to the presence of aspartic acid, there is another effect with proline. When a proline

is located at the after an amide bond, the reaction free energy is often slightly higher, by 3

kcallmol in comparison to amide bonds followed by an alanine residue.

Additionally, there is also a wide variation between pathways. In general, pathway D,

furane ring formation, has the lowest reaction Gibbs free energy of any pathway. This is

followed by the energetically similar pathways B and C, in which water acts as proton acceptor

or in which the sidechain acts as a proton acceptor, respectively. On average, they both have

a reaction Gibbs free energy of 19 kcaVmol, which is nearly 8 kcallmol greater than that of

pathway D. The highest reaction Gibbs free energy pathway is pathway A, where the other

backbone carbonyl groups act as the proton acceptor. Due to the three different backbone

carbonyl groups present in the peptides, pathway A has a wide range of energies. The trend

suggests that the further from the hydrolysis site, in these peptides it was always between the

second and third residues, the greater the reaction Gibbs free energy. The difference between

carbonyl sites is also very large in some cases. Comparisons of the reaction Gibbs free energies

of the carbonyl group nearest the hydrolysis site and the one furthest from the hydrolysis site

differ by approximately l0kcal/mol. The lowest of the reaction Gibbs free energies of pathway

A are comparable to the Gibbs free energies of pathway B.

Table 6-1 - The change in reaction Gibbs free energy for each species in the four hydrolysis pathways.
The first column is the pathway from Figure 6-1. A is the pathway where backbone carbon acts as
the proton acceptor, B is where the solvating waters acts as the proton acceptor, C is where the
sidechain acts as the proton acceptor, and D is where the sidechain cyclizes forming a ring. The
relative Gibbs Free Energies for the product state are listed by originating peptide sequence and
number of waters. All structures are optimized with B3LYP/6-31+G(d,p). The Gibbs free energy was
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evaluating wB97X/6-311++G(3df,3pd), using the harmonic approximation and sm12 for solvation
free energy. All energies are reported in kcal/mol relative to the starting species for each pathway.

Reaction Gibbs Free Energy
Pathway Description PAA Peptide PDA Peptide ADP Peptide

3 H20 5 H20 3 H20 5 H 20 3 H 20 5 H 20

A Backbone 34 35.6 23.2 * 41.3 31.7

A Backbone 25.6 20.5 41.8 23.1 31.8 36.1

A Backbone 14.6 13.5 28 22.5 22.4 26.9

B Hydronium 16.1 14 21.1 18.5 24.8 19.6

C Sidechain N/A N/A 17.8 16.9 23.2 19.8

D Cyclic N/A N/A 17.5 * 16.3 2.5

* no minima on the potential energy surface could be found

N/A species does not exist

- 6.3.1.2. Comparison of Geometries of Transition States

Most transition states that have been found tend to have similar geometries, Gibbs free

energies, and imaginary frequencies, in particular for the first three pathways (pathways A, B,

and C) where assorted chemical moieties act as proton acceptor. For instance, when

considering only the first two pathways A and B, those where water (pathway B) or the

backbone carbonyl group (pathway A) act as the proton acceptor, the distance between the

backbone carbonyl group's carbon and the added water is approximately 1.6 A in length.

Similarly, for these pathways, the distance between the abstracted hydrogen and oxygen is

approximately 1.2 A. The Gibbs free energies of these transition states tend to be similar,

between 30 and 40 kcal/mol higher than starting species. Most often the Gibbs free energy

barrier was around 35 kcal/mol, especially when five explicit solvating water molecules are

present. Lastly, the imaginary frequency associated with these transition states are also

comparable between pathways, being between 550 and 750 Hz.

While there were a few outliers, such as the (H')AD(OH)2P of pathway A, the majority

of the found transition states are geometrically and energetically similar. Transition states from

pathway C, where the sidechain acts as the proton acceptors, have comparable energies to those

from pathways A and B, but transition states from pathway C have slightly different interatomic

distances. The geometries are fairly similar, except the interatomic distance between the

carbon and the added water is slightly longer (by 0.2 A) when compared to the previous two

cases. The interatomic distance between the abstracted hydrogen and the oxygen atom that
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accepts it are comparable to those of the previous two pathways. The imaginary frequencies,

average of -543 Hz, and Gibbs free energies of the transition state, average of 38 kcal/mol, are

also comparable to the range of values for the previous two pathways (A and B).

The final pathway for which a transition state has been found is pathway D, where the

sidechain bonds directly to the peptide backbone and forms a furane ring. This pathway is

markedly different from the other pathways. This pathway has the lowest Gibbs free energy

barrier of any pathway, and is more than 10 kcal/mol lower than the next lowest pathway. This

pathway has similar carbon-oxygen interatomic distances to other pathways, however there

were no comparable oxygen-hydrogen distances as there is no major proton motion in this step.

The imaginary frequency associated with this transition state is also much lower than the other

pathways, as is the motion associated with this frequency.

Examples of the transition states for each pathway can be seen in Figure 6-2, Figure

6-3, Figure 6-4, and Figure 6-5 (pathways A, B, C, and D respectively). Due to the size of the

system and the inclusion of explicit solvating waters, we found it clearer to include only a

skeletal representation of the transition states. The transition states for pathways A, B, and C

are similar; in all three cases the atom with the greatest motion associated with the imaginary

frequency is that of the abstracted hydrogen. This motion is in the expected direction, which

shows the proton moving from the water molecule's oxygen to the proton acceptor's oxygen.

Similarly, the motion of the amide bond's carbon and the water molecule's oxygen are

significant. This motion brings the two atoms together to form the bond needed to produce the

diol intermediate. In addition to the previous two motions, which are associated with the

reaction, most other significant motions are needed to maintain the hydrogen bonds. This often

affected the motion of the non-abstracted hydrogen of the added water, which becomes part of

the diol. This motion maintains the hydrogen bond to its surroundings, frequently one of the

solvating waters. For the most part, these motions do not appear in the imaginary frequency

for pathway D. The motion of the imaginary frequency associated with the transition state of

pathway D can be seen in Figure 6-5. There are two main motions associated with this

transition state; the first is the motion between the amide bond's carbon and the sidechain's

oxygen. This is similar to the other cases, and is associated with the formation of the bond

between the carbon and the oxygen. This remaining motion is related to the net motion of the

sidechain to form the ring. An example of this can be seen with the other oxygen of the

sidechain, the one that does not form a bond to the backbone, which moves in conjunction with

the rest of the sidechain to be closer to the amide bond.
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Table 6-2 - Comparison of the transition states of hydrolysis pathway. The following properties for
the found pathways are listed per transition state for each pathway (labeled by pathway from Figure
6-1 and the intermediate product formed by the transition state), the number of explicit waters, the
Gibbs free energy of the transition state relative to the reactant (evaluated using wB97X/6-
311++G(3df,3pd)//B3LYP/6-31+G**, harmonic approximation, sm12), the imaginary frequency, the
distance between the carbonyl group's carbon to added water's oxygen, and the distance from the
added water's oxygen and the abstracted hydrogen.

Pathway and Explicit Free Energy Frequency C-O [A] O-H [A]

Expected Product Waters [#] [kcal/mol] [Hz]

A (H+)AD(OH) 2P 3 41.1 -390 1.55 1.33

A (H+)AD(OH) 2P 5 34.1 -679 1.57 1.27

A A(H+)D(OH) 2P 3 34.6 -636 1.67 1.16

A A(H+)D(OH) 2P 5 34.8 -762 1.53 1.19

A PD(OH) 2A(H+) 3 35.6 -519 1.67 1.13

B PA(OH) 2A [H30] 3 24.9 -569 1.57 1.18

B PA(OH) 2A [H3 0+] 5 25.4 -555 1.57 1.18

B AD(OH) 2P [H 30] 5 42.2 -746 1.75 1.19

B PD(OH) 2A[H30] 3 45.0 -638 1.62 1.20

C PD(OH) 2(COOH)A 3 40.2 -719 1.80 1.21

C PD(OH) 2(COOH)A 5 36.4 -367 1.88 1.10

D PD(OH) 2(Cyc)A 5 13.7 -107 1.68

e

Oa

0 0
H

N N
N H
H N

HO

Figure 6-2 - Skeletal formula representation of transition state of pathway A, where one of the
backbone carbonyl groups acts as proton acceptor, for peptide PDA, pathway produces product
PD(OH) 2A(H'). Dashed lines represent formed or broken bonds during the transition states. Red
arrows indicate displacement associated with the imaginary frequency of the transition state. The
length and direction of the arrow indicates the relative displacement and direction of the imaginary
frequency of the transition state.
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Figure 6-3 - Skeletal formula representation of transition state of pathway B, where the surrounding

water acts as the proton acceptor, for peptide PDA, pathway produces product PD(OH) 2A[H301.
Dashed lines represent formed or broken bonds during the transition states. Red arrows indicate

displacement associated with the imaginary frequency of the transition state. The length and
direction of the arrow indicates the relative displacement and direction of the imaginary frequency
of the transition state.
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N
H HN N

'-. H

Figure 6-4 - Skeletal formula representation of transition state of pathway C, where the sidechain

acting as the proton acceptor, for peptide PDA, pathway produces product PD(OH)2(COOH)A.
Dashed lines represent formed or broken bonds during the transition states. Red arrows indicate

displacement associated with the imaginary frequency of the transition state. The length and

direction of the arrow indicates the relative displacement and direction of the imaginary frequency

of the transition state.
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Figure 6-5 - Skeletal formula representation of transition state of pathway D, where the sidechain
bonds to the peptide backbone, for peptide PDA, pathway produces product PD(OH) 2(Cyc)A.
Dashed lines represent formed or broken bonds during the transition states. Red arrows indicate
displacement associated with the imaginary frequency of the transition state. The length and
direction of the arrow indicates the relative displacement and direction of the imaginary frequency
of the transition state.

6.3.2. Investigations of the Impact of Bond Environment

6.3.2.1. Experimentally Identified Cleavage Sites

During the accelerated stability of prot-X, six cleavage sites have been identified with

either an aspartic or glutamic acid residue preceding the amide bond. There are two aspartic

acid-proline sites, H:D437-P438 and H:D446-P447. One is an aspartic acid - alanine site,

H:D250-A25 1, one aspartic acid - serine, H:D247-S248, one aspartic acid - glycine, H:D266-

G267, and one aspartic acid - valine, H:D269-V270. All six reactive residues are on the heavy

chain, and their relative locations can be seen in Figure 6-6. Cleavage at the remaining aspartic

acid residues, of which there are twenty-three, and all thirty-five glutamic acid residues have

not reacted sufficiently to be detected. In the case of the two monoclonal antibodies, only two

cleavage sites have been detected. These are the amide bond following the glutamic acid

residue near the end of the light chain (prot-Y L:E214-C215 and prot-Z L:E217-C218) and the

amide bond following the aspartic acid in the hinge region (prot-Y H:D220-K221 and prot-Z

H:D225-K226). All other amide bonds with a following an aspartic or glutamic acid residue

did not react in either prot-Y or prot-Z. Figure 6-6, Figure 6-7, and Figure 6-8 show the

locations of the reactive amide bonds for prot-X, prot-Y, and prot-Z respectively.
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H:D250-A251

H:D247-S248

H:D266-G267

H:D446-P447 H:D269-V270

H:D437-P438

Figure 6-6 - Location of aspartic and glutamic acid residue in prot-X. Residues preceding cleaved
amide bonds are shown in green and are labeled by chain and residue. Aspartic and glutamic acid
residues that precede amide bonds but do not react are shown in red. Protein backbone for
remaining residues is shown in grey with shape indicating the secondary structure.

L:E214-C215

H:D220-K221

L:E214-C215

H:D220-K221

Figure 6-7 - Location of aspartic and glutamic acid residue in prot-Y. Residues preceding cleaved
amide bonds are shown in green and are labeled by chain and residue. Aspartic and glutamic acid
residues that precede amide bonds but do not react are shown in red. Protein backbone for
remaining residues is shown in grey with shape indicating the secondary structure.
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.:E217-C218

H:D225-K226

L:E217-C218

H:D225-K226

Figure 6-8 - Location of aspartic and glutamic acid residue in prot-Z. Residues preceding cleaved
amide bonds are shown in green and are labeled by chain and residue. Aspartic and glutamic acid
residues that precede amide bonds but do not react are shown in red. Protein backbone for
remaining residues is shown in grey with shape indicating the secondary structure.

6.3.2.2. Properties that Correlate with the Reactivity of Amide bonds in Prot-X

Many environmental factors may affect the four explored pathways. These vary from

properties based on the carboxylic acid's conformation, such as the distance between the

sidechain and the amide bond, and interactions between the amide bond and surrounding

chemical moieties, such as the number of water molecules within a given distance. A detailed

listing of the measured properties can be located in supplemental information. A select few of

these properties correlate well with the reactivity of the amide bonds. These are grouped into

four basic properties: the secondary structure, the surface exposure of the amide bond, the

relative orientation of the sidechain, and the availability of the sidechain to participate in the

reaction.

6.3.2.2.1. Secondary Structure

VMD (95) and STRIDE (148) are used to evaluate the secondary structure, it is found

that for all cases when a residue reacts, it spends most of its time, more than 90% of simulation

time, as a turn or a random coil (see Figure 6-9). Additionally, the reactive residues spends

virtually no time as either an extended conformation, an isolated bridge, an a helix, a 310 helix,

or ain helix (see Figure 6-10 and Figure 6-11). Combined, the reactive residues spend less than

10% of the simulation time in any of these conformations, and spends the entire remaining time

either as a random coil or as turn. However, the relative amount of time it spends in these two
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conformation varied greatly; in one case the residue spends the entire time as a turn while in

another case it spends nearly the entire time in a random coil. No reactive residue spends

significant time in any conformation other than a turn or random coil. The non-reactive

residues are located in a wider range of secondary structures; most spends significant time

(more than 9% of simulation time) in a type of helix; twenty-two of the non-reactive residues

spends more than 9% of simulation time as an a helix; eleven of the non-reactive residues

spends sufficient time as a 31o helix; nine of the non-reactive residues are in the extended

conformation (p-sheets); and only one residue spends more than 9% of the time as an isolated

bridge. No residue spends significant time in a 71 helix. This leaves twenty non-reactive

residues (about 35% of the unreactive residues) that are unexplained.

1

U non-Reactive
0.9 *b Reactive

0.8

0.7

0.6

E
'0.5

0.4

0.3 U

0.2

0.1 U U

0
0 0.2 0.4 0.6 0.8 1

Random Coil

Figure 6-9 - The fraction of simulation time spent as a turn or random coil for each aspartic or
glutamic acid residue in prot-X. The x-axis is the fraction of simulation time spent in a random coil.
The y-axis is the fraction of simulation time spent as a turn. Red squares are values for residues
that are followed by amide bonds that do not react. Green circles are values for residues that are
followed by amide bonds that do react.
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Figure 6-10 - The fraction of simulation time spent as an a helix or 3 jo helix for each aspartic or
glutamic acid residue in prot-X. The x-axis is the fraction of simulation time spent in an a helix. The
y-axis is the fraction of simulation time spent as a 3jo helix. Red squares are values for residues that
are followed by amide bonds that do not react. Green circles are values for residues that are
followed by amide bonds that do react.
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Figure 6-11 - The fraction of simulation time spent in an extended conformation or isolated bridge
for each aspartic or glutamic acid residue in prot-X. The x-axis is the fraction of simulation time
spent in an extended conformation. The y-axis is the fraction of simulation time spent as an isolated
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bridge. Red squares are values for residues that are followed by amide bonds that do not react.
Green circles are values for residues that are followed by peptides that do react.

6.3.2.2.2. Solvent Exposure

There are many other environmental factors that could also contribute to the reactivity

or non-reactivity of an amide bond. One of these factors is the surface exposure of the amide

bond. This may be a significant factor because a proton must migrate to the amide bond in

order to react. The role of surface exposure can be seen by comparing the three aspartic acid

- proline amide bonds. These three bonds include one that did not react, H:D337, and two that

did react, H:D437 and H:D446. Using the radial distribution function (RDF) of either the

amide bond's oxygen or carbon, it shows that the amide bond of H:D337 is partially buried,

see Figure 6-12. In the case of reactive residues, there are significant non-zero values for radial

distribution function approximately 2.75 A from backbone oxygen (or 3.00 A in the case of the

backbone carbon). In the case of the non-reactive residues, the first substantial values for the

radial distribution function are approximately 2 A further than the reactive case. This spike

between 2.75 and 3.00 A in the RDF is present in all reactive residues (see Figure 6-13).

1

0.9

0.8

0.7

4 0.6

- 0.5
0

~-0.4

0.3
H:D337

0.2 ___0.2 H:D437

0.1 H:D446

0
0 5 10 15 20

Distance from Backbone Oxygen [A]

Figure 6-12 - The radial distribution function of water from the carbonyl oxygen for the three
aspartic acid proline bonds in the immunotoxin. Reactive residues are in green, and the red line is
for a non-reactive residue. This is the average value during the later 450ns of the 500ns simulation.
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Figure 6-13 - The radial distribution function of water from the carbonyl oxygen for all
experimentally identified reactive residues in the immunotoxin. This is the average value during
the later 450ns of the 500ns simulation.
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Figure 6-14 - The average number of waters within 3.00 A of the residue's carbon and 2.75 A of the
residue's oxygen for each aspartic or glutamic acid residue in prot-X. The x-axis is the average

102

1.2

1

0.8

0
-~0. 6

0.4

0.2

0
0 5 10

NO U
No.

0.6

2-0.5
0

S0.4
0

CU

C)0.2

F

NOON

-Ugem

U
1

U

M.

ON -
0 0.005 0.02 0.025

- H: D247

-H:D437

-H:D446

-H:D250

-H:D266

-H:D269

i

0.1



MIT

number of waters within 3.00 A of the residue's carbon. The y-axis is average number of waters
within 2.75 A of the residue's oxygen. Red squares are values for residues that are followed by
amide bonds that do not react. Green circles are values for residues that are followed by amide
bonds that do react.

This trend of unreactive residues being buried and non-reactive residue not being buried

can be seen in other measures of the surface exposure of the amide bond. While the different

surface exposure measurement methods result in slightly different relative burial levels of the

amide bonds, the separation based on these measures are very similar classifications. For

instance, solvent available surface area (SASA) of the backbone oxygen atom classifies fifteen

of the residues as buried, while the count of the number of waters within 2.75 A of the backbone

oxygen classifies sixteen residues as buried. While the various methods of surface

measurement result in similar separations, many of the buried residues can also be excluded

based on their secondary structure. Overall, two thirds of the residues are classified as "buried"

also spent more than 9% of the simulation time in a helical or extended conformation, and

could react.

6.3.2.2.3. Relative Orientation of Sidechain

There are many internal degrees of freedom that could also influence the reaction in

various ways, in particular if the sidechain's orientation prevents interaction with the amide

bond. Several dihedral angles, interior angles, and bond distances have been investigated to

determine if the sidechain is in an orientation that permits the reaction to proceed, or if it is in

a conformation that would require an additional conformation change before the reaction could

proceed. While several dihedral angles have been tested, two correlate well with the

reactive/non-reactive residue separation. They are the dihedral angle formed by the backbone

carbon, the alpha carbon, the beta carbon, and the sidechain oxygen closest to the carbon atom

(C-Ca-Cb-Os) and the dihedral formed by the alpha carbon, the beta carbon, the gamma carbon,

and the sidechain oxygen closest to backbone carbon (Ca-Cb-Cg-Os). Both of these dihedrals

separate the reactive vs. non-reactive very well, but they overlap. The dihedrals mark five and

four residues as non-reactive respectively, with three of the residues overlapping. The limits

on the reactive vs. non-reactive for these dihedrals (more than 36' and less than 450

respectively) place the sidechain's oxygen atoms over the backbone carbonyl. The spread of

these two dihedrals is shown in Figure 6-15.
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Figure 6-15 - The average dihedral angle of the C-Ca-Cb-Os and Ca-Cb-Cg-Os for each aspartic or
glutamic acid residue in prot-X. The x-axis is the average dihedral angle of the C-Ca-Cb-Os. The y-
axis is average dihedral angle of the Ca-Cb-Cg-Os. Red squares are values for residues that are
followed by amide bonds that do not react. Green circles are values for residues that are followed
by amide bonds that do react.

6.3.2.2.4. Availability of the Sidechain

Another property that could be of importance is the hydrogen bonding of the sidechain

to other portions of the protein. This would impact the availability of the sidechain to

participate in the reaction, as it would require the breaking of an addition bond before the

sidechain could react. This is illustrated by H:D351 -A352 and H:D250-A25 1. Both are aspartic

acid - alanine amide bonds, and appear to be reactive based on their properties. One major

difference is the presence of a nearby arginine residue (it is two residues after the H:D35 1).

Because of its nearby location, the arginine sidechain forms a strong hydrogen bond with the

aspartic acid sidechain. In this case, the arginine is ideally situated to form hydrogen bonds

with the aspartic acid sidechain, and stays bound for approximately 80% of the simulation.

Because the side-chain is hydrogen bound to another residue, it either could not be involved in

the reaction, or it raises the energy barrier as it decreases the energy of reactant state.
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Figure 6-16 - The average number of hydrogen bonds between the backbone and the rest of the
protein and the average number of hydrogen bonds between the sidechain and the rest of the
protein for each aspartic or glutamic acid residue in prot-X. The x-axis is the average number of

hydrogen bonds between the backbone and the rest of the protein. The y-axis is average number

of hydrogen bonds between the sidechain and the rest of the protein. Red squares are values for

residues that are followed by amide bonds that do not react. Green circles are values for residues

that are followed by amide bonds that do react.

6.3.2.3. Algorithm Generation

The algorithm to predict degradation sites is fitted with the data for prot-X. Cutoffs for

the various quantities are based on the extrema of the range of values observed by reactive

residues during the prot-X simulation plus or minus 10% to account for variation during

simulation. The first step of this algorithm determines if the secondary structure slows down

the reaction or not. The criteria for this is if the residue spends more than 9.5% of the simulation

time in either: a helix, a 310 helix, a x helix, an extended conformation, or an isolated bridge.

The next step determines the average number of waters within 2.75 A of the oxygen atom of

the backbone and the average number of waters within 3.00 A of the backbone carbon atom.

If either the number of waters within 2.75 A of the backbone oxygen is less than 0.13 or 0.00046

waters are within 3.00 A of the backbone carbon, the residue is said to be buried, and will not

react. The last criteria measures the availability of the sidechain to participate in the reaction.

This step was comprised of three measures; two intra-residue dihedral angles and the average
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number of hydrogen bonds between the sidechain and the protein. The first dihedral is between

the backbone carbon, the alpha carbon, the beta carbon, and the sidechain oxygen closest to the

backbone carbon. If this dihedral is greater than 36', it may react, if it is less it does not. The

second dihedral is between the alpha carbon, the beta carbon, the gamma carbon, and the

sidechain oxygen closest to the peptide backbone. If this dihedral was less than 440 it may

react. The final parameter is the number of hydrogen bonds between the carboxylic sidechain

and the rest of the protein. If there is on average less than 0.9 hydrogen bonds, the residue may

react, if it is more it would not react. The outcome of this algorithm applied to the aspartic

acids in prot-X is listed in Table 6-3.

Peptidle bond N
in a turn or a No
random coil?

Yes

PeptieR bond No
on the

surface?

Yes

Sidechain in No
the correct

onformation?
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Sidechain No
available?

YesNt

Reactive Reactive

Figure 6-17 - An outline for the algorithm to predict the reactivity of an amide bond following either
an aspartic or glutamic acid. First step involves determining if the carboxylic acid (aspartic or
glutamic acid) containing residue is inside an a helix, 31o helix, n helix, extended conformation, or
an isolated bridge for more than 9.5% of the simulation. Step two is determining if the carbon and
oxygen atoms of the amide bond are on the surface as defined by the number of water molecules
within 3.00 A and 2.75 A. The third step is to determine if the dihedral angles place the sidechain
over the carbonyl group. The last step is determining if the sidechain is available to interact with
the backbone peptide based on the number of hydrogen bonds between the sidechain and the rest
of the protein.
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Table 6-3 - Results of the Algorithm applied to prot-X's Aspartic Acids. Listed properties include the
residue after the aspartic acid, the experimental result as reactive or non-reactive, whether or not
the model predicts it will react or not react, and the reason it does not react if it is not reactive.

H:D188
H:D203
H:D237
H:D247
H:D250
H:D266
H:D269
H:D324
H:D326
H:D337
H:D34
H:D347
H:D351
H:D403
H:D437
H:D444
H:D446
H:D452
H:D462
H:D474
H:D63
H:D74
H:D91
L:D18
L:D2
L:D29
L:D42
L:D71
L:D83

FOLLOWING
RESIDUE
GLN
LEU
GLU
SER
ALA
G LY
VAL
LEU
ALA
PRO
MET
GLN
ALA
ALA
PRO
LEU
PRO
LYS
TYR
LEU
THR
ASN
THR
ARG
ILE
ILE
G LY
TYR
PHE

EXPERIMENTAL
RESULT
Non-Reactive
Non-Reactive
Non-Reactive
Reactive
Reactive
Reactive
Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Reactive
Non-Reactive
Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive

MODEL
RESULT
Non-Reactive
Non-Reactive
Reactive
Reactive
Reactive
Reactive
Reactive
Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Reactive
Reactive
Reactive
Non-Reactive
Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Non-Reactive
Reactive
Non-Reactive
Non-Reactive
Non-Reactive

6.3.2.4. Algorithm Based Predictions on Prot-Y and Prot-Z

The algorithm described in Section 6.3.2.3 is applied to the two mAb proteins. As there

are two copies for each chain, each of the mAb simulation has two potential peptide cleavage

sites per residue in the primary sequence, and the two bonds are different due to the asymmetry

of the starting structure. Because of this, prot-Y has 114 potential hydrolyzing amide bonds.

The model correctly predicts 105 of the residues as non-reactive, predicts 9 reactive residues,

while only 3 of them are reactive. It missed 1 of the 4 reactive bonds (H:D220-K221), as it
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In ct helix
In a helix

Buried oxygen
Buried carbon
In extended conformation
In extended conformation
Too many Hydrogen Bonds
Buried carbon

In a helix

In a helix
In 3 1o Helix
In extended conformation
In 31o Helix
In extended conformation
Low CCaCbnOs

Low C-CaCb-Os
In extended conformation
In 3 1o Helix
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incorrectly classifies the bond as buried, as the amide bond's carbon is completely buried

throughout the simulation. When applied to prot-Z it performs slightly worse, getting most the

non-reactive residues correct, with 107 correct classifications as non-reactive, 3 correct

classifications as reactive, 1 incorrect classification as non-reactive (L:E217-C218), and 20

incorrect classifications as reactive. Overall, the model classified 75% of all reactive residues

correctly and 89% of the non-reactive residues are correctly classified.

Table 6-4 - A count of the number of residues classified as non-reactive based on the algorithm in
section 6.3.2.3. The first column is the name of the measure used to classify residues as either
reactive or non-reactive. The second, third, and fourth columns are the number of residues which
are classified as non-reactive for prot-X, prot-Y, and prot-Z respectively. Extended Conformation,
Isolated Bridge, a helix, 31o helix, and r helix refers to the number of residues that spend more than
9.5% of simulation time in each protein. Buried Carbon and Buried Oxygen are the number of
residues marked as non-reactive based on a buried carbon or buried oxygen atoms. C-Ca-Cb-O, is

the number of residues marked as non-reactive due to the dihedral angle between the backbone
carbon, the alpha carbon, the beta carbon, and the oxygen closet to the amide bond. Ca-Cb-Cg-0, is
the number of residues marked as non-reactive due to the dihedral angle between the alpha carbon,
the beta carbon, the gamma carbon, and the oxygen closet to the amide bond.

PROT-X PROT-Y PROT-Z

EXTENDED 9 45 39

CONFORMATION

ISOLATED BRIDGE 0 3 2

A HELIX 22 10 13

31o HELIX 7 8 15

HUHELIX 0 0 0

BURIED CARBON 4 12 16

BURIED OXYGEN 1 4 1

C-CA-CB-Os DIHEDRAL 5 16 14

CA-CB-CG-Os DIHEDRAL 1 4 4

HYDROGEN BONDS TO 1 3 3

SIDECHAIN

Table 6-5 - The overall performance of the algorithm for each protein. False Non-Reactive Residues
is the number of residues incorrectly classified as non-reactive. True Non-Reactive Residues is the
number of residues that are correctly classified as non-reactive. False Reactive Residues is the
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number of residues incorrectly classified as reactive. True Reactive Residues is the number of
residues that are correctly classified as reactive. The results are separated by protein.

PROT-X PROT-Y PROT-Z

FALSE NON-REACTIVE Residues

TRUE NON-REACTIVE Residues 40 105 107

FALSE REACTIVE Residues 8 6 19

TRUE REACTIVE Residues 6 3 3

6.4. Discussion

6.4.1. Mechanism of Non-Enzymatic Hydrolysis

From the Gibbs free energies of the stable species and the transition states, two main

conclusions can be drawn: when an aspartic acid is present, the lowest Gibbs free energy

pathway is pathway D from Figure 6-1, where the sidechain and peptide backbone form a ring,

and proper solvation plays an important role in determining the energetics of these system.

Of the four tested pathways, all are impacted, to varying extent, by the presence of an

aspartic acid. In two of the cases, pathway A and B where the backbone carbonyl and the

surrounding waters act as proton acceptors, the addition of the aspartic acid increased the free

energy of both the products and the transition states. In the other cases, pathways C and D,

where the sidechain acts as the proton acceptor or the sidechain adds directly to the amide bond,

the pathways are not possible if the carboxylic acid sidechain is absent. While the role of

aspartic acid may vary between pathways, most of the transition states are similar in terms of

energetics, geometry, and motion due to the imaginary frequency. This indicates that either

the surrounding chemical moieties can do little to aid in the disassociation of water by acting

as proton acceptors, or the differences are too small to be detected using the energy evaluation

methods here. While pathways A and B may be the likely mechanism when an aspartic acid is

not present, as the Gibbs free energy barriers of pathway B for the peptide PAA are comparable

to the experimentally found activation energy of 23.5 kcal/mol for Glycine - Glycine bonds

(12). Pathway D is the more likely when an aspartic acid is present. However, it is markedly

different from the other three pathways.

Pathway D is the lowest energy pathway of the four pathways for the hydrolysis of a

protein bond which follows an aspartic acid residue. Not only are the reaction Gibbs free

energies slightly lower than any other pathway, but so is the Gibbs free energy barrier.

Compared to the next lowest pathway, pathway B, the Gibbs free energy barrier of pathway D

is nearly half of pathway B, more than 10 kcal/mol lower in energy. The cause for this drastic
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reduction in energy is likely due to the delay in the disassociation of the water molecule until

after the amide bond cleavage. This is significant because pathways A, B, and C showed little

change in the Gibbs free energy barriers despite various chemical moieties aiding in the

disassociation; however, with pathway D this occurs after the measured event, the cleavage of

the amide bond.

Outside of the presence of aspartic acid and the pathway, the next most significant

factor in the determination of the reaction Gibbs free energies is the solvation of the product

species. The importance of solvation can be seen in multiple ways: first in the energy

difference when three explicit solvating waters are used and the same species with five

solvating waters. While there are other sources for the inconsistent energies other than

solvation, such as the change in conformation, most of these should be small and are unlikely

to account for the large differences in energy, in some cases these differences are as much as

10 kcal/mol. The impact of solvation can also be seen in the comparing the energies of species

and transition states for pathway A. Because each peptide has multiple carbonyl groups, and

each of these groups is chemically different because it follows or proceeds a different residue,

they were tested individually. The energies for different carbonyls varied by as much as 10

kcal/mol within a given sequence. While this could be due to the impact of primary sequence,

no single pattern of preceding or following residue could account for this variability. A more

likely cause is the uneven distribution of explicit waters along the peptide. Most of the explicit

quantum waters solvate the diol, and the amide bond that will be later cleaved. Because of this,

the carbonyls nearest this site were better solvated than those further from the cleavage site.

This leads to the first instance of pathway A for each peptide, the cases where the proton

accepting carbonyl group is furthest from the diol site, having the highest energy, regardless of

the variations in sequence. These large changes in energy, in excess of 10 kcal/mol, are most

likely due to insufficient solvation of the species. Because of the importance of solvation in

determining the reaction Gibbs free energy of the system, it will likely be a significant factor

in determining the reactivity of a residue.

There are two significant factors that affect the energies of species. These are the

pathway to which the species is a part and the solvation of that species. Other factors also affect

the energetics of the species, such as the impact of a proline following an aspartic acid, however

these were close to the accuracy of the methods used for energy evaluation and may not be

significant.
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6.4.2. Factors Effecting Hydrolysis and Their Impact on The Hydrolysis Mechanism
Using this information about the mechanism of hydrolysis- that the most energetically

favorable pathway is pathway D in Figure 6-1 and the importance of solvation- a predictive

algorithm has been developed. Knowledge of the mechanism is critical in identifying key

factors and in interpreting why those factors are significant. Four factors have been found that

influence the reactivity of an amide bond. The first is the secondary structure of the amide

bond. The second is the surface exposure of the bond. The third is the orientation of the

sidechain relative to amide bond. The fourth factor is the availability of the sidechain to

participate in the reaction. The first two factors, the secondary structure and the surface

exposure of the amide bond, directly impact the ability of the amide bond to accept the proton.

The last two factors,, the orientation and availability of the sidechain, directly impact the ability

of the sidechain to form a ring. Of these four factors, the factor that can account for the most

non-reactive classifications is the secondary structure. It determines the non-reactivity of

nearly 65% of all residues. However, the secondary structure is a complex property; it is

determined by several other properties, such as dihedral angles along the backbone. Therefore,

the impact the secondary structure has on hydrolysis is unclear; in order to understand if it is

the secondary structure, or one of its determining factors that controls hydrolysis, both were

investigated separately. In STRIDE, the algorithm used to determine the secondary structure,

a number of properties are used to determine which class of secondary structure best describes

a residue. These include three dihedral angles, the p, y, and > and the hydrogen bonding of the

backbone. Overall, the three dihedral angles do not correlate with reactivity. While the data

for prot-X suggests that it may be possible that the p and y dihedrals are correlated, see Figure

6-18 and Figure 6-19, this is due to the relatively small data set of reactive residues in prot-X.

A wider range of angles are explored in prot-Y and prot-Z, which can help rule out these angles

as a determining factor in the reactivity of the amide bond. The next factor that determines the

secondary structure is the hydrogen bonding of the backbone. As can be seen in Figure 6-16,

amide bonds that are hydrogen bound to other parts of the protein for more than half of the

simulation can still react, making the mere presence of a single hydrogen bond an unlikely

factor in determining the reactivity of an amide bond.

Because none of the factors which determine the secondary structure directly correlate

with the reactivity of amide bonds, the question becomes how does the type of secondary

structure effect the hydrolysis reaction? One possible route by which the secondary structure

could impact the hydrolysis mechanism is through raising the barrier to the first step of the

reaction, the protonation of the amide bond. Fundamentally, this step turns the carbonyl group
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which had been a hydrogen bond acceptor into a hydrogen bond donor. Because secondary

structures are stabilized by patterns of hydrogen bonding, this could drastically impact the

stability of the pronated state. In the case of a random coil or a turn, it would only require the

breaking of a single hydrogen bond for the backbone carbonyl to be present on the protein

surface and able to accept a proton. If the amide bond was in another type of secondary

structure, such as an a helix, multiple hydrogen bonds would need to be broken to open up the

helix so that amide bond could be protonated. This would require a more significant change in

structure and would further increase an already high energy barrier, and would greatly reduce

the probability of the reaction occurring.

200 -
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50 -

0 non-Reactive
0 Reactive
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-100
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-200 I I 1 1
-160 -140 -120 -100 -80 -60 -40

Figure 6-18 - The average dihedral angle of the 4 and w for each aspartic or glutamic acid residue in

prot-X. The x-axis is the average dihedral angle of the c0. The y-axis is average dihedral angle of the

w. Red squares are values for residues that are followed by amide bonds that do not react. Green

circles are values for residues that are followed by peptides that do react.
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Figure 6-19 - The average dihedral angle of the i and X, for each aspartic or glutamic acid residue in

prot-X. The x-axis is the average dihedral angle of the 4). The y-axis is average dihedral angle of the

X1. Red squares are values for residues that are followed by amide bonds that do not react. Green

circles are values for residues that are followed by peptides that do react.

Another factor that also captures this accessibility of the amide bond to the proton is

the surface exposure of the amide bond. In a similar way to the secondary structure, the surface

exposure of the amide bond controls if the proton can get to the amide bond. If the surface

exposure of the bond is low, meaning the amide bond is buried, a conformation shift would be

required to expose the amide bond. This conformation change would further increase the

barrier of the reaction, and slow the hydrolysis of that amide bond. Unlike the secondary

structure, this factor also measures how well solvated the bond is, and as previously mentioned,

the energies of the both the transition states and the products can vary greatly with differences

in solvation. A poorly solvated amide bond not only will have difficulty in transporting a

proton to the site for the reaction to begin, but will also have an overall slower reaction due

lack of solvent molecules to stabilize the transition state. This would result in an increase of

the energetic barrier, and would further slowdown the reaction. For these reasons, the surface

exposure has a significant impact on the reactivity of the amide bonds.

The third factor which correlates with reactivity is the orientation of the sidechain

relative to the peptide backbone. This is measured through the two dihedral angles; these place
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the sidechain on the same side of the amide bond as the oxygen of the amide bond. These

angles are significant because this orientation places the sidechain's oxygen in a similar

location as can be found in the product of pathway D, where the sidechain cyclizes. The carbon

of the amide bond forms an sp3 carbon after the reaction; and this would require the oxygen of

the sidechain to be on the same side of the amide bond as the amide bond's oxygen. If the

sidechain spends the majority of its simulation time in a conformation similar to the

conformation in the product of pathway D, the reaction can proceed at any time. In other cases,

where the sidechain is in another conformation, a conformation change would be required

before the cyclization step could begin. This would add another energetic barrier that would

further slowdown the reaction.

The final factor is the availability of the sidechain to participate in the reaction. It is

measured through the average number of hydrogen bonds between the sidechain and the rest

of the peptide. If a sidechain is strongly hydrogen bound to another part of the protein, then

these bonds would need to be broken for the sidechain to participate in the furane formation

step, regardless of the its current conformation. Like the conformation of the sidechain, the

availability of the sidechain will impact the second step of pathway D, and would further

increase the reaction barrier to the whole process.

These four factors, the secondary structure, the surface exposure, the orientation of the

sidechain, and the availability of the sidechain, each impact the cyclization mechanism. Two

factors, the secondary structure and the surface exposure, determine if protonation of the amide

bond, the first step of the reaction, is possible. While the other two factors, the orientation and

availability of the sidechain, determine if sidechain can interact with the peptide and participate

in the reaction. These were then combined into an algorithm to predict if a bond will hydrolyze

or not.

6.4.3. Performance of Algorithm and Sources of Error

Overall, these descriptors did well in predicting which bonds would react. More than

89% of bonds are predicted correctly as reactive or non-reactive for the two mAbs. Most bonds

could be excluded based on their secondary structure; approximately 65% of all amide bonds

are excluded based on spending too much time in one of the non-reactive secondary structure

classes. The burial of amide bonds, and the relative orientation of the sidechain account for

roughly equal amounts of non-reactive amide bonds, 14% and 16% of amide bonds

respectively. The hydrogen bonding of the sidechain to other parts of the protein accounts for

few non-reactive classifications, only 3% of the overall amide bonds. Of those that are
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incorrectly classified as reactive or non-reactive, no single parameter can explain the thirty-

three incorrectly classified residues. However, there are several potential causes that could

explain the misclassification. These include: the role of the residue following the aspartic or

glutamic acid, the binary representation of the data, the small training set size, insufficient

measurements of the properties of the various amide bonds, and the complexity of the

mechanism.

As has been shown both here (see section 6.3.1.1) and experimentally elsewhere (2)

that the primary sequence does affect the rate of hydrolysis, specifically the type of residue

following the amide bond can impact both the energetics or the rate of the reaction. However,

no term for the primary sequence was explicitly included. No term has been included because

how the residue after the aspartic or glutamic acid residue impacts hydrolysis is unknown. This

presents two issues; the first is how to quantify the difference between residues. There are

many differences between the common residues such as hydrophobicity, charge, dipole,

aromaticity, etc., any of which could impact the reaction in slight or significant ways. But, the

experimental and computational data does not cover a sufficient range of residues to determine

which measure or measures would impact the mechanism enough to warrant inclusion in this

algorithm. The second issue is that there is the possibility that the residue after the aspartic or

glutamic acid could fundamentally alter the mechanism. While that was not seen here, only

two residues were investigated. Further investigation of this could improve the algorithm; if

the hydrophobicity of the following residue were included, then the number of incorrect

classifications could be cut by a third. However, there is no statistically significant correlation

between the limited experimental rate data and the hydrophobicity of the following residue.

Another potential explanation for the misclassifications is in the binary representation

of the data, specifically that an amide bond will either react or not react. This does not match

reality, as all amide bonds undergo non-enzymatic hydrolysis. The relative rates of hydrolysis

will differ between amide bonds, but all are susceptible to some degree. As mentioned in

section 6.2.2, the use of only the reactivity of the amide bonds was necessary due to the small

amount of fragments produced during the accelerated stability study. Because of the relatively

small amounts, often less than 1%, the uncertainty associated with the quantified data is high.

Due to this binary nature of the data, two different amide bonds may react very similarly, and

have similar rates, if that rate is close to the detection limit, then one may be found to be reactive

while the other is non-reactive. If this is the case, then some of the incorrectly classified as

reactive, may in fact be reactive, only they react slowly enough not to be detected.
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Along with the limits on the reactivity of the different amide bonds, the algorithm was

trained on relatively small data set, only sixty-four amide bonds, and of these, only six were

reactive. There is the risk that when the cutoff between reactive and non-reactive residues was

selected it may not perfectly match the actual separation. These cutoffs may be better selected

using any of a number of machine learning algorithms to select the optimal cutoff (149).

However this would require a much larger training set, as when these methods were attempted

here (see section 11.5), they produced a model with minimal predictive ability. The same

imperfection in cutoffs can be also be seen in section 6.3.2.2.2, were several methods for the

classification of buried vs. non-buried residues were tested. Ideally, all of these methods will

result in the same classifications, but due to the limits of sampling the classifications are slightly

different. With the inclusion of data for more proteins, better reactive/non-reactive cutoffs may

be determined.

Another potential cause for misclassification is insufficient sampling of the properties

of interest. This is always a possibility when performing MD simulations. The simulation may

not be long enough to adequately sample the conformational space. There is some evidence of

this in the predictions made for the two proteins, prot-Y and prot-Z; because prot-Y and prot-

Z are both mAbs, there are two instances of both the heavy and the light chain, and because the

proteins are symmetric, there is no physical reason why one instance of the heavy chain should

react and not the other. Overall, twenty-five amide bonds are misclassified; however, in fifteen

of these cases only one of the two instances of that amide bond is misclassified. This includes

the two false non-reactive residues; where one instance of each is classified as buried because

of its surface exposure and the other instance is not. This suggests that it may be possible for

some of the misclassified bonds to be correctly classified by the algorithm if a longer simulation

was used. In order to determine how long of a simulation would be required; the correlation

times for each parameter were measured.

The correlation times for these properties varied greatly. By both the average and

maximum values, the longest correlated properties were the secondary structure, which had a

correlation time on average of 3.5 ns, suggesting that a very long simulation might give better

results. However, the correlation time varies greatly with the residue. The longest of these

correlation times was more than 35 ns, nearly as long as the simulation time used to evaluate

properties for both mAbs, which would indicate that only a few independent evaluations were

possible in some cases. Long correlation times affect not only the secondary structure

classifications, but a number of properties used to separate reactive and non-reactive bonds

have correlation times on the nanosecond time scale, including the number of water within 2.75

116



MIT

A (average time 0.8 ns) and the average number of hydrogen bonds between the sidechain and

the rest of the peptide (on average 2 ns). These correlation times indicates that a long MD

would be required to adequately sample these degrees of freedom, probably in excess of 100

ns of measureable MD time.

Lastly, hydrolysis is a complicated mechanism and this only considers a single

mechanism. Many factors could impact the rate of hydrolysis, while many of them were

investigated here, one or more factors may have been missed that could have been included.

Also, there are several pathways that could lead to amide bond cleavage and produce products

similar to hydrolysis. This includes cases for which a carboxylic acid containing residue,

aspartic or glutamic acid, is not present. In the case of prot-X, the only remaining cleavage site

is Asn243-Gly. Asparagine is chemically similar to aspartic acid, so it could react in a similar

method as aspartic acids, however deamidation is a major degradation route for asparagine

residues. Prior work has been done to understand deamidation, (150), this includes the

development of a predictive method. When this predictive method was applied to prot-X,

Asn243 was found to be the most likely site for deamidation, and has a half-life a tenth that of

the next most reactive residue. There are several ways that deamidation of Asn243 could cause

cleavage of the amide bond. One of these is through conversion of the asparagine into an

aspartic acid and then the aspartic acid reacting in the manner previously described for

carboxylic acid containing residues. However, a side reaction to deamidation has also been

found that results in bond cleavage (150). There are several other potential causes for peptide

cleavage beyond hydrolysis that could be investigated and lead to a more advanced predicative

method that is applicable to a wider range of residues.

6.5. Conclusion

The mechanism, and factors that affect it, of the non-enzymatic, acid-catalyzed

hydrolysis of amide bonds which follows either an aspartic or glutamic acid residue was

investigated. The lowest energy pathway was the protonation of the amide bond, followed by

the formation of a furane intermediate, which is later opened, after the addition of a water

molecule. Several environmental factors can influence this mechanism; these include those

which hinder the protonation step, such as the secondary structure and the solvation of the

peptide backbone, and those which affect the furane formation step, such as the conformation

of the sidechain and the availability of the sidechain to participate in the reaction. This

information was used to generate an algorithm to predict if a residue would or would not react.

This algorithm predicted nearly 90% of residues correctly, as reactive or non-reactive, in two
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different test cases. The algorithm is tuned so that incorrect categorization of non-reactive is

minimized. (Only two reactive residues were incorrectly predicted as non-reactive.) This

algorithm can thus be incorporated into the discovery phase or early stage development to

identify potential problems with hydrolysis early on.
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7. CONCLUSION

The development of a new drug is a substantial investment for a pharmaceutical

company. Not only is the development process expensive, some estimates place the cost at

nearly a billion dollars per drug, and time consuming, taking a decade to go from drug candidate

to drug on the market, but it is also risky, with less than one drug candidate in ten ever reaching

the market. In order to decrease the risk, and thereby the cost, of biotherapeutics, a number of

procedures have been suggested, including using in silico tools to predict the properties of the

biotherapeutic. In general, in silico tools have a number of advantages over experiment based

tools, including: no need for material, high throughput, and rapid results. Additionally, these

tools can be designed to address virtually any protein property from immunogenic response to

the viscosity of the protein in solution. Through the use of in silico tools, potential issues can

be identified early in the development process; allowing the developers to mitigate these issues.

However, relatively few of these tools have been developed that have been validated for the

larger proteins of interest to the pharmaceutical industry, such as antibodies. In this thesis, two

in silico tools are presented that tackle two very different degradation routes; the first predicts

the aggregation propensity of a protein and the second predicts the peptide bonds that are

susceptible to non-enzymatic, acid-catalyzed hydrolysis.

The first of the in silico tools is the Developability Index. This tool was developed to

address the aggregation of proteins in solution. It classifies proteins into one of three classes;

highly-aggregating, moderately aggregating, and slowly aggregating proteins. The

classification is based on two calculations of the protein properties: the surface hydrophobicity

of the protein (the SAP Score) and the net charge of the protein. The first factor, the SAP

Score, is a measure of tendency for the protein to stick to other proteins, including itself. It is

based on the spatial aggregation propensity (SAP) of the protein and is a measure of the severity

and size of hydrophobic regions on the protein surface. The second measurement is the net

charge of the protein, and accounts for the electrostatic repulsion between the two similarly

charged proteins in solution. When combined, these two factors can rank proteins. While, this

tool was originally developed for IgG1 antibodies; it has since been successfully applied to a

wider range of proteins including: IgG1, IgG2, and IgG4 antibodies and globular proteins

derived from antibody fragments.

The second of the in silico tools is an algorithm for the prediction of non-enzymatic

hydrolysis of peptide bonds for bonds following a carboxylic acid containing residue. Due to

the number of potential routes by which this reaction could occur, the mechanism was also
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investigated. When an aspartic acid residue, the residue experimentally found to hydrolyze the

most quickly, is present on the N-terminal side of a peptide bond, the most energetically

favorable path starts with the protonation of the peptide bond's oxygen atom. Then, a ring is

formed by the sidechain bonding to the peptide bond. Later, the peptide bond breaks, and the

ring opens by addition of a water molecule. This knowledge was then used to develop an

algorithm that predicts if a particular peptide bond, with a carboxylic acid at the N-terminus,

will react. The algorithm takes four factors into account, which directly impact the first two

steps of the hydrolysis reaction, the proton addition and the cyclization of the sidechain. The

first two factors controlling this reaction are the secondary structure and the surface exposure

of the peptide bond; these directly impact the ability of the proton to diffuse to and add to the

peptide bond. The other two factors determine the likelihood that the sidechain can participate

in the reaction; these other factors are the orientation of the sidechain and the hydrogen bonding

of the sidechain to its surroundings. The algorithm was trained on cleavage site data for an

immunotoxin, and then applied with great accuracy, nearly 90%, for two IgGI antibodies.

As can be seen in these two cases, in silico tools can be invaluable in understanding and

predicting the properties of proteins in solution. These tools can be made to predict a wide

range of protein properties, from the physical degradation route of aggregation to the chemical

degradation route of hydrolysis. Neither of these tools require any material to make a

prediction; and these tools can predict the properties of a protein that take several months to

measure. The use of tools like these can increase the knowledge about a drug candidate and

thereby decrease the risk of the investment in that drug.
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10. APPENDIX A: ADDITIONAL INFORMATION ON DEVELOPMENT OF THE

DEVELOPABILITY INDEX

10.1. Effect of SAP Radius on DI and classifications:

Previous work using SAP had found that aggregation prone regions can be found using

both 10 A and 5 A. As these works focused on visually finding regions that are aggregation

prone, not attempting to quantify how aggregation prone, several radii were attempted. These

initially included 5 A, 10 A, and 15 A. As 5 A was found to be the best, several other radii

were attempted around 5 A, these include: 2 A, 4 A, 6 A, and 7 A. One interesting effect of

the variation of the SAP radius is that the relative values for the SAP Score also changed. The

behavior of the SAP Score is the same for all mAbs as the SAP radius is varied. It depends on

the size and magnitude of the hydrophobic patches.
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Figure 10-1 - SAP Score at different SAP Radii for 7 mAbs.

In order to determine which radii is the best, each was used in a data regression

separately. The 40 'C data was used at it showed the most variance in aggregation propensities.

The number of correctly classified antibodies was used to quantify which of the radii was the

best. After using each radius in the DI procedure, a range of radii appeared to work equally

well, from 4 A to 7 A. 5 A was selected from this range; other values in the range would also

work.
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Figure 10-2 - Number of correct classifications (based on 7 data points) at 40*C at several SAP Radii.
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10.2. Variations in the SAP Score cutoff value

During the calculation of the SAP Score, there is a step where only a portion of the

atoms are considered. Originally the cutoff for the SAP value was 0. This cutoff was varied

in an attempt to determine its effect on the final DI fittings. This was done is a similar manner

to the variations in SAP radius.
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Figure 10-3 - SAP Score as the cutoff value for the sum of SAP values that determines the SAP Score

Variation of the
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SAP Score cutoff did result in different classifications based on the

range of values that results in similar number of errors. In this case

incorrectly classify one mAb.
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Figure 10-4 - Number of correct classifications (based on 7 data points) of 40 0C data using the given
SAP Score cutoff value

This accounts for a large change in the percent of atoms included in the SAP Score

calculation, approximately 76% of observed SAP values in the CDR fall within this range.
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10.3. Additional Functional forms for DI
In addition to those presented here, other functional forms were tried. These were left

out of the report for one of two reasons; the equations had mathematical issues that prevented

their use or performed worse than simply using SAP as a predictor.

The first of these additional equations was the use of the natural logarithm:

DI = ln(mAb SAP Score] - P x [mAb Net Charge]2

Equation 10-1

This equation, and other similar equations, was not considered a good equation after it

was noted that a mAb with a very high charge could cause the term inside the logarithm to be

negative. As the logarithm of a negative number is not defined, this equation, and those like

it, was not considered for use as the functional forms of DI.

Another equation that was considered was:

DI = [mAb SAP Score]

[mAb Net Charge]2

Equation 10-2

This equation performed worse than the SAP Score alone. In fact, if the DI was constant and

always returned high stability, it would perform equally well.

Below is a table of the results of all fittings, including the function, the number of

correct classifications and the values of P and the scaling constant c. "c" is the scaling factor

applied to the aggregation propensity centroids to scale the kinetic rate values to the DI scale.

In order to get the new DI classifications, multiply the aggregation propensity cutoff in Table

2-2 by c, these will be the cutoff value for the DI if that function is used.
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Table 10-1 - Fitted parameters and number of correct classifications (based on 7 data points) for the
tested DI functions

DI Function: Number of p (400C) C (400C)

correct

classifications

DI =[Antibody SAP Score] - px [Antibody 6 0.7973 6.5409

Net Charge] X104

DI = exp ([Antibody SAP Score] - x 5 1.7208 10

[Antibody Net Charge])

6 ro
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10.4. SAP Map for few Representative MAbs

SAP scale
0+0.5

Figure 10-6 - SAP of variable regions (Fv) of mAbi (Low SAP Score, 16.3), mAb6 (Medium SAP Score,

35.6), and mAb3 (High SAP Score, 46.0), R=5 A. Red indicates hydrophobic regions while blue are

hydrophilic regions.

10.5. Effect of Variations in the mAb Framework

There are few differences in the sequence of Fv domain outside of the CDR. For

instance, the constant region of the light chain varies by 63 amino acids between ] and k. In

the case of the seven mAbs used in the fitting, mAbI through mAb7, there is a wide range of

values for the sequence identity and sequence similarity of the mAbs. In particular, if only the

mAbs that are IgG1 with a K side chain are used, the average sequence identity between the

framework (the Fv not including the CDR) of two mAbs is 81%, but this can be as low as 68%

or as high as 91%. Similarly, a wide range is observed in the sequence similarity, ranging from

83% to 94% (mean: 89%). The values are given below in the tables Table 10-2 and Table 10-3.

Table 10-2 - The sequence identity for the framework IgG1 K mAbs.

mAbl mAb2 mAb3 mAb5 mAb6
mAbI 100%
mAb2 68% 100%
mAb3 76% 79% 100%
mAb5 71% 83% 85% 100%
mAb6 82% 84% 91% 86% 100%

Table 10-3 - The sequence similarity between the sequences for the framework of IgG1 K mAbs

mAbl mAb2 mAb3 mAb5 mAb6

mAbl 100%
mAb2 83% 100%
mAb3 89% 86% 100%
mAb5 85% 89% 93% 100%

mAb6 89% 92% 94% 93% 100%
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In order to test the hypothesis that the CDR is sufficient to capture the differences

between mAbs, a SAP Score for the entire Fv was calculated. The SAP Score for the Fv is

defined as the sum of the positive SAP values in the Fv, including the CDR. While one could

calculate a SAP Score for the entire mAb, there were no differences in the sequence of any of

the constant regions of the heavy chain, or of the constant region of the light chain (given either

a K or a k chain). There is a remarkable correlation between the values calculated for Fv and

the CDR (correlation coefficient of 95%, see Figure 10-7). The high correlation between the

SAP Score based only on CDR residues and the SAP Score based on the Fv suggests that the

mutations outside the CDR have little effect on the SAP Score of the mAb. Because the SAP

Score of the CDR is sufficient to capture the differences in the SAP over the surface of the

protein and requires a calculation over a small region, the SAP Score based on the CDR was

used.
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Figure 10-7 - SAP Score based on Fv vs. SAP Score based on Fv
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10.6. Experimental Conditions for Stability Studies

Table 10-4 - List of experimental conditions for stability studies for each mAb, multiple experiments
are available for mAbi, mAb2, mAb3, and mAb1O

mAb Additives pH Initial mAb Initial Percent of

Concentration Aggregate [%]

[mg/mL]

mAbi 20 mM L-histidine 6.5 150 1.7

75 1.1

mAb2 20 mM L-histidine 6.5 150 0.8

75 0.3

mAb3 20 mM L-histidine 6.5 150 1.5

75 0.9

mAb4 10 mM L-histidine 6.0 55 0.8

mAb5 10 mM L-histidine 6.0 70 0.8

mAb6 10 mM L-histidine 6.0 60 0.8

mAb7 20 mM L-histidine 6.0 40 3.0

mAb8 10 mM L-histidine 6.2 65 0.4

mAb9 20 mM L-histidine 5.0 60 0.3

100mM Trehalose

mAb1O 25mM Phosphate 6.2 150 2.2

75 1.9

mAb11 10 mM L-histidine 5.5 60 2.9

mAb12 10 mM L-histidine 5.5 75 0.3
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11. APPENDIX B: ADDITIONAL INFORMATION ON THE UNDERSTANDING OF

THE NON-ENZYMATIC HYDROLYSIS

11.1. Investigation of the Formamide Pathway

11.1.1. Methods
In order to determine the minimal level of theory to produce accurate system energies

and structures, the impact of functional choice of energy evaluation and the basis set for

structure optimization was studied. In order to quantify their impacts, the hydrolysis of

formamide was investigated, as formamide has previously been studied and both stable species

and transition states are known. The structures for the rate determining step of hydrolysis, the

formation of the diol, from Wang and Cao (120) were used as fixed structures to investigate

the impact of energy evaluation method on the system energy. A wide range of functionals

were tested to see which reproduced the difference in reaction and activation energies

calculated with CCSD(T)/6-31 1+G**. All energy evaluation methods were tested with the 6-

311++G(3df,3pd), unless otherwise noted. The tested energy methods included:

Generalized Gradient functionals (GGA): BLYP (151), PBE (152)

Hybrid-GGA functionals: B3LYP (130), Becke Half & Half, HCTH (153), PBEO

(154,155)

Meta-GGA functionals: BMK (156) M06, M06-2X (157), TPSS (158)

range corrected: MI 1 (159), tPBE (160), oPBE (161), oB97, oB97X (134),

oB97X-D (162)

hyper functionals: B2PLYP (163), oB97X-2LP (164)

and wave-function based methods: CCSD(T) (165), HF (166), MP2 (167), RIMP2

(168)

The impact of basis set was evaluated by testing several Pople basis sets, starting with

6-31G* (169) and adding in various addition polarized basis sets, diffuse basis sets (170), or

switching to the triple zeta 6-311 basis set. These were then compared to the results for

optimizations with the largest basis set 6-31 1++G(3df,3pd), specifically the relative Gibbs Free

energies of the reaction and activation energies evaluated with MP2/6-31 I++G(3df,3pd), the

value of the imaginary frequency, and the displacements associated with each atom in the

imaginary frequency. All optimization were done using the B3LYP functional and the C-PCM

implicit solvent (131) in Gaussian.
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11.1.2. Results

11.1.2.1. Selection of Functional for Energy Evaluation

Due to the size of the peptides, the smallest tripeptide is 50 atoms in size not including

the surrounding waters, a model system (formamide) was used to quantify the impact of energy

evaluation. In order to evaluate the impact of the energy evaluation method, several were

methods tested on the model system. The structures were taken from the supplemental

information of (120), these structures were optimized with B3LYP/6-31 1+G(2df,2p) with a

CPCM optimization. The absolute errors in AEo are presented in Figure 11-1 for the tested

functionals. While more accurate energy evaluation methods than the reference (CCSD(T)/6-

311 +G**) exists, a wide range of methods reproduce the activation and reaction energies.

Many methods reproduce the energy within 1 kcal/mol of the target method, these accurate

methods include BMK, M06, MI 1, oB97, oB97X, oB97X-D, oB97X-2LP, CCSD(T)/6-

31+G** and MP2. The most accurate of these methods was oB97X, which on average

deviated from the CCSD(T)/6-31 1++G(3df,3pd) by 0.04 kcal/mol. This method was selected

for use in all following energy evaluations due to the moderate cost of the method, and it and

its related functionals (coB97, coB97X-D, oB97X-2LP) were all reasonably accurate.

18
~ 16

14
u 12

10
8
6
4 0 Reaction

2 h I * Activation

- 0.. ~~~ T 0 0. * L N N

o2 M>r~ ccJ rN -I*~0

0) 33
U

U

Figure 11-1 - Absolute deviation for AEo for the transition state (in red) and diol intermediate (in
blue) compared to CCSD(T)/6-311+G** energies. Holding the basis set fixed (6-311++G(3df,3pd)),
except for RIMP2, which used cc-pVTZ and rimp2-cc-pVTZ as the auxiliary basis set, CCSD(T) which
used 6-31+G**.

11.1.2.2. Selection of Basis Set for Optimization

In addition to quantifying the error level of theory on energy accuracy, the impact of

basis set on final energy was quantified. This was tested by optimizing the formamide system

with different basis sets, and comparing the results to larger basis sets. Specifically, the energy
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of species, the frequencies and the correlation between the displacements associated with the

imaginary frequency between the given basis set and the 6-31 1++G(3df,3pd). These results

are tabulated in Table 11-1. From this table, the results with the 6-31G* basis set does not

appear to be sufficient, as while it produces similar frequencies it does not accurately reproduce

the energy suitably well. The smallest basis set the results in energies similar to the largest

basis set 6-311++G(3df,3pd) is 6-31+G**. It reproduces the relative energy of species within

1 kcal/mol, and gets the activation and reaction energies within 1 kcal/mol. Additionally, it

reproduces the negative frequency with little difference compared to the largest basis set.

Because the 6-3 1+G** basis set best reproduces the structures of the largest basis set, it will be

used for all the following calculations.

Table 11-1 - Tabulated values for the error in energy resulting from the use of different basis sets.
The energy was evaluated using MP2/6-311++G(3df,3pd)//B3LYP/specified basis set, the harmonic
approximation and a C-PCM as an implicit solvent. All values are relative to the values calculated
with the 6-311++G(3df,3pd) basis set. Frequencies are evaluated with the B3LYP functional and the
stated basis set.

---------- - ----

a.2 0.3 0.6 639.588 1.000

11.2. Impact of GA on Free Energies

Due to the limits of MM modeling of the system, the GA may not represent the global

minimum on the potential energy surface using any quantum method. To test this, 10 separate

populations were created for the (H')PA(OH)2A. These were evolved using the GA for

approximately 8000 iterations (a fixed amount of compute time) and the most stable structure

was taken, and the free energy of the system was evaluated. These were tabulated in the Table

11-2. A range of 3 kcal/mol was found between the six different conformations (four of the

GA populations resulted in structures found in other populations).
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Table 11-2 - The MM energy and Free Energy for 6 Conformations out of GA. All energies are in
kcal/mol and relative to the lowest MM energy species. Energy Evaluated using M06/6-
311++G(3df,3pd)//B3LYP/6-31G*, CPCM solvation, and the harmonic approximation

2 0.99 -2.27

4 1.02 -0.88

6 0.91 0.63

11.3. Naming Conventions
Due to the number of species, and the variations in sequence being studied, a naming

convention was used to clarify the species being talked about. Presently there are two key

pieces of information contained in the name. The first is the sequence of the originating

peptide. For instance, PDA refers to a peptide containing three residues, beginning with a

proline, then an aspartic acid, and finally alanine. The other important information, is to

differentiate between the various species in the reaction; this is denoted by parenthesis. For

instance, the (-OH)2 denotes the diol intermediate, while the (H') denotes the presence of a

proton. The location in the name also caries significance, if a (H') is between two residues,

which indicates the presence of a proton, bound to the carbonyl group on the backbone between

the two residues. NH+ indicates the protonation of the nitrogen between the two amino acids.

While a space in the name indicates cleavage of the amide bond. The final mechanism, those

forming a furane ring are denoted with a (Cyc) after the aspartic acid to denote the formation

of the ring. To illustrate this naming convention, please see Figure 11-2.
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Figure 11-2 - Structures and naming convention applied to species in PDA based hydrolysis reaction

11.4. Tested Predictors

A wide range of predictors were tested for use in differentiating reactive and non-

reactive carboxylic acid containing residues, either an aspartic or glutamic acid. These

predictors can be classified into three categories of properties, those based on the primary

sequence and secondary structure of the residue, those based on the residues interaction with

its surroundings, and the relative configuration of the residue.

The first class of predictors were those based on the sequence and secondary structure

of the protein. These included: if this residue was an aspartic acid or glutamic acid, if the

preceding residue was proline, if the following residue was proline, the charge of the preceding

residue, the charge of the following residue, and the hydrophobicity of both the preceding and

following residue. Another predictor was the secondary structure classification of the residue,

specifically the percentage of time a residue was in a turn, an extended conformation, an

isolated bridge, an a helix, a 310 helix, a n helix, or part of a random coil of the MD simulation

as classified by VMD (95). These were included to determine if certain sequences or secondary

structural elements accelerated or hindered hydrolysis.

The next class of predictors were those measuring the interactions between the protein

and its environment. These included the number of waters within a given distance, all distances

from 2 to 8A, at 0.25A increments, of the carbon, oxygen, and nitrogen atoms of the amide

bond. The solvent available surface area of the backbone carbon, backbone oxygen, and

151



In Silico Tools for the Development of Biotherapeutics

sidechain were also tested as predictors. These were included to quantify the solvent

interaction with the residue, and more specifically to what extent was the residue was buried.

In addition to interactions with the solvent, interactions with the rest of the protein were also

quantified. These included the number of hydrogen bonds between the residue of interest and

the rest of the protein. This count was separated into three domains, the number of hydrogen

bonds between the sidechain and the rest of the protein, the number of hydrogen bonds between

the backbone and the rest of the protein, and the number of hydrogen bonds between the

backbone carbonyl group and the rest of the protein.

The remaining predictors were measures of the internal geometry of the residue, these

included a number of distances, angles, and dihedral angles. These included six atomic

distances; those between Os (the carboxylic acid oxygen closest to the amide bond) and the C

(the residue's backbone carbon), the distance between Os and Nn (the nitrogen of the following

residue), the distance between Os and 0 (the backbone oxygen), the distance between Cg (the

gamma carbon) and 0, the distance between Cg and C, and the distance between Cg and Nn.

Six angles were included; Os-C-O, Os-C-Ca (where Ca is the alpha carbon), Cb-Cg-Os (where

Cb is the beta carbon), Os-Ca-C, Nn-C-Os, and Cg-Cb-Os. Seven dihedral angles were also

used as predictors; Cg-Cb-Ca-C, Os-Cb-Ca-C, Cb-Ca-C-O, and Cb-Ca-C-Os, C-Ca-Cb-Os,

Ca-Cb-Cg-Os, and Cb-Ca-C-Nn. Three more dihedrals were included that were used to predict

the secondary structure including, these were the p, W, and o> dihedrals. The last grouping of

variables were the number of sidechain atoms within a given distance of each atom of the amide

bond.

0

Cg

0 Cb Os

I N
Ca N

N C
H jj

0
Figure 11-3 - Labeling of atoms in aspartic acid residue for use in machine learning predictors, Os is
the closest of the carboxylic oxygen atoms. Cg, Cb, and Ca are the residue's gamma, beta, and alpha
carbon's respectively. C and 0 are the backbone carbonyl carbon and oxygen atoms.
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11.5. Attempts at Machine Learning
Several attempts were made to use machine learning to find the best predictors and

separation criteria for the prediction of hydrolysis sites. A wide range of predictors were tested,

see section 11.4, and a range of classifiers were tested. These included: classification/identity

trees, support vector machines, and clustering. All data fitting was done using MATLAB ®

and the MATLAB Machine learning toolbox (146). Several combinations of training and

testing sets were done using the data available for prot-X, prot-Y, and prot-Z. However, none

performed well when applied to a training set. This is likely due to overfitting of the data due

to the large number of tested predictors. A few of the tested combinations are listed in Table

11-3.

Table 11-3 - Results of several machine learning models. Models are marked by the different
classification algorithms used, the protein data used to train the model, the data used to test the
model and the performance of the model based on the number of true non-reactive predicted
bonds, the number of falsely predicted reactive bonds, the number of falsely predicted non-reactive
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bonds, and the number of correctly classified bonds. The number before the parenthesis is the
number of that bond in the training set, while the number in the parenthesis are the overall number.
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