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Human Leg Model Predicts Muscle Forces,
States, and Energetics during Walking
Jared Markowitz, Hugh Herr*

MIT Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of
America

* hherr@media.mit.edu

Abstract
Humans employ a high degree of redundancy in joint actuation, with different combinations

of muscle and tendon action providing the same net joint torque. Both the resolution of these

redundancies and the energetics of such systems depend on the dynamic properties of mus-

cles and tendons, particularly their force-length relations. Current walking models that use

stock parameters when simulating muscle-tendon dynamics tend to significantly overesti-

mate metabolic consumption, perhaps because they do not adequately consider the role of

elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg

has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use

a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyo-

graphic (EMG), and metabolic data taken from five participants walking at self-selected

speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle

moment arms, and joint moments while the EMG data are used to estimate muscle activa-

tions. For each subject we perform an optimization using prescribed skeletal kinematics,

varying the parameters that govern the force-length curve of each tendon as well as the

strength and optimal fiber length of each muscle while seeking to simultaneously minimize

metabolic cost and maximize agreement with the estimated joint moments. We find that the

metabolic cost of transport (MCOT) values of our participants may be correctly matched (on

average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity

through application of a single constraint to the muscle metabolic budget. The associated

optimal muscle-tendon parameter sets allow us to estimate the forces and states of individ-

ual muscles, resolving redundancies in joint actuation and lending insight into the potential

roles and control objectives of the muscles of the leg throughout the gait cycle.

Author Summary

Neuromuscular systems often employ redundancy in joint actuation, with different combi-
nations of muscle and tendon action producing the same net joint torque. Both the resolu-
tion of these redundancies and the energetics of such systems depend strongly on the force-
length relations of muscles and tendons. Many human walking models fail to properly
account for elasticity by failing to scale muscle-tendon parameters for different individuals,
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relying instead on stock values taken from cadaver studies. This can result in inaccurate esti-
mates of metabolic consumption as well as of the forces and states of individual muscles.
Instead we estimate muscle-tendon parameters using a data-driven optimization procedure,
testing the hypothesis that the human leg has evolved to maximize the metabolic efficiency
of walking at self-selected speed. We find that the experimentally observed metabolic con-
sumption can be matched with reasonable joint torque fidelity through the addition of a sin-
gle constraint on the per-muscle metabolic budget. The associated muscle-tendon parameter
sets were used to compute muscle force and state estimates, lending insight into potential
roles and control objectives of the major muscles of the leg throughout the gait cycle.

Introduction
Human walking relies on a complex interplay of several physiological systems, with each exhib-
iting some degree of redundancy. The nervous system directs muscle contraction while receiv-
ing input from many different neural pathways. Muscles work together to produce motion, but
different combinations of muscle action can produce the same net torque at a given joint. Ten-
dons provide the interface between muscle and bone, but the energy transferred to the skeleton
can come from either the active muscle or the compliance of the tendon. Understanding how
humans resolve these redundancies has been a long-standing problem in the fields of neurosci-
ence and biomechanics [1, 2].

Knowledge of how the neuromuscular system allocates load during a given task would pro-
vide insight into the control objectives that govern its actions. Potential objectives (reviewed in
[3]) include joint trajectory planning or minimization of metabolic energy consumption, active
muscle volume, or muscle fatigue. However without an adequate understanding of the roles of
each component of the system, such control hypotheses remain mere speculation.

The roles of individual muscles and tendons in producing motion depend on the neural
drive to the muscles and on the force generation properties of both the muscles and the ten-
dons. Several modes of experimental observations provide glimpses of these elements. Electro-
myography (EMG) can be used to quantify the neural drive to individual muscles, revealing
which muscles contribute to a given movement and giving some measure of intensity [4–6].
However it is limited by signal variability, measurement artifacts, and an inexact mapping to
physiology and muscle force. Ultrasound probes have recently been used to image the individ-
ual motions of some distal leg muscles and tendons in vivo [7–13], but are practical only for
small muscles and limited tasks. Motion capture can be combined with a knowledge of anat-
omy to infer the net movement of muscle-tendon units under much more general circum-
stances [14]; however breaking the resulting movement profiles into individual muscle and
tendon contributions requires knowledge of often unavailable force generation parameters of
muscles and tendons. These parameters are typically estimated through cadaver studies, but
the scaling of the relevant quantities among different muscles and subjects (not to mention the
differences with living specimens) is not well understood [14–16] and can have a significant
impact on the resulting modeled dynamics [15, 16].

Given the incomplete view afforded by current experimental measures, a unifying theoreti-
cal framework that combines the available data modes into a model of neuromuscular function
is desirable. Two primary approaches have been taken to address this issue in walking: optimal
control and optimal design.

Human walking studies based on optimal control [17, 18] model the morphology of leg
muscle tendon units (MTUs) using literature-based estimates. They infer muscle activation
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through optimization, choosing control objectives such as metabolic energy minimization and/
or motion tracking. They have been successful in predicting joint moments, joint torques, and
ground reaction forces but often significantly overestimate the metabolic cost required for
locomotion [17, 19]. While it is clear that the neural control of the biological system is opti-
mized in some way, it may be infeasible to determine the true objective function for this
approach. Many different muscle activation combinations can produce similar muscle torque
values, and several different unknown control objectives and neurological factors may contrib-
ute at once. Further the underlying uncertainty in the muscle-tendon morphology may result
in the excess metabolic cost observed, as improper leveraging of tendon compliance would
affect muscle force and state and therefore metabolic estimates.

Human walking models based on optimal design utilize the efficiency gains that can be made
through MTU parameter tuning. As Lichtwark andWilson showed [20], experimentally
observed muscle-tendon strains may be predicted by maximizing the efficiency of isolated
MTUs. This result likely stems from the well-documented ability of tendon to enable muscle to
operate economically [21, 22]. Krishnaswamy and Herr [23] further explored the potential of
optimal design, estimating the torque breakdown of the muscles spanning the ankle during the
stance phase of walking at self-selected speed. This work used EMG signals to estimate muscle
activation during walking and developed an optimization framework based on the assumption
that the morphology of the muscle-tendon units spanning the ankle has evolved to minimize
the metabolic cost required for walking at self-selected speed. Its results indicated that one solu-
tion set is able to match both human metabolics and kinetics, demonstrating an efficient load-
sharing amongst the plantar flexors that qualitatively matched available experimental data.

In this work we further the study of [23], modifying and extending it to permit investigation
of the full leg. We collected kinematic, kinetic, electromyographic, and metabolic data from
five subjects walking at self-selected speed and used them to perform optimizations with pre-
scribed skeletal kinematics. We varied the parameters that determine where each muscle oper-
ates on its force-length curve as well as those that shape the force-length relation of each
tendon, seeking to simultaneously minimize metabolic cost and maximize agreement with the
observed joint moments. Each muscle in the model was modeled as Hill-type [19, 24] and
driven by activation estimates produced from EMG data. Overviews of the system model and
procedure are shown in Figs 1 and 2, respectively. We found that the correct metabolic con-
sumption can be matched with reasonable fidelity in the modeled joint torque through applica-
tion of a single constraint on the per-muscle metabolic budget. The resulting optimal
parameter sets were used to compute muscle force and state, with fascicle length profiles being
compared to available experimental measurements.

Our results are organized as follows. First we provide our estimated muscle activation pro-
files, discussing their quality and implications. Second we display the results of our dual objec-
tive optimization problem and summarize the methodology used for choosing one optimal
solution for each subject. Third we evaluate the optimal solutions, producing estimates of ener-
getic variables and muscle state. We compare these results with available experimental mea-
sures, finding quantitative agreement with metabolic data and qualitative agreement with
muscle fascicle length data.

Results

Muscle Activation Estimation
Muscle activation provides a scaling factor for the active force generation capability of a given
muscle at a given time. As described in Methods, we applied a hybrid approach similar to that
of [23] to estimate muscle activation from surface EMGmeasurements of five participants
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during walking. A Bayesian algorithm first proposed by Sanger [25] was tuned (as described in
Methods) and used to perform a hidden state estimation that effectively determined the neural
excitation of each muscle. This method was chosen over more conventional bandpass filtering
methods [4–6] because the slightly delayed timing of the profiles it produced more easily allows
the production of the observed joint torques. We elaborate on this point further in the Discus-
sion section. The estimated neural excitation was then passed to a shaping filter [26, 27] that
represents muscle activation dynamics. The resulting average profiles are plotted in Fig 3. As
can be seen from this plot, significant variations occurred (both within and among subjects) in
the activation estimates obtained from the muscles spanning the hip. This lack of consistency
was likely due to some combination of the relatively large depth of these muscles beneath the
skin, motion artifacts, and the relative inaccessibility of the area. To prevent this from
compromising the ensuing analysis, neural excitation profiles from the wire electrode experi-
ments of [28] were used for the monoarticular muscles spanning the hip. These neural

Fig 1. Systemmodel. The red rectangles indicate Hill type muscles while the crunched lines represent
compliant elements. All compliant elements are tendons in series with muscle except for the hip flexor
ligament, which provides a passive flexion moment at the hip.

doi:10.1371/journal.pcbi.1004912.g001
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Fig 2. Muscle-tendon system identification procedure. The Non-linear Contraction Dynamics box comprises Hill-type
representations of all muscles in the model as well as non-linear tendon dynamics.

doi:10.1371/journal.pcbi.1004912.g002

Fig 3. Mean activation trajectories for all muscles of all subjects at the walking speed where Metabolic
Cost of Transport (MCOT) is minimal. Each color represents one participant and the shaded regions
represent ± one standard deviation around the average profile.

doi:10.1371/journal.pcbi.1004912.g003
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excitation profiles were passed to the activation dynamics from [26, 27] for temporal consis-
tency and subsequently used as model input along with the data-based activation estimates
from all other muscles. Further details about this procedure are given in Methods and S1 Text.
While there is no available ground truth to compare our activation estimates to, we note that
the time dependence of the results (when normalized to percent gait cycle) were relatively
invariant across trial and subject. The profiles follow the expected build up and decay time
scales of muscle activation and, as can be seen in the following, allow the model to produce
realistic kinetic and metabolic results.

Muscle-Tendon Parameter Identification
The estimated muscle activations a(t) as well as joint kinematics θjoint(t) derived from motion
capture data were used to actuate the full leg model shown in Fig 1 according to the scheme
shown in Fig 2. The leg muscle-tendon modelM was specified by a set ~m of morphological
parameters that describe the force generation characteristics of each MTU as well as two
parameters that enable passive force generation by the iliofemoral, ischiofemoral, and pubofe-
moral ligaments as well as other connective tissue at the hip. These ligaments are known to pre-
vent hip overextension and here allow for the recovery of elastic energy in the joint [18, 29];
specifically they reduce the load on the iliacus muscle around toe-off. The contributions of
each MTU to ~m were its maximum isometric force Fmax, an overall scaling factor for tendon
slack length lsl and optimal muscle length lopt, its tendon reference strain λref, and its tendon
shape factor Ksh. The lumped hip flexor ligament (HFL) acted as a simple rotary spring, param-
eterized by spring constant KHFL and engagement angle θ0,HFL. Each parameterization of the
model generated kinetic (τmod(t)) and metabolic (C) output costs:

M ~m; aðtÞ; yjointðtÞ
� �

! tmodðtÞ;C½ �: ð1Þ

The parameter vector ~m was varied using a stochastic dual objective optimization scheme
[30] that simultaneously minimized metabolic cost and the difference between the computed
joint moments of the data and those produced by the model. The bounds were specified as
described in the Materials and Methods section; they were chosen wide enough that they were
not approached by the chosen optimal parameter sets. The solution spaces for this optimiza-
tion are shown in Fig 4. For each participant, the set of Pareto optimal solutions (i.e. the set of
solutions where one would have to compromise on one objective to improve on the other)
forms a rounded corner in the objective space. In the ideal case, this corner would be sharp and
consist of one solution that optimizes both objectives. However this ideal does not typically
occur in noisy (realistic) systems and does not here.

To generate predictions based on our model, we chose one optimal parameter set along the
Pareto Front for each subject. This was accomplished by evaluating the per-muscle metabolic
consumption among all Pareto optimal solutions (Fig 5). Within the set of solutions, those
where the metabolic cost was low and the kinetic fit was poor were seen to have uniformly low
expenditure per muscle. Those that had the very best kinetic fits but relatively large metabolic
costs were seen to be sinking large amounts of metabolic energy into a small number of muscles
to produce incremental improvements in the kinetic fit. Such a phenomenon was likely enabled
by noise in the data (particularly in the EMG signals) and the imperfect ability of our lumped,
partial muscle set to match the force produced by the full set of the human body. The ramp up
in metabolic energy seen in this subset of muscles is not physical as it would lead to either
rapid fatigue or to the muscle being modeled as much larger than it actually is (since muscle
mass scales with Fmax). Hence we excluded solutions that displayed this behavior, choosing as
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optimal the remaining Pareto optimal solution with best kinetic fit. Mathematically this was
achieved by setting a cutoff on the fractional expenditure of the vastus, as the metabolic cost of
this muscle group was the largest and increased significantly as kinetic fit improved. The cho-
sen fractional cutoff allowed us to apply one criterion to every participant to match the experi-
mental metabolic cost, as shown in Figs 4 and 5. Table 1 shows how our choice of optimal
solution is able to quantitatively match the experimentally-observed metabolic cost of trans-
port in four out of five subjects (and on average) while maintaining acceptable joint moment
agreement. The lone subject where quantitative metabolic agreement was not reached dis-
played only a 6% error. Further details of the cutoff are included in Materials and Methods and
in S3 Text while the optimal parameter set for each participant is given at the end of this
document.

To further evaluate the quality of our joint moment estimates we computed the fractional
mean absolute error (FMAE)

FMAE ¼ 1

N
1

rangeðtexpÞ
XN
i¼1

jtexp;i � tmod;ij ð2Þ

between the modeled joint moments τmod and the experimentally observed joint moments τobs.
These quantities are computed only over the stance phase to facilitate comparison with those
generated from another current EMG-driven analysis, [31]. The quantities quoted from [31]
represent an average over four different activities (walking, running, side stepping, and cross-
over) but are generally close to those they generate for walking only (except for the hip, which
had lower errors for walking). Their analysis included two treatments; one that considered
only one degree of freedom and one that considered multiple degrees of freedom (as in our
model). In general our moment fits compare favorably (Table 2).

Fig 4. Best solution for each participant and its relation to measured metabolic cost of transport
(MCOT; light gray band) and MCOT range for all participants (dark gray band). In these plots, each trial
solution is represented by a dot whose x-value is its required MCOT and whose y-value is the average R2 of
its kinetic predictions compared to measured ankle, knee, and hip moments.

doi:10.1371/journal.pcbi.1004912.g004
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The metabolic expenditure of our model also aligns with previously published results.
Across subjects, we found the average efficiency of positive muscle work to be 0.26 ± 0.02, con-
sistent with [23, 32, 33]. We also estimated the metabolic expenditure of the model during dif-
ferent portions of the gait cycle by cross referencing the simulation with the input force plate
data. The results are compiled in Table 3 and show a breakdown that is very similar to that sim-
ulated in [34].

Fig 5. Fifth order polynomial fit to the per-muscle fractional metabolic cost as a function of kinetic fit
along the Pareto Front, for each participant. The black lines are bounds on the observed metabolic cost
while the dotted blue lines represent the locations of the chosen optimal solutions. These lines were derived
by mapping the R2 values listed on the x-axis here to their corresponding metabolic costs in the solutions
shown in Fig 4.

doi:10.1371/journal.pcbi.1004912.g005
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Muscle Behavior in Optimal Solutions
The optimal muscle-tendon parameter sets estimated by our optimization procedure provide a
means to resolve the redundancy in joint actuation for each subject. When applied in conjunc-
tion with the computed kinematics and estimated muscle activations, individual muscle force
and state may be estimated. Fig 6 shows the torque breakdown for each joint in terms of per-
centage of body weight times height and averaged over all subjects. Fig 7 shows the trajectories
of the muscle fascicle length normalized by lopt and averaged over all subjects. Note that the

Table 1. Performance of multi-objective optimization for chosen solution for each participant walking at self-selected speed. Experimentally mea-
sured and modeled metabolic cost of transport (MCOT) are shown as are the coefficients of determination for the modeled moments of the ankle, knee, and
hip joints as compared to the data.

Participant Experimental MCOT Model MCOT Ankle R2 Knee R2 Hip R2

1 0.32 ± 0.01 0.34 0.90 0.89 0.92

2 0.38 ± 0.01 0.38 0.86 0.89 0.94

3 0.35 ± 0.01 0.35 0.72 0.70 0.83

4 0.37 ± 0.01 0.37 0.82 0.79 0.92

5 0.34 ± 0.01 0.34 0.78 0.73 0.93

Mean 0.35 ± 0.02 0.36 ± 0.02 0.82 ± 0.07 0.80 ± 0.09 0.91 ± 0.04

doi:10.1371/journal.pcbi.1004912.t001

Table 2. Comparison of the fractional mean absolute error (FMAE) in our modeled joint moments and
those generated by another current EMG-driven analysis [31]. Note that only the stance phase was con-
sidered here. The numbers provided from [31] represent an average over four different activities but are gen-
erally close to those they generate for walking only. Their analysis included two treatments; one that
considered only one degree of freedom and one that considered multiple degrees of freedom (as in our
model). In general our moment fits compare favorably.

Participant Ankle FMAE Knee FMAE Hip FMAE

1 0.07 0.08 0.07

2 0.10 0.07 0.06

3 0.13 0.13 0.09

4 0.11 0.11 0.06

5 0.12 0.12 0.06

Mean 0.11 ± 0.02 0.10 ± 0.03 0.07 ± 0.01

Sartori et. al 1DOF 0.12 ± 0.03 0.12 ± 0.04 0.20 ± 0.04

Sartori et. al MDOF 0.09 ± 0.01 0.12 ± 0.05 0.20 ± 0.07

doi:10.1371/journal.pcbi.1004912.t002

Table 3. Fractional metabolic cost expenditure over the double support, single support, and swing
phases of the gait cycle (as viewed from one leg). The average distribution for our five participants is seen
to approximate that simulated in [34].

Participant Double support Single Support Swing

1 .28 .50 .23

2 .23 .51 .26

3 .28 .46 .25

4 .27 .48 .26

5 .28 .41 .31

Mean .27 ± .02 .47 ± .04 .26 ± 0.03

Umberger et al. 2010 .27 .44 .29

doi:10.1371/journal.pcbi.1004912.t003
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spread of some of these profiles is not due to a difference in general shape but rather to an over-
all offset in length, as evidenced by their nearly constant standard deviations. The soleus, ham-
string, and vastus fascicle lengths in this plot all agree quite well in both shape and offset with
the predictions in [35]. The soleus force and length also agree qualitatively with the projections

Fig 6. Contributions of individual muscles to joint torques, in terms of percentage of body weight times height and
averaged over all participants. The error bands represent the standard deviation over different participants.

doi:10.1371/journal.pcbi.1004912.g006
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Fig 7. Muscle fascicle lengths produced by the model, normalized by optimal muscle length, and averaged over all subjects. The
error bands of these profiles represent the standard deviation over different participants and their spread is largely provided by a constant
offset rather than different shapes, as evidenced by the relatively constant standard deviations (over time) and Fig 8.

doi:10.1371/journal.pcbi.1004912.g007
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of [11]. Fig 8 shows the velocity trajectories for each muscle fascicle normalized by its maximal
value vmax and again averaged over all participants. As can be seen from the small variation in
the shapes of the profiles in these plots, muscle force and state followed similar trajectories
across participants. These predictions were also seen to vary little along the Pareto front in the
experimentally measured metabolic band of a given subject.

In general, muscle fascicle state is extremely difficult to measure. The only currently avail-
able means to obtain these profiles is ultrasonography, which is only practical for the relatively
short distal muscles of the leg. In Fig 9 the modeled fascicle trajectories of muscles from one
subject are compared with the experimental profiles available from published ultrasound stud-
ies. In each case the muscle fascicle lengths lm are normalized by their length at heel strike,
lmHS. To generate these plots we took the modeled muscle from the subject who most closely
matched the average height and weight of the experimental study. Soleus and gastrocnemius
profiles came from Ishikawa et al [8], a gastrocnemius profile came from Fukunaga et al [7],
and the vastus lateralis profile came from Chleboun [10]. In the plantar flexors, long stretches
of nearly isometric operation are observed in mid-stance in both the model and in vivo profiles.
In the vastus, the fascicle trajectory is seen to somewhat track the flexion of the knee in both
the model and the published data. However while the qualitative trends of each muscle are con-
sistent, quantitative agreement is not observed. We believe that observed differences come
from (i) the difference in walking speed between our study and the literature, (ii) natural varia-
tion in the kinematics of early stance (which affects the initial muscle length for normalization),
and (iii) uncertainty in the breakdown of what constitutes muscle and what constitutes tendon
in ultrasound studies. We hope that future experimental methodologies, perhaps employing
implantable sensors, will be able to further test our predicted fascicle trajectories.

Discussion
Several observations may be made about both the methodology employed and the results
obtained in this study. On the methodology side, we first address the steps taken to estimate
the activations of the muscles in our model. As mentioned above, the conventional approach
for estimating muscle excitation based on EMG data involves a bandpass filter [4–6]. We tried
this approach with our optimization scheme (on all subjects) but found that it provided an
inferior ability to match the observed joint moments compared to the implemented method.
Digging further into this we found that two main differences existed between the approaches;
(i) the chosen Bayesian method produces a profile that turns on and off more sharply than the
signal produced by the bandpass filter and (ii) the signal produced by the Bayesian method
consistently lags the bandpassed signal by about 50 ms. The sharpness of the profile does not
affect the results significantly as it is mostly washed out by the ensuing activation dynamics
and averaging. However the time dependence does matter; this lag enables the build up of mus-
cle force in a manner consistent with the observed joint torques. Interestingly we found that
[36] introduced a 40 ms lag to their EMG signal to “account for electromechanical delay
between surface EMG and force production.” This lag was employed by other studies [37, 38]
and fell within the 10−100 ms range given for these processes in the literature [39, 40]. We
found that adding a 40 ms lag as in [36] to the excitations produced by bandpassed filtered
EMG signals gave performance nearly as good as those provided by the Sanger algorithm, with
less variation among gait cycles. However this lagged bandpass method does not lend itself to a
biophysical interpretation as clearly as the Bayesian model does.

Despite our best efforts at EMG data collection and activation estimation, deficiencies in
this part of our data set clearly exist. Surface EMG in general is prone to noise and artifacts,
and Sanger’s algorithm (tested only isometrically in his publication [25]) does not remove
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Fig 8. Muscle fascicle velocities produced by the model, normalized by maximum values (vmax), and averaged over all
participants. Here positive velocity refers to eccentric motion (muscle lengthening). The horizontal dotted lines at 0,−0.17,
−0.30vce/vmax represent the low energy, maximum efficiency, and maximum power operating speeds of muscle, respectively.

doi:10.1371/journal.pcbi.1004912.g008
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Fig 9. Comparison of model fascicle trajectories with in vivo ultrasound data [7, 8, 10]. In each case the muscle fascicle lengths lm
are normalized by their length at heel strike, lmHS. In our study the modeled muscle was taken from the subject who most closely
matched the average height and weight of the experimental study.

doi:10.1371/journal.pcbi.1004912.g009
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them. While the effects of inconsistent artifacts was minimized by discarding the EMG data
from clearly compromised gait cycles and the use of average trajectories in our model, they
were likely not removed entirely. Better results may be obtained in future work through fine
wire EMGmeasurements, which while more invasive are known to produce more reliable sig-
nals. Here generic fine wire EMG profiles reported in [28] were used to replace the noisy sur-
face EMGmeasurements of the muscles spanning the hip. Interestingly our model actually
displayed slightly better agreement with the observed hip torque profiles than with those of the
other joints, but this is misleading as most of the modeled hip moment came from the ham-
strings and the hip flexor ligament (which were unaffected by the generic profiles).

A more minor deficiency in the EMG pipeline was normalization by the maximal voluntary
contraction (MVC) values. While we do not know of a better alternative, this approach did
lead to the normalized excitations of our muscles occasionally exceeding one in fast walking tri-
als. When that occurred we renormalized by the value in the fast walking trial and reprocessed,
but the normalization constant could still have been too small in other cases. Fortunately the
impact of this scaling is extremely minimal because the estimated activation directly multiplies
the maximum isometric force Fmax, which is optimized. A small effect remains because the nor-
malization occurs before the excitation undergoes the activation dynamics (5), but that effect is
largely irrelevant to our results.

The system identification component of this study produced a methodology for estimating
muscle-tendon parameters capable of matching the measured metabolic consumption while
producing joint torque profiles that tracked observations reasonably well. One criterion based
on the metabolic consumption of the vastus muscle group (the largest in the model) enabled
the metabolic match for all participants. While the accuracies of our modeled joint torque pro-
files compare favorably with other current EMG driven modeling procedures [31], they do
tend to underestimate the required joint torques. This characteristic is likely due to the exclu-
sion of some muscles as well as the lumping of some muscle groups. In particular the deficiency
exhibited in ankle moment during late stance is likely due to the exclusion of smaller plantar
flexor muscles which are known to engage during that time [28]. Similarly the lumping of the
three hamstring muscles (semimembranosus, semitendinosus, and biceps femoris long head)
may be responsible for some of the deficiencies observed in the knee flexion moments through-
out the gait cycle. Further resolution of these and other muscle groups where the muscle activa-
tions are not quite concurrent and the muscle-tendon lines of action are not quite aligned
would likely improve the predictive power of this approach, allowing more accurate determina-
tion of the roles of each muscle during a given task.

One notable aspect of the model was the importance of the hip flexor ligament, which pro-
duced nearly all of the required hip flexion moment near toe off at no metabolic cost. Its linear
form was chosen as in [29] for maximal simplicity, but did not agree with the nonlinear damped
form used in previous work [18, 41]. Given that it produced torque for free it may have sup-
pressed the required action of the other hip flexors (notably the iliacus) near toe off and pro-
duced a better hip moment fit than would have otherwise been possible for the same metabolic
cost. However the suppression of other hip flexors could not have been large as these muscles
are not strong enough to produce the required torque alone and are not significantly stretched
in this time frame. It is also known that the hip ligaments produce the flexion torque necessary
to balance the upper body against gravity in a standing position, where the line of gravity passes
posterior to the hip joint [42]. They enable people to stand erect and even carry extra weight
without significant muscle work at the hip, allowing a low metabolic cost to be maintained [43].
Since the engagement angles we used are consistent with standing and damping in human con-
nective tissue is believed to yield only a slight drift over walking time scales [16], we believe that
the contribution of the hip flexor ligament in our model is physiologically reasonable.
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The optimal muscle-tendon parameters found in this study play different roles in facilitating
efficient locomotion. The maximal muscle isometric force (Fmax) must be large enough to meet
the torque requirements at each joint, but small enough to keep muscle size and metabolic cost
reasonable. The tendon slack lengths lsl and muscle optimal lengths lopt govern the timing of
force production, acting in concert with muscle activation. The tendon shape parameters λref and
Ksh define the elastic properties of the tendon and are tuned to ensure correct muscle operation
and joint actuation. The resulting muscles and tendons together produce an interconnected sys-
tem capable of producing the joint torque necessary for locomotion at a minimal metabolic cost.

Evaluating the velocities at which the muscles in our model contract while activated can
lend insight to the goals of their control. As was emphasized in [29, 44], muscles minimize
metabolic consumption at low speeds (i.e. when operating approximately isometrically).
Further, A.V. Hill [45] demonstrated that skeletal muscle maximizes its efficiency while
shortening at vCE � −0.17vmax and its power output at vCE � −0.30vmax. These three speeds
(vCE = 0,−0.17,−0.30vmax) are indicated by the horizontal dashed lines in Fig 8. Combining
this with Fig 3 allows us to contextualize the modeled velocities of each muscle when acti-
vated. At the ankle, the tibialis anterior is seen to operate at low speeds when engaged. This
minimizes metabolic cost and is consistent with isometric contractions, as modeled in [29,
44]. Both the soleus and gastrocnemius are seen to operate approximately isometrically
through their activation in mid-stance before rapidly increasing their contraction velocity in
a power stroke toward the end of stance (� 60% GC). The required positive work of the plan-
tar flexors is consistent with the need seen in [29, 44], but their rapid contraction at the end
of stance does not strictly agree with the efficiency goal of the soleus and power goal of the
gastrocnemius noted in [23]. This inconsistency amounts to a phase difference; the observa-
tion in [23] was based on muscle speed at toe off but our plantar flexor velocities reach
approximately the same levels around 53% GC. At the knee, most muscles are seen to operate
approximately isometrically. This agrees with [29, 44], which note that these muscles primar-
ily serve to modulate the stiffness of the joint in an optimally economical fashion. It is worth
noting that the vastus group is seen to re-engage at the end of swing near the the optimal effi-
ciency regime (extending the knee for heel strike) before returning to the low speed regime.
At the hip, most muscles are observed to contract at low speed when activated. Two excep-
tions are the iliacus and the adductor longus, both of which gravitate toward maximal effi-
ciency as they flex the hip around toe off. The adductor magnus may also approach the
maximal efficiency regime as it extends the hip around heel strike, but this is less clear. Endo
et al [29, 44] found that the muscles spanning the hip could not be modeled strictly isometri-
cally, consistent with these observations.

Several avenues exist for extending this work in future studies. One route would be to
expand the model past the sagittal plane; as shown in [31] matching moments in three dimen-
sions could have an impact on the optimized parameter sets. Another route would be to vali-
date the model by testing under different walking conditions. If more reliable EMG
measurements could be obtained, we could train the model based on level-ground walking at
self-selected speed and then evaluate the ability of the optimal parameter set to match the
observed joint torque profiles and metabolic costs under different conditions (speeds, inclines,
etc.) In this case new experimental observations of the change in plantar flexor function across
speed [12, 13] could be used to evaluate the model. Another possibility is that our overarching
hypothesis is incomplete- maybe the body, instead of adapting its morphology to maximize its
efficiency at (the presumably most common task of) walking at self-selected speed, actually
optimizes with multiple tasks in mind. One could imagine additionally collecting data from a
subject running a self-selected speed and adding extra dimensions to the cost function wherein
that task is optimized concurrently with walking at self-selected speed. The procedure followed
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here for self-selected speed walking could thus become part of a larger optimization scheme by
including other tasks.

While such experiments could lend considerable insight, they will undoubtedly prove chal-
lenging due to the difficulties associated with collecting EMG under the stated conditions. One
alternative would be to simulate the neural control of the model. Recent forward dynamic
models driven by reflexive feedback have shown the ability to walk stably across different ter-
rains [19, 46], at different speeds [47, 48], and in three dimensions [48, 49]. These models are
built for a subject with “average” dimensions and could therefore be improved through data-
driven customization for individual subjects and the inclusion of more realistic muscle-tendon
geometries and morphologies. This would include scaling segment inertias, refining muscle-
tendon lines of action and moment arms [14], and optimization of muscle-tendon morpholo-
gies to simultaneously minimize metabolic cost and maximize agreement to experimentally
observed kinematic and/or kinetic data. In this way a more realistic representation of an indi-
vidual subject could be obtained, leading to further insights about the roles of individual mus-
cles and tendons during gait and their variation amongst subjects. One could also imagine
altering the neural control in this paradigm and using the framework to study movement disor-
ders such as cerebral palsy.

Materials and Methods

Ethics Statement
The experiments of this study were conducted in compliance with the principles of the Decla-
ration of Helsinki. The study was approved by the MIT Committee on the Use of Humans as
Experimental Subjects (Protocol 1101004266). Prior to the experiments all participants pro-
vided written consent for data collection, analysis, and publication.

Data Collection
Kinematic, kinetic, electromyographic, and metabolic data were collected at the Harvard
University Skeletal Biology Lab. Five healthy adult males participated in the study, with their
average height, mass, and age being 1.77 ± 5 m, 70.4 ± 6.3 kg, and 26 ± 2 years, respectively.
The required data sets were collected in two phases. First the subjects were outfitted with a
portable oxygen consumption mask attached to a Cosmed K4B2 VO2 system. This system
employs a standard open-circuit gas analysis technique to estimate metabolic energy con-
sumption based on measurements of oxygen inspired and expired [50]. Three of the subjects
were asked to stand still for seven minutes while a basal measurement was recorded, with the
rates of the other two participants taken to be the mean of these three closely grouped rates
(1.38 ± 0.06 W/kg, 1.60 ± 0.07 W/kg, 1.63 ± 0.06 W/kg). Participants then walked barefoot
on an instrumented treadmill for seven minutes at each of six speeds (0.75 m/s, 1.00 m/s, 1.25
m/s, 1.50 m/s, 1.75 m/s, and 2.00 m/s), allowing the variation of metabolic energy expendi-
ture to be measured across speed. The results were quickly tabulated and used to estimate the
walking speed where the metabolic cost of transport (MCOT) was minimal.

Once the metabolic cost measurements were completed, the oxygen consumption mask and
Cosmed system were removed and each participant was outfitted for the second phase. In this
phase kinematic, kinetic, and electromyographic data were collected for two minutes of bare-
foot walking at each of seven speeds; the six listed above and the speed where the subject’s
MCOT was found to be minimal. An infrared camera system (8 cameras, Qualisys Motion
Capture Systems, Gothenburg, Sweden) was used to track the motion of subjects as they walked
in the capture volume. Reflective markers were placed at 43 (bilateral) locations on the partici-
pant’s body and their three dimensional trajectories were recorded at 500 Hz. The marker
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locations were chosen specifically to track joint motion, as prescribed by the Helen Hayes
marker model. The ground reaction forces and contact centers of pressure were measured
using a split-belt instrumented force plate treadmill (Bertec Corporation, Columbus, OH).
Electromyographic signals were collected using a surface system fromMotion Lab Systems
(Baton Rouge, LA) and electrode placements as dictated in [51]. Fourteen muscles (tibialis
anterior, soleus, medial gastrocnemius, vastus lateralis, biceps femoris shorthead, rectus femo-
ris, semimembranosus, biceps femoris long head, illiacus, gluteus maximus (lower), gluteus
maximus (upper), gluteus medius, adductor longus, and adductor magnus) on one leg of each
subject were recorded, with symmetry being assumed for the other leg. The signals were
recorded at the surface using pre-gelled bipolar electrodes (Electrode Store Model BS-24SAF,
part number DDN-20), sampled at 1000 Hz, and amplified 20 times by pre-amplifiers (Motion
Lab Systems, part number MA-411). Prior to walking trials a maximum voluntary contraction
(MVC) trial was conducted for each muscle group wherein the participant was asked to work
that particular group as hard as possible. These MVC trials were used for normalization pur-
poses in muscle excitation estimates.

Estimation of joint dynamics and muscle-tendon geometries. The marker and force
plate data were downsampled to 125 Hz and processed using SIMM (Software for Interactive
Musculoskeletal Modeling, Musculographics Inc., Evanston, IL). A static trial was used to scale
the SIMM full body dynamic model for each participant, with all subsequent analyses being
based on that scaling. Joint angles, muscle-tendon lengths, and muscle-tendon moment arms
for each trial were obtained through an inverse kinematic analysis. Joint moments were com-
puted using the SIMM Dynamics Pipeline, which utilizes the SDFAST Software (PTC, Need-
ham, MA). All resulting trajectories were broken into gait cycles, normalized temporally to
percent gait cycle, and averaged. Gross outliers (typically caused by gait irregularities or lost
markers; on the order of 5% of gait cycles) were removed prior to averaging.

Muscle activation estimation. Muscle activation provides a measure of a muscle’s active
force generation capability as a function of time. It is defined as the relative amount of calcium
bound to troponin in a muscle, with higher values indicating more potential for cross bridge
formation and higher muscle forces. Activation is driven by electrical neural excitation signals
and may therefore be estimated through EMGmeasurements. Surface EMG signals represent a
combination of the action potentials, depolarization currents, and ion flows within a muscle.
They provide valuable information for resolving muscle contributions but, due to large signal
variability and measurement artifacts, must be carefully processed to provide reliable inputs to
quantitative models.

Standard EMG analysis models the signal as an amplitude-modulated band-limited noise
source [4], rectifying and low pass filtering it to produce an amplitude envelope [5, 6]. While
elegant, this approach did not perform as well in our optimization problem as a more recently
introduced method by Sanger [25]. As detailed above, we found that the slight delay in the pro-
files produced by Sanger’s method (relative to bandpass-based methods) allows our model to
more naturally build up the required muscle force. Sanger’s method models the EMG signal as
a filtered random process with random rate and seeks to infer an underlying neural driving sig-
nal x(t) that evolves as

dx ¼ aðdWÞ þ ðU � xÞdNb: ð3Þ

In this continuous-time stochastic differential equation dW is the differential of standard
Brownian motion with rate α, dNβ is the differential of a counting process with β events occur-
ring per unit time (the jump term), and U is a uniformly distributed random variable in [0, 1].
Without the driving dNβ term this equation would amount to a random walk. The hidden state
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x(t) is measured via

PðemgjxÞ ¼ expð�emg=xÞ
x

; ð4Þ

where P(emg|x) is the conditional probability of observing a rectified raw signal emg given
driving signal x(t). This model reflects the observed Laplacian distribution of relevant EMG
signals and wraps all elements of the measurement- the various fibers and electrical sources,
the filter of skin and fat, the placement and impedances of the electrodes- into one equation.
Combining these relations with Bayes’ Rule and solving recursively, Sanger derives the
maximum a posteriori (MAP) estimate of the driving signal, i.e. the x(t) that maximizes
P[x(t)|emg(t), emg(t−1),..].

The resulting driving signal has been shown to accurately track the turn on and turn off
times of torque profiles produced by maximal isometric contractions while minimizing the
noise floor when a muscle is inactive [25]. However, as noted in [23], it cannot correspond to
expected activation signals because (i) the near instantaneous transitions are too sharp and (ii)
the profiles do not build up while activated. These differences stem from the disparity between
the modeled jump-diffusion process and the true build up of muscle activation. The sudden
jumps in [25] capture the start and stop of neural excitation signals, but do not account for the
time required for the slower calcium binding dynamics. Further, the muscle active state is
known to rise faster than it decays [52]. This feature is not present in the Sanger model; the dif-
fusion and jump rates are symmetric with respect to the derivative of x(t). Combining these
facts it becomes clear that the hidden state x(t) more closely represents the neural excitation of
the muscle than the muscle active state. To obtain an activation estimate, we apply activation
dynamics in the form [26, 27]

_a ¼
ðx � aÞ x=tact þ ð1� xÞ=tdeact½ �; x � a

ðx � aÞ=tdeact; x < a

(
ð5Þ

to the output of the Sanger algorithm x(t). Here a is muscle activation while τact and τdeact are
the activation and deactivation time constants, respectively. These time constants are known to
depend on muscle fiber composition; the specific values used for each muscle in this study are
given in S2 Text. The resulting estimate combines the timing inferred by the Sanger algorithm
with the known biophysics of muscle activation.

The complete approach was implemented on collected EMG data using MATLAB (Math-
works, Natick, MA). The raw signal of each EMG data channel was preprocessed by removing
the DC offset, clipping the signal beyond 5 standard deviations, normalizing to the resulting
maximum value, and rectifying. The clipping was first included by Sanger to prevent the
Bayesian algorithm from trying to estimate conditional densities from exceedingly rare values,
which cannot be done accurately and likely result from artifacts. The data was then passed
through the Sanger Bayesian algorithm described above to estimate the neural excitation x(t)
of each muscle (link to source code in References). The diffusion and jump terms (α and β) in
[25] were adjusted to 0.5 and 5 × 10−31, respectively, to allow weaker/shorter signals to more
reliably be captured without introducing excess random jumps in the output signal or affect-
ing its timing. The drawback of this tuning was a decrease in sharpness of the turn on/turn off
of muscle excitations, but this would have occurred in the ensuing filtering and averaging any-
way. The resulting excitations were re-normalized by values estimated during maximal volun-
tary contraction (MVC) trials. The MVC trials were processed in the same way with the
average magnitude of the largest burst (of duration at least 1 s) being taken as the MVC value.
Occasionally we found that an MVC trial was exceeded in fast walking trials; in that case we
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renormalized to the larger value and reprocessed. The normalized profiles were then thre-
sholded to remove the noise floor and passed to the shaping filter (5) representing muscle acti-
vation dynamics, which was implemented using the ode15s (stiff/NDF) solver in MATLAB
Simulink. The output activation profiles a(t) were broken into gait cycles, normalized tempo-
rally to percent gait cycle, and averaged. Gross outliers (about 10% of gait cycles) were again
discarded; in this case additional error sources included motion artifacts and instances of poor
electrode connection. The resulting average activation estimates are plotted at the speed of
minimal MCOT for all subjects in Fig 3.

Unfortunately not all EMG channels provided satisfactory activation estimates, with low
signal to noise ratios being observed particularly in muscles spanning the hip. This was caused
by the relatively complicated geometry of that joint, the preponderance of associated motion
artifacts, the muscles being located deep beneath the skin, and the relative lack of access to that
area. Such problems can be minimized through the use of fine wire electrodes, as in [28], and
in fact we found that the profiles in [28] could be used to more precisely estimate the turn on
and turn off times of the neural excitation signals for the muscles spanning the hip than our
surface measurements. Hence we used these literature profiles to produce neural excitation
profiles for the iliacus, adductor longus, adductor magnus, gluteus maximus, and gluteus med-
ius. The profiles were digitized using MATLAB, specifically the “ginput” function. The litera-
ture profiles were given in term of percent gait cycle; for each participant we resampled to
make the duration of the profile match that of the subject’s average gait cycle. No amplitude
renormalization was necessary. The resulting profiles were then passed through the dynamics
(5) to produce activation estimates. In the infrequent event that the data from another muscle
was not salvageable for a given subject, the trajectory of that muscle was taken to be the average
of the trajectories for that muscle in all subjects where the measurement was acceptable. Fur-
ther details and a statistical analysis of this approach are given in S1 Text.

Musculoskeletal Model
The processed data were used to build a dynamic model of the leg during walking (Fig 1). The
model includes all muscles that make significant contributions to the components of ankle,
knee, and hip torque perpendicular to the sagittal plane during walking. Several muscle groups
were lumped together for simplicity; this was deemed appropriate if all muscles within a group
had similar lines of action and were activated simultaneously during walking. These included
the GAS group (medial and lateral gastrocnemius), the VAS group (vastus lateralis, medialis,
and intermedius), the HAM group (semimembranosus, semitendinosus, and biceps femoris
long head), and the ILL group (iliacus and psoas). Each muscle group had one effective tendon
to represent the net compliance of the muscle’s interaction with the skeleton. In addition to the
muscle-tendon units a passive ligament spanning the hip was included to allow for the recovery
of elastic energy in that joint. This element represents the contributions of the iliofemoral,
ischiofemoral, and pubofemoral ligaments as well as those of other connective tissue at the hip
and was modeled using a nonlinear equation in [18]; for simplicity we took it to be a linear
spring that only engages around the time the hip goes vertical and begins to extend [29]:

tHFL ¼ �KHFLðyhip � y0;HFLÞ: ð6Þ

Note that both the moment and the angle in this equation were defined with flexion being posi-
tive. Below we describe the muscle, tendon, and joint dynamics of the system.

Muscle dynamics. All muscles in the model were taken to have Hill-type contraction
dynamics similar to those described in [19]. Each muscle contains a contractile element (CE)
that represents the active muscle fibers and a parallel elastic element (PE) that represents the
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elastic structures surrounding the muscle. The contractile element force FCE depends on the
muscle activation a, the contractile element length lCE, and the contractile element velocity
vCE. The parallel elastic element force FPE depends only on the contractile element length
and engages only above the optimal fiber length lopt. lopt and the maximal isometric force
Fmax vary with muscle size while the maximal contractile element velocity vmax varies with
muscle fiber composition. For further details on the implemented muscle model including
predefined constants see S2 Text; for details on how the differential equations were solved
see [19] and its accompanying source code.

Tendon dynamics. As mentioned above, tendons are non-linear elastic elements that join
muscle to bone. Their force-strain relation may be modeled by the general form [16]:

FSEðlÞ ¼ Fmax

exp
Ksh

lref
l

 !
� 1

expðKshÞ � 1
; l > 0

0; l � 0;

8>>>>><
>>>>>:

ð7Þ

where

l ¼ lSE � lsl
lsl

ð8Þ

is the strain of the tendon beyond its slack length lsl. Here Fmax is the maximum muscle isomet-
ric force, Ksh is a shape factor, and λref is a reference strain. Ksh determines where the force-
length curve transitions from its flat lower (“toe”) region to its nearly linear behavior for large
strains. λref is the strain where FSE = Fmax. These four parameters define the morphology of a
particular tendon; Fmax and lsl scale with the size of the tendon while Ksh and λref depend on the
material properties of the tendon.

Muscle-tendon dynamics. Muscle and tendon act in series but are typically oriented
obliquely, with the angle in between the two being known as the pennation angle. The forces
exerted by the tendon (SE), muscle (M), and full muscle tendon complex are:

FMTCðtÞ ¼ FSEðtÞ ¼ FMðaðtÞ; lCEðtÞ; _lCEðtÞÞcosðyðtÞÞ: ð9Þ

Here the muscle contractile element length lCE represents the state variable. The total length of
the muscle tendon complex is

lMTCðtÞ ¼ lSEðtÞ þ lCEðtÞcosðyðtÞÞ: ð10Þ

The pennation angle θ(t) varies so as to keep the width of the muscle approximately constant
[15] and can be written as a function of fascicle length:

yðlCEÞ ¼ sin�1
loptsinðy0Þ

lCE

� �
: ð11Þ

Here the angle θ0 is the pennation angle when lCE = lopt (which is very near the resting length of
the muscle [16]). It was found that allowing this angle to vary with fascicle length was necessary
to obtain muscle fascicle trajectories that produced human-like metabolic cost estimates. The
total muscle torque at a given joint is then the sum of all muscle-tendon unit forces multiplied
by their respective time-varying moment arms ri(t):

tmod ¼
X

i

FMTC;iðtÞriðtÞ: ð12Þ
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To resolve the redundancy in joint actuation, each time varying muscle-tendon force FMTC,i(t)
must be determined.

Optimization Inputs, Outputs, and Parameters
An overview of the applied optimization procedure is shown in Fig 2. There were two catego-
ries of inputs for each muscle in our model: (i) a(t), lmtc(t), and ri(t)- all estimated from the
data and (ii) muscle-tendon morphological parameters ~mi which were identified via optimiza-
tion. Morphological parameters which affect the Hill-type contraction dynamics of the mod-
eled muscles include muscle maximum isometric force Fmax, length where active muscle force
is maximal lopt, fiber composition FT, tendon slack length lsl, tendon shape factor Ksh, and ten-
don reference strain λref. We evaluated the consequences of varying all of these variables, find-
ing differing levels of sensitivity for each. The variables to which the model was insensitive
were fixed, leaving Fmax, Ksh, λref, and an overall scaling factor for lsl and lopt as the parameters
to optimize. The last factor was chosen to ensure that the muscle operated in reasonable
regions of its force-length space while preventing overfitting. The ratio lsl/lopt is known to vary
significantly among muscles but not significantly in the same muscle among subjects [14], jus-
tifying this choice.

As mentioned above, our optimization is built on the hypothesis that the muscle-tendon
morphologies of the muscles comprising the leg have evolved to minimize the metabolic cost
of walking at the speed where the MCOT is minimal. This assumption is supported by the fun-
damental importance of bipedal walking as a means of transport and the tendency of humans
to walk at or near this speed. For each subject we therefore sought a set of morphological
parameters ~mi that match the measured joint torques at the ankle, knee, and hip while consum-
ing a minimal amount of metabolic energy. This amounts to a dual objective optimization
problem, with metabolic and kinetic cost functions being simultaneously minimized. The spe-
cific forms of these two costs are summarized below.

Metabolic cost estimation. Muscle metabolic consumption is known to depend on several
factors including fascicle size, excitation level, activation level, length, velocity, force, and active
force production [24]. For a given muscle in our model all of these quantities except for the
excitation and activation levels depend on the muscle-tendon morphology and therefore vary
across potential solutions. To model these effects we use the metabolic consumption model
derived by Umberger et al [24, 34]. This function has demonstrated exceptional predictive
power in a number of applications and is the most widely-accepted metabolic cost measure

available. It expresses metabolic power per unit muscle mass _E as the sum of four terms:

_E ¼ _hA þ _hM þ _hSL þ _wCE: ð13Þ

Here _hA is the activation heat rate, which is associated with the transport of Ca2+ ions from the

sarcoplasmic reticulum. _hM is the maintenance heat rate; both it and the shortening/lengthen-

ing heat rate _hSL are due to actomyosin interaction. _wCE is the mechanical work rate of the con-
tractile element, normalized to muscle mass. For a full mathematical description of these terms
see [24] and the supplementary materials of [34].

To estimate full body metabolic cost, we integrate _E for each muscle of the leg, multiply by
each appropriate muscle mass, and sum. Bilateral symmetry was assumed as full data were col-
lected for only one leg of each participant. For each muscle i the massMi was estimated using

Mi ¼
rFmax;ilopt;i

s
; ð14Þ
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where ρ = 1059.7kgm−3 and σ = 0.25MPa are the average density and specific tension of skeletal
muscle, respectively. The metabolism for the rest of the body (excluding leg muscles) was esti-

mated by multiplying the remaining mass by the measured basal rate _Ebas ([W/kg]) of standing.
The final metabolic cost in the model Cmet in a time window T was then

Cmet ¼
X

i

Mi

Z T

0

_EiðtÞ dt
� �

þ M �
X

i

Mi

 !
_EbasT; ð15Þ

whereM is total body mass and the sums were taken over all muscles in both legs.
Kinetic cost function. In addition to minimizing metabolic cost, we sought solutions that

most accurately reproduced the measured joint moments. We defined the corresponding cost
Ckin as

Ckin ¼ 1� R2
ankle þ R2

knee þ R2
hip

3
; ð16Þ

where the R2 values are the coefficients of determination between the modeled and observed
joint torques.

System Identification Procedure
As mentioned above, optimal muscle-tendon parameters were identified using a dual objective
optimization. Fifty morphological parameters were optimized for each subject; four morpho-
logical parameters for each of the twelve modeled muscles and two additional parameters
describing the hip flexor ligament. The chosen muscle-tendon parameter bounds are shown in
Table 4. The maximum isometric force (Fmax) values for each muscle were constrained to fall
in a window surrounding the scaled value from SIMM. The large width of this window helped
to compensate for uncertainties in the EMG normalization (via MVC values, as discussed
above). The scaling factor for lslack and lopt was chosen to ensure that the muscle fascicle length
stayed within reasonable physiological operating ranges. The bounds for Ksh and λref were
taken from [16]. The bounds for the spring constant of the hip flexor ligament was chosen so
that the ligament could provide anywhere from none to all of the required hip flexion moment
near toe off. The engagement angle was chosen so that the tendon could turn on with the hip
no more than 10° flexed, as its physiological role is to prevent overextension.

Table 4. Optimization problem parameter bounds. The maximum isometric force (Fmax) values for each
muscle were constrained to fall in a fairly wide window surrounding the scaled value from SIMM. The scaling
factor for lslack and lopt was chosen to ensure that each muscle fascicle length stayed within physical operating
ranges. Here the parameterw governs the width of the active force-length relation of the muscle; its value var-
ies by muscle and all values are given in S2 Text. The bounds for Ksh and λref were taken from [16]. The
bounds for the spring constant of the hip flexor ligament was chosen so that the ligament could provide any-
where from none to all of the required hip flexion moment near toe off. The engagement angle was chosen so
that the tendon could engage with the hip no more than 10° flexed, as its physiological role is to prevent
overextension.

Parameter Lower Bound Upper Bound

Fmax 0.5*Fmax,SIMM 3.0*Fmax,SIMM

lsl,lopt mult. Ensure lm < lopt(1 + w) Ensure lm � lopt(1−w)

Ksh 2 5

λref 0.02 0.09

θHFL −π/18 |min(θhip)|

KHFL 0 2*max(τhip)/|min(θhip)|

doi:10.1371/journal.pcbi.1004912.t004
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The model was constructed using MATLAB and Simulink and integrated using the ode15s
(stiff/NDF) solver. Computations were parallelized and carried out using the Mathworks
Cloud Center, a computer cluster operated through Amazon Web Services. This resource
proved useful as our runs were configured to test many solutions and took about 10 hours to
run on a single CPU. The optimization algorithm employed was MATLAB’s gamultiobj, a con-
trolled elitist genetic algorithm that is a variant of the NSGA-II algorithm [30]. This method
was chosen because of the likely presence of local minima in both objectives and tuned as
shown in Table 5. Optimization tunings were chosen to ensure generations sufficiently large to
force the optimizer to thoroughly search the space, eliminating the need for population seed-
ing. Each trial solution was allowed to run for two gait cycles, with only the results of the sec-
ond gait cycle being considered. This removed initial transient effects and allowed evaluation
of the system over the full gait cycle.

Choosing an optimal solution. The result of our multi-objective optimization is a Pareto
Front, a set of solutions where one cost function cannot be further reduced without
compromising on another. In the ideal case this front consists of one solution where all objec-
tives are optimized; however this rarely occurs in noisy systems. Our dual objective optimiza-
tion leads to a rounded Pareto Front, from which we chose one “best” solution.

As can be seen in Fig 4, our Pareto optimal solutions are composed of three regions. The
solutions in the lower left represent relatively low metabolic cost but fail to track the observed
joint torque profiles. The performance of these solutions is typically accounted for by small
Fmax values; minimizing these parameters causes metabolically inexpensive but weak muscle
forces. In the upper right corner are solutions with excellent kinetic agreement but high meta-
bolic costs. These solutions essentially overfit the observed torque profiles by driving one or
more muscles harder than is physically reasonable. This effort is required to maximize the
kinetic fit because of deficiencies in the data, particularly in the EMGmeasurements. The solu-
tions that represent the human should be somewhere between these two extremes, producing a
good kinetic fit at a reasonable metabolic cost.

In order to choose a solution in the biologically plausible region, we consulted the metabolic
energy budget of each subject. Fig 5 shows a polynomial fit of the fraction of full body meta-
bolic cost consumed by each modeled muscle as a function of kinetic fit (quantified by average
joint torque R2) along the Pareto Front for each participant. The fractions represent the sum
over both legs and take basal expenditures into account. As can be seen from the plots, the bud-
get is fairly consistent for low to moderate kinetic fit and MCOT, then sees a few muscles begin
to dominate as the high R2 and metabolic cost range is approached. Typically one to three mus-
cles overexert themselves to force a marginally better kinetic fit, causing the metabolic cost dis-
tribution to differ significantly from more reasonable energies. Physically this would lead to
fatigue of the muscle in question, or in it being modeled as much larger than its actual size

Table 5. Optimization settings in MATLAB.

Optimizer Setting Value

PopulationSize 1000

EliteCount 25

Generations 100

MutationFcn mutationadaptfeasible

CrossoverFraction 0.8

Vectorized On

PopInitRange Full Space

doi:10.1371/journal.pcbi.1004912.t005
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Table 6. Parameter values for the chosen optimal solution for each participant.

Parameter Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

TA Fmax (N) 477 874 523 497 617

TA lsl, lopt scaling 0.214 0.192 0.210 0.191 0.193

TA λref 0.040 0.057 0.045 0.069 0.061

TA Ksh 2.19 2.33 2.73 2.45 2.97

SOL Fmax (N) 3974 4632 4219 1992 3858

SOL lsl, lopt scaling 0.282 0.244 0.266 0.255 0.253

SOL λref 0.061 0.080 0.064 0.048 0.051

SOL Ksh 2.90 2.98 2.51 2.76 3.31

GAS Fmax (N) 2075 1819 1816 1616 2278

GAS lsl, lopt scaling 0.438 0.369 0.411 0.382 0.385

GAS λref 0.047 0.053 0.051 0.047 0.051

GAS Ksh 2.49 2.93 2.86 2.93 3.81

VAS Fmax (N) 3864 3229 8141 4472 4827

VAS lsl, lopt scaling 0.192 0.162 0.177 0.167 0.171

VAS λref 0.055 0.056 0.052 0.061 0.079

VAS Ksh 2.00 2.73 3.03 2.61 2.86

BFSH Fmax (N) 317 289 404 358 398

BFSH lsl, lopt scaling 0.156 0.110 0.147 0.133 0.116

BFSH λref 0.052 0.058 0.063 0.067 0.055

BFSH Ksh 2.15 2.40 2.85 2.60 2.48

RF Fmax (N) 681 888 1293 511 621

RF lsl, lopt scaling 0.408 0.353 0.381 0.369 0.371

RF λref 0.067 0.060 0.059 0.071 0.054

RF Ksh 2.93 2.22 3.05 2.76 3.03

HAM Fmax (N) 1503 1189 1694 1177 1232

HAM lsl, lopt scaling 0.410 0.343 0.385 0.386 0.387

HAM λref 0.067 0.051 0.058 0.060 0.073

HAM Ksh 2.30 2.11 2.90 2.46 2.67

ILL Fmax (N) 713 737 991 560 1079

ILL lsl, lopt scaling 0.103 0.119 0.118 0.105 0.107

ILL λref 0.067 0.061 0.057 0.047 0.059

ILL Ksh 2.16 2.60 2.46 2.30 3.15

GMAX Fmax (N) 1405 1452 1074 973 1035

GMAX lsl, lopt scaling 0.109 0.114 0.125 0.115 0.110

GMAX λref 0.070 0.060 0.056 0.048 0.056

GMAX Ksh 2.63 2.86 3.02 2.33 3.35

GMED Fmax (N) 1266 1311 1376 1011 1508

GMED lsl, lopt scaling 0.054 0.057 0.052 0.058 0.053

GMED λref 0.051 0.051 0.056 0.049 0.056

GMED Ksh 2.79 2.67 3.05 2.45 3.14

ADDL Fmax (N) 403 353 447 337 628

ADDL lsl, lopt scaling 0.119 0.115 0.105 0.097 0.103

ADDL λref 0.048 0.060 0.057 0.042 0.050

ADDL Ksh 2.19 2.00 2.99 2.67 3.80

ADDM Fmax (N) 805 874 851 758 1054

ADDM lsl, lopt scaling 0.138 0.109 0.131 0.126 0.127

ADDM λref 0.069 0.053 0.055 0.044 0.053

(Continued)
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Table 6. (Continued)

Parameter Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

ADDM Ksh 2.28 2.59 2.80 2.43 3.61

KHFL (Nm) 193 142 567 128 319

θ0,HFL (rad) 0.040 -0.023 -0.050 0.045 0.006

doi:10.1371/journal.pcbi.1004912.t006

Table 7. Frequently Used Abbreviations and Symbols.

Name Meaning

Fmax Maximal muscle isometric force

lsl Tendon slack length

lopt Optimal muscle length

Ksh Tendon force-length shape factor

λref Tendon reference strain

KHFL Iliofemoral/hip flexor ligament spring constant

θ0,HFL Hip flexor ligament engagement angle

lm, lce Muscle fascicle/contractile element length (same)

vm, vce Muscle fascicle/contracitle element velocity (same)

vmax Maximum muscle fascicle velocity

θ(t) Muscle pennation angle as a function of time

lmHS Muscle fascicle length at heel strike

~m Morphological parameter vector

_E_ Metabolic consumption

x(t) Muscle excitation

a(t) Muscle activation

r(t) Muscle moment arm

τ(t) Torque

R2 Coefficient of determination

TA Tibialis anterior

SOL Soleus

GAS Gastrocnemius

VAS Vastus

BFSH Biceps femoris short head

RF Rectus femoris

HAM Hamstring

ILL Illiacus

ADDL Adductor Longus

ADDM Adductor Magnus

HAB Hip abductors

GLU Gluteus maximus

GC Gait cycle

EMG Electromyography

MVC Maximal Voluntary Contraction

MCOT Metabolic Cost of Transport

MTU/MTC Muscle tendon unit/complex (same)

doi:10.1371/journal.pcbi.1004912.t007
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(since muscle mass is taken to be proportional to Fmax). Fig 5 shows that the vastus (VAS) mus-
cle group provides the largest contribution to metabolic cost for each participant and ramps up
its fractional contribution as kinetic fit is maximized. This is caused by the large size of the vas-
tus and the tendency of the optimizer to throw progressively more energy into it if the knee
extension moment in early stance is inadequate. Given the importance of this muscle to the
overall metabolic budget and its consistent ramp up, we chose to use it for selecting an optimal
solution.

To find our optimal solutions, we first fit the trends in fractional metabolic cost as a func-
tion of kinetic fit with a fifth order polynomial, as shown in Fig 5. We then considered the rela-
tive change in vastus fractional metabolic consumption ΔVAS:

DVAS ¼
FVASðR2Þ � FVASðminðR2ÞÞ

FVASðmaxðR2ÞÞ � FVASðminðR2ÞÞ ð17Þ

Here FVAS represents the fraction of overall metabolic cost attributed to the vastus, as a func-
tion of the mean coefficient of determination for the kinetic fit (R2). We found that choosing
ΔVAS,opt = 0.63 as a cutoff allowed us to quantitatively match the experimental metabolic costs
in four out of five participants and led to an average MCOT error smaller than 0.01. This cutoff
is represented by the dotted blue vertical lines in Fig 5, with the vertical black lines representing
the uncertainty in the experimental measurement. Both sets of vertical lines were obtained by
mapping the R2 values listed on the x-axis in Fig 5 to their corresponding metabolic costs in
the solutions shown in Fig 4. The chosen optimal solution was taken to be the point with maxi-
mal kinetic fit along the Pareto Front that had ΔVAS < ΔVAS,opt. In Fig 4, this point is repre-
sented as a white diamond on the solution space plot of each participant. The full parameter
sets for these optimal solutions are displayed in Table 6. For reference a list of frequently used
abbreviations and symbols is given in Table 7.

Supporting Information
S1 Text. Addressing missing EMG data. Discusses the methods employed when EMG data
(particularly in the muscles spanning the hip) were not adequate for analysis.
(PDF)

S2 Text. Hill-type muscle dynamics. Provides the mathematical details of the modeled con-
traction dynamics as well as muscle-specific parameters.
(PDF)

S3 Text. Choosing an optimal solution. Describes the method used to pick one optimal solu-
tion for each dual objective optimization problem and provides the resulting optimal muscle-
tendon parameters for each participant.
(PDF)
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