
MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Sequence Alignment
and Dynamic Programming

6.047/6.878 - Computational Biology: Genomes, Networks, Evolution

Tue Sept 9, 2008

DNA

Genome Assembly

Database lookup

Gene expression analysis

Cluster discovery Gibbs sampling
Protein network analysis

Emerging network properties

Regulatory network inference

Challenges in Computational Biology

1 Gene Finding5 Regulatory motif discovery

3

Sequence alignment

Evolutionary Theory7
TCATGCTAT
TCGTGATAA
TGAGGATAT
TTATCATAT
TTATGATTT

Comparative Genomics6

2

4

8

RNA transcript
9 10

11

13

12

Reminder: Last lecture / recitation
• Schedule for the term

– ‘Foundations’ till midterm
– ‘Frontiers’ lead to final project
– Duality: basic problems / fundamental techniques

• Biology introduction
– DNA, RNA, protein, transcription, translation
– Why computational biology

• Today: Comparative genomics is everywhere!
– Problem set 1: dating vertebrate whole-genome duplication
– Problem set 2: discover genes using their conservation properties
– Problem set 3: discover all motifs across entire yeast genome
– Problem set 4: reversing human/mouse genome rearrangements

Evolution preserved functional elements!

Scer TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACA
Spar CTATGTTGATCTTTTCAGAATTTTT-CACTATATTAAGATGGGTGCAAAGAAGTGTGATTATTATATTACATCGCTTTCCTATCATACACA
Smik GTATATTGAATTTTTCAGTTTTTTTTCACTATCTTCAAGGTTATGTAAAAAA-TGTCAAGATAATATTACATTTCGTTACTATCATACACA
Sbay TTTTTTTGATTTCTTTAGTTTTCTTTCTTTAACTTCAAAATTATAAAAGAAAGTGTAGTCACATCATGCTATCT-GTCACTATCACATATA

* * **** * * * ** ** * * ** ** ** * * * ** ** * * * ** * * *

Scer TATCCATATCTAATCTTACTTATATGTTGT-GGAAAT-GTAAAGAGCCCCATTATCTTAGCCTAAAAAAACC--TTCTCTTTGGAACTTTCAGTAATACG
Spar TATCCATATCTAGTCTTACTTATATGTTGT-GAGAGT-GTTGATAACCCCAGTATCTTAACCCAAGAAAGCC--TT-TCTATGAAACTTGAACTG-TACG
Smik TACCGATGTCTAGTCTTACTTATATGTTAC-GGGAATTGTTGGTAATCCCAGTCTCCCAGATCAAAAAAGGT--CTTTCTATGGAGCTTTG-CTA-TATG
Sbay TAGATATTTCTGATCTTTCTTATATATTATAGAGAGATGCCAATAAACGTGCTACCTCGAACAAAAGAAGGGGATTTTCTGTAGGGCTTTCCCTATTTTG

** ** *** **** ******* ** * * * * * * * ** ** * *** * *** * * *

Scer CTTAACTGCTCATTGC-----TATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCT
Spar CTAAACTGCTCATTGC-----AATATTGAAGTACGGATCAGAAGCCGCCGAGCGGACGACAGCCCTCCGACGGAATATTCCCCTCCGTGCGTCGCCGTCT
Smik TTTAGCTGTTCAAG--------ATATTGAAATACGGATGAGAAGCCGCCGAACGGACGACAATTCCCCGACGGAACATTCTCCTCCGCGCGGCGTCCTCT
Sbay TCTTATTGTCCATTACTTCGCAATGTTGAAATACGGATCAGAAGCTGCCGACCGGATGACAGTACTCCGGCGGAAAACTGTCCTCCGTGCGAAGTCGTCT

** ** ** ***** ******* ****** ***** *** **** * *** ***** * * ****** *** * ***

Scer TCACCGG-TCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAA-----TACTAGCTTTT--ATGGTTATGAA
Spar TCGTCGGGTTGTGTCCCTTAA-CATCGATGTACCTCGCGCCGCCCTGCTCCGAACAATAAGGATTCTACAAGAAA-TACTTGTTTTTTTATGGTTATGAC
Smik ACGTTGG-TCGCGTCCCTGAA-CATAGGTACGGCTCGCACCACCGTGGTCCGAACTATAATACTGGCATAAAGAGGTACTAATTTCT--ACGGTGATGCC
Sbay GTG-CGGATCACGTCCCTGAT-TACTGAAGCGTCTCGCCCCGCCATACCCCGAACAATGCAAATGCAAGAACAAA-TGCCTGTAGTG--GCAGTTATGGT

** * ** *** * * ***** ** * * ****** ** * * ** * * ** ***

Scer GAGGA-AAAATTGGCAGTAA----CCTGGCCCCACAAACCTT-CAAATTAACGAATCAAATTAACAACCATA-GGATGATAATGCGA------TTAG--T
Spar AGGAACAAAATAAGCAGCCC----ACTGACCCCATATACCTTTCAAACTATTGAATCAAATTGGCCAGCATA-TGGTAATAGTACAG------TTAG--G
Smik CAACGCAAAATAAACAGTCC----CCCGGCCCCACATACCTT-CAAATCGATGCGTAAAACTGGCTAGCATA-GAATTTTGGTAGCAA-AATATTAG--G
Sbay GAACGTGAAATGACAATTCCTTGCCCCT-CCCCAATATACTTTGTTCCGTGTACAGCACACTGGATAGAACAATGATGGGGTTGCGGTCAAGCCTACTCG

**** * * ***** *** * * * * * * * * **

Scer TTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCG--ATGATTTTT-GATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCAC-----TT
Spar GTTTT--TCTTATTCCTGAGACAATTCATCCGCAAAAAATAATGGTTTTT-GGTCTATTAGCAAACATATAAATGCAAAAGTTGCATAGCCAC-----TT
Smik TTCTCA--CCTTTCTCTGTGATAATTCATCACCGAAATG--ATGGTTTA--GGACTATTAGCAAACATATAAATGCAAAAGTCGCAGAGATCA-----AT
Sbay TTTTCCGTTTTACTTCTGTAGTGGCTCAT--GCAGAAAGTAATGGTTTTCTGTTCCTTTTGCAAACATATAAATATGAAAGTAAGATCGCCTCAATTGTA

* * * *** * ** * * *** *** * * ** ** * ******** **** *

Scer TAACTAATACTTTCAACATTTTCAGT--TTGTATTACTT-CTTATTCAAAT----GTCATAAAAGTATCAACA-AAAAATTGTTAATATACCTCTATACT
Spar TAAATAC-ATTTGCTCCTCCAAGATT--TTTAATTTCGT-TTTGTTTTATT----GTCATGGAAATATTAACA-ACAAGTAGTTAATATACATCTATACT
Smik TCATTCC-ATTCGAACCTTTGAGACTAATTATATTTAGTACTAGTTTTCTTTGGAGTTATAGAAATACCAAAA-AAAAATAGTCAGTATCTATACATACA
Sbay TAGTTTTTCTTTATTCCGTTTGTACTTCTTAGATTTGTTATTTCCGGTTTTACTTTGTCTCCAATTATCAAAACATCAATAACAAGTATTCAACATTTGT

* * * * * * ** *** * * * * ** ** ** * * * * * *** *

Scer TTAA-CGTCAAGGA---GAAAAAACTATA
Spar TTAT-CGTCAAGGAAA-GAACAAACTATA
Smik TCGTTCATCAAGAA----AAAAAACTA..
Sbay TTATCCCAAAAAAACAACAACAACATATA

* * ** * ** ** **

Gal10 Gal1
Gal4

GAL10

GAL1

TBP

GAL4 GAL4 GAL4

GAL4

MIG1

TBPMIG1

Factor footprint

Conservation island

We can ‘read’ evolution to reveal functional elements

Kellis et al, Nature 2003

Today’s goal:

How do we actually align two genes?

Genomes change over time

A C G T C A T C A

A C G T G A T C A
mutation

A G T G T C A

A G T G T C A

deletion

A G T G T C AT

begin

end

A G T G T C AT
insertion

Goal of alignment: Infer edit operations

begin

end

?

A C G T C A T C A

A G T G T C AT

From Bio to CS: Formalizing the problem
• Define set of evolutionary operations (insertion, deletion, mutation)

– Symmetric operations allow time reversibility (part of design choice)

Note: Not all decisions are conflicting (some are both relevant and tractable)
(e.g. Pevzner vs. Sankoff and directionality in chromosomal inversions)

Human Mouse

Many possible transformations

Minimum cost transformation(s)

• Define optimality criterion (min number, min cost)
–Impossible to infer exact series of operations (Occam’s razor: find min)

• Design algorithm that achieves that optimality (or approximates it)
–Tractability of solution depends on assumptions in the formulation
Bio CS
Relevance Assumptions

Special cases
TractabilityTradeoffs

Computability

Algorithms

Implementation

Predictability

Correctness

Human Mouse Human Mouse

Human Mousex y x y
x+y

Formulation 1: Longest common substring
• Given two possibly related strings S1 and S2

– What is the longest common substring? (no gaps)

S1

S2

A C G T C A T C A

T A G T G T C A

A C G T C A T C AS1

S2 T A G T G T C A

offset: +1

A C G T C A T C AS1

S2 T A G T G T C A

offset: -2

Formulation 2: Longest common subsequence

• Given two possibly related strings S1 and S2
– What is the longest common subsequence? (gaps allowed)

A C G T C A T C A

T A G T G T C A

S1

S2

A C G T C A T C A

T A G T G T C A

S1

S2

A C G T C A T C A

T A G T G T C A

S1

S2

A G T T C ALCSS

Edit distance:
• Number of changes

needed for S1 S2
• Uniform scoring

function

Formulation 3: Sequence alignment

• Allow gaps (fixed penalty)
– Insertion & deletion operations
– Unit cost for each character inserted or deleted

• Varying penalties for edit operations
– Transitions (PyrimidineÙPyrimidine, PurineÙPurine)
– Transversions (PurineÙ Pyrimidine changes)
– Polymerase confuses Aw/G and Cw/T more often

purine pyrimid.

Transitions:
AÙG, CÙT common

(lower penalty)

Transversions:
All other operations

Scoring function:
Match(x,x) = +1
Mismatch(A,G)= -½
Mismatch(C,T)= -½
Mismatch(x,y) = -1

A G T C
A +1 -½ -1 -1
G -½ +1 -1 -1
T -1 -1 +1 -½
C -1 -1 -½ +1

Etc…
(e.g. varying gap penalties)

How can we compute best alignment

• Given additive scoring function:
– Cost of mutation (AG, CT, other)
– Cost of insertion / deletion
– Reward of match

• Need algorithm for inferring best alignment
– Enumeration?
– How would you do it?
– How many alignments are there?

A C G T C A T C A

T A G T G T C A

S1

S2

Can we simply enumerate all possible alignments?

• Ways to align two sequences of length m, n

mm
nm

m
mn nm

⋅
≈

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ + +

π
2

)!(
)!(

2

n Enumeration Today's lecture
10 184,756 100
20 1.40E+11 400
100 9.00E+58 10,000

• For two sequences of length n

Key insight: score is additive!

S1

S2

• Compute best alignment recursively
– For a given aligned pair (i, j), the best alignment is:

• Best alignment of S1[1..i] and S2[1..j]
• + Best alignment of S1[i..n] and S2[j..m]

– Proof: cut-and-paste argument (see 6.046)

A C G T C A T C A

T A G T G T C A

S1

S2

i

j

A C G T C A T C A

i i

T A G T G

j

T C A

j

Key insight: re-use computation

A C G T C A T C A

T A G T G T C A

S1

S2

A C G T

T A G T G

S1

S2

A C G T C A T C A

T A G T G T C A

S1

S2

S2

A C G T C A T C A

T A G T G T C A

S1

S2

A C G T C A T C A

T A G T G T C A

S1

C G T C A T C A

T G T C A

S1

S2

Identical sub-problems! We can reuse our work!

Solution #1 – Memoization

• Create a big dictionary, indexed by aligned seqs
– When you encounter a new pair of sequences
– If it is in the dictionary:

• Look up the solution

– If it is not in the dictionary
• Compute the solution
• Insert the solution in the dictionary

• Ensures that there is no duplicated work
– Only need to compute each sub-alignment once!

Top down approach

Solution #2 – Dynamic programming

• Create a big table, indexed by (i,j)
– Fill it in from the beginning all the way till the end
– You know that you’ll need every subpart
– Guaranteed to explore entire search space

• Ensures that there is no duplicated work
– Only need to compute each sub-alignment once!

• Very simple computationally!

Bottom up approach

A simple introduction to Dynamic Programming

• Fibonacci numbers

5

8

13

21

34

55

3
2

Figure by MIT OpenCourseWare.

Rabbits per generation

Fibonacci numbers are ubiquitous in nature

Leaves per height

Romanesque spirals Nautilus size Coneflower spirals Leaf ordering

1
(2)

(7)
3 x 54

6
8

9

10

11

13

14

16

15

12

Figures by MIT OpenCourseWare.

Computing Fibonacci numbers: Top down
• Fibonacci numbers are defined recursively:

– Python code

def fibonacci(n):
if n==1 or n==2: return 1
return fibonacci(n-1) + fibonacci(n-2)

• Goal: Compute nth Fibonacci number.
– F(0)=1, F(1)=1, F(n)=F(n-1)+F(n-2)
– 1,1,2,3,5,8,13,21,34,55,89,144,233,377,…

• Analysis:
– T(n) = T(n-1) + T(n-2) = (…) = O(2n)

Computing Fibonacci numbers: Bottom up
• Top-down approach

– Python code

– Analysis: T(n) = O(n)

def fibonacci(n):
fib_table[1] = 1
fib_table[2] = 1
for i in range(3,n+1):

fib_table[i] = fib_table[i-1]+fib_table[i-2]
return fib_table[n]

?F[12]
89F[11]
55F[10]
34F[9]
21F[8]
13F[7]
8F[6]
5F[5]
3F[4]
2F[3]
1F[2]
1F[1]

fib_table

Lessons from iterative Fibonacci algorithm

• What did the iterative solution do?
– Reveal identical sub-problems
– Order computation to enable result reuse
– Systematically filled-in table of resluts
– Expressed larger problems from their subparts

• Ordering of computations matters
– Naïve top-down approach very slow

• results of smaller problems not available
• repeated work

– Systematic bottom-up approach successful
• Systematically solve each sub-problem
• Fill-in table of sub-problem results in order.
• Look up solutions instead of recomputing

?F[12]
89F[11]
55F[10]
34F[9]
21F[8]
13F[7]
8F[6]
5F[5]
3F[4]
2F[3]
1F[2]
1F[1]

fib_table

Dynamic Programming in Theory

• Hallmarks of Dynamic Programming
– Optimal substructure: Optimal solution to problem

(instance) contains optimal solutions to sub-problems
– Overlapping subproblems: Limited number of distinct

subproblems, repeated many many times
• Typically for optimization problems (unlike Fib example)

– Optimal choice made locally: max(subsolution score)
– Score is typically added through the search space
– Traceback common, find optimal path from indiv.

choices
• Middle of the road in range of difficulty

– Easier: greedy choice possible at each step
– DynProg: requires a traceback to find that optimal path
– Harder: no opt. substr., e.g. subproblem dependencies

Hallmarks of optimization problems

1. Optimal substructure
An optimal solution to a problem (instance)
contains optimal solutions to subproblems.

2. Overlapping subproblems
A recursive solution contains a “small” number

of distinct subproblems repeated many times.

3. Greedy choice property
Locally optimal choices lead
to globally optimal solution

Greedy algorithms Dynamic Programming

Greedy Choice is not possible
Globally optimal solution requires
trace back through many choices

Dynamic Programming in Practice

• Setting up dynamic programming
1. Find ‘matrix’ parameterization (# dimensions, variables)
2. Make sure sub-problem space is finite! (not exponential)

• If not all subproblems are used, better off using memoization
• If reuse not extensive, perhaps DynProg is not right solution!

3. Traversal order: sub-results ready when you need them
• Computation order matters! (bottom-up, but not always

obvious)
4. Recursion formula: larger problems = F(subparts)
5. Remember choices: typically F() includes min() or max()

• Need representation for storing pointers, is this polynomial !
• Then start computing

1. Systematically fill in table of results, find optimal score
2. Trace-back from optimal score, find optimal solution

How do we apply dynamic programming

to sequence alignment ?

Key insight: score is additive!

S1

S2

• Compute best alignment recursively
– For a given aligned pair (i, j), the best alignment is:

• Best alignment of S1[1..i] and S2[1..j]
• + Best alignment of S1[i..n] and S2[j..m]

A C G T C A T C A

T A G T G T C A

S1

S2

i

j

A C G

i

T C A T C A

i

T A G T G

j

T C A

j

Dynamic Programming for sequence alignment

• Setting up dynamic programming
1. Find ‘matrix’ parameterization

2. Make sure sub-problem space is finite! (not exponential)

3. Traversal order: sub-results ready when you need them

4. Recursion formula: larger problems = F(subparts)

5. Remember choices: typically F() includes min() or max()

• Then start computing
1. Systematically fill in table of results, find optimal score
2. Trace-back from optimal score, find optimal solution

(1, 2, 3) Store score of aligning (i,j) in matrix M(i,j)
S[1..i] i S[i..n]

T[1..j]

j S

T[
j..m]

Best alignment Best path through the matrix

Duality: seq. alignment Ù path through the matrix

S2
A C G T C A T C A

T
A
G
T
G
T
C
A

S1

A
G

T
C/G

T
C

A

A C G T C A T C A

T A G T G T C A

Goal:
Find best path

through the matrix

(4) Filling in the dynamic programming matrix

• Local update rules:
– Compute next alignment based on previous alignment
– Just like Fibonacci numbers: F[i] = F[i-1] + F[i-2]
– Table lookup!

• Compute scores for prefixes of increasing length
– This allows a single recursion (top-left to bottom-right)

instead of two recursions (middle-to-outside top-down)
– Only three possibilities for extending by one nucleotide:

a gap in one species, a gap in the other, a (mis)match
– When you reach bottom right, prefix of length n is seq S

• Computing the score of a cell from its neighbors
F(i-1, j) - gap

– F(i,j) = max{ F(i , j) + score }
F(i , j-1) - gap

0. Setting up the scoring matrix
- A G T

A

A

G

C

- 0
Initialization:
• Top left: 0
Update Rule:
A(i,j)=max{

}
Termination:
• Bottom right

1. Allowing gaps in s
- A G T

A

A

G

C

- 0

-2

-4

-6

-8

Initialization:
• Top left: 0
Update Rule:
A(i,j)=max{

• A(i-1 , j) - 2

}
Termination:
• Bottom right

2. Allowing gaps in t
- A G T

A

A

G

C

- 0 -2 -4 -6

-2 -4 -6 -8

-4 -6 -8 -10

-6 -8 -10 -12

-8 -10 -12 -14

Initialization:
• Top left: 0
Update Rule:
A(i,j)=max{

• A(i-1 , j) - 2
• A(i , j-1) - 2

}
Termination:
• Bottom right

3. Allowing mismatches
- A G T

A

A

G

C

- 0 -2 -4 -6

-2 -1 -3 -5

-4 -3 -2 -4

-6 -5 -4 -3

-8 -7 -6 -5

-1

-1

-1

-1 -1

-1 -1

-1 -1

-1 -1

-1

Initialization:
• Top left: 0
Update Rule:
A(i,j)=max{

• A(i-1 , j) - 2
• A(i , j-1) - 2
• A(i-1 , j-1) -1

}
Termination:
• Bottom right

4. Choosing optimal paths
- A G T

A

A

G

C

- 0 -2 -4 -6

-2 -1 -3 -5

-4 -3 -2 -4

-6 -5 -4 -3

-8 -7 -6 -5

-1

-1

-1

-1 -1

-1 -1

-1 -1

-1 -1

-1

Initialization:
• Top left: 0
Update Rule:
A(i,j)=max{

• A(i-1 , j) - 2
• A(i , j-1) - 2
• A(i-1 , j-1) -1

}
Termination:
• Bottom right

5. Rewarding matches
- A G T

A

A

G

C

- 0 -2 -4 -6

-2 1 -1 -3

-4 -1 0 -2

-6 -3 0 -1

-8 -5 -2 -1

1

1

1

-1 -1

-1

-1

Initialization:
• Top left: 0
Update Rule:
A(i,j)=max{

• A(i-1 , j) - 2
• A(i , j-1) - 2
• A(i-1 , j-1) ±1

}
Termination:
• Bottom right

What is missing? (5) Returning the actual path!

• We know how to compute the best score
– Simply the number at the bottom right entry

• But we need to remember where it came from
– Pointer to the choice we made at each step

• Retrace path through the matrix
– Need to remember all the pointers

Time needed: O(m*n)
Space needed: O(m*n)

x1 ………………………… xM

y 1
…
…
…
…
…
…
…
…
…
…

y N

Summary
• Dynamic programming

– Reuse of computation
– Order sub-problems. Fill table of sub-problem results
– Read table instead of repeating work (ex: Fibonacci)

• Sequence alignment
– Edit distance and scoring functions
– Dynamic programming matrix
– Matrix traversal path Ù Optimal alignment

• Thursday: Variations on sequence alignment
– Local/global alignment, affine gaps, algo speed-ups
– Semi-numerical alignment, hashing, database lookup

• Recitation:
– Dynamic programming applications
– Probabilistic derivations of alignment scores

Bounded Dynamic Programming

x1 ………………………… xMN
y 1
…
…
…
…
…
…
…
…
…
…

y

k(N)

Slides credit: Serafim Batzoglou

Initialization:
F(i,0), F(0,j) undefined for i, j > k

Iteration:
For i = 1…M
For j = max(1, i – k)…min(N, i+k)

F(i – 1, j – 1)+ s(xi, yj)
F(i, j) = max F(i, j – 1) – d, if j > i – k(N)

F(i – 1, j) – d, if j < i + k(N)

Termination: same

Linear space alignment
It is easy to compute F(M, N) in linear space

F(i,j)

Allocate (column[1])
Allocate (column[2])

For i = 1….M
If i > 1, then:

Free(column[i – 2])
Allocate(column[i])

For j = 1…N
F(i, j) = …

What about the pointers?

Finding the best back-pointer for current column

• Now, using 2 columns of space, we can compute
for k = 1…M, F(M/2, k), Fr(M/2, N-k)

PLUS the backpointers

Best forward-pointer for current column

• Now, we can find k* maximizing F(M/2, k) + Fr(M/2, N-k)
• Also, we can trace the path exiting column M/2 from k*

k*

k*

Recursively find midpoint for left & right

• Iterate this procedure to the left and right!

M/2M/2

k*

N-k*

Total time cost of linear-space alignment

M/2M/2

k*

Total Time: cMN + cMN/2 + cMN/4 + ….. = 2cMN = O(MN)

Total Space: O(N) for computation,
O(N+M) to store the optimal alignment

N-k*

Formulation 4: Varying gap cost models (next time)

(still) Varying penalties for edit operations

Now allow gaps of varying penalty:
1. Linear gap penalty

– Same as before,
2. Affine gap penalty

– Big initial cost for starting or ending a gap
– Small incremental cost for each additional character

3. General gap penalty
– Any cost function
– No longer computable using the same model

4. Seek duplicated regions, rearrangements, …

	Sequence Alignment�and Dynamic Programming
	Reminder: Last lecture / recitation
	Evolution preserved functional elements!
	Today’s goal: ��How do we actually align two genes?
	Genomes change over time
	Goal of alignment: Infer edit operations
	From Bio to CS: Formalizing the problem
	Formulation 1: Longest common substring
	Formulation 2: Longest common subsequence
	Formulation 3: Sequence alignment
	Etc…�(e.g. varying gap penalties)
	How can we compute best alignment
	Can we simply enumerate all possible alignments?
	Key insight: score is additive!
	Key insight: re-use computation
	Solution #1 – Memoization
	Solution #2 – Dynamic programming
	A simple introduction to Dynamic Programming
	Fibonacci numbers are ubiquitous in nature
	Computing Fibonacci numbers: Top down
	Computing Fibonacci numbers: Bottom up
	Lessons from iterative Fibonacci algorithm
	Dynamic Programming in Theory
	Hallmarks of optimization problems
	Dynamic Programming in Practice
	How do we apply dynamic programming ��to sequence alignment ?
	Key insight: score is additive!
	Dynamic Programming for sequence alignment
	Duality: seq. alignment path through the matrix
	(4) Filling in the dynamic programming matrix
	0. Setting up the scoring matrix
	1. Allowing gaps in s
	2. Allowing gaps in t
	3. Allowing mismatches
	4. Choosing optimal paths
	5. Rewarding matches
	What is missing? (5) Returning the actual path!
	Summary
	Bounded Dynamic Programming
	Linear space alignment
	Finding the best back-pointer for current column
	Best forward-pointer for current column
	Recursively find midpoint for left & right
	Total time cost of linear-space alignment
	Formulation 4: Varying gap cost models (next time)
	ra.pdf
	(1, 2, 3) Store score of aligning (i,j) in matrix M(i,j)

