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Structure in High-Dimensional Data

Gyulassy, Atilla, et al. "Topologically Clean Distance Fields." IEEE 
Transactions on Visualization and Computer Graphics 13, no. 6 (2007): 1432-
1439.

• Structure can be used to reduce dimensionality of 
data

• Structure can tell us something useful about the 
underlying phenomena

• Structure can be used to make inferences about new 
data

©2007 IEEE. Used with permission.



Clustering vs Classification
• Objects characterized by one or more 

features

• Classification
– Have labels for some points
– Want a “rule” that will accurately assign 

labels to new points
– Supervised learning

• Clustering
– No labels
– Group points into clusters based on how 

“near” they are to one another
– Identify structure in data
– Unsupervised learning
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Today

• Microarray Data

• K-means clustering

• Expectation Maximization

• Hierarchical Clustering



Central Dogma

phenotypeDNA mRNA protein

We can measure amounts 
of mRNA for every gene in 

a cell



Expression Microarrays

• A way to measure the levels 
of mRNA in every gene

• Two basic types
– Affymetrix gene chips
– Spotted oligonucleotides

• Both work on same principle
– Put DNA probe on slide
– Complementary hybridization



Expression Microarrays

• Measure the level of mRNA messages 
in a cell
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Expression Microarray Data Matrix

• Genes are 
typically 
given as 
rows

• Experiment 
are given by 
columns
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Clustering and Classification in Genomics

• Classification
¾ Microarray data: classify cell state (i.e. AML vs ALL) using 

expression data
¾ Protein/gene sequences:  predict function, localization, etc.

• Clustering
¾ Microarray data:  groups of genes that share similar function 

have similar expression patterns – identify regulons
¾ Protein sequence:  group related proteins to infer function
¾ EST data:  collapse redundant sequences





Clustering Expression Data

• Cluster Experiments
– Group by similar 

expression profiles

• Cluster Genes
– Group by similar 

expression in different 
conditions
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Why Cluster Genes by Expression?
• Data Exploration

– Summarize data
– Explore without getting lost 

in each data point
– Enhance visualization

• Co-regulated Genes
– Common expression may 

imply common regulation 
– Predict cis-regulatory 

promoter sequences

• Functional Annotation
– Similar function from 

similar expression

GCN4
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Clustering Algorithms

• Partitioning
– Divides objects into non-overlapping 

clusters such that each data object is in 
exactly one subset

• Agglomerative
– A set of nested clusters organized as a 

hierarchy



K-Means Clustering

The Basic Idea

• Assume a fixed number of clusters, K

• Goal: create “compact” clusters



More Formally
1. Initialize K centers uk

For each iteration n until convergence

2. Assign each xi the label of the nearest center, where the 
distance between xi and uk is

3. Move the position of each uk to the centroid of the points with 
that label
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Cost Criterion
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We can think of K-means as trying to create clusters that 
minimize a cost criterion associated with the size of the 

cluster
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cluster term separately:
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Fuzzy K-Means
• Initialize K centers uk

• For each point calculate the 
probability of membership for 
each category

• Move the position of each uk to 
the weighted centroid :

• Iterate

K-means

Fuzzy K-means

i i

i i i
x  with label j x with label j

( 1)  P( | ) P( | )bb
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K-Means as a Generative Model

Samples drawn from two equally normal distributions with 
unit variance - a Gaussian Mixture Model

xiModel of
P(X,Labels)
μ1

μ2
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Unsupervised Learning

Learn?

Samples drawn from two equally normal distributions with 
unit variance - a Gaussian Mixture Model
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If We Have Labeled Points
Need to estimate unknown gaussian centers from data

In general, how could we do this?  
How could we “estimate” the “best” uk?

Choose uk to maximize probability of model

xi

μ1 ?

μ2?



If We Have Labeled Points
Need to estimate unknown gaussian centers from data

In general, how could we do this?  
How could we “estimate” the “best” uk?

Given a set of xi, all with label k, we can find the 
maximum likelihood μk from
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If We Know Cluster Centers
Need to estimate labels for the data

Learn? xi

Distance 
measure for 

K-means

μ1

μ2

( ) ( ) ( )
2

2
k

k k k

1arg max  P | arg max exp arg m
22

ini k
i i i kπ

⎧ ⎫−⎪ ⎪= − = −⎨ ⎬
⎪ ⎪⎩ ⎭

x u
x μ x u



What If We Have Neither?

xi

μ1

μ2

An idea:
1. Imagine we start with some uk

0

2. We could calculate the most likely 
labels for xi

0 given these uk
0

3. We could then use these labels to 
choose uk

1

4. And iterate (to convergence)
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Expectation Maximization (EM)
1. Initialize parameters

2. E Step Estimate probability of hidden labels , Q, given parameters and 
sequence

( | , )1
i kQ P label x u t= −

1arg max log ( | , )t t
k Q k

u
u E P labels x u −⎡ ⎤= ⎣ ⎦

P(x|Model) guaranteed to increase each iteration

3. M Step Choose new parameters to maximize expected likelihood of 
parameters given Q

4. Iterate



Expectation Maximization (EM)

Remember the basic idea!

1.Use model to estimate (distribution of) missing data
2.Use estimate to update model

3.Repeat until convergence

Model is the gaussian distributions

Missing data are the data point labels



Revisiting K-Means

1. Initialize K centers uk

2. Assign each xi the label of the 
nearest center, where the 
distance between xi and uk is

3. Move the position of each uk to 
the centroid of the points with 
that label

4. Iterate

Generative Model
Perspective

( )2
,i k i kd = −x μ

The most likely label 
k for a point xi

Maximum likelihood 
parameter μk given 

most likely label



Revisiting K-Means
Generative Model

Perspective

1. Initialize K centers uk

2. Assign each xi the label of the 
nearest center, where the 
distance between xi and uk is

3. Move the position of each uk to 
the centroid of the points with 
that label

4. Iterate

( )2
,i k i kd = −x μ

The most likely label 
k for a point xi

Maximum likelihood 
parameter μk given 

most likely label

1.Initialize parameters

2.E Step Estimate most likely 
missing label given previous 
parameter

3.M Step Choose new
parameters to maximize 
likelihood of parameters given 
estimated labels

4.Iterate



Revisiting K-Means

1. Initialize K centers uk

2. Assign each xi the label of the 
nearest center, where the 
distance between xi and uk is

3. Move the position of each uk to 
the centroid of the points with 
that label

4. Iterate

( )2
,i k i kd = −x μ

Generative Model
Perspective

The most likely label 
k for a point xi

Maximum likelihood 
parameter μk given 

most likely label

1.Initialize parameters

2.E Step Estimate most likely 
missing label given previous 
parameter

3.M Step Choose new
parameters to maximize 
likelihood of parameters given 
estimated labels

4.Iterate

This is analogous to Viterbi Learning from HMMs

Analogy with HMM is to 
use Viterbi to find most 

likely missing path labels

(see Durbin book)



Revisting Fuzzy K-Means

Recall that given a set of xi, all with label k, we select a new μk with the update:

Looking at case b=1

It can be shown that this update rule follows from assuming the 
gaussian mixture generative models and performing Expectation-

Maximization

Recall that instead of assigning each point xi to a label k, we calculate the 
probability of each label for that point (fuzzy membership):
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( 1)  P( | ) P( | )bb
k k kn + = ∑ ∑μ x μ x μ x

iP(label K | , )kx μ



Revisiting Fuzzy K-Means
Generative Model

Perspective

1.Initialize parameters

2.E Step Estimate probability 
over missing labels given 
previous parameter

3.M Step Choose new
parameters to maximize 
expected likelihood of 
parameters given estimated 
labels

4.Iterate

1. Initialize K centers uk

2. For each point calculate the 
probability of membership for 
each category

3. Move the position of each uk to 
the weighted centroid :

4. Iterate

i i

i i i
x  with label j x with label j

( 1)  P( | ) P( | )bb
k k kn + = ∑ ∑μ x μ x μ x

iP(label K | , )kx μ

This is analogous to Baum Welch from HMMs



K-Means, Viterbi learning & EM
K-Means and Fuzzy K-means are two related methods that can 

be seen performing unsupervised learning on a gaussian
mixture model

Reveal assumptions about underlying data model

Can relax assumptions by relaxing constraints on model
• Including explicit covariance matrix
• Relaxing assumption that all gaussians are equally likely



Implications: Non-globular Clusters

Actual Clustering K-means (K = 2)



But How Many clusters?

• How do we select K?
– We can always make clusters “more 

compact” by increasing K
– e.g. What happens is if K=number of data 

points?
– What is a meaningful improvement?

• Hierarchical clustering side-steps this 
issue



Hierarchical clustering
Most widely used algorithm for 

expression data

• Start with each point in a separate 
cluster

• At each step:
– Choose the pair of closest clusters
– Merge
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Visualization of results



Hierarchical clustering

slide credits: M. Kellis

Avoid needing to select number 
of clusters

Produces clusters at all levels

We can always select a “cut 
level” to create disjoint clusters

But how do we define distances 
between clusters?
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Distance between clusters
• CD(X,Y)=minx ∈X, y ∈Y D(x,y)

Single-link method

• CD(X,Y)=maxx ∈X, y ∈Y D(x,y)
Complete-link method

• CD(X,Y)=avgx ∈X, y ∈Y D(x,y)
Average-link method

• CD(X,Y)=D( avg(X) , avg(Y) )
Centroid method
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(Dis)Similarity Measures

D’haeseleer (2005) Nat Biotech

Image removed due to copyright restrictions.
 
Table 1, Gene expression similarity measures. D'haeseleer, Patrik. "How Does 
Gene Expression Clustering Work?" Nature Biotechnology 23 (2005): 1499-1501. 



Evaluating Cluster Performance

• Robustness
– Select random samples from data set and cluster
– Repeat
– Robust clusters show up in all clusters

• Category Enrichment
– Look for categories of genes “over-represented” in 

particular clusters
– Also used in Motif Discovery

In general, it depends on your goals in clustering



Evaluating clusters – Hypergeometric Distribution
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Similar Genes Can Cluster

(Eisen (1998) PNAS)

(A) Cholesterol biosynthesis

(B) Cell cycle

(C) Immediate early response

(D) Signalling and angiogenesis

(E) Wound healing

Clustered 8600 human genes 
using expression time course in 

fibroblasts

Eisen, Michael et al. "Cluster Analysis and Display of Genome-wide 
Expression Patterns." PNAS 95, no. 25 (1998): 14863-14868.
Copyright (1998) National Academy of Sciences, U.S.A.



Clusters and Motif Discovery

Expression from 
15 time points 
during yeast 

cell cycle

Tavazoie & Church (1999)
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Figure by MIT OpenCourseWare. 



Next Lecture

The other side of the coin… Classification
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