
MIT OpenCourseWare
http://ocw.mit.edu

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution

 Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

1. Mitochondria play an important role in metabolic processes and are known as the “powerhouse” of the cell. They
represent an ancient bacterial invader that has been successfully subsumed by eukaryotic cells. Mitochondria have their
own genetic material, commonly referred to as mtDNA. Interestingly, a large fraction of inherited mitochondrial
disorders are due to nuclear genes encoding specific proteins targeted to the mitochondria and not due to mutations in
mtDNA itself. Hence it is imperative to identify these mitochondrial proteins to shed light on the molecular basis for
these disorders.

6.047/6.878 Fall 2008 Lecture #5

1. Overview

In the previous lecture we looked at examples of unsupervised learning techniques, such as clustering. In

this lecture we focus on the use of supervised learning techniques, which use the inherent structure of the

data to predict something about the state or “class” we should be in. There are two different approaches to

classification which use either – (1) generative models that leverage probabilistic models that generate data,

and (2) discriminative models that use an appropriate function to tease apart the data. Naïve Bayes’

classifiers are an example of generative models and Support Vector Machines (SVMs) are example of

discriminative models. We will discuss actual biological applications of each of these models, specifically

in the use of Naïve Baye’s classifiers to predict mitochondrial proteins across the genome and the use of

SVMs for the classification of cancer based on gene expression monitoring by DNA microarrays. The

salient features of both techniques and caveats of using each technique will also be discussed.

2. Classification – Bayesian Techniques

We will discuss classification in the context of the problem of identifying mitochondrial proteins. If we

look across the genome, how do we determine which proteins are involved in mitochondrial processes or

more generally which proteins are targeted to the mitochondria1. This is particularly useful because if we

know the mitochondrial proteins, we can start asking interesting questions about how these proteins

mediate disease processes and metabolic functions. The classification of these mitochondrial proteins

involves the use of 7 features for all human proteins – (1) targeting signal, (2) protein domains, (3) co-

expression, (4) mass spectrometry, (5) sequence homology, (6) induction, and (7) motifs.

In general, our approach will be to determine how these features are distributed for objects of different

classes. The classification decisions will then be made using probability calculus. For our case with 7

features for each protein (or more generally, each object), it is likely that each object is associated with

more than one feature. To simplify things let us consider just one feature and introduce the two key

concepts.

(1) We want the model for the probability of a feature given each class. So the features from each

class are drawn from what are known as class-conditional probability distributions (CCPD).

6.047/6.878 Fall 2008 Lecture #5 – Scribe Notes

 |
 |

(2) We model prior probabilities to quantify the expected a priori chance of seeing a class. For

the case of identifying mitochondrial proteins, we would like to have a low prior probability

of seeing the “mitochondrial” class. In this way we can bias ourselves against classifying

mitochondrial proteins. (But how do we actually determine these prior probabilities? We will

cover this in section 2.2).

A good example of how our second concept affects classification was discussed in lecture. We discussed

the example of Eugene. Eugene likes to read books in philosophy and has a penchant for tweed jackets.

The question posed was whether Eugene is more likely (in probabilistic terms) to be an ivy-league dean or

a truck driver. The answer was that he was more likely to be a truck driver, due to the fact that there are

many more truck drivers in the world than there are ivy-league deans. This overwhelming probability

outweighs the fact that ivy-league deans are more likely to enjoy books on philosophy and tweed jackets

than truck drivers. This prior knowledge influences our decision in classification and we can use this use

prior information as the probability of belonging to a certain class P(Class) to make our classifications.

Now we that we have the prior P(Class) and likelihood of a given feature, P(feature | Class), we can

simply apply Bayes’ rule to determine the posterior P(Class | feature) since we are interested in

classification based on features.

evaluate evidence belief before evidence belief after evidence

 |
 |

evidence

 posterior likelihood prior

This is the application of Bayes’ rule to our problem with the probabilities defined as shown above. More

generally we can think of the probabilities as below,

 1 | 2 |

 | 1 1 | 2 2

We can now think about applying this recursively across classes and using the “belief after evidence” to

form new “evidence” and then find new “beliefs after evidence”. Once we’ve determined all our “beliefs

after evidence” for each class, we can use a decision rule to choose a particular class.

Given two classes, Bayes’ decision rule would be as follows,

2

belief after evidence evaluate evidence belief before evidence

6.047/6.878 Fall 2008 Lecture #5 – Scribe Notes

log
 | 1 1
 | 2 2

We can take log probabilities to build a discriminant function as below,

0

In this case the use of logarithms provide distinct advantages –

(1) numerical stability,

(2) easier math (it’s easier to add the expanded terms than multiply them), and

(3) monotonically increasing discriminators.

This discriminant function does not capture the penalties associated with misclassification (in other words,

is one classification more detrimental than other). In this case, we are essentially minimizing the number of

misclassifications we make overall, but not assigning penalties to individual misclassifications. From

examples we discussed in class and in the problem set - if we are trying to classify a patient as having

cancer or not, it could be argued that it is far more harmful to misclassify a patient as being healthy if they

have cancer than to misclassify a patient as having cancer if they are healthy. In the first case, the patient

will not be treated and would be more likely to die, whereas the second mistake involves emotional grief

but no greater chance of loss of life. To formalize the penalty of misclassification we define something

called a loss function, Lkj, which assigns a loss to the misclassification of an object as class j when the true

class is class k (a specific example of a loss function was seen in Problem Set 2).

2.1 Training Sets

Classifiers require a set of labeled data points. The number of data points within this data set will directly

impact the quality of the classifier, however, the number of data points necessary to build a training set will

be largely dependent on the problem to be solved. The importance of the training set is to correctly estimate

the feature-given-class likelihoods. This can be done using a multinomial distribution.

2.2 Getting Priors

This involves getting P(Class) to complete the implementation of a Bayes’ classifier. There are three

general approaches –

(1) Estimate the priors by counting and dividing by the total to obtain the fraction of classes in a

training set (again, this emphasizes the quality of the training set data)

(2) Estimate from “expert” knowledge, in that we might have information from actual

experimental work, and have reasoning about the distribution from higher-level data

(3) Assume no prior knowledge, so all classes are equally likely

3

6.047/6.878 Fall 2008 Lecture #5 – Scribe Notes

 1, 2, … . | 1 | 2 | ······ |

 ∏
gol. ,…,,

 1 1 |
0 ∏ | 2 2

2.3 Multiple Features

Going back to our original example of mitochondrial proteins, we were looking at 7 features and not just a

single feature. This makes things much more complicated and exemplifies the “curse of dimensionality”.

We would require huge amounts of data to be able to implement the classifier. Most likely we would end

up with zero probability for a certain combination of features for a particular class, which might not be an

accurate representation of the real probabilities. We can get around this by assuming the features are

independent (this forms the crux of a Naïve Bayes’ approach). Once we assume independence we can now

take the product of all the conditional probabilities and we have to only estimate the individual distributions

for each feature. So we now have,

where, f1 represents feature 1. Similarly, the discriminant function can be changed to the multiplication of

the prior probabilities.

2.4 Testing a classifier

The classifier must be tested on a different set (termed the labeled test set) than the training set. Apparently,

a large number of publications continue to test their classifiers solely with their training data sets (resulting

in skewed performance metrics). To perform a robust classification we classify each object in the test set

and count the number of each type of error. In the case of a binary classification (i.e. an object either

belongs to Class 1 or Class 2), we have the following four types of errors,

(1) True positive (TP)

(2) True negative (TN)

(3) False positive (FP)

(4) False negative (FN)

The frequency of these errors can be encapsulated in performance metrics of a classifier which are defined

as,

(1) Sensitivity – determines how good we are at classifying. In the case of our binary example,

what fraction of actual Class 1 classified as Class1?

(2) Specificity – determines how tolerant we are to misclassifications. What fraction of not Class

2 (in the binary case, simply Class 1) classified as Class 2?

4

6.047/6.878 Fall 2008 Lecture #5 – Scribe Notes

ink of it as minimizing FN) and higher the specific

The higher the sensitivity (th ity (think of it as

minimizing FP) the better the classifier. However, achieving a high score in one of these areas (and not the

other) doesn’t amount to much. Consider the classification of mitochondrial proteins, we can classify all

data points as mitochondrial proteins and get 100% sensitivity but 0% specificity. The MAESTRO

algorithm achieves a 99% specificity and a 71% sensitivity for the classification of mitochondrial proteins.

In all, we have defined Bayesian classifiers and shown how to determine all the probabilities required to

implement a Bayesian classifier and discussed a particular implementation that assumes independence of

features (Naïve Bayesian classifiers). The final section describes the specifics of the application of

classification to determine mitochondrial proteins.

2.6 MAESTRO – Mitochondrial Protein Classification

Calvo et al. (2006) sought to construct high-quality predictions of human proteins localized to the

mitochondrion by generating and integrating data sets that provide complementary clues about

mitochondrial localization. Specifically, for each human gene product p, they assign a score si(p), using

each of the following seven genome-scale data sets – targeting signal score, protein domain score, cis-motif

score, yeast homology score, ancestry score, coexpression score, and induction score (details of each of the

meaning and content of each of these data sets can be found in the manuscript). Each of these scores (s1–s7)

can be used individually as a weak genome-wide predictor of mitochondrial localization. Each method’s

performance was assessed using large ‘gold standard’ curated training sets - 654 mitochondrial proteins

(Tmito) maintained by the MitoP2 database1 and 2,847 nonmitochondrial proteins (T~mito) annotated to

localize to other cellular compartments. To improve prediction accuracy, the authors integrated these eight

approaches using a naïve Bayes classifier that was implemented as a program called MAESTRO.

When MAESTRO was applied across the human proteome, 1451 proteins were predicted as mitochondrial

proteins and 450 novel proteins predictions were made. As mentioned in the previous section The

MAESTRO algorithm achieves a 99% specificity and a 71% sensitivity for the classification of

mitochondrial proteins, suggesting that even with the assumption of feature independence, Naïve Bayes

classification techniques can prove extremely powerful for large-scale (i.e. genome-wide) scale

classification.

3. Classification – Support Vector Machines

The previous section looked at using probabilistic (or generative) models for classification, this section

looks at using discriminative techniques – in essence, can we run our data through a function to determine

5

6.047/6.878 Fall 2008 Lecture #5 – Scribe Notes

5, 4, 3, 3, 4, 5 2, 1, 0, 1, 2,

 2.5

,

5, 4, 3, 3, 4, 5 5,25 , 4,16 , 3,9 , 3,9 , 4,16 , 5,25

2, 1, 0, 1, 2, 2,4 , 1,1 , 0,0 , 1,1 , 2,4

 6.5

 6.5

its structure? Such discriminative techniques avoid the inherent cost involved in generative models which

might require more information than is actually necessary.

Support vector machine techniques essentially involve drawing a vector that’s perpendicular to the line

optimally separating the data. This vector is determined from a set of support vectors from the individual

data points. Interestingly, the vector can be determined from the scalar dot-product of these support vectors,

so even if we get to higher dimensions then we go from points in multi-dimensional space to just a simple

dot-product (allowing for simpler implementation for higher order data).

In this case when the data is not linearly separable we can use a kernel function (essentially a transform) to

map to a higher dimensional space where the data is now linearly separable. The beauty of this technique is

that since the SVM technique only requires the dot-product of the support vectors we can work directly

with the kernel mapping matrix and not with the actual data points. There are a number of transformations

(such as polynomial and sigmoidal) that serve as good kernel mapping functions and are furthered explored

in the next section.

3.1 Non-Linear Classification

What if the data are not linearly separable? One way to deal with this is to just to try to find the best linear

classifier for the data, and accept mistakes. Another, completely different, way to deal with this comes from

the fact that the more dimensions there are, the more likely it is that the data set is linearly separable. In a

certain sense, for any finite data set, as the number of dimensions goes to infinity, the probability that the

data is separable goes to 1.

How can we take advantage of this? Consider the two classes of one-dimensional data:

 and . This data is clearly not linearly separable, and the best

separation boundary we can find might be .

Now, consider applying the transformation . The data now can be written as new pairs,

, and

This data is separable by the rule , and in general the more dimensions we transform to, the more

separable it becomes.

An alternate way of thinking of this problem is to transform the classifier back in to the original low-

dimensional space. In this particular example, we would get the rule , which would bisect the

number line at two points. In general, the higher dimensionality of the space that we transform to, the more

complicated a classifier we get when we transform back to the original space.

6

6.047/6.878 Fall 2008 Lecture #5 – Scribe Notes

·

,

, ·

,

, , · ,

,

, 1

1, √2

3.2 Kernels

We see that SVMs are dependent only on the dot products of the vectors. So, if we call our transformation

, for two vectors we only care about the value of . The trick with use of kernels consists

of realizing that for certain transformations , there exists a function , such that,

In the above relation, the right-hand side is the dot product of vectors with very high dimension, but the

left-hand side is the function of two vectors with lower dimension. In our previous example of mapping

, we get

 =

Now we need not actually apply the transformation , we can do all our calculations in the lower

dimensional space, but get all the power of using a higher dimension.

Example kernels are the following,

(1) Linear kernel: ·

which represents the trivial mapping of

(2) Polynomial kernel: ·

which was used in the previous example, if we had instead used the transformation

 ,

· 1 ·

, exp |

, tanh

, we would get a more polynomial-looking kernel of

(3) Radial Basis kernel: |

This transformation is actually from a point to a function (which can be thought of being a

point in Hilbert space) in a infinite-dimensional space. So what we’re actually doing is

transforming out training set into functions, and combining them to get a decision boundary.

The functions are Gaussians centered at the input points.

(4) Sigmoid kernel: + r)]

Sigmoid kernels have been popular for use in SVMs due to their origins in neural networks

(e.g. sigmoid kernel functions are equivalent to two-level, perceptron neural networks). It has

been pointed out in previous work (Vapnik 1995) that the kernel matrix may not be positive

semi-definite for certain values of the parameters and r. The sigmoid kernel has nevertheless

been used in practical applications (see Scholkopf 1997).

One of the caveats of transforming the input data using a kernel is the risk of over-fitting (or over-

classifying) the data. More generally, the SVM may generate so many feature vector dimensions that it

does not generalize well to other data. To avoid over-fitting, cross-validation is typically used to evaluate

7

6.047/6.878 Fall 2008 Lecture #5 – Scribe Notes

hen using difficult-to-separate training sets, SVMs can incorporate a cost parameter C, to allow some

an we use just any function as our kernel? The answer to this is provided by Mercer’s Condition which

or any g(x), such that, F

 is finite

then,

 ,

0

In all, we have defined SVM discriminators and shown how to perform classification with appropriate

.3 Tumor Classifications with SVMs

 generic approach for classifying two types of acute leukemias – acute myeloid leukemia (AML) and

(1) whether there were genes whose expression pattern to be predicted was strongly correlated

or” capable of assigning a

ss predictors

the fitting provided by each parameter set tried during the grid or pattern search process. In the radial-basis

kernel, you can essentially increase the value of γ until each point is within its own classification region

(thereby defeating the classification process altogether). SVMs generally avoid this problem of over-fitting

due to the fact that they maximize margins between data points.

W

flexibility in separating the categories. This parameter controls the trade-off between allowing training

errors and forcing rigid margins. It can thereby create a soft margin that permits some misclassifications.

Increasing the value of C increases the cost of misclassifying points and forces the creation of a more

accurate model that may not generalize well.

C

provides us an analytical criterion for choosing an acceptable kernel. Mercer’s Condition states that a

kernel K(x,y) is a valid kernel if and only if the following holds (Burgess 1998),

kernel mapping functions that allow performing computations on lower dimension while being to capture

all the information available at higher dimensions. The next section describes the application of SVMs to

the classification of tumors for cancer diagnostics.

3

A

acute lymphoid leukemia (ALL) was presented by Golub et al. (1999). This approach centered on

effectively addressing three main issues,

with the class distinction (i.e. can ALL and AML be distinguished)

(2) how to use a collection of known samples to create a “class predict

new sample to one of two classes

(3) how to test the validity of their cla

8

6.047/6.878 Fall 2008 Lecture #5 – Scribe Notes

They addressed (1) by using a “neighbourhood analysis” technique to establish whether the observed

correlations were stronger than would be expected by chance. This analysis showed that roughly 1100

 SVM approach to this same classification problem was implemented by Mukherjee et al. (2001). The

Genes Rejects Errors Confidence Level |d|

summarized in the following table (where |d| corresponds to the cutoff for rejection).

7129 3 0 ~93% 0.1

40 0 0 ~93% 0.1

5 3 0 ~92% 0.1

genes were more highly correlated with the AML-ALL class distinction than would be expected by chance.

To address (2) they developed a procedure that uses a fixed subset of “informative genes” (chosen based on

their correlation with the class distinction of AML and ALL) and makes a prediction based on the

expression level of these genes in a new sample. Each informative gene casts a “weighted vote” for one of

the classes, with the weight of each vote dependent on the expression level in the new sample and the

degree of that gene’s correlation with the class distinction. The votes are summed to determine the winning

class. To address (3) and effectively test their predictor by first testing by cross-validation on the initial

data set and then assessing its accuracy on an independent set of samples. Based on their tests, they were

able to identify 36 of the 38 samples (which were part of their training set!) and all 36 predictions were

clinically correct. On the independent test set 29 of 34 samples were strongly predicted with 100%

accuracy and 5 were not predicted.

A

output of classical SVM is a binary class designation. In this particular application it is particularly

important to be able to reject points for which the classifier is not confident enough. Therefore, the authors

introduced a confidence interval on the output of the SVM that allows for rejection of points with low

confidence values. As in the case of Golub et al. it was important for the authors to infer which genes are

important for the classification. The SVM was trained on the 38 samples in the training set and tested on

the 34 samples in the independent test set (exactly in the case of Golub et al.). The authors’ results are

hese results a significant improvement over previously reported techniques, suggesting that SVMs play an

. Semi-supervised learning

 with only a few labeled data points, a large number of unlabeled data

of data first followed by the classification of the generated clusters.

9

T

important role in classification of large data sets (as those generated by DNA microarray experiments).

4

n some scenarios we have a data setI

points and inherent structure in the data. This type of scenario both clustering and classification do not

perform well and a hybrid approach is required. This semi-supervised approach could involve the clustering

