6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.047/6.878 - Computational Biology: Genomes, Networks, Evolution

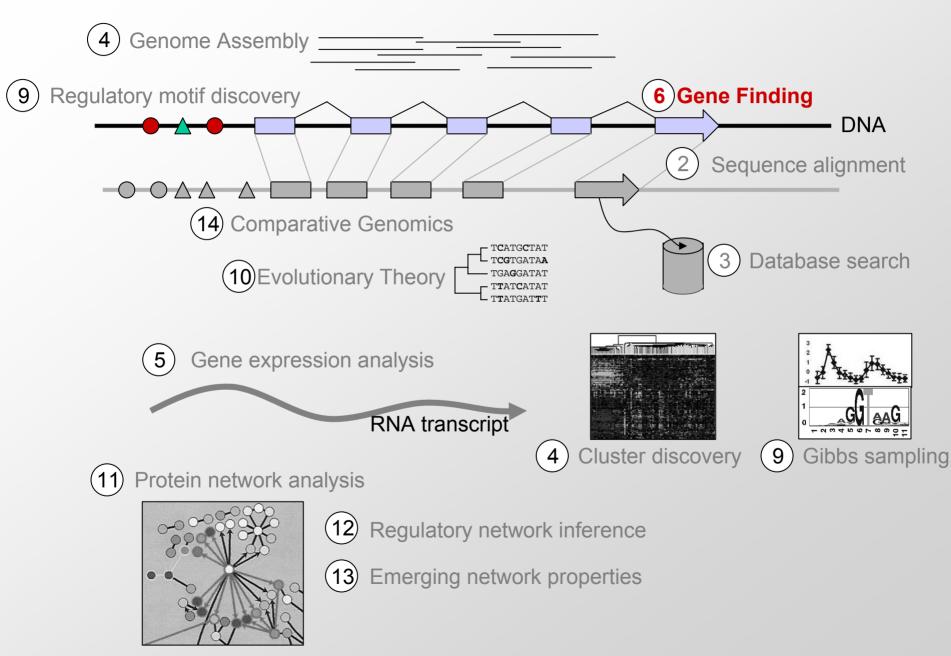
Modeling Biological Sequence and Hidden Markov Models

(part II - The algorithms)

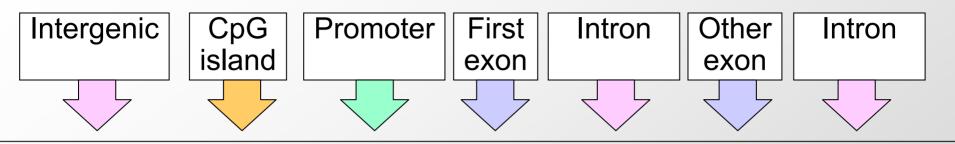
Lecture 7

Sept 25, 2008

Challenges in Computational Biology



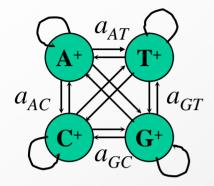
Modeling biological sequences

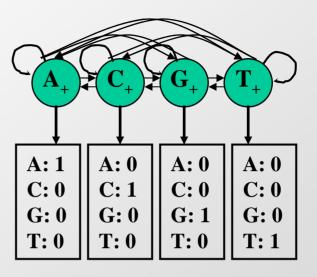


TACAGGATTATGGGTTACAGGTAACCGTTGTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGGTACTCACCGGGTTACAGGATTATGGTAACGGTACTCACCGGGTTACAGGATTGTTACA

- Ability to generate DNA sequences of a certain type
 - Not exact alignment to previously known gene
 - Preserving 'properties' of type, not identical sequence
- Ability to recognize DNA sequences of a certain type
 - What (hidden) state is most likely to have generated observations
 - Find set of states and transitions that generated a long sequence
- Ability to learn distinguishing characteristics of each type
 - Training our generative models on large datasets
 - Learn to classify unlabelled data

Markov Chains & Hidden Markov Models





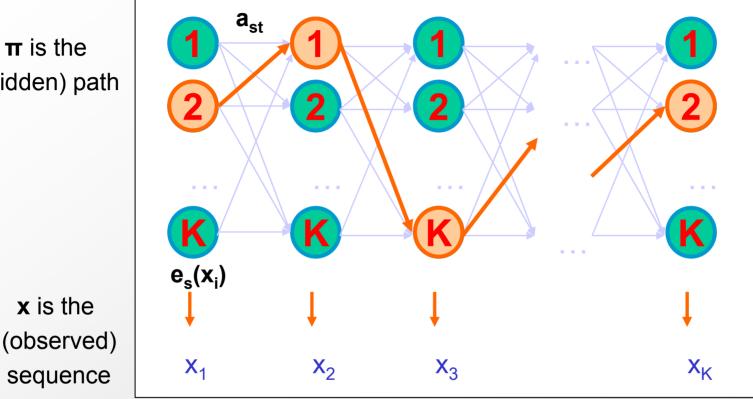
- Markov Chain
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities

• HMM

- Q: states
- V: observations
- p: initial state probabilities
- A: transition probabilities
- E: emission probabilities

HMM nomenclature

 π is the (hidden) path

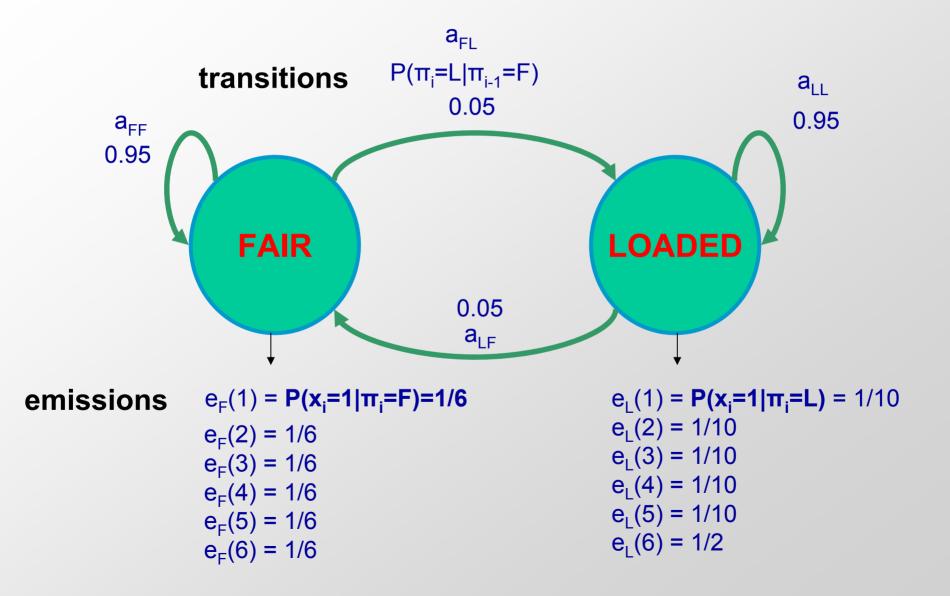


Find path π^* that maximizes total joint probability P[x, π] ٠

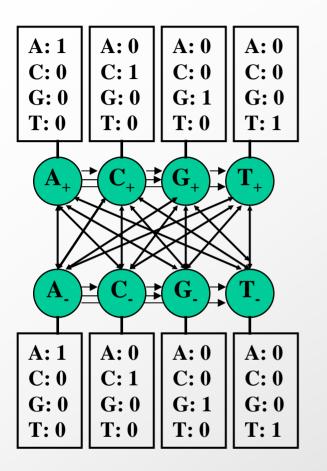
•
$$P(x,\pi) = a_{0\pi_1} * \prod_i e_{\pi_i}(x_i) \times a_{\pi_i\pi_{i+1}}$$

start emission transition

HMM for the dishonest casino model



HMM for CpG islands



- Build a single model that combines both Markov chains:
 - **'+' states**: A₊, C₊, G₊, T₊
 - Emit symbols: A, C, G, T in CpG islands
 - **'-' states**: A_, C_, G_, T_
 - Emit symbols: A, C, G, T in non-islands
- Emission probabilities distinct for the '+' and the '-' states
 - Infer most likely set of states, giving rise to observed emissions
 - → 'Paint' the sequence with + and states

Question: Why do we need so many states?
In the Dishonest Casino we only had 2 states: Fair / Loaded
Why do we need 8 states here: 4 CpG+ / 4 CpG- ?
→ Encode 'memory' of previous state: count nucleotide transitions!

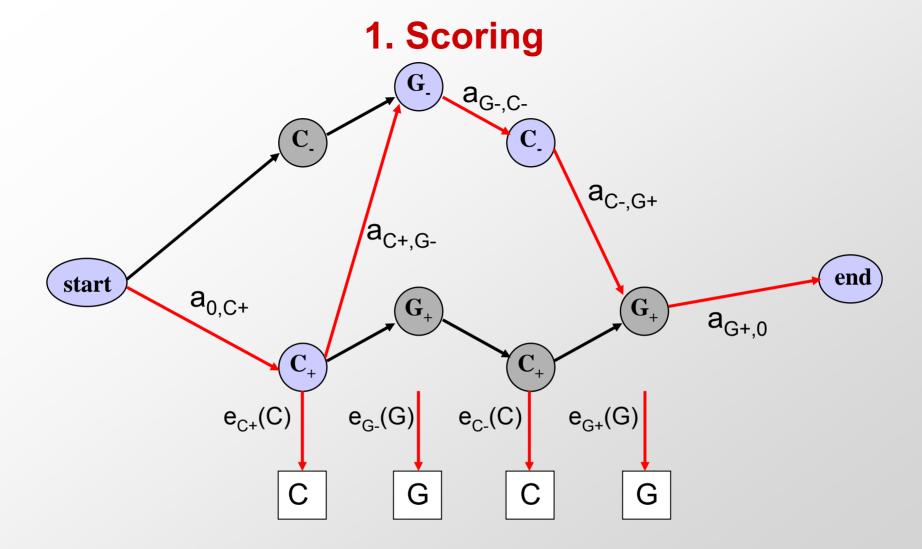
The main questions on HMMs

- **1. Scoring** = Joint probability of a sequence and a path, given the model
 - GIVEN a HMM M, a path π , and a sequence x,
 - FIND Prob[x, $\pi \mid M$]
 - → "Running the model", simply multiply emission and transition probabilities
 - → Application: "all fair" vs. "all loaded" comparisons
- 2. **Decoding** = parsing a sequence into the optimal series of hidden states
 - GIVEN a HMM M, and a sequence x,
 - FIND the sequence π^* of states that maximizes P[x, π | M]
 - → Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
- **3.** Model evaluation = total probability of a sequence, summed across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability P[x | M] summed across all paths
 - → Forward algorithm, sum score over all paths (same result as backward)
- **4. State likelihood** = total prob that emission x_i came from state k, across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability $P[\pi_i = k | x, M)$
 - → Posterior decoding: run forward & backward algorithms to & from state $\pi_1 = k$
- 5. Supervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - FIND parameters $\theta = (e_i, a_{ij})$ that maximize P[x | θ]
 - → Simply count frequency of each emission and transition observed in the training data
- 6. Unsupervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - FIND parameters $\theta = (e_i, a_{ij})$ that maximize P[x | θ]
 - → Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 - → Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

LEARNING

1. Scoring

Multiply emissions, transitions



• $P(p,x) = (a_{0,C^{+}} 1) * (a_{C^{+},G^{-}} 1) * (a_{G^{-},C^{-}} 1) * (a_{C^{-},G^{+}} 1) * (a_{G^{+},0})$

Probability of given path p & observations x

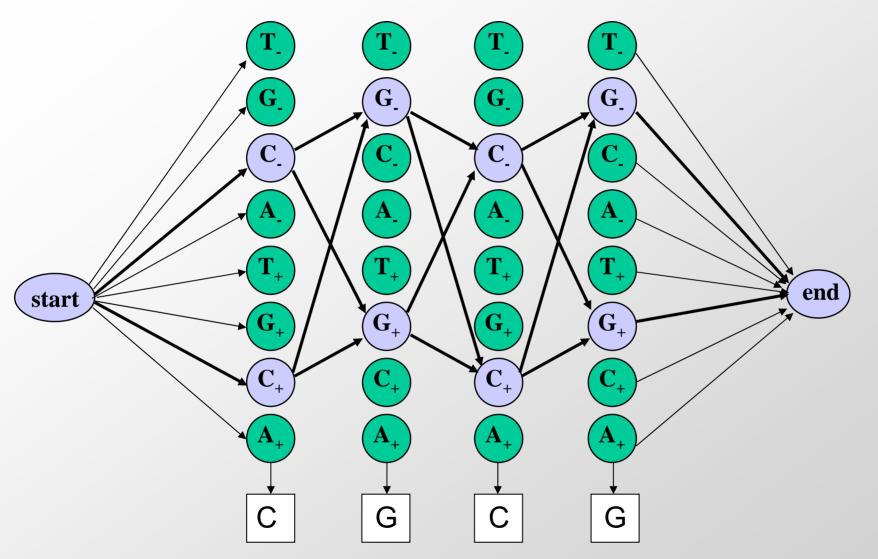
The main questions on HMMs

- **1. Scoring** = Joint probability of a sequence and a path, given the model
 - GIVEN a HMM M, a path π , and a sequence x,
 - FIND Prob[x, $\pi \mid M$]
 - → "Running the model", simply multiply emission and transition probabilities
 - → Application: "all fair" vs. "all loaded" comparisons
- 2. **Decoding** = parsing a sequence into the optimal series of hidden states
 - GIVEN a HMM M, and a sequence x,
 - FIND the sequence π^* of states that maximizes P[x, π | M]
 - → Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
- 3. Model evaluation = total probability of a sequence, summed across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability P[x | M] summed across all paths
 - → Forward algorithm, sum score over all paths (same result as backward)
- **4. State likelihood** = total probability that emission x_i came from state k, across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability $P[\pi_i = k | x, M)$
 - → Posterior decoding: run forward & backward algorithms to & from state π_1 =k
- 5. Supervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - FIND parameters θ = (Ei, Aij) that maximize P[x | θ]
 - → Simply count frequency of each emission and transition observed in the training data
- 6. Unsupervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - FIND parameters θ = (Ei, Aij) that maximize P[x | θ]
 - → Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 - → Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

2. Decoding: How can we find the most likely path?

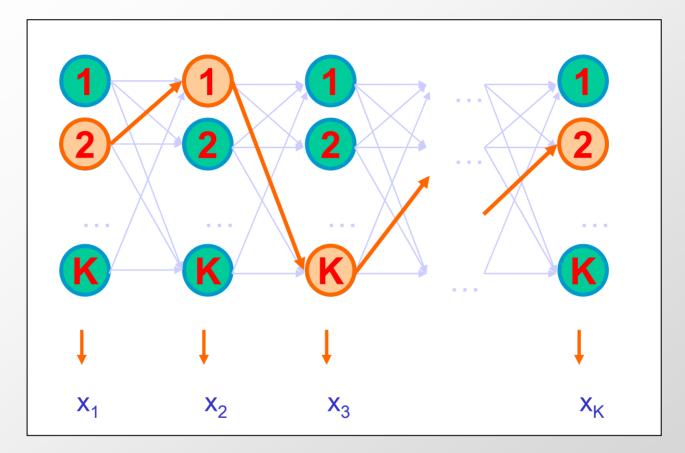
Viterbi algorithm

Finding most likely state path



• Given the observed emissions, what was the path?

Finding the most likely path

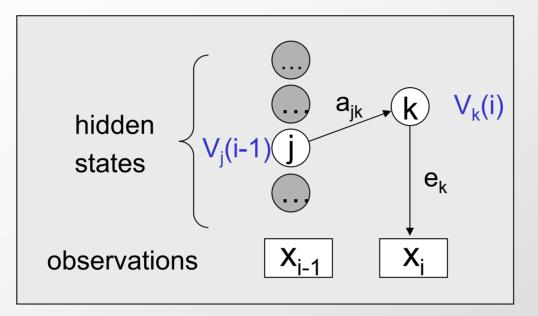


• Find path π^* that maximizes total joint probability P[x, π]

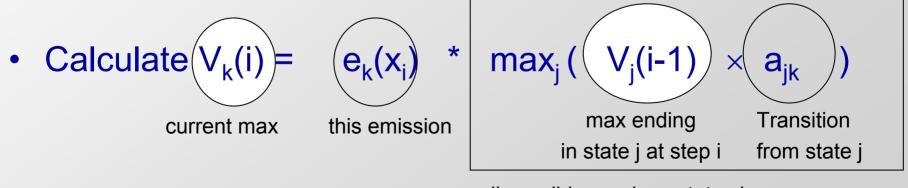
•
$$P(x,\pi) = a_{0\pi_1} * \prod_i e_{\pi_i}(x_i) \times a_{\pi_i\pi_{i+1}}$$

start emission transition

Calculate maximum $P(x,\pi)$ recursively



Assume we know V_i for the previous time step (i-1)



all possible previous states j

State 1 2 K

 $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \dots \quad \mathbf{x}_N$

Input: x = x1....xN

Initialization:

 $V_0(0)=1$, $V_k(0) = 0$, for all k > 0

Iteration:

 $V_k(i) = e_K(x_i) \times \max_j a_{jk} V_j(i-1)$

Termination:

 $P(x, \pi^*) = \max_k V_k(N)$

Traceback:

Follow max pointers back

In practice:

Use log scores for computation

Running time and space:

Time:O(K²N)Space:O(KN)

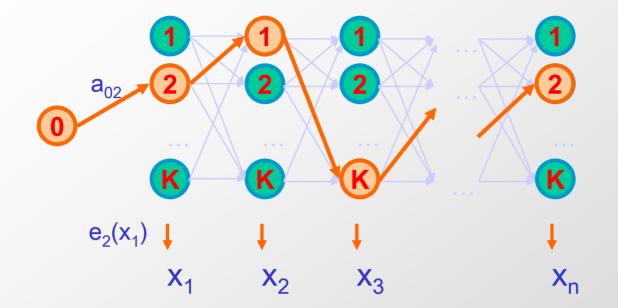
The main questions on HMMs

1. 2.	 Scoring = Joint probability of a sequence and a path, given the model GIVEN a HMM M, a path π, and a sequence x, FIND Prob[x, π M] * "Running the model", simply multiply emission and transition probabilities → Application: "all fair" vs. "all loaded" comparisons Decoding = parsing a sequence into the optimal series of hidden states GIVEN a HMM M, and a sequence x, 	ARSING
	- FIND the sequence π^* of states that maximizes P[x, $\pi \mid M$]	ב
	Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path	
3.	Model evaluation = total probability of a sequence, summed across all paths	
	– GIVEN a HMM M, a sequence x	C
	 FIND the total probability P[x M] summed across all paths 	SCORING
	Forward algorithm, sum score over all paths (same result as backward)	R
4.	State likelihood = total probability that emission x _i came from state k, across all paths	0
	– GIVEN a HMM M, a sequence x	U
	- FIND the total probability $P[\pi_i = k x, M)$	0
_	→ Posterior decoding: run forward & backward algorithms to & from state π_1 =k	
5.		
	- GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x, - FIND parameters θ = (Ei, Aij) that maximize P[x θ]	C
	 Simply count frequency of each emission and transition observed in the training data 	ž
6.		ARNIN
	 Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate 	Щ

3. Model evaluation: Total P(x|M), summed over all paths

Forward algorithm

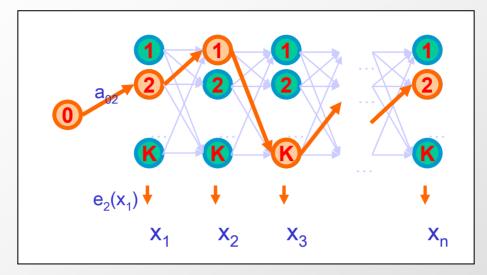
Simple: Given the model, generate some sequence x



Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi 1 \pi 2}$
- 4. ... until emitting x_n

Complex: Given x, was it generated by the model?



Given a sequence x,

What is the probability that x was generated by the model (using any path)?

$$- P(x) = \sum_{\pi} P(x,\pi)$$

- Challenge: exponential number of paths
- (cheap) alternative:
 - Calculate probability over maximum (Viterbi) path π^*
- (real) solution
 - Calculate sum iteratively using dynamic programming

The Forward Algorithm – derivation

Define the forward probability:

 $f_{I}(i) = P(x_{1}...x_{i}, \pi_{i} = I)$

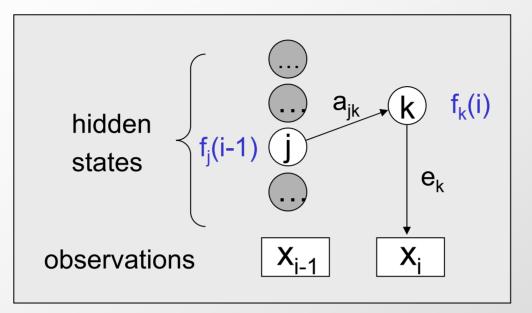
$$= \sum_{\pi_{1}...\pi_{i-1}} P(\mathbf{x}_{1}...\mathbf{x}_{i-1}, \pi_{1}, ..., \pi_{i-2}, \pi_{i-1}, \pi_{i} = I) \mathbf{e}_{I}(\mathbf{x}_{i})$$

=
$$\Sigma_{k} \sum_{\pi_{1...\pi_{i-2}}} P(x_{1...}x_{i-1}, \pi_{1}, \dots, \pi_{i-2}, \pi_{i-1} = k) | a_{kl} e_{l}(x_{i-1}) | a_{kl} e_{l}(x_{i-1$$

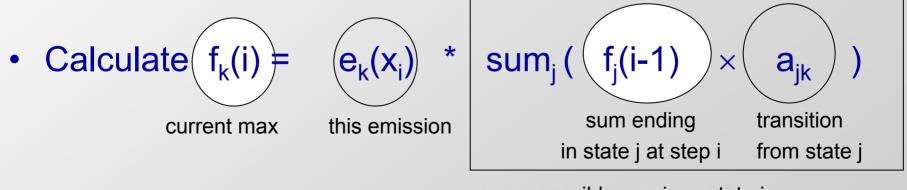
$$= \sum_{k} f_{k}(i-1) a_{kl} e_{l}(x_{i})$$

 $= \mathbf{e}_{\mathsf{I}}(\mathsf{x}_{\mathsf{i}}) \Sigma_{\mathsf{k}} \mathbf{f}_{\mathsf{k}}(\mathsf{i-1}) \mathbf{a}_{\mathsf{k}\mathsf{I}}$

Calculate total probability $\Sigma_{\pi} P(x,\pi)$ recursively

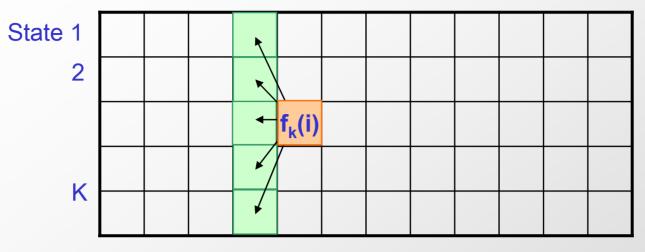


Assume we know f_i for the previous time step (i-1)



every possible previous state j

The Forward Algorithm



 $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \dots \quad \mathbf{x}_N$

Input: x = x1.....xN

Initialization:

 $f_0(0)=1$, $f_k(0)=0$, for all k > 0

Iteration:

 $f_k(i) = e_k(x_i) \times sum_j a_{jk} f_j(i-1)$

Termination:

 $P(x, \pi^*) = sum_k f_k(N)$

In practice:

Sum of log scores is difficult

- \rightarrow approximate exp(1+p+q)
- \rightarrow scaling of probabilities

Running time and space:

Time:O(K²N)Space:O(KN)

Summary

- Generative model
 - Hidden states
 - Observed sequence
- 'Running' the model
 - Generate a random sequence
- Observing a sequence
 - What is the most likely path generating it?
 - Viterbi algorithm
 - What is the total probability generating it?
 - Sum probabilities over all paths
 - Forward algorithm
- Next: Classification
 - What is the probability that "CGGTACG" came from CpG+ ?

The main questions on HMMs

- 1. Scoring = Joint probability of a sequence and a path, given the model
 - GIVEN a HMM M, a path π , and a sequence x,
 - FIND Prob[x, π | M]
 - → "Running the model", simply multiply emission and transition probabilities
 - → Application: "all fair" vs. "all loaded" comparisons
- 2. **Decoding** = parsing a sequence into the optimal series of hidden states
 - GIVEN a HMM M, and a sequence x,
 - FIND the sequence π^* of states that maximizes P[x, $\pi \mid M$]
 - → Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
- **3.** Model evaluation = total probability of a sequence, summed across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability P[x | M] summed across all paths
 - → Forward algorithm, sum score over all paths (same result as backward)
- **4. State likelihood** = total probability that emission x_i came from state k, across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability $P[\pi_i = k | x, M)$
 - → Posterior decoding: run forward & backward algorithms to & from state $\pi_1 = k$
- 5. Supervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - FIND parameters θ = (Ei, Aij) that maximize P[x | θ]
 - → Simply count frequency of each emission and transition observed in the training data
- 6. Unsupervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - FIND parameters θ = (Ei, Aij) that maximize P[x | θ]
 - → Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 - → Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

4. State likelihood

Find the likelihood an emission x_i is generated by a state

Calculate P(π₇**=** CpG+ | **x**₇**=G**)

- With no knowledge (no characters)
 - $P(\pi_i = k) = most likely state (prior)$
 - Time spent in markov chain states
- With very little knowledge (just that character) $- P(\pi_i = k | x_i = G) = (prior) * (most likely emission)$
 - Emission probabilities adjusted for time spent
- With knowledge of entire sequence (all characters)

 P(π_i=k | x=AGCGCG...GATTATCGTCGTA)
 Sum over all paths that emit 'G' at position 7
 - → Posterior decoding

Motivation for the Backward Algorithm

We want to compute

 $P(\pi_i = k | x)$, the probability distribution on the ith position, given x

We start by computing

$$P(\pi_{i} = k, x) = P(x_{1}...x_{i}, \pi_{i} = k, x_{i+1}...x_{N})$$

= P(x_{1}...x_{i}, \pi_{i} = k) P(x_{i+1}...x_{N} | x_{1}...x_{i}, \pi_{i} = k)
= P(x_{1}...x_{i}, \pi_{i} = k) P(x_{i+1}...x_{N} | \pi_{i} = k)

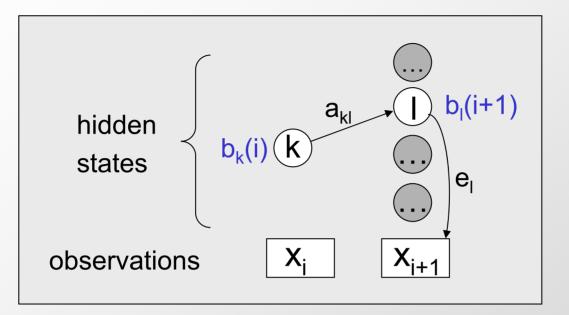
Forward, $f_k(i)$ Backward, $b_k(i)$

The Backward Algorithm – derivation

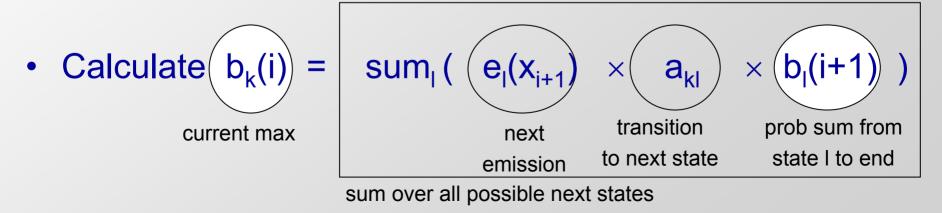
Define the backward probability:

$$\begin{split} b_{k}(i) &= \mathsf{P}(\mathsf{x}_{i+1}...\mathsf{x}_{\mathsf{N}} \mid \pi_{i} = \mathsf{k}) \\ &= \sum_{\pi i+1...\pi \mathsf{N}} \mathsf{P}(\mathsf{x}_{i+1}, \mathsf{x}_{i+2}, \, \dots, \, \mathsf{x}_{\mathsf{N}}, \, \pi_{i+1}, \, \dots, \, \pi_{\mathsf{N}} \mid \pi_{i} = \mathsf{k}) \\ &= \sum_{\mathsf{I}} \sum_{\pi i+1...\pi \mathsf{N}} \mathsf{P}(\mathsf{x}_{i+1}, \mathsf{x}_{i+2}, \, \dots, \, \mathsf{x}_{\mathsf{N}}, \, \pi_{i+1} = \mathsf{I}, \, \pi_{i+2}, \, \dots, \, \pi_{\mathsf{N}} \mid \pi_{i} = \mathsf{k}) \\ &= \sum_{\mathsf{I}} \mathsf{e}_{\mathsf{I}}(\mathsf{x}_{i+1}) \mathsf{a}_{\mathsf{k}\mathsf{I}} \underbrace{\sum_{\pi i+1...\pi \mathsf{N}} \mathsf{P}(\mathsf{x}_{i+2}, \, \dots, \, \mathsf{x}_{\mathsf{N}}, \, \pi_{i+2}, \, \dots, \, \pi_{\mathsf{N}} \mid \pi_{i+1} = \mathsf{I})}_{\mathsf{I}} \\ &= \sum_{\mathsf{I}} \mathsf{e}_{\mathsf{I}}(\mathsf{x}_{i+1}) \mathsf{a}_{\mathsf{k}\mathsf{I}} \underbrace{\mathsf{b}_{\mathsf{I}}(\mathsf{i}+1)}_{\mathsf{I}} \end{split}$$

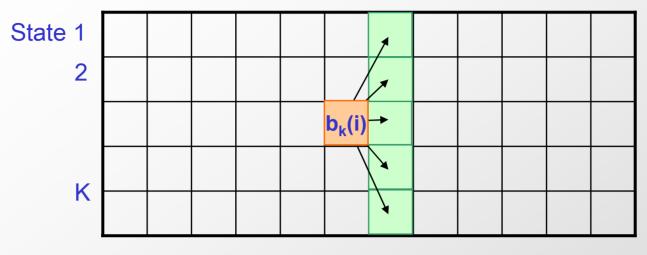
Calculate total end probability recursively



Assume we know b₁ for the next time step (i+1)



The Backward Algorithm



 $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \dots \quad \mathbf{x}_N$

Input:
$$x = x1....xN$$

Initialization:

 $b_k(N) = a_{k0}$, for all k

Iteration:

 $b_k(i) = \sum_i e_i(x_{i+1}) a_{ki} b_i(i+1)$

Termination:

 $P(x) = \sum_{i} a_{0i} e_{i}(x_{1}) b_{i}(1)$

In practice:

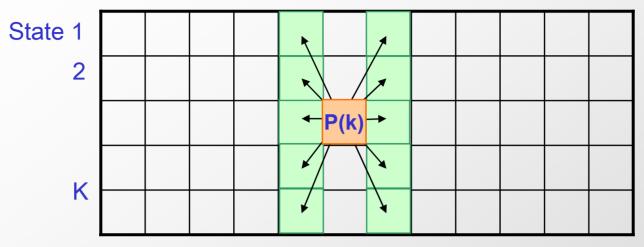
Sum of log scores is difficult

- \rightarrow approximate exp(1+p+q)
- \rightarrow scaling of probabilities

Running time and space:

Time:O(K²N)Space:O(KN)

Putting it all together: Posterior decoding



 $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \dots \quad \mathbf{x}_N$

- $P(k) = P(\pi_i = k \mid x) = f_k(i)^* b_k(i) / P(x)$
 - Probability that ith state is k, given all emissions x
- Posterior decoding
 - Define most likely state for every of sequence x
 - $-\pi_i^* = \operatorname{argmax}_k P(\pi_i = k \mid x)$
- Posterior decoding 'path' π_i^{*}
 - For classification, more informative than Viterbi path π^*
 - More refined measure of "which hidden states" generated x
 - However, it may give an invalid sequence of states
 - Not all $j \rightarrow k$ transitions may be possible

Summary

- Generative model
 - Hidden states
 - Observed sequence
- 'Running' the model
 - Generate a random sequence
- Observing a sequence
 - What is the most likely path generating it?
 - Viterbi algorithm
 - What is the total probability generating it?
 - · Sum probabilities over all paths
 - Forward algorithm
- Classification
 - What is the probability that "CGGTACG" came from CpG+ ?
 - Forward + backward algorithm
 - What is the most probable state for every position
 - Posterior decoding

The main questions on HMMs

- **1. Scoring** = Joint probability of a sequence and a path, given the model
 - GIVEN a HMM M. a path π , and a sequence x,
 - Prob[x, π | M] FIND
 - → "Running the model", simply multiply emission and transition probabilities
 - → Application: "all fair" vs. "all loaded" comparisons
- 2. **Decoding** = parsing a sequence into the optimal series of hidden states
 - GIVEN a HMM M. and a sequence x.
 - the sequence π^* of states that maximizes P[x, π | M] FIND
 - → Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
- **Model evaluation** = total probability of a sequence, summed across all paths 3.
 - GIVEN a HMM M. a sequence x
- GIVEN a HMM M, a sequence x
 FIND the total probability P[x | M] summed across all paths
 Forward algorithm, sum score over all paths (same result as backward)
 State likelihood = total probability that emission x_i came from state k, across all paths
 GIVEN a HMM M, a sequence x
 FIND the total probability P[π_i = k | x, M) 4.

 - \rightarrow Posterior decoding: run forward & backward algorithms to & from state $\pi_1 = k$
- **Supervised learning =** optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - parameters θ = (Ei, Aij) that maximize P[x | θ]
 - \rightarrow
- 6. **Unsupervised learning** = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - parameters θ = (Ei, Aij) that maximize P[x | θ]
 - \rightarrow
 - ->

PARSING

5: Supervised learning

Estimate model parameters based on **labeled** training data

Two learning scenarios

Case 1. Estimation when the "right answer" is known

Examples:

- GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands
- GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

Case 2. Estimation when the "right answer" is unknown

Examples:

- GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition
- GIVEN: 10,000 rolls of the casino player, but we don't see when he changes dice
- **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$

Case 1. When the right answer is known

Given $x = x_1...x_N$ for which the true $\pi = \pi_1...\pi_N$ is known,

Define:

A _{kl}	= # times k \rightarrow I transition occurs in π
E _k (b)	= # times state k in π emits b in x

We can show that the maximum likelihood parameters $\boldsymbol{\theta}$ are:

$$a_{kl} = \frac{A_{kl}}{\sum_{i} A_{ki}} \qquad e_{k}(b) = \frac{E_{k}(b)}{\sum_{c} E_{k}(c)}$$

Case 1. When the right answer is known

Intuition: When we know the underlying states, Best estimate is the average frequency of transitions & emissions that occur in the training data

Drawback:

Given little data, there may be <u>overfitting</u>: $P(x|\theta)$ is maximized, but θ is unreasonable **0 probabilities – VERY BAD**

Example:

Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3 $\pi = F, F, F, F, F, F, F, F, F$

Then:

$$\begin{array}{ll} a_{FF} = 1; & a_{FL} = 0 \\ e_F(1) = e_F(3) = .2; \\ e_F(2) = .3; \ e_F(4) = 0; \ e_F(5) = e_F(6) = .1 \end{array}$$

Pseudocounts

Solution for small training sets:

Add pseudocounts

 A_{kl} = # times k \rightarrow I transition occurs in π + r_{kl} $E_k(b)$ = # times state k in π emits b in x+ $r_k(b)$

 r_{kl} , $r_k(b)$ are pseudocounts representing our prior belief

Larger pseudocounts \Rightarrow Strong priof belief

Small pseudocounts ($\epsilon < 1$): just to avoid 0 probabilities

Pseudocounts

Example: dishonest casino

We will observe player for one day, 500 rolls

Reasonable pseudocounts:

$$\begin{split} r_{0F} &= r_{0L} = r_{F0} = r_{L0} = 1; \\ r_{FL} &= r_{LF} = r_{FF} = r_{LL} = 1; \\ r_{F}(1) &= r_{F}(2) = \dots = r_{F}(6) = 20 \\ fair) \\ r_{F}(1) &= r_{F}(2) = \dots = r_{F}(6) = 5 \\ loaded) \end{split}$$
 (strong belief fair is for loaded)

Above #s pretty arbitrary – assigning priors is an art

The main questions on HMMs

1. Scoring = Joint probability of a sequence and a path, given the model

- GIVEN a HMM M, a path π , and a sequence x,
- FIND Prob[x, $\pi \mid M$]
- → "Running the model", simply multiply emission and transition probabilities
- → Application: "all fair" vs. "all loaded" comparisons
- 2. **Decoding** = parsing a sequence into the optimal series of hidden states
 - GIVEN a HMM M, and a sequence x,
 - FIND the sequence π^* of states that maximizes P[x, $\pi \mid M$]
 - → Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
- **3.** Model evaluation = total probability of a sequence, summed across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability P[x | M] summed across all paths
 - → Forward algorithm, sum score over all paths (same result as backward)

4. State likelihood = total probability that emission x_i came from state k, across all paths

- GIVEN a HMM M, a sequence x
- FIND the total probability $P[\pi_i = k | x, M)$
- → Posterior decoding: run forward & backward algorithms to & from state $\pi_1 = k$
- 5. Supervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - FIND parameters θ = (Ei, Aij) that maximize P[x | θ]
 - → Simply count frequency of each emission and transition observed in the training data
- 6. Unsupervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - FIND parameters θ = (Ei, Aij) that maximize P[x | θ]
 - → Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 - → Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

6: Unsupervised learning

Estimate model parameters based on **unlabeled** training data

Learning case 2. When the right answer is unknown

We don't know the true A_{kl} , $E_k(b)$

Idea:

- We estimate our "best guess" on what A_{kl} , $E_k(b)$ are
- We update the parameters of the model, based on our guess
- We repeat

Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters θ :

Given $x = x_1...x_N$ for which the true $\pi = \pi_1...\pi_N$ is unknown,

We can get to a provably more likely parameter set $\boldsymbol{\theta}$

Principle: EXPECTATION MAXIMIZATION

- 1. Estimate A_{kl} , $E_k(b)$ in the training data
- 2. Update θ according to A_{kl} , $E_k(b)$
- 3. Repeat 1 & 2, until convergence

Estimating new parameters

To estimate **A**_{kl}:

At each position i of sequence x,

Find probability transition $k \rightarrow I$ is used:

 $\mathsf{P}(\pi_{i} = \mathsf{k}, \ \pi_{i+1} = \mathsf{I} \mid \mathsf{x}) = [\mathsf{1}/\mathsf{P}(\mathsf{x})] \times \mathsf{P}(\pi_{i} = \mathsf{k}, \ \pi_{i+1} = \mathsf{I}, \ \mathsf{x}_{1}...\mathsf{x}_{\mathsf{N}}) = \mathsf{Q}/\mathsf{P}(\mathsf{x})$

where Q = P(x₁...x_i,
$$\pi_i = k$$
, $\pi_{i+1} = l$, $x_{i+1}...x_N$) =
= P($\pi_{i+1} = l$, $x_{i+1}...x_N \mid \pi_i = k$) P($x_1...x_i$, $\pi_i = k$) =
= P($\pi_{i+1} = l$, $x_{i+1}x_{i+2}...x_N \mid \pi_i = k$) f_k(i) =
= P($x_{i+2}...x_N \mid \pi_{i+1} = l$) P($x_{i+1} \mid \pi_{i+1} = l$) P($\pi_{i+1} = l \mid \pi_i = k$) f_k(i) =
= b_l(i+1) e_l(x_{i+1}) a_{kl} f_k(i)

So: $P(\pi_i = k, \pi_{i+1} = I \mid x, \theta) = \frac{f_k(i) a_{kl} e_l(x_{i+1}) b_l(i+1)}{P(x \mid \theta)}$ (For one such transition, at time step $i \rightarrow i+1$)

Estimating new parameters

(Sum over all $k \rightarrow I$ transitions, at any time step i) So,

 $\mathsf{A}_{\mathsf{k}\mathsf{l}} = \sum_{j} \mathsf{P}(\pi_{\mathsf{i}} = \mathsf{k}, \ \pi_{\mathsf{i}+1} = \mathsf{I} \mid \mathsf{x}, \ \theta) = \sum_{j} \frac{\mathsf{f}_{\mathsf{k}}(\mathsf{i}) \ \mathsf{a}_{\mathsf{k}\mathsf{l}} \ \mathsf{e}_{\mathsf{l}}(\mathsf{x}_{\mathsf{i}+1}) \ \mathsf{b}_{\mathsf{l}}(\mathsf{i}+1)}{\mathsf{P}(\mathsf{x} \mid \theta)}$

Similarly,

$$E_{k}(b) = [1/P(x)]\sum_{i \mid xi = b} f_{k}(i) b_{k}(i)$$

Estimating new parameters

(Sum over all training seqs, all $k \rightarrow I$ transitions, all time steps i)

If we have several training sequences, x^1 , ..., x^M , each of length N,

 $\begin{aligned} & f_{k}(i) \ a_{kl} \ e_{l}(x_{i+1}) \ b_{l}(i+1) \\ & A_{kl} = \sum_{X} \ \sum_{j} \ P(\pi_{i} = k, \ \pi_{i+1} = I \mid x, \ \theta) = \sum_{X} \ \sum_{j} \frac{1}{P(x \mid \theta)} \end{aligned}$

Similarly,

$$E_{k}(b) = \sum_{X} (1/P(x)) \sum_{\{i \mid x_{i} = b\}} f_{k}(i) b_{k}(i)$$

The Baum-Welch Algorithm

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

- 1. Forward
- 2. Backward
- 3. Calculate A_{kl} , $E_k(b)$
- 4. Calculate new model parameters a_{kl} , $e_k(b)$
- 5. Calculate new log-likelihood $P(x \mid \theta)$

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x \mid \theta)$ does not change much

The Baum-Welch Algorithm – comments

Time Complexity:

iterations \times O(K²N)

Guaranteed to increase the log likelihood of the model

 $P(\theta \mid x) = P(x, \theta) / P(x) = P(x \mid \theta) / (P(x) P(\theta))$

• Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

Too many parameters / too large model:
 Overtraining

Alternative: Viterbi Training

Initialization: Same

Iteration:

- 1. Perform Viterbi, to find π^*
- 2. Calculate A_{kl} , $E_k(b)$ according to π^* + pseudocounts
- 3. Calculate the new parameters a_{kl} , $e_k(b)$

Until convergence

Notes:

- Convergence is guaranteed Why?
- Does not maximize $P(x | \theta)$
- In general, worse performance than Baum-Welch

The main questions on HMMs

- **1. Scoring** = Joint probability of a sequence and a path, given the model
 - GIVEN a HMM M, a path π , and a sequence x,
 - FIND Prob[x, $\pi \mid M$]
 - → "Running the model", simply multiply emission and transition probabilities
 - → Application: "all fair" vs. "all loaded" comparisons
- 2. **Decoding** = parsing a sequence into the optimal series of hidden states
 - GIVEN a HMM M, and a sequence x,
 - FIND the sequence π^* of states that maximizes P[x, π | M]
 - → Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
- 3. Model evaluation = total probability of a sequence, summed across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability P[x | M] summed across all paths
 - → Forward algorithm, sum score over all paths (same result as backward)
- 4. State likelihood = total probability that emission x_i came from state k, across all paths
 - GIVEN a HMM M, a sequence x
 - FIND the total probability $P[\pi_i = k | x, M)$
 - → Posterior decoding: run forward & backward algorithms to & from state $\pi_1 = k$
- 5. Supervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - FIND parameters θ = (Ei, Aij) that maximize P[x | θ]
 - → Simply count frequency of each emission and transition observed in the training data
- 6. Unsupervised learning = optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - FIND parameters θ = (Ei, Aij) that maximize P[x | θ]
 - → Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 - → Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate

SCORING

LEARNING

PARSING

The main questions on HMMs: Pop quiz

- **1. Scoring** = Joint probability of a sequence and a path, given the model
 - GIVEN a HMM M. a path π , and a sequence x,
 - FIND Prob[x, π | M]
 - → "Running the model", simply multiply emission and transition probabilities
 - → Application: "all fair" vs. "all loaded" comparisons
- 2. **Decoding** = parsing a sequence into the optimal series of hidden states
 - GIVEN a HMM M. and a sequence x.
 - the sequence π^* of states that maximizes P[x, π | M] FIND
 - → Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path
- 3. **Model evaluation** = total probability of a sequence, summed across all paths
 - GIVEN a HMM M, a sequence x
- GIVEN a HMM M, a sequence x
 FIND the total probability P[x | M] summed across all paths
 Forward algorithm, sum score over all paths (same result as backward)
 State likelihood = total probability that emission x_i came from state k, across all paths O
 GIVEN a HMM M, a sequence x
 FIND the total probability P[π_i = k | x, M) 4.

 - FIND the total probability $P[\pi_i = k | x, M)$
 - \rightarrow Posterior decoding: run forward & backward algorithms to & from state $\pi_1 = k$
- 5. **Supervised learning =** optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x,
 - FIND parameters θ = (Ei, Aij) that maximize P[x | θ]
 - → Simply count frequency of each emission and transition observed in the training data
- 6. **Unsupervised learning =** optimize parameters of a model given training data
 - GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x,
 - parameters θ = (Ei, Aij) that maximize P[x | θ] FIND
 - → Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate
 - Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate **→**

PARSING

What have we learned ?

- Generative model
 - Hidden states / Observed sequence
- 'Running' the model
 - Generate a random sequence
- Observing a sequence
 - What is the most likely path generating it?
 - Viterbi algorithm
 - What is the total probability generating it?
 - Sum probabilities over all paths
 - Forward algorithm
- Classification
 - What is the probability that "CGGTACG" came from CpG+ ?
 - Forward + backward algorithm
 - What is the most probable state for every position
 - Posterior decoding
- Training
 - Estimating parameters of the HMM
 - When state sequence is known
 - Simply compute maximum likelihood A and E
 - When state sequence is not known
 - Baum-Welch: Iterative estimation of all paths / frequencies
 - Viterbi training: Iterative estimation of best path / frequencies