6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Computational Biology: Genomes, Networks, Evolution

Computational Gene Prediction and Generalized Hidden Markov Models

Lecture 8

September 30, 2008

Today

Gene Prediction Overview

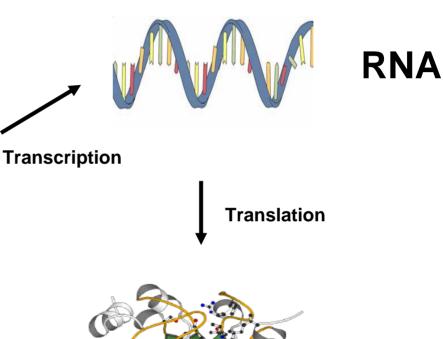
- HMMs for Gene Prediction
- GHMMs for Gene Prediction

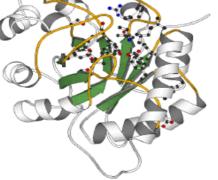
• Genscan

Genome Annotation

Genome Sequence

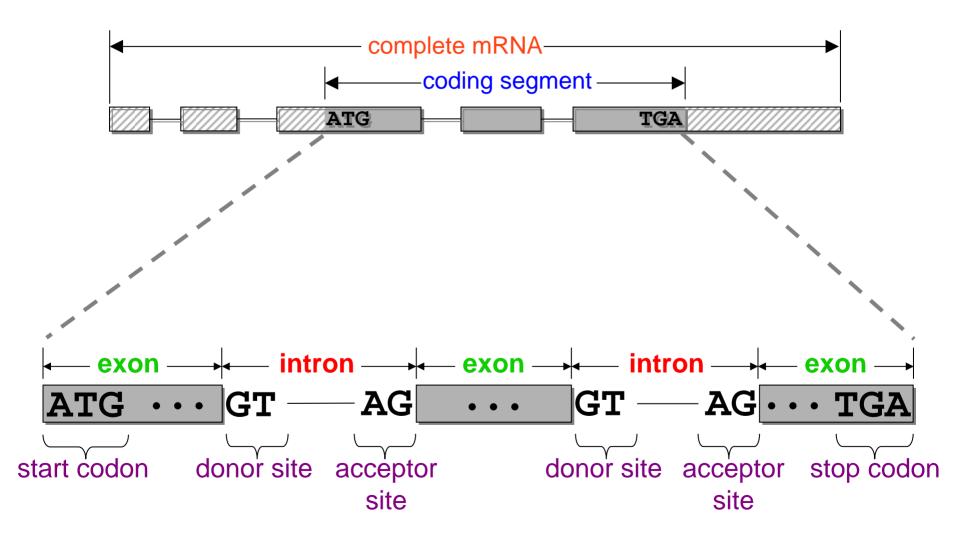
> HSCKIIBE, Human gene for casein kinase II subunit beta (EC 2.7.1.37). qqqqctqaqatqtaaattaqaqqaqctqqaqaqqqqtqcttcaqaqtttqqqttqctttaaqaaaqqqt ggttccgaattctcccgtggttggagggccgaatgtgggaggaggaggataccagaggcagggaagga qaacttqaqctttactqacactqttctttttctaqctqacqtqaaqatqaqcaqctcaqaqqaqqtqtc ctggatttcctggttctgtgggctccgtggcaatgaattcttctgtgaagtgagttctcttcaacctcc ctacttgccagettcacatatettcccaceagacgttcettcacatattccacttetacactgttetet aaaqcttttatqqqaqaqaqtqtaqqtqaactaqqqaqaqacacaaqtacttctqctqaqttqqqaqtq agaaacaagcacaacagatgcagttgtgttgatgataaggcatcacttagagcattttgcccaggtcaa agatgaggattttgatatgggttccctcttggcttccatgtcctgacaggtggatgaagactacatcca ggacaaatttaatcttactggactcaatgagcaggtccctcactatcgacaagctctagacatgatctt atctctattcacttqcctqaattttqccaaatttcctttqqttctctqatttctttaaccccaaattca tgctttattttgatcctccacctgactcttgtctagttttgtgacgtatatcacttgttctcatgtttt tgcaagggtcagaagcccaggtttctgggtcccatgcccagatgttggatggggtaaggcccaaaagta ggtgctaggcaaactgaatagcccgcagcccctggatatgggcagggcacctaggaaagctgaaaaaca agtagttgcatttggccgggctgtggttcagatgaagaactggaagacaaccccaaccagagtgacctg attgagcagccgagatgctttatggattgatccacgcccgctacatccttaccaaccgtggcatc gcccagatggtgaggcctctctgctcctacctgcctccttctgagcagtaagagacacaggttcctgca ccctgccctaatttggaagaaaggcaacacagaagtttgagagcccatctagtccagagaagggggcct ctggacagagttggaaggagtgccgacagagttggtatgggttgggctgcgaagggagttgcctcttct ttacatctacctgccaaccccttccattgtattcacctcagttggaaaagtaccagcaaggagactttg gttactgtcctcgtgtgtgtactgtgagaaccagccaatgcttcccattGgtgagtgttgaagaagggaaa ggaaagcaccgtgtggcagtcttatgggaaggagttggggctcaacacattggagcctgagtcctgagg ggaggttaggtaggaatagggggatacctggcctgctgagtctggctgtctcccaggcctttcagacat cccaggtgaagccatggtgaagctctactgccccaagtgcatggatgtgtacacacccaagtcatcaag acaccatcacacggatggcgcctacttcggcactggtttccctcacatgctcttcatggtgcatcccga gtaccggcccaagagacctgccaaccagtttgtgcccaggtagggagcagggagagtcattaagggtca cagaatcagggcatctccctgctgagtgactgtgggaaagttatttgattatctgtgcttgagttacct taltgtagaatgttcttgagctgagaagttgggaaccacgaggctttagctctgagcaggtccatagag gagetcaggtgggggggggggggaatgcaggtgactggcagggcctggatggggctcatgctgctgctct tttgtcttttcctttctttttgccaccctttcaggaaccctgtatggtttttagtttaaattaaagga gtcgttatcgtggtgggaatatgaaataaagtagaagaaaaggccatgagctagtctgctggtgcttgc gaaggggggggggggggggggggggccatggaaatcgggctccacggcccagggatgg





Protein

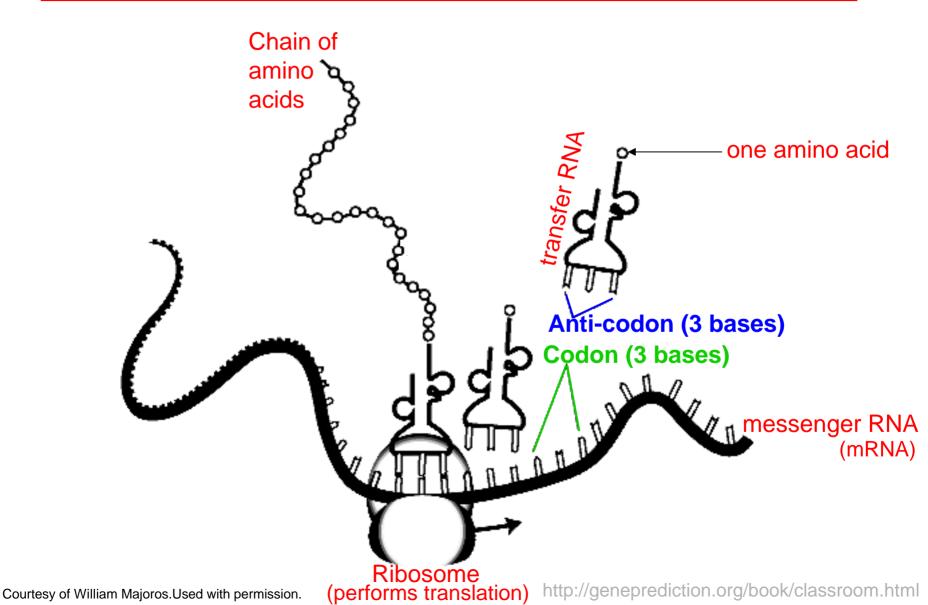
Eukaryotic Gene Structure



Courtesy of William Majoros. Used with permission.

http://geneprediction.org/book/classroom.html

Translation



Genetic Code

Acid	Codons	Acid	Codons	Acid	Codons	Acid	Codons
A	GCA GCC GCG GCT	G	GGA GGC GGG GGT	М	ATG	S	AGC AGT TCA TCC TCG TCT
С	TGC TGT	Н	CAC CAT	N	AAC AAT	Т	ACA ACC ACG ACT
D	GAC GAT	Ι	ATA ATC ATT	Р	CCA CCC CCG CCT	V	GTA GTC GTG GTT
E	GAA GAG	K	AAA AAG	Q	CAA CAG	W	TGG
F	TTC TTT	L	CTA CTC CTG CTT TTA	R	AGA AGG CGA CGC CGG CGT	Y	TAC TAT

Each amino acid is encoded by one or more *codons*.

Each codon encodes a single *amino acid*.

The *third position* of the codon is the most likely to vary, for a given amino acid.

Figure by MIT OpenCourseWare.

Gene Prediction as "Parsing"

- Given a genome sequence, we wish to label each nucleotide according to the parts of genes
 - Exon, intron, intergenic, etc
- The sequence of labels must follow the syntax of genes
 - e.g. exons must be followed by introns or intergenic not by other exons
- We wish to find the optimal parsing of a sequence by some measure

Features

A *feature* is any DNA subsequence of biological significance.

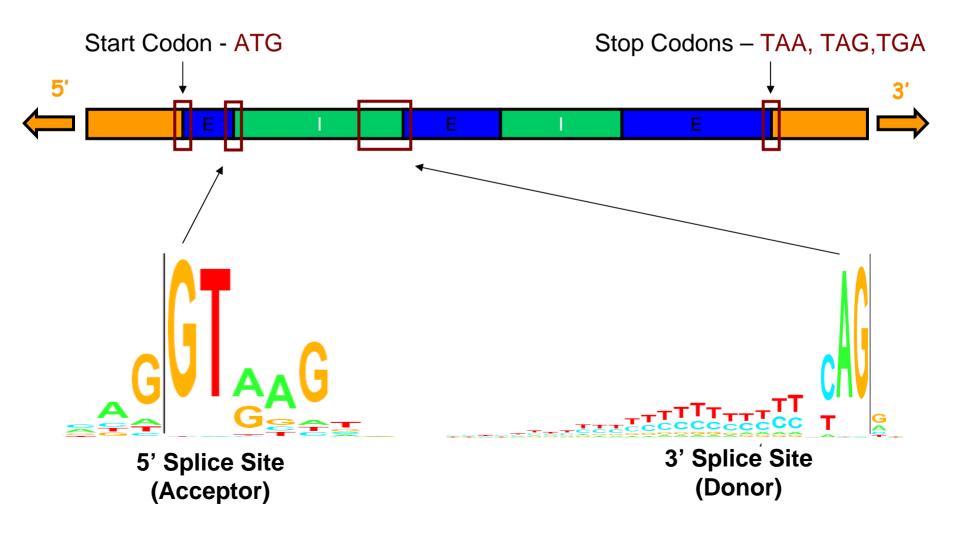
For practical reasons, we recognize two broad classes of features:

signals — short, fixed-length features

content regions — variable-length features

Signals

Associated with short fixed(-ish) length sequences



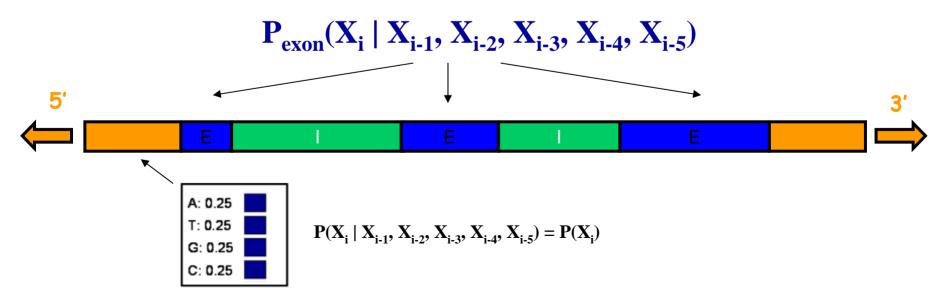
Content Regions

Content regions often have characteristic base composition

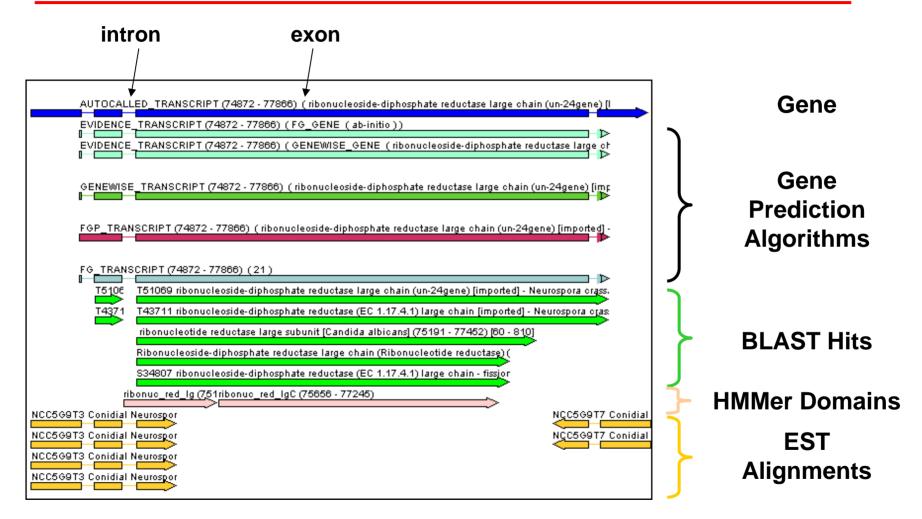
Example

- Recall: often multiple codons for each amino acid
- All codons are not used equally

Characteristic higher order nucleotide statistics in coding sequences (hexanucleotides)



Extrinsic Evidence



Neurospora crassa (a fungus)

HMMs for Gene Prediction

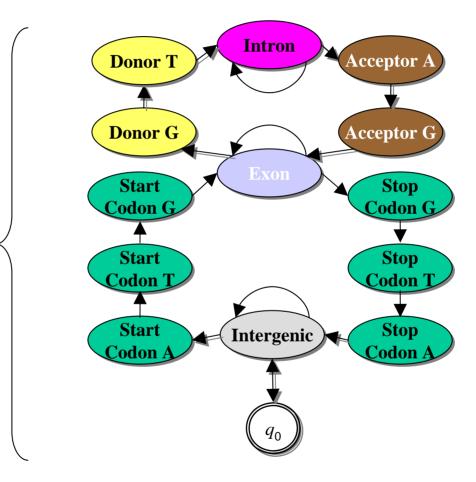
• States correspond to gene and genomic regions (exons, introns, intergenic, etc)

• State transitions ensure legal parses

• Emission matrices describe nucleotide statistics for each state

A (Very) Simple HMM

the Markov model:

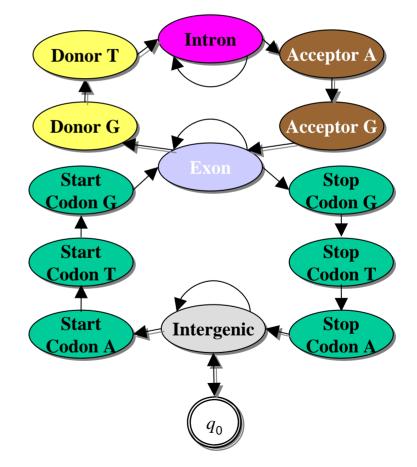


Courtesy of William Majoros. Used with permission. http://geneprediction.org/book/classroom.html

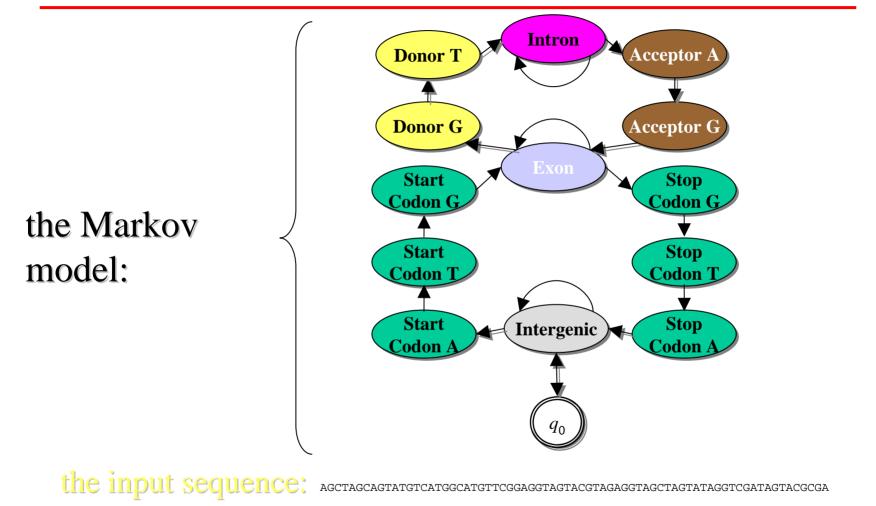
A Generative Model

We can use this HMM to generate a sequence <u>and</u> state labeling

- The initial state is q₀
- Choose a subsequent state, conditioned on the current state, according to a_{jk}=P(q_k|q_j)
- Choose a nucleotide to emit from the state emissions matrix e_k(X_i)
- Repeat until number of nucleotides equals desired length of sequence



But We Usually Have the Sequence



What is the best state labeling?

Courtesy of William Majoros. Used with permission.

http://geneprediction.org/book/classroom.html

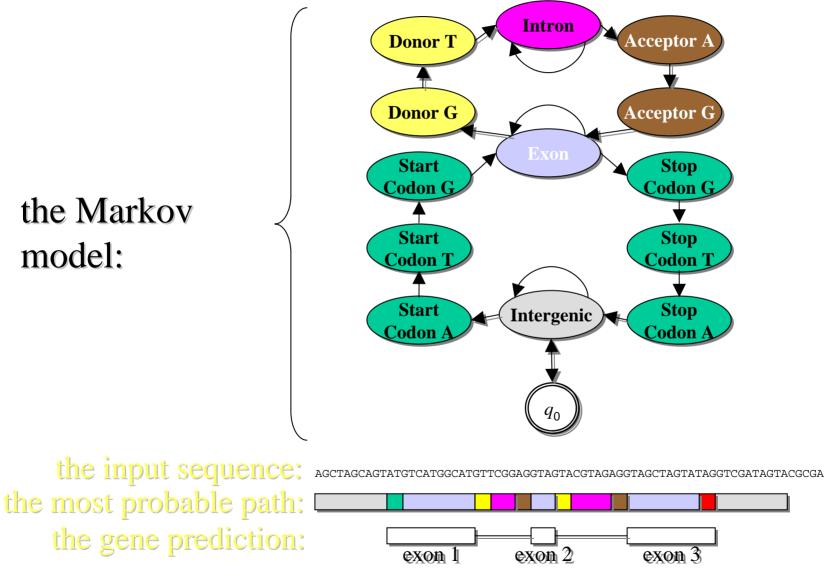
Finding The Most Likely Path

- A sensible choice is to choose π that maximizes P[π |x]
- This is equivalent to finding path π* that maximizes total joint probability P[x, π]:

$$P(\mathbf{x},\pi) = \underbrace{\mathbf{a}_{0\pi_{1}}}_{\text{start}} * \prod_{i} \underbrace{\mathbf{e}_{\pi_{i}}(\mathbf{x}_{i})}_{\text{emission}} \times \underbrace{\mathbf{a}_{\pi_{i}\pi_{i+1}}}_{\text{transition}}$$

How do we select π * efficiently?

A (Very) Simple HMM



Courtesy of William Majoros. Used with permission.

http://geneprediction.org/book/classroom.html

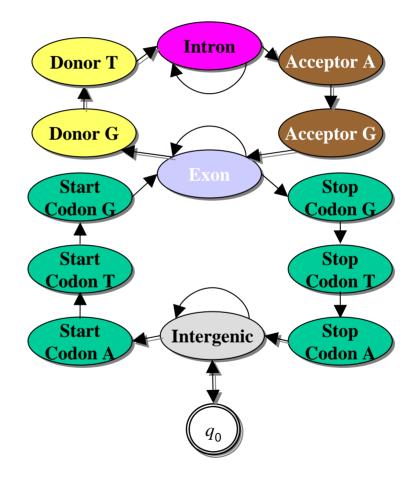
A Real HMM Gene Predictor

Title page of journal article removed due to copyright restrictions. The article is the following:

Krogh, Anders, I. Saira Mian, and David Haussler. "A Hidden Markov Model That Finds Genes in *E.coli* DNA." Nucleic Acids Research 22, no. 22 (1994): 4768-4778.

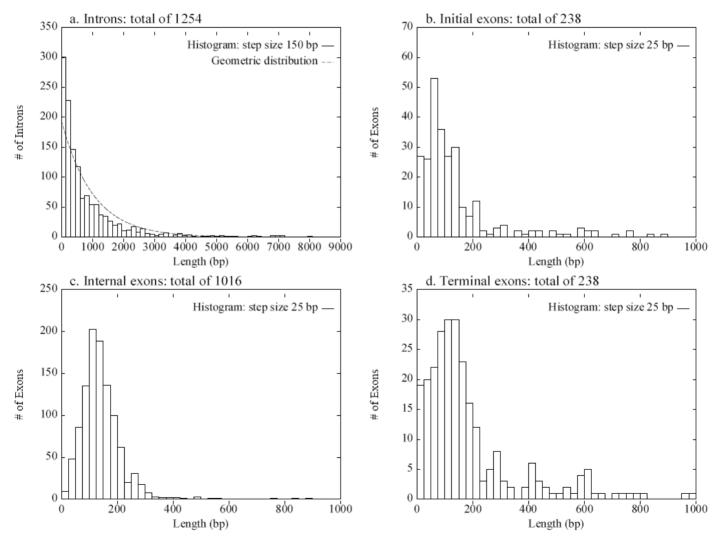
HMM Limitations

The HMM framework imposes constraints on state paths...



Human Exon Lengths

Fig. 1. Length distributions of introns and exons in human genes



Legend. Intron, exon length data from 238 multi-exon genes of GENSCAN learning set (Appendix A).

Burge, MIT PhD Thesis

Courtesy of Christopher Burge. Used with permission.

Fungal Intron Lengths

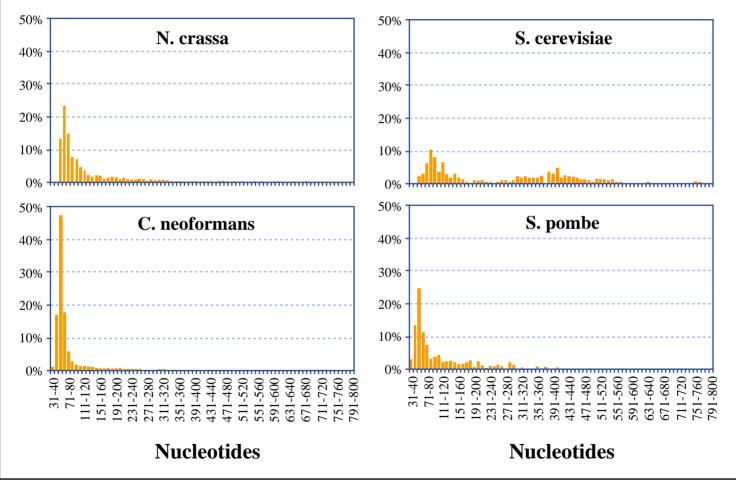
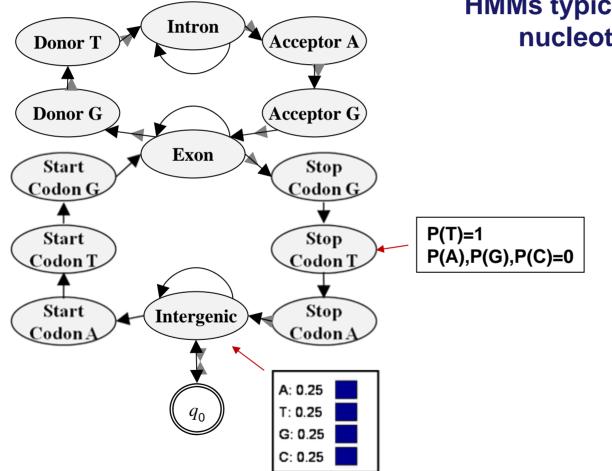


Figure by MIT OpenCourseWare.

Kupfer et al., (2004) Eukaryotic Cell

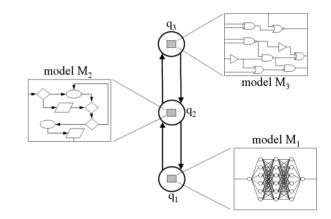
HMM Emissions



HMMs typically emit a single nucleotide per state

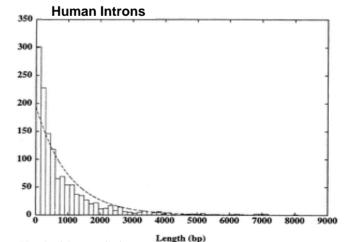
Generalized HMMs (GHMMs)

- GHMMs emit more than one symbol per state
- Emissions probabilities modeled by any arbitrary probabilistic model
- Feature lengths are explicitly modeled



W.H. Majaros (http://geneprediction.org/book/classroom.html)

Courtesy of William Majoros. Used with permission.



Courtesy of Elsevier, Inc.

http://www.sciencedirect.com. Used with permission.

of Introns

GHMM Elements

- States
- Observations
- Initial state probabilities
- Transition Probabilities

Q
V
$$V_{i} = P(q_0=i)$$

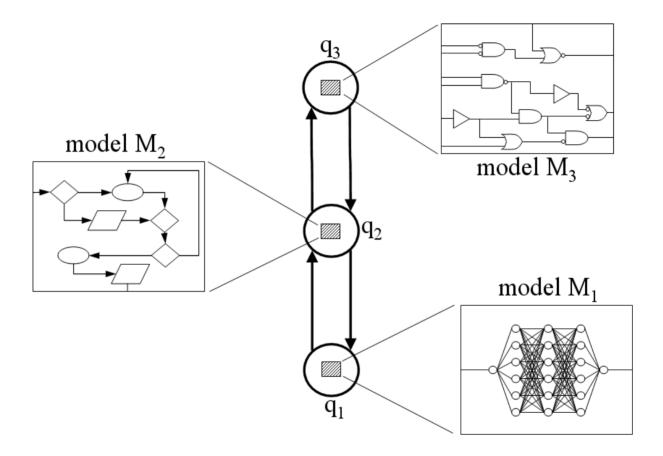
 $a_{ik} = P(q_i=k|q_{i-1}=j)$
Like
HMMS

٦

Duration Probabilities

Emission Probabilities

Model Abstraction in GHMMs



W.H. Majaros (http://geneprediction.org/book/classroom.html)

Models must return the probability of a subsequence given a state and duration

Courtesy of William Majoros. Used with permission.

GHMM Submodel Examples

1. WMM (Weight Matrix) $\prod_{i=0}^{L-1} P_i(x_i)$

2. Nth-order Markov Chain (MC) $\prod_{i=0}^{n-1} P(x_i | x_0 ... x_{i-1}) \prod_{i=n}^{L-1} P(x_i | x_{i-n} ... x_{i-1})$

3. Three-Periodic Markov Chain (3PMC) $\prod_{i=0}^{L-1} P_{(f+i)(\text{mod }3)}(x_i)$

5. Codon Bias $\prod_{i=0}^{n-1} P(x_{\alpha+3i}x_{\alpha+3i+1}x_{\alpha+3i+2})$

6. MDD

Ref: Burge C (1997) Identification of complete gene structures in human genomic DNA. *PhD thesis*. Stanford University.

7. Interpolated Markov Model

Ref: Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. *Nucleic Acids Research* 26:544-548.

$$P_{e}^{IMM}(s \mid g_{0}...g_{k-1}) = \begin{cases} \lambda_{k}^{G}P_{e}(s \mid g_{0}...g_{k-1}) + (1 - \lambda_{k}^{G})P_{e}^{IMM}(s \mid g_{1}...g_{k-1}) & \text{if } k > 0\\ P_{e}(s) & \text{if } k = 0 \end{cases}$$

http://geneprediction.org/book/classroom.html

Courtesy of William Majoros. Used with permission.

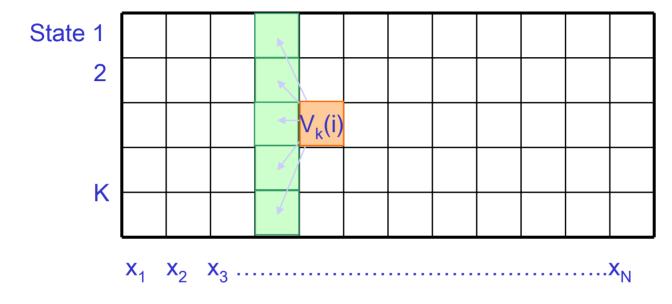
GHMMs as Generative Models

Like HMM, we can use a GHMM to generate a sequence <u>and</u> state labeling

- Choose initial state, q_1 , from π_i
- Choose a duration d₁, from length distribution f_{q1}(d)
- Generate a subsequence from state model e_{q1}(X_{1,d})
- Choose a subsequent state, q₂, conditioned on the current state, according to a_{jk}=P(q_k|q_j)
- Repeat until number of nucleotides equals desired length of sequence

Given a sequence, how do we pick a state labeling (segmentation)?

The Viterbi Algorithm - HMMs



Input: x = x1....xN

Initialization:

 $V_0(0)=1, V_k(0) = 0$, for all k > 0

Iteration:

 $V_k(i) = e_K(x_i) \times max_i a_{ik} V_i(i-1)$

Termination:

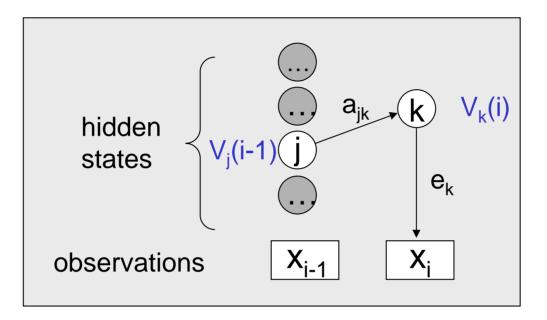
 $\mathsf{P}(\mathsf{x},\,\pi^*) = \max_k \mathsf{V}_k(\mathsf{N})$

Traceback: Follow max pointers back

In practice: Use log scores for computation

Running time and space: Time: O(K²N) Space: O(KN)

HMM Viterbi Recursion

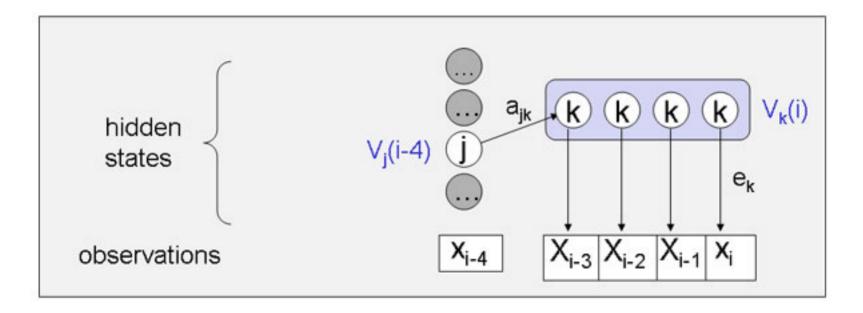


• Assume we know V_i for the previous time step (i-1)

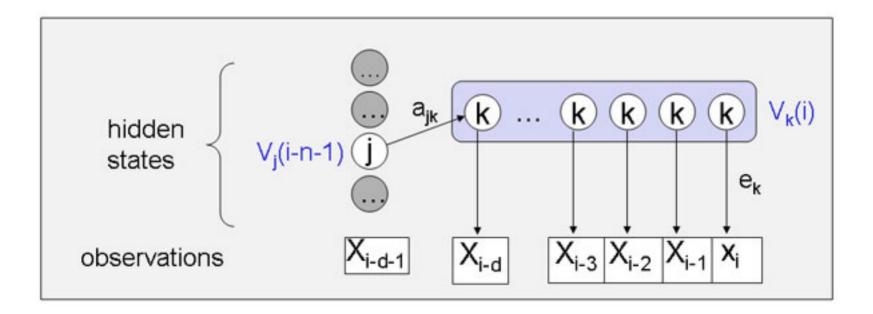


all possible previous states j

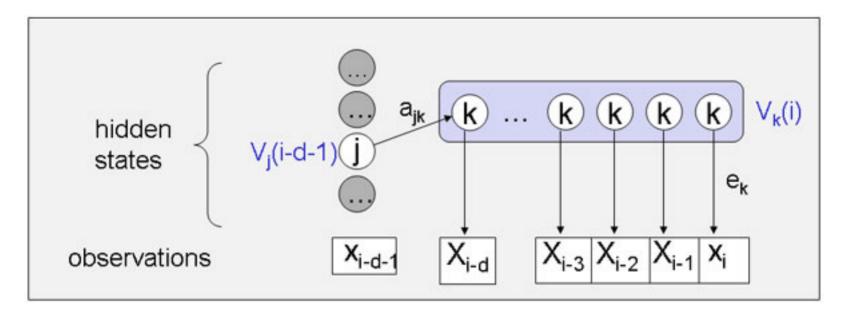
We could have come from state j at the last position...



But we could also have come from state j 4 positions ago... (State k could have duration 4 so far)



In general, we could have come from state j d positions ago (State k could have duration d so far)



This leads to the following recursion equation:

$$V_{k}(i) = \max_{j \in d} \max_{d} \left[P(x_{i} \dots x_{i-d} | k) \cdot V_{j}(i-d) \cdot P(d|k) \cdot a_{jk} \right]$$

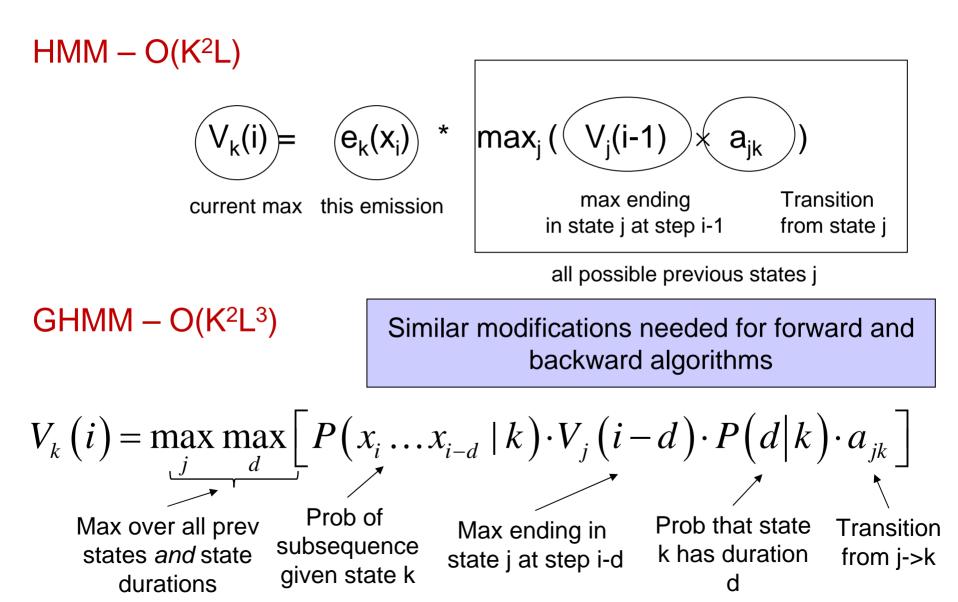
Max over all prev
states and state
durations
$$Prob \text{ of}$$

subsequence
given state k
$$Max \text{ ending in}$$

state j at step i-d
$$Prob \text{ that state}$$

k has duration
d

Comparing GHMMs and HMMs



JMB

Prediction of Complete Gene Structures in Human Genomic DNA

Chris Burge* and Samuel Karlin

Department of Mathematics Stanford University, Stanford CA, 94305, USA

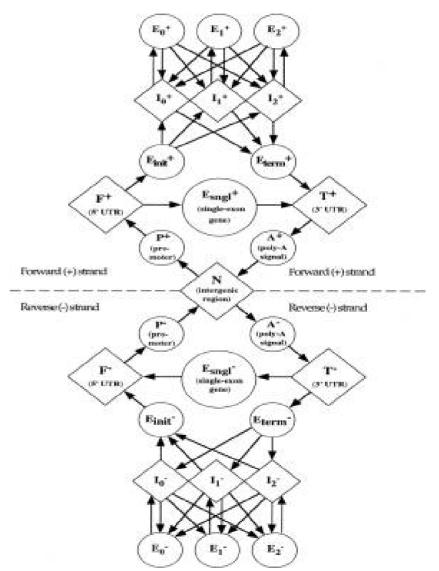
We introduce a general probabilistic model of the gene structure of human genomic sequences which incorporates descriptions of the basic transcriptional, translational and splicing signals, as well as length distributions and compositional features of exons, introns and intergenic regions. Distinct sets of model parameters are derived to account for the many substantial differences in gene density and structure observed in distinct C + G compositional regions of the human genome. In addition, new models of the donor and acceptor splice signals are described which capture potentially important dependencies between signal positions. The model is applied to the problem of gene identification in a computer program. GENSCAN, which identifies complete exon/intron structures of gene in genomic DNA. Novel features of the program include the capacity to predict multiple genes in a sequence, to deal with partial as well as complete genes, and to predict consistent sets of genes occurring on either or both DNA strands. GENSCAN is shown to have substantially higher accuracy than existing methods when tested on standardized sets of human and vertebrate genes, with 75 to 80% of exons identified exactly. The program is also capable of indicating fairly accurately the reliability of each predicted exon. Consistently high levels of accuracy are observed for sequences of differing C+G content and for distinct groups of vertebrates.

Courtesy of Elsevier, Inc. http://www.sciencedirect.com. Used with permission.

© 1997 Academic Press Limited

Genscan - Burge and Karlin, (1997)

- Explicit State Duration GHMM
- 5th order markov models for coding and non-coding sequences
- Each CDS frame has own model
- WAM models for start/stop codons and acceptor sites
- MDD model for donor sites
- Separate parameters for regions of different GC content
- Model +/- strand concurrently

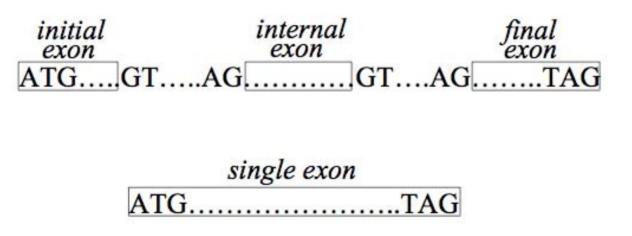


Courtesy of Elsevier, Inc. http://www.sciencedirect.com. Used with permission.

Types of Exons

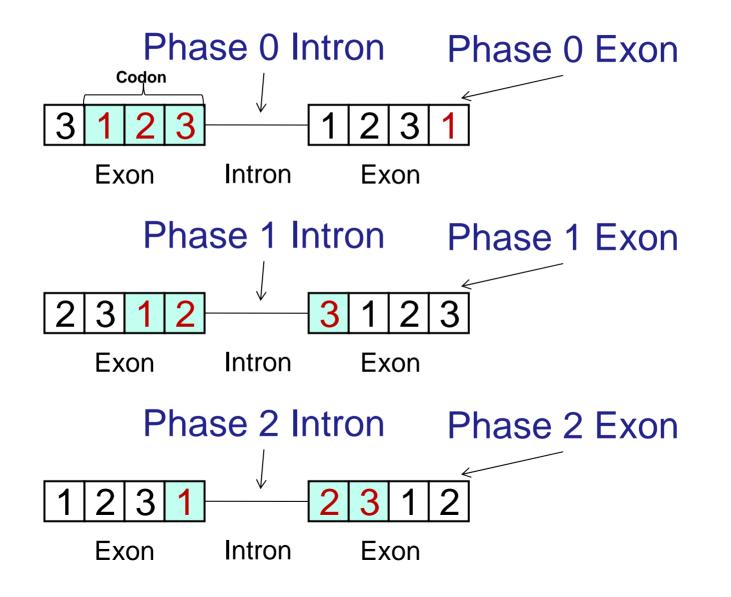
Three types of exons are defined, for convenience:

- *initial exons* extend from a start codon to the first donor site;
- *internal exons* extend from one acceptor site to the next donor site;
- *final exons* extend from the last acceptor site to the stop codon;
- *single exons* (which occur only in *intronless genes*) extend from the start codon to the stop codon:



Courtesy of William Majoros. Used with permission.

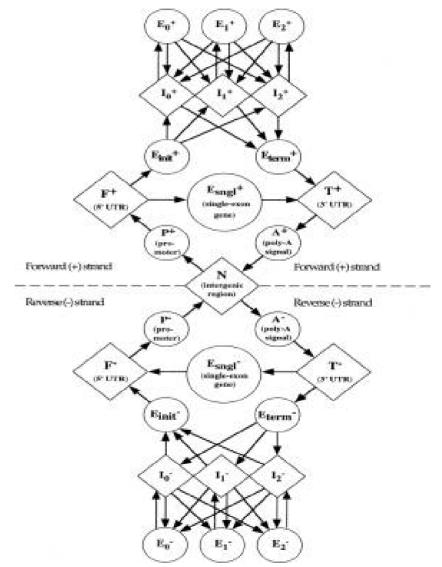
Intron and Exon Phase



Two State Types in Genscan

- D-type represented by diamonds
- C-type represented by circles
 - D states are always followed by C and vice versa

C states always preceded by <u>same</u> Dstate



Courtesy of Elsevier, Inc. http://www.sciencedirect.com. Used with permission.

Two State Types in Genscan

- D-Type geometric length distribution
 - Intergenic regions
 - UTRs
 - Introns

Sequence models are "factorable":

$$P_k(Xa,c) = P_k(Xa,b)P_k(Xb+1,c)$$

 $f_k(d) = P(\text{state duration } d|\text{state } k) = p_k f_k(d-1)$

Increasing duration by one changes probability by constant factor

Two State Types in Genscan

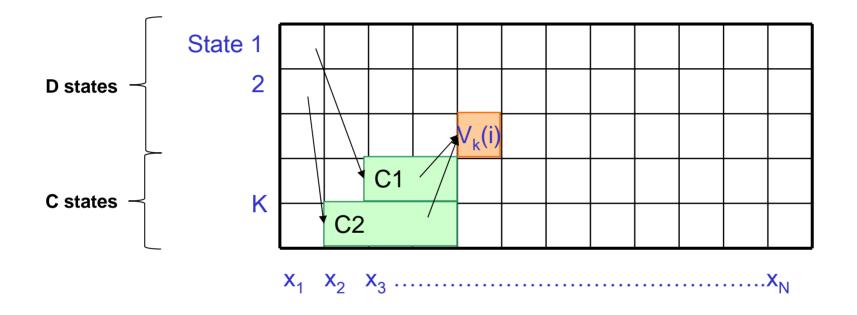
- C-Type general length distributions and sequence generating modes
 - Exons (initial, internal, terminal)
 - Promotors
 - Poly-A Signals

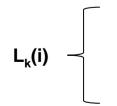
Genscan Inference

 Genscan uses same basic forward, backward, and viterbi algorithms as generic GHMMs

• But assumptions about C, and D states reduce algorithmic complexity

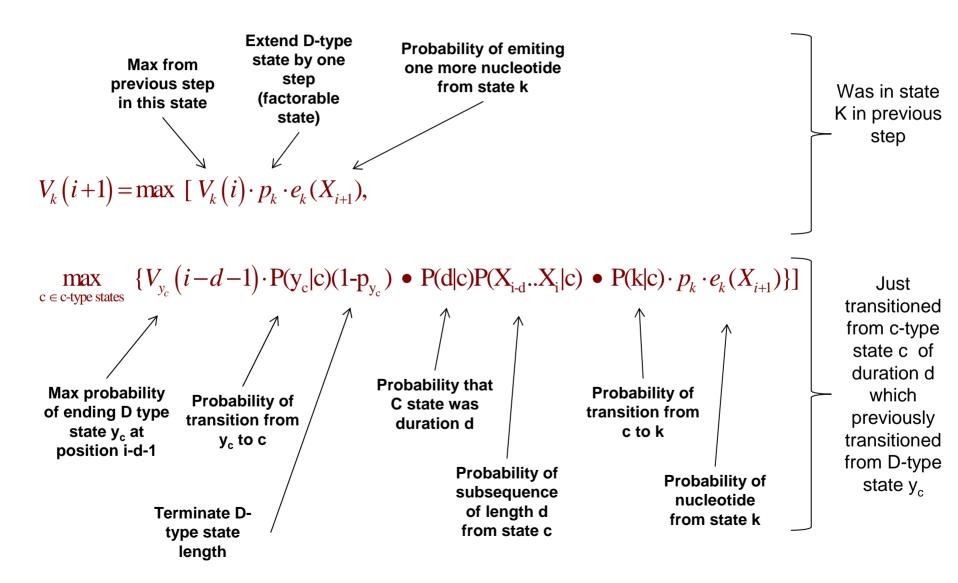
Genscan Inference – C-state List





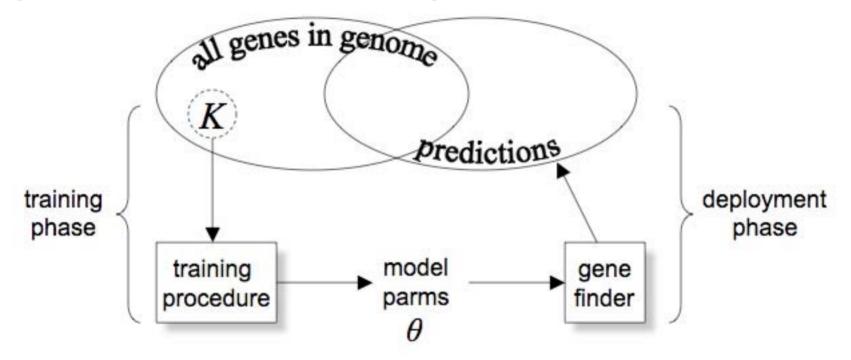
C1, duration 2, previous D-state=1 C2, duration 3, previous D-state=2

Genscan Viterbi Induction



Training A Gene Predictor

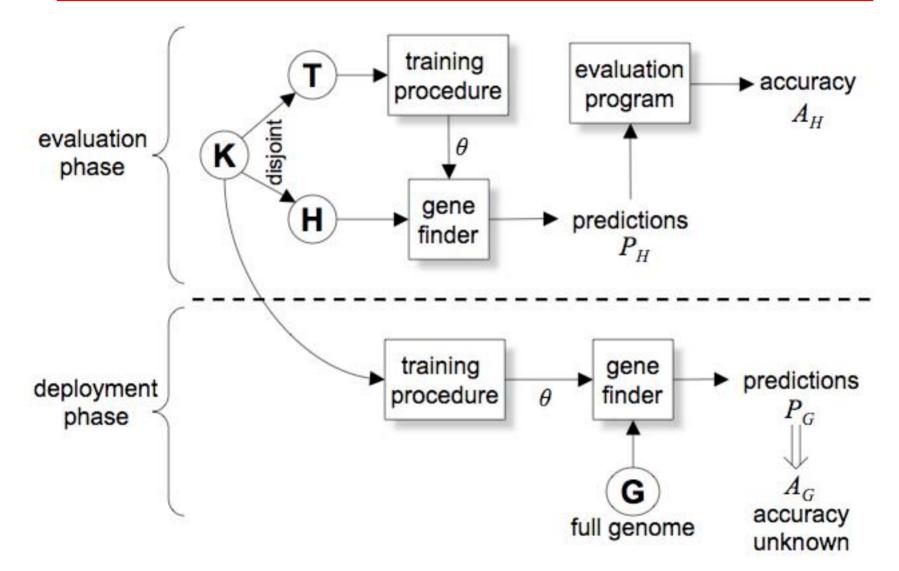
During *training* of a gene finder, only a subset *K* of an organism's gene set will be available for training:



The gene finder will later be *deployed* for use in predicting the rest of the organism's genes. The way in which the *model parameters* are inferred during training can significantly affect the accuracy of the deployed program.

Courtesy of William Majoros. Used with permission.

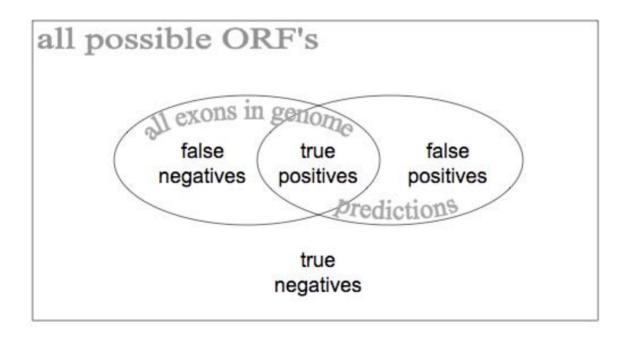
Training A Gene Predictor



Courtesy of William Majoros. Used with permission.

Gene Prediction Accuracy

Gene predictions can be evaluated in terms of *true positives* (predicted features that are real), *true negatives* (non-predicted features that are not real), *false positives* (predicted features that are not real), and *false negatives* (real features that were not predicted:



These definitions can be applied at the *whole-gene*, *whole-exon*, or *individual nucleotide* level to arrive at three sets of statistics.

 $\label{eq:courtesy} \mbox{ Courtesy of William Majoros. Used with permission.}$

Accuracy Metrics

$$Sn = \frac{TP}{TP + FN}$$
 $Sp = \frac{TP}{TP + FP}$

$$F = \frac{2 \times Sn \times Sp}{Sn + Sp}$$

$$SMC = \frac{TP + TN}{TP + TN + FP + FN}$$

$$CC = \frac{(TP \times TN) - (FN \times FP)}{\sqrt{(TP + FN) \times (TN + FP) \times (TP + FP) \times (TN + FN)}}.$$

$$ACP = \frac{1}{n} \left(\frac{TP}{TP + FN} + \frac{TP}{TP + FP} + \frac{TN}{TN + FP} + \frac{TN}{TN + FN} \right),$$

AC = 2(ACP - 0.5).

Courtesy of William Majoros. Used with permission.

More Information

http://genes.mit.edu/burgelab/links.html