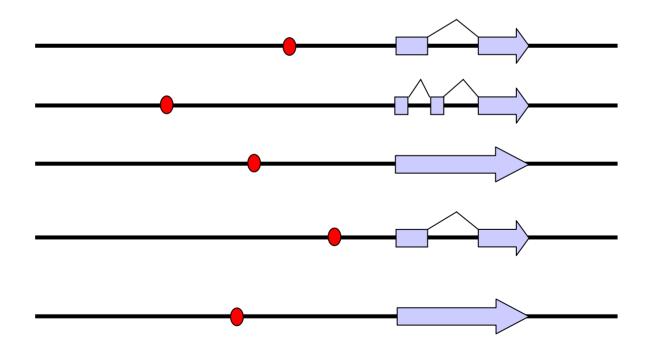
6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Computational Biology: Genomes, Networks, Evolution


Motif Discovery

Lecture 9

October 2, 2008

Regulatory Motifs

Find promoter motifs associated with co-regulated or functionally related genes

Motifs Are Degenerate

- Protein-DNA interactions
 - Proteins read DNA by "feeling" the chemical properties of the bases
 - Without opening DNA (not by base complementarity)
- Sequence specificity
 - Topology of 3D contact dictates sequence specificity of binding
 - Some positions are fully constrained; other positions are degenerate
 - "Ambiguous / degenerate"
 positions are loosely contacted
 by the transcription factor

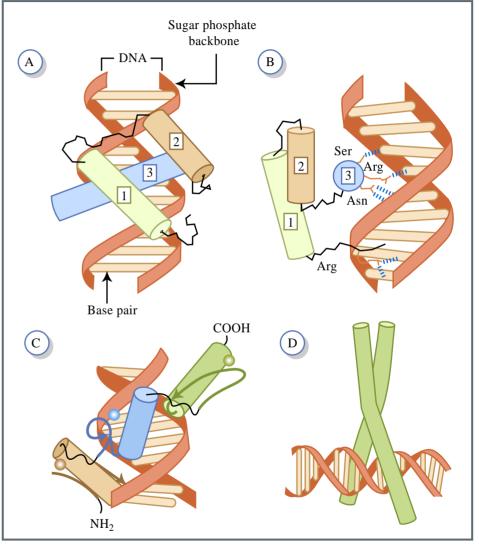


Figure by MIT OpenCourseWare.

Other "Motifs"

• Splicing Signals

- Splice junctions
- Exonic Splicing Enhancers (ESE)
- Exonic Splicing Surpressors (ESS)

Protein Domains

- Glycosylation sites
- Kinase targets
- Targetting signals
- Protein Epitopes
 - MHC binding specificities

Essential Tasks

Modeling Motifs

- How to computationally represent motifs

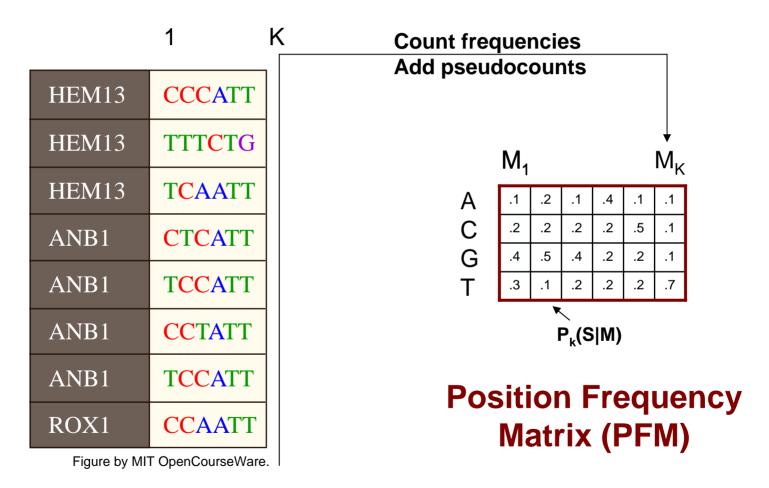
- Visualizing Motifs – Motif "Information"
- Predicting Motif Instances
 - Using the model to classify new sequences
- Learning Motif Structure

- Finding new motifs, assessing their quality

Modeling Motifs

Consensus Sequences

Useful for publication


IUPAC symbols for degenerate sites

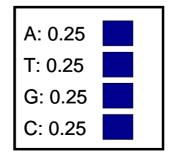
Not very amenable to computation

HEM13	CCCATTGTTCTC
HEM13	TTTCTGGTTCTC
HEM13	TCAATTGTTTAG
ANB1	CTCATTGTTGTC
ANB1	TCCATTGTTCTC
ANB1	CCTATTGTTCTC
ANB1	TCCATTGTTCGT
ROX1	CCAATTGTTTTG
	YCHATTGTTCTC

Figure by MIT OpenCourseWare.

Probabilistic Model

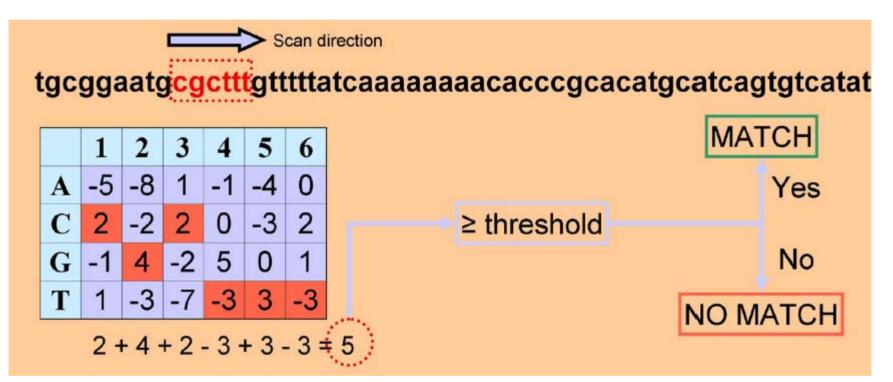
Scoring A Sequence


To score a sequence, we compare to a null model

$$Score = \log \frac{P(S \mid PFM)}{P(S \mid B)} = \log \prod_{i=1}^{N} \frac{P_i(S_i \mid PFM)}{P(S_i \mid B)} = \sum_{i=1}^{N} \log \frac{P_i(S_i \mid PFM)}{P(S_i \mid B)}$$

PFM

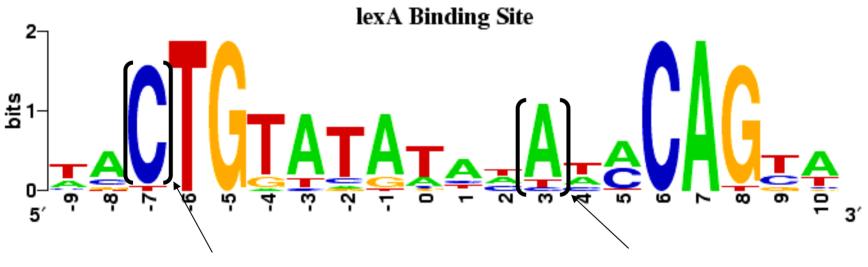
A	.1	.2	.1	.4	.1	.1
С	.2	.2	.2	.2	.5	.1
G	.4	.5	.4	.2	.2	.1
Т	.3	.1	.2	.2	.2	.7



Position Weight Matrix (PWM)

Α	-1.3	-0.3	-1.3	0.6	-1.3	-1.3
С	-0.3	-0.3	0.3	-0.3	1	-1.3
G	0.6	1	0.6	-0.3	-0.3	-1.3
Т	0.3	-1.3	-0.3	-0.3	-0.3	1.4

Scoring a Sequence

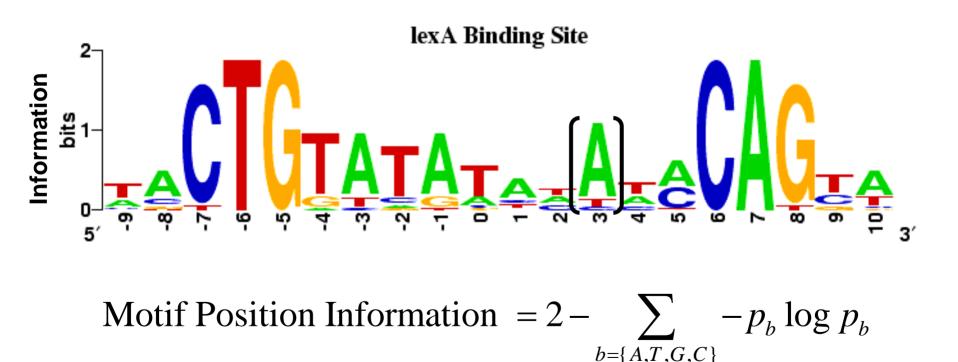


Courtesy of Kenzie MacIsaac and Ernest Fraenkel. Used with permission. MacIsaac, Kenzie, and Ernest Fraenkel. "Practical Strategies for Discovering Regulatory DNA Sequence Motifs." *PLoS Computational Biology* 2, no. 4 (2006): e36.

Common threshold = 60% of maximum score

Visualizing Motifs – Motif Logos

Represent both base frequency and conservation at each position



Height of letter proportional to frequency of base at that position

Height of stack proportional to conservation at that position

Motif Information

The height of a stack is often called the motif information at that position measured in bits

Why is this a measure of information?

Uncertainty and probability

Uncertainty is related to our surprise at an event

"The sun will rise tomorrow" Not surprising (p~1)

"The sun will <u>not</u> rise tomorrow" <u>Very</u> surprising (p<<1)

Uncertainty is inversely related to probability of event

Average Uncertainty

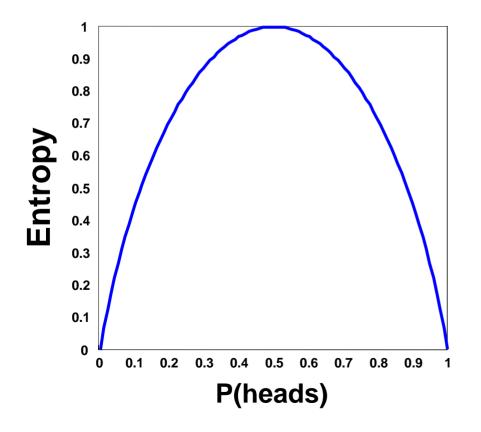
Two possible outcomes for sun rising

- A "The sun will rise tomorrow" $P(A)=p_1$
- B "The sun will <u>not</u> rise tomorrow" P(B)=p₂

What is our *average uncertainty* about the sun rising

= P(A)Uncertainty(A) + P(B)Uncertainty(B) $= -p_1 \log p_1 - p_2 \log p_2$ $= -\sum p_i \log p_i = \text{Entropy}$

Entropy measures average uncertainty

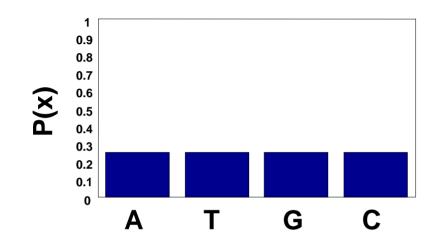

Entropy measures randomness

$$H(X) = -\sum_{i} p_i \log_2 p_i$$

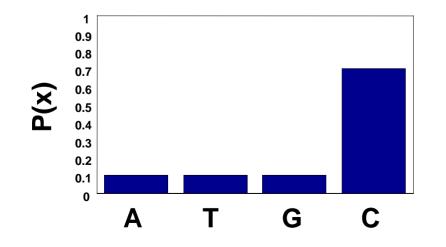
If log is base 2, then the units are called bits

Entropy versus randomness

Entropy is maximum at maximum randomness



Example: Coin Toss


P(heads)=0.1 Not very random H(X)=0.47 bits

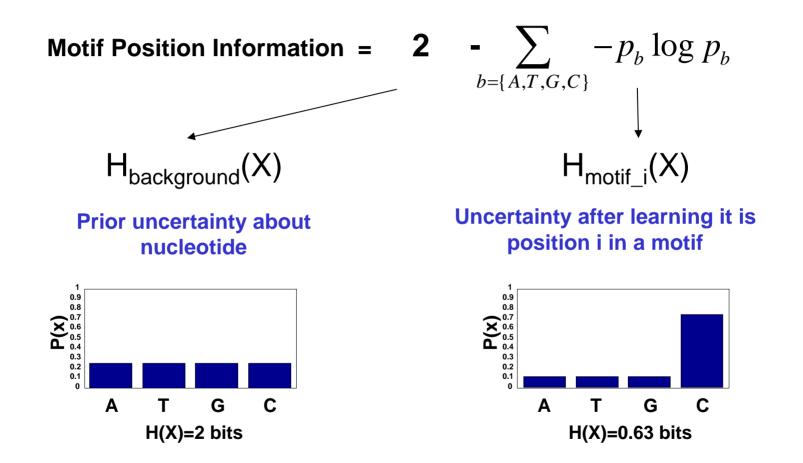
P(heads)=0.5 Completely random H(X)=1 bits

Entropy Examples

 $H(X) = -[0.25 \log(0.25) + 0.25 \log(0.25) + 0.25 \log(0.25)] + 0.25 \log(0.25) + 0.25 \log(0.25)]$ = 2 bits

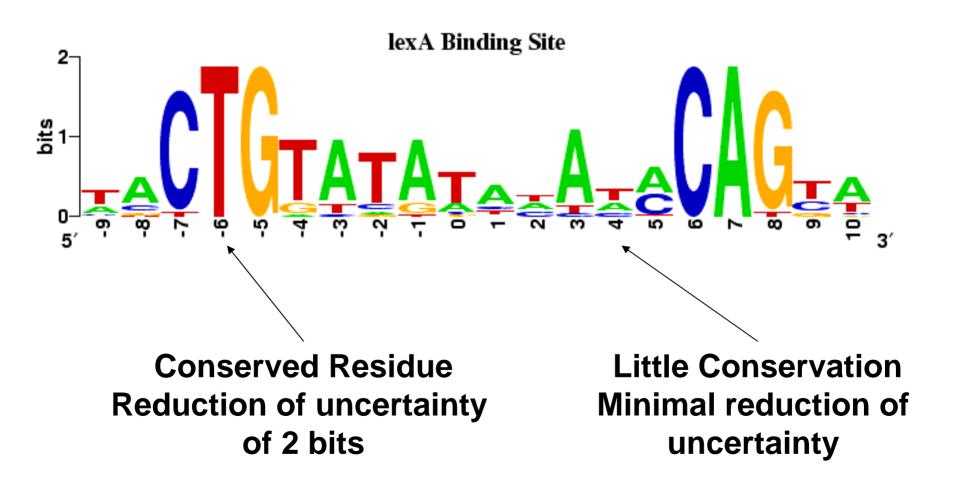
 $H(X) = -[0.1\log(0.1) + 0.1\log(0.1) + 0.1\log(0.1) + 0.1\log(0.1) + 0.75\log(0.75)]$ = 0.63 bits

Information Content


Information is a *decrease in uncertainty*

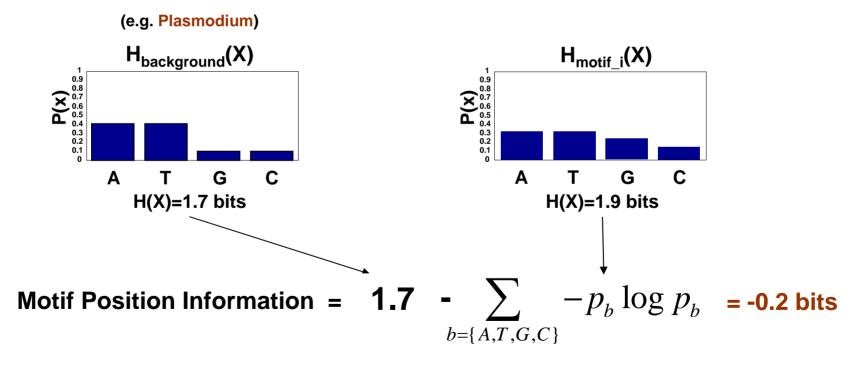
Once I tell you the sun will rise, your uncertainty about the event decreases

Information =
$$H_{before}(X) - H_{after}(X)$$


Information is difference in entropy after receiving information

Motif Information

Uncertainty at this position has been reduced by 0.37 bits


Motif Logo

Background DNA Frequency

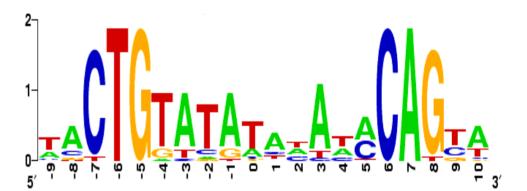
The definition of information assumes a uniform background DNA nucleotide frequency

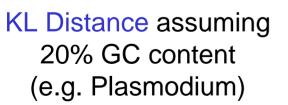
What if the background frequency is not uniform?

Some motifs could have negative information!

A Different Measure

Relative entropy or Kullback-Leibler (KL) divergence


Divergence between a "true" distribution and another


$$D_{KL}(P_{motif} || P_{background}) = \sum_{i \in \{A,T,G,C\}} P_{motif}(i) \log \frac{P_{motif}(i)}{P_{background}(i)}$$

"True" Distribution Other Distribution

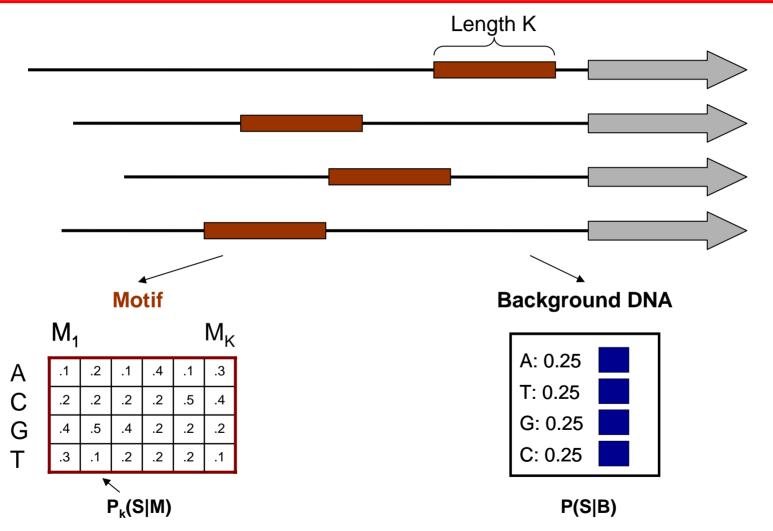
D_{KL} is larger the more different P_{motif} is from P_{background}

Comparing Both Methods

Information assuming uniform background DNA

Online Logo Generation

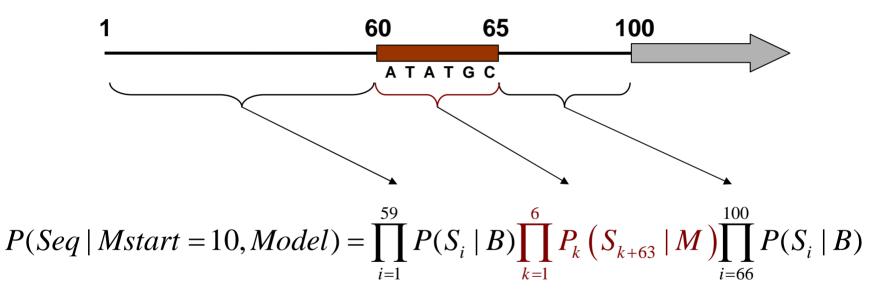
<pre>WEBLOGO · about Version 2.8.2 (2005-09-08) (⇒ WebLogo 3: Public Beta)</pre>	· <u>create</u> · <u>examples</u> ·	enol matrix or alignment input			C2H2 enoLC	• D •GOS form
References						
Crooks GE, Hon G, Chandonia JM, Brenner SE WebLogo: A sequence logo generator, Genome Research, 14:1188-1190, (2004) [Full Text] Schneider TD, Stephens RM. 1990. <u>Sequence Logos: A</u> <u>New Way to Display Consensus Sequences</u> , <i>Nucleic Acids</i> <i>Res.</i> 18:6097-6100 Introduction	(b) CAP-DNA Complex Helite Ture Halls (b) CAP-moognifikes Site DNA Lego 2 3 2 3 3 3	no input parameters set enoLOGOS parameters weight type unknown logo title x-axis label	logo pl	ot method relative er s by prob. ON 💌	.	efaults) 💌
WebLogo is a web based application designed to make the <u>generation</u> of sequence logos as easy and painless as possible. Click <u>here</u> to create your own sequence logos.		y-axis label bits y-axis max 2 x-axis,y-axis ON V ON V		log base 2 💌 nutual info OFF 💌 spect ratio 3	reverse-comp OF	-
<u>Sequence logos</u> are a graphical representation of an amino acid or nucleic acid multiple sequence alignment developed by <u>Tom Schneider</u> and <u>Mike</u> <u>Stephens</u> . Each logo consists of stacks of symbols, one stack for each position in the sequence. The overall height of the stack indicates the sequence conservation at that position, while the height of symbols within the sta		letters A C G T	red green 0.0 0.8 0.0 0.0 0.8 0.8 0.8 0.8 0.8 0.8	blue % 0.0 0.8 0.1 0.1 0.1	GC (select %GC)	V
amino or nucleic acid at that position. In general, a precise description of, for example, a binding site, t	sequence logo provides a richer and more	Supported by the <u>National Science Found</u>	ation		Reference U	<u>CSD mirror</u>

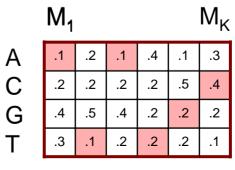

http://weblogo.berkeley.edu/

http://biodev.hgen.pitt.edu/cgi-bin/enologos/enologos.cgi

Finding New Motifs

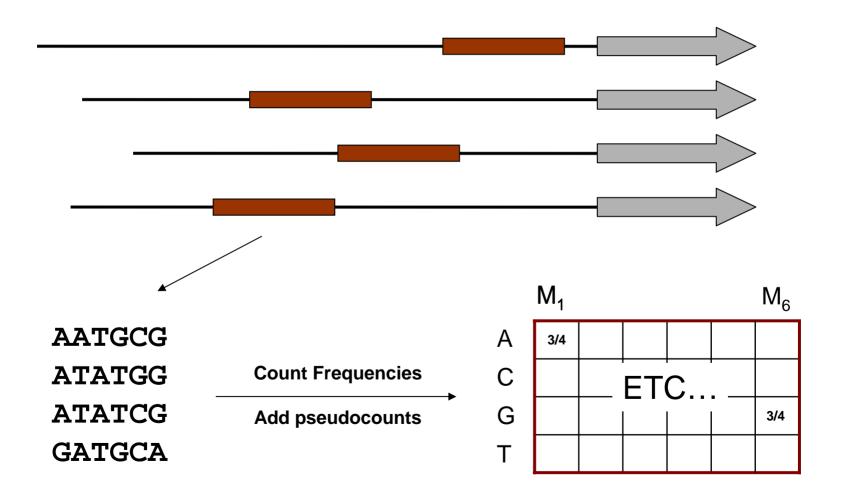
Learning Motif Models


A Promoter Model

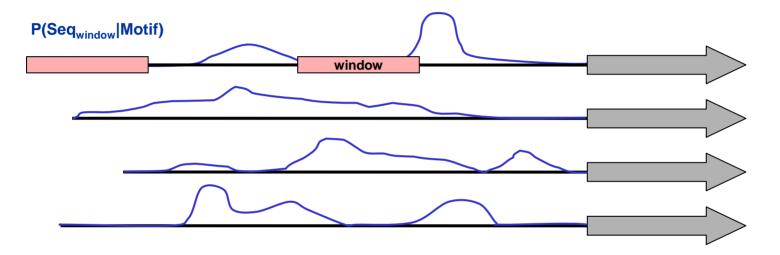

The same motif model in all promoters

Probability of a Sequence

Given a sequence(s), motif *model* and motif *location*



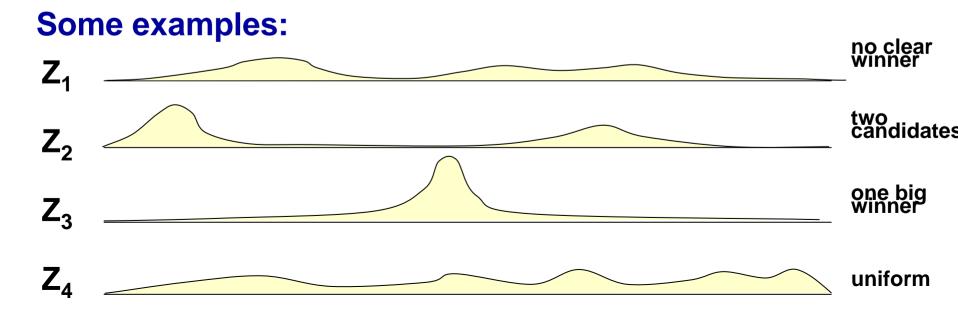
 S_i = nucleotide at position i in the sequence


Parameterizing the Motif Model

Given multiple sequences and motif locations but no motif model

Finding Known Motifs

Given multiple sequences and motif model but no motif locations



Calculate P(Seq_{window}|Motif) for every starting location

Motif Position Distribution Z_{ii}

• the element Z_{ij} of the matrix Z represents the probability that the motif starts in position *j* in sequence *I*

$$Z = \begin{bmatrix} 1 & 2 & 3 & 4 \\ seq1 & 0.1 & 0.1 & 0.2 & 0.6 \\ seq2 & 0.4 & 0.2 & 0.1 & 0.3 \\ seq3 & 0.3 & 0.1 & 0.5 & 0.1 \\ seq4 & 0.1 & 0.5 & 0.1 & 0.3 \end{bmatrix}$$

Calculating the Z Vector

$$P(Z_{ij} = 1 | S, M) = \frac{P(S | Zij = 1, M)P(Zij = 1)}{P(S)}$$
 (Bayes' rule)

$$P(Z_{ij} = 1 | S, M) = \frac{P(S | Zij = 1, M)P(Zij = 1)}{\sum_{k=1}^{L-K+1} P(S | Zij = 1, M)P(Zij = 1)}$$

$$P(Z_{ij} = 1 \mid S, M) = \frac{P(S \mid Zij = 1, M)}{\sum_{k=1}^{L-K+1} P(S \mid Zij = 1, M)}$$

Assume uniform priors (motif equally likely to start at any position)

Calculating the Z Vector - Example

$$X_{i} = \mathbf{G} \mathbf{C} \mathbf{T} \mathbf{G} \mathbf{T} \mathbf{A} \mathbf{G}$$

$$p = \begin{bmatrix} \mathbf{A} & 0.25 & 0.1 & 0.5 & 0.2 \\ \mathbf{C} & 0.25 & 0.4 & 0.2 & 0.1 \\ \mathbf{G} & 0.25 & 0.2 & 0.1 \\ \mathbf{0} & 0.2 & 0.1 & 0.6 \\ \mathbf{0} & 0.2 & 0.2 & 0.1 \end{bmatrix}$$

$$Z_{i1} = \begin{bmatrix} 0.3 \times 0.2 \times 0.1 \times 0.25 \times 0.$$

then normalize so that

$$\sum_{j=1}^{L-W+1} Z_{ij} = 1$$

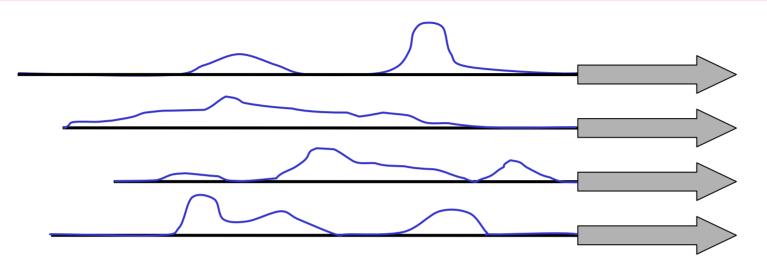
Discovering Motifs

Given a set of co-regulated genes, we need to discover with only sequences

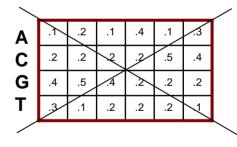
We have <u>neither a motif model nor motif locations</u> Need to discover both

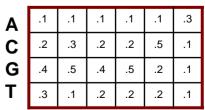
How can we approach this problem?

Expectation Maximization (EM)


Remember the basic idea!

1.Use model to estimate distribution of missing data 2.Use estimate to update model 3.Repeat until convergence


Model is the motif model


Missing data are the motif locations

EM for Motif Discovery

- 1. Start with random motif model
- 2. E Step: estimate probability of motif positions for each sequence
- 3. M Step: use estimate to update motif model
- 4. Iterate (to convergence)

The M-Step Calculating the Motif Matrix

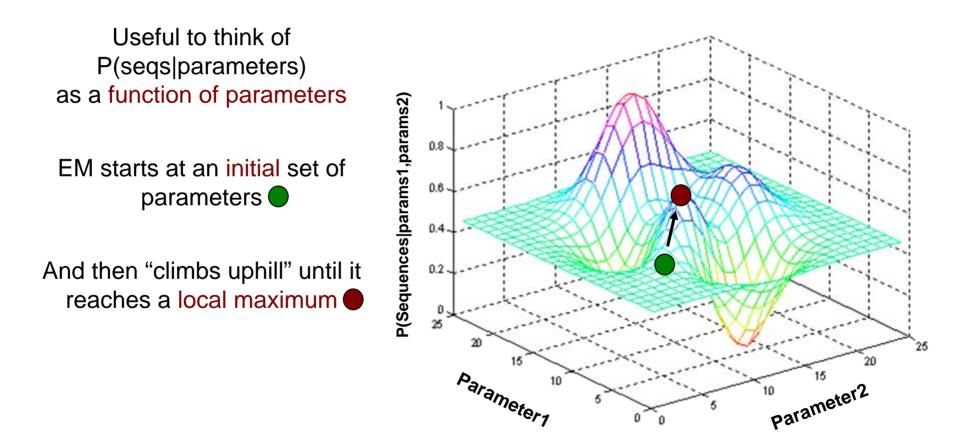
- M_{ck} is the probability of character c at position k
- With specific motif positions, we can estimate M_{ck}:

Counts of c at pos k
In each motif position
$$M_{c,k} = \frac{n_{c,k} + d_{c,k}}{\sum_{b} n_{b,k} + d_{b,k}}$$
Pseudocounts

• But with probabilities of positions, Z_{ii}, we average:

$$n_{c,k} = \sum_{\text{sequences } S_i} \sum_{\{j|S_i=c\}} Z_{ij}$$

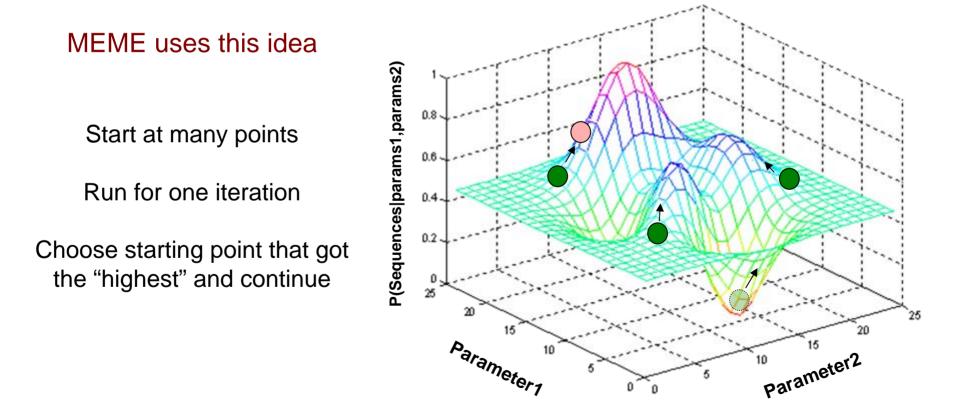
MEME


- MEME implements EM for motif discovery in DNA and proteins
- MAST search sequences for motifs given a model

Motif	Motif Discovery and Search									
Versio	on 3.5.4									
The ME	The MEME/MAST system allows you to 1. discover motifs (highly conserved regions) in groups of related DNA or protein sequences using MEME and, 2. search sequence databases using motifs using MAST.									
Sci Put FAC Use Use Em Sai Rel rele Dov fea Lic:	ence and Engineering d olications: MEME and M/ 2: Answers to Frequently ar Forum: Visit the MEME ars, ali support: Contact us i mple Output: You can se ease Notes: Differences asse notes asse notes winloads: You can downi tures that are not availab emse: MEME and MAST a	epartment with input ST are described in Asked Questions al User Forum for onl fyou have question: e sample MEMEou between the curren between the curren cod the MEME/MAS3 le with the interactiv re copyrighted softw	ed by Timothy Bailey, Charles Elkan , and from Michael Gribskov at Purdue Univer i detail in the papers available here. bout MEME and MAST are given in the GE ine discussions with the MEME support t s that are not answered in the FAQ or Use tput or sample MAST output . It release of the MEME/MAST system and I software and install it on your som, eversions of MEME and MAST. vare and can be licensed for commercial als from MEME into a hidden Markov mod	rsity. NERAL FAQ. earn memebers and other MEME er Forum. earlier releases are described in 1 puter. This will allow you to use ma use.						

http://meme.sdsc.edu/meme/

P(Seq|Model) Landscape


EM searches for parameters to increase P(seqs|parameters)

Where EM starts can make a big difference

Search from Many Different Starts

To minimize the effects of local maxima, you should search multiple times from different starting points

The ZOOPS Model

- The approach as we've outlined it, assumes that each sequence has exactly one motif occurrence per sequence; this is the OOPS model
- The ZOOPS model assumes <u>zero or one occurrences per</u> <u>s</u>equence

E-step in the ZOOPS Model

- We need to consider another alternative: the *i*th sequence doesn't contain the motif
- We add another parameter (and its relative)

λ

 prior prob that any position in a sequence is the start of a motif

$$\gamma = (L - W + 1)\lambda$$
 • prior prob of a sequence containing a motif

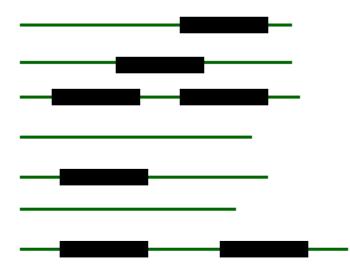
E-step in the ZOOPS Model

$$P(Z_{ij} = 1) = \frac{\Pr(S_i \mid Z_{ij} = 1, M)\lambda}{\Pr(S_i \mid Q_i = 0, M)(1 - \gamma)} + \sum_{k=1}^{L-W+1} \Pr(S_i \mid Z_{ik} = 1, M)\lambda}$$

• here Q_i is a random variable that takes on 0 to indicate that the sequence doesn't contain a motif occurrence

$$Q_i = \sum_{j=1}^{L-W+1} Z_{i,j}$$

M-step in the ZOOPS Model


- update *p* same as before
- update λ, γ as follows

$$\lambda^{(t+1)} = \frac{\gamma^{(t+1)}}{(L-W+1)} = \frac{1}{n(L-W+1)} \sum_{sequences \ i=1}^{n} \sum_{positions \ j=1}^{m} Z_{i,j}^{(t)}$$

• average of $Z_{i,j}^{(t)}$ across all sequences, positions

The TCM Model

• The TCM (two-component mixture model) assumes *zero* or more motif occurrences per sequence

Likelihood in the TCM Model

- the TCM model treats each length W subsequence independently
- to determine the likelihood of such a subsequence:

$$\Pr(S_{ij} \mid Z_{ij} = 1, M) = \prod_{k=j}^{j+W-1} M_{c_k, k-j+1} \text{ assuming a motif}$$

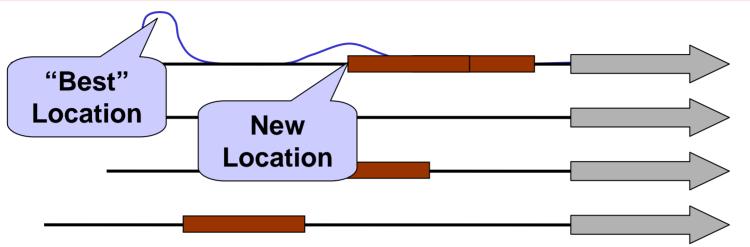
$$\Pr(S_{ij} \mid Z_{ij} = 0, p) = \prod_{k=j}^{j+W-1} P(c_k \mid B) \quad \mathbf{d}$$

assuming a motif doesn't start there

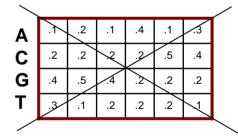
E-step in the TCM Model

$$Z_{ij} = \frac{\Pr(S_{i,j} \mid Z_{ij} = 1, M)\lambda}{\Pr(S_{i,j} \mid Z_{ij} = 0, B)(1 - \lambda) + \Pr(S_{i,j} \mid Z_{ij} = 1, M)\lambda}$$

subsequence isn't a motif subsequence is a motif


• M-step same as before

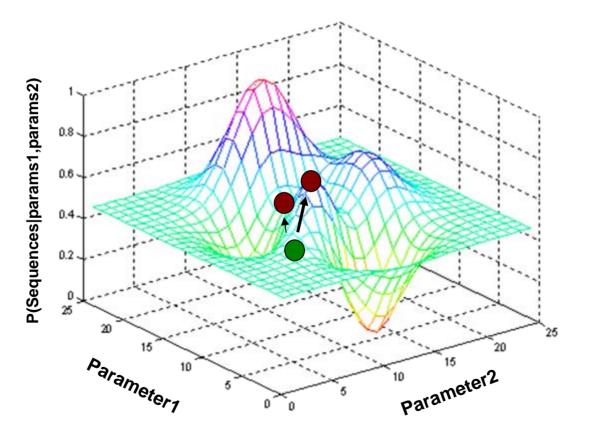
A stochastic version of EM that differs from deterministic EM in two key ways


1. At each iteration, we only update the motif position of a single sequence

2. We may update a motif position to a "suboptimal" new position

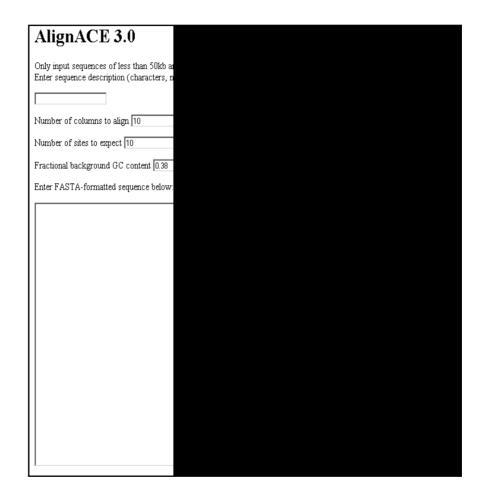
Gibbs Sampling

- 1. Start with random motif locations and calculate a motif model
- 2. Randomly select a sequence, remove its motif and recalculate tempory model
- 3. With temporary model, calculate probability of motif at each position on sequence
- 4. Select new position based on this distribution
- 5. Update model and Iterate



Α	.1	.1	.1	.1	.1	.3
С	.2	.3	.2	.2	.5	.1
G	.4	.5	.4	.5	.2	.1
Т	.3	.1	.2	.2	.2	.1

Gibbs Sampling and Climbing


Because gibbs sampling does not always choose the best new location it can move to another place not directly uphill

In theory, Gibbs Sampling less likely to get stuck a local maxima

AlignACE

- Implements Gibbs sampling for motif discovery
 - Several enhancements
- ScanAce look for motifs in a sequence given a model
- CompareAce calculate "similarity" between two motifs (i.e. for clustering motifs)

Antigen Epitope Prediction

Antigens and Epitopes

- Antigens are molecules that induce immune system to produce antibodies
- Antibodies recognize parts of molecules called epitopes

Genome to "Immunome"

Pathogen genome sequences provide define all proteins that could illicit an immune response

- Looking for a needle...
 - Only a small number of epitopes are typically antigenic
- ...in a very big haystack
 - Vaccinia virus (258 ORFs): 175,716 potential epitopes (8-, 9-, and 10-mers)
 - *M. tuberculosis* (~4K genes): 433,206 potential epitopes
 - *A. nidulans* (~9K genes): 1,579,000 potential epitopes

Can computational approaches predict all antigenic epitopes from a genome?

Modeling MHC Epitopes

• Have a set of peptides that have been associate with a particular MHC allele

• Want to discover motif within the peptide bound by MHC allele

 Use motif to predict other potential epitopes

Motifs Bound by MHCs

• MHC 1

- Closed ends of grove
- Peptides 8-10 AAs in length
- Motif is the peptide

• MHC 2

- Grove has open ends
- Peptides have broad length distribution: 10-30 AAs
- Need to find binding motif within peptides