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Genome Annotation

ggggctgagatgtaaattagaggagctggagaggagtgcttcagagtttgggttgctttaagaaagggt
ggttccgaattctcccgtggttggagggccgaatgtgggaggagggaggataccagaggcaggga
gaacttgagctttactgacactgttctttttctagctgacgtgaagatgagcagctcagaggaggtgtc
ctggatttcctggttctgtgggctccgtggcaatgaattcttctgtgaagtgagttctcttcaacctcc
ctacttgccagcttcacatatcttcccaccagacgttccttcacatattccacttctacactgttctct
ctaaagcttttatgggagagagtgtaggtgaactagggagagacacaagtacttctgctgagttgggagtg
agaaacaagcacaacagatgcagttgtgttgatgataaggcatcacttagagcattttgcccaggtcaa
agatgaggattttgatatgggttccctcttggcttccatgtcctgacaggtggatgaagactacatcca
ggacaaatttaatcttactggactcaatgagcaggtccctcactatcgacaagctctagacatgatctt 
ggacctggagcctggtgaggcaccctcagggttgttttgtgtgtgtgcgtgcactatttttctcttcaa
atctctattcacttgcctgaattttgccaaatttcctttggttctctgatttctttaaccccaaattca
tgctttattttgatcctccacctgactcttgtctagttttgtgacgtatatcacttgttctcatgtttt 
tgcaagggtcagaagcccaggtttctgggtcccatgcccagatgttggatggggtaaggcccaaaagta
ggtgctaggcaaactgaatagcccgcagcccctggatatgggcagggcacctaggaaagctgaaaaaca 
agtagttgcatttggccgggctgtggttcagatgaagaactggaagacaaccccaaccagagtgacctg
attgagcaggcagccgagatgctttatggattgatccacgcccgctacatccttaccaaccgtggcatc 
gcccagatggtgaggcctctctgctcctacctgcctccttctgagcagtaagagacacaggttcctgca 
gcaagaagtcatgtttaagccctgtttaaggaagctagctgagaagaggggaagaaccccagaacttgg

Genome sequence

RNA

Protein

Translation

Transcription

Figure by MIT OpenCourseWare. 



Eukaryotic Gene Structure

ATGATG TGATGA

coding segment
complete mRNA

ATG GT AG GT AG. . . . . . . . .
start codon stop codondonor site donor siteacceptor 

site
acceptor 
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exon exon exonintronintron
TGA

http://geneprediction.org/book/classroom.htmlCourtesy of William Majoros. Used with permission.



Gene Prediction with HMM
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Model of joint distribution P(Y,X) = P(Labels,Seq)

For gene prediction, we are given X…

How do we select a Y efficiently?

X1

Y1 Y2 Y3 Yn-1

Xn-1

Yn

XnX2 X3

Figure by MIT OpenCourseWare. 



Limitations of HMM Approach (1)
All components of HMMs have strict probabilistic semantics

Y2 Y3Y1

X2 X3X1

Yi

Xi

… P(Yi=exon|Yi-1=intron)

P(Xi=G|Yi=exon)

Each sums 
to 1,
etc..

What about incorporating both Blast and Hmmer?

P(HMMer|exon)?  P(Blast Hit|exon)?



Dependent Evidence

• HMMer protein domains predictions come from 
models based on known protein sequences
– Protein sequences for the same domain are aligned
– Conservation modelled with HMM

• But these are the same proteins searched by 
BLAST

• If we see a HMMer hit, we are already more 
likely to get a BLAST hit, and vice versa

BLAST and HMMER do not provide independent evidence
- Dependence is the rule for most evidence



Dependent Evidence in HMMs
• HMMs explicitly model P(Xi|Yi)=P(Blast,Hmmer|Yi)

– Not enough to know P(HMMer|Yi), also need to know P(HMMer|Yi,Blast)
– Need to model these dependencies in the input data

• Every time we add new evidence (i.e. ESTs) we need to know about
dependence on previous evidence
– E.g. not just P(EST|Yi) but P(EST|Yi,Blast,HMMer)

• Unpleasant and unnecessary for our task: classification

• A common strategy is to simply assume independence (Naïve Bayes 
assumption)

• Almost always a false assumption

1 2 3 N i i i
i

P(X ,X ,X ,...,X |Y )= P(X |Y )∏



Independencies in X 
HMMs make assumptions about dependencies in X

Y2 Y3Y1

X2 X3X1

Yi

Xi

…

P(Xi|Yi,Yi-1,Yi-2,Yi-3,…,Y1) = P(Xi|Yi)

Effectively each Yi “looks” at only a contiguous subset of X given the 
previous Yi-1



Limitations Stem from Generative Modeling
HMMs are models of full joint probability distribution P(X,Y)
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P(X,Y) = P(Y|X) P(X)

But this is all we need for gene prediction!

Figure by MIT OpenCourseWare. 
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• HMMs expend unnecessary effort to 
model P(X) which is never needed for 
gene prediction
– Must model dependencies in X

• During learning, we might trade accuracy 
in modeling P(Y|X) in order to model P(X) 
accurately
– Less accurate gene prediction

Generative Modeling of P(X)



Discriminative Models

ATGCCCCAGTTTTTGT
Blast Hits, ESTs, etc..
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P(Y|X)

Model conditional distribution P(Y|X) directly

Discriminative models outperform generative 
models in several natural language processing

tasks



Discriminative Model
Desirable characteristics

1. Efficient learning & inference algorithms

2. Easily incorporate diverse evidence 

3. Build on best existing HMM models for gene   
calling



Linear Chain CRF
Y2 Y3Y1 YNYi-1 YiY4

… …

X

Hidden state labels 
(exon, intron, etc)

Input data 
(sequence, blast hits, ESTs, etc..)

feature functionsfeature weights

( )

( )

J N

j j i i-1
j=1 i

J N

j j i i-1
Y j=1 i

1P(Y|X)= exp f Y ,Y ,X
Z(X)

Z(X)= exp f Y ,Y ,X

λ

λ

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

∑ ∑

∑ ∑ ∑
normalization



The Basic Idea

• Feature functions, fj, return real values on pairs of labels and input data 
that we think are important for determining P(Y|X)

– e.g. If the last state (yi-1) was intron and we have a blast hit (x), we have a 
different probability for whether we are in an exon (yi) now.

• We may not know how this probability has changed or dependence
other evidence

• We learn this by selecting weights, λj, to maximize the likelihood of 
training data

• Z(X) is a normalization constant that ensure that P(Y|X) sums to one 
over all possible Ys

( )
J N

j j i i-1
j=1 i

1P(Y|X)= exp f Y ,Y ,X
Z(X)

λ
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑



Using CRFs

( )
J N

j j i i-1
j=1 i

1P(Y|X)= exp f Y ,Y ,X
Z(X)

λ
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑

1. Select feature functions on label pairs {Yi,Yi-1} and X.

2. Given weights and feature functions, find the most 
probable labeling Y, given an input X

3. Use a training set of data to select the weights, λ.

Design

Inference

Learning



What Are Feature Functions?

1. Features are arbitrary functions that return a real value for 
some pair of labels {Yi,Yi-1}, and the input, X
• Indicator function – 1 for certain {Yi,Yi-1,X}, 0 otherwise
• Sum, product, etc.. over labels and data
• Could return some probability over {Yi,Yi-1,X} – but this is 

not required

2. We want to select feature functions that capture constraints 
or conjunctions of label pairs {Yi,Yi-1}, and the input, X that we 
think are important for P(Y|X)

3. Determine characteristics of the training data that must hold 
in our CRF model

Core issue in CRF – selecting feature functions



Example Feature Function

( ) i i
blast,exon i i-1

1 if Y =exon and X =BLAST
f Y ,Y ,X

0 otherwise
⎧

= ⎨
⎩

An BLAST hit at position i impacts the probability that Yi = exon.  To 
capture this, we can define an indicator function:

Y2 Y3Y1 YNYi-1 YiY4 … …
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( ){ }

{ }

N

blast,exon blast,exon i i-1
i

blast,exon

blast,exon

P(Y|X)

exp f Y ,Y ,X
=

Z(X)

exp 0 0 0 1 0 1 0
Z(X)

exp 2
Z(X)
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Adding Evidence

( ) i i
blast,exon i i-1

1 if Y =exon and X =BLAST
f Y ,Y ,X

0 otherwise
⎧

= ⎨
⎩

An BLAST hit at position i impacts the probability that Yi = exon.  To 
capture this, we can define an indicator function:

But recall that these two pieces of evidence not independent

A protein domain predicted by the tool HMMer at position i also impacts 
the probability that Yi = exon.  

( ) i i
HMMer,exon i i-1

1 if Y =exon and X =HMMer
f Y ,Y ,X

0 otherwise
⎧

= ⎨
⎩



Dependent Evidence in CRFs
There is no requirement that evidence represented 

by feature functions be independent

• Why? CRFs do not model P(X)!
• All that matters is whether evidence 

constrains P(Y|X)
• The weights determine the extent to 

which each set of evidence contributes 
and interacts



A Strategy for Selecting Features
• Typical applications use thousands or millions of 

arbitrary indicator feature functions – brute force 
approach

• But we know gene prediction HMMs encode useful 
information

Strategy
1. Start with feature functions derived from best HMM 

based gene prediction algorithms

2. Use arbitrary feature functions to capture evidence 
hard to model probabilistically



( ) ( ) ( )

( )

1 1
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Y2 Y3Y1 YN

X2 X3X1 XN

Yi Yi+1Y4

Xi Xi+1X4

… …

Alternative Formulation of HMM

HMM probability factors over pairs of nodes
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Y2 Y3Y1 YN

X2 X3X1 XN

Yi Yi+1Y4

Xi Xi+1X4

… …

Alternative Formulation of HMM

We can define a function, f, over each of these pairs

then,
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exp f , ,
P(Y,X) P(Y,X)P Y|X =
P(X) P(Y,X) exp f , ,
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Conditional Probability from HMM

( ) ( )

( )

N

1
1

N

1
1

1P Y|X exp 1 f , ,
Z(X)

where Z(X)= exp 1 f , ,
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i
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This is the 
formula for a 
linear chain 

CRF
with all λ = 1



Implementing HMMs as CRFs

( ) ( ){ }
( ) ( ){ }

HMM_Transition 1 1

HMM_Emission 1

HMM_Transition HMM_Emission

f , , log P |

f , , log P |

1

i i i i i

i i i i i

y y x y y

y y x x y

λ λ

− −

−

=

=

= =

We can implement an HMM as a CRF by choosing

Either formulation creates a CRF that models that same 
conditional probability P(Y|X) as the original HMM

( ) ( ) ( ){ }HMM 1 1

HMM

f , , log P | P |

1
i i i i i i iy y x y y x y

λ
− −= ×

=

Or more commonly



Adding New Evidence

• Additional feature are added with arbitrary feature 
functions (i.e. fblast,exon)

• When features are added, learning of weights 
empirically determines the impact of new features 
relative to existing features (i.e. relative value of 
λHMM vs λblast,exon)

CRFs provide a framework for incorporating 
diverse evidence into the best existing models for 

gene prediction



Conditional Independence of Y

( ) ( )
all nodes v

i i-1 i i

P(X,Y) = P(v|parents(v))

= P Y | Y P X |Y

∏

∏

Y2 Y3Y1

X2 X3X1

Y4

X4

Y2 Y3Y1 Y4

X2

Directed Graph Semantics

Bayesian 
Networks

Factorization

Potential Functions over Cliques
(conditioned on X)

Markov Random Field

Factorization

( )
all nodes v

i i-1

P(Y|X) = U(clique(v),X)

= P Y | Y ,X

∏

∏

Both cases: Yi conditionally independent of all other Y given Yi-1



Conditional-Generative Pairs

Can convert HMM to CRF
• Training an HMM to maximize P(Y|X) yields same decision 

boundary as CRF

Can convert CRF to HMM
• Training CRF to maximize P(Y,X) yields same classification 

boundary as HMM
Sutton, McCallum (CRF-Tutorial)

HMMs and linear chain CRFs explore the same 
family of conditional distributions P(Y|X)* 

HMMs and CRFs form a generative-discriminative pair
Ng, Jordan (2002)

* Assuming P of the form exp(U(Y))/z – exponential family



Conditional-Generative Pairs

Sutton, C. and A. McCallum. An Introduction to Conditional Random Fields for Relational Learning.

Figure 1.2 from "An Introduction to Conditional Random Fields for Relational Learning," Charles Sutton and Andrew McCallum.
Getoor, Lise, and Ben Taskar, editors. Introduction to Statistical Relational Learning.  Cambridge, MA: MIT Press, 2007. ISBN: 978-0-262-07288-5.  
 
Courtesy of MIT Press. Used with permission.



Practical Benefit of Factorization
• Allows us to take a very large probability distribution 

and model it using much smaller distributions over 
“local” sets of variables

• Example: CRF with N states and 5 labels (ignore X 
for now)

P(Y1,Y2,Y3,…,YN) Pi(Yi,Yi-1)

5N 5*5*N

(5*5 if Pi=Pi-1 for all i)



Using CRFs

( )
J N

j j i i-1
j=1 i

1P(Y|X)= exp f Y ,Y ,X
Z(X)

λ
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑

1. Select feature functions on label pairs {Yi,Yi-1} and X.

2. Given weights and feature functions, find the most 
probable labeling Y, given an input X

3. Use a training set of data to select the weights, λ.

Design

Inference

Learning



Labeling A Sequence

( )
J N

j j i i-1
Y Y j=1 i

1arg max  P(Y|X)= arg max  exp f Y ,Y ,X
Z(X)

λ
⎡ ⎤⎧ ⎫
⎢ ⎥⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦

∑ ∑

Given sequence & evidence X, we wish to select a labeling, Y, that 
is in some sense ‘best” given our model

As with HMMs, one sensible choice is the most probable labeling 
given the data and model:

But of course, we don’t want to score every possible Y.  This is 
where the chain structure of the linear chain CRF comes in handy…

Why?



Dynamic Programming

( )
J

j j
j=1

exp f K,2,Xλ
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑

Nucleotide Position

11

22

KK

… …

11

22

KK

… …

1 2 i-1 i..

K
 L

ab
el

s 
(Y

)

Vk(i-1) = probability of most likely path 
through i-1 ending on K given X

Score derived from feature 
functions over Yi-1=2 and Yi=k

( ) ( )
J

k l j jl j=1
V i = max  V (i-1) exp f k,l,Xλ

⎛ ⎞⎧ ⎫
×⎜ ⎟⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

∑



By Analogy With HMM

( ) ( )( ) ( )( )
( )( )
( )( )

k k i k

k i i-

k k ij j

k i i-1

j

i

1

ij

V i =e (x )  max V i max V i e (x )

max V i P

max

(Y

V i (Y =j,Y =k,

=j|Y =k)P(x |Y =k)

X)

jk k

H M

j

M

a a∗ × =

×Ψ

× ×

= ×

=

Recall from HMM lectures

i i-1 i i-1 i i(Y ,Y ,X) = P(Y |Y )P(X |Y )HMMΨ

Where we have defined



( ) ( ){ } ( )1 1 hmmlog P | P | = f , ,  , =1i i i i i i i HMMy y x y y y x λ λ− −×

Y2 Y3Y1 YN

X2 X3X1 XN

Yi Yi+1Y4

Xi Xi+1X4

… …

Recall From Previous Slides
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HMM 1
1

i i-1 i i-1 i i HMM 1

1P Y|X exp f , ,
Z(X)

(Y ,Y ,X) = P(Y |Y )P(X |Y )= exp f , ,

i i i
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HMM i i i

y y x

y y x
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−
=

−

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

Ψ

∑ linear chain 
CRF



Combined HMM and CRF Inference

( ){ }i i-1 k k 1(Y ,Y ,X) = exp f , ,CRF i i iy y xλ −Ψ

We can define the same quantity for a generic CRFs

We can rewrite all HMM equations in terms of ΨHMM
If we then plug ΨCRF in for ΨHMM , they work analogously:

( ) ( )( )

( ) ( )

( ) ( )

kV i = max  V (i-1) k, ,X

( ) Ψ k, ,X  α i-1

( ) Ψ k, ,X  i+1

ll

k l
l

k l
l

l

i l

i l

α

β β

×Ψ

=

=

∑

∑

Viterbi

Forward

Backward



Using CRFs

( )
J N

j j i i-1
j=1 i

1P(Y|X)= exp f Y ,Y ,X
Z(X)

λ
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑

1. Select feature functions on label pairs {Yi,Yi-1} and X.

2. Given weights and feature functions, find the most 
probable labeling Y, given an input X

3. Use a training set of data to select the weights, λ.

Design

Inference

Learning



Maximum Likelihood Learning
• We assume an iid training set {(x(k),y(k))} of K labeled 

sequences of length N
– A set of manually curated genes sequences for which all 

nucleotides are labeled

• We then select weights, λ, that maximize the log-
likelihood, L(λ), of the data

( ) ( )
i

K J N K
(k) (k) (k) (k)

j j i-1
k=1 j=1 i=1 k=1

( ) λ f Y ,Y ,X - log Z XL λ =∑∑ ∑ ∑

L(λ) is concave - guaranteed global max
Good news



Maximum Likelihood Learning
• Maximum where 
• From homework, at maximum we know

( ) 0L λ λ∂ ∂ =

( ) ( ) ( )
i i

N N
(k) (k) (k) (k) (k) (k) ' ( )

j i-1 j i-1 model
i=1 i=1

f Y ,Y ,X f Y ,Y ,X | k

k k
P Y X=∑∑ ∑∑

Features determine characteristics of the training data 
that must hold in our CRF model

Maximum entropy solution – no assumptions in CRF 
distribution other than feature constraints

Count in data Expected count by model



Gradient Search

1. Define forward/backward variables akin to HMMs
2. Calculate Z(X) using forward/backward
3. Calculate δL(λ)/δλi using Z(x) and forward/backward
4. Update each parameter with gradient search (quasi-

Newton)
5. Continue until convergence to global maximum

No closed solution – need gradient method
Need efficient calculation of δL(λ)/δλ and Z(X)

Bad news

Outline

Very slow – many iterations of forward/backward



Using CRFs

( )
J N

j j i i-1
j=1 i

1P(Y|X)= exp f Y ,Y ,X
Z(X)

λ
⎧ ⎫
⎨ ⎬
⎩ ⎭
∑ ∑

1. Select feature functions on label pairs {Yi,Yi-1} and X.

2. Given weights and feature functions, find the most 
probable labeling Y, given an input X

3. Use a training set of data to select the weights, λ.

Design

Inference

Learning



CRF Applications to Gene Prediction

• Culotta, Kulp, McCallum (2005)

• CRAIG (Bernal et al, 2007)

• Conrad (DeCaprio et al (2007), Vinson et al (2006))

• PhyloCRF (Majores, http://geneprediction.org/book/)

CRF actually work for gene prediction



Conrad
• A Semi-Markov CRF

– Explicit state duration models
– Features over intervals

• Incorporates diverse information
– GHMM features
– Blast
– EST

• Comparative Data
– Genome alignments with model of evolution
– Alignment gaps

• Alternative Objective Function
– Maximize expected accuracy instead of likelihood 

during learning
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