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Systems Biology and Metabolic Modeling

• Steady State Metabolic Modeling

• Expression, Regulation, and 
Steady State Metabolic Modeling

• Advanced Systems Modeling



What is Metabolism?
“The totality of all chemical reactions that occur in 
living matter” Matthews & van Holde, Biochemistry

Most commonly, these refer to reactions involved in

1) The generation and storage of energy and oxidation-
reduction products
- ATP, NADH, NADPH

2) The creation or destruction of cell structural components
- Proteins, Lipids, Carbohydrates, Nucleic Acids

But we should also properly include:

3) The transduction and transmission of information
- More commonly studies as signaling and genetics today



Why Model Metabolism?

• Predict the effects of drugs on metabolism
– e.g. what genes should be disrupted to prevent mycolic acid 

synthesis

• Interpret gene expression data in the context of 
metabolism
– e.g. what metabolic state corresponds to a particular 

expression profile

• Many infectious disease processes involve microbial 
metabolic changes
– e.g. switch from sugar to fatty acid metabolism in TB in 

macrophages



Enzymes
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Glucose 6-phosphate + ADP

EA of uncatalyzed reaction
in forward direction
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Figure by MIT OpenCourseWare. 



Reaction Rates

A +2B  3C→

Formation rates

Reaction Rate = Reaction Velocity = Reaction Flux

d[A] d[B] d[C]                                
dt dt dtfA fB fCv v v= = =

d[A] 1 d[B] 1 d[C] =  = 
dt 2 dt 3 dt

v =



Steady State Assumptions

• Dynamics are transient
• At appropriate time-

scales and conditions, 
metabolism is in steady 
state

A

B

D
Cvin

v1

v3

v2

v5

vout
v4

Two key implications
1. Fluxes are roughly 

constant
2. Internal metabolite 

concentrations are 
constant

[ ] 1 3 0
d A

vin v v
dt

= − − =



Metabolic Flux
Input fluxes

Volume of 
pool of water = 

metabolite
concentration

Output fluxes

Figure by MIT OpenCourseWare. 



Reaction Stoichiometries Are Universal

The conversion of glucose to glucose 6-phosphate 
always follows this stoichiometry :

1ATP + 1glucose = 1ADP + 1glucose 6-phosphate

This is chemistry not biology.

Biology => the enzymes catalyzing the reaction

Enzymes influence rates and kinetics
• Activation energy
• Substrate affinity
• Rate constants

Not required for steady 
state modeling!



Metabolic Flux Analysis

Use universal reaction 
stoichiometries to predict metabolic 
network capabilities at steady state*

*Not precise, but more precision will come in later slides 

(Famili et al (2003) PNAS)

Famili, Iman, et al. "Saccharomyces Cerevisiae Phenotypes can be Predicted by Using Constraint-based Analysis of a Genome-scale
Reconstructed Metabolic Network.." PNAS 100, no. 23 (2003): 13134-13139. Copyright (2003) National Academy of Sciences, U.S.A.



Stoichiometry As Vectors
• We can denote the stoichiometry of a reaction 

by a vector of coefficients 
• One coefficient per metabolite

– Positive if metabolite is produced
– Negative if metabolite is consumed

Example:
Metabolites:

[ A  B  C  D ]T

Reactions:

2A + B -> C

C -> D

Stoichiometry Vectors:

[ -2  -1  1  0 ]T

[ 0  0  -1  1 ]T



The Stoichiometric Matrix

dx S V
dt

= •

v1
v2
v3
v4
v5
v6
v7
v8
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v10
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v2
v3
v4
v5
v6
v7
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Let V be a vector of fluxes through each reaction

Then S*V is a vector describing the change in 
concentration of each metabolite per unit time

R1  R2  R3  R4  R5  R6  R7  R8  R9  R10
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0
0
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0
0
1
0
1

0
-1
0
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1
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dB/dt
dC/dt
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dG/dt
dH/dt
dI/dt
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A (Very) Simple System

We have introduced two new things

• Reversible reactions – are represented by two reactions that proceed 
in each direction (e.g. v4, v5)

• Exchange reactions – allow for fluxes from/into an infinite pool outside 
the system (e.g. vin and vout). These are frequently the only fluxes 
experimentally measured.
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Some advantages of S

• Chemistry not Biology: the stoichiometry of a 
given reaction is preserved across organisms, 
while the reaction rates may not be preserved

• Does NOT depend on kinetics or reaction 
rates

• Depends on limited thermodynamic data –
only reversibility/irreversibility



Genes to Reactions
• Expasy enzyme 

database 
• Indexed by EC 

number
• EC numbers 

can be assigned 
to genes by
– Blast to known 

genes
– PFAM domains



Online Metabolic Databases

Pathlogic/BioCyc

Kegg
There are several online databases with 
curated and/or automated EC number 
assignments for sequenced genomes

Images removed due to copyright restrictions.  Please see:

http://biocyc.org/intro.shtml

http://www.genome.jp/kegg/



From Genomes to the S Matrix

A
B
C
D
E
F
G
H
I

R1 R2  R3 R4  R5  R6  R7 R8  R9  R10
-1
0
0
-2
0
0
1
0
1

0
-1
0
-1
0
0
0
1
0

Columns encode 
reactions

Relationships btw 
genes and rxns
-1 gene 1 rxn
-1 gene 1+ rxns
-1+ genes 1 rxn

The same reaction 
can be included as 
multiple roles 
(paralogs)

Gene A Gene B   Gene C 

Enzyme A Enzyme B/C

Examples

Gene D Gene E   Gene E’

Enyzme D Enzyme E   Enzyme E’

Same rxn



What Can We Use S For?

1. Nullspace of S
2. Extreme Pathways
3. Constrained Flux Space

From S we can determine what combination 
of fluxes are possible in the system and

what are not

To get there we need three concepts:



The Steady State Assumption and S

• We have 

• But also recall that at steady state, metabolite 
concentrations are constant: dx/dt=0

dx S V
dt

= •

0dx S V
dt

= • =

Steady State fluxes are constrained to the nullspace of S



The Nullspace of S

• Subspace of flux vectors that 
do not change metabolite 
concentrations

• Can describe nullspace with 
non-unique basis vectors, bi

• All nullspace fluxes are linear 
combinations of this basis:

• Can find a basis using 
standard methods (e.g. SVD)

dx S V
dt

= •

i i
i

V bα=∑

reaction 2 flux

1dx
dt

2dx
dt

reaction 1 flux

reaction 3 flux

3dx
dt



Example Nullspace Basis

-> Need to constrain the nullspace
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Extreme Pathways

• The most fundamental constraint is that all 
fluxes must be positive*

• In this case, we have the following linear 
homogeneous equation system:

• Solution to this set of equations is an exercise in 
convex analysis

• Solution region can be described by a unique
set of Extreme Pathways

*recall that reversible reactions are represented by two unidirectional fluxes

0 , 0, 1..iS V v i n= ⋅ ≥ =



The Flux Cone

• Every steady state flux 
vector, v, is a non-negative 
combination of these 
pathways:

• Extreme pathways represent 
underlying pathway structure 
of system

v

p1

p2

p3

p4

flux v1

flux v2

flux v3

Extreme pathways circumscribe 
a convex flux cone

0i i i
i

V pα α= ≥∑



Nullspace Flux Cone

Vector space defined by set 
of non-unique basis vectors

Vector space defined by set 
of non-unique basis vectors

Every flux in space uniquely
represented as linear 
combination of basis vectors

Every flux in space non-
uniquely represented as 
non-negative combination of 
extreme pathways

# Basis vectors = dimension 
of nullspace

# Extreme pathways >
dimension of nullspace



Constraining the Solution Space
• No reaction has capacity for infinite flux
• Often one can estimate constraints on transfer fluxes 

– Max glucose uptake measured at maximum growth rate
– Max oxygen uptake based on diffusivity equation

• Flux constraints result in constraints on extreme 
pathways 
– Need enough constraints to ‘cover’ extreme pathways

p1

p2

p3

p4

flux v1

flux v2

flux v3

p1

p2

p3

p4

max flux v3

flux v1

flux v2

flux v3



The Constrained Flux Cone

p1

p2

p3

p4

flux v1

flux v2

flux v3
• Contains all achievable 

flux distributions given the 
constraints:
– Stoichiometry
– Reversibility
– Max and Min Fluxes

• Only requires:
– Annotation 
– Stoichiometry
– Small number of flux 

constraints (small relative to 
number of reactions)



Selecting One Flux Distribution

p1

p2

p3

p4         

flux v1
flux v2

flux v3     
• At any one point in time, 

organisms have a single flux 
distribution

• How do we narrow down the 
range of predicted flux 
distributions (ideally to one)?

What if we assume organisms are trying to 
maximize a “fitness” function that is a function of 

fluxes?



Linear Programming
Maximize:

Subject to:

0

Linear Programming

Ax b
x

<
≥

T
i i

i
z c v c v= =∑

If we assume the objective function is a linear function of fluxes, 
we can use linear programming to find a solution

Solution always lies at 
boundary of admissible 
space

Can be found using simplex 
algorithm

Example

From Bonarius et al TIBTECH vol 15:308 (1997)

flux x1

flux x2     
Constraints:

0
.

i

a

x
r const
≥
≤

Maximize NADH

Maximize ATP

x1+x2=ra

admissible
space

NADH=c1

NADH=c2

NADH=c3

ATP

NADH

A B

x1
rA rB

x2

Figure by MIT OpenCourseWare. 



Optimizing E. coli Growth

Z = 41.257vATP - 3.547vNADH + 18.225vNADPH + 0.205vG6P + 0.0709vF6P
+0.8977vR5P + 0.361vE4P + 0.129vT3P + 1.496v3PG + 0.5191vPEP
+2.8328vPYR + 3.7478vAcCoA + 1.7867vOAA + 1.0789vAKG

Metabolite (mmol)
ATP 41.257
NADH -3.547
NADPH 18.225
G6P 0.205
F6P 0.0709
R5P 0.8977
E4P 0.361
T3P 0.129
3PG 1.496
PEP 0.5191
PYR 2.8328
AcCoA 3.7478
OAA 1.7867
AKG 1.0789

For one gram of E. coli biomass, you 
need this ratio of metabolites

Assuming a matched balanced set of 
metabolite fluxes, you can formulate 
this objective function 



FBA Summary
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flux v3
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p4

flux v1

flux v2

flux v3

Stoichiometric Matrix
Gene annotation

Enzyme and reaction 
catalog

Feasible Space
S*v=0

Add constraints:
vi>0

αi>vi>βi

Optimal Flux
Growth objective

Z=c*v

Solve with linear 
programming

Flux solution

Next  some applications of FBA….
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Sugar-phosphate
backbones

3.40nm
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Citric acid

cycle
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Acetyl-CoAFatty
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ADP
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ATP
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Applications



in silico Deletion Analysis

Can we predict gene knockout 
phenotype based on their simulated 

effects on metabolism?

Q: Why, given other computational methods exist?
(e.g. protein/protein interaction map connectivity)

A: Other methods do not directly consider metabolic 
flux or specific metabolic conditions



in silico Deletion Analysis
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Gene knockouts modeled by removing a reaction



Mutations Restrict Feasible Space

• KO removes fluxes, and 
extreme pathways that 
depend on these fluxes

• Feasible space is 
constrained

• If original optimal flux is 
outside new space, new 
optimal flux is created

• Growth rate at new 
solution provides a 
measure of KO phenotype

FluxB

FluxA

FluxC

FluxB

FluxA

FluxC

FluxB

FluxA

FluxC
Calculate new
optimal flux

No change in
optimal flux

Figure by MIT OpenCourseWare. 



Mutant Phenotypes in E. coli

Model of E. coli central metabolism
436 metabolites
720 reactions

Simulate mutants in glycolysis, 
pentose phosphate, TCA, electron 
transport

Edwards, J.S., and B.O. Palsson. "The Escherichia coli MG1655 in 
silico metabolic genotype: Its definition, characteristics, and 
capabilities." PNAS 97, no. 10 (2000): 5528-5533.



E. coli KO simulation results
If Zmutant/Z =0, mutant is 
no growth (-), growth (+)
otherwise

Compare to experiment
(in vivo / in silico)
86% agree

Measured optimal growth of 
mutants (Zmutant) versus non-
mutant (Z)

Simulated growth on glucose

“lethal”

“reduced growth”

Edward & Palsson (2000) PNAS

in vivo

+ -

+ 36 2

- 9 32

in silico

Condition specific 
prediction

Edwards, J. S., and B. O. Palsson. "The Escherichia coli MG1655 in Silico Metabolic Genotype: Its Definition, Characteristics,
and Capabilities." PNAS 97, no. 10 (2000): 5528-5533. Copyright (2000) National Academy of Sciences, U.S.A.



What do the errors tell us?

• Errors indicate gaps in model or knowledge
• Authors discuss 7 errors in prediction

– fba mutants inhibit stable RNA synthesis (not 
modeled by FBA)

– tpi mutants produce toxic intermediate (not 
modeled by FBA)

– 5 cases due to possible regulatory 
mechanisms (aceEF, eno, pfk, ppc) 

Edward & Palsson (2000) PNAS



Yeast Metabolic Model
• 1175 Reactions
• 585 Metabolites
• Accounts for 708 (16%) 

genes
• Includes 140 reactions 

w/o known genes
• Cytosol and mitochondria 

compartments
• Palsson group continues 

to update and improve 
model

Forster et al. (2003) Genome Res

Model available at
http://systemsbiology.ucsd.edu

Image removed due to copyright restrictions.
 
 
Figure 1, Reconstruction of the metabolic network of S. cerevisiae.
Forster, Jochen, et al. "Genome-Scale Reconstruction of the Saccharomyces
Cerevisiae Metabolic Network." Genome Research 13 (2003): 244-253. 
 



Yeast Knockout Analysis
Reported:
81.5% agreement
93 of 114 cases

But broken down by case:

Many errors of (+/-)
- 7 predict retarded growth
- Others can be explained by 
unmodeled regulation

Eukaryotic model needs
gene regulation

Famili et al. (2003) PNAS

in vivo

+ -

+ 86 20

- 0 3

in silico

Famili, Iman, et al. "Saccharomyces Cerevisiae Phenotypes can be Predicted by Using Constraint-based Analysis of a Genome-scale
Reconstructed Metabolic Network." PNAS 100, no. 23 (2003): 13134-13139. Copyright (2003) National Academy of Sciences, U.S.A.



Resources

• Tools and Databases
– Kegg
– BioCyc
– PathwayExplorer (pathwayexplorer.genome.tugraz.at)

• Metabolic Modeling
– Palsson’s group at UCSD (http://gcrg.ucsd.edu/)
– www.systems-biology.org
– Biomodels database (www.ebi.ac.uk/biomodels/)
– JWS Model Database (jjj.biochem.sun.ac.za/database/index.html)

http://gcrg.ucsd.edu/
http://www.systems-biology.org/
http://www.ebi.ac.uk/biomodels/
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