6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.047/6.878 Computational Biology: Genomes, Networks, Evolution

Introduction to Steady State Metabolic Modeling

Systems Biology and Metabolic Modeling

Steady State Metabolic Modeling

- Expression, Regulation, and Steady State Metabolic Modeling
- Advanced Systems Modeling

What is Metabolism?

"The totality of all chemical reactions that occur in living matter" Matthews & van Holde, Biochemistry

Most commonly, these refer to reactions involved in

- 1) The generation and storage of energy and oxidationreduction products
 - ATP, NADH, NADPH
- 2) The creation or destruction of cell structural components
 - Proteins, Lipids, Carbohydrates, Nucleic Acids

But we should also properly include:

- 3) The transduction and transmission of information
 - More commonly studies as *signaling* and *genetics* today

Why Model Metabolism?

- Predict the effects of drugs on metabolism
 - e.g. what genes should be disrupted to prevent mycolic acid synthesis
- Interpret gene expression data in the context of metabolism
 - e.g. what metabolic state corresponds to a particular expression profile
- Many infectious disease processes involve microbial metabolic changes
 - e.g. switch from sugar to fatty acid metabolism in TB in macrophages

Enzymes

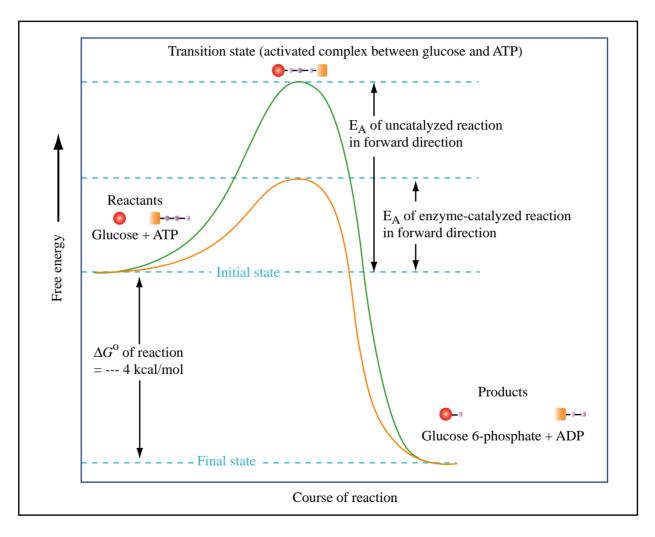
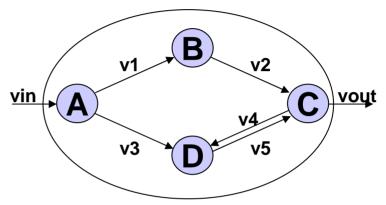


Figure by MIT OpenCourseWare.

Reaction Rates

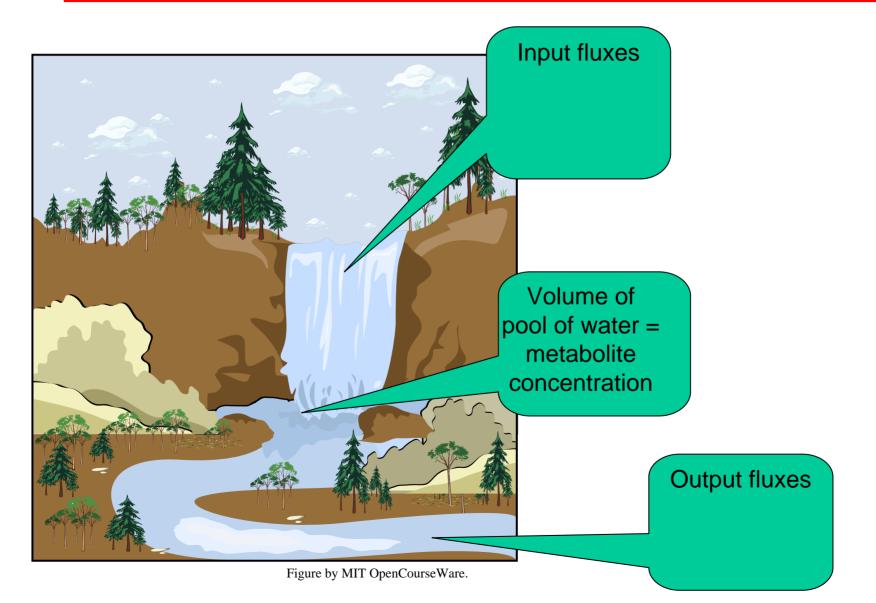
$A + 2B \rightarrow 3C$

Formation rates


$$v_{fA} = \frac{d[A]}{dt}$$
 $v_{fB} = \frac{d[B]}{dt}$ $v_{fC} = \frac{d[C]}{dt}$

Reaction Rate = Reaction Velocity = <u>Reaction Flux</u>

$$v = \frac{d[A]}{dt} = \frac{1}{2}\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt}$$


Steady State Assumptions

- Dynamics are transient
- At appropriate timescales and conditions, *metabolism is in steady state*
- Two key implications
- 1. Fluxes are roughly constant
- 2. Internal metabolite concentrations are constant

$$\frac{d[A]}{dt} = vin - v1 - v3 = 0$$

Metabolic Flux

Reaction Stoichiometries Are Universal

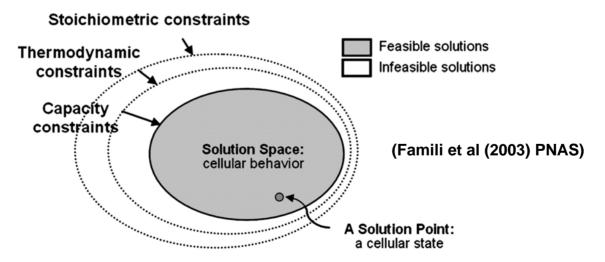
The conversion of glucose to glucose 6-phosphate always follows this stoichiometry :

1ATP + 1glucose = 1ADP + 1glucose 6-phosphate

This is chemistry not biology.

Biology => the enzymes catalyzing the reaction

Enzymes influence rates and kinetics


- Activation energy
- Substrate affinity
- Rate constants

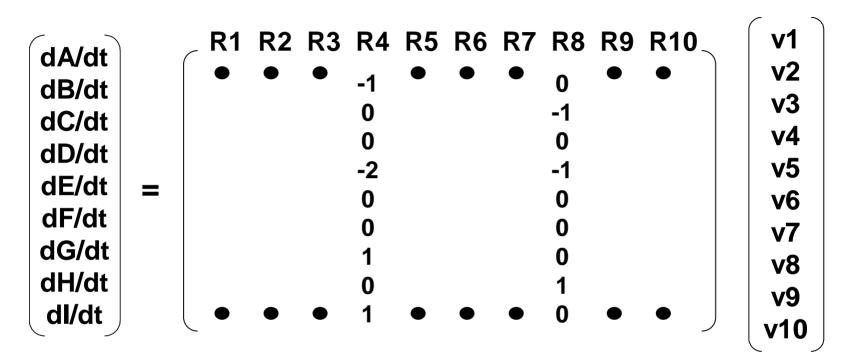
Not required for steady state modeling!

Metabolic Flux Analysis

Use universal reaction stoichiometries to predict metabolic network capabilities at steady state*

Famili, Iman, et al. "Saccharomyces Cerevisiae Phenotypes can be Predicted by Using Constraint-based Analysis of a Genome-scale Reconstructed Metabolic Network.." *PNAS* 100, no. 23 (2003): 13134-13139. Copyright (2003) National Academy of Sciences, U.S.A.

*Not precise, but more precision will come in later slides

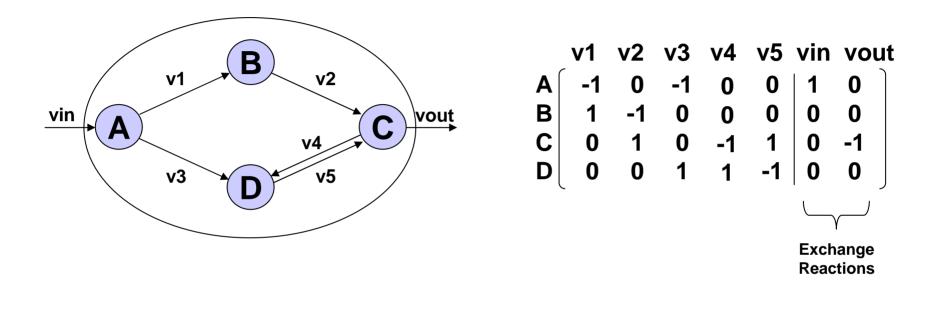

Stoichiometry As Vectors

- We can denote the stoichiometry of a reaction by a vector of coefficients
- One coefficient per metabolite
 - Positive if metabolite is produced
 - Negative if metabolite is consumed

Example:

Metabolites:	Reactions:	Stoichiometry Vectors:
[ABCD] ^T	2A + B -> C	[-2 -1 1 0] [⊤]
	C -> D	[00-11] ^T

The Stoichiometric Matrix



Let V be a vector of fluxes through each reaction

Then S*V is a vector describing the change in concentration of each metabolite per unit time

 $\frac{dx}{dt} = S \bullet V$

A (Very) Simple System

We have introduced two new things

- Reversible reactions are represented by two reactions that proceed in each direction (e.g. v4, v5)
- Exchange reactions allow for fluxes from/into an infinite pool outside the system (e.g. vin and vout). These are frequently the only fluxes experimentally measured.

Some advantages of S

- Chemistry not Biology: the stoichiometry of a given reaction is preserved across organisms, while the reaction rates may not be preserved
- Does NOT depend on kinetics or reaction rates
- Depends on limited thermodynamic data only reversibility/irreversibility

Genes to Reactions

- Expasy enzyme database
- Indexed by EC number
- EC numbers can be assigned to genes by
 - Blast to known genes
 - PFAM domains

🚋 ExPASy Home page	Site Map	Search ExPASy	Contact us	Swiss-Prot	ENZYME
Search ENZYME		▼ for	Go	Clear	

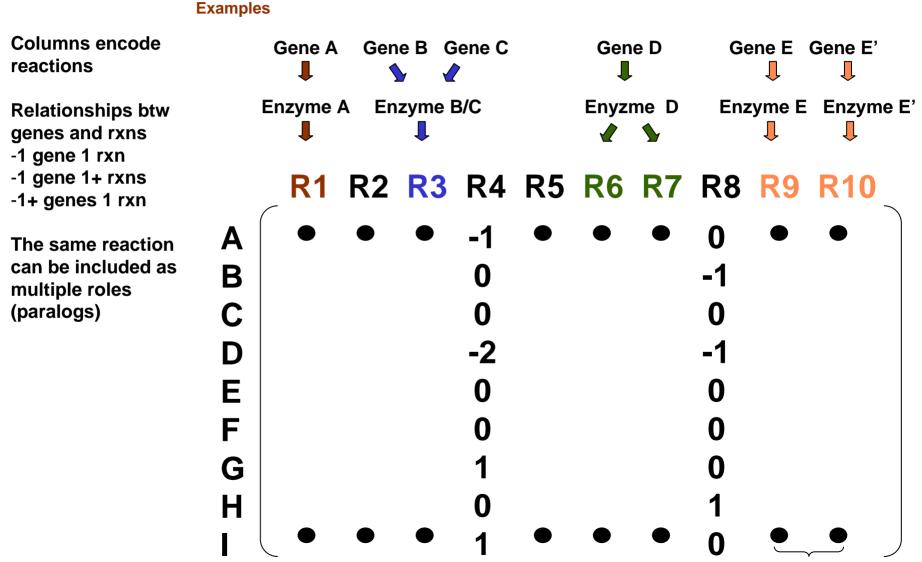
NiceZyme View of ENZYME: EC 2.7.4.3

Official Name	
Adenylate kinase.	
Alternative Name(s)	
Adenylic kinase.	
Adenylokinase.	
Myokinase.	
Reaction catalysed	
ATP + AMP <=> 2 ADP	
Comment(s)	
Inorganic triphosphate can also act as do Human Genetic Disease(s)	nor.
Hemolytic anemia due to deficiency of adenylate kinase	MIM:103000
Cross-references	
Biochemical Pathways; map number(s)	G7
PROSITE	PDOC00104
BRENDA	2.7.4.3
PUMA2	2.7.4.3
PRIAM enzyme-specific profiles	2.7.4.3
KEGG Ligand Database for Enzyme Nomenclature	2.7.4.3
IUBMB Enzyme Nomenclature	2.7.4.3
IntEnz	2.7.4.3
MEDLINE	Find literature relating to 2.7.4.3
MetaCyc	2.7.4.3

Online Metabolic Databases

There are several online databases with curated and/or automated EC number assignments for sequenced genomes

Kegg


Pathlogic/BioCyc

Images removed due to copyright restrictions. Please see:

http://biocyc.org/intro.shtml

http://www.genome.jp/kegg/

From Genomes to the S Matrix

Same rxn

What Can We Use S For?

From S we can determine what combination of fluxes are possible in the system and what are not

To get there we need three concepts:

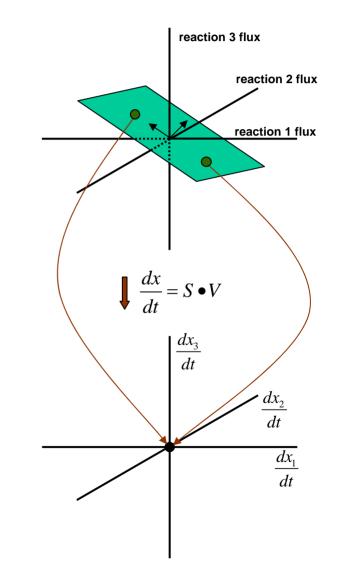
- 1. Nullspace of S
- 2. Extreme Pathways
- 3. Constrained Flux Space

The Steady State Assumption and S

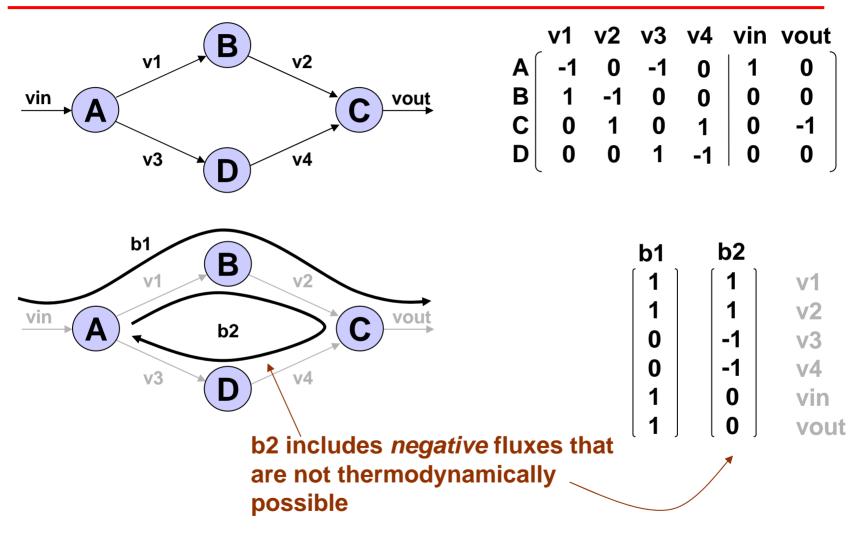
• We have
$$\frac{dx}{dt} = S \bullet V$$

 But also recall that at steady state, metabolite concentrations are constant: *dx/dt*=0

$$\frac{dx}{dt} = S \bullet V = 0$$


Steady State fluxes are constrained to the nullspace of S

The Nullspace of S


- Subspace of flux vectors that do not change metabolite concentrations
- Can describe nullspace with non-unique basis vectors, b_i
- All nullspace fluxes are linear combinations of this basis:

$$V = \sum_{i} \alpha_{i} b_{i}$$

 Can find a basis using standard methods (e.g. SVD)

Example Nullspace Basis

-> Need to constrain the nullspace

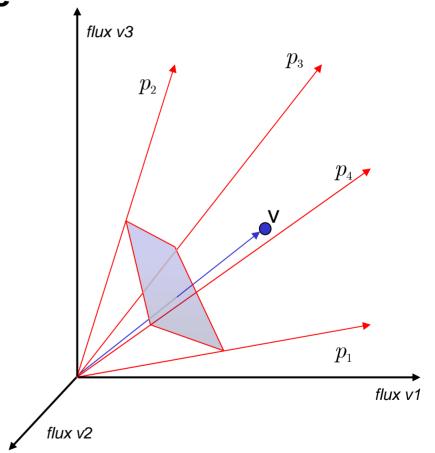
Extreme Pathways

- The most fundamental constraint is that all fluxes must be *positive**
- In this case, we have the following linear homogeneous equation system:

$$0 = S \cdot V, \qquad v_i \ge 0, \quad i = 1..n$$

- Solution to this set of equations is an exercise in convex analysis
- Solution region can be described by a *unique* set of <u>Extreme Pathways</u>

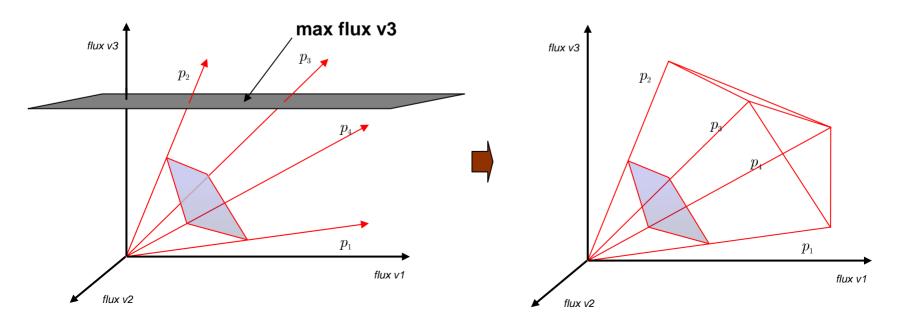
*recall that reversible reactions are represented by two unidirectional fluxes


The Flux Cone

Extreme pathways circumscribe a *convex flux cone*

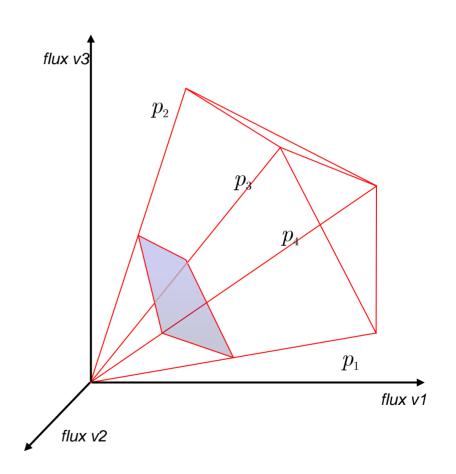
• *Every* steady state flux vector, v, is a *non-negative combination* of these pathways:

$$V = \sum_{i} \alpha_{i} p_{i} \qquad \alpha_{i} \ge 0$$

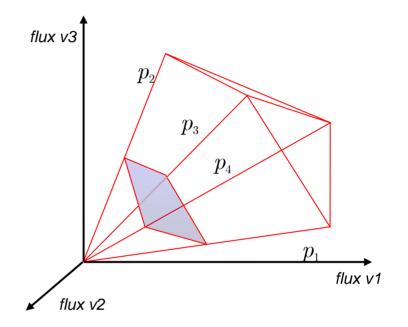

• Extreme pathways represent underlying pathway structure of system

Nullspace	Flux Cone				
Vector space defined by set	Vector space defined by set				
of non-unique basis vectors	of non-unique basis vectors				
Every flux in space uniquely represented as linear combination of basis vectors	Every flux in space non- uniquely represented as non-negative combination of extreme pathways				
# Basis vectors = dimension	# Extreme pathways <u>></u>				
of nullspace	dimension of nullspace				

Constraining the Solution Space

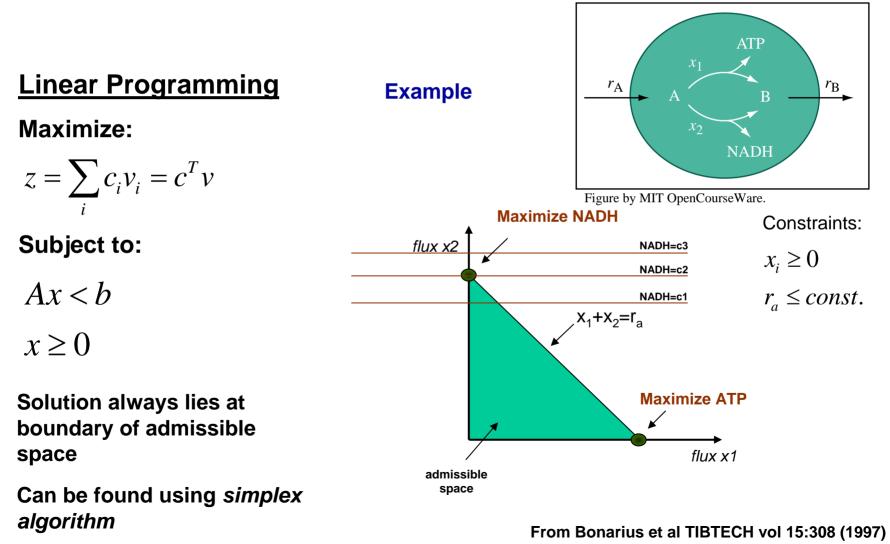

- No reaction has capacity for *infinite* flux
- Often one can estimate constraints on transfer fluxes
 - Max glucose uptake measured at maximum growth rate
 - Max oxygen uptake based on diffusivity equation
- Flux constraints result in constraints on extreme pathways
 - Need enough constraints to 'cover' extreme pathways

The Constrained Flux Cone


- Contains all achievable flux distributions given the constraints:
 - Stoichiometry
 - Reversibility
 - Max and Min Fluxes

- Only requires:
 - Annotation
 - Stoichiometry
 - Small number of flux constraints (small relative to number of reactions)

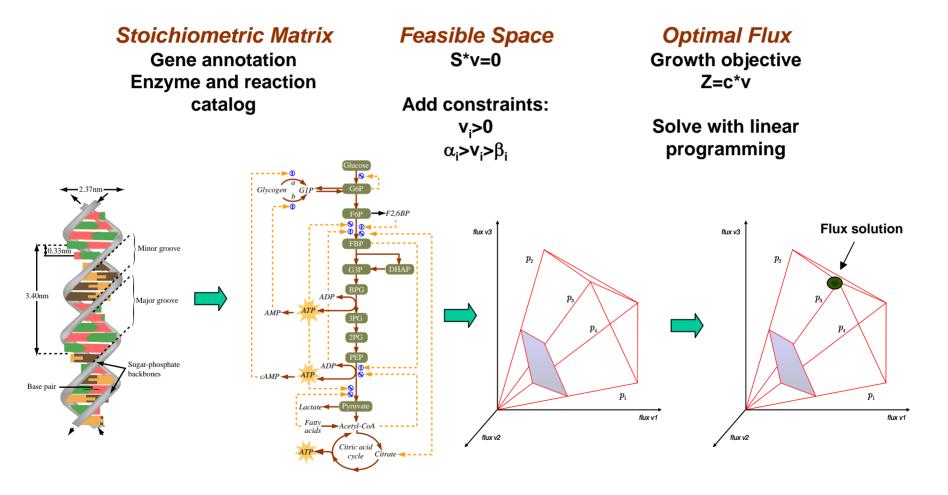
Selecting One Flux Distribution


- At any one point in time, organisms have a single flux distribution
- How do we narrow down the range of predicted flux distributions (ideally to one)?

What if we assume organisms are trying to maximize a "fitness" function that is a function of fluxes?

Linear Programming

If we assume the objective function is a *linear function of fluxes*, we can use *linear programming* to find a solution



Optimizing E. coli Growth

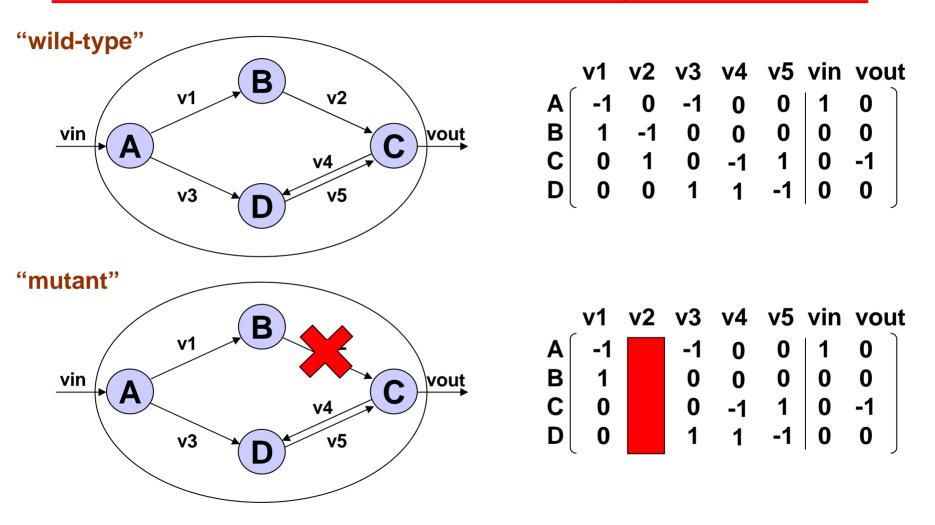
For one grow of F colibiomena you	Metabolite	(mmol)
For one gram of E. coli biomass, you	АТР	41.257
need this ratio of metabolites	NADH	-3.547
	NADPH	18.225
	G6P	0.205
	F6P	0.0709
	R5P	0.8977
	E4P	0.361
	ТЗР	0.129
Assuming a matched balanced set of	3PG	1.496
metabolite fluxes, you can formulate	PEP	0.5191
	PYR	2.8328
this objective function	AcCoA	3.7478
	ΟΑΑ	1.7867
\checkmark	AKG	1.0789

$$\begin{split} & Z = 41.257 v_{\text{ATP}} - 3.547 v_{\text{NADH}} + 18.225 v_{\text{NADPH}} + 0.205 v_{\text{G6P}} + 0.0709 v_{\text{F6P}} \\ & + 0.8977 v_{\text{R5P}} + 0.361 v_{\text{E4P}} + 0.129 v_{\text{T3P}} + 1.496 v_{\text{3PG}} + 0.5191 v_{\text{PEP}} \\ & + 2.8328 v_{\text{PYR}} + 3.7478 v_{\text{AcCoA}} + 1.7867 v_{\text{OAA}} + 1.0789 v_{\text{AKG}} \end{split}$$

FBA Summary

Next some applications of FBA....

Applications


in silico Deletion Analysis

Can we predict gene knockout phenotype based on their simulated effects on metabolism?

Q: Why, given other computational methods exist? (e.g. protein/protein interaction map connectivity)

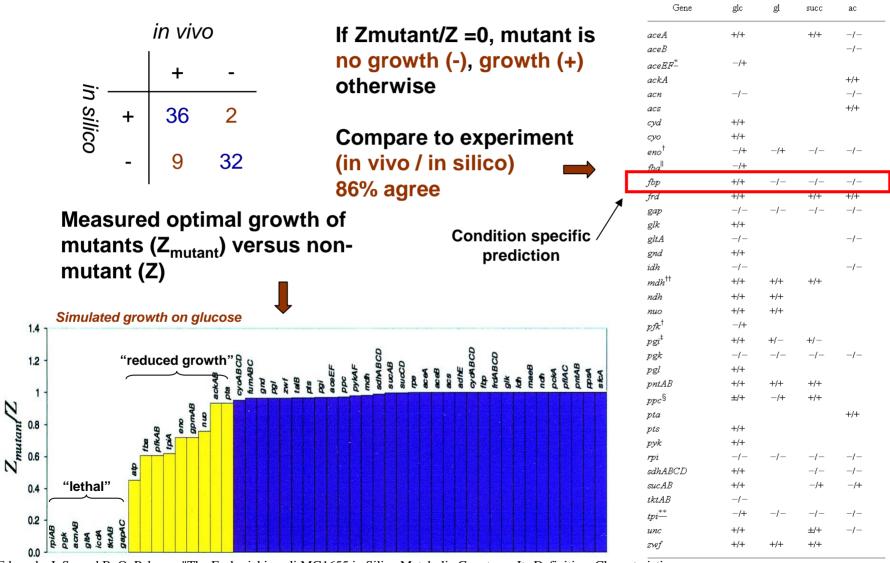
A: Other methods do not directly consider metabolic flux or specific metabolic conditions

in silico Deletion Analysis

Gene knockouts modeled by removing a reaction

Mutations Restrict Feasible Space

- KO removes fluxes, and extreme pathways that depend on these fluxes
- Feasible space is constrained
- If original optimal flux is outside new space, new optimal flux is created
- Growth rate at new solution provides a measure of KO phenotype


Mutant Phenotypes in E. coli

Edwards, J.S., and B.O. Palsson. "The *Escherichia coli* MG1655 *in silico* metabolic genotype: Its definition, characteristics, and capabilities." *PNAS* 97, no. 10 (2000): 5528-5533.

Model of E. coli central metabolism 436 metabolites 720 reactions

Simulate mutants in glycolysis, pentose phosphate, TCA, electron transport

E. coli KO simulation results

Edwards, J. S., and B. O. Palsson. "The Escherichia coli MG1655 in Silico Metabolic Genotype: Its Definition, Characteristics, and Capabilities." PNAS 97, no. 10 (2000): 5528-5533. Copyright (2000) National Academy of Sciences, U.S.A.

N

Edward & Palsson (2000) PNAS

What do the errors tell us?

- Errors indicate gaps in model or knowledge
- Authors discuss 7 errors in prediction
 - *fba* mutants inhibit stable RNA synthesis (not modeled by FBA)
 - *tpi* mutants produce toxic intermediate (not modeled by FBA)
 - 5 cases due to possible regulatory mechanisms (*aceEF, eno, pfk, ppc*)

Yeast Metabolic Model

- 1175 Reactions
- 585 Metabolites
- Accounts for 708 (16%) genes
- Includes 140 reactions w/o known genes
- Cytosol and mitochondria compartments
- Palsson group continues to update and improve model

Image removed due to copyright restrictions.

Figure 1, Reconstruction of the metabolic network of *S. cerevisiae*. Forster, Jochen, et al. "Genome-Scale Reconstruction of the Saccharomyces Cerevisiae Metabolic Network." *Genome Research* 13 (2003): 244-253.

Model available at http://systemsbiology.ucsd.edu

Forster et al. (2003) Genome Res

Yeast Knockout Analysis

					Defined complete Glc	Defined minimal Glc	Defined minimal Ace	Defined minimal Eth		Defined complete Glc	Defined minimal Glc	Defined minimal Ace	Defined minimal Eth
Reported:		Gene	(in silico/ in vivo)	(in silico/ in vivo)	(in silico/ in vivo)	(in silico/ in vivo)	Gene	(in silico/ in vivo)	(in silico/ in vivo)	(in silico/ in vivo)	(in silico/ in vivo)		
81.5	% ag	reeme	nt	4.601	-	-	,	-	MDH1	(+/+)	(+/+)	(+/-)	
93 o	f 114	cases		ACO1 CDC19*	(+/+) (+/-)	(-/-) (+/-)			MDH2	(+/+)	(171)	(+/-)	(+/-)
				CDC19*	(+/-) (+/+)	(+/-) (+/+)			MDH3	(+/+)		(,,,,,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				CIT2	(+/+)	(+/+)			MLS1	(+/+)	(+/+)	(+/+)	(+/+)
But	brok	en dov	vn by case:	CIT2	(+/+)	(,,,,			OSM1	(+/+)			
			•	DAL7	(+/+)	(+/+)	(+/+)	(+/+)	PCK1	(+/+)			
				ENO1	(+/+)	(, , , ,	(.,.,	(.,.,	PDC1	(+/+)	(+/+)		
		in viv	0	ENO2 [†]	(+/-)	(+/-)			PDC5	(+/+)	(+/+)		
		1		FBA1 [‡]	(+/-)	(+/-)			PDC6	(+/+)	(+/+)		
_		+	-	FBP1	(+/+)	(+/+)		(-/-)	PFK1	(+/+)	(+/+)		
in silico				FUM1	(+/+)				PFK2	(+/+)	(+/+)		
S.	+	86	86 20	GLK1	(+/+)				PGI1 [‡]	(+/-)	(+/-)		
lic			-	GND1§	(+/-)	(+/-)			PGK1 [‡]	(+/-)	(+/-)		
ö		0	0 0	GND2	(+/+)				PGM1	(+/+)	(+/+)		
	-	0	3	GPM1 [¶]	(+/-)	(+/-)			PGM2	(+/+)	(+/+)		
	I	1		GPM2	(+/+)				PYC1	(+/+)	(+/+)	(+/-)	(+/-)
				GPM3	(+/+)				PYC2	(+/+)			
Man	v orr	ors of	(+/-)	HXK1	(+/+)				PYK2	(+/+)	(+/+)		(+/+)
	-			HXK2	(+/+)				RKI1	(-/-)			
– 7 p	oredio	ct <u>retar</u>	ded growth	ICL1	(+/+)	(+/+)			RPE1	(+/+)			
- Oth	hors	can he	explained b	IDH1	(+/+)	(+/+)			SOL1	(+/+)			
				10112	(+/+)	(+/+)			SOL2	(+/+)			
unm	unmodeled regulation			IDP1	(+/+)	(+/+)			SOL3	(+/+)			
				IDP2	(+/+)	(+/+)			SOL4	(+/+)			
IDP3				(+/+)				TAL1	(+/+) (+/+)	(+/+)			
Eukaryotic model needs			KGD1	(+/+)	(+/+)			TDH1 TKL2	(+/+)				
gene regulation			KGD2	(+/+)	(+/+)			TPI1 [‡] **	(+/+)				
	-			LPD1	(+/+)		4. 4.5				(+./)	`	
				LSC1	(+/+)		(+/+)	(+/+)	ZWF1	(+/+)	(+/+)	
				LSC2	(+/+)		(+/+)	(+/+)					
				MAE1	(+/+)	(+/+)		(+/+)					

Famili et al. (2003) PNAS

Famili, Iman, et al. "Saccharomyces Cerevisiae Phenotypes can be Predicted by Using Constraint-based Analysis of a Genome-scale Reconstructed Metabolic Network." *PNAS* 100, no. 23 (2003): 13134-13139. Copyright (2003) National Academy of Sciences, U.S.A.

Resources

Tools and Databases

- Kegg
- ВіоСус
- PathwayExplorer (pathwayexplorer.genome.tugraz.at)

• Metabolic Modeling

- Palsson's group at UCSD (<u>http://gcrg.ucsd.edu/</u>)
- <u>www.systems-biology.org</u>
- Biomodels database (www.ebi.ac.uk/biomodels/)
- JWS Model Database (jjj.biochem.sun.ac.za/database/index.html)