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1 Model of evolution 

Our goal in developing this maximum likelihood approach is to find the best tree (most likely) that 
explains our sequence data. 

To represent a tree, let the leaves of a tree be numbered 1, ..., n and the ancestral nodes be n + 
1, 2n − 1. Let the branches of the tree be numbered by the most recent of the two nodes it touches 
(e.g. branch i connects node i and parent(i)). For a tree, we have its topology T and the branch times 
t1, ..., t2n−2, where ti is the time between nodes i and parent(i). 

Our sequence data can be represented as a matrix x (n rows, m columns), such that xi,j is the 
jth character of the ith sequence. We will be given sequence data for the extant (modern) sequences 
x1, ...xn, and will have to integrate over the ancestral sequences xn+1, ...x2n−1. Each sequence has 
length m. 

With these definitions, our goal in the maximum likelihood method is to solve the following equation 

arg max P (x1, ..., xn|T, t). 
T,t 

1.1 Defining the distributions: factoring by branches 

Before we can tackle the equation above, we must first define the distributions of our variables. We 
will make several assumptions about the process of sequence evolution in order to make the math and 
algorithm tractable. 

First note that the distribution above is a marginal of the joint distribution over all sequences 

P (x1, ..., xn|T, t) = P (x1, ..., x2n−1|T, t) 
xn+1,...,x2n−1 

The first assumption we will make is that lineages evolve independently. This means that a 
sequence xi only depends on the sequence its parent xparent(i) and the time along it branch ti. This 
assumption allows us to factor the distribution as 

P (x1, ..., x2n−1|T, t) = P (x1|x2, ..., x2n−1, T, t)P (x2|x3, ..., x2n−1, T, t)...P (x2n−1|T, t) 
= P (x1|xparent(1), t1)P (x2|xparent(2), t2)...P (x2n−1) 

2�n−2 

= P (x2n−1) P (xi|xparent(i), ti) 
i=1 

Notice that this equation requires us to define only two things, a prior distribution of the root 
sequence P (x2n−1) and the distribution of how single branches evolve P (xi|xparent(i), t). The following 
sections will define these. 
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1.2 Modeling the evolution of a single branch 

We now consider the evolution along a single branch 

P (xi|xparent(i), t0). 

We will make another assumption, assume sites evolve independently. Therefore we have 

P (xi|xparent(i), ti) = 
j 

P (xi,j |xparent(i),j , ti) 

Previously in the presentation of the Neighbor-Joining algorithm, we saw several models for the 
evolution of a single site P (xi,j |xparent(i),j , ti). Let us now review them. 

Jukes Cantor (JC) is the simplest but there are also many others: Kimura’s 2 parameters (K2P), 
HKY, etc. All of these models make the same basic set of assumptions, and only differ in how many 
free parameters they have. 

First they all assume that the evolutionary process is time reversible. Thus the probability of an 
“A” evolving to a “G” over time t is the same as a “G” evolving to an “A”. In other words 

P (a = G|b = A, t) = P (a = A|b = G, t). 

You can think of this a symmetric 4x4 matrix S. They also assume that this probability matrix is 
multiplicative 

P (b|a, t1)P (c|b, t2) = P (c|a, t1 + t2). 
b 

In the Jukes Cantor model, every base mutates into every other base with an equal rate α. From 
these properties, our substitution probability matrix S is then ⎞⎛ 

P (a|b, t) = S(t) =

⎜⎜⎝


rt st st st 

st rt st st 

st st rt st 

st st st rt 

⎟⎟⎠
,


where 

rt = 
1 
4
(1 + 3e−4αt) 

st = 
1 
4
(1 − e−4αt). 

The derivation of these equations are given in the Durbin book (pg 194). Try plugging in a few 
values of t to see how this makes sense 
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Figure 1. The hierarchy of sequence evolution models 

t = 0 
1 

r0 = (1 + 3e−4α0) = 1 
4
1 

s0 = (1 − e−4α0) = 0,
4

which is the identity matrix (i.e. no substitutions occur in zero time). Also we have 

t = ∞
1 1 

r = (1 + 3e−4α∞) = ∞	 4 4 
1 1 

s∞ = 
4
(1 − e−4α∞) = 

4
, 

which means in the long-run any sequence evolves towards the equilibrium of 25% frequency for 
each base. 

See Figure 1 for more examples of sequence evolution models. For example, the K2P model allows 
another parameter to model the different rates of transversions and transitions. The HKY model allows 
three additional parameters on top of K2P to model a different equilibrium distribution than 25% for 
each base. The TrN model generalizes HKY by giving two parameters for the two kinds of transitions. 
And lastly there is the fully parametrized model General Time Reversible (GTR). 
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1.3 Modeling the root sequence 

The last distribution that needs to be defined is the probability of the root sequence 

P (x2n−1) 

We will make a very simple model for this sequence. First, we assume sites evolve independently, 
and second the probability of each base is modeled by a background base frequency P (a). Thus we 
have 

m

P (x2n−1) = P (xi,j ) 
j=1 

Just to be explicit, if we wanted each base to be equally likely (1/4), we would have 

1 m 

P (x2n−1) = 
4 

2 The Maximum Likelihood (ML) Algorithm 

Now that we have fully defined our model we can estimate the maximum likelihood of the parameters 
T and t. 

First consider how many topologies there are for n leaves. For unrooted topologies we have 

Nu = 3 ∗ 5 ∗ 7 ∗ ... ∗ (2n − 5) = (2n − 5)!! 

and for rooted topologies we have 

Nr = (2n − 3) ∗ Nu = (2n − 3) ∗ (2n − 5)!! 

There is no known algorithm for solving the general ML phylogeny problem in polynomial time. 
Therefore, current approaches use heuristic tree searches to explore only a fraction of these topologies 
and possible values for t. There are several search methods that rely on taking a tree and performing 
local rearrangements to propose other trees (e.g. Nearest Neighbor Interchange (NNI) and Subtree 
Pruning and Regrafting (SPR)). The basic ML algorithm is then 

while proposing values of T, t with NNI: 
Calculate likelihood of P(x_1,...,x_n|T,t) 

return T,t that achieved max likelihood 

The previous section defined how to calculate P (x1, ..., xn|T, t), but can we do it efficiently. The 
answer is yes, and the solution is with dynamic programming. Remember that the full factoring of the 
likelihood looks like this 

P (x1, ..., xn|T, t) = P (x1,j , ..., xn,j |T, t)

j
� � � 2�n−2 

= ... P (x2n−1,j ) P (xi,j |xparent(i),j , ti) 
j x2n−1,j xn+1,j i=1 
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which appears to be an expensive calculation. However, many of these terms are repeated reused 
and can memoized with DP. The algorithm is called the “peeling” algorithm and is performed by filling 
the following DP table of likelihoods P (Li,j |a). 

P (x1, ..., xn|T, t) = P (L2n−1,j |a)P (a) 
j 

0 

⎧ ⎪⎪⎨ 

a 

1 if xi,j = a, i ≤ n 
= a, i ≤ n 

if i > n 
if xi,j

P (Li,j |a) = ⎪⎪⎩

P (b|a, tleft(i))P (Lleft(i)|b) 
a, tright(i))P (Lright(i)|c) 

b,c 
P (c|


You can think of P (Li,j |a) as the likelihood the subtree rooted at node i given that the root contains 
the base a at site j. The table is computed in post-traversal order (leaves to the root) and the values 
at the top of the tree give the final likelihood of the whole tree. 

The runtime of calculating the likelihood is thus fairly fast O(nm). On the other hand, the tree 
search is difficult to bound and is the most expensive part of ML. 
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