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Abstract We present a randomized distributed algo-

rithm that in radio networks with collision detection

broadcasts a single message in O(D + log6 n) rounds,
with high probability. This time complexity is most in-

teresting because of its optimal additive dependence

on the network diameter D. It improves over the cur-

rently best known O(D log n
D + log2 n) algorithms, due

to Czumaj and Rytter [FOCS 2003], and Kowalski and

Pelc [PODC 2003]. These algorithms where designed for

the model without collision detection and are optimal

in that model. However, as explicitly stated by Peleg in

his 2007 survey on broadcast in radio networks, it had
remained an open question whether the bound can be

improved with collision detection.

We also study distributed algorithms for broadcast-

ing k messages from a single source to all nodes. This
problem is a natural and important generalization of

the single-message broadcast problem, but is in fact

considerably more challenging and less understood. We

show the following results: If the network topology is
known to all nodes, then a k-message broadcast can be

performed in O(D + k log n + log2 n) rounds, with high

probability. If the topology is not known, but collision

detection is available, then a k-message broadcast can
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be performed in O(D + k log n + log6 n) rounds, with

high probability. The first bound is optimal and the

second is optimal modulo the additive O(log6 n) term.
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1 Introduction

The classical information dissemination problem in ra-

dio networks is the problem of broadcasting a single

message to all nodes of the network (single-message

broadcast). This problem and its generalizations have
received extensive attention.

A characteristic of radio networks is that multiple

messages that arrive at a node simultaneously interfere

(collide) with one another and none of them is received

successfully. Regarding whether nodes can distinguish
such a collision from complete silence, the model is usu-

ally divided into two categories of with and without col-

lision detection. Throughout studies of problems in ra-

dio networks, it has been observed that many problems

can be solved faster in the model with collision detec-
tion [21]. Despite this trend, it had remained unclear

whether this is also the case for broadcast or not [20].

We show that single-message broadcast can be indeed

solved faster, in simply diameter plus poly-logarithmic
time, if collision detection is available. Even though our

work is theoretical, we remark that most practical radio

networks can detect collisions.

Broadcasting k messages from one node to all nodes

is a natural and important generalization of the single-
message broadcast problem. Usually, this generaliza-

tion involves new and significantly different challenges,

mainly because the dissemination of different messages



2 Ghaffari, Haeupler, and Khabbazian

can interfere with each other. We show how to over-

come these challenges and obtain an (almost) optimal

k-message broadcast algorithm.

1.1 Model and Problem Statements

We work in the radio network model with collision de-

tection [5]: a synchronous undirected network G = (V, E)

where in each round, each node either transmits a packet

with B bits or listens. As a standard assumption, to en-
sure that each packet can contain a constant number of

ids, we assume that B = Ω(log n). Each node v re-

ceives a packet from its neighbors only if it listens in

that round and exactly one of its neighbors is transmit-

ting. If two or more neighbors of v transmit, then v only
detects the collision, which is modeled as v receiving a

special symbol ⊤ indicating a collision. We explain that

some of our results hold even in the model without col-

lision detection, where if two or more neighbors of v
transmit, then v does not receive anything.

The single-message broadcast problem is defined as

follows: A single source node has a single message of

length at most Θ(B) bits and the goal is to deliver this

message to all nodes in the network. The k-message
single-source broadcast problem is defined similarly, with

the difference that the source has k messages which

need to be delivered to all other nodes. We focus on ran-

domized solutions to these problems where we require
that the message(s) are delivered to all nodes with high

probability1. In the unknown topology setting (which

is our default setting), we assume2 that nodes know a

polynomial upper bound on n and a constant factor

upper bound on diameter D. In the known topology
setting, similar to [8], we assume that nodes know the

whole graph.

1.2 Our Results

Our main results are as follows:

Theorem 1 In radio networks with unknown topology

and with collision detection, there is a randomized dis-

tributed algorithm that broadcasts a single message in
O(D + log6 n) rounds, with high probability.

1We use the phrase “high probability” to indicate a prob-
ability at least 1 − 1

nc , for a constant c ≥ 1, and where n is
the network size.

2It is easy to see that the latter assumption can be re-
moved without any change in our time-bounds, by finding a
2-approximation of D in time O(D), using the beep waves
tool of [11].

Theorem 2 In radio networks with known topology (even

without collision detection), there is a randomized dis-

tributed algorithm that broadcasts k messages in O(D+

k log n + log2 n) rounds, with high probability.

Theorem 3 In radio networks with unknown topology
and with collision detection, there is a randomized dis-

tributed algorithm that broadcasts k messages in O(D+

k log n + log6 n) rounds, with high probability.

About Theorem 1, we remark that prior to this

work, the best known solution for single-message broad-
cast was the O(D log n/D+log2 n) algorithms presented

independently by Czumaj and Rytter [7], and Kowal-

ski and Pelc [16], for the model without collision detec-

tion. In that model, these bounds are optimal [1,18]. As

Peleg points out in [20], prior to this work, it was un-
clear whether these upper bounds can be improved in

the model with collision detection. Theorem 1 answers

this question by showing that a better upper bound is

indeed achievable. We remark that the bound of The-
orem 1 is within an additive poly-log of the Ω(D +

log2 n) lower bound, that follows from the Ω(log2 n)

lower bound of [1] and the obvious lower bound of

Ω(D).

About Theorems 2 and 3, we remark that these
two results use random linear network coding (RLNC).

Moreover, we note that even in the strong model of cen-

tralized algorithms with full topology knowledge, with

collision detection, and with network coding, k-message

broadcast has a lower bound of Ω(D + k log n + log2 n)
rounds. This lower bound follows from the Ω(k log n)

throughput-based lower bound of [2] for a k-message

broadcast, the Ω(log2 n) lower bound of [1] for a single

message broadcast, and the trivial Ω(D) lower bound.
Thus, the complexity of Theorem 2 is optimal and the

complexity of Theorem 3 is optimal modulo the addi-

tive O(log6 n) term.

When looking at the issue from a practical angle,

Theorem 1 and Theorem 3 have an interesting message:
they show that one can replace the (expensive and not-

completely-reasonable) assumption of all nodes know-

ing the full topology of the network, with (the consid-

erably more reasonable and usually-available) collision

detection, and still perform single or multiple broadcast
tasks almost in the same time.

To achieve the above three results, we present three

new technical elements, which each can be interesting

on their own:

(A) The first element is a distributed construction of
a Gathering-Spanning-Tree (GST) with round com-

plexity of O(D log4 n). GSTs were first introduced

by [8] to obtain broadcast algorithms with an addi-
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tive O(D) diameter dependence in the known topol-

ogy setting [8, 9, 19]. The only known construction

of GST prior to this work was the centralized algo-

rithm of Gasieniec et al. [8], which has step-complexity

of O(n2) operations and requires the full knowledge
of the graph. We use our new GST construction to

prove Theorem 1. For this we first decompose the

graph appropriately, then we construct a GST for

every part in parallel and lastly we use this setup to
broadcast the (single) message efficiently.

(B) The second element is a novel transmission sched-

ule atop GST for solving multiple message broadcast

problems. We contend this schedule to be the right

generalization of [8] for multiple messages. Such a
generalization was also attempted in [19] but its cor-

rectness was disproved [22].

(C) The third element is backwards analysis, an new

way to analyze the progress of messages during a
multi-message radio network broadcast. Backward

analysis shows that a message spreads quickly even

when other messages that are spread at the same

time cause collisions. A priori it is not clear that

information dissemination remains efficient in the
presence of these collisions, which only arise in the

mutli-message setting. Insights from the backwards

analysis were crucial in the design of our multi-

message transmission schedule and also enable us
to apply the projection analysis of Haeupler [12] for

analyzing random linear network coding to prove

Theorem 2 and Theorem 3.

1.3 Related Work

Designing distributed broadcast algorithms for radio
networks has received extensive attention, starting with

the pioneering work of Bar-Yehuda, Goldreich and Itai

(BGI) [3]. Here, we present a brief review of the results

that directly relate to this paper.

Single-Message Broadcast: Peleg [20] provides a com-

prehensive survey of the known results about single-
message broadcast. BGI [3] present the Decay proto-

col which broadcasts a single message in O(D log n +

log2 n) rounds. The best known distributed algorithms

for single-message broadcast for the setting where the

topology is unknown are the O(D log n
D + log2 n) algo-

rithms presented independently by Czumaj and Ryt-

ter [7], and Kowalski and Pelc [16]. These algorithms

can be viewed as clever optimizations of the Decay pro-

tocol [3]. Moreover, similar to the Decay protocol, these
two algorithms are presented for the model without col-

lision detection and are optimal in that model [1, 18].

Prior to this work, no better algorithm was known for

the model with collision detection. If the topology of

the network is known, then the algorithm of Gasieniec,

Peleg and Xin [8] achieves the optimal O(D + log2 n)

time complexity. Kowalski and Pelc [17] gave an ex-

plicit deterministic broadcast protocol which achieves
the same time complexity.

Multi-Message Broadcast: The complexity of multi-

message broadcast (with bounded packet size) is less

understood. In the model without collision detection,

the following results are known. The earliest work on

multi-message broadcast problem is by BarYehuda et
al. [4], which broadcasts k messages in O((n + (k +

D) log n) log ∆) rounds, where ∆ is the maximum node

degree. Chlebus et al. [6] present a deterministic al-

gorithm that broadcasts k messages in O(k log3 n +
n log4 n) rounds. Khabbazian and Kowalski [15] and

Ghaffari and Haeupler [10] give randomized algorithm

that reduce the dependency on k to O(k log n) using

coding techniques. Ghaffari et al. [2] give an Ω(k log n)

lower bound which shows that this throughput is opti-
mal and furthermore study whether coding is neccesary

to achieve this throughput. The randomized algorithms

of [15] and [10] broadcast k messages in O(k log ∆ +

(D + log n) log n log∆) rounds and O(k log ∆ + (D +
log n) log n log∆) rounds respectively. Again, prior to

this work, no better algorithm was known for the model

with collision detection.

2 Single-Message Broadcast

We first recall the definition of a Gathering-Spanning-
Tree (GST) [8], in Section 2.1. Then, in Section 2.2,

we present a distributed algorithm with time complex-

ity O(D log4 n) for constructing a GST, in radio net-

works with unknown topology (even without collision
detection). In Section 2.3, we then show that this al-

gorithm can be used to broadcast a single message in

O(D + log6 n) rounds, in radio network with unknown

topology but with collision detection.

2.1 Gathering Spanning Trees (GST)

Ranked BFS: Consider a BFS tree T in graph G,

rooted at source node s. Also, suppose that in this tree,
we have assigned to each node v a level number ℓ(v),

which is equal to the distance of v from s. We rank the

nodes of T using the following inductive ranking rule:

Each leaf of T gets rank 1. Then, consider node v and
suppose that all children of v in T are already ranked.

Let r be the maximum rank of these children. If v has

exactly one child with rank r, then node v gets rank r.
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Fig. 1 Gathering Spanning Tree

If v has two or more children with rank r, then v gets

rank r + 1. As shown in [8], one can easily see that in

each ranked BFS, the largest rank is at most ⌈log2 n⌉.

Gathering Spanning Tree (GST) [8]: A ranked

BFS-tree T is called a GST of graph G if and only

if the following collision-freeness property is satisfied:

In graph G, any node of rank r on level l of T is
adjacent to at most one node of rank r at level l − 1

of T . In other words, if there are two nodes u1 and

u2 with rank r on level l of T , and their parents in

T are respectively v1 and v2 6= v1 (on level l − 1 of

T ), and v1 and v2 have rank r as well, then there is
no edge between v1 and u2 or between v2 and u1.

Fast Stretches in a GST: In a GST T , for each path

in T from a node v to a node u that is a descendant of v

in T , we call this path a fast stretch if all the nodes on
the path have the same rank. Note that a fast stretch

might be just a single node.

Distributed GST: In a distributed construction of a

GST, each node u must learn the following four items3:

(1) its level ℓ(u), (2) its own rank r(u), (3) the id of its

parent v, and (4) the rank of its parent r(v).
Figure 1 presents an example of a GST. The black

edges present the graph G and the thicker green edges

present a rank labeled BFS tree T of G. On the left

side, we see a rank-labeled BFS tree, but this tree is

not a GST because of the violation of the collision-
freeness property indicated by the red dashed arrow. On

the right side, we see another rank-labeled BFS of the

same graph G, which is a GST. In this GST, the green

edges that are coated with wide blue lines indicate the

3From (2) and (4), any node u can easily infers whether
it is the first node in a fast stretch and whether its parent is
in that stretch as well.

fast stretches. Each node that is not incident on any

of these blue-coated edges forms a trivial fast-stretch

made of just a single node.

Broadcast Atop GST: In [8] Gasieniec et al. pre-

sented an algorithm to broadcast a single message in

O(D + log2 n) rounds, atop a GST. A high-level expla-

nation is as follows: with a careful timing, the message
can be sent through the fast stretches without any colli-

sion. That is, we can (almost simultaneously) send the

message through different stretches such that in each

fast stretch, the message gets broadcast from the start
of the stretch to the end of the stretch in a time asymp-

totically equivalent to the length of the stretch. On the

other hand, since the largest rank in the tree T is at

most ⌈log2 n⌉ and because on each path from the source

to any node v, the ranks are non-increasing, we get that
the path from the source to each node v is made of

at most ⌈log2 n⌉ distinct fast stretches. By using the

Decay protocol4 [3] on each of the (at most) ⌈log2 n⌉

connections between the fast stretches, we get a broad-
cast algorithm with time complexity O(D+log2 n). We

refer the reader to [8] for the details of this broadcast

algorithm. We remark that we will use [8] simply as

a black-box that broadcasts a single-message in time

O(D + log2 n) on top of the GSTs we construct.

2.2 Distributed GST Construction

In this subsection, we present the following result:

Theorem 4 In the radio networks (even without col-
lision detection), there exists a distributed GST con-

struction algorithm with time complexity O(D log4 n)

rounds.

4The Decay protocol is a standard technique for coping
with collisions in radio networks. We present a short recap on
it in Section 2.2.1.
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We show a GST construction with round-complexity

of O(D log5 n) in Sections 2.2.1 to 2.2.3. We later im-

prove this to O(D log4 n) rounds, in Section 2.2.4.

2.2.1 Black-Box Tools

Before starting the construction, we first present two

black-box tools which we use in our construction.

Decay Protocol [3]: Rounds are divided into phases

of log n rounds, and in the ith round of each phase,
each node v transmits with probability 2−i (if it has a

message for transmission).

Lemma 1 (Bar-Yehuda et al. [3]) For each node
v, if at least one neighbor of v has a message for trans-

mission, then in each phase of the Decay protocol, node

v receives at least one message with probability at least
1
8 . Moreover, in Θ(log n) such phases, v receives at least
one message, with high probability.

Recruiting Protocol: The protocol consists of

Θ(log2 n) recruiting iterations, each having 2 +

Θ(log n) rounds as follows:

– In the first round of the jth recruiting iteration,

each red node transmits its id with probability

2−⌈ j
Θ(log n) ⌉.

– Then, we run a phase of the Decay protocol, con-

sisting of Θ(log n) rounds, from the side of blue

node. In this phase, each not-recruited blue node
u that received a message of a red node v tries to

transmit u.id and v.id (together in one packet).

– After that, the red nodes repeat the exact trans-

missions of the first round of this iteration, with
new contents as follows: (1) if in the previous De-

cay phase, a red node v received its own id from

exactly one blue node u, then v broadcasts v.id,

(2) if the red node v received its own id from two

or more blue nodes, then v broadcasts a special
message Σ. (3) Otherwise, v transmits an empty

message.

– Next, if a blue node u received its own id or the

special message Σ in the last round, then we say u
is recruited by red node v, where v is the red node

such that u received v.id in the first round. Note

that each red node v knows whether it recruited

zero, one or at least two blue nodes.

Recruiting Protocol : This tool can be abstracted by

the guarantees that it provides, which we present in

Lemma 2.

Lemma 2 Consider a bipartite graph H where nodes

on one side are called red and nodes on the other side

are called blue. The recruiting protocol achieves the

following three properties, w.h.p., in Θ(log3 n) rounds:

(a) for each blue node u, we assign an adjacent red
node v to u. In this case, we say u is recruited by v

(then called parent of u), (b) each red node v knows

whether it recruited zero, one, or at least two blue nodes,

(c) each recruited blue node u knows whether its parent
v recruited zero, one, or at least two blue nodes.

Proof of Lemma 2. We show that each blue node is re-
cruited with high probability. The other parts follow

easily from the description of the algorithm

Consider an arbitrary blue node u. It is easy to see

that there are Θ(log n) iterations such that in the first

round of each of these iterations, u receives the mes-

sage of a red node. This is because, for each jth itera-
tion where j is such that 2j ∈ [d(u) · log n

2 , 2d(u) · log n],

and where d(u) denotes the degree of u in H, node u

receives a message in the first round of iteration j with

constant probability. A Chernoff bound then shows that
in Θ(log n) of these iterations, in the first round, u re-

ceives the message of a red node.

Consider one such recruiting iteration, and suppose

that in the related first round, u receives the message of

red node v. In the Θ(log n) rounds of the Decay phase of

that iteration, from the properties of the Decay proto-
col, we get that with constant probability, the red node

v either receives the message of u or it receives at least

two messages from blue nodes. Moreover, if v receives

a message from a blue node w, then w had received
the message of node v in the first round of this itera-

tion. This is because, since v transmitted in that round,

w could not have received from any other red node v′

and since w is transmitting in the decay, we know that

it has received the message of one red node. Thus, we
conclude that with constant probability, the red node

v receives either the message of u or at least two mes-

sages from blue nodes. In either case, u gets recruited.

Note that u received the message of v in the last round
of the iteration simply because this round is an exact

repetition of the transmission of the first round of this

iteration, where u received a message from u.

Now in Θ(log2 n) recruiting iterations, there are Θ(log n)

iterations where in their first round, u receives the mes-
sage of a red node. Since in each such iteration u is

recruited with a constant probability, we get that after

the full run of the Recruiting protocol, u is recruited

with high probability.
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2.2.2 GST Construction Outline

We first construct a BFS-tree of G and assign to each

node v a level ℓ(v) that is equal to the distance of v from

the source. This can be done in O(D log2 n) rounds, as

follows: Rounds are divided into D epochs each consist-

ing of Θ(log n) phases of the Decay protocol (thus, each
epoch has Θ(log2 n) rounds). In each epoch, a node v

participates in the decays if and only if it is the source

or it has received a message by the end of the last epoch.

During these rounds, each node relays the first message
it received. The epoch in which a node v receives a mes-

sage for the first time determines the BFS level ℓ(v) of

node v.

Now that we have a BFS-tree, we build the GST on

top of this BFS layering, level by level, and from the

largest level towards the source. For this, the problem

boils down to the following scenario: Consider level l of
layering and assume that the GST is already built for

levels j ≥ l. Consider the bipartite graph H induced on

the nodes of level l − 1 and level l, ignoring the (pos-

sible) edges inside each level. The core of the problem

is to design an algorithm to construct the part of GST
between levels l − 1 and l, i.e., the part that is H .

Let us call the nodes on level l − 1 red nodes, and
the nodes on level l blue nodes. To construct the part of

GST that is in H , we assign a red parent v to each blue

node u, from amongst the red neighbors of u in H . In

this case, v is known as u’s parent and u is a child of v.

This assignment, along with the rankings of blue nodes,
leads to a ranking for the red nodes. More precisely, let

v be a red node and let i be the maximum rank of blue

node children of v in the assignment. Node v gets rank

i if it has only one child with rank i, and v gets rank
i + 1 if it has more than one child with rank i.

To have a GST, these assignments should be collision-

free. That is, if there exist blue nodes u1 and u2 and
their respective parents v1 and v2, all four with rank i,

then H must have no edge between v1 and u2, or be-

tween v2 and u1. Mathematically, if we let M be the

set of edges between blue nodes u of rank i and their
respective red parents v with rank i, then M should

be an induced matching of graph H . We refer to the

problem of finding such an assignment as the Bipartite

Assignment Problem.

More precisely, in the Bipartite Assignment Prob-
lem, we should achieve the following 6 properties: (1)

For each blue node u, we should assign a red neighbor

v as its parent, (2) we should rank the red nodes as

follows: for each red node v, suppose i is the maximum
rank of the children of v. Then, v should get rank i if

v has exactly one blue child of rank i, and v should

receive rank of i + 1 if v has two or more blue children

of rank i, (3) the assignment should be collision-free,

(4) each red node must know its rank and (5) each blue

node u should know the id of its parent and (6) each

blue node u should know the rank of its parent.

The Bipartite Assignment Problem is the core of the

GST construction and once we have a solution for it, re-

peating the solution level by level from the largest level
to source constructs a GST. In the next subsection, we

explain how to solve this problem in O(log5 n) rounds.

2.2.3 The Bipartite Assignment Algortihm

Consider bipartite graph H as explained. We solve the

bipartite assignment problem (defined above) in H in

a rank by rank basis, starting with the largest possible
rank ⌈log n⌉ (of blue nodes), and going down in ranks

until reaching rank 1. We spend Θ(log4 n) rounds on

each rank. Let us consider the case of a bipartite as-

signment for blue nodes of rank i in graph H , assuming
that ranks greater than i are already solved.

We first identify the red neighbors of the blue nodes

with rank i. This is done by using Θ(log n) phases of

the Decay protocol where blue nodes of rank i transmit.

This identifies the desired red nodes as every such red
node receives at least one message with high probabil-

ity and no other red node receives any message. From

now on, throughout the procedure for rank i, only these

red nodes are active. Now the algorithm is divided into
Θ(log n) epochs. Each epoch consists of three stages as

follows:

Stage I: Call a blue node u of rank i a loner if u has

exactly one active red neighbor. We first detect the

loner blue nodes. For this, in one round, each active

red node transmits a message. Only loner blue nodes
receive a message and each other blue node receives

a collision. We then use Θ(log n) phases of the Decay

protocol, where each blue loner tries transmitting.

This with high probability informs all red nodes that

are connected to at least one loner blue node. We
call these red nodes loner-parents.

Stage II: This stage is divided into three parts, and

each red node is active in only one of the parts.

Loner-parents, which we identified in the stage I,
are active only in part 1. Each other active red node

randomly and uniformly decides to be either brisk

or lazy, which respectively mean it is active in part

2 or in part 3. These parts are as follows:

Part 1. Loner-parents use a recruiting protocol.

During this recruiting protocol, each blue neigh-
bor of each red loner-parent get recruited with

high probability. These assignments are per-

manent. All the blue nodes that are recruited
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become inactive for the rest of the assignment

problem.

Part 2. Brisk red nodes run a Recruiting proto-

col. Then, each blue node that is not the only

recruited child of its parent considers its par-
ent as its permanent GST parent and becomes

inactive permanently (for the GST construc-

tion). The other recruited blue nodes become

inactive only for the remainder of this epoch,
but these assignments are temporary and the

related nodes restart in the next epoch, ignor-

ing their temporary assignments.

Part 3. We repeat the procedure of part 2, but

this time with lazy red nodes and with the
active blue nodes that did not get recruited

in parts 1 or 2.

Stage III: Let us say that a red node is marked if it

was a loner-parent or if it recruited zero or strictly
more than one blue nodes in parts 2 or 3. Each

marked red node becomes inactive after this epoch.

Thus, the only red nodes that remain active after

this epoch are those that do not have any loner
neighbor and recruited exactly one child in part 2

or 3 of the stage II. Each marked red node knows

whether it recruited zero, one, or at least two chil-

dren (in stage II). We use this knowledge to rank

these marked red nodes giving them rank of i if
they recruited exactly one blue child and rank of

i + 1 if they recruited more than one blue child.

Blue children of marked red nodes also know that

their parents are marked and they can also com-
pute the rank of their parents (refer to property (c)

of Lemma 2).

Before inactivating the marked red nodes, we do

one simple thing: marked red nodes run Θ(log n)

phases of the Decay protocol sending their id and
rank. Each blue node of any rank strictly lower than

i that receives a red node id considers the first red

node that it heard from as its permanent GST par-

ent, records the id and rank of that red parent, and
then, becomes inactive for the rest of the assignment

problem.

After running the bipartite assignment algorithm for all

the ranks, if a red node v has no child, then v is a leaf

and in the GST, v gets rank 1.

Figure 2 shows an example of assignments during

an epoch (the first epoch). The green arrows in the left-

most part indicate the loner blue nodes at the start of
the epoch. The loner parent red nodes are indicated by a

number 1 next to them, meaning they are active in part

1. Brisk and lazy red nodes are respectively indicated

by numbers 2 and 3, next to them. The smaller nodes

present the (temporarily or permanently) deactivated

nodes. The green dashed lines show the permanent as-

signments and the (thicker) orange dashed lines show

the temporary assignments. After the end of epoch,
nodes with temporary assignment are re-activated. The

graph remaining after the first epoch is presented on the

right side of the Figure 2, by solid blue lines.

Analysis: In Lemma 3, we prove that in each of the
Θ(log n) epochs except the first one, we reduce the size

of the assignment problem for rank i by at least a con-

stant factor, with at least a positive constant probabil-

ity. Here, by size of the assignment problem, we mean
the number of the active red nodes with a blue neigh-

bor of rank i. A standard Chernoff bound then shows

that in Θ(log n) epochs, each blue node of rank i has a

parent. It is clear that the parents are ranked according

to the ranking rules of GST and nodes know their own
rank, the id of their parents, and the rank of their par-

ents. We show in Lemma 4 that with high probability,

the assignment is collision-free.

Lemma 3 In each epoch j′ ≤ 2, with a probability at

least 1/7, the number of remaining active red nodes for

the next epoch goes down with a factor at least 8/7.

Proof. Consider epoch j′ ≥ 2 and let η be the number of
active red nodes at the start of this epoch. We show that

the expected number of red nodes that remain active at

the end of this epoch is at most 3η
4 . This is enough for

the proof because with this, and by Markov’s inequality,

we get that with probability at least 1/7, the number
of active remaining red nodes at the end of this epoch

is at most 7η
8 .

Each red node remains active after epoch j′ only

if it gets a temporary assignment, i.e., if it is not a

loner-parent and it recruits exactly one child during

parts 2 and 3 of Stage II. Thus, the expected number

of red nodes that remain active is at most equal to the
expected of number of brisk red nodes (those that act

in part 2) plus the number of blue nodes that are active

in part 3. The expected number of brisk red nodes is

at most η
2 . To complete the proof, we show that the

expected number of blue nodes that remain active for

part 3 (after the assignments of part 2) is at most η
4 .

After each epoch, the only red nodes that remain ac-
tive are those that have a temporary assignment, i.e.,

those that each have recruited exactly one child and

that child is not a loner. Moreover, the only active re-

maining blue nodes are those blue nodes temporarily
matched to the remaining red nodes. Thus, after each

epoch, the number of remaining active red nodes and

the number of remaining active blue nodes are equal.
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1 

2 

2 

3 
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3 

Part 1 Part 2 Part 3 
Remaining 

graph

Fig. 2 Parts 1, 2, and 3 of the stage II of the first epoch of the assignment algorithm, and the graph remaining after the first
epoch

From this, we can conclude that since j′ ≥ 2, at the
start of epoch j′, the number of active blue nodes is at

most η.

Using Lemma 2, we infer that in part 1 of stage

II, each blue neighbor of a loner-parent is w.h.p. re-

cruited by a red loner-parent. Thus, in particular, each

loner is recruited with high probability. Hence, at the
start of part 2 of stage II, each remaining active blue

node has at least 2 red node neighbors. Since each non-

loner-parent red node is active in part 2 of stage II with

probability 1/2, and because in part 2 of stage II each
active blue node that has an active red node neigh-

bor gets recruited with high probability (by Lemma 2),

each blue node remains active after part 2 of stage II

with probability at most 1/4. We know that because of

the previous paragraph, the number of active remaining
blue nodes at the start of part 2 of stage II is at most

η. Hence, the expected number of blue nodes remain-

ing active after part 2 is at most η
4 . This completes the

proof of the lemma.

Lemma 4 With high probability, the bipartite assign-

ment algorithm creates a collision-free assignment.

Proof. We show that if there exist blue nodes u1 and
u2 (u1 6= u2) and their respective red parents v1 and v2

(v1 6= v2), all four with rank i, then with high proba-

bility, H must not have any edge between u2 and v1, or

between u1 and v2. For the sake of contradiction, and

without loss of generality, suppose that there is an edge
between u2 and v1. Figure 3 shows the configuration of

these four nodes. Since v2 and u2 have rank i, blue node

u2 must have been a loner when v2 recruited it. Thus,

v2 recruited u2 after v1 became inactive. Hence, in the
epoch that v1 recruited u1, u2 was active. Therefore,

using Lemma 2 we get that in the part 1 of the epoch

in which v1 recruited u1, u2 must have been w.h.p. re-

v1 

v2 

u1 

u2 

Fig. 3 Collision-freeness proof

cruited by either v1 or some other loner-parent. Since

v2 6= v1 recruited u2, we get that v2 must have been

that other loner parent. This means that at that time,
v2 had a loner child (6= u2) and thus, v2 has recruited

more than one child of rank i. This means that v2 must

have had rank i+1 which contradicts with the assump-

tion that v2 has rank i.

2.2.4 Pipelining the GST Construction

Note that in the algorithm described in Section 2.2.3

where we are working on the assignment problem be-

tween levels l − 1 and l, once we are done with the
assignment problem of ranks i and i − 1, nodes of level

l−1 that receive rank i are already determined, i.e., no

other node in level l − 1 will receive rank i. Thus, we

can solve the two problems of rank i−2 assignment be-
tween levels l−1 and l and rank i assignments between

levels l−2 and l−1, essentially simultaneously, by inter-

leaving them in even and odd rounds. Using the same

idea, it is easy to see that one can pipe-line the assign-

ment problems of different ranks between different lev-
els. Then, the assignment problem between levels l − 1

and l starts after Θ((D−l) log4 n) rounds. Thus, the as-

signment problem of largest possible rank between lev-

els 0 and 1 starts after Θ(D log4 n) rounds. The largest
rank is at most ⌈log n⌉. Since each rank takes Θ(log4 n)

rounds, the whole GST construction problem finishes

after Θ(D log4 n) rounds.
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2.3 Unknown Topology Single-Message Broadcast in

O(D + log6 n) Rounds

Theorem 1. (restated) In radio networks with unknown

topology and with collision detection, there is a random-

ized distributed algorithm that broadcasts a single mes-

sage in O(D + log6 n) rounds, with high probability.

Proof. We first use a wave of collisions to get a BFS

layering in time D. That is, the source transmits in all

rounds [1, D], and each node v transmits in all rounds

[r, D] where r is such that v receives a message or a

collision in round r − 1. For each node v, the round
r − 1 in which v receives the first message or collision

determines distance of v from the source.

Having this BFS layering, we decompose the graph

into O(log4 n) rings, each consisting of D′ = D/log4 n

consecutive layers of the BFS layering.

Then, we compute a gathering spanning tree for

each of the rings in O(D′ log4 n) = O(D) rounds. Note
that computation of a GST for each ring only depends

on D′ which is the number of BFS layers that the ring

contains, and that given the BFS-layering, the compu-

tation of the GSTs of all rings is performed in parallel.

Having these GSTs, broadcasting the message inside
each ring takes O(D′+log2 n) rounds, using [8]. Finally,

we use O(log2 n) rounds of the Decay protocol [3] to

propagate the message from the outer boundary of one

ring to the inner boundary of the next ring. Since there

are O(log4 n) rings, the whole broadcast takes
(

O(D′ +
log2 n)+O(log2 n)

)

·O(log4 n) = O(D+log6 n) rounds.

3 Multi-Message Broadcast

In this section, we show the following two results:

Theorem 2. (restated) In radio network with known

topology (even without collision detection), there is a

randomized distributed algorithm that broadcasts k mes-

sages in O(D +k log n+log2 n) rounds, with high prob-
ability.

Theorem 3. (restated) In radio networks with unknown

topology and with collision detection, there is a random-

ized distributed algorithm that broadcasts k messages in

O(D + k log n + log6 n) rounds, with high probability.

In Subsections 3.1 to 3.3.3, we present and analyze

the algorithm that achieves Theorem 2. We remark that
the O(D + k log n + log2 n) round-complexity of Theo-

rem 2 is optimal, given the Ω(k log n) lower bound of

[2] for k-message broadcast, the Ω(log2 n) lower bound

of [1] for single message broadcast, and the trivial Ω(D)

lower bound.

Furthermore, it is easy to combine the known topol-

ogy algorithm of Theorem 2 with the ideas of the proof

of Theorem 1 (i.e., breaking the graph into rings of ra-

dius ⌈ D
log4 n

⌉) and the standard technique of grouping
messages and pipe-lining the groups, to prove Theo-

rem 3. We present the details of this part in Section 3.4.

3.1 Challenges in Broadcasting Multiple Messages

Given the known transmission schedules for broadcast-

ing a single message in optimal O(D + log2 n) time
on top of a GST, it is intriguing to try to use the

same transmission schedule to solve the multi-message

broadcast problem. However, since we cannot disjoin

the spreading process of different messages, this ap-

proach faces two challenges:

Firstly, when a node v has already learned multiple

messages and is triggered by the schedule to transmit,

v needs to decide which message to forward. Choos-
ing one message over the others can slow down the

progress of those other messages. Fortunately, random

linear network coding (RLNC) [14] provides a general

technique for making such decisions: Instead of deciding
on one specific message whenever v is triggered to send,

it transmits a random linear combination of all pack-

ets it has received. It has been shown that this is the

universal optimal strategy, that is, this succeeds with

high probability as soon as it was possible (in hind-
sight) to send k messages to each of the receivers [13].

There are furthermore indications that network coding

might be necessary for obtaining an asymptotically op-

timal throughput performance [2]. Our multi-message
broadcast utilizes RLNC and uses recent advances in

analyzing RLNC performance [12] for the proofs. Even

though RLNC and its analysis need to be carefully tai-

lored to the radio broadcast setting here, this already

gives us a good plan to remedy the first issue.

The second issue is subtle but turns out to be more

problematic: When proving progress of messages, all

known single-message schedules and their analyses (e.g.,
those of [8]) rely crucially on the fact that the nodes

that do not have the (single) message remain silent and

cause no collisions. In a multi-message setting it be-

comes a necessity that we make progress for a message
while allowing other nodes that do not have this mes-

sage to transmit (in order to make progress on other

messages).

Trying to understand and resolve this problem prompted

us to define the property of a transmission schedule be-

ing multi-message viable (MMV):
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Definition 1 We say that a transmission schedule broad-

casts one message in a multi-message viable (MMV)

way in T rounds with probability 1 − δ if the follow-

ing holds: Suppose that we use this transmission sched-

ule but nodes that do not have the message but are
scheduled to transmit send “noise”. Then, the message

is broadcast to all nodes in T rounds with probability

1 − δ.

Intuitively, this notion captures the viewpoint where

we focus on one message and the transmissions of the

other messages are regarded as noise, possibly harming

the progress of the message in consideration. We later

see that this notion is enough to prove that a schedule
works well with RLNC.

Unfortunately proving that a schedule is MMV is

not straightforward and it is a priori not clear whether

the already existing schedules are MMV. The easiest
example to see this is the well-known Decay proto-

col of [3]: in the classical implementation of the De-

cay protocol, if a node is scheduled to transmit but

it does not have the message, then this node remains

silent. The Decay protocol broadcasts a single mes-
sage in O(D log n + log2 n) rounds, with high proba-

bility [3]. This follows almost directly from a simple

progress lemma which shows that in O(log n) rounds

of the protocol, a node receives the message with con-
stant probability if at least one of its neighbors al-

ready has the message. However, if the nodes that do

not have the message are allowed to send noise when

the schedule prompts them to transmit, then this key

progress lemma of [3] does not hold anymore. Surpris-
ingly, even though the progress lemma breaks, it is still

true that one message is spread quickly in this case

(when nodes that do not have the message are nois-

ing), meaning that the Decay protocol broadcasts in
time O(D log n + log2 n) rounds, w.h.p., in an MMV

way:

Before formally proving this fact, first let us recall

the details of the transmission schedule of the Decay

protocol:

Transmission Schedule of the Decay protocol

in an MMV Framework: For each round r, for

each node v at distance lv from source, if r ≡ lv + 1
mod 3, then v is prompted to transmit with proba-

bility 2−((r−lv−1)/3 mod ⌈log n⌉). If v is prompted but

does not have the message, it sends “noise”.

Lemma 5 The Decay protocol broadcasts one message

in an MMV way in O(D log n + log2 n) rounds, w.h.p.

To prove this lemma, we need to go away from the

analysis approach in [3] which chooses a shortest path

from source s to node v and shows that the broadcast

message makes fast progresses along this path when

moving forwards in time. Instead we use what we call

backwards analysis : In a nutshell, we move backwards in

time and find a sequence of collision-free transmissions

from s to v, where hops of this sequence are unraveled
backwards (from v to s). Meanwhile unraveling this se-

quence, each of these transmission can be the broad-

cast message or just “noise”, depending on whether the

sender has received the broadcast message or not. Once
we reach s, it means the transmissions in the sequence

indeed where the broadcast message.

Proof of Lemma 5. Fix an arbitrary node v. Let T =

λ(D log n + log2 n) for a large enough constant λ. For
each integer t, we say node “u is transmission-connected

to v by backwards time t” if there is a timely sequence

of transmissions u = w1, w2, . . . wℓ = v where for each

i ∈ [1, ℓ − 1], wi transmits in a round ri ∈ [T − t, T ],
we have ri < ri+1, and in round ri where wi transmits,

wi+1 receives a message from wi. We emphasize that

these transmission do not consider where the transmit-

ted message is just “noise” or it is the actual message

of the broadcast problem. If node wi has received the
message of broadcast by the end of round ri − 1, then

the transmission of wi in round ti is the actual message

of the broadcast; otherwise, it is noise. Let St(v), or

simply St, be the set of all nodes that are transmission-
connected to v by backwards time t. For each backwards

time t, define potential Φ(t) = minu∈St
distG(s, u). We

claim that “for each two backwards times t, t′ > t such

that t′ − t = 3⌈logn⌉, if Φ(t) ≥ 1, with probability at
least 1/(2e), we have Φ(t′) ≤ Φ(t) − 1”. A Chernoff

bound then shows that with high probability Φ(T ) = 0

meaning s ∈ ST . This shows that, with high probabil-

ity, there exists a sequence of collision-free transmis-

sions (and message receptions) which starts in source s
and ends in node v by time T , proving that, with high

probability, v receives the message of s by time T .

To prove the claim, consider two times t, t′ > t such

that t′ − t = 3⌈log n⌉ and Φ(t) ≥ 1. Let u∗ be a node
u in St that minimizes distG(s, u). We show that in

round interval [T − t′, T − t], with probability at least

1/8, u∗ receives at least one message (be it noise or

the actual broadcast message) from a neighbor u′ such

that dist(s, u′) = dist(s, u∗)−1. Let k be the number of
neighbors u′ of u∗ such that dist(s, u′) = dist(s, u∗) −

1. Consider the round r∗ ∈ [T − t′, T − t] such that

(r∗ −dist(s, u∗))/3 ≡ ⌈k⌉ mod ⌈log n⌉. In that rounds,

the only neighbors of u∗ that can transmit are those
neighbors u′ that have dist(s, u′) = dist(s, u∗)− 1. The

probability that u∗ receives a message from one of them

is k
2−⌈k⌉ (1 − 1

2−⌈k⌉ )k−1 ≥ 1
8 . This proves the claim.
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A union bound over all nodes v shows that with high

probability, all nodes receives the message by round

O(D log n + log2 n).

Unfortunately, in contrast to the transmission sched-

ule of the Decay protocol, the GST based schedule of [8]

appears to be not MMV. In Section 3.2, we present

a new transmission schedule for GSTs and again use

our backwards analysis to show that this schedule is
MMV. Lastly, we show that if one combines RLNC

with this new schedule, then the MMV property al-

most directly translates into having a high broadcast

throughput, leading to the optimal broadcast time of
O(D + k log n + log2 n) rounds for k messages.

3.2 A Multi-Message Transmission Schedule Atop

GST

In this section, we present our transmission schedule
for GSTs and show that it is MMV. Later we use this

schedule along with random linear network coding to

achieve our optimal multi-message algorithm.

3.2.1 The Schedule

Suppose we have a GST T for graph G. For each node

u, let lu be the distance of u from source s in graph G

(that is, the BFS level of u). Also, let ru be the rank of

u in GST T . We first construct a virtual directed graph

G′, from graph G, as follows: we add a directed edge
from every node u with rank r that is the first node of

a fast stretch to every descendant of u in T that has

rank r (thus, to all nodes in that fast stretch). We call

this a fast edge. We use the notation du to denote the
length of the shortest (directed) path from s to u in G′,

and we call this virtual-distance. Given graph G, GST

T , and the respective virtual graph G′ (and the related

virtual-distances), our schedule is defined as follows:

Multi-Message Viable GST Schedule: In round

t, each node u at BFS-level l of G with rank r in GST

T and virtual-distance d in the virtual graph G′ does

as follows: (a) if t ≡ 2(l + 3r) (mod 6⌈log2 n⌉), then
u transmits; (b) if t ≡ 1+2d (mod 6)), then u trans-

mits with probability 2−((t−1−2d)/6 mod ⌈log2 n⌉); oth-

erwise, u listens.

Note that the case (a) only happens in even rounds

and case (b) happens only in odd rounds. As in [8], we

call the transmissions triggered by case (a) fast trans-

missions and the transmissions triggered by case (b)
slow transmissions.

We remark that this schedule uses fast transmis-

sions exactly as in [8,19] to pipeline the messages along

the fast stretches of GST. We see in Lemma 8 that

these fast transmissions are collision-free. The crucial

difference with the schedule in [8,19] lies in defining the

slow transmissions with respect to the virtual-distance

in graph G′ (instead of levels in G). This change results
in slow transmissions not trying to push messages away

from the source, but instead trying to push messages

towards entry points of fast stretches (even if this leads

to the message going back towards the source). While
this modification seems minor, it is crucial for allowing

the backwards analysis technique to show that the new

schedule is efficient and MMV.

3.2.2 The Analysis

The rest of this section is dedicated to prove that the
newly defined schedule is MMV:

Lemma 6 The MMV-GST schedule of Section 3.2.1

broadcasts one message in an MMV way, in O(D +
log n · (log n + log 1

δ )) rounds, with probability 1 − δ.

Before diving directly into the proof of Lemma 6 we
show a few helpful invariants.

Lemma 7 In virtual graph G′, for each node u, we
have du ≤ 2⌈log2 n⌉.

Proof. Consider the path from u to s in T . On this
path, the rank never decreases, thus increases at most

⌈log2 n⌉ times. Furthermore, every stretch on which the

rank stays the same corresponds to a directed link in G′.

Using this, we get the path of length at most 2⌈log2 n⌉
from s to u in G′.

Lemma 8 There are no collisions between any two fast

transmissions.

Proof. Since fast and slow transmission happen during

even and odd rounds, respectively, it is clear that col-
lisions can only happen between two slow or two fast

transmissions. To see that two fast transmission do not

collide, we note that in round t, only nodes with a

level l ≡ t/2 (mod 3) have transmissions. This is be-
cause a fast transmission in round t happens only if

t ≡ 2l + 6r ≡ 2l (mod 6). Since nodes whose levels dif-

fer by at least 3 can not share a neighbor, we get that

collisions can only be caused by transmissions of nodes

within the same level. Furthermore, two nodes within
the same level are only performing a fast transmission

if their ranks r and r′ are equivalent modulo ⌈log2 n⌉.

By definition of GST, this implies that their ranks are

equal and the collision-freeness property of GST then
guarantees that two such nodes do not share a neighbor

in the next level. This shows that there are indeed no

collisions between any two fast transmissions.
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Proposition 1 If node u with level l is the beginning

of a fast stretch in GST T and u sends a message at

time t in a fast transmission round, then any node v

with level l′ > l on the same fast stretch receives this

message by time t′ = t + 2(l′ − l).

Lemma 9 For any node u with virtual-distance du, if

there is at least one node v connected to u in G with

virtual-distance dv = du − 1, then during each interval
of 6⌈log2 n⌉ rounds, with probability at least 1

8 , node u

receives a message from one node with virtual-distance

du − 1.

Proof. Let x be the number of neighbors of u with

virtual-distance du − 1. Note that within any span of

6⌈log2 n⌉ rounds there is a round in which all nodes in

level du − 1 send a message independently with proba-
bility p between 1

x and 1
2x while all nodes with virtual-

distance du and du + 1 (and thus also all other neigh-

bors of u) are silent. The probability that u receives a

message from any particular neighbor in this round is
at least 1

2x (1 − 1
x )x−1 > 1

8x . These events are mutu-

ally exclusive. Hence, the total probability for at least

one neighbor successfully transmitting to u during this

round is at least 1
8 .

Proof of Lemma 6. For a large enough constant λ let

T = λ(D + 2⌈log2 n⌉(log n + log 1
δ )). We claim that for

any node v, the probability that node v does not receive

the message in T rounds is at most δ.

Fix an arbitrary node v. To prove the claim, we use

backwards analysis to view the process of dissemination

of the message. In this method, we go back in time, from
round T to round 1, and we find a sequence of collision-

free transmissions from source node s to node v. Since

we are moving back in time, we find this sequence start-

ing from v and going backwards till reaching s.

For each t, we say node u is transmission-connected

to v by backwards time t” if there is a sequence of

transmissions u = w1, w2, . . . wℓ = v where for each

i ∈ [1, ℓ − 1], wi transmits in a round ri ∈ [T − t, T ],
we have ri < ri+1, and in round ri, wi+1 receives a

message from wi. Let St be the set of all nodes that are

transmission-connected to v by backwards time t. More-

over, we then define the potential of v at backwards

time t to be Φ(t) = minu∈St
du⌈log2 n⌉ + lu. Note that

Φ(0) ≤ 2⌈log2 n⌉2 + D. This is because the level of v in

G is at most D, and the virtual-distance du is at most

2⌈log2 n⌉. To prove the claim, we show that with prob-

ability at least 1 − 2−(log 1
δ
+2 log n), we have Φ(T ) = 0.

For this, moving backwards in time, we show that in

every 8⌈log2 n⌉ interval of consecutive rounds, this po-

tential decreases with probability at least 1
16 by at least

⌈log2 n⌉ − 1. For a backwards time t, let node u be the

node in St that minimizes the potential of v. The proof

is now divided into two cases as follows:

Case (A): Suppose u has at least one G-neighbor

that has a lower virtual-distance. In this case, Lemma 9

guarantees that with probability at least 1
8 during the

rounds in [T − t − 6⌈log2 n⌉, T − t], there is a collision-

free transmission from a node u′ with du′ = du −1 to u.
Since u′ and u are neighbors their levels lu and lu′ differ

at most by one, thus a successful transmission decreases

the potential by at least (du⌈log2 n⌉+lu)−(du′⌈log2 n⌉+

lu′) = (du − du′)⌈log2 n⌉ − (lu − lu′) ≥ ⌈log2 n⌉ − 1.
Thus, if u has a neighbor with a virtual-distance lower

than du then with probability at least 1
16 the potential

decreases by at least ⌈log2 n⌉ − 1 within any 8⌈log2 n⌉

rounds when moving backwards in time.

Case (B): Suppose u does not have a G-neighbor

with a lower virtual-distance. Note that this can only

happen if u = s or if there is one directed edge in G′

representing a fast stretch, originating from a node u′

one level lower than u in G′ and going into u. First

observe that the starting node of any fast stretch ini-

tiates a “transmission wave” every 6⌈log2 n⌉ rounds by

creating a new coded packet and sending it as a fast
transmission. This packet gets then pipe-lined through

the fast stretch with one progress every fast transmis-

sion round (that is, once in every two rounds) until it

reaches the end of the stretch. Thus, for any node on a
fast stretch, there is a new wave arriving every 6⌈log2 n⌉

rounds. Thus, at a time t′ ∈ [T − t − 6⌈log2 n⌉, T − t], a

fast transmission wave arrives in u and leads to an ex-

tended sequence of collision-free transmissions. In par-

ticular, if the wave originated from u′ during the rounds
[T − t′ − 2⌈log2 n⌉, T − t′], then there is a sequence of

transmissions from u′ to v in round interval [T − t −

8⌈log2 n⌉, T −t], and otherwise the wave propagated for

⌈log2 n⌉ steps and there is a node u′′ between u′ and
u on the fast stretch with a sequence of transmissions

to v starting at time T − t − 8⌈log2 n⌉. Thus, in both

cases, the potential drops by at least ⌈log2 n⌉−1. In the

first case the potential drop comes from the fact that

du′ = du − 1 and lu′ < lu, while in the second case we
have du′′ ≤ du′ + 1 = du and lu′′ ≤ lu − ⌈log2 n⌉.

The above argument shows that when moving back-

wards in time, in every 8⌈log2 n⌉ consecutive rounds,
with probability at least 1

8 , the potential of v decreases

by at least ⌈log2 n⌉ − 1 > ⌈log2 n⌉/2, until reaching

zero. When the potential reaches zero, it means that

there is a sequence of successful and collision-free trans-
missions from s to v. Hence, the expected time for

such a sequence to appear is thus a constant times

the initial potential of v, Φµ(0) ≤ 2⌈log2 n⌉2 + D. A
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Chernoff bound furthermore shows that the probabil-

ity of not finding such a sequence is exponentially con-

centrated around this mean. In particular, after T =

λ(D+2⌈log2 n⌉(log n+log 1
δ )) rounds, we expect at least

λ′(2D/⌈log2 n⌉ + 4⌈log2 n⌉ + 2 log 1
δ ) sets of 8⌈log2 n⌉

consecutive rounds in which the potential of v drops

at least by ⌈log2 n⌉/2, for a constant λ′. Furthermore,

the probability that there are less than 2D/⌈log2 n⌉ +

4⌈log2 n⌉ such rounds is exponentially small in the ex-
pectation, that is, at most 2−(2⌈log2 n⌉+log 1

δ
) < δ/n. A

union bound over all choices of node v then completes

the proof.

3.3 Optimal Multi-Message Broadcast Algorithms

We achieve our optimal multi-message broadcast al-

gorithms by combining random linear network coding

with the Multi-Message GST Schedule that we pre-

sented in Section 3.2. In Section 3.3.1 we first recall
on the exact working of random linear network coding

and in Section 3.3.2 we explain how to integrate it with

our MMV GST Schedule. In Section 3.3.3 we combine

the analysis technique from [12] with the proof that

our schedule is MMV to obtain Theorem 2, i.e., our
multi-message result for the known topology setting.

In Section 3.4 we then discuss how this algorithm can

be extended to the unknown topology setting to obtain

Theorem 3.

3.3.1 Random Linear Network Coding

In random linear network coding [14] the k messages are

regarded as bit-vectors m1, . . . , mk ∈ F
l
2 over F2, the fi-

nite field of order two. Instead of putting one message in
plaintext into a packet nodes transmitt coded packets.

Each network coded packet p consists of a linear com-

bination of messages, that is, the vector
∑k

i=1 αimi ∈

F
l
2. One should think of the coefficient vector α =

(α1, . . . , αk) ∈ F
k
2 being transmitted with each mes-

sage5.

Because of linearity, a node that has a number of

these packets can create a packet of this form for any

5In many applications the size of a message is large com-
pared to the k bit coefficient vector which allows sending the
coefficient vector with each message with negligible overhead.
In our setting, increasing the packet size to k bits could be
too much. Fortunately, the overhead coming from the coeffi-
cient vector can be avoided: In the known topology setting,
nodes can compute the coefficients offline efficiently and in
a consistent manner [14]. In the unknown topology scenario,
using generations—that is, dividing messages into groups of
size log n and then doing network coding only inside each
group—keeps the coefficient overhead to O(log n) bits, which
is negligible even in our stringent setting (see Section 3.4).

coefficient combination that is spanned by the coeffi-

cient vectors of the packets that it has received by that

time. Also, if a node has a set of k packets with lin-

early independent coefficient vectors, then this node can

reconstruct all the k messages using Gaussian elimina-
tion. In RLNC, every node u stores all its received pack-

ets to maintain the subspace that is spanned by them.

Whenever u decides to generate a new coded packet, it

chooses a random coefficient vector from this subspace
by taking a random linear combination of the packets

stored. Once the subspace spanned by the coefficient

vectors in packets received by u is the full space F
k
2 ,

then u decodes and reconstructs all the messages.

3.3.2 Combining the MMV GST Schedule with

Random Linear Network Coding

It is now easy to combine random linear network coding

with our new GST Schedule:

Multi-Message Broadcast Algorithm: When-

ever in MMV schedule of Section 3.2, a node u is

prompted to transmit, u transmits a packet deter-

mined as follows: (a) if this is a slow transmission, or
if this is a fast transmission and u is the first node on

a fast stretch, then u transmits a new coded packet,

that is, a packet that is created using network coding

by combining the messages u has received earlier, (b)

if this is a fast transmission but node u is an interme-
diate node in a fast stretch, then u simply relays the

packet it received in the previous fast transmission

round (if any).

3.3.3 Analyzing the Multi-Message Broadcast

Algorithm

In this section we prove Theorem 2 by analyzing the

performance of the multi-message broadcast algorithm

presented in Section 3.3. The analysis combines the
proof for the MMV property of the new GST Sched-

ule with the projection analysis from [12].

The following definition and proposition are taken

from [12] and form a simple and clean platform for an-
alyzing random linear network coding:

Definition 2 ( [12, Definition 4.1]) A node v is in-

fected by a coefficient vector µ ∈ F
k
2 if v has received

a packet with a coefficient vector c ∈ F
k
2 that is not

orthogonal to µ, that is, 〈µ, c〉 6= 0.

Proposition 2 ( [12, Lemma 4.2]) If a node v is
infected by a coefficient vector µ and after that, a node

u receives a packet from node v, then u gets infected by

µ with probability at least 1/2. Furthermore, if a node



14 Ghaffari, Haeupler, and Khabbazian

v is infected by all the 2k coefficient vectors in F
k
2 , then

v can decode all the k messages.

With these tools we can proceed to prove Theo-

rem 2:

Proof of Theorem 2. For a large enough constant λ let

T = λ(D + k⌈log2 n⌉ + 2⌈log2 n⌉2) . We claim that for

any node v and any fixed non-zero vector µ ∈ F
k
2 , the

probability that node v is not infected by µ in T rounds

is at most 2−(k+2 log n). The proof of this claim is almost
identical to the proof of Lemma 6, except that we are

want a failure probability δ = O(2−k) and also, we must

consider whether each transmission is successful with

respect to µ or not. For completeness, we repeat the
proof with all details, starting with the next paragraph.

Once we have the claim proven, we can conclude via a

union bound over all the 2k coefficient vectors in F
k
2

that by round T , with high probability, v is infected by

all the coefficient vectors in F
k
2 . That is, by round T ,

v can decode all the k messages. Using another union

bound over all the choices of node v then we get that,

with high probability, all nodes have received all the

messages by round T .

Fix a node v and a non-zero vector µ ∈ F
k
2 . To prove

the claim, we use backwards analysis to view the process

of infection spreading of vector µ. In this method, we
go back in time, from round T to round 1, and we find

a sequence of collision-free transmissions from source

node s to node v such that all the transmissions in this

chain are successful with respect to vector µ. Since we

are moving back in time, we find this sequence starting
from v and going backwards till reaching s.

For each t, we say node u is transmission-connected

to v by backwards time t” if there is a sequence of

transmissions u = w1, w2, . . . wℓ = v where for each

i ∈ [1, ℓ − 1], wi transmits in a round ri ∈ [T − t, T ],
we have ri < ri+1, and in round ri, wi+1 receives a

message from wi. Let St be the set of all nodes that

are transmission-connected to v by backwards time t.

Moreover, we then define the potential of v with re-
spect to vector µ at backwards time t to be Φµ(t) =

minu∈St
du⌈log2 n⌉+lu. Note that Φµ(0) ≤ 2⌈log2 n⌉2+

D.This is because the level of v in G is at most D,

and the virtual-distance du is at most 2⌈log2 n⌉. To

prove the claim, we show that with probability at least
1 − 2−(k+2 log n), we have Φµ(T ) = 0. For this, mov-

ing backwards in time, we show that in every 8⌈log2 n⌉

interval of consecutive rounds, this potential decreases

with probability at least 1
16 by at least ⌈log2 n⌉−1. For

a backwards time t, let node u be the node in St that

minimizes the potential of v. The proof is now divided

into two cases as follows:

Case (A): Suppose u has at least one G-neighbor

that has a lower virtual-distance. In this case, Lemma 9

guarantees that with probability at least 1
8 during the

rounds in [T −t−6⌈log2 n⌉, T−t], there is a collision-free

transmission from a node u′ with du′ = du −1 to u, and
is successful with respect to µ, with probability 1/2.

Since u′ and u are neighbors their levels lu and lu′ differ

at most by one, thus a successful transmission decreases

the potential by at least (du⌈log2 n⌉+lu)−(du′⌈log2 n⌉+
lu′) = (du − du′)⌈log2 n⌉ − (lu − lu′) ≥ ⌈log2 n⌉ − 1.

Thus, if u has a neighbor with a virtual-distance lower

than du then with probability at least 1
16 the potential

decreases by at least ⌈log2 n⌉ − 1 within any 8⌈log2 n⌉

rounds when moving backwards in time.

Case (B): Suppose u does not have a G-neighbor

with a lower virtual-distance. Note that this can only

happen if u = s or if there is one directed edge in G′

representing a fast stretch, originating from a node u′

one level below u in G′ and going into u. First observe

that the starting node of any fast stretch initiates a

“transmission wave” every 6⌈log2 n⌉ rounds by creating

a new coded packet and sending it as a fast transmis-
sion. This packet gets then pipe-lined through the fast

stretch with one progress every fast transmission round

(that is, once in every two rounds) until it reaches the

end of the stretch. Thus, for any node on a fast stretch,

there is a new wave arriving every 6⌈log2 n⌉ rounds.
Moreover, each of these waves is successful with respect

to µ with probability at least 1/2. Thus, at a time t′ ∈

[T −t−6⌈log2 n⌉, T −t], a fast transmission wave arrives

in u, and with probability 1/2 leads to an extended se-
quence of collision-free transmissions that are successful

with respect to µ. In particular, if the wave originated

from u′ during the rounds [T − t′ − 2⌈log2 n⌉, T − t′],

then there is a sequence of transmissions from u′ to v in

round interval [T−t−8⌈log2 n⌉, T−t], and otherwise the
wave propagated for ⌈log2 n⌉ steps and there is a node

u′′ between u′ and u on the fast stretch with a sequence

of transmissions to v starting at time T − t − 8⌈log2 n⌉.

Thus, in both cases, the potential drops by at least
⌈log2 n⌉ − 1. In the first case the potential drop comes

from the fact that du′ = du − 1 and lu′ < lu, while

in the second case we have du′′ ≤ du′ + 1 = du and

lu′′ ≤ lu − ⌈log2 n⌉.

The above argument shows that when moving back-
wards in time, in every 8⌈log2 n⌉ consecutive rounds,

with probability at least 1
16 , the potential of v decreases

by at least ⌈log2 n⌉ − 1 > ⌈log2 n⌉/2, until reaching

zero. When the potential reaches zero, it means that
there is a sequence of successful and collision-free trans-

missions from s to v. Hence, the expected time for

such a sequence to appear is thus a constant times



Broadcast in Radio Networks 15

the initial potential of v, Φµ(0) ≤ 2⌈log2 n⌉2 + D. A

Chernoff bound furthermore shows that the probabil-

ity of not finding such a sequence is exponentially con-

centrated around this mean. In particular, after T =

λ(D + k⌈log2 n⌉ + 2⌈log2 n⌉) rounds, we expect at least
λ′(2D/⌈log2 n⌉+4⌈log2 n⌉+k) sets of 8⌈log2 n⌉ consec-

utive rounds in which the potential of v drops at least

by ⌈log2 n⌉/2, for a constant λ′. Furthermore, the prob-

ability that there are less than (2D/⌈log2 n⌉+4⌈log2 n⌉
such rounds is exponentially small in the expectation,

that is, at most 2−(2⌈log2 n⌉+k). This completes the proof

of Theorem 2

3.4 Extending the Multi-Message Broadcast to the
Unkown Topology Setting

To achieve Theorem 3, the key idea is to combine the

multi-message broadcast of known topology presented

in Sections 3.2 and 3.3 with the idea presented in Sec-
tion 2.3, that is, decomposing the graph into rings of

width D′ = D
log4 n

layers around the source node us-

ing collision detection and then creating one GST for

each ring. Here, we present the smaller details that are

needed for filling out this outline, to get Theorem 3.

Recall that our multi-message broadcast algorithm

works on top of a GST of graph G. In Section 2, we pre-

sented an O(D log4 n) distributed GST construction for
the unknown topology setting. Refer to Section 2.1 for

definition of GST and what nodes need to learn in a dis-

tributed GST construction. We will use this distributed

construction again. However, we first need to enhance it
by adding one more element to what nodes learn about

GST: In the multi-message broadcast schedule that we

presented in Section 3.2, each node u also needs to know

the virtual-distance du which indicates the directed dis-

tance from source s to node u in the virtual graph G′

(refer to Section 3.2 for definition of G′ and the virtual-

distance). In the setting with known topology, GST T

and the respective virtual-distance du are computed by

each node locally without any need for communication
between the nodes. In the next lemma, we show that

nodes can easily learn these virtual-distances in the un-

known topology setting, without changing the asymp-

totic time complexity of the GST construction.

Lemma 10 In the radio networks (even without colli-

sion detection), there exists a distributed algorithm that,
in O(D log4 n) rounds, constructs a GST and moreover,

each node u also learns its virtual-distance du from the

source.

Proof. First, we construct a GST in O(D log4 n) rounds

using the construction of Theorem 4. We now explain

that in O(D log2 n + log3 n) further rounds, nodes can

compute the virtual-distance labels6.

Recall from Lemma 7 that for each node u, we know

that du ∈ [1, 2⌈logn⌉]. We compute the virtual-distances

in a recursive manner based on the value of du: Con-
sider a d ∈ [1, 2⌈2 logn⌉ − 1] and suppose that all the

nodes u that have a distance label du ≤ d have already

learned their distance du. We explain how to identify

the nodes u that have du = d+1, in O(D log n+log2 n)
rounds.

Let Sd be the set of nodes u that have received

virtual-distance label du = d. Moreover, let Fd ⊆ Sd be

the set of nodes in Sd that are the first nodes in a fast

stretch. Recall from Section 2.1 that since in construc-
tion of GST, each node u knows its own rank and the

rank of its parent v, node u knows whether u is the first

node in a fast stretch or its parent v is in the same fast

stretch as well. We divide the O(D log n+log2 n) rounds
of recursion of virtual-distance d + 1 into two stages,

with respectively O(D log n) and O(log2 n) rounds, as

follows:

In the first stage, we identify all the nodes that are

on the fast stretches starting at nodes of Fd, and we give
all of them virtual-distance label d+1. In order to this,

we divide this stage between the ⌈log2 n⌉ possible rank

values and spend 2D rounds on each rank. That is, we

first in 2D rounds solve the problem for fast stretches
of rank 1 nodes, then in 2D rounds solve the problem

fast stretches of rank 2 nodes, etc. For each rank r ∈

[1, ⌈log2 n⌉], we spend 2D rounds, in two epochs each

made of D rounds, as follows:

The D rounds of the first epoch are as follows: in the
ℓth round, each node that is in Fd, has rank r, and BFS-

layer ℓ transmits. Each node u that has not received a

virtual-distance label before, has BFS-layer ℓ + 1, rank

r, and receives a message from its parents gets virtual-
distance du = d+1. These D rounds identify the second

nodes (those next to the first nodes) in fast stretches of

rank r, which must receive virtual-distance d + 1.

The D rounds of the second epoch are as follows:

for each ℓ ∈ [1, D − 1], if ℓ = 1, then let S∗ be the
set of nodes that received virtual-distance label d + 1

in the first epoch, and if ℓ ≥ 1, then let S∗ be the set

of nodes that received virtual-distance label d + 1 in

the (ℓ − 1)th round of the second epoch. Then, in the
ℓth round, each node u that has not received a virtual-

distance label before, has BFS-layer ℓ + 1, rank r, and

receives a message from its parent gets virtual-distance

du = d + 1.

6Even though faster solutions for this step are possible,
since the time complexity will be dominated by that of the
GST construction, we only present the slightly less-efficient
but cleaner O(D log2 n + log3 n) solution



16 Ghaffari, Haeupler, and Khabbazian

Note that because of collision-freeness property of

GST, all the nodes of fast-stretches of rank r that start

in a node in Fd will be identified and will receive dis-

tance label d+1. After performing the above two epochs

for all the ranks r ∈ ⌈log n⌉, we are done with the
first stage. Note that the first stage thus takes D log n

rounds, 2D rounds for each rank r ∈ ⌈log n⌉.

The second stage is as follows: All nodes in Sd per-

form Θ(log n) phases of the Decay protocol for a to-
tal of Θ(log2 n) rounds. Each node u that has not re-

ceived a virtual-distance label before but receives a mes-

sage in these rounds sets its virtual-distance label du =

d + 1.

Now we use this enhanced distributed GST con-

struction to get a multi-message algorithm for the un-

known topology with collision detection.

Proof of Theorem 3. As in the proof of Theorem 1, we
first use a wave of collisions to get a BFS-layering of

the graph. We decompose the graph into rings, each

consisting of D′ = D
log4 consecutive BFS-layers, cen-

tered around the source node 7. Then, we use the en-

hanced GST construction presented in Lemma 10 to

construct a GST (with the addition of nodes knowing
their virtual-distance labels) for each ring, all in time

O(D′ log4 n) = O(D) rounds, by parallelizing the con-

structions of different rings.

Suppose that we are done with the construction of
the GSTs of the rings. First, let us assume that the co-

efficient vectors of linear network coding, which consist

of at most k bits, fit inside one packet; we later explain

how to reduce this overhead to O(log n).

Let k′ = D
log3 n

. Divide the messages into batches,

each consisting of at most k′ messages. Inside each ring,

we can broadcast one batch of messages in O(D′ +

k′ log n + log2 n) = O( D
log4 + log2 n) rounds, simply us-

ing the algorithm of Section 3.3 on top of the GST

of this ring. To deliver a batch of messages from one
ring to another, we simply use forward error correction

(FEC)8. Consider the outer boundary of the jth ring

and the inner boundary of the (j + 1)th ring, and con-

sider a batch of messages that is already delivered to
all nodes in the outer boundary of the jth ring. Then,

each of these outer boundary nodes creates Θ(k′) pack-

ets using an FEC code such that if a node w receives

Θ(k′) of these packets, then w can decode all the k′

messages of the batch in consideration. To deliver these

7In fact, if D = O(log6), then just one ring and thus just
one GST is enough.

8Here, FEC can be viewed as a simplified form of network
coding as there is no intermediate node in this scenario. That
is, the nodes on the outer boundary of one ring transmit and
the nodes on the inner boundary of the next ring receive.

FEC coded packets, we use Θ(k′) phases of the De-

cay protocol, where the nodes in the outer boundary

of the jth ring transmit. It follows from Lemma 1 and

a simple Chernoff bound that after Θ(k′) = Ω(log n)

phases of the Decay protocol, each node on the inner
boundary of the (j + 1)th ring has with high probabil-

ity received at least Θ(k′) FEC coded packets related

to the batch in consideration. Thus, these inner bound-

ary nodes of the jth ring can decode all the messages
of this batch. Hence, we conclude that in time O(D′ +

k′ log n+log2 n)+O(k′ log n) = O( D
log4 n

+log2 n), with

high probability, one batches of messages moves from

the inner boundary of the jth ring to the inner bound-

ary of the (j + 1)th ring. That is, in each O( D
log4 n

), one
batch of messages moves one ring forward.

Having the above, it is enough to pipeline the batches

of messages over the rings. That is, the first batch starts
in the first ring, and moves one ring forward, in each

epoch made of O( D
log4 + log2 n) rounds. When the first

batch is in the third ring (and is starting to be broad-

casted there), the first ring starts working on the sec-
ond batch. Note that at each time, nodes in each ring

work on at most one batch. This way, the first batch

arrives at the end of the last ring by the end of round

O( D
log4 + log2 n) · log4 n = O(D + log6 n). Moreover,

after that, in every interval of O( D
log4 +log2 n) consecu-

tive rounds, one new batch arrives at the end of the last
ring. Since there are k

k′ batches, we get that we are done

with the broadcast of all messages by the end of round

O(D+log6 n)+( k
k′ ) ·O( D

log4 +log2 n) = O(D+log6 n)+

(k log3

D′ ) · O( D
log4 + log2 n) = O(D + k log n + log6 n).

Lastly, we explain how to reduces the overhead com-
ing from including the coefficient vector into RLNC

coded packets from k bits to O(log n) bits. This is done

by grouping all packets into batches of O(log n) mes-

sages and only coding together messages within a batch.

This happens only in the transmissions within a ring
leaving the process of broadcasting the messages be-

tween the boundaries of two consequent rings the same

as above, which was fine as the coding overhead of FEC

is only a constant.

Inside each ring, we do the following: Consider the

jth ring, for a j ∈ [1, Θ(log4)], and the GST of that

ring. For each node u in this ring, define height of u as

hu = du⌈log2 n⌉+ lu, where du is the virtual-distance of
u in this ring and lu is the (normalized) BFS layers of

u for this ring (that is, the BFS layer of u in the BFS

layering of original graph G minus j · D′). Note that

this definition of height exactly matches the potential
function defined in the proof of Theorem 2. Moreover,

note that for each node u, we have hu ≤ 2⌈log n⌉2 +

D′ = O(D′ + 2 log2 n). Fix W = Θ(log2 n). Based on
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the height, we decompose the jth ring into strips as

follows: all nodes u in the jth ring that have hu ∈ [(j′ −

1) · W, j′ · W ] are in the strip number j′.

Now, to reduce the header overhead caused by cod-
ing to O(log n), instead of dividing the messages into

batches of k′ = D
log3 n

, we divide them into smaller

batches each consisting of k′′ = Θ(log n) messages. Thus,

the RLNC coefficient vectors of each batch are Θ(log n)

bits and hence, fit inside one packet for any packet size
B = Ω(log n). Now we use the transmission schedule of

Section 3.2 but with coding the packets only inside one

batch and one strip. That is, we run the schedule of Sec-

tion 3.2 in steps consisting of Θ(log2 n) rounds. If a node

has not received all the messages of one batch at the end
of one step, then it ignores all the packets it received

in this step (that is, it empties its buffer) and restarts

in the next step. Following the proof of Theorem 2, we

see that in each step of Θ(log2 n) rounds, each batch
moves one strip forward, with high probability. That is,

for each particular batch, in each Θ(log2 n) rounds, the

height of the nodes that have received all the messages

of this batch increases by at least Θ(log2 n), with high

probability. Since the maximum height in the ring is
O(D′ +2 log2 n), we get that in O(D′ +2 log2 n) rounds,

the first batch moves from the start of the ring to the

end of the ring. After this, in each Θ(log2 n) further

rounds, another batch of messages arrives at the end
layer of the ring. From the above, by combining with

the pipe-lining argument between different rings, we get

that the very first batch reaches the outer boundary of

the last ring after O(D + log6 n) rounds. After that, in

each Θ(log2 n) rounds, one new batch made of Θ(log n)
messages arrives at the outer boundary of the last ring.

Hence, after O(D + k log n+ log6 n) rounds, all batches

are broadcast to all nodes of the graph.
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