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by

Rafail M. Ostrovsky

Submitted to the Department of Electrical Engineering and Computer Science
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Doctor of Philosophy

Abstract

Software protection is one of the most important issues concerning computer practice. There
exist many heuristics and ad-hoc methods for protection, but the problem as a whole has not

received the theoretical treatment it deserves. In this paper we provide theoretical treatment of

software protection. We reduce the problem of software protection to the problem of efficient
simulation on oblivious RAM.

A machine is oblivious if the sequence in which it accesses memory locations is equivalent for
any two inputs with the same running time. For example, an oblivious Turing Machine is one

for which the movement of the heads on the tapes is identical for each computation. (Thus, it
is independent of the actual input.) What is the slowdown in the running time of any machine,
if it is required to be oblivious? In 1979 Pippenger and Fischer showed how a two-tape oblivious

Turing Machine can simulate, on-line, a one-tape Turing Machine, with a logarithmic slowdown
in the running time. We show an analogue result for the random-access machine (RAM) model
of computation. In particular, we show how to do an on-line simulation of an arbitrary RAM
input by a probabilistic oblivious RAM with a poly-logarithmic slowdown in the running time.

On the other hand, we show that a logarithmic slowdown is a lower bound.

Keywords: Software protection, Oblivious simulation, Fault-tolerance, Secure computation.
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Chapter 1

Introduction (to s. protection and

obl. simulation)

In this thesis, we present a theoretic treatment of software protection'. In particular,

we distill and formulate the key problem of learning about a program from its execution,

and reduce this problem to the problem of on-line simulation of an arbitrary program

on an oblivious random access memory (which is denoted as RAM), where a machine is

oblivious if the sequence in which it accesses memory locations is equivalent for any two

inputs with the same running time. For example, an oblivious Turing Machine is one

for which the movement of the heads on the tapes is identical for each computation. We

then present our main result: an efficient simulation of an arbitrary (RAM) program on

a probabilistic oblivious RAM. Assuming that one-way functions exits, we show how one

can make our software protection scheme robust against a polynomial-time adversary

who is allowed to alter memory contents during execution in a dynamic fashion. We

begin by discussing software protection.

1 This work was conducted at MIT over the past two and a half years. Some of this work was discussed in
an extended abstract [Ost] and in part will appear in the forthcoming journal version [GO].

11



12 CHAPTER 1. INTRODUCTION (TO S. PROTECTION AND OBL. SIMULATION)

1.1 Software Protection

Software is very expensive to create and very easy to steal. "Software piracy" is a

major concern (and a major loss of revenue) to all software-related companies. Software

pirates borrow/rent software they need, copy it to their computer and use it without

paying anything for it. Thus, the question of software protection is one of the most

important issues concerning computer practice. The problem is to sell programs that

can be executed by the buyer, yet cannot be redistributed by the buyer to other users.

Much engineering effort is put into trying to provide the "software protection", but this

effort seems to lack theoretical foundations. In particular, there is no crisp definition

of what the problems are and what should be considered as a satisfactory solution. In

this paper, we provide a theoretic treatment of software protection, by distilling a key

problem and solving it efficiently.

Before going any further, we distinguish between two folklore notions: the problem

of protection against illegitimate duplication and the problem of protection against re-

distribution (or fingerprinting software). Loosely speaking, the first problem consists of

ensuring that there is no efficient method for creating executable copies of the software;

while the second problem consists of ensuring that only the software producer can prove

in court that he has designed the program. In this paper we concentrate on the first

problem.

1.1.1 The role of hardware

Let us examine various options which any computer-related company has when consid-

ering how to protect its software. We claim that a purely software-based solution is

impossible. This is so, since any software (no matter how encrypted) is just a binary

sequence which a pirate can copy (bit by bit) and run on his own machine. Hence,

to protect against duplication, some hardware measures must be used: mere software

(which is not physically protected) can always be duplicated. Carried to an extreme,

the trivial solution is to rely solely on hardware. That is, to sell physically-protected

special-purpose computers for each task. This "solution" has to be rejected as infeasible
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(in current technology) and contradictory to the paradigm of general purpose machines.

We conclude that a real solution to protecting software from duplication should combine

feasible software and hardware measures. Of course, the more hardware we must physi-

cally protect, the more expensive our solution is. Hence, we must also consider what is

the minimal amount of the physically protected hardware we really need.

It has been suggested by R. Best [Be] and S.T. Kent [K] to protect software against du-

plication by selling a physically shielded Central Processing Unit (CPU) together with an

encrypted program (hereafter called the Software-Hardware-package or the SH-package).

The SH-package will be installed in a conventional computer system by connecting the

shielded CPU to the address and data buses of the system and loading the encrypted

program into the memory devices. Once installed and activated, the (shielded) CPU

will run the (encrypted) program using the memory, I/O devices and other components

of the computer. An instruction cycle of the (shielded) CPU will consist of fetching

the next instruction, decrypting the instruction (using a cryptographic key stored in the

CPU), and executing the instruction. In case the execution consists of reading from (resp.

writing to) a memory location - the contents may be decrypted after reading it (resp.

encrypted before writing). It should be stressed that the CPU itself will contain only

a small amount of storage space. In particular, the CPU contains a constant number

of registers, each capable of specifying memory addresses (i.e., the size of each register

is at least equal to the logarithm of the number of storage cells), and a special register

with a cryptographic key. We require only the CPU (with a fixed number of registers)

to be physically shielded, while all the other components of the computer, including the

memory in which the encrypted program and data are stored, need not be shielded. We

note that the technology to physically shield (at least to some degree) the CPU (which,

in practice, is a single computer chip) does already exist - indeed, every ATM bank

machine has such a protected chip. Thus, the SH-package employs feasible software and

hardware measures [Be, K].

Using encryption to keep the contents of the memory secret is certainly a step in the

right direction. However, as we will shortly see, this does not provide the protection one

13



14 CHAPTER 1. INTRODUCTION (TO S. PROTECTION AND OBL. SIMULATION)

may want. In particular, the addresses of the memory cells accessed during the execution

are not kept secret. This may reveal to an observer essential properties of the program

(e.g. its loop structure), and in some cases may even allow him to easily reconstruct it.

Thus, we view the above setting (i.e. the SH-package) as the starting point for the study

of software protection, rather than as a satisfactory solution. In fact, we will use this

setting as the framework for our investigations, which are concerned with the following

key question: What can the user learn about the SH-package he bought?

1.1.2 Learning by executing the SH-package

Our setting consists of an encrypted program, a shielded CPU (containing a constant

number of registers), a memory module, and an "adversary" user trying to learn about

the program. The CPU and memory communicate through a channel in the traditional

manner. That is, in response to a FETCH(i) message the memory answers with the

contents of the i'th cell; while in response to a STORE(v,j) the memory stores value

v in cell j. Our "worst-case" adversary can read and alter the communication between

CPU and memory, as well as inspect and modify the contents of the memory. However,

the adversary cannot inspect or modify the contents of the CPU's registers.

The adversary tries to learn by conducting experiments with the hardware-software

configuration. An experiment consists of initiating an execution of the (shielded) CPU

on the encrypted program and a selected (by the adversary) input, and watching (and

possibly modifying) both the memory contents and the communication between CPU

and memory.

Given the above setting the question is what information should the adversary be

prevented from learning, when conducting such experiments? To motivate the answer to

this question, let us consider the following hypothetical scenario. Suppose you are a soft-

ware producer selling a protected program which took you an enormous effort to write.

Your competitor purchases your program, experiments with it widely and learns some

partial information about your implementation. Intuitively, if the information he gains,

through experimentation with your protected program, simplifies his task of writing a
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competing software package then the protection scheme has to be considered insecure.

Thus, informally, software protection should mean that the task of reconstructing func-

tionally equivalent copies of the SH-package is not easier when given the SH-package than

when only given the specification for the package. That is, software protection is secure

if whatever any polynomial-time adversary can do when having access to an (encrypted)

program running on a shielded CPU, he can also do when having access to a "specifica-

tion oracle" (such an oracle, on any input, answers with the "corresponding" output and

running-time). Essentially, the protected program must behave like a black box which, on

any input, "hums" for a while and returns an output such that no information except its

I/O behavior and running time can be extracted. Jumping ahead, we note that in order

to meet such security standards, not only the values stored in the general-purpose mem-

ory must be hidden (e.g., by using encryption), but also the sequence in which memory

locations are accessed during program execution must be hidden. In fact, if the "memory

access pattern" is not hidden then program characteristics such as its "loop structure"

may be revealed to the adversary, and such information may be very useful in some cases

for simplifying the task of writing a competing program. To prevent this, the memory

access pattern should be independent of the program which is being executed.

Informally, we say that a CPU defeats experiments with corresponding encrypted pro-

grams if no probabilistic polynomial-time adversary can, on input an encrypted program,

distinguish the following two cases:

* The adversary is experimenting with the genuine shielded CPU, which is trying to

execute the encrypted program through the memory.

* The adversary is experimenting with a fake CPU. The interactions of the fake CPU

with the memory are almost identical to those that the genuine CPU would have

had with the memory when executing a (fixed) dummy program (e.g. while TRUE

do skip;) The execution of the dummy program is timed-out by the number of

steps of the real program. When timed-out, the fake CPU (magically) writes to the

memory the same output that the genuine CPU would have written on the "real"

program (and the same input).

15



16 CHAPTER 1. INTRODUCTION (TO S. PROTECTION AND OBL. SIMULATION)

We stress that, in the general case, the adversary may modify the communication between

CPU and memory (as well as modify the contents of memory cells) in any way he wants.

When we wish to stress that the SH-package defeats experiments by such adversaries,

we say that the SH-package defeats tampering experiments. We shall refer to the special

case, in which the adversary only inspects the CPU-memory communication and the

contents of memory cells, as CH-package defeating non-tampering experiments.

1.1.3 An efficient CPU which defeats experiments

The problem of constructing a CPU which defeats experiments is not an easy one. There

are two issues: The first issue is to hide from the adversary the values stored and retrieved

from memory, and to prevent the adversary's attempts to change these values. This is

done by an innovative use of traditional cryptographic techniques (e.g., probabilistic

encryption [GM] and message authentication [GGM]). The second issue is to hide (from

the adversary) the sequence of addresses accessed during the execution (hereafter referred

as hiding the access pattern).

Hiding the (original) memory access pattern is a completely new problem and tradi-

tional cryptographic techniques are not applicable to it. The goal is to make it infeasible

for the adversary to learn anything useful about the program from its access pattern.

To this end, the CPU will not execute the program in the ordinary manner, but in-

stead will replace each original fetch/store cycle by many fetch/store cycles. This will

hopefully "confuse" the adversary and prevent him from "learning" the original sequence

of memory-accesses (from the actual sequence of memory accesses). Consequently, the

adversary can not improve his ability of reconstructing the program.

Nothing comes without a price. What is the price one has to pay for protecting the

software? The answer is "speed". The protected program will run slower then the unpro-

tected one. What is the minimal slowdown we can achieve without sacrificing the security

of the protection? Informally, software protection overhead is defined as the number of

steps the protected program makes per each step of the source-code program. In this

paper, we show that this overhead is polynomially related to the security parameter. of
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a one-way function. Namely,

THEOREM A (Informal statement): Suppose that one-way functions exist, and let k be

a security parameter. Then there exists an efficient way of transforming programs into pairs

consisting of a physically protected CPU, with k bits of internal-( "shielded" )-memory, and a

corresponding "encrypted" program, so that the CPU defeats poly(k)-time experiments with

the "encrypted" program. Furthermore, t instructions of the original program are executed

using less than t - k0 0) instructions (of the "encrypted" program), and the blowup in the

size of the external memory is also bounded by a factor of k. (We stress that this scheme

defeats tampering experiments.)

The above result is proved by reducing the problem of constructing CPU which defeats

(tampering) experiments to the problem of hiding the access pattern, and solving the later

problem efficiently. As a matter of fact, we formulate the latter problem as an on-line

simulation of arbitrary RAMs by an oblivious RAM (see below).

17



18 CHAPTER 1. INTRODUCTION (TO S. PROTECTION AND OBL. SIMULATION)

1.2 Simulations by Oblivious RAMs

A machine is oblivious if the sequence in which it accesses memory locations is equivalent

for any two inputs with the same running time. For example, an oblivious Turing Machine

is one for which the movement of the heads on the tapes is identical for each computation

(i.e., is independent of the actual input). We are interested in transformations of arbitrary

machines into equivalent oblivious machines (i.e., oblivious machines computing the same

function). For every reasonable model of computation such a transformation does exist.

The question is its cost: namely, the slowdown in the running time of the oblivious

machine (when compared to the original machine). In 1979 Pippenger and Fischer [PF]

showed how a one-tape Turing Machine can be simulated, on-line, by a two-tape oblivious

Turing Machine, with a logarithmic slowdown in the running time. We study an analogue

question for random-access machine (RAM) model of computation.

To see that it is possible to completely hide the access pattern consider the following

solution: when a variable needs to be accessed, we read and rewrite the contents of every

memory cell (in some fixed order). If the program terminates after t steps, and the size

of memory is m, the above solution runs for (t -m) steps, thus, having a 0(m) overhead.

If the running time of the original program is smaller then the total memory size then

we can do better. Instead of storing data in memory "directly", we build an address-

value look-up table of size max{n, t}, where n is the length of the input, and scan only

this table. Thus, the scheme which we described above does not need to scan the entire

memory for each original access - it can scan 0(t + n) locations only. (Moreover, the

above algorithm need not know what t is. It simply builds a look-up table by adding

a new entry for each original step, so that at any time t; it has 0(t) entries in it.)

Assuming t > n, this method runs for 0(t2) steps, and yields an 0(t) overhead. Can the

same level of "security" be achieved at a more moderate cost?

The answer is no if the scheme is deterministic. That is, the simulation is optimal if

the CPU is not allowed random moves (or if obliviousness is interpreted in a deterministic

manner). Fortunately, much more efficient simulation exist when allowing CPU to be
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probabilistic2 . Thus, in defining an oblivious RAM, we interpret obliviousness in a prob-

abilistic manner. Namely, we require that the probability distribution of certain actions

(defined over the RAM's input and coin tosses) is independent of the input. Specifically,

we define an oblivious RAM to be a probabilistic RAM for which the probability dis-

tribution of the sequence of (memory) addresses accessed during an execution depends

only on the input length (i.e., is independent of the particular input.) In other words,

the conditional probability for a particular input given a sequence of memory accesses,

which occurs during an execution on that input, equals the a-priori probability for that

particular input.

The solution of [PF] for making a single-tape Turing Machine oblivious heavily relies

on the fact that the movement of the (single-tape Turing Machine) head is very "local"

(i.e., immediately after accessing location i, a single-tape Turing-Machine is only able to

access locations i - 1, i, i + 1). On the other hand, the main strength of a random-access

machine (RAM) model is its ability to instantaneously access arbitrary locations of its

memory. Nevertheless, we show an analogue result for the random-access machine model

of computation:

THEOREM B (Main Result - Informal statement): Let RAM(m) denote a RAM with

m memory locations and access to a random oracle. Then t steps of an arbitrary RAM(m)

program can be simulated (on-line) by less than O(t- (log 2 t) 3) steps of an oblivious RAM(m.

(log 2 M) 2 ).

That is, we show how to do an on-line simulation of an arbitrary RAM program

by an Oblivious RAM incurring only a poly-logarithmic slowdown. We stress that the

slowdown is a (poly-logarithmic) function of the program running time, rather than being

a (poly-logarithmic) function of the memory size (which is typically much bigger than

the program running time). We point out that the previos result of Oded Goldreich [G]

achives O((log m)C - 2 0 011m) overhead for hiding the access pattern, where m is

2 By probabilistic CPU we mean a CPU which has access to a random oracle. Jumping ahead, we note that
assuming the existence of one-way functions enables to implement such a random oracle by using only a short
random seed, and hence our strong probabilistic machine can be implemented by an ordinary one.

19



20 CHAPTER 1. INTRODUCTION (TO S. PROTECTION AND OBL. SIMULATION)

the total (RAM) memory size and c is some small constant.

On the negative side, a simple combinatorial argument shows that any oblivious

simulation of arbitrary RAMs should have an average Q(log t) overhead:

THEOREM C (Informal statement): Let RAM(m) be as in Theorem B. Every oblivious

simulation of RAM(m) must make at least max{m, t -log0 (1) t} accesses in order to simulate

t steps.

So far, we have discussed the issue of oblivious computation in a setting in which the

observer is passive. A more challenging setting, motivated by some applications (e.g.,

software protection as treated in this paper), is one in which the observer (or adversary)

is actively trying to get information by tampering with (i.e., modifying) the memory

locations during computation. Clearly, such an active adversary can drastically affect

the computation (e.g., by erasing the entire contents of the memory). Yet, the question

is whether even in such a case we can guarantee that the affect of the adversary is

oblivious of the input. Informally, we say that the simulation of a RAM on an oblivious

RAM is tamper-proof if the simulation remains oblivious (i.e. does not reveal anything

about the input except its length) even in case when an infinitely-powerful adversary

examines and alters memory contents. A tamper-proof simulation means that either the

tampered execution (of the oblivious machine) will equal the untempered execution for

all the possible inputs of equal length or the tampered execution will be detected as

faulty and suspended.

THEOREM D (Informal statement): Let RAM(m) be as in Theorem B. Then t steps

of an arbitrary RAM(m) program can be tamper-proof simulated (on-line) by less than O(t -

(log 2 t)) steps of an oblivious RAM(m ' (log 2 M) 2).

We stress that there is no assumptions in the above theorems. In practice, we sub-

stitute access to a random oracle by a pseudo-random function, theanks to the general

result of [GGM] as expained in the next section.
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1.3 From random oracle to a pseudo-random one

For simplicity of exposition, we present all the definitions and results, in the rest of the

paper, in terms of machines having access to a random oracle. In practice, such machines

can be implemented using pseudorandom functions, and the results will remain valid pro-

vided that the corresponding adversary is restricted to efficient computations. Detailed

comments concerning such implementations will be given in the corresponding sections.

Here, we merely recall that pseudorandom functions can be constructed using pseudoran-

dom generators (cf. Goldreich, Goldwasser amd Micali [GGM]), and that the later can be

constructed provided that one-way functions exist (cf. Blum and Micali [BM], Yao [Y],

Impagliazzo et. al. [ILL], and Hastad [H]). Specifically, [GGM] show that assuming the

existence of one-way functions, one can construct a collection of pseudorandom functions

with the following properties.

* For every n, the collection contains 2" functions, each mapping n-bit strings to n-bit

strings, and furthermore each function is represented by a unique n-bit long string.

* There exists a polynomial-time and linear-space algorithm that on input a repre-

sentation of a function f and an admissible argument x, returns f(x).

* No probabilistic polynomial-time machine can, on input 1" and access to a function

f : {0, 1}" '-4 {0, 1}", distinguish the following two cases:

1. The function f is uniformly chosen in the pseudorandom collection (i.e., among

the 2" functions mapping n-bit strings to n-bit strings).

2. The function f is uniformly chosen among all (22" ) functions mapping n-bit

strings to n-bit strings.

1.4 Notes concerning the exposition

Another simplifying convention, used in the sequel, is the association of the size of the

physically protected work space (internal to the CPU) with the size of the main memory.

21



22 CHAPTER 1. INTRODUCTION (TO S. PROTECTION AND OBL. SIMULATION)

Specifically, we commonly consider a CPU with 0(k) bits of physically protected work

space together with a main memory consisting of 2k words (of size 0(k) each). In

practice, the gap, between the size of protected work space and unprotected memory,

may be smaller (especially since the protected space is used to store "cryptographic

keys"). Specifically, we may consider a protected work space of size n and an physically

unprotected memory consisting of 2k words, provided n > k (which guarantees that the

CPU can hold pointers into the memory). It is easy to extend our treatment to this

setting. In particular, all the transformations presented in the sequel do not depend on

the size of the CPU (but rather on the size of the memory and on the running time).



Chapter 2

Model and definitions

2.1 Overview

In this chapter we define the notions discussed in the introduction. To this end, we first

present a definition which views the RAM model as a pair of (appropriately resource

bounded) interactive machines. This definition is presented in subsection 2.2. Using the

new way of looking at the RAM model, we define the two notions which are central to

this paper: the notion of software protection (see subsection 2.3), and simulation by an

oblivious RAM (see subsection 2.4). Subsections 2.3 and 2.4 can be read independently

of each other.

2.2 RAMs as interactive machines

2.2.1 The Basic Model

Our concept of a RAM is the standard one (i.e., as presented in [AHU]). However,

we decouple the RAM into two interactive machines, the CPU and the memory mod-

ule, in order to explicitly discuss the interaction between the two. We begin with a

definition of Interactive Turing-Machine (ITM), where the formalization of Interactive

Turing-Machines is due to Manuel Blum (private communication), and first appeared in

the work of Goldwasser, Micali anr Rackoff [GMR]. We modify it with explicit bounds
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on the length of "messages" and on the size of work tape.

Definition 1 (INTERACTIVE MACHINES WITH BOUNDED MESSAGES AND BOUNDED

WORK SPACE): An Interactive Turing Machine is a multi-tape Turing Machine having

the following tapes:

* a read-only input tape;

* a write-only output tape;

* a read-and-write work tape;

* a read-only communication tape; and

* a write-only communication tape.

where by ITM(c, w) we denote a machine as specified above with a work tape of length w,

and communication tapes each partitioned into c-bit long blocks, which operates as follows.

The execution of ITM(c, w) on input y starts with the ITM copying y into the first IyI cells

of its work tape. (In case jyj > 1w1, execution is suspended immediately.) Afterwards, the

machine works in rounds. At the beginning of each round, the machine reads the next c-bit

block from its read-only communication tape. The block is called the message received

in the current round. After some internal computation (utilizing its work tape), the round is

completed with the machine writing c bits (called the message sent in the current round)

onto its write-only communication tape. The execution of the machine may terminate at

some point with the machine copying a prefix of its work tape to its output tape.

Now, we can define both the CPU and the memory as Interactive Turing Machines which

"interact" with each other. To this end, we define both the CPU and the MEMORY as

ITMs, and associate the read-only communication tape of the CPU with the write-only

communication tape of the MEMORY, and vice versa (cf. [GMR]). In addition, both

CPU and MEMORY will have the same message length, however they will have drastically

different work tape size and finite control. The MEMORY will have a work tape of size

exponential in the message length, whereas the CPU will have a work tape of size linear

in the message length. Intuitively, the MEMORY's work tape corresponds to a "memory"
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module in the ordinary sense; whereas the work tape of the CPU corresponds to a con-

stant number of "registers", each capable of holding a pointer into the MEMORY's work

tape. Each message may contain an "address" in the MEMORY's work tape and/or the

contents of a CPU "register". The finite control of the MEMORY is unique, representing

the traditional responses to the CPU "requests", whereas the finite control of the CPU

varies from one CPU to another. Intuitively, different CPUs correspond to different uni-

versal machines. Finally, we use k as a parameter determining both the message length

and work tape size of both MEMORY and CPU.

Definition 2 (MEMORY): For every k E W we define MEMk is the ITM(O(k), 2'k0(k))

operating as hereby specified. It partitions its work tape into 2k words, each of size 0(k).

After copying its input to its work tape, the machine MEMk is message driven. Upon

receiving a message (i, a, v), where i E { "store", "fetch", "halt"} (is an instruction), a E

{0, 1}k (is an address) and v E {0, 1}0(k) (is a value), machine MEMk acts as follows:

9 if i = "store" then machine MEMk copies the value v from the current message into

word number a of its work tape.

9 if i = "fetch" then machine MEMk sends a message consisting of the current contents

of word number a (of its work tape).

* if i = "halt" then machine MEMk copies a prefix of its work tape (until a special

symbol) to its output tape, and halts.

The 2 ' words of MEMORY correspond to a "virtual memory" consisting of all possible 2 k

addresses that can be specified by a k-bit long "register". We remark that the "actual

memory" available in hardware may be much smaller (say, have size polynomial in k).

Clearly, "actual memory" of size S suffice in application which do not require to store

concurrently more than S items.

Definition 3 (CPU): For every k E W we define CPUk is an ITM(O(k), 0(k)) operating

as hereby specified. After copying its input to its work tape, machine CPUk conducts

a computation on its work tape, and sends a message determined by this computation. In
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subsequent rounds, CPUk is message driven. Upon receiving a new message, machine CPUk

copies the message to its work tape, and based on its computation on the work tape, sends a

message. In case the CPUk sends a "halt" message, the CPUk halts immediately (with no

output). The number of steps in each computation on the work tape is bounded by a fixed

polynomial in k.

The only role of the input to CPU is to trigger its execution with CPU registers initialized,

and this input may be ignored in the subsequent treatment. The ("internal") computa-

tion of the CPU, in each round, corresponds to elementary register operations. Hence,

the number of steps taken in each such computation is a fixed polynomial in the register

length (recall that the register length is 0(k)) corresponding to the primitive "hardwired"

CPU computations. We can now define the RAM model of computation. We define RAM

as a family of RAMk machines for every k:

Definition 4 (RAM): For every k E N we define RAMk is a pair of (CPUk, MEMA),

where CPUk's read-only message tape coincides with MEMk's write-only message tape,

and CPUk's write-only message tape coincides with MEMk's read-only message tape. The

input to RAMk is a pair (s, y), where s is an (initialization) input for CPU, and y is input

to MEMk. (Without loss of generality, s may be a fixed "start symbol".) The output of

RAMk on input (s, y), denoted RAMk(s, y), is defined as the output of MEM(y) when

interacting with CPUk(s).

To view RAM as a universal machine, we separate the input y to MEMk into "program"

and "data". That is, the input y to the memory is partitioned (by a special symbol) into

two parts, called the program (denoted by H) and the data (denoted x).

Definition 5 (RUNNING PROGRAMS ON RAM): Given RAMk, s, y where y = (H, x).

We define the output of program H on data x, denoted 1(x), as RAMk(s, y). We

define the running time of H on x, denoted tr(x), as the sum of jyJ + JH(x)| and the

number of rounds in the computation RAMk(s,y). We define the storage-requirement

of program H on data x, denote sr(x), as the maximum of IyI and the number of
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different addresses appearing in messages sent by CPUk to MEMk during the computation

RAMk(s, y).

It is easy to see that the above formalization directly corresponds to Random-Access

Machine model of computation. Hence, the "execution of I on x" corresponds to the

message exchange rounds in the computation of RAMk(-, (H, x)). The additive term

Iyj + IH(x)I in tn(x) account for the time spent in reading the input and writing the

output, whereas each message exchange round represent a single cycle in the traditional

RAM model. The term yly in sn(x) account for the initial space taken by the input,

whereas the other term accounts for "memory cells accessed by CPU during the actual

computation".

Remark: Without loss of generality, we can assume that the running time, t(y), is

always greater than the length of the input (i.e., |y|). Under this assumption, we may

ignore the "loading time" (represented by IyI + IH(x)I), and count only the number of

machine cycles in the execution of H on x (i.e., the number of rounds of message exchange

between CPUk and MEMk).

Remark: The memory consumption of H at a particular point during the execution

on data x, is defined in the natural manner. Initially the memory consumption equals

I (H, x)1, and the memory consumption may grow as computation progresses. However,

after executing t machine cycles, the memory consumption is bounded by max{t, |(1, x)|}.

2.2.2 Augmentations to the Basic Model

Probabilistic RAMs

Probabilistic computations play a central role in this work. In particular, our results

are stated for RAMs which are probabilistic in a very strong sense. Namely, the CPU

in these machines has access to a random oracle. We stress that providing RAM with

access to a random oracle is more powerful than providing it with ability to toss coins.

Intuitively, access to a random oracle allows the CPU to "record" the outcome of its coin
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tosses "for free"! However, as stated in the introduction, random oracles (functions) can

be efficiently implemented by pseudorandom functions (and these can be constructed at

the cost of tossing and storing in CPU registers only a small number of coins), provided

that one-way function exist.

Remark: Notice that in practice, we utilize input to the CPU to store a seed of a

pseudo-random function during initialization.

Definition 6 (ORACLE / PROBABILISTIC CPU): For every k E IN we define an oracle-

CPUk is a CPUk with two additional tapes, called the oracle tapes. One of these tapes

is read-only, whereas the other is write-only. Each time the machine enters a special oracle

invocation state, the contents of the read-only oracle tape is changed instantaneously (i.e.,

in a single step), and the machine passes to another special state. The string written on the

write-only oracle tape between two oracle invocations is called the query corresponding to

the last invocation. We say that this CPUk has access to the function f if when invoked

with query q, the oracle replies by changing the contents of the read-only oracle tape to f(q).

A probabilistic-CPUk is an oracle CPUk with access to a uniformly selected function.

Definition 7 (ORACLE / PROBABILISTIC RAM): For every k E 14 we define an oracle-

RAMk is a RAMk in which CPUk is replaced by an oracle-CPUk. We say that this RAMk

has access to the function f if its CPUk has access to the function f and we write RAMf.

A probabilistic-RAMk is a RAMk in which CPUk is replaced by a probabilistic-CPUk.

(in other words, a probabilistic-RAMk is a oracle-RAMk with access to a uniformly selected

function.)

Repeated executions of RAMs

For our treatment of software protection, we use repeated execution of the "same" RAM

on several inputs. Our intention is that the RAM starts its next execution with the

work tapes of both CPU and MEMORY having contents identical to their contents at

termination of the previous execution. This is indeed what happens in practice, yet
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the standard abstract formulation usually ignore this point, which requires cumbersome

treatment.

Definition 8 (REPEATED EXECUTIONS OF RAM): For every k E N, by repeated ex-

ecutions of RAMk, on the inputs sequence Y1, Y2, ..., we mean a sequence of computations

of RAMk so that the first computation starts with input y1 when the work tapes of both

CPUk and MEMk are empty, and the ith computation starts with input y when the work

tape of each machine (i.e., CPUk and MEMk) contains the same string it has contained at

termination of the i - 1 computation.
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2.3 Definition of Software Protection

In this section we define software protection. Loosely speaking, a scheme for software

protection is a transformation of RAM programs into functionally equivalent programs for

a corresponding RAM so that the resulting program-RAM pair "foils adversarial attempts

to learn something substantial about the original program (beyond its specifications)".

Our formulation of software protection should answer the following questions:

1. What can the adversary do (in course of its attempts to learn)?

2. What is substantial knowledge about a program?

3. What is a specification of a program?

Our approach in answering the above questions is the most pessimistic (and hence con-

servative) one: among all possible malicious behavior, we consider the most difficult,

and most malicious, worst case scenario. That is, we assume that the adversary can

run the transformed program on the RAM on arbitrary data of its choice, and can mod-
1

ify the messages between the CPU and MEMORY in an arbitrary and adaptive manner .

Moreover, since we consider the worst case scenario, we interpret the release of any in-

formation about the original program, which is not implied by its input/output relation

and time/space complexity as substantial learning. Clearly, the input/output relation

and time/space complexity of the program are not secret (as the software is purchased

based an announcement of this information).

2.3.1 Experimenting with a RAM

We consider two types of adversaries. Both can repeatedly initiate RAM on inputs of their

choice. The difference between the two types of adversaries is in their ability to modify

the CPU-MEMORY communication tapes during these computation (which correspond to

interactions of CPU with MEMORY). A tampering adversary is allowed, both to read and

1 Recall that in our model, even worst-case adversary is not allowed to read the internal work tape of the CPu
since the cPU models a "physically shielded" CPU (see Introduction).
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write to these tapes (i.e., inspect and alter the messages sent in an adaptive fashion),

whereas a non-tampering adversary is only allowed to read these tapes (i.e., inspect the

messages).

Remark: In both cases it is redundant to allow the adversary to have the same access

rights to the MEMORY's work tape, since the contents of this tape is totally determined

by the initial input and the messages sent by the CPU.

We stress that in both cases the adversary has no access to the internal tapes of the

cPu (i.e., the work tape and the oracle tape of the cPU).

For sake of simplicity, we concentrate on adversaries with exponentially bounded

running-time. Specifically, the running-time of the adversary is bounded above by 2n,

where n is the size of the CPU's work tape. We note that the time bound on the adversary

is used only in order to bound the number of steps taken by the RAM with which ADV

experiments. In practice, the adversary will be even more restricted (specifically to

working in time polynomial in the length of the CPU's work tape).

Definition 9 (A NON-TAMPERING ADVERSARY): A non-tampering adversary, (which

we denote as ADV), is a probabilistic machine that, on input k (a parameter) and a (an "en-

crypted program"), is given the following access to an oracle-RAMk. Machine ADV can

initiate repeated execution of RAMk on inputs of its choice, as long as its total running time

is bounded by 20(k). During each of these executions, machine ADV has read-only access to

the communication tapes between CPUk and MEMk.

Definition 10 (A TAMPERING ADVERSARY): A tampering adversary, (which we

debnote as ADV), is a probabilistic machine that, on input k (a parameter) and a (an "en-

crypted program"), is given the following access to an oracle-RAMk. Machine ADV can ini-

tiate repeated execution of RAMk on inputs of its choice, as long as its total running time is

bounded by 20(k). During each of these executions, machine ADV has read and write access

to the communication tapes between CPUk and MEMk.
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2.3.2 Software protecting transformations

We define transformations on programs (i.e., compilers) which given a program, H, pro-

duce a pair (f, Hf) so that f is a randomly chosen function and Hf is an "encrypted

program" which corresponds to H and f. Jumping ahead, we have in mind an oracle-

RAM that on input (Hi, x) and access to oracle f, simulates the execution of H on data x,

so that this simulation "protects" the original program H. The reader may be annoyed,

at this point, of the fact that the transformation produces a random function f which

may have an unbounded (or "huge") description. However, in practice, the function f

will be pseudorandom [GGM], and will have a succinct description as discussed in the

introduction.

We start by defining compilers as transformations of programs into (program,oracle)

pairs, which when executed by an oracle-RAM are functionally equivalent to executions

of the original programs.

Definition 11 (COMPILER): A compiler, (which we denote as C), is a probabilistic

mapping that on input an integer parameter k and a program H, for RAMk, returns a pair

(fHf), so that

* f is a randomly selected Boolean function (i.e., mapping bit-strings into a bit);

* muf = 0(1111).

* For some ' = k + O(log k) there exists an oracle-RAMk, so that, for every H, every

f and every x E {0, 1}*, initiating RAMk' on input (Hf, x) and access to the oracle

f yields output 1(x).

The oracle-RAMA, differs from RAMk in several aspects. Most noticeably, RAMk,

has access to an oracle whereas RAMA does not. It is also clear that RAMk, has a larger

memory: RAMk,'s memory consists of 2 ' = poly(k) -2 ' words, whereas RAMk's memory

consists of 2 k words. In addition, the length of the memory words in the two RAMs may

differ (and in fact will differ in the transformations we present), and so may the internal

computations of the CPu conducted in each round. Still, both RAMs have memory words
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of length linear in the parameter (i.e., k' and k, respectively), and conduct internal CPU

computations which are polynomial in this parameter.

Compilers as defined above transform deterministic programs into "encrypted pro-

grams" which run on probabilistic-RAM (i.e., into "probabilistic programs"). It is worth-

while noting that we can extend the above definition so that compilers can be applied

also to programs which make calls to oracles, and in particular to programs which make

calls to random oracles. The results in this paper will remain valid for such probabilistic

programs as well. However, for simplicity of exposition we restrict ourselves to compilers

which are applied only to deterministic programs.

We now turn to define software-protecting compilers. Intuitively, a compiler protects

software if whatever can be computed after experimenting with the "encrypted program"

can be computed, in about the same time, by a machine which merely has access to a

specification of the original program. We first define what is meant by access to a

specification of a program.

Definition 12 (SPECIFICATION OF PROGRAMS): A specification oracle for a pro-

gram H is an oracle that on query x returns the triple (H(x), tr(x), sr(x)).

Recall that tn(x) and sn(x) denote the running-time and space requirements of pro-

gram H on data x. We are now ready for the main definition concerning software pro-

tection. In this definition ADV may be either a tampering or a non-tampering adversary.

Definition 13 (SOFTWARE-PROTECTING AGAINST A SPECIFIC ADVERSARY): Given a

compiler (denoted as C) and an adversary (denoted as ADV), we say that the the compiler,

C, protects software against the adversary ADV if there exists a probabilistic oracle

machine (in the standard sense), M, satisfying the following.

* (M operates in about the same time as ADV): There exists a polynomial p(.) so

that, for every string a, the running-time of M on input (k', al) (and access to an

arbitrary oracle) is bounded by p(k') - T, where T denotes the running time of ADV

when experimenting with RAMk, on input a.
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* (M with access to a specification oracle produces output almost identical to the output

of ADV after experimenting with the result of the compiler): For every program, H,

the statistical distance between the following two probability distributions is bounded

by 2 -k'.

1. The output distribution of ADV when experimenting with RAMf, on input Hf,

where (f, Hf) <- C(H). By RAMf, we mean an interactive (CPUk,, MEMki)

pair where CPUk, has access to oracle f. The distribution is over the probability

space consisting of all possible choices of the function f, and all possible outcomes

of the coin tosses of ADV, with uniform probability distribution.

2. The output distribution of the oracle machine M on input (k', 0(11)) and access

to a specification oracle for H. The distribution is over the probability space

consisting all possible outcomes of the coin tosses of machine M, with uniform

probability distribution.

Definition 14 (SOFTWARE-PROTECTING COMPILERS): The compiler, (which we denote

as C), provides (weak) software protection if C protects software against any non-

tampering adversary. The compiler, C, provides tamper-proof software protection if

C protects software against any tampering adversary.

Next, we define the cost of software protection. We remind the reader that, for sake of

simplicity, we confine ourselves to programs H with running time, tn, satisfying tr(x) >

JHI + lxi, for all x.

Definition 15 (OVERHEAD OF COMPILERS): Let C be a compiler, and g : 14 '- N be

a function. We say that the overhead of C is at most g if for every H, every x E {, 1},

and every randomly selected f, the expected running time of RAMk,, on input (HI, x) and

access to the oracle f, is bounded above by g(T) -T, where T = tn(x).

Remark: An alternative definition of the overhead of compilers follows. We say that the

overhead of C is at most g if for every H, every x E {, 1}*, and a randomly selected f,
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the running time of RAMA,, on input (Hf, x) and access to the oracle f, is greater than

g(T) . T with probability bounded above by 2 T, where T = tn(x). The results presented

in this paper hold for this definition as well.
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2.4 Definition of oblivious RAM and oblivious simulations

The final goal of this section is to define oblivious simulations of RAMS. To this end

we first define oblivious RAMS. Loosely speaking, the "memory access pattern" in an

oblivious RAM, on each input, depends only on their running time (on this input). We

next define what is meant by a simulation of one RAM on another. Finally, we define

oblivious simulation as having a "memory access pattern" which depends only on the

running time of the original (i.e., "simulated") machine.

2.4.1 Oblivious RAMs

We begin by defining the access pattern as the sequence of MEMORY locations which cpu

accesses during computation. This definition applies also to an oracle-CPU.

Definition 16 (ACCESS PATTERNS): The access pattern, denoted Ak(y), of a (deter-

ministic) RAMk on input y is a sequence (aj,..., ai,...), such that for every i, the ith

message sent by CPUk, when interacting with MEMk(y), is of the form (., aj, .). (Similarly,

we can define the access pattern of an oracle-RAMk on a specific input y and access to a

specific function f.)

Considering probabilistic-RAMs, we define a random variable which for every possible

function f assigns the access pattern which corresponds to computations in which the

RAM has access to this function. Namely,

Definition 17 (ACCESS PATTERN OF A PROBABILISTIC-RAM): The access pattern,

denoted 4 k(y), of a probabilistic-RAMk on input y is a random variable which assumes

the value of the access pattern of RAMk on a specific input y and access to a uniformly

selected function f.

Now, we are ready the define an oblivious RAM. We define an oblivious RAM to

be a probabilistic RAM for which the probability distribution of the sequence of (mem-

ory) addresses accessed during an execution depends only on the running time (i.e., is

independent of the particular input).
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Definition 18 (OBLIVIOUS RAM): For every k E 1 we define an oblivious RAMk is

a probabilistic-RAMk satisfying the following condition. For every two strings, yi and Y2, if

jk(y1 )j and Ilk(y 2 )j are identically distributed then so are Ak(y1) and Ak(Y 2 ).

Intuitively, the sequence of memory accesses of an oblivious RAMI reveals no infor-

mation about the input (to the RAMk), beyond the running-time for the input.

2.4.2 Oblivious Simulation

Now, that we have defined both RAM and oblivious RAM, it is left only to specify what

is meant by an oblivious simulation of an arbitrary RAM program on an oblivious RAM.

Our notion of simulation is a minimal one: it only requires that both machines compute

the same function. The RAM simulations presented in the sequel are simulations in a

much stronger sense: specifically, they are "on-line". On the other hand, an oblivious

simulation of a RAM is not merely a simulation by an oblivious RAM. In addition we

require that inputs having identical running time on the original RAM, maintain identical

running-time on the oblivious RAM (so that the obliviously condition applies to them in

a non-vacuous manner). For sake of simplicity, we present only definitions for oblivious

simulation of deterministic RAMs.

Definition 19 (OBLIVIOUS SIMULATION OF RAM): Given probabilistic-RAM'k,, and

RAMk, we say that a probabilistic-RAM'k,, obliviously simulates RAMk if the following

conditions hold.

" The probabilistic-RAM'k, simulates RAMk with probability 1. In other words, for

every input y, and every choice of a (oracle) function f, the output of oracle-RAM'k',

on input y and access to oracle f, equals the output of RAMk on input y.

* The probabilistic-RAM'k, is oblivious. (We stress that we refer here to the access

pattern of RAM'k, on fixed input and randomly chosen oracle function.)

" The expected running-time of probabilistic-RAM'k, (on input y) is determined by the

running-time of RAMk (on input y). (Here, again, we refer to the behavior of

RAM'kl on a fixed input and a randomly chosen oracle function.)
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Hence, the access pattern in an oblivious simulation (which is a random variable

defined over the choice of the random oracle) has a distribution depending only on the

running-time of the original machine. Namely, let Ak'(y) denote the access pattern in an

oblivious simulation of the computation of RAMk on input y. Then, Ak'(y1 ) and a'(Y 2 )

are identically distributed if the running time of RAMk on these inputs is identical.

We note that in order to define oblivious simulations of oracle-RAMs, we have to

supply the simulating RAM with two oracles (i.e., one identical to the oracle of the

simulated machine and the other being a random oracle). Of course, these two oracles

can be incorporating into one, but in any case the formulation will be slightly more

cumbersome.

We now turn to define the overhead of oblivious simulations.

Definition 20 (OVERHEAD OF OBLIVIOUS SIMULATIONS): Given probabilistic-RAM',,

RAMk, and suppose that a probabilistic-RAM', obliviously simulates the computations of

RAM, and let g: N -+ IN be a function. We say that the overhead of the simulation

is at most g if, for every y, the expected running time of RAM'k, on input y is bounded

above by g(T) - T, where T denotes the running-time of RAMk on input y.

2.4.3 Time-labeled simulations

Finally, we present a property of some RAM simulations. This property is satisfied by the

oblivious simulations we present in the sequel, and is essential to our solution to tamper-

proof software-protection2 (since this solution is reduced to oblivious simulations having

this extra property). Loosely speaking, the property requires that whenever retrieving a

value from a MEMORY cell, the CPU "knows" how many times the contents of this cell

has been updated. Again, we consider only simulation of deterministic RAMs.

Definition 21 (TIME-LABELED SIMULATION OF RAM): Given oracle-RAM'k,, RAM,

and suppose that an oracle-RAM'k,, with access to oracle f', simulates the computations of

2 Our solution to the problem of weak software-protection (i.e., protection against non-tampering adversaries)

does not rely on this extra property, since it is reduced to ordinary oblivious simulations (as defined above).
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RAMk. With every CPU', memory location a we associate a version(a) counter which is

either stored in a CPU'k, registers or (inductively) in another RAM'k, memory address (which

has its own version counter). We say that the simulation is time-labeled if the following

holds. Let (i, a, v) be the jth message sent by CPU'k, (during REPEATED EXECUTIONS of

RAM'k,), and suppose that the contents of the version counter version(a) (at the jth round)

equals q. Then, the number of previous messages of the form (store, a, .), sent by CPU',

is exactly q. (q is hereafter referred as the version(a) number at round j.) Moreover,

version(a) must be computable in O(k') step (as an elementary CPU'k, computation).

Remark: The above definition requires any version(a) counter which is not stored in

the CPU'k, (and hence, stored in some memory location a') to have its own version(a')

counter in order to satisfy the above definition. In general, version counters create a

"tree" rooted in CPU'k, register.
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Chapter 3

Reducing Software Protection to

Oblivious Simulation

3.1 Overview

In this chapter, we reduce the problem of software protection to the problem of simulation

of RAM on Oblivious RAM. Note that the problem of simulation of RAM on Oblivious

RAM only deals with the problem of hiding the access pattern, and completely ignores the

fact that the memory contents and communication between CPU and memory is accessi-

ble to the adversary. To make matters worse, a tampering adversary is not only capable

of inspecting the interaction between CPU and memory during the simulation, but is also

capable of modifying them. We start by reducing the problem of achieving weak soft-

ware protection (i.e., protection against non-tampering adversaries) to the construction

of oblivious RAM simulation. We latter augment our argument so that (tamper-proof)

software protection is reduced to the construction of oblivious time-labeled simulation.
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3.2 Software protection against non-tampering adversaries

Recall that an adversary is called non-tampering if all he does is selects inputs, initiates

executions of the program on them and reads memory contents and communications be-

tween the CPU and the memory in such executions. Without loss of generality, it suffices

to consider adversaries which only read the communication tapes (since the contents of

memory cells is determined by the input and the communication with the CPU). Using

an oblivious simulation of a universal RAM, it only remains to hide the contents of the

"value field" in the messages exchanged between CPU and MEMORY. This is done using

encryption which in turn is implemented using the random oracle.

Theorem 1 Let {RAMk}kENg be a probabilistic RAM which constitutes an oblivious simu-

lation of a universal RAM. Furthermore, suppose that t steps of the original RAM are simulated

by less than t -g(t) steps of the oblivious RAM. Then there exists a compiler, that protects

software against non-tampering adversaries, with overhead at most O(g(t)).

Proof: The information available to a non-tampering adversary consists of the messages

exchanged between CPU and MEMORY. Recall that messages from CPUk to MEMk have

the form (i, a, v), where i E {f etch, store, halt}, a E {1, 2 , ... , 2k} and v E {, 1}0(k),

whereas the messages from MEMk to CPUk are of the form v E {0, 1 }0(k). In an

oblivious simulation, by definition, the "address field" (i.e., a) yields no information

about the input y = (Hf , x). It is easy to eliminate the possibility that the "instruction

field" (i.e., i) yield any information, by modifying the CPU so that it always accesses

a memory location by first fetching it and next storing in it (possibly the same but

"re-encrypted" value). Hence, all that is left is to "encrypt" the contents of the value

field (i.e. v), so that CPU can retrieve the original value. The idea is to implement an

encryption, using the oracle available to the CPU. In particular, the "encrypted program"

will consist of the original program encrypted in the same manner.

For encryption purposes, CPUk maintains a special counter, denoted encount, initial-

ized to 0. We modify RAMk by providing it with an additional random oracle, denoted

f. (Clearly, the new random oracle can be combined with the random oracle used in
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the oblivious simulation'.) Whenever CPUk needs to store a value (either an old value

which was just read or a new value) into memory MEMk, the counter encount is incre-

mented, and the value v is encrypted by the pair (v e f(encount), encount) (where E is

"exclusive-or" operation). When retrieving a pair (u, j) the encrypted value is retrieved

by computing u e f(j). We stress that both encryption and decryption can be easily

computed with access to the oracle f.
Hence, the software protecting compiler, C, operates as follows. On input a param-

eter k and a program H, consisting of a sequence of instructions Ir1,..., ,, the compiler

uniformly selects a function f, and sets

Since the total running time of RAM, in all experiments initiated by the adversary,

is at most 2 k, we never use the same argument (to f) for two different encryptions. It

follows that the encryption (which is via a "one-time pad") is perfectly secure (in the

information theoretic sense), and hence the adversary gains no information about the

original contents of the value field. U

We remark that, in practice, one has to substitute the random oracle by a pseudo-

random one. Consequently, the result will hold only for adversaries restricted to polynomial-

time. Specifically, the compiler on input parameter k and program H, uniformly select

a pseudorandom function f, and the description of f is hard-wired into CPUk. Hence,

CPUk is able to evaluate f on inputs of length k, and no poly(k)-time adversary can

distinguish the behavior of this CPU from the CPU described in the proof of the theorem

above. Hence, whatever a poly(k)-time adversary can compute after a non-tampering

experiment, can be computed in poly(k)-time with access to only the specification oracle

(i.e., the two are indistinguishable in poly(k)-time). A similar remark will apply also to

the following theorem.

1E.g., to combine functions fi and f2 define f(i, x) - f (x).
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3.3 Software protection against tampering adversaries

Theorem 2 Let {RAMk} keg be a probabilistic RAM which constitutes an oblivious time-labeled

simulation of a universal RAM. Furthermore, suppose that t steps of the original RAM are

simulated by less than t -g(t) steps of the oblivious RAM. Then there exists a compiler, that

protects software against tampering adversaries, with overhead at most O(g(t)).

Proof: In addition to the ideas used above, we have to prevent the adversary from

modifying the contents of the messages exchange between CPU and MEMORY. This

is achieved by using authentication. Without loss of generality, we may restrict our

attention to adversaries that only alter messages in the MEMORY-to-CPU direction.

Authentication is provided by augmenting the values stored in MEMORY with authen-

tication tags. The authentication tag will depend on the value to be stored, on the actual

MEMORY location (in which the value is to be stored), and on the number of previous

store instructions to this location. (Hence, the fact that the simulation is time-labeled is

crucial to our reduction.) Intuitively, such an authentication tag will prevent the possi-

bility of modifying the value, substituting it by a value stored in a different location, or

substituting it by a value which has been stored in the same location (before the current

value).

The CPUk resulting from the above theorem, is hence further modified as follows.

The modified CPUk has access to yet another random function, denoted f. (Again this

function can be combined with the other ones.) In case CPUk needs to store the (en-

crypted) value v, in MEMORY location a, it first determines the current version number of

location a. (Notice that if the version(a) number is in CPUk it is directly retrieved, while

if it is in memory, the procedure is repeated according to the definition of time-labeled

simulation). The current version number, q, is available by the fact that the simulation

is time-labeled. The modified CPUk now sends the message (store, a, (v, f(a, q, v)))

(instead of the message (store, a, v) sent originally). Upon receiving a message (v, t)

from MEMORY, in response to a (fetch, a, -) request, the modified CPUk determines the

current version number,, q, and compares t against f(a, q, v). In case the two values are
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equal, CPUk proceeds as before. Otherwise, CPUk halts immediately (and "forever").

Thus, attempts to alter the messages from MEMORY to CPU will be detected with very

high probability.





Chapter 4

The Simplified Problem

For exposition purposes, we make a simplifying assumption about the possible access

pattern and first present a solution for this simpler problem.

Remark: At first reading, it will not be clear why we select this particular solution for

the simplified problem. The reason, however, will become obvious, once we show how to

extend it to the general case.

Suppose somebody guarantees to us that every memory location in a contiguous

block A of memory of length n is going to be read once and only once (we assume

that each memory location V; (V stands for "virtual") in A contains a value Xi. Thus,

A = ((V 1, X1), ... I(Vn, Xn)).) In this section we consider the problem of hiding the access

pattern into A. That is, we hide the order (i.e. the permutation!) in which words in A

are examined. Instead of taking a simple approach of the previous section, we introduce

a new data-structure, which will be proved useful for our general problem. In particular,

instead of just permuting memory contents, we create a hash-table with 4n "buckets",

where each bucket will contain O(log n) words (as indicated on the figure of the restricted

problem).

We are going to treat the above data structure as a hash-table with keys from 1 to 4n,

where with each key a "bucket" of size O(logn) is allocated. We are going to map virtual

memory addresses to keys in the hash table, using the random oracle to compute our
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virtual block of
memory of size n

A: x1 x2 x3 ... xn

vi :v2 :v3:...

4n-I 4n1

0

0

0
U..

4n "buckets"

Figure 4.1: The restricted problem.

hash function. That is, we define our hash function h(V) to be F(V) mod 4n. (Recall

that we denote by F(i) a call to a random oracle on input i.) The pre-processing step

works as follows:

(1) Allocate a new block of memory of size 4n - O(log n) words. In this block, we call

each consecutive sub-block of size O(log n) a bucket, and we number our buckets

from 1 to 4n.

(2) Pick a random index s. Given s, we define a hash-function h,(-) to map any address

V in A to an address h,(V) which we define as h,(V) = F(s o V) mod 4n.

(3) ("Oblivious hash"): For i from 1 to n do: obliviously store a pair (Vi, XA). into a
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bucket h.(V,) (i.e. into the first available word in a bucket h,(V,)).

Remark: At this point, we do not describe how step (3) could be implemented obliviously

and efficiently. We only note that using techniques developed in the previous section,

this could be achieved in time O(n - (log n)2 ). We postpone the details of step (3) until

after we present our main algorithm. We call (a generalization of) the procedure describe

in step (3) an "oblivious hash" according to s.

Remark: Notice that we store n items into a hash table with 4n entries according to

a random oracle. Hence, the probability that any bucket will overflow (taken over the

choice of the randomly chosen function) is negligible.

After the pre-processing step, we can easily hide the access pattern, utilizing the

assumption that every virtual memory location V in A is referenced once and only once.

To do so, when looking for a value stored under a virtual address V we completely scan

bucket h(V) looking for a tuple (V, .). Notice that any two distinct virtual memory

locations are assigned independent buckets and every virtual memory location (by our

assumption) is accessed at most once. Thus, the (actual memory) access pattern (i.e.

bucket-access pattern) is independent of the virtual memory access pattern. Moreover,

the probability of an overflow is negligible.

Corollary 1 Assume that every element in a block A of memory of length n is accessed

once and only once. Then there exists an (off-line) oblivious simulation with e((logn)2 )

overhead.

Remark: A crucial point of the above solution must be emphasized: our procedure is

allowed to access the same bucket more then once. In fact, it will do so when collisions

occur. Notice, however, that the distribution is the same as if we select (for n times) one

of the 4n buckets uniformly at random and sequentially scan it.

209=2-M -
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Chapter 5

The Hierarchical Solution

5.1 Overview

In this section we show how to hide the access pattern with just polylog(t) slowdown in

the running time. We waive all the previous restrictions, and allow multiple accesses to

the same location and do not rely on the a-priory knowledge of the total (RAM) memory

size.

First, we state our main theorem, which is proved in this section:

Theorem 3 (MAIN RESULT:) For any RAMk and for all y of length < 2k, any

t < 2 k steps of the computation of RAMk on y can be obliviosly simulated by probabilistic-

RAM'k+21ogogk with overhead O((log2 t)
3 ). Futhermore, the simulation is on-line and time-

la beled.

Instead of a single hash-table introduced in the previous section, we use several hash-

tables of different sizes. With each hash-table, we associate a different hash-function (i.g.

a different index si. We call this hash-tables "buffers". We number them from 1 to N and

refer to the i'th "level" buffer when we talk about buffer number i, 1 < i < N (please

see "hierarchical data-structure" figure.) We "obliviously hash" contents of buffers at

different intervals, according to their sizes (for smaller buffers we do it more often then

for bigger ones.) The idea is to ensure that for each buffer, no element in that buffer is
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Figure 5.1: Hierarchical data-structure.

accessed more then once in between two consecutive "oblivious hashes", thus reducing

the general problem to the simplified problem of the previous section.
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5.2 The Algorithm

Let t be the current length of the access sequence, (i.e., the current running time of the

program which is being simulated). Note that initially, t is equal to input length. We

allocate memory for N = (1 + [log4 ti) distinct "buffers", where the i'th level buffer,

i = 1,... ,N is a hash-table of size 4' buckets, each bucket of size m = O(log t)). (The

largest, N'th level buffer will be of size 4t.) For each buffer of level i, we pick si at

random and associate a hash-function h,,(.), where h.,(V) = F(s; o V) mod 4'. Before

we explain what our algorithm does, let us mention how our simulation is going to look

to an "adversary": during simulation we will be adding more and more buffers at some

predetermined intervals of time. At a very high level, during on-line simulation, for every

virtual memory reference, we scan all (four) buckets of the level one and for all the other

(already created) levels (access and) scan a single bucket, "random" to the adversary.

Initially, all the buffers are empty. In the beginning of the simulation we store (i.e.

"obliviously hash") the program and the input into the biggest, N'th level buffer accord-

ing to the value of SN and answers of the random oracle.) During on-line simulation,

when we need to access virtual memory reference V, we first completely scan the level

(1) buffer, looking for it. If we have not found (V, X) at level (1), then we scan bucket

h8 (V) of level (2). If we have not found it there, we scan h,,(V) if level (3), etc. Say

we find it at some level (j), then for all the higher (i.e., bigger) levels, we access and

scan a randomly chosen bucket. At the end, we store the found virtual "address-value"

pair (V, X) at the level (1) buffer. (Note that we store in the level (1) buffer only the

"address-value" pair we been looking for, and not the entire bucket in which we have

found it.)

In summary, here is how the value of the virtual location V is retrieved:
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* Sequentially scan the level (1) buffer, looking for (V, X);

* For i from 2 to n do:

- Retrieve the i'th level index si of the hashing function associated

with buffer level (i) and compute h, (V.

- IF virtual location V has already been found THEN access a

"random" location as follows:

pick a random integer r between 1 and 4' and scan bucket r.

- ELSE scan bucket number h, (V, looking for a tuple (V, X).

* Copy (V, X) into the first empty bucket of the level (1) buffer.

Note that in the above description, the data is is always "moved up" to the level (1)

buffer. Thus, after four accesses, the level (1) buffer becomes full. To avoid "overflow" we

must "move" contents of the first level buffer to the second level buffer. Then (at longer

intervals) we must move contents of the second level buffer to the third level buffer, etc.

When we "move" contents of buffer level (i) to buffer level (i + 1), (every 4'-1 retrieves)

we "obliviously hash" the contents of buffer level i and the contents of buffer level i + 1

to the buffer i + 1 according to a new, randomly chosen index s+. Thus, every time

when a buffer at level (i) is at most quarter-full (i.e. has the number of stored virtual

memory references equal to at most a quarter of the number of the buckets) we empty it

into the higher level. If the higher level does not yet exists, we allocate it.

Remark: Note that when we move contents of lower level buffer into the larger buffer,

we pick a new hash-function and put into the bigger buffer the content of the smaller

buffer and the contents of the bigger buffer according to this new hash function. Thus,

the collisions which occured in the smaller buffer to not influence collisions which may

occur in the h bigger buffer. That is, collisions do not accumulate.

Remark: Note that we do not need to know the length of the request sequence a-priori.
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Instead, we do an adaptive simulation, starting with twice the size of the input and

adding more memory "as needed", (but obliviously of the real access.) That is, after t

steps we use O(t . (log t) 2) memory. Notice that this does not reveal the rate at which

the memory is used up by the program.
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5.3 Obliviousness of Access Pattern

From our examination of the restricted problem, we know that as long as we look for

any memory reference at most once, the choice of the hash-bucket accessed appears

completely random to the adversary. Notice that there may be "collisions" (i.e. we

scan the same bucket more the once), but since different memory locations are assigned

independent buckets, the choice of a bucket (for an unaccessed-before memory reference)

appears random to the adversary.

The crucial observation is that for all the buffers (except for (1)), we never look for

the same virtual memory V more then once (in the same level) in between hashing stages

of that buffer. This is so, since once we have found a tuple containing V, we move it

into the first level buffer, and due to the order in which we access buffers, we will find

it in a smaller-level buffer unless it has already "migrated" to the same level. However,

every time something is migrated to a same level, this level is hashed according to a new,

ramdomly selected hash-function. Thus, for all buffers i > 2 and any V, whenever we

pick a new s;, we compute h., (V) at most once. Thus, we can now utilize our study of

the restricted problem: for every level at which we find V, the (position of) bucket in

which we have found V appears completely random to the adversary.

Suppose we found (V, X) at some buffer level (j). What we have just shown is that

the bucket h,, (V scanned at level (j) appears random to the adversary. Next, we argue

that for all the buffers smaller then (j), and for all the buffers bigger then (j), the choice

of the buckets which is scanned appears random to the adversary as well. (Note that

if this is the case, the adversary has no information as to which buffer level the virtual

memory reference has been found on.)

Suppose we found V at level (j). First, we wish to show that for all the smaller (than

j) level buffers, the accessed bucket appears to the adversary to be uniformly distributed.

Note that due to the order in which we examine buffers, the bucket number is computed

by applying a random function to a key which has not been accessed before at this level

(otherwise, we would have found it at some smaller level!) Thus, it is equivalent to

applying a random function with a new (unused before) argument in order to decide
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which bucket to scan. Thus, it appears random to the adversary.

Moreover, for all the bigger-level buffers, we always select the bucket number to scan

at random. Hence, as far as adversary is concerned, we scan a random bucket on all the

levels, and completely scan the level (1) bucket. Thus, provided that we can perform

oblivious hasing, then for any simulated access pattern, the distribution of accessed

buckets is the same, making the access pattern oblivious.
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5.4 How to perform the oblivious hash

In this sub-section we finally bite the bullet and give a high-level outline of how we

perform oblivious hash, which we used all-along. Interested reader can find actual code

in the appendix.

Recall that the problem is as follows: we have 2 hash-tables, A and B. A has n

buckets, while B has 4n buckets, each bucket has size m words. Jointly, both A and B

contain not more then n entries, where each (non-empty) entry is a pair (Vi, X,):

JBunfey bAkt wihninkes
bothA ad BconainBuff er Bwith n buckets

0 -C

ininly buckets hi(n)

of oualgoithm o t inepndejcnt(agall othrthigs)o wth nbrofetis

at most n words

are sortdbahi nkyi is nolarhwteycnb efficiently and obliviouslytrseralscpisitoBusganw

radmhs-ucinUs htalnnepyetis( rmbt rBedu

are oal by thernwkyiosnt la o hycnb efficiently and obliviouslytrnfralscpisitoBuigane
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put into their appropriate buckets. The solution involves many applications of "oblivious

sorting" using different "granularity" of elements which we are sorted. The high-level

steps of oblivious hash algorithm are as follows:

1. Create a new hash-table C, of size 5n buckets, and copy contents of A and B into

C, bucket by bucket (i.e. treating each bucket as indivisible block of memory of

size m words.)

1 2 3 4 5nm-1 5nm

Swas

bucket 1 bucket 5n

Remark: the intuition here is that we put all the data from A and B to a "tempo-

rary" bucket C, in which we "garbage-collect" all the empty words in an oblivious

manner. In order to do so, we essentially "mark" all the empty words with "-1",
all the non-empty words with positive numbers and then perform an oblivious sort.

In step 2 below, we do essentially this, and (at the same time) pre-compute hash-

values (which are in random from 1 to 4n) of all the non-empty words. In addition,
(for reasons explain below) we make sure that all the keys are represented.)

2. Scan each bucket of C and for each non-empty word, assign a "tag" corresponding

to the new hash-function h'. In addition, for each i from 1 to 4n add a "dummy"

virtual-address entry with "tag" i, while scanning C. (Since C has 5mh word size,
there is always sufficient space to add "dummy" tags). While skanning, mark all

the remaining "empty" words with "-1 tag".

3. Sort C at a word level (i.e. treating C as a single-dimensional array which contains

5nm words to be sorted.) The data in C now looks as follows:
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======

Empty words with
"-1 tag

5nm-1 5nm

.=-- - - - -- I
I

Non-emtpy words and
"dummy" words, with tags
from 1 through 4n.

("dummy" words ensure that ALL
tags from 1 to 4n are represented)

4. Allocate C' which has the same number of buckets as there are words in C (i.e.

5mn buckets.). Copy each word of C into a new top-most word of each bucket of

C'.

5. Scan C' buckets left to right, performing oblivious sort between words of every two

adjacent buckets, and in the process, "accumulating" all the data with the same

"tag" into unique buckets of C' (Note that due to "dummy" entries, all "tags" from

1 to 4n are represented.)

1 2 3 4

C:I=

1 2 3 4 5nm-1 5nrm

Going from C to C'

1 2 3 4 5+- 15nm

__i W_ MEN~r~ ri 'do

I=II=aII=II=-I-
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5nm-1 5nm1 2 3 4

LJ1-l -~-lJ = WH =
I-Il = Il-Il =ll~ll =

=11~11=
=11-11=11=11=

I NI = .. = l:-i i I
=11=11-11 = =l

Collect all data with the same "tag" into
a single bucket by performing oblivious
sorting on each pair of adjacent buckets,
going left to right

6. Randomly and obliviously shuffle C' buckets (i.e, now treating each bucket of C' as

an indivisible unit.)

4 5nm-1 5nm

"shuffle" buckets
using oblivious sorting
with random keys

7. Scan C' left to right, and put each good "bucket" (i.e. with "tags" from 1 to 4n

into the correct place in B.

8. Scan B and eliminate "dummy" entries.

Remark: We note that the point of creating dummy entries is to prevent the adversary

from learning how many buckets in B are non-empty. It should be clear from the above

1 2 3
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inspection, that the oblivious hash procedure is both oblivious and achieves its goal.

Moreover, taking m = O(log n) the running time of the above procedure is O(n -(log n)2).



5.5. COST

5.5 Cost

Recall that there are N = O(log t) buffers. For every step in the original sequence st we

scan all the buckets of the level (1) buffer and then scan a single bucket of size O(log t) on

every other level, getting O((log t) 2) actual accesses for each virtual access. In addition,

during on-line simulation of st we hash the level (i) and level (i - 1) buffers into the level

(i) buffer a total of 4n-i+I times, i = 2,... n. Since the joint size of the level (i - 1) and

level (i) buffers is 0(4i) buckets of size O(log t), it takes Q(4i - log t - log(4' -m)) steps to

obliviously hash them. Thus, the total number of steps we have to perform for all the

hashing of all the buffers is equal to:

N

E 4~'+' . 4' . log t . log(4' - log t) = 0 (t . (log t)3)
i=2

Therefore, we have an amortized poly-logarithmic (i.e. 0((log t) 3)) overhead of hiding

the access pattern (with a negligible probability of an overflow.)

Remark: Our negligible probability of error can be substituted to expected (polylog)

running time by requiring the running time to be an expected polylog overhead, and

hashing whenever overflow occurs.

Remark: Notice that there is a trade-off between the size of the CPUk and the overhead

of the simulation. That is, given more ("protected" from the adversary) memory in the

CPUk, we can always speed-up our simulation.
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5.6 Making hierarchical simulation time-labeled

Recall that we need to make our simulation time-labled in order to prevent an adversary

from substituting values previously stored in the same actual location. Before we present

our solution we make a crusial observation:

Lemma 1 During our (hierarchical) simulation, for all buffers of levels bigger then one we

do not change the contents of these buffers except by oblivious hashing.

Proof: Notice that we do not have to modify the bucket when we scan it. Modifications

happen only during re-hashing (and on buffer level (1)). Recall that this is possible since

whenever we wish to "change" some location, we always move it to the first level buffer,

and hence, can change it there. Hence, we do not "touch" the bucket where we have

found it. M

Based on the above lemma, we need only three levels of version counters:
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" In a CPU keep a version-counter for two locations A and B which are read during

each step of the simulation.

" In location A keep version counter for the first level buffer.

" In location B keep version counter for locations buffer2,...- bufferN- That is, the

contents of all locations stored in buffer number i > 2 have version counter stored

in bufferi location.
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CHAPTER 5. THE HIERARCHICAL SOLUTION

5.7 Putting things together

Notice that we turned our simulation into time-labled simulation without incurring any

additional cost. Thus, the reduction of software protection secure against tampering

adversary to time-labled oblivious ram simulation does apply, and we have the following:

Theorem 4 (STONG FORM OF MAIN RESULT:) For any RAMk and for all

y of length ; 2', any t < 2 k steps of the computation of RAMk on y can be tamper-

proof simulated by probabilistic-RAM'k+2loglogk with overhead O((log 2 t)3 ). Futhermore,

the simulation is on-line.

We note that by using pseudo-random functions, we can state a practical analogue

of the above theorem. That is, assuming the existence of a strong one-way function,

the above algorithm can be implemented in practice using less O(t - (log 2 t)3 - kC) steps.

However, the security parameter k implies that 2k is infeasible. Hence, in practice,

(t) << 2k, and (log 2 t) 3 < k' for c > 3.

Theorem 5 (SOFTWARE PROTECTION:) Suppose one-way functions exist, with

k a security parameter of a strong one-way function. Then there exists a software-protecting

tamper-proof compiler C secure against all polynomail-time adversaries with compilation

overhead k0(1).

Proof : Analogous to the information-theoretic case, but substituting random oracle by

a pseudo-random one. M
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Chapter 6

How good is our solution? a

lower bound

Theorem 6 Every oblivious simulation of RAM on input y by probabilistic-RAM

at least max{Iy, t - logo(,) t} accesses in order to simulate t steps.

Proof : The task of simulating RAM on an oblivious RAM can be modeled

lowing game between three players:

must make

by the fol-

* the Cpu player who can hold at one time at most c "balls" and has access to

random function f.

* the program request sequence: (ri,..., rt) of length t.

* an observer.

The player is allowed at any point in time to inspect the entire program request

sequence. The game takes place on a memory consisting of m cells, each capable of

storing a single ball. Balls are numbered, from 1 to m. Initially, ith cell contains ball

number i, for 1 < i < m. (By m we denote the maximal amount of memory that RAM

can use on input y and t steps of the execution. Notice that m is at most max{y1, t}.)

The game proceeds for t rounds. In each round j, the program request sequence

secretly specifies to the player request r3 which is a ball number from 1 to m (say i),
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CHAPTER 6. HOW GOOD IS OUR SOLUTION? - A LOWER BOUND

and the player "answers" by a sequence of exchanges of balls that he currently has and

balls stored in memory (or just touches of balls stored in memory). The current round

ends when the player holds ball i. The observer sees the sequence of (memory) addresses

accessed, but does not see any of the ball numbers nor whether the balls in memory are

just touched or exchanged. The program request sequence is collaborating with neither

the player nor observer. The obliviousness condition requires that the observer can learn

nothing about the sequence of requests initiated by the program from the sequence of

addresses accessed by the player.

Consider a probabilistic mapping of t-element long request sequence into a pair of

two q-element sequences determining the behavior of the oblivious RAM. The first se-

quence Vqdescribes the visible access pattern while the second sequence H describes the

hidden sequence of actions (elements of {EXCHANGE(l)1 <,, DO-NOTHING}). Hence,

in response to request sequence (ri, ... , rt) and access to random function f, the player

conducts actions (vi, hi),... ,(vq, hq) where vi is a cell number from V, and hi denotes

above mentioned c + 1 actions (i.e. {EXCHANGE(1)< , DO-NOTHING}) from H.

The sequence of V1 is called the visible sequence, whereas the sequence of H, is called the

hidden sequence.

We can now specify exactly the notion of "rounds": we say that a sequence of actions

(v 1, hi), ... , (vq, h.) satisfies the request sequence rl, ... , rt if there exists a sequence ii, ... , it

(i.e., when rounds are "finished") so that, for every (round) j (1 < j 5 t), after actions

(v 1, hi), ... , (vi,, h;,) the player holds ball r3 (i.e., request to get ball r3 is satisfied). Note

that this definition does not depend on the function f (which might have been used to

determine the action sequence).

Note that a fixed sequence of player actions (vl, hl),..., (vq, hq) may satisfy at most cq

program request sequences, as after each step the player holds at most c balls. Moreover,

for a fixed visible sequence V there are (c + 1 )q possible request sequences. Therefore,

each visible sequence V of length q may satisfy at most C -_(c + l)y request sequences. By

obliviousness condition, the visible sequence should be statistically independent of the
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particular request sequence (except for its length). But there are m' requests, calling for

at least this number of hidden actions. Thus, for any constant c (which corresponds to

the oblivious RAM that has probabilistic CPU with c registers!) it must be the case that

q > t ' log(gec) m. U

Remark: The above proof does not use the fact that the simulation needs to be done

on-line. That is, the above lower bound holds even if the simulation is performed with

the entire program request sequence given to the oblivious RAM before the simulation

begins!
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