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Abstract

A quadratic k-e non-linear eddy viscosity model (NLEVM) has been implemented into Hydra-TH,
a Computational Fluid Dynamics (CFD) software being developed to support the nuclear reactor
thermal-hydraulics modeling and simulation needs of the CASL program. This model adopts a
non-linear extension of the stress-strain relationship that allows it to capture the anisotropy of flow
conditions. Modeling this behavior is essential for the accurate simulation and prediction of the
flow profile in fuel rod arrays, where secondary flow vortices arise and act to modify the flow
profile. The quadratic model formulation in the greater context of Reynolds-Averaged Navier-
Stokes (RANS) turbulence modeling is first presented. This is followed by a discussion of the key
aspects of the standard and quadratic k-E model implementations, which have been incorporated
into the Hydra-TH source code to supplement the already fully-functioning RNG k-E model. The
three k-e model variants are then applied to the 'classic' engineering test cases of flow in a square
duct and a U-channel bend in order to highlight the relative merits and deficiencies of the quadratic
model. Next, the quadratic model is validated on triangular and square rod fuel array test cases that
are representative of the flow profile that develops in nuclear reactor subchannels. This thesis
concludes with a rigorous sensitivity study of the triangular fuel rod array simulations, whereby
guidelines and best practices for the quadratic model's use for nuclear fuel related applications are
derived.
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Nomenclature

In this chapter, all symbols, expressions, notations, abbreviations and acronyms used in this text
are defined.

Mathematical Notation

Notation Unit (SI) Definition
D, _m Equivalent diameter
k m2 s-I Turbulent kinetic energy
U ms-1 Instantaneous velocity

M s-1 Time-averaged velocity
u' in s Fluctuating velocity component
P Pa Instantaneous pressure
p Pa Time-averaged pressure
p' Pa Fluctuating pressure component
Pk Pa s- Production of turbulent kinetic energy
Re -- Reynolds number
S -- Mean shear invariant
S; s- Mean strain rate tensor
V_ m s- Bulk velocity

Y+-- Non-dimensional wall distance

Greek Letters

Notation Unit (SI) Definition
-- Kronecker delta

& m 2 s-3 Turbulent dissipation rate
p kg m' s' Dynamic viscosity
Pt kg m-' s' Turbulent viscosity
v in 2 s-I Kinematic viscosity

p kg m- Density
_ _ ; Pa Reynolds stress tensor
Tt Pa Wall shear stress
Q -- Mean rotation invariant

QDi s-1 Mean rotation rate tensor
CO s-1 Specific dissipation rate

Abbreviations

Abbreviation Definition
ALE Arbitrary Lagrangian-Eulerian
ASM Algebraic Reynolds Stress Model
CASL Consortium for Advanced Simulation of LWRs
CCINS Cell-Centered Incompressible Navier-Stokes

CFD Computational Fluid Dynamics
CIPS CRUD-Induced Power Shift
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CRUD Chalk River Unidentified Deposit
DES Detached Eddy Simulation
DNB Departure from Nucleate Boiling
DNS Direct Numerical Simulation
DOE Department of Energy

EARSM Explicit Algebraic Reynolds Stress Model
EVM Eddy Viscosity Model
GTRF Grid-to-Rod Fretting
LES Large Eddy Simulation

LEVM Linear Eddy Viscosity Model
LWR Light Water Reactor

MAMBA MPO Advanced Model for Boron Analysis
NLEVM Non-Linear Eddy Viscosity Model

PCI Pellet-Cladding Interaction
PWR Pressurized Water Reactor
RANS Reynolds-Averaged Navier-Stokes
RNG Re-Normalization Group
RSM Reynolds Stress Model
SST Shear Stress Transport

VERA Virtual Environment for Reactor Applications
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1 Introduction

The Consortium for Advanced Simulation of LWRs (CASL) project is a Department of Energy
(DOE) initiative to develop a fleet of simulation capabilities to guide the design and optimization
of light water reactors. Hydra-TH represents one of the simulation tools, as it is a computational
fluid dynamics (CFD) software that is being developed to address the thermal-hydraulics modeling
and simulation aspects of light water reactors. Great care is being taken to equip the code with
numerical solvers and turbulence models that will maximize its performance and yield accurate
predictions for the coolant distribution in the complex geometries intrinsic to nuclear reactor fuel
assemblies.

Detailed prediction of the flow distribution inside fuel assemblies is essential for the design and
safe operation of nuclear systems. Since the flow distribution cannot be calculated with exact
analytical methods, numerical modeling and CFD simulation are needed to characterize this
behavior. The high Reynolds number flows characteristic of nuclear reactor fuel assemblies
preclude the use of Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) for full
assembly and core calculations. Practical engineering CFD simulations must therefore be based
on the Reynolds-Averaged Navier-Stokes (RANS) equations with appropriate turbulence
modeling. It is therefore of paramount interest to design and implement RANS turbulence models
that are capable of resolving these complex flow structures.

The coolant flow distribution in a fuel assembly is a highly complex, anisotropic phenomenon.
The complicated flow structure and turbulence redistribution has been observed in numerous fuel
bundle experiments (e.g. Trupp and Azad [1]; Carajilescov and Todreas [2]; Rehme [3]).
Anisotropy in the near-wall region leads to the formation of a secondary flow that spirals through
the bundle. The secondary motion acts to redistribute the flow and smooth out wall shear stress
and axial velocity profiles. Such flows-termed secondary flow of Prandtl 2 nd kind-were
originally postulated by Nikuradse [4] in 1926, but eluded experimental measurement until 1988
when Vonka [5] demonstrated that such flows are approximately 0.1% that of the primary velocity
by using laser Doppler velocimetry.

A myriad of two-equation RANS turbulence models have been developed (e.g. k-e, k-w2, SST).
Such models are predicated on the Boussinesq hypothesis, which assumes the turbulent stresses
are proportional to the mean velocity gradients of the flow. This approximation assumes that the
eddy viscosity is isotropic, and is therefore incapable of capturing the anisotropy of the Reynolds
stresses. Reynolds Stress Models (RSM) can be used to model the flow anisotropy. However, the
higher order correlations-although rigorous in their mathematical derivation-are routinely
modeled with approximations of unknown validity as it is difficult to associate physically
meaningful quantities to these higher order terms.

Non-linear eddy viscosity models (NLEVM) are an extension of standard two-equation turbulence
models, whereby a non-linear stress-strain relationship is applied. The concept of NLEVMs
originated from Lumley [6] and Pope [7], who demonstrated that a generalized non-linear stress-
strain relationship was mathematically equivalent to an explicit algebraic Reynolds stress model
(EARSM). The most general formulation is cubic in nature, with the cubic terms pertaining to
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streamline curvature and rotation. The quadratic terms capture the normal stress anisotropy and
have been demonstrated to be sufficient for fuel related applications [8] [9].

A quadratic formulation of the NLEVM has therefore been implemented in Hydra-TH in order to
enhance the simulation capability of reactor systems and support the goals of the CASL program.
Implementation of this quadratic model necessitated the restructuring of the code architecture-in
particular, the k-e class structure and inheritance schemes-and an explicit treatment of the
quadratic stress terms in the momentum equation. The model implementation has been validated
through simulation of test cases for triangular and square rod fuel arrays.

1.1 Hydra-TH in VERA

A series of challenge problems that characterize the key phenomena of pressurized water reactors
(PWR) have been identified as part of the CASL project. These challenge problems include
(among others) grid-to-rod fretting (GTRF), CRUD-induced power shift (CIPS), pellet-clad
interaction (PCI), and departure from nucleate boiling (DNB). In order to address these challenge
problems through application of modeling and simulation strategies, the virtual environment for
reactor applications (VERA) framework has been established.

VERA is not a single simulation tool, but rather a collection of codes and toolkits that can be
utilized in combination to address the challenge problems. These toolkits aim to model and
simulate the complicated physics of the reactor environment such as radiation transport (MPACT,
Insilico), fuel performance (Peregrine), CRUD chemistry and deposition (MAMBA), and
structural dynamics and solid mechanics (SIERRA/SDSM). Hydra-TH addresses the fluid
dynamics and thermal-hydraulics aspects of nuclear reactor modeling.

Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach solver that is written
in C++. The software has the ability to handle unstructured, hybrid mesh elements including
tetrahedral, hexahedral, polyhedral, and wedge pyramidal. It supports multiple turbulence models
that include LES, detached eddy simulation (DES), Spalart-Allmaras, and RNG k-g. An arbitrary
Lagrange-Eulerian (ALE) fonnulation has been implemented in order to facilitate modeling of
fluid-structure interaction problems such as GTRF. A multi-field solver is also being integrated
into the code to advance the capability for simulation of both multiphase (e.g. liquid-vapor) and
multi-species (e.g. boron-liquid) flows.

All transported variables are cell-centered. A Lax-Friedrichs advective flux approximation in
conjunction with Barth and Jesperson [10] flux limiting is utilized in order to preserve
monotonicity. Gresho's second-order "P2" projection method serves as the pressure-velocity
coupling scheme [11] [12]. Since the pressure is not collocated with velocity, a Rhie-Chow
interpolation scheme is not needed. A non-linear Picard iterative scheme has also been
implemented to extend the projection method to a fully-implicit treatment that facilitates large
time-steps [13].

The incompressible Navier-Stokes flow solver has undergone a rigorous verification and
validation study for 2D and 3D benchmark problems that include Pouiseuille flow, natural
convection in a square cavity, and turbulent channel flow [14]. Further, the Hydra-TH software
has been used to model GTRF using LES [15] as well as single-phase flow heat transfer in a rod
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bundle segment using RANS turbulence models [16]. A rigorous validation of the code applied to
nuclear fuel applications has also been performed for both the RANS and LES turbulence models
[17]. Additional work is in progress to identify and establish a collection of turbulence benchmark
problems, referred to as "torture tests," to further aid model development and testing [18].

1.2 Objectives

The objectives of this thesis are organized as follows:

1. To implement the standard and quadratic k-e turbulence models into Hydra-TH

2. To perform a comprehensive and rigorous validation study of the quadratic k-e model
applied to nuclear reactor test cases

3. To derive best practices for the quadratic k-c model's application to nuclear fuel applications

1.3 Structure of the Thesis

Chapter 2 provides a necessary introduction to RANS turbulence modeling in Hydra-TH. First,
the formulation of the Reynolds-Averaged Navier-Stokes (RANS) equations will be presented. A
discussion of eddy viscosity models (EVMs) and Reynolds stress models (RSMs) is also provided
in order to highlight the merits and limitations of each. This establishes the framework for a more
thorough discussion that delves into the mathematical formulation of the standard and quadratic k-
e models, which were implemented into Hydra-TH during the course of this work.

Chapter 3 chronicles the process of model implementation into the Hydra-TH source code. The
restructuring of the k-e class architecture and inheritance scheme to accommodate the
incorporation of the standard and quadratic models are first discussed. Next, the integration of
these models with the remainder of the source code is presented. This includes topics such as the
explicit treatment of the quadratic terms in the momentum equation, parsing commands for user-
specification, and bookkeeping with auxiliary functions.

Chapter 4 presents the results of quadratic, standard, and RNG k-e models applied to the 'classic'
engineering test cases of flow in a square duct and U-channel bend. The test case for the square
duct demonstrates the strength of the quadratic model in resolving the secondary flows that arrive
in complex geometries. Likewise, the U-channel bend test case demonstrates the limitations of the
quadratic model for capturing the effects of streamline curvature and rotation, which require the
cubic formulation for adequate prediction.

Chapter 5 provides an assessment for the quadratic model applied to bare rod array experimental
data that is representative of nuclear fuel assembly configurations. The triangular array of Mantlik
et al. [19] and the square array of Hooper and Wood [20] are both examined. This is used to glean
insights and recommendations for the model's applications to fuel related applications as well as
highlight future areas of work for the Hydra-TH toolkit.

Chapter 6 presents the results of a rigorous sensitivity study that has been performed for the
triangular fuel rod array experiments conducted by Mantlik et al. [19]. The treatment of the near-
wall region, size of the computational domain, axial grid refinement, and time integration scheme
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are each explored, and their impact on the resulting simulation convergence, performance, and
run-time are all explored.

Chapter 7 concludes this work by highlighting future areas of improvement for the quadratic
NLEVM, as well as commenting on the model's readiness for nuclear applications.
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2 Background

The continuity and momentum conservation equations are used to describe the behavior of a fluid
element as it travels through a domain of interest. Together, these two equations are collectively
referred to as the Navier-Stokes equations, which assume the following form in Cartesian tensor
notation:

ap a(pUi) 0 (2.1)
at axi

a(pUi) a(pUjUj) aP xi au (2.2)
at ax1  x Ox ax,)

Here, U is the instantaneous velocity, P is the instantaneous pressure, p is the density, i is the
dynamic viscosity, and the subscripts i andj denote the coordinate direction (i.e. x, y, z). During
the course of this study, constant fluid properties and incompressible flow are modeled. For an
incompressible flow, the density of a fluid element does not change in time as it flows through
space. The continuity equation therefore does not act as a mass conservation equation, but rather
as a constraint on the behavior of the velocity field, whereby the divergence of the velocity field
is mandated to be zero:

a(Uf) = 0 (2.3)
Oxi

The Reynolds number is a non-dimensional number that is used as a metric to characterize the
flow behavior and is defined as follows:

Re = p (2.4)

Here, L is a characteristic length of the domain, which for nuclear fuel assemblies is taken to be
the equivalent diameter of the coolant subchannel. For laminar flow (Re < 2,000), the flow profile
is uniform and the form of the instantaneous Navier-Stokes equations expressed in Eqs. (2.2) and
(2.3) is suitable for characterizing the flow behavior. However, for turbulent flow (Re > 2,000-
10,000), the flow profile consists of random, small-scale, chaotic perturbations as depicted in
Figure 2.1.

U(t) U(t) U

Laminar
Turbulent

t t

Figure 2.1 Laminar vs. turbulent flow
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A time-averaging procedure is used to derive the RANS equations, which can be used to provide
a statistical treatment of the turbulent phenomena. This averaging process introduces an additional
term into the momentum equation that captures these turbulent fluctuations and must be modeled
through the application of a suitable turbulence model. A broad spectrum of RANS-based
turbulence models have been devised in order to model these fluctuating components, which vary
with respect to their mathematical rigor, physical appropriateness, and computational cost. A
schematic of this spectrum is presented in Figure 2.2.

Reynolds Stress Models

Aegrs Ren'd trs Mdu
Expel Algebraic Reynolds Stress Models

Explicit Algebraic Reynolds Stress Models/
Non-Linear Eddy-Viscosity Models

2-Equation Models

1-Equation Models

Algebraic (0-Equation) Models

Figure 2.2 RANS turbulence modeling spectrum

In the subsequent text, a brief introduction to RANS turbulence modeling is established in order
to provide context and motivation for the selection of the non-linear eddy viscosity model
(NLEVM) that was implemented into Hydra-TH during the course of this work.

2.1 RANS Equations

The Reynolds-averaged Navier-Stokes equations are time-averaged equations for the motion of
fluid. A Reynolds decomposition is performed, whereby an instantaneous field quantity (A) is
separated into its mean (a) and fluctuating components (a'), as displayed in Figure 2. 1. The
resulting decomposition of the pressure and velocity terms is:

U(x, t) = ii (x, t) + u'(x, t) (2.5)
P (x, t) = p(x, t) + p'(x, t) (2.6)

whereby a time-averaged quantity is defined as:

a (x,t) = o( A (x, t) d t (2.7 )
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Substitution of the decomposed pressure and velocity terms into the instantaneous form of the
Navier-Stokes equations-Eqs. (2.2) and (2.3)-yields the following result:

a(n1+u) = 0 (2.8)
axi

ap(n1 +u ) ap( U+u)(ij+u) - aa +p') a a(n1+u (2.9)
at ax1  axi ax; ax )

After further time-averaging of the resulting equations and through application of the following
averaging principles,

a =a (2.10)
a + b =d + b (2.11)

a'= 0 (2.12)
a'b = 0 (2.13)
aa act (2.14)
ax ax

Eqs. (2.8) and (2.9) can be simplified to the following form:

a =0 0 (2.15)axi
a(pu1 ) a(puifj) - a a anU, a(pu'u')(

at ax1  axi axj# ax1) ax1

Inspection of the resulting RANS equations reveals that all but one of the terms are based on
time-averaged quantities. The final term in Eq. (2.16) is called the Reynolds Stress tensor, which
denotes the additional momentum transport due to the turbulent fluctuations in the velocity field.
This tensor is symmetric and has six unique quantities. Appropriate closure of this term requires
the application of a turbulence model, as depicted in Figure 2.2.

2.2 Eddy Viscosity Models

Eddy viscosity models are predicated on the Boussinesq hypothesis, which assumes that the
turbulent stresses are proportional to the mean velocity gradients of the flow:

Tij = -PUfj' = t ( + - pkij (2.17)

This proportionality constant is termed the turbulent (or eddy) viscosity pt. In contrast to the
molecular viscosity p, this term is not a fluid property, but rather depends on the turbulence
structures in the flow. Consequently, the turbulent viscosity can vary considerably throughout the
flow domain. The turbulent kinetic energy (per unit mass) k describes the energy of these turbulent
eddies in the flow:

k = u'2 + v2 + w1') (2.18)
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Here, the terms u', v', and w' represent the fluctuating velocity components in the x, y, and z
directions, respectively. The definition of the mean strain rate tensor Si; can be used to simplify the
formulation of the Reynolds stress tensor in Eq. (2.17) as follows:

2z = i + ax1) (2.19)

Tij = 2tS- pk5 (2.20)

The first term on the right hand side of Eq. (2.20) represents a linear constitutive relation between
the stress and strain exerted on a fluid element. Hence, models based on this formulation are
commonly referred to as linear eddy viscosity models (LEVM). The second term enforces the
condition that the sum of the normal stresses is equal to 2k in flow regimes where the velocity
gradients are equal to zero, as is mandated by Eq. (2.18).

The primary goal of eddy viscosity models is to devise a way to calculate the turbulent viscosity
ut. Various model formulations exist, including algebraic, one-equation, and two-equation models.
In general, algebraic (zero-equation) and one-equation models suffer from an incomplete
formulation as a mixing length that is geometry-dependent needs to be specified by the user, and
therefore are not discussed here. (An exception to this claim is the Spalart-Allmaras model [21],
in which a one-equation model is used to solve a single transport equation for the turbulent
viscosity). For a complete discussion on turbulent viscosity models, the interested reader is referred
to Pope, Chapter 10 [22].

Two-equation models have been by far the most popular for a diverse array of engineering and
research applications. Such models consist of two independent transport equations, one for the
turbulent kinetic energy k, and one for an equivalent turbulent length scale parameter. Specification
of two transport variables leads to a complete model, in which no additional information about the
flow regime (e.g. mixing length) is needed to model the turbulence. Examples of turbulent length
scale parameters include the turbulent dissipation rate c in the standard k-c model by Launder and
Sharma [23], the specific dissipation (o in the k-co model by Wilcox [24], and the turbulent time
scale r (=1/w) in the k-r model by Speziale et al. [25]. Further, the shear stress transport (SST)
model posed by Menter [26] is a hybrid of the k-c and k-o models, whereby a blending function-
in combination with a multitude of limiters-is used to enforce the k-CO model in the near wall
region and the k-c model in the bulk flow.

Linear eddy viscosity models are limited by the two main assumptions used to construct them:
namely, local equilibrium and turbulent stress isotropy. The local equilibrium assumption posits
that the production and dissipation of turbulent kinetic energy are equal locally. The transport
effects of these turbulent stresses are neglected, which therefore assumes that the history of the
flow profile is negligible. In short, the turbulent viscosity is modeled at a moment in time in the
domain whereby the Reynolds stresses change instantaneously when the mean rate of strain
changes.

The linear stress-strain relationship also leads to turbulent stress isotropy, in which the turbulent
fluctuations u', v', and w' are assumed to be locally isotropic or equal. The assumption of isotropy
implies that one component of the turbulent stress (e.g. u'u') does not affect the other stress
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components (v'v', w'w'). In reality, the turbulent stress in one direction indeed affects the stresses
in the other directions (e.g. much like the act of stretching a rubber band in one direction, which
causes it to shrink in the lateral directions). This physical process is referred to as turbulent normal
stress anisotropy.

Two-equation LEVMs work well for simple turbulent shear flows, where the turbulence
characteristics and mean velocity gradients change relatively slowly (e.g. round jet, channel flow,
mixing layer). However, models based on this framework break down in complicated flows where
there are sudden changes in the mean flow strain rate such as flow impinging against a wall, curved
surfaces, secondary flows, and swirling, in which the modeling assumptions of local equilibrium
and turbulent stress isotropy are grossly violated. More advanced turbulence models have therefore
been devised in order to address these phenomena.

2.3 Reynolds Stress Models

Reynolds stress models (RSM) consist of solving six differential transport equations to calculate
the individual Reynolds stresses (u'u', V 'V', w 'w', u 'v', u 'w', v 'w'). The idea was pioneered by
Rotta 1951 [27], but was not formalized into a complete Reynolds stress closure form until Launder
et al. 1975 [28]. There have been many forms of the model correlations, examples of which include
the linear pressure strain formulation of Gibson and Launder 1978 [29] and the quadratic pressure
strain of Speziale et al. 1991 [30]. The transport equations for the six Reynolds stress terms are
defined as follows:

a(-i+) +a( =rij) a(Tkij) + Pij + Oi - Ei (2.21)
at aXk aXk

where

Tkij- pu'Uju + f+ 6kUj) - a (UJ) (2.22)
aXk

= -p U + u'uf _L (2.23)

P L= + (2.24)

Ei = 2pt au' au' (2.25)
Saxk axk

are the Reynolds flux, production, pressure-rate-of-strain, and dissipation tensors, respectively.
The Reynolds flux tensor Tki corresponds to the diffusion due to turbulent convection, pressure
transport, and molecular viscous transport, respectively. The pressure-rate-of-strain Oij is
considered to be a composite of slow, rapid, and harmonic components that act to redistribute the
flow to return the turbulence levels to isotropy as they decay.

RSMs are classified as a second moment closure, which unfortunately consist of higher order terms
that need to be modeled. The production term Pij is closed since it is defined in terms of the
Reynolds stresses, which are the quantities being solved for at this level. All remaining terms on
the right hand side of Eq. (2.21)-with the exception of the molecular diffusion term-require
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modeling to close the systems of equations. A full discussion on the development and formulation
of adequate closure relations is beyond the scope of this discussion, and the interested reader is
referred to Pope, Chapter 11 [22] and Durbin and Reif, Chapter 7 [31].

This, in essence, represents the challenge of turbulence modeling. While higher order closure
relations can be derived to model all six components of the Reynolds stresses, the resulting
formulations consist of even higher order terms that need to be closed. The identification of
appropriate physical mechanisms to describe these higher order terms (e.g. the triple fluctuating
velocity field u,'u'u) can be quite difficult. Further, the assumptions used to approximate these
higher order terms have unknown validity in many cases.

In comparison to LEVMs, RSMs require considerably more computational resources as six
transport equations need to be solved, and demonstrate a higher sensitivity to the computational
mesh resolution. Consequently, LEVMs are the preferred choice for most simple engineering
applications. However, RSMs are routinely employed for more complex flow scenarios where
modeling the effects of normal stress anisotropy are critical, such as cyclone separators, swirlers,
and combustors.

2.3.1 Akgebraic RSMs

Algebraic Reynolds stress models (ASM) are an attempt to reduce the computational complexity
of RSMs while still preserving the ability to model the Reynolds stress tensor. Rodi 1972 [32],
1976 [33] pioneered this approach by simplifying the six partial differential equations into a set of
algebraic equations. This was accomplished through the application of a "weak-equilibrium"
assumption, whereby the transport of the Reynolds stress terms was assumed to be proportional to
the advection of the turbulent kinetic energy k, and the diffusion of the Reynolds stress terms in
Eq. (2.22) was assumed to be negligible. These assumptions lead to the simplification of Eq. (2.21)
to the following form:

pu'',u (Pk - E) = Pi + (pij p E6- j (2.26)
k3

Here, Pk and c are the production and dissipation of k. Likewise, Pij and <ij are the production and
pressure-rate-of-strain tensors, as defined in Eqs. (2.23) and (2.24), respectively. Transport
equations for k and c also need to be solved, which is accomplished through application of the two-
equation k-c turbulence model.

While ASMs reduce the complexity of RSMs in order to model the Reynolds stresses, the equation
is implicit in nature since the Reynolds stress term appear on both sides of Eq. (2.26). An iterative
scheme is therefore needed to solve these coupled set of non-linear equations, which poses issues
with respect to numerical stability and convergence for complex flows. Consequently, the
application of ASMs to engineering flows is not a common practice and has been almost entirely
abandoned altogether.

2.3.2 Explicit Algebraic RSMs

ASMs, while a considerable step in the right direction for turbulence anisotropy modeling, are
plagued by a couple of deficiencies. These include the fact that the set of algebraic equations still
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consist of higher order terms (i.e. the production Pi, and pressure-rate-of-strain kij tensors) that
require modeling simplifications of unknown validity. Further, the implicit nature of the equations
poses numerical issues. These observations influenced the pursuit and development of an explicit
constitutive relation for the Reynolds stress tensor. Models based on this framework are classified
as explicit algebraic Reynolds stress models (EARSM).

The formulation of EARSMs originated with Lumley and Pope. It was Lumley 1970 [6] who first
suggested the possibility of a constitutive relation to characterize the non-linearity of turbulence.
Pope 1975 [7] mathematically derived this non-linear turbulent constitutive relation using the
Cayley-Hamilton theorem and invariance principles applied to the second rank mean velocity
gradient tensor. The resulting explicit expression for the Reynolds stress tensor is defined as:

p 2 = pkoi -2itSij (2.27)

+ 41t{C1 [SikSkj, - 1SijSk1Sk1] + C2[fjikSkj + jkSki] + C3 (fikfjk - 16jJ1ki(i ]J

+ 8 I1tp C4 [ 2 iSiS1 + filiSkISklI + CS [f2iifimSmj + j2mjfmSii - 2 SimfDmm(fni2i

+8yt .{C 6 SklSkiSij] + C 7 [Lk1fik1Sij]}

where the mean strain rate Sij and mean rotation rate 2j tensors are defined as:

Si; = + (2.28)

1ij = - (2.29)~J 2 \ax1  ax,

After further model development and CFD experience, the non-linear constitutive relation in Eq.
(2.27) has been simplified to the following form:

p 2 =pk8 -21ttSij (2.30)

+ 4iteC [SikSkj - 1iiSk1Sk1] + C2[fikSkl + GjikSki] + C3 (ikf'njk - 1Siifnkfgkj1

+ 8 pi {- tC4[Skbi + Ski nli]Skl + CS[SkS14 - Lk1fLk1J]Sij}

The first line in Eq. (2.30) is the linear stress-strain relation provided by the Boussinesq hypothesis.
The quadratic terms on the second line capture the effects of normal stress anisotropy. Lastly, the
cubic terms on the final line denote the contributions due to curvature and rotation, respectively.

EARSMs are an extension of the linear eddy viscosity models described in Section 2.2, whereby
a two-equation model (typically the k-g model) is solved. The non-linear constitutive relation in
Eq. (2.30) is substituted in place of the linear assumption defined by the Boussinesq hypothesis
(Eq. (2.17)).

Most EARSM turbulence models adopt the relation for the turbulent stresses displayed in Eq.
(2.30). Examples of such models include the formulations by Shih-Zhu-Lumley [34], Craft-
Launder-Suga [35], Lien-Chen-Leschziner [36], and Baglietto-Ninokata [37]. Where such models
differ, however, is with respect to the prescription of model coefficients (i.e. Ci-Cs). These
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differences arise from variances in the calibration methodology and access to experimental/DNS
data that was used to tune the coefficients.

As a final thought, let us reconsider Figure 2.2 in the context of non-linear constitutive stress-strain
relations. The expression in Eq. (2.30) can be derived starting from an RSM and adopting
simplifying assumptions to lead to the desired formulation; this process typically leads to the
naming convention of an explicit algebraic Reynolds stress model (EARSM). Correspondingly,
Eq. (2.30) can also be formulated by starting with a two-equation linear eddy-viscosity model
(LEVM) and tacking on the quadratic and cubic non-linear terms; this process typically leads to
the naming convention of a non-linear eddy viscosity model (NLEVM). Note that both
formulations-NLEVMs and EARSMs-are mathematically equivalent, and represent a nice
balance of the anisotropic modeling capabilities of RSMs and the computational speed/stability
features of LEVMs.

2.4 k-c Turbulence Modeling in Hydra-TH

During the course of this work, the standard k-e and quadratic k-c (NLEVM) model formulations
were implemented into Hydra-TH to supplement the already present RNG k-c formulation. The
precise formulations of these three models are each discussed in order.

2.4.1 Standard k-g Model

Jones and Launder 1972 [38] are credited with the development of the 'standard' k-E model, with
modifications to the model coefficients later provided by Launder and Sharma 1974 [23]. (Note
that significant earlier contributions to the model development include Davidov [39], Harlow and
Nakayama [40], and Hanjalic [41]). The turbulent kinetic energy (per unit mass) k and turbulent
dissipation rate e transport equations are defined as:

a a(pujk) - + a+Pk-PE (2.31)S(pk) + ax [PC (2.3ax)
at a au1 ) ax 9) ae 1

a(pE) + y + + CE P - CE2 P (2.32)

where the production term Pk and turbulent viscosity p, are

Pk = -P i (2.33)

Pt = CE (2.34)

The Reynolds stress tensor is defined by the following expression:

pu Uj = 2pkij - 2piSij (2.35)

The mean strain rate tensor Si; has the same formulation as in Eq. (2.28). The empirical coefficients
developed by Launder and Sharma [23] are displayed in Table 2.1.
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Table 2.1 Standard k-E Model Coefficients
Ck I C, I 2 Cm

1.0 1.22 1.44 1.92 0.09

2.4.2 Quadratic k-c Model

As highlighted above, all NLEVMs are founded on the same basic stress-strain relationship,
differing with respect to the formulation of model coefficients. The quadratic form of the NLEVM
developed by Baglietto and Ninokata [37] was selected for implementation in Hydra-TH, as the
model coefficients are formulated based on a more rigorous approach that separated the turbulence

effects, which provide improved generality and robustness. This formulation respects the

constraints of realizability, which mandate that the turbulent normal stresses must remain positive

(uiu > 0) and Schwarz' inequality must be satisfied between fluctuating quantities (Ujuj,) <

u'2 u 2 . Satisfaction of these constraints leads to model coefficients that are not constant, but rather

vary with the mean flow deformation rate.

The transport equations for k and e share the same formulation as the standard model in Eqs.

(2.31) and (2.32). Likewise, the turbulent viscosity pt also shares the same formulation as the
standard model in Eq. (2.34). Lastly, the empirical coefficients UkoU, C, and C2 share the same

values as the standard model in Table 2.1.

The realizability of the model is enforced by the C, coefficient, which is no longer a constant as
in the original formulation, but rather is expressed as a function of the mean shear invariant S and

mean rotation invariant 0:

c CAO (2.36)
CA1 +S*CA 2 +fZ*CA 3

S = 2Si Sij (2.37)

i = k 2jniE (2.38)

The Reynolds stress tensor is defined by the following expression:

pu u = 3pkij - 2pit (2.39)

4it {C1 [SikSkj - 1ijSklSk] + C2 [ikSkj + fljkSki] + C 3 [flikfljk -(5ijfk1lnk1]

As can be seen, this equation is the first two lines of Eq. (2.30) as the cubic terms have been
neglected. The first line of Eq. (2.39) represents the linear formulation of the Reynolds stresses

that is adopted in isotropic linear eddy viscosity models such as the standard k-E model. The second
line denotes the quadratic stress terms that serve to provide a more complete description of the

normal stress anisotropy. The coefficients C1 -C3 are not model constants, but instead vary with the

mean flow deformation rate:

C1= CNL1 (2.40)
(CNL4+CNL5S

3 )Cg
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C 2 = (CNL4 +CNLSS 3)Cy (2.41)

C3 = CNL 4 +CNL3S 3 )Cy (2.42)

where the model coefficients CNLJ-CNL5 are summarized in Table 2.2.

Table 2.2 Quadratic k-E Model Coefficients
CAO CA] CA2 CA3 CNLJ CNL2 CNL3 CNL4 CNL5

0.667 3.9 1 0.0 0.8 11 4.5 1000 1.0

2.4.3 RNG k-c Model

The Hydra-TH package selected the RNG k-& model as a first "all-purpose" model, which was
therefore implemented as the default option for two-equation RANS. Yakhot et al. [42] derived
the RNG model based on Re-Normalization Group (RNG) methods. In this approach, RNG
techniques are used to develop a theory for the larger turbulent scales in which the effects of the
smaller scales are represented by modified transport coefficients. The overall structure of the
transport equations remains the same as with the standard k-e model, but with a modified definition
and coefficient values. Most importantly, Yakhot et al. included an additional term in the c
transport equation, which is an ad hoc model not derived from RNG theory, but nonetheless plays
a dominant role in extending the capabilities of the RNG closure in comparison to the standard k-
& approach.

The k-e transport equations for the RNG model are defined as:

(pk) + a (puk) - a + t + Pk - P (2.43)
ataX 1  ax1  Ork ax1 ]

a ~ ~~ ~~ 'Cue ar~ f~- + CIA Epk - [CE2  g /o]p(2.44)~-(PE) + x + Ux+J k k k

The production term Pk, turbulent viscosity pt, and Reynolds stresses are identical to the
formulation of the standard model, as displayed in Eqs. (2.33)-(2.35). The term q signifies the
mean shear invariant S, with the same prescription as in Eq. (2.37). The model coefficients are
summarized in Table 2.3.

Table 2.3 RNG k-E Model Coefficients
.k . 1.C42 8. 110

0.72 0.72 11.42 1.68 0.085 0.012 4.38

The last term on the right hand side in Eq. (2.44) is the additional ad hoc modification. This term
is largely responsible for the differences in performance of the standard and RNG models. Here,
the q term includes "some" effect of the mean flow distortion of the turbulence dissipation, and
such capability leads to improved predictions on high strain rate and high streamline curvature
flows. It should be noted from a rigorous point of view that the RNG model yields more realistic
flow features by grossly overestimating the level of c. In reality it is the production of k that is
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overestimated by the eddy viscosity assumption, and not the levels of e, and therefore the RNG
model often predicts the right trends for the wrong reason.
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3 Model Implementation

The implementation of the standard and quadratic k-c models into the Hydra-TH source code
consisted of three phases: class structure redesign, standard model implementation, and quadratic
model implementation. Each of these phases are explored herein.

3.1 Class Structure Redesign

As described in Section 2.4, the RNG, standard, and quadratic k-c models have similar
formulations for the k and t transport equations, differing only with respect to model coefficients,
source terms, and stress-strain constitutive relation. When programming the standard and quadratic
k-c models into Hydra-TH, it was desirable to do so in an efficient manner that grouped general
functions intrinsic to all models together, yet kept the model-specific functions separate. This
methodology led to the reconstruction of the class inheritance scheme for the k-c model.

The original class inheritance scheme is depicted on the left side of Figure 3.1. As can be seen, the
RNG k-c class originally derived directly from the Turbulence class. The redesigned class
architecture is illustrated on the right side of Figure 3.1. A "general" k-c class has been crafted
during this work, from which the specific formulations of the RNG, standard, and quadratic k-c
models now derive. This framework will allow for easy implementation of additional k-e
turbulence models, including the Realizable k-c model by Shih [43] that will be implemented in
future CASL milestones.

Original Class Structure Redesign

-I. 6e.. .

Figure 3.1 Redesign of k-t class inheritance scheme

The "general" k-c class comprises functions and operations inherent to all k-e models, such as the
allocation of boundary conditions and the formulation of the right- and left-hand sides of the k and
c transport equations. The RNG, Standard, and Quadratic classes pertain to the model-specific
variants, which facilitate the calculation of model-dependent source terms and the Reynolds stress
tensor.

During this phase, the original RNG class was deconstructed into its constituent functions so that
it could be reassembled into the redesigned General and RNG class frameworks. This process is
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depicted in Figure 3.2, where the preceding notation (CCINS) signifies cell-centered
incompressible Navier-Stokes.
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Figure 3.2 Reconstruction of the base and derived k-c class structure

After the General and RNG k-c class framework had been created, a series of regression,
verification, and validation tests were performed for the RNG k-P model to ensure that this
reconstruction did not damage the performance of the RNG k-E model. Upon successful
completion of these tests, work progressed to the implementation of the standard model.

3.2 Standard k-c Model Implementation

Implementation of the standard k-c model was rather straightforward. This process consisted of
first creating the file structure for the Standard class and then copying the contents of the RNG
class into these file structures. Next, the functions inside the Standard class were modified to
incorporate the standard k-c model coefficients and source term formulation in the c transport
equation. Lastly, several simulations for the standard model were performed and compared to the
results of the RNG model. The simulation results were quite comparable, which demonstrated
confidence in the model's implementation.

3.3 Quadratic k-r Model Implementation

The integration of the quadratic k-c model into Hydra-TH was considerably more challenging than

that of the standard model. The model implementation required the creation of new variable data

structures and functions, an explicit treatment of the quadratic turbulent stress terms, and the
selection of appropriate test cases for validation. Each of these aspects are illustrated in the

following subsections.

I
32



3.3.1 Creation of New Variables and Functions

As discussed in Section 2.4.2, the quadratic model adopts a quadratic formulation for the stress-
strain constitutive relation. To facilitate the tensor algebra mathematical operations that are
described in Eq. (2.39), a series of functions for tensor algebra operations were first created to
perform the requisite calculations. The mean strain rate Sij and mean rotation rate 2j tensors are
symmetric and antisymmetric tensors, whose general properties are demonstrated below:

S11 S12 S13-
Si] = S12 S22 S23 (3.1)

S13 S23 S33

0 f21 2  f1131

fli= -f12 0 f2 2 3  (3.2)
-n13 -23 0

As can be seen, a symmetric stress tensor consists of six unique values, whereas an antisymmetric
tensor consists of only three. Therefore, to save on computational cost and memory requirements,
the data structures for the symmetric and antisymmetric tensors are stored in the compressed
format displayed in Figure 3.3.

struct SymTensor { struct AntiTensor {
Real XX; Real XY;
Real YY; Real YZ;
Real ZZ; Real ZX;
Real XY; }
Real YZ;
Real ZX;

Figure 3.3 Symmetric and antisymmetric data structures

It was therefore necessary to develop the tensor algebra functions in a manner that was consistent
with these data structures. After these prerequisite tensor algebra functions had been implemented,
tested, and verified, it was then possible to begin developing the quadratic model.

The quadratic model also makes use of a model coefficient C, that is no longer constant, but rather
varies with the mean deformation flow rate as described in Eq. (2.36). Further, the calculation of
the production term Pk is considerably more intricate than that of the standard model (Eqs. (2.33)
and (2.39)). It was therefore desirable to develop two new variables inside Hydra-TH to store these
cell-centered values: namely, CMU and PK. Additionally, two new functions to facilitate their
calculation were also constructed: calcElemCMU and calcReynoldStress. The resulting production
term PK would then plug into the same source term as in the Standard and RNG models. The
general structure of both of these functions are expressed in pseudocode form in Figure 3.4 and
Figure 3.5. While some of the steps are excluded from these figures-such as tensor transpose and
inner product operations-the general methodology of breaking the terms up into its components
and adding them together is readily demonstrated.
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calcElemCMUO {

Figure 3.4 Pseudocode for calcElemCMU function

,1( calcReynoldStresso {

nitiaille \ aitaCI 1
cati01n ol nested bor ioop structure hetwcci cell

Calculate Lin Eq. (2.39)-row I

Calculate C, Eq. (2.40)
Calculate C 2  Eq. (2.41)
Calculate C 3  Eq. (2.42)

Eq. (2.39)-row 2
- A: Calculate SikSkJ

- B: Calculate -
6

iSkI SkI

- Q1: Add A and B, multiply by Ci

Eq. (2.39)-row 2
- A: Calculate lik Sk

- B: Calculate f]kSki

- Q2: Add A and B, multiply by C2

Eq. (2.39)-row 2
- A: Calculate hikfjk

- B: Calculate 3
6

jf'k1fkI

- Q3: Add A and B, multiply by C 3

- Tij: Add Q1, Q2, Q3
- I: calculate Tj Eq. (2.33)Sax1
- Quad: I * 4 - It

E

PK[gid]= Lin - Quad

Figure 3.5 Pseudocode for calcReynoldStress function

3.3.2 Momentum Equation Treatment

For finite volume methods, it is common practice to solve the Navier-Stokes equations in integral
form. The integral form of the RANS-averaged momentum equation defined in Eq. (2.16) is

written in vector form as:
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p - fR d + pi(i -n)dr - T- ndre + VP dfe- f dfe = 0 (3.3)
dt "e fre fre ffe fne

Here, u is mean velocity vector, n is the normal direction, P is the mean pressure,f is the vector
of all body forces, and r denotes both the regular and turbulent stresses. The terms Q and F denote
volume and surface integrals, respectively, with the superscript e signifying that the integrals are
edge-based. Before proceeding, let us first define the following mass, advective, viscous, gradient,
and body-force operators:

Me = pfle (3.4)

Ae (p, ii)j i pH(R -n)dFe (3.5)
Jp e

Kel= :fr-TndFe (3.6)

Be=Pe f VA dfle (3.7)
J.e

Fe= fef dfle (3.8)

After substituting Eq. (3.4)-(3.8) into Eq. (3.3), and then applying both forward- and backward-
Euler time discretization, the momentum equation reduces to the following form:

jn+1 _ jn

M i = (1 - 6)Kii + QKiin+1 + (1 - 6)Fn + OFn+1 - (1 - O)A(p,ii)ii (3.9)
At(39

- OA(p, )ii+l -Bp - OB(pn+l 1 
- n)

Here, 0 < 0 < 1, where 0 = 0 corresponds to a forward-Euler scheme, 0 1 a fully-implicit

treatment, and 0= % a Crank-Nicholson scheme. The user is able to specify the value of 0 for each

term: that is, OA, OF, and OK. However, it is best practice to set all 0 values equal to 1 so that a fully-

implicit time marching scheme can be utilized in order to facilitate large time-steps.

An implicit treatment of the quadratic terms displayed in Eq. (2.39) was not feasible due to the

complexity of the terms. Consequently, these quadratic terms were treated fully explicitly. The

auxiliary functions calcAuxTurbRhs and calcQuadStress were developed to accommodate this

process. The function calcAuxTurbRhs constructed the edge-based value for the turbulent

quadratic stress, which consisted of interpolating cell-centered values to the edges. This function
then called calcQuadStress in order to calculate the edge-based stresses. The quadratic stresses

were then added to the right hand side.

3.3.3 Model Implementation Assessment

The implementation of the model was assessed through simulation of two experimental test cases

for fuel rod arrays. These were the triangular rod array experiments of Mantlik et al. [19] and the

square rod array experiments of Hooper and Wood [20]. The selection of both these test cases was
important, as the presence of secondary flows due to the complex geometry was prominent.

Turbulence driven secondary flows redistributed pertinent flow properties, including the velocity
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and wall shear stress profiles. Model assessment therefore consisted of a comparison between the
standard and quadratic k-& models. Important metrics of comparison for the quadratic model
included the prediction of the magnitude and direction of these secondary flows, in addition to
better resolution of the axial velocity and wall shear stress profiles. The model assessment of the
Mantlik et al. [19] and Hooper and Wood [20] experimental test cases is thoroughly examined in
Section 5.

3.4 Bookkeeping with the Coding

The standard and quadratic models needed to be integrated into the remainder of the code
framework in order to ensure proper calculation and activation of the models. This consisted of
modifying numerous files as outlined below as well as developing the appropriate parsing structure
for user activation.

3.4.1 Modification of Files

Numerous other files in the code make calls to the activated turbulence model for calculation of
important field quantities such as turbulent viscosity, wall normal distance, and y+. These
calculations rely on the model-specific coefficients and equations. Managing these instances was
typically handled through the prescription of ifand/or switch statements for the requisite k-e model.
Further, functions to facilitate plotting of important field quantities such as CMU and PK needed
to be developed so that the data could be exported and post-processed. Examples of this usage
include the following, where the terms on the left and right side of the double-colon signify the
class and function, respectively:

" CC INSEnergy::calcElemConductivityWallFunctionKEps
" CCINSFlow::calcWallShear
" CCINSFlow::getTurbPrandtl
* CCINSFlow::formAllRhs
* CCINSFlow::formTurbulenceTransportRhs
* CCINSFlow::applySimpleICs
" CCINSFlow::initTransportSolvers
" CCINSFlow::writeElemYstarField
" CCINSFlow::writeElemCMUField
" CCINSFlow::writeElemPKField

3.4.2 Parsing Structures

The relevant files dedicated to parsing the input control file needed to be updated to allow
activation of the desired k-& turbulence model. Within the turbulence specification parsing block,
the user need only specify "mg_ke", "stdke", or "nl ke" for activation of the RNG, standard or
quadratic models. The following functions inside the file CCIncNavierStokesParse. C needed to be
modified and created in order to establish this parsing framework:

* parseCCINSTMODEL
* parseCCINSTURB
" parseRNGKEOpt
" parseSTDKEOpt
" parseNLKEOpt

36



4 Quadratic Model Assessment of 'Classic' Engineering Test Cases

The quadratic model has been applied to 'classic' engineering test cases designed to test the
strength of the model for complex engineering problems as part of the validation process. These
include the prediction of turbulence driven secondary flows that arise in a square duct and the
resolution of the streamline curvature effects in a U-channel bend. Each of these test cases are
explored in the subsequent pages of text. A brief description of the experimental apparatus,
computational setup, and simulation results are performed for all test cases whereby the
performance of the quadratic, standard, and RNG k-e models are examined. Appendices A and B
contain the Hydra-TH control files and experimental data considered in this study, respectively.

At the conclusion of each test case, a grid refinement study is also performed in order to
demonstrate the convergence of the simulation results. Richardson extrapolation [44] [45] was
attempted to estimate the error on the finest grid. The order of accuracy p can be quantified by
using the following equation:

P_ n-02h (4.1)
Inr

Here, r is the factor by which the grid density is increased (for example, r equals 2 signifies that
the spacing between grids is halved); qp is a field quantity that is used as a metric for comparison
(e.g. centerline velocity); and h denotes the mesh refinement-the coarsest mesh has subscript 4h,
and the finest mesh has subscript h. The error on the finest grid h is estimated by application of the
following expression:

Ch h-02h(42
rP(42

Note that while a Richardson extrapolation has been attempted, the difference between the various
grid refinements is minimal and the order of convergence is masked by the nonlinearities in the
solution methods. While the order of convergence is reported for the following test cases, it does
not have any proper meaning. Consequently, the difference between the grids is therefore the best
estimator of the error.

4.1 Square Duct
A square duct, although simple in its design, in fact leads to the creation of complex turbulent
structures. These structures give rise to secondary flows that serve to redistribute the flow profile.
The quadratic terms-which resolve the turbulent normal stress anisotropy-are sufficient to
resolve these secondary flows as well as their redistribution of the flow profile.

4.1.1 Experimental Setup

An extensive compendium of the flow distribution in a square duct with 5" sides was compiled by
Hoagland [46] as part of his Ph.D. thesis earned at MIT. A duct with a length of 32 feet (L/D, =
77) was used to ensure the development of fully developed flow. Pitot tubes were used to record
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the velocity measurements in the bulk of the flow, whereas hot wire probes were used to record

the measurements near the duct walls. The Reynolds number considered in this study is 66,000.

4.1.2 Coinputational Setup

The inherent symmetry of the problem was exploited in order to simulate a quarter section of the

duct, as demonstrated in Figure 4. 1. A length of 11.5 m was modeled in order to ensure that a fully

developed flow was achieved. This was necessary because Hydra-TH currently does not support

the capability for periodic flow boundary conditions. In order to achieve a Reynolds number equal

to 66,000, the values listed in Table 4.1 were imposed in the Hydra-TH control file that is displayed

in Appendix A. 1.

2.5" (63.5mm

37.7' (11.5 m)

) uta

2.5" (63.5mm)

Figure 4.1 Square duct computational domain

Table 4.1 Flow parameters specified for square duct simulation

pkg/,r'j pfkg/m/sl Vp /m/si D tm Re

1 1x10 5 5.1969 0.127 66,000

The boundary conditions specified for the problem are displayed in Figure 4.2. A velocity of 5.196

m/s was specified at the inlet (sideset I) and a zero reference pressure boundary was set at the

outlet (sideset 2).Wall boundary conditions (no-slip) were specified for the left (sideset 3) and

bottom (sideset 6) walls of the duct. Symmetry velocity boundary conditions were established for

sidesets 4 and 5 by setting the velocity component normal to the surface equal to zero.

Three grids of increasing refinement were used for this study. Refinement in the axial direction (z)

was fixed constant at 100 elements, while the cross-sectional spacing was refined by a factor of 2.

Two wall layer elements, each of 3.175 mm thickness, were uscd for all mesh sizes. This ensured

the correct behavior of the wall treatment, which is based on a two-layer scalable wall-function

approach. The cross-sectional view of all three mesh sizes is illustrated in Figure 4.3 and the mesh
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sizes are listed in Table 4.2. A grid refinement study has been performed, but is deferred until later

in this section.

Sideset 1
Vz = 5.196 m/s

Sideset 4
VY= 0

Sideset 5
Vx= 0

Sideset 3
V = V = Vz = 0

Sideset 6
VX = V, = VZ = 0

Figure 4.2 Boundary conditions for square duct simulations
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Figure 4.3 Mesh refinements examined for square duct simulations

Table 4.2 Mesh refinements examined for square duct simulation

Wall Elements x y [ z Total Elements

2 969 100 12,100

2 18 18 100 40,000

2 336 60 144,400
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4.1.3 Results

Here, the simulation results for the most refined mesh (36x36) are presented and compared with
the Hoagland [46] experimental data. The axial velocity profiles for 6 different y/a slices are
compared for the quadratic, standard, and RNG k-, models. The data slices were constructed by
fixing the position x, and measuring the velocity profile as a function ofY. All 6 slices are presented
in Figure 4.4, whereas Figure 4.5 overlays the predictions from the three k-c models atop a selected
single x/a profile. As can be seen in Figure 4.5, the standard and RNG models behave near
identically for all six slices, as they underpredict the axial velocity profile in the near wall region
and overpredict it in the bulk of the flow. The quadratic model performs noticeably better, as it
yields predictions closer to the experimental values for both the near wall and bulk flow regions.
The quadratic model does yield a noticeably lower prediction in the near wall region for the x/a
=0. I slice. This is most likely attributable to the wall layer elements that arise and overlap in the
corner of the duct in this region.
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Figure 4.4 Square duct simulation predictions vs. experimental results
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The secondary flow profiles at the plane of measurement are illustrated in Figure 4.6. As can be
seen, the quadratic model accurately predicts the formation of two vortices. Conversely, the
standard and RNG models do not capture this phenomena, and rather predict secondary flows that
accelerate to the center of the duct. Further, the magnitude of the secondary flows is on the order
of 0.1% of the axial velocity for the quadratic model; in contrast, it is on the order of 0.000 1% for
the standard and RNG models and is most likely spurious velocities produced as a consequence of
the linear eddy viscosity model. The ability of the quadratic model to resolve these secondary
flows is important as they allow it to capture the turbulence redistribution of the axial velocity
profile, which leads to the better predictions for the quadratic model presented in Figure 4.5.
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Figure 4.5 Comparison of k-c model performance for square duct
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Figure 4.6 Secondary flow magnitudes Im/si for square duct simulations at x/De = 77

4.1.4 Grid Refinement Study

The axial velocity profiles at x/a = 1 are plotted in Figure 4.7 for each model to demonstrate the

convergence of the mesh to the axial velocity profiles. As can be seen, the axial velocity profiles

are overlaid upon one another for all three refinements, which suggests that a converged result has

been achieved. A Richardson extrapolation of the centerline velocity at the plane of measurement
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was performed for all three models, and the order of convergence and error on the finest grid are
listed in Table 4.3.

The results of the Richardson extrapolation reveal surprising results. One would expect there to be
an order of accuracy near two that would reflect the grid refinement ratio. While this is almost
observed for the RNG case, the standard and quadratic cases demonstrate significantly lower
orders of accuracy. This apparent discrepancy can be resolved by considering the centerline
velocities for all three grid refinements that are also listed in Table 4.3. As can be seen, the
centerline velocities for all three grid refinements are very close in magnitude. This suggests that
grid refinement for the simplistic geometry of a square duct has negligible impact

results as both the coarse and fine meshes perform near identically.
on the simulation
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Figure 4.7 Grid convergence study for square duct test case

Table 4.3 Square duct Richardson extrapolation results

Quadratic Standard RNG

Vc./V: h 1.1929 1.2051 1.2221

VCL/V: 2h J 1.1916 1.2085 1.2255

VUr/V: 4h 1.1928 1.2111 } .2264

Max Spread lAbsolutel 0.00127 0.00598 0.00435

Order ofAccuracy 0.0671 0.364 1.816

Error on Finest Grid /%1 2.67 1.17 0.13
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4.2 U-Channel

A two-dimensional U-channel duct that has a 1800 bend has been simulated to assess the ability
of the k-& models to capture the effects of streamline curvature and rotation. Recall that the cubic
terms of NLEVMs account for streamline curvature and rotation; it is therefore expected that the
quadratic model should not be able to fully reproduce the complex flow phenomena in the bend.

The U-channel was investigated experimentally and numerically by Monson et al. [47], and also
numerically by Shur et al. [48]. The test case has also recently been simulated with special attention
given to the curvature correction features of the Spalart-Allmaras turbulence model in Hydra-TH
as part of a CASL milestone report by Smith and Christon [49].

4.2.1 Experimental Setup

The experiment by Monson et al. [47] was performed at the NASA Ames High Reynolds Number
Channel I facility, which was an air blowdown wind tunnel. The channel was rectangular with an
aspect ratio of 10. The velocity measurements were recorded using two-component laser Doppler
velocimetry and the static pressures were measured using an electronically-scanned pressure
system. The Reynolds number considered in this study is 1,000,000.

4.2.2 Computational Setup

The computational domain is displayed in Figure 4.8 and the flow parameters utilized to enforce
a Reynolds number of 1,000,000 are presented in Table 4.4. Flow enters at the lower left boundary
and exits at the upper right. The bend is a half circle with an inner and outer radius of 0.5 and 1.5
m, respectively. The arc length s normalized by the channel height H (s/H) is used as a metric for
comparing the pressure coefficients for both the inner and outer walls later in this section. The
inlet corresponds to s/H = -10, the beginning of the bend is at s/H = 0, the bend ends at s/H = 7,
and the outlet is at s/H = 12 + 7. The primary velocity component at several angles in the bend will
also be plotted as a function of the normal distance Y from the inner wall. At the inner wall, v/H
0, and at the outer wall y/H = 1.

12 m

1.5 m

y/H =0 0.5 m

H =1 mI I
y/H = 1

10 m

Figure 4.8 U-Channel computational domain
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Table 4.4 U-channel simulation flow parameters

p 1kg/ni'3  P [kg/in/si V fin/si H liim Re

I 1x1 0-6 1.0 1 1,000,000

Three meshes of increasing refinement were generated using the Sandia mesh generator CUBIT.
A picture of the coarsest mesh is displayed in Figure 4.9 and the mesh refinements examined are
listed in Table 4.5. A biasing growth scheme in the primary flow direction was used for the top
and bottom ducts; the number of elements in the primary flow direction is referred to as N. A
dual-biasing growth scheme in the cross-flow direction was used. The number of grids in the cross-
flow direction Ny was fixed at 1 1 1 for all three refinements, which corresponded to a v+ in the
range of 20-30. A uniform interval spacing in the primary flow direction in the azimuthal bend
was adopted, which is denoted as N,,,. Only one element was modeled in the z-direction, as it was
a 2-D simulation.

Sideset 2

ref -0

Sideset 1
User velx

Sideset 5 (Outer Wall)
Vx =VY= V= 0

Figure 4.9 Boundary conditions for U-channel simulations

Table 4.5 Mesh refinement for U-channel

_ Top Duct Bottom Duct Cross-flow Bend
Growth Iia-Got Ioa

NV Grctoh NX Growth Factor N Dual-Growth N,, Elements
Factor ___ ________j j Factor _____

56 1.058 48 1.067 111 1.05 100 22,644

112 1.03 96 J1.04 1 l I 1.05 200 45,288

224 1.015 192 1.02 111 1.05 400 90,576

The boundary conditions used for the mesh are also illustrated in Figure 4.9. A pressure boundary

condition was set at the outlet (sideset 2). Wall boundary conditions were specified for the inner

(sideset 4) and outer (sideset 5) duct walls. To enforce a 2-D solution, the z-component of velocity

was set to zero for both the front and back surfaces (sideset 3). A fully developed turbulent flow

was enforced at the inlet (sideset 1) through application of a user-defined velocity boundary

condition in the file "CCINSVeIBC.C" that uses the following 1/ 7t" power law:

U(y) = U" 1 - 2 IY-cI ]/ 7 (4.3)
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Here, Ui, = 1/0.875, Y is the position, Y, is the value at the center of the channel, and H is the total
height of the duct.

4.2.3 Results

The results for the finest mesh are presented in this section. The primary flow predictions for the
quadratic, standard and RNG models are compared with the experimental measurements for the
various angles in the channel curve in Figure 4. 10. As can be seen, all three models behave near
identically and match the experimental trends at 0 =00. At 0 = 900, the quadratic and RNG models
behave similarly, with the standard model yielding an underprediction near the inner wall. At 0 =
180', there are noticeable differences between all three models. The standard model yields a near
flat distribution. The quadratic and RNG models perform similarly near the outer wall, but they
begin to diverge when approaching the inner wall, with the RNG model giving slightly better
agreement with the experimental values. The differences between all three models is even more
pronounced at s/H = 2 + 1. All three models fail to resolve the velocity profile in the outer wall
region; interestingly, the RNG model does a better job at capturing the trends near the inner wall.
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Figure 4.10 U-channel mean velocity profiles
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The pressure coefficient as a function of arc length (s/H) is plotted for both the inner and outer
walls in Figure 4.11, and is calculated by the following expression:

C = (Pr1 = 2(P - Pref) (4.4)
2 b

Here, P is the pressure at the wall, with the reference pressure Pj being taken at s/H = -5. As can
be seen in Figure 4. 11 for the inner wall, all three models behave near identically before the bend
is encountered at s/H = 0. After the pipe bend begins, all three models overpredict the magnitude
of the pressure coefficient, with the standard model giving a closer prediction in the duct after the
bend. Interestingly, the RNG and quadratic models behave near identically for the whole span.

For the outer wall, again, all three models behave identically before going into the pipe bend, and
give similar and better predictions for the pressure coefficient inside the pipe bend. After the pipe
bend, however, all three models diverge from the experimental results, with the standard model
being closer to the experimental values. The RNG model exhibits a small dip after the bend, and
then its solution merges with the quadratic result.

0.5 Inner Wall Outer Wall

0.0- 0.6

-0.5 * * * * * * 0.4
0.2

-1.01
0.0 *

*1 -0.2
-2.0 0-0.4

-2.5 - -0.6
*

-3.05 0 5 10 15 -5 0 5 10 15
,s/H s/H

* Exp. * Quadratic * Standard RNG

Figure 4.11 U-channel pressure coefficients on the wall

To gain a better understanding for the mechanisms underlying the differing performances between
the quadratic, standard, and RNG k-- models, the velocity, turbulent kinetic energy, and turbulent
viscosity profiles have been examined. The x- and y- components of velocity are displayed in
Figure 4.12 and Figure 4.13, respectively. As can be seen, all three models yield similar
distributions for the x- and y-components of velocity inside the 180' bend. Both the RNG and
quadratic models resolve the separation region that occurs immediately after the pipe bend;
however, the RNG model predicts a substantially larger separation region.
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Standard

Quadratic

RNG

X -1 0 145

Figure 4.12 U-channel x-component of velocity

The turbulent kinetic energy for all three models is displayed in Figure 4.14. The quadratic and

standard models have similar profiles throughout the domain, but differ with respect to their

magnitudes, with the standard model predicting roughly twice the value of the quadratic model.

Likewise, the RNG and quadratic models have similar magnitudes for the turbulent kinetic energy,
but differ with respect to the distribution. The quadratic model predicts a larger value of k for the

bulk flow at the end of the bend that extends into the duct for quite some distance; the RNG model

predicts a weaker distribution of k in the bulk flow at the end of the bend, but rather peaks near the

inner wall immediately after the bend in the separation region.
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Quadratic

RNG

y 0 0.4 0.8 1.2

X -0.0121 VY [m/s] 1.56

Figure 4.13 U-channel y-component of velocity

Lastly, the turbulent viscosity is shown in Figure 4.15, and it is different for all three models. The

standard and quadratic model predict similar magnitudes for the turbulent viscosity, but the

standard model predicts its strong development at the beginning of the pipe bend, whereas the

quadratic model predicts it towards the end of the bend. The RNG model prediction is an order of

magnitude smaller.

In consideration of the velocity, turbulent kinetic energy, and turbulent viscosity distributions, let

us revisit the U-channel mean velocity plots in Figure 4.10. Recall from Section 2.4 that the

differences between the standard and quadratic model formulations include the quadratic stress-

strain constitutive relation and the variable C, coefficient, which allow the quadratic model to

resolve the turbulent normal stress anisotropy. Both of these factors prevent the quadratic model
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from overpredicting the magnitude of the turbulent kinetic energy and turbulent viscosity, which
thereby allow it to achieve a better prediction of the velocity distribution at O= 180'.

Standard

~T~j

Quadratic

RNG

Y 0.05 01 0]2

X 0.00217 0.133
- k [M2/s2]

Figure 4.14 U-channel turbulent kinetic energy profiles

Even so, the quadratic model still struggles with this test case and yields predictions for the velocity

profiles that differ considerably with the experimental results. This is attributable to the fact that

the quadratic terms are not sufficient for modeling this type of flow problem. The cubic stress-

strain terms-which pertain to streamline curvature and rotation-are needed to adequately model

this type of problem. Since only the quadratic terms have been implemented and validated, it is
entirely expected that it would struggle with the U-channel problem. Future work will seek to

incorporate the cubic terms into the model, and the U-channel case will be revisited.
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Figure 4.15 U-channel turbulent viscosity profiles

The RNG model's ability to predict the flow separation region immediately after the 180' bend is

the key to its better predictions. This is due to the additional ad hoc source term in the - transport

equation (Eq. (2.44)). This term accounts for "some" of the effect of the mean flow distortion of

the turbulence dissipation, and such capability leads to improved predictions on high strain rate

and high streamline curvature flows.

4.2.4 Grid Refinement Study

The velocity profiles at s/H = 2 + 7 and the pressure coefficients at the inner wall are plotted for

each model in Figure 4.16 and Figure 4.17 to demonstrate the convergence of the solution for the

fine mesh results presented in the previous section. As can be seen, the velocities and pressure

coefficients are overlaid upon one another for all three mesh refinements, which suggests that a

converged result has been obtained. A Richardson extrapolation of maximum velocity in the
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computational domain was performed for all three models, and the order of convergence and error
on the finest grid are listed in Table 4.6.

As with the square duct test case, the results of the Richardson extrapolation yield counterintuitive
results for the order of accuracy and error on the finest grid. Table 4.6 lists the maximum velocity
values for all three grid refinements. The spread of these values is quite small, which suggests that
grid refinerent has negligible
geometry of the U-channel.

impact on the simulation result due to the relatively simplistic
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Table 4.6 U-channel Richardson extrapolation results

Quadratic Standard RNG

Vma/Vb: h 1.0655 1.1370 1.1309

Vmax /Vb: 2h 1.0662 1.1397 1.1335
Vm /Vb: 4h J 1.0664 1.1350 1.1431

Max Spread [Absolute] 0.0009 0.0047 0.0122

Order ofAccuracy F 1.807 T 0.800 1.885
Error on Finest Grid [%J 0.0280 0.365 0.0966
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5 Quadratic Model Validation of Nuclear Fuel Configurations

The quadratic model has been applied to triangular and square fuel rod arrays in order to assess its
implementation and readiness for reactor simulations. A comparison with the standard k-e model
has been performed in order to highlight the importance of capturing the secondary flows generated
by normal stress anisotropy.

5.1 Triangular Fuel Rod Array

5.1.1 Experimental Setup

A series of velocity and wall shear stress measurements for several Reynolds numbers were
performed by Mantlik et al. [19] on a bare triangular rod array at NRI in the Czech Republic. The
experiments were performed in a wind tunnel, using nineteen 120 mm outer diameter (OD) rods
of 6 m length, with a pitch-to-diameter ratio of 1.17. Measurements were recorded at a distance of
5.6 m from the inlet to ensure that fully-developed flow had been achieved. Pitot and Preston tubes
of 0.8 mm (OD) were used to measure the velocity and wall shear stress profiles. The
measurements were performed in a central subchannel so that it could be considered to be an
elementary flow cell of an infinite rod bundle. The Reynolds number considered in these
simulations is 181,200, and the experimental conditions for this experiment are summarized in
Table 5.1.

Table 5.1 Experimental conditions for Mantlik et al. [19]

P [kg/m 3  P [kg/m/s] Vb [m/si Re
1.131 1.8x10 1 47.16 181,200

5.1.2 Computational Setup

Due to the inherent symmetry of the problem, it is sufficient to describe a smaller domain with the
prescription of appropriate symmetry boundary conditions (Figure 5.1). The domain comprises six
elementary flow cells. The rationale for this domain selection originates from leveraging the
current implementation of the symmetry (zero-gradient) boundary conditions in Hydra-TH, which
are required to be specified at a surface where its normal directly coincides with a coordinate
direction.

The dimensions of an elementary flow cell are displayed in Figure 5.2. Three prism layers-each
with a thickness of 1 mm-were employed in order to ensure stability to the wall functions to lead
to a converged solution. A grid refinement study has also been performed for these simulations,
but is deferred until later in this section.

The boundary conditions applied to the computational domain are highlighted in Figure 5.3, where
the sidesets are also shown for clarity. Wall boundary conditions (V, = V = V = 0) were applied
at both of the fuel rod surfaces. Symmetry boundary conditions were enforced by setting the
velocity component normal to the surface equal to 0. An inlet velocity (sideset 1) of 47.16 m/s was
prescribed and a reference pressure equal to 0 was specified for the outlet (sideset 2).
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Figure 5.1 Triangular fuel rod array computational domain

40.53 mm

t-4 4[ -~L t + 2 -- ~-.-
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21.06 mm

Figure 5.2 Elementary flow cell dimensions for triangular fuel rod array 1191

Three grids of increasing refinement were used for this study. Refinement in the axial direction (z)
was fixed constant at 60 elements, while the radial and azimuthal spacing was refined by a factor
of 2. Three wall layer elements, each of 1 mm thickness were used for all mesh sizes. The cross-
sectional view of all three elementary flow cell mesh sizes is illustrated in Figure 5.4 and the mesh
sizes are listed in Table 5.2.
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Figure 5.3 Boundary conditions for triangular fuel rod array simulations
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Figure 5.4 Mesh refinements examined for triangular fuel rod array simulations
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Table 5.2 Mesh

Wall Elements

3
3
3

refinements examined for triangular fuel rod

r 9 z
5 10 60
10 20 60

20 I 40 60

array simulations

Total Elements
28,800
93,600

331,200

5.1.3 Results

The radial velocity profile predictions for the quadratic model are presented in Figure 5.5 along
with the experimental results. As can be seen, the quadratic model matches the velocity profiles at
the angular locations of p=150 and p=30o. For the 9=00 case, the model accurately predicts the
velocity i n the near wall region, but steadily drifts away from the experimental results as the normal
distance to the wall is increased. The quadratic model is also able to match the shape of the wall
shear stress distribution measurements, but with a slight underprediction in the p=0-12' region.
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The results of standard k-& model applied to the triangular rod array are also displayed in Figure
5.5. Accurate predictions are achieved for the velocity profile at o=15'; however, the standard
model underpredicts the velocity profile in the narrow region (=O 0 ) and overpredicts it at the
o=30 location. Further, the standard model yields predictions for the wall shear stress that

monotonically increase from o=0- 3 0 and consequently do not coincide with the experimental
values. Such behavior is a common observation and known limitation of the standard k-- model
that is attributed to the lack of secondary flow prediction, which acts to redistribute the turbulence
levels and velocities inside the channel.

Standard

Secondar\ FlowN Magnitude ImIsl

0 0.000735

IWI

Quadratic

Secondar Flo%\ Magnitude jm. sI
01 0.2 0.3 0.4

0) 0.482

Figure 5.6 Secondary flow profiles for triangular fuel rod array simulations
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Figure 5.6 illustrates the secondary flows at the plane of measurement for both the quadratic and

standard models. A vortex that spans the entire elementary flow cell is observed for the quadratic

model, whereas the standard model predicts negligible secondary motion that is most likely

spurious velocities produced as a consequence of the linear eddy viscosity model. Further, the

quadratic model predicts magnitudes on the order of 0. 1% (in accordance with the experimental

measurements of Vonka [5]). These observations confirm that the quadratic model is able to

capture the anisotropy driven secondary flow profile, which allows it to resolve the turbulence

redistribution, leading to the more uniform axial velocity and wall shear stress profiles depicted in

Figure 5.5.

Greater inspection of the secondary flows predicted by the quadratic model sheds insight into why

the velocity profile and wall shear stress distributions were underpredicted in the p=0-12' regime.

The secondary flow profile is noticeably weaker in this region, which suggests an insufficient

redistribution of turbulence to smooth out the flow profile. This is an artifact of the code framework
that will have to be examined further. One possible source for this may be an insufficient boundary

condition prescription. The quadratic model predicts strange values in the corners of the geometry

that leads to large vectors pointing outside of the domain. This is an indication that the symmetry

boundary conditions need to be revised to accommodate anisotropic stress tensors.

5.1.4 Grid Refinement Study

The grid convergence of the axial velocity profile at (p=30 and wall shear stress distribution for

the quadratic and standard k-c models for the triangular array are displayed in Figure 5.7 and Figure
5.8, respectively. The standard model behaves near identically for all three refinements for both

cases, which is a prime indicator that grid convergence is achieved. Conversely, the quadratic

model did not achieve proper convergence for the coarsest mesh. The two finer meshes did achieve

convergence and their values are almost superimposed, which implies that good convergence is
achieved for the two fine grids.
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Figure 5.7 Triangular fuel rod mesh convergence (quadratic k-c model)

60



30 *30.

Acan
Alko

A

0*

30*

10 15 20
Y m in 

1.15

1.10

1.05

1.00

0.95.

0.90

0.850

14 / W ShcarI. St ress

A:'
OG )

551

50

45

40

35
0

) Exp. 0 10x20
A 5x10 20x40

10 15

4) [J

0- 0

Figure 5.8 Triangular fuel rod mesh convergence (standard k-c model)

A Richardson extrapolation of the maximum velocity in the computational domain could only be

performed for the standard model, as the coarsest mesh for the quadratic model did not converge.
The order of convergence and error on the finest grid for the standard model are listed in Table

5.3.

Again, the results of the Richardson extrapolation yield counterintuitive results for the order of

accuracy and error on the finest grid for the standard model. Table 5.3 lists the maximum velocity
for all three grid refinements, which shows that the differences between them is quite small.

Likewise, the quadratic model results for the two finest grids are in close agreement. Both of these

observations suggest that the results reported for the finest mesh reflect a grid-converged solution.

Table 5.3 Triangular fuel rod array Richardson extrapolation results

Quairatic Standard

VM h fim/si [ 54.485 56.285

Vnl,,: 2h f/s/ 54.603 56.381

V,.XV: 4h fin/s N/A 56.299
Max Spread mAl 0.118 0.096
Order of Accuracy N/A 0.227

Error on Finest Grid fm/si N/A 0.562
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5.2 Square Fuel Rod Array

5.2.1 Experimental Setup

A similar analysis of velocity and wall shear stress measurements for varying Reynolds numbers
was performed by Hooper and Wood [20] for a bare square rod array in a wind tunnel. The
experimental setup consisted of six rods of 7 cm radius and 9.14 rn length, with a pitch-to-diameter
ratio of 1. 107. Pitot and Preston tubes of 1.6 mm OD were used to measure the velocity and wall
shear stress profiles just before the outlet. The Reynolds number considered in these simulations
is 207,600, and the experimental conditions for this experiment are summarized in Table 5.4.

Table 5.4 Experimental conditions for Hooper and Wood 1201

pk /inr'/ fkgIm/si Vh fII/s] Re
lxl05 26.48 207,600

5.2.2 Computational Setup

The computational domain comprises two elementary flow cells, as depicted in Figure 5.9. The
dimensions of the elementary flow cell are described in Figure 5. 10. Again, three prism layers,
each with a thickness of 1 mm have been utilized.

Figure 5.9 Square fuel rod array computational domain

77.49 mm

39.59 mm

Figure 5.10 Elementary flow cell dimensions for square fuel rod array 1201
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The boundary conditions applied to the computational domain are highlighted in Figure 5.11. Wall

boundary conditions were applied at the fuel rod surface. Symmetry boundary conditions were

enforced by setting the component of velocity normal to the surface equal to 0. An inlet velocity

(sideset 1) of 26.48 m/s was prescribed and a reference pressure equal to 0 was specified for the

outlet (sideset 2).

Sideset 5

Sideset 4
VY 0

Sideset 3
=V =V =0 Sideset 6

Vx = 0

x

Sideset 7
V, = 0

Figure 5.11 Boundary conditions for square fuel rod array simulations

Three grids of increasing refinement were used for this study. Refinement in the axial direction (z)

was fixed constant at 60 elements, while the radial and azimuthal spacing was refined by a factor

of 2. Three wall layer elements, each of 1 mm thickness were used for all mesh sizes. The cross-

sectional view of all three elementary flow cell mesh sizes is illustrated in Figure 5.12 and the

mesh sizes are listed in Table 5.5.

Table 5.5 Mesh refinements examined for square fuel rod array simulations

Wall Elements r 0 z Total Elements

3 5 15 60 14,400

3 10 30 60 46,800

3 20 60 60 165,600
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Figure 5.12 Mesh refinements examined for square fuel rod array simulations

5.2.3 Results

Simulation results for the square rod array are shown in Figure 5.13, where the standard and
quadratic models are both plotted for comparison. The quadratic model matches the radial velocity
profile at p=45', but drastically underpredicts the velocity profile at the 'p=O0 location. The wall
shear stress prediction is quite unexpected, as it initially increases with the angle (p, levels off
around P=30- 3 5', and dips down considerably afterwards. The standard model underpredicts the

velocity in the near-wall region-to an even greater extent than the quadratic model-and
overpredicts it at the o=45' location; likewise, the predicted wall shear stress profile is
monotonically increasing from q=0-45' and therefore doesn't match the experimental results.
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Figure 5.13 Velocity and wall shear stress distributions (Hooper and Wood 1201)

64



The secondary flow profiles for both the quadratic and standard model are shown in Figure 5.14.
As observed with the triangular array, the quadratic model predicts a spiraling vortex with a
magnitude that is approximately 0.1% that of axial velocity profile, while the standard model
predicts negligible secondary flows. Again, the secondary flow profile breaks down near the
corners of the simulation for the quadratic model, which therefore points to an issue with the
boundary conditions and explains the model's weak performance in this region.

Standard

7"'

Secondary Flow
Magnitude [ins]

m -

Quadratic

~~K%%%& ~'/

Secondary Flow
Magnitude [mi/s]
01 0.2 0-3 0.4

0 0415

Figure 5.14 Secondary flow profiles for square fuel rod array simulations

5.2.4 Grid Refinement Study

The grid convergence of the quadratic and standard k-i: models for the square array are displayed
in Figure 5.15 and Figure 5.16, respectively. The standard model behaves near identically for all
three refinements for both cases, which is a prime indicator that grid convergence is achieved. As
with the triangular fuel rod array simulations, the quadratic model did not achieve proper
convergence for the coarsest mesh in both instances. The two finer meshes did achieve
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convergence and their values are almost superimposed, which implies that good convergence is
achieved for the two fine grids.
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Figure 5.16 Square fuel rod mesh convergence (standard k-g model)

A Richardson extrapolation of the maximum velocity in the computational domain was performed

only for the standard model as the coarsest mesh for the quadratic model did not converge. The

order of convergence and error on the finest grid for the standard model are listed in Table 5.6.

While the order of accuracy seems nonsensical, the spread of the maximum velocity values for

standard and quadratic models is quite small, which demonstrates that the results reported for the

finest miesh reflect a grid-converged solution.

Table 5.6 Square fuel rod array Richardson extrapolation results

Quadratic Standard

VInUV: h fm/si 31.832 33.136

Vipt: 2h /m/s 31.8386 33.1349

Vlfl: 4h /m/sj N/A 33.0303

Max Spread /m/s/ 0.0066 0.1057

Order ofAccuracy N/A 6.571

Error on Finest Grid /ImA N/A 1.170x 10 5
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As a final note, the inability of the coarsest mesh to converge for the quadratic model applied to
the triangular and square fuel rod arrays is due to the fact that the meshes were simply too coarse.
That is, there weren't enough cells to resolve the secondary flows, which prevented the simulation
from reaching a solution, and is not attributed to a specific shortcoming of neither the solver nor
the model implementation.
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6 Best Practices for Application to Fuel Assembly Calculations

A comprehensive sensitivity study for the quadratic model applied to the triangular fuel rod array
experiments by Mantlik et al. [19] has been performed in order derive best practices and guidelines
for its application to nuclear fuel related problems. The impact that the number of wall layer
elements, symmetry boundary conditions, axial refinement, and time-step pose on the convergence
and resulting solution are explored herein.

6.1 Wall Layer Treatment

An unexpected challenge encountered in the work is the sensitivity to the mesh resolution in the
wall layer region for the quadratic model. More specifically, the use of a single wall layer element
was discovered to be insufficient to ensure proper convergence of the quadratic model. Adopting
two boundary fitted wall layer elements proves robust on all tested configurations.

Figure 6.1 shows the grid convergence at p=30 (or lack thereof) of node-centered flow properties
for the triangular fuel rod array with the prescription of a single wall layer element of 1 mm
thickness, which corresponds to ay+ in the range of 50-60. Consideration of only the axial velocity
component (V) leads to the incorrect conclusion that a grid-converged solution has been obtained.
Inspection of additional flow quantities-including the cross-flow velocity components (V, and
V), turbulent kinetic energy k, and turbulent dissipation rate -reveals stark discrepancies
between the values, which signify that a grid-converged solution has not been achieved.

This lack of grid convergence is attributable to the hybrid two-layer scalable wall-function
approach that is used in Hydra-TH to model the near-wall region. In this approach-which aims
at being applicable over a wide regime of flow conditions and near wall mesh resolutions-the k-
equation is solved throughout the entire flow domain, while the 8-equation is solved only up to the
wall layer element. (For a more detailed discussion of the precise formulation, the interested reader
is referred to the Hydra-TH theory manual [50]). Since the k-equation is solved up to the wall, the
resulting solution is therefore particularly sensitive to the elements in the near-wall region, and the
resulting grid refinement near the wall has a significant impact on the distribution. Additional wall
layers are therefore critical.

The prescription of two or three wall layer elements of similar thickness is a suitable remedy that
promotes a grid-converged solution. The grid convergence of relevant flow parameters at p=300

for the use of two and three wall layer elements are plotted in Figure 6.2 and Figure 6.3 for
reference. As can be seen, the velocity components (with the minor exception of V) and associated
turbulence quantities demonstrate superb convergence between the medium-sized (10x20) and fine
(20x40) grids. Note that the coarse (5x10) mesh results are not included as the simulation was
unable to converge. This is not associated with a limitation of the quadratic model, and has been
attributed to the fact the mesh is simply too coarse to allow adequate resolution.

As a final note, the secondary flow predictions for the cases of one and three wall layer elements
on the medium-sized (10x20) grid are displayed in Figure 6.4. (The two wall layer element case
yields near identical predictions as the three wall layer element case and therefore has been omitted
for brevity). The use of one wall layer element leads to a grossly inaccurate and unphysical
prediction of the secondary flows that are an order of magnitude larger than experimental
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observations. Three wall layer elements allows for proper resolution of the secondary flows that

are of the right order of magnitude.
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6.2 Need for Coordinate Symmetry

Recall that in order to specify a symmetry velocity boundary condition in Hydra-TH, the surface

normal vector must coincide with a coordinate direction. This feature influenced the creation of

the 'SMesh' computational domain that is depicted in Figure 5.1. The 'SMesh' comprises six

elementary flow cells and can be computationally expensive as the mesh is progressively refined.

It is therefore worthwhile to examine the implications of modeling and simulating one elementary

flow cell-which is referred to here as the 'HexMesh'-as the smaller mesh would require fewer

computational resources with a faster run-time.

The computational mesh for the HexMesh is shown in Figure 6.5. However, in order to specify

the symmetry boundary condition at the slanted wall (sideset 4) both the x- and y-velocity

components need to be set to zero. It was postulated that this would have an impact on the

secondary flows and resulting flow profile, both of which are examined here.
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Figure 6.5 Computational domain and boundary conditions for HexMesh

73

1 Wall Layer Element

-T

~ I/x\

-j



The velocity and wall shear stress distributions for both the SMesh and HexMesh '20x40' fine
mesh are plotted in Figure 6.6 for comparison. As can be seen, the SMesh yields a slightly better
prediction for the axial velocity profile at = 0 , whereas both meshes perform near identically for
rp= 15' and o=30'. There is a greater difference between the two meshes with respect to the wall
shear stress distribution. While the HexMesh appears to be closer in value to the experimental
results, it fails to capture the general profile of the wall shear stress distribution. The SMesh,
although differing by a greater magnitude, is able to capture the general shape of the experimental
distribution.
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The secondary flows that arise in the elementary flow cell are presented in Figure 6.7 for both the

SMesh and HexMesh. For the SMesh, there is a single spiraling vortex that all velocity vectors

adhere to. The HexMesh is able to predict the central vortex, however, the proximity to the
boundary leads to the formulation of a counterflowing small vortex in the bottom left corner.
Further, forcing the slanted wall (sideset 4) velocity components to zero suppresses the secondary
flow velocity vectors in the top right corner, which has also forced the core of the vortex further

to the left. Together, both of these factors lead to an incorrect prediction of the secondary flows,
with a weaker overall magnitude.
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Figure 6.7 Secondary flow magnitudes Im/sj comparison for HexMesh and SMesh

6.3 Axial Refinement

Since Hydra-TH currently does not support a periodic flow boundary condition, it is often

necessary to simulate the entire developing length in order to ensure that a fully developed flow

has been achieved. This result can lead to a very long flow domain, and great care must be taken

when crafting the mesh in the axial (primary) flow direction. It is therefore necessary to utilize an

axial meshing scheme that minimizes the number of grids in the axial direction in order to reduce

the computational expense. Two such strategies include biasing the mesh using a growth factor

and using large aspect ratios.

For the Mantlik et al. [19] test case, a very large aspect ratio was used. It was therefore deemed

worthwhile to examine the implications of this by performing an axial grid refinement study for

the moderately-refined '10x20x60' grid. Simulations incorporating 120 and 240 axial grids were

performed and the resulting velocity and wall shear stress distributions are shown in Figure 6.8.
As can be seen, the level of axial refinement has no appreciable impact on the relevant flow

quantities as all three refinements overlap one another. Additionally, all three refinements deliver

near-identical predictions for the secondary flows (no plot is shown for the sake of brevity). These

results serve to suggest that large aspect ratios can be used to reduce the grid size and facilitate

quicker run-times without sacrificing the level of accuracy.
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6.4 Impact of Maximum CFL Number on Convergence

The Courant-Friedrichs-Lewy (CFL) number is a necessary condition for convergence when

solving certain types of partial differential equations. It arises in the numerical analysis of explicit

time integration schemes and assumes the following form for the one-dimensional case:

CF L = uAt
Ax

(6.1)

Here, it is the time-step, Ax is the grid-spacing, and i is the velocity of the flow in a given cell.
The CFL number therefore describes the relationship between the flow speed and the rate at which
numerical information can propagate between adjacent cells. For example, if the CFL is below I,
the flow speed is slower than the rate at which the numerical wave can propagate in that cell.
Conversely, if the CFL is above I, the numerical value for the flow is faster than the rate at which
numerical information can propagate between cells, which can lead to a divergent simulation if an
explicit time integration scheme is employed.
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There has been a great deal of effort to equip Hydra-TH with fully-implicit solvers to facilitate
very large time-steps (and therefore large CFL numbers), which are demonstrating very promising
results [13]. Since steady-state simulations are considered here, the time-step is therefore not
related to the solution accuracy, but rather is used as a means to march towards convergence;
nonetheless, taking larger time-steps facilitates a quicker approach to a steady-state solution.

In all cases examined in this thesis 0 was set equal to 1 in order to achieve a fully-implicit
discretization; however, recall from Section 3.3.2 that the quadratic stress terms have been treated
explicitly due to the complexity of their formulation. Consequently, there must be some CFL limit
above which the simulation fails to converge and/or delivers poor performance. It was therefore
desirable to identify this region.

In Hydra-TH, the maximum value of the CFL number to be used during the simulation can be
imposed as a constraint in the input control file. Table 6.1 summarizes the range of CFL numbers
that were examined for the triangular fuel rod array simulation of the moderately-refined
'10x20x60' grid. An initial CFL number of 0.001 was specified and a time-step growth factor of
1.025 was employed. As the simulation progressed, the CFL steadily increased from the initial
value of 0.001 to the maximum values listed in Table 6.1. Simulations for maximum CFL numbers
of 0.5 and 1 failed to produce a converged solution.

Table 6.1 Maximum CFL numbers examined for sensitivity study
0.1 0.25 0.5 1 |

Failed to Failed to
Converged Converged Converge Converge

The convergence of the global kinetic energy is illustrated in the left plot of Figure 6.9. As can be
seen, all four cases behave identically in the beginning of the simulation. This is due to the fact
that an initial CFL value of 0.001 was used. As the simulation progresses, and the CFL number is
allowed to increase according to the specified time-step growth factor, it is observed that the
CFL=0.5 and CFL=1.0 cases diverge, increase, and oscillate. The cases for CFL=0.1 and
CFL=0.25 level off and remain constant at a simulation time of 0.05 s, a prime indicator that a
converged steady-state solution has been achieved. Note that the CFL=0. 1 case is indeed plotted,
but is completely overlapped by the CFL=0.25 case.

The residual of the turbulent kinetic energy is shown in the right plot of Figure 6.9. For the
CFL=0. 1 and CFL=0.25 simulations, the residual steadily declines and stabilizes at a value that is
on par with the numerical precision of the computer. Conversely, for the CFL=0.5 and CFL=1.0
cases, the residual oscillates for the duration of the simulation, which further demonstrates that a
converged solution has not been attained.

For completeness, the velocity and wall shear stress profiles at the plane of measurement are
plotted in Figure 6.10. The CFL=0.5 and CFL=1.0 deliver nonsensical results as the solution failed
to converge. Both the CFL=0. 1 and CFL=0.25 results are directly mapped atop one another, which
serves to suggest that further reduction in the maximum CFL number is not necessary to improve
the accuracy of the simulation.
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6.5 Best Practice and Guidelines

In consideration of the sensitivity study results for the triangular fuel rod array experiments of
Mantlik et al. [19], the following guidelines for the application of the quadratic model can be
derived:

Wall Layer Treatment

* At least 2-3 wall layer elements of the approximate same thickness should be used in order
to promote a grid-converged solution that adequately resolves the secondary flows.

" While the results for wall layer elements of 1 mm thickness are presented above, it is worth
noting that a thickness of 0.8 mm was also examined, and 2-3 wall layer elements also
produced grid-converged solutions.

Computational Domain and Coordinate Symmetry

* If capturing the dominant flow features such as the axial velocity profile is the objective,
then the use of a smaller mesh (such as the HexMesh) should be sufficient as it would be
computationally cheaper and promote a faster run-time.

* However, if resolving the impact of secondary flows is critical for adequate simulation of
the problem, then great care should be taken to construct a geometry that respects the
coordinate symmetry (e.g. the SMesh). An example of this includes resolving the wall
shear stress distribution, which is used to predict the heat transfer coefficient.

Axial Refinement

* The use of very large aspect ratios does not demonstrate an appreciable impact on the effect
and generation of turbulence driven secondary flows that arise from the channel geometry.

" However, this assertion may not be valid when the secondary flows themselves are greatly
enhanced by turbulence, such as is the case with mixing vanes on fuel assembly grids. In
these instances, greater refinement of the mesh downstream of the mixing vanes is highly
advisable, and future work should seek to assess this impact.

Maximum CFL Number and Convergence

* In order to achieve a converged simulation, a maximum CFL in the range of 0.1 - 0.25
should be utilized.

" It is highly advised to begin the simulation with an even smaller CFL number (e.g. 0.001)
and employ a time-step growth factor to incrementally increase the CFL number to its
maximum specified limit.

" Specification of the maximum time-step (dtmax) can also be a good check as well.
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7 Conclusion

The quadratic NLEVM developed by Baglietto and Ninokata [37] has been implemented into
Hydra-TH during the course of this work. This model applies a quadratic formulation of the stress-
strain relationship that captures the anisotropy of normal stresses and is able to resolve the complex
secondary vortices that arise in nuclear reactor fuel assemblies. Restructuring of the code
framework and k-E class inheritance scheme was required in order to accommodate the
incorporation of both the standard and quadratic model implementations.

Model assessment has been performed through simulation of 'classic' engineering test cases
including a square duct and U-channel bend. The validation of the quadratic model for fuel related
applications has also been performed through simulation of the triangular and square rod array
experiments of Mantlik et al. [19] and Hooper and Wood [20]. The quadratic formulation has
demonstrated the ability to resolve the complex secondary flow structures as well as predict
velocity and wall shear stress distributions. Comparison of the quadratic model with that of the
standard model allows for a greater appreciation for the utility of the model, and clearly asserts the
need for resolving flow anisotropy.

A rigorous sensitivity study of the triangular fuel rod array experiment by Mantlik et al. [19] has
been performed in order to derive guidelines and best practices for the use of the quadratic model
to nuclear fuel related applications. The impact of the number of wall layer elements,
computational domain and symmetry, axial refinement, and maximum CFL number on the
simulation convergence and resulting solution have been explored.

While the objective of this work has been the implementation of the quadratic stress-strain terms
to promote high-fidelity nuclear reactor fuel simulations, future work could seek to incorporate the
cubic stress-strain terms in order to enhance the overall capabilities of the Hydra-TH package.
Further, the capabilities of the symmetry boundary conditions should be enhanced to account for
reflection of the quadratic terms as well as to promote symmetry boundary conditions for surfaces
that are not coincident with a coordinate direction. Pure wall functions could also be implemented
to eliminate the need for extra prism layers, but since experience has shown that two layers are
required for good heat transfer predictions this might bring limited advantages.

The results of this work confirm the excellent performance of the quadratic k-C model for
application to nuclear reactor systems. The quadratic model complements the already validated
LES implementation, which together provide a balanced modeling and simulation capability for
the Hydra-TH toolkit. Future work should seek to extend the evaluation of the model to realistic
fuel assembly configurations, including mixing vane spacers, in order to assess its performance
for more complex flow geometries. The model also promises greater generality and its application
should also be evaluated for simulation of flow inside the reactor vessel, during both operational
and transient conditions.
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Appendix A. Hydra-TH Simulation Control Files

A.1 Square Duct

title
Square Duct Test Case

ccnavierstokes

# Time Integration Options
nsteps 80000
deltat 0.0001
term 80.0

solutionmethod
strategy picard
itmax 5
eps 1.E-3
timestepcontrol off
epsdist 1.0e-5
epsp0 1.0e-5
diagnostics off
convergence on

end

time_integration
type
CFLinit
CFLmax
dtmax
dtscale
thetaa
thetak
thetaf

end

# Output options
pltype
filetype
plti
ttyi

fixed_
0.1
1.0
2.5e-1
1.025
1.0
1.0
1.0

cfl

exodusii
distributed
500
1

# Material model definition
material

id 1
rho 1.
mu 1.0e-05

end

materialset
id 1
material 1
block 1
end

# SIDESETS
# Sideset 1 - Inlet
# Sideset 2 - Outlet
# Sideset 3 - Left Wall
# Sideset 4 - Top
# Sideset 5 - Right
# Sideset 6 - Bottom Wall

# Turbulence Model
tmodel nike

# Simple ICs
initial

velx 0.0
vely 0.0
velz 0.0
tke 2.4
eps 16.8

end

# Velocity BCs
velocity
# Inlet

velx sideset 1 -1 0.0
vely sideset 1 -1 0.0
velz sideset 1 -1 5.1969

# Wall
velx sideset 3 -1 0.0
vely sideset 3 -1 0.0
velz sideset 3 -1 0.0
velx sideset 6 -1 0.0
vely sideset 6 -1 0.0
velz sideset 6 -1 0.0

end

# Symmetry Vel BCs
velocity

vely sideset 4 -l 0.0
velx sideset 5 -1 0.0

end

pressure
sideset 2 -1 0.0

end

distance
sideset 3 -1
sideset 6 -1

end

0.0
0.0

ppesolver
type AMG
amgpc HYPRE
strongthreshold 0.85
solver cg
smoother ICC
itmax 500
itchk 1
coarsesize 500
diagnostics off
convergence off
eps 1.0e-5

end

momentumsolver
type ILUFGMRES
itmax 500
itchk 1
restart 20
diagnostics off
convergence off
eps 1.0e-5

end

transportsolver
type ILUFGMRES
itmax 500
itchk 1
restart 20
diagnostics off
convergence off
eps 1.0e-5

end

plotvar
elem vel
elem turbke
elem turbeps
elem dist
elem ystar
elem cmu
elem pk
elem turbnu

node vel
node pressure
node dist
node turbke
node turbeps

node turbnu

side 3 yplus
side 3 ystar
side 3 wallshear
side 3 surfarea

side 6
side 6
side 6
side 6

end

yplus
ystar
wallshear
surfarea

histvar
elem 305 vel
elem 139216 vel

end

exit
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A.2 U-Channel

title
U-Channel

ccnavierstokes

nsteps
deltat
term

25000
0.01
400.00

timeintegration
type fixedcfl
CFLinit 1.0
CFLmax 5.0
dtmax 0.2
dtscale 1.025
thetaa 1.0
thetak 1.0
thetaf 1.0

end

loadbalance
method rcb

end

# Output options
pltype exodusii
filetype distributed
plti 250
ttvi 25

# prtlev verbose
dump 1000

# Turbulence model
tmodel nlke

# Material model
material

id 1
rho 1.0
mu 1.0e-6

end

materialset
id 10
material 1
block 1

end

# Simple IC's
initial

velx 0.0
vely 0.0
velz 0.0
tke 0.015
eps 1.9125

end

pressure
sideset 2 -1 0.0

end

distance
sideset 4 -1 0.0
sideset 5 -1 0.0

end

velocity
# Inlet
#velx sideset 1 -1 1.0
vely sideset 1 -1 0.0
velz sideset 1 -1 0.0
user velx sideset I

# Walls
velx sideset 4 -1
velv sideset 4 -1
velz sideset 4 -1
velx sideset 5 -1
vely sideset 5 -1
velz sideset 5 -1

0.0
0'0
0.0
0.0
0.0
0.0

# Front/back symmetry
velz sideset 3 -1 0.0

end

ppesolver
type AMG
amgpc hypre
itmax 50
itchk 1
strongthreshold 0.9
diagnostics off
convergence off
eps 1.0e-5

end

momentumsolver
type ILUFGMRES
itmax 50
itchk 2
restart 15
diagnostics off
convergence off
eps 1.0e-5

end

transportsolver
type ILUFGMRES
itmax 50
itchk 2
restart 15
diagnostics off
convergence off
eps 1.0e-5

end

plotvar
elem density
elem vel
elem procid
elem div
elem turbnu
elem turbke
elem turheps
node vel
node pressure
node turbke
node turbeps
node turbnu
node dist
node vorticity
node helicity
side 4 traction
side 5 traction
side 4 wallshear
side 5 wallshear
side 4 yplus
side 5 yplus
side 4 ystar
side 5 ystar
side 4 straction
side 5 straction

end

end
exit
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A.3 Triangular Fuel Rod Array

Title
Mantlik Re = 181200

cc navierstokes

# Timestep
nsteps 5000
deltat 1.0e-4
term 2.0

solution-method
strategy picard
itmax 5
eps 1.E-4
timestepcontrol off
eps dist 1.0e-5
eps-p0 1.0e-5
diagnostics on
convergence on

end

time_integration
type fixed__cfl
CFLinit 0.001
CFLmax 0.25
dtmax 2.5e-4
dtscale 1.025
thetaa 1.0
thetak 1.0
thetaf 1.0
end

# Output options
pltype exodusii
filetype distributed
plti 1000
ttyi 1

# Material model definition
material
id 1
rho 1.131
mu 1.8e-05

end

materialset
id I
material 1
block 1
end

# SideSet definitions
# Sideset 1 - Inlet
# Sideset 2 - Outlet
# Sideset 3 - Wall Bottom
# Sideset 4 - Wall Top
# Sideset 5 - Left Vertical
# Sideset 6 - Right Vertical
# Sideset 7 - Left Top
# Sideset 8 - Right Top

# Turbulence Model
tmodel nl_ke

# Simple ICs
initial
velx 0.0
vely 0.0
velz 0.0
tke 8.340246
eps 393.360122391
end

# Velocity BCs
velocity
# Inlet
velx sideset 1 -
vely sideset 1 -1
velz sideset 1 -1
# Wall
velx sideset 3 -1
vely sideset 3 -1
velz sideset 3 -1
velx sideset 4 -1
vely sideset 4 -1
velz sideset 4 -1

end

# Symmetry BCs
velocity
# Left and Right
velx sideset 5 -1
velx sideset 6 -1

# Left and Right
vely sideset 7 -1
vely sideset 8 -1

end

pressure
sideset 2 -1 0.0

end

0.0
0.0
47.16

0.0
0.0
0.0
0.0
0.0
0.0

Vertical
0.0
0.0
Top
0.0
0.0

distance
sideset 3 -1
sideset 4 -1

0.0
0.0

end

ppesolver
type AMG
amgpc HYPRE
strongthreshold 0.85
solver cg
smoother ICC
itmax 500
itchk 1
coarsesize 500
diagnostics off
convergence off
eps 1.0e-5

end

momentumsolver
type ILUFGMRES
itmax 500
itchk 1
restart 20
diagnostics off
convergence off
eps 1.0e-5

end

transportsolver
type ILUFGMRES
itmax 500
itchk 1
restart 20
diagnostics off
convergence off
eps 1.0e-5
end

plotvar
elem vel
elem turbke
elem turbeps
elem dist
elem ystar
elem cmu
elem pk

node vel
node pressure
node dist
node turbke
node turbnu
node turbeps

side 3
side 3
side 3
side 3

end

yplus
ystar
wallshear
surfarea

end
exit
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A.4 Square Fuel Rod Array

title
Hooper and Wood

cc_navierstokes

# Timestep
nsteps 2500
deltat 1.0e-4
term 1.0

solutionmethod
strategy picard
itmax 5
eps 1.E-4
timestepcontrol off
epsdist 1.0e-5
eps_pO 1.0e-5
diagnostics on
convergence on

end

timeintegration
type fixedcfl
CFLinit 0.01
CFLmax 0.5
dtmax 2.5e-4
dtscale 1.025
thetaa 1.0
thetak 1.0
thetaf 1.0
end

# Output options
pltype exodusii
filetype distributed
plti 500
ttyi 1

# Turbulence Model
turbulence nlke
end

# Material model
material

id 1
rho 1
mu Ie-5

end

materialset
id 1
material 1
block 1

end

# Simple IC's
initial

velx 0.0
vely 0.0
velz 0.0
tke 8.34732150
eps 394.02782455

end

# Sideset 1 - Inlet
# Sideset 2 - Outlet
# Sideset 3 - Walls
# Sideset 4 - Left Boundary
# Sideset 5 - Top Boundary
# Sideset 6 - Right Boundary
# Sideset 7 - Bottom Boundary

# Velocity BC's
velocity
# Inlet
velx sideset 1 -l 0.0
vely sideset 1 -l 0.0
velz sideset 1 -1 26.48

# Wall
velx sideset 3 -1 0.0
vely sideset 3 -l 0.0
velz sideset 3 -1 0.0

# Left Boundary
velx sideset 4 -1 0.0

# Top Boundary
vely sideset 5 -1 0.0

# Right Boundary
velx sideset 6 -1 0.0

# Bottom Boundary
vely sideset 7 -1 0.0

end

# Fixed Pressure Outlet
pressure

sideset 2 -1 0.0
end

distance
sideset 3 -1 0.0

end

ppesolver
type AMG
amgpc HYPRE
strong threshold 0.85
solver cg
smoother ICC
itmax 500
itchk 1
coarsesize 500
diagnostics off
convergence off
eps 1.0e-5
end

momentumsolver
type ILUFGMRES
itmax 500
itchk 1
restart 20
diagnostics off
convergence off
eps 1.0e-5
end

transportsolver
type ILUFGMRES
itmax 500
itchk I
restart 20
diagnostics off
convergence off
eps 1.0e-5

end

plotvar
elem vel
elem turbke
elem turbeps
elem dist
elem ystar
elem cmu
elem pk

node vel
node pressure
node dist

side 3 yplus
side 3 ystar
side 3 wallshear
side 3 surfarea

end

end
exit
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Appendix B. Experimental Data Measurements

B.1 Square Duct (Hoagland [461)

Table B.1 Hoagland 1461 velocity experimental data [m/s]

x [mmI

y [mi] 2.54 6.35 12.7 25.4 38.1 50.8 63.5

0.254 2.819 2.987 3.459 3.688 3.688 3.688 3.688

0.508 3.780 3.932 4.267 4.511 4.511 4.511 4.511

0.762 4.267 4.478 4.822 4.999 4.999 4.999 4.999

1.27 4.816 4.999 5.371 5.639 5.639 5.639 5.639

2.54 5.090 5.578 6.005 6.309 6.309 6.309 6.309

6.35 5.456 6.309 6.584 7.010 7.010 7.010 7.010

12.7 6.005 6.904 7.498 7.833 7.833 7.833 7.833

25.4 6.218 7.026 7.803 8.534 8.534 8.534 8.717

38.1 6.218 7.026 7.803 8.626 8.900 9.053 9.388

50.8 6.218 7.026 7.803 8.626 9.053 9.449 9.815

63.5 6.218 7.026 7.803 8.626 9.205 9.662 9.997
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B.2 U-Channel Bend (Monson et al. 1471)

Table B.2 Monson et al. [421 experimental data

Mean Velocity Profiles Pressure Coefficients

9=0 9=9Q o=180c s/H=r+2 Inner Wall Outer Wall

U/Um y/H I[ U/ Um y/H U/Um y/H I s/H C, s/H C,
1.22.2 0.053 1.650 0.011 -0.256 0.020 0.41P 0.04 -4.733 -0.04 -4.743 -0.044
1.240 0.074 1.600 0.051 -4.271 0.030 a.471 0.027 -3.534 -0.039 -3.533 -0.045
1.261 0.124 1.529 0.101 -0.249 0.051 0. 468 0.049 -1.323 -0.077 -2.348 -0.041

1.251 0.174 1.454 0.154 -0.201 0.061 0.519 0.069 -09 -0.044 -1.351 -0.075

1.238 0.2 05 1.362 0.223 -0.168 0.071 0.568 0.098 -0.004 -0.747 -0.053 0.194

1.230 0.246 1.320 0.250 0.064 0.081 0.595 0.078 2.2 -1.689 0.629 0.498
1.212 0.276 1.270 0.271 0.184 0.111 0.599 0.126 3.018 -1.336 1.269 0.513
1.178 0.294 1.220 0.293 0.466 0.132 0.65 0.169 4.309 -0.694 2.148 0.456
1.161 0.355 1.195 0.324 .876 0.142 0.771 0.177 5317 -0.511 2.963 0.002
1.111 0.405 1.162 0.354 0.959 0.159 0.826 0.226 7.712 -0.419 4.28 -0.699

1.88 0.455 1.124 0.372 1.141 0. 17 0.889 0.24S 6.514 -0.442 5.296 -0-516
1.08 0.505 1.003 0.452 1 137 0.21 0.926 0. 268 9.044 -0. 424 6.504 -0. 449
1.058 0.535 0.970 0.481 1.183 0.23 .937 0.297 11.335 -0.468 7.713 -0.43

1.05 0.593 0.898 0.551 1.14 0.251 0.968 0.328 10.216 -0.44 9.017 -0.431
1.018 0.614 0.873 0.569 1.148 0.281 1.019 0.368 10.202 -0.453
0.987 0.653 0.869 0.590 1.151 0.322 1 057 0.399 11 293 -0.472
0.979 0.693 0.840 0.630 1.115 0.39 1.095 0.439
0.97 0.723 0777 .673 1.108 0.423 1.137 0.479

0.938 0.752 0.752 0.699 1.085 0.473 1.164 0.51

0.921 0.784 0.697 0.739 1.054 0.504 1-164 0.53
0.898 0.793 0.71 0.761 1.042 0.544 1.216 0.581

.848 0.823 0.681 1.779 1.028 0.585 1.195 0.61
0.848 0.84 0.68 0.801 1.006 0.625 1.219 0.63
0.827 0.871 0.647 0.838 0.996 0.656 1.236 0.681
0.788 0.891 0.597 0.87 0.984 0.676 1.246 0,749

0.767 0.9 0.642 0.888 0.968 0.727 1.256 0.8
0.705 0.92 0.63 0.91 0.951 0.764 1.246 0851

0.653 0.95 0.596 0.941 0.946 0.823 1.246 0.9
0.625 0.969 0.579 0.96 0.922 0.856 1.266 0.929
0.572 0.98 0.55 0.981 0.904 0.904 1.218 0.951

1.197 0.969
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B.3 Triangular Fuel Rod Array (Mantlik et al. 1191)

Table B.3 Mantlik et al. [19] experimenta! data (Re =181,200)
Wall Velocity [m/s] 1 Wall Shear

Distance (P=O0  lP=30' Angle Stress Pal

0.5 33.58 34.86 35.17 0 4.972

1 36.51 37.96 38.24 3 5.001

2 39.88 41.41 41.7 6 5.059

4 43.89 45.28 45.47 9 5.159

6 46.21 47.68 47.92 12 5.246

8 47.52 49.44 49.81 15 5.332

10 48.27 50.6 51.3 18 5.375

11 50.97 51.96 21 5.378

12 51.24 52.62 24 5.364

13 53.14 27 5.353

14 53.59 30 5.368

15 53.92

16 54.3

18 54.62

20 54.71
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B.4 Square Fuel Rod Array (Hooper and Wood 1201)

Table B.4 Hooper and Wood 1201 xnrimental data (Re = 207.60()

9=0* (P=45*
Angle [] Trel

Y/Ymax U/Uo Y/Ymax U/Uo A

0.266 0.754 0.048 0.881 0 0.841

0.334 0.761 0.076 0.907 5 0.855

0.400 0.779 0.100 0.946 10 0.888

0.532 0.812 0.124 0.972 15 0.933

0.666 0.834 0.151 0.990 20 0.981

0.800 0.851 0.175 1.010 25 1.041

0.935 0.867 0.224 1.044 30 1.066

0.278 1.065 35 1.114

0.328 1.087 40 1.135

0.381 1.106

0.454 1.126

0.531 1.150

0.607 1.160

0.683 1.168

0.757 1.176

0.834 1.184

0.960 1.182
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