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Abstract

Wireless sensor networks (WSNs) are rapidly being adopted in a wide range of
applications, from continuous health monitoring to automated industrial infrastruc-
tures, and soon will have a major environmental, financial and societal impact. Some
of the main technical challenges in designing and deploying WSNs are meeting their
communications reliability and energy consumption requirements. In order to ad-
dress these two challenges, this thesis proposes new coding schemes and communi-
cation protocols, a novel paradigm for information acquisition, and the design and
implementation of specific, circuits architectures.

The reliability and energy efficiency trade-offs of splitting the inserted redundancy
in multiple layers of the network stack are investigated through analysis and over-the-
air experiments. Not only appropriate and efficient coding schemes for each layer are
examined, but their interaction and synergistic functioning are explored. The energy
benefits of each approach are quantified by designing a low-power custom transmitter
using a 65nm TSMC process, integrating the first hardware implementation of a
multi-rate forward error correction (FEC) and random linear network coding (RLNC)
accelerator.

In addition, a physical layer (PHY) independent partial packet reception (PPR)
scheme is proposed for asymmetric networks, i.e. WSNs with a star topology, called
packetized rateless algebraic consistency (PRAC). PRAC reduces the number of re-
transmissions by harnessing information contained in partial packets. Experiments
with off-the-shelf transceivers validate our analysis results on the data reliability and
energy consumption benefits of the proposed scheme.

Apart from communicating information, acquiring the signals of interest can ac-
count for a significant fraction of the power consumption of a sensor node. For this
reason, the thesis proposes a nonuniform sampling scheme in order to exploit the
inherent compressibility and sparse structure of typical signals encountered in many
WSNs. Simulations results with real datasets and an energy comparison against the
state-of-the-art sampling schemes demonstrate its rate and energy efficiency advan-
tages.
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Finally, the thesis studies the joint fundamental performance bounds of acquir-
ing and transmitting sparse signals through noisy channels. An integrated source
representation-to-transmission scheme, called AdaptCast, is proposed and, using rate
distortion analysis, its asymptotically optimal performance is proved. Based on sim-
ulation results in the context of a health monitoring application, AdaptCast's perfor-
mance benefits are demonstrated against other coding schemes and PHY architectures
in terms of the provided data reliability and reconstruction distortion.

Thesis Supervisor: Muriel Medard
Title: Cecil H. Green Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Anantha P. Chandrakasan
Title: Vannevar Bush Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

The continuous scaling of electronics over the last two decades has enabled the

ubiquitous use of wireless communication systems in many aspects of the human life.

Nowadays, several wireless devices correspond to every person, and this number is

expected to grow fast within the next years [1]. The increasing number of devices

combined with the exponential growth in the amount of communicated information

impose several challenges in the design of efficient, scalable and robust wireless net-

works. Personal smartphone is an example of a device which had major impact on

our lives recently, by transforming the way we communicate and perceive our sur-

rounding world. This couldn't have been accomplished if it wasn't the seamless and

nearly instant access to a wealth of services enabled by high speed communication

links and efficient processing units. This constant and rapid evolution of wireless

communication systems is responsible for the significantly higher spectral efficiency

and data rates, while consuming less energy resources.

Similarly to personal communication using smartphones, wireless sensor networks

(WSNs) are emerging as a promising network architecture. A WSN is a network

of spatially distributed devices (or sensor nodes) that capture, process, display and
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CHAPTER 1. INTRODUCTION

transmit information contained in specific signals of interest, while being able to

receive information in order to actuate and interact with their surrounding environ-

ment. The range of applications of WSNs is already very wide and it continues to

expand with increasing rate. The ultimate goal of WSNs is to provide reliable means

of communications to every machine, device and object in the world so that they can

receive and send information from and to points of interest, potentially thousands of

miles away. According to recent market reports and predictions, it is expected that

more than 50 billion sensor nodes will be interconnected by 2020, creating a market

of more than $15B [2]. Some of the recent terms used to describe modern WSNs

are Internet of Things (IoT) or Internet of Everything (IoE). These terms reflect the

potential and scale of this technology in the near future, with significant financial,

societal and environmental impact, enabling new services and applications, as shown

in Fig. 1-1.

For instance, WSNs enable data-driven patient management and improved health-

care effectiveness by continuously capturing and transmitting vital health signals

through miniaturized or implanted devices. These data could allow for patients to

have shorter hospital stays with reduced cost and improved care. Smarter home mon-

itoring systems upgrade quality of life in the elderly and people with special needs.

In addition, captured data improve the decisions made by physicians and could result

in less or more effective medicine administration. The importance of this specific

application has resulted in the establishment of a separate term for WSNs tailored to

its requirements, called body area networks (BANs).

Smart buildings is an other application of WSNs, in which an intelligent network

of electronic devices monitor and control different services, in order to achieve better

energy efficiency and improved experience for occupants. Automatic control of the

lighting in a building based on the current occupancy pattern or adjusting the HVAC

according to predictive meteorological data, are some examples of WSNs used in

this space. Wireless nodes can also be used to continuously monitor the structural
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Figure 1-1: Examples of WSN applications with significant environmental, societal

and financial benefits. (a) Continuous health monitoring, (b) Smart buildings, (c)

Smart cities, and (d) Industrial infrastructures.

condition of the building or easily provide wireless capabilities to devices that didn't

have them.

In principle, WSNs are not limited in the coverage area or number of connected de-

vices. Resource allocation in smart cities can be optimized by monitoring thousands of

objects generating data and efficiently scheduling services. In smart industrial infras-

tructures, WSNs add connectivity to manufacturing processes, resulting in increased

productivity, real-time inventory monitoring and reduced costs. This allows remote

machines to communicate among themselves, optimizing the production pipeline and

avoiding potential accidents.

Most of the techniques investigated in this thesis are applicable to any wireless

communication system but, because of the major importance, huge opportunity and
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/ Ne
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Figure 1-2: Block diagram of a typical sensor node.

recent interest in WSNs, they are presented and evaluated in the context of improving

the effectiveness and efficiency of WSNs.

1.2 Challenges and Motivation

Although different WSN applications exhibit diverse requirements in terms of en-

ergy, throughput, latency, etc., the vast majority of them captures analog signals and

aims to transmit them to one or more nodes with little distortion while maintaining

low power consumption. Very strict constraints are associated with the energy con-

sumption of sensor nodes because they are typically powered by energy harvesting

sources or small batteries whose replacement cost is usually considered prohibitively

high. In addition, the end-to-end communication performance of WSNs is typically

challenged by the significantly stronger nearby interfering sources and the harsh en-

vironment they usually operate in. Thus, ensuring on-time and reliable delivery of

information as well as extended operation times is quite challenging. To make mat-

ters worse, easy deployment and seamless configuration regardless of the application

or the environment are usually expected.

The block diagram of a typical sensor node is shown in Fig. 1-2. All blocks are

crucial for achieving the desired operation of the node and significant amount of re-
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search, in both the academia and industry, is conducted in order to optimize each

individual block. In this thesis, we mainly focus on the challenges associated with

the signal acquisition and communication blocks. In more detail, the thesis addresses

the challenges of efficiently capturing and representing signals, as well as reliably

communicating them to the designated destinations. This is achieved by devising

information acquisition schemes, transmission codes and communication protocols,

as well as designing and implementing efficient systems and circuits. The main con-

tributions of the thesis on improving the reliability and energy efficiency of WSNs are

listed in the following section.

1.3 Thesis Organization and Contributions

The considered approach in this thesis for improving the reliability and energy

efficiency of WSNs spans the circuits, signal processing and wireless communications

fields. The main contributions are summarized in the following subsections and in

Table 6.1.

1.3.1 Joint Channel and Network Coding

The thesis proposes a communication scheme which improves data reliability and

energy efficiency in WSNs with star-like topologies, usually called asymmetric WSNs.

Random linear network coding (RLNC) [3] is explored and its synergy with forward

error correction (FEC) codes at the physical layer (PHY) are investigated. The hostile

wireless environment that sensor nodes usually operate in, with significant interference

from nearby networks, motivate us to propose a joint channel and network coding

(JCNC) scheme. We demonstrate its performance benefits through simulations and

experimental results. The co-optimization of the algorithm performance and low

power implementation of the considered schemes are also explored.

In order to quantify the energy consumption of RLNC, FEC and JCNC schemes,
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we design a custom system-on-chip (SoC), which integrates on-chip a low-power 2.4

GHz transmitter and an accelerator implementing a multi-rate convolutional code

and RLNC, consuming 580pW while transmitting packet data with a rate of 1Mbps.

According to measurement results performed in typical office environments, RLNC

of code rate 4/8 can provide an effective SNR improvement, or coding gain, of about

3.4dB at a PER of 10-2, outperforming the FEC code of the same code rate. In ad-

dition, we demonstrate that the coding gains of RLNC and FEC are approximately

additive when they simultaneously operate as a JCNC, without requiring any coor-

dination among them.

1.3.2 Harnessing Partial Packets

The thesis proposes a partial packet recovery (PPR) scheme, called Packetized

Rateless Algebraic Consistency (PRAC). PRAC exploits intra and inter-packet con-

sistency to identify and recover erroneous packet segments, without recourse to cross-

layer or detailed feedback information. PRAC allows, but does not rely upon, the use

of any FEC code, requires no feedback other than a notification of completion and, in

the absence of partial packets, incurs no overhead. We demonstrate that exploiting

information from partial packets reduces the number of retransmissions, resulting in

throughput and energy benefits.

Our software implementation and experimental results in a 7-node indoor testbed

using off-the-shelf wireless boards equipped with CC2500 radio transceivers reveal

that PRAC offers an average throughput gain of 35% compared to a baseline ARQ

scheme discarding partial packets and 13% compared to an ideal genie-aided HARQ

(iHARQ) scheme. Considering only links with high PERs, PRAC significantly en-

hances their robustness and its maximum throughput gain is 148% and 34% compared

against the baseline and iHARQ schemes, respectively. Apart from the reliability ben-

efits, PRAC offers significant energy savings as well. In order to quantify them we

use an experimental setup with four sensors mounted on a human body, transmitting
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information to a receiving node in a typical office environment. By precisely modeling

the state transitions and energy consumption of sensors, we compare the efficiency of

PRAC against a baseline ARQ protocol. Our results indicate that exploiting partial

packets reduces on average the energy consumption of our sensors by 8-20%. The

energy savings are pronounced in challenged channel conditions of high PER, where

they can be up to 50%.

1.3.3 Adaptive Nonuniform Sampling

Apart from communicating data in WSNs, capturing the signals of interests usu-

ally consumes a significant amount of resources. For this reason, the rate and en-

ergy efficiency of an adaptive nonuniform sampling scheme, called Time-Stampless

Adaptive Nonuniform Sampling (TANS), are investigated. A new TANS method is

proposed, called TANS with finite sampling rates (TFR). Performance of TFR is

compared against two other TANS methods, as well as against state-of-the-art sam-

pling techniques, in terms of their rate and energy performance in the context of a

health monitoring application. The results of a practical implementation architec-

ture of TFR demonstrate that TANS provides significant improvements in terms of

both the rate-distortion performance and energy consumption compared against the

state-of-the-art methods.

1.3.4 Acquisition, Transmission and Reconstruction of Sparse

Signals

The thesis introduces AdaptCast, an integrated signal representation-to-transmission

scheme for WSNs that efficiently represents collected data and increases their robust-

ness against channel errors across a wide range of SNR values in a rateless fashion.

AdaptCast leverages sparsity inherent in the majority of physical signals in order to

parsimoniously represent them without relying on a specific signal model. The pro-
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posed scheme does not suffer from the sudden degradation in the trade-off between

distortion and SNR of rated FEC schemes due to its direct, relative bit importance

preserving modulation mapping.

Through rate-distortion analysis, we prove the asymptotic optimality of the pro-

posed scheme in terms of achieved distortion in the high SNR regime. AdaptCast's

application-independent operation is demonstrated by using several typical signals

captured in WSNs, such as an ECG signal and IR images. Based on our analy-

sis and simulation results, considering the trade-off between distortion and channel

quality, AdaptCast performs close in a point-to-point scenario to an idealized layered

transmission scheme with instantaneous channel state information (CSI) and offers

significant benefits in fading environments against schemes without CSI.

1.4 Summary

WSNs have great potential to positively influence several aspects of human life

and revolutionize whole industry sectors. This thesis proposes coding schemes and

circuit architectures to address the data reliability and energy efficiency challenges in

WSNs. Although all thesis chapters are interrelated, an effort has been performed to

make them self-contained for readers interested in specific topics.
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Chapter 2

Joint Channel and Network Coding:

Hardware Design and Performance

Evaluation

Random linear network coding (RLNC) is an emerging coding technique that can

provide several advantages in wireless networks, such as throughput gains, increased

data robustness and better utilization of network resources. In this chapter, we exam-

ine its energy efficiency and error recovery performance in the context of asymmetric

wireless sensor networks (WSNs). In addition, we present the first custom VLSI im-

plementation of RLNC, integrated with an ultra low-power 2.4GHz transmitter. The

chip is fabricated in a 65nm CMOS process and consumes 580pJ/bit for processing

and transmitting information at 1Mbps. The digital part of the chip, consisting of

an on-chip memory, a multi-rate convolutional encoder and a RLNC accelerator with

configurable redundancy, consumes 15pW, operating at O.4V. According to our over-

the-air experiments, RLNC can provide an effective SNR improvement of 5.6dB when

combined with FEC rate 1/2, and 3.4dB without FEC, at a PER equal to 10-2.
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2.1 Motivation

Wireless sensor networks (WSNs) have been an emerging technology with a con-

tinuously expanding range of applications, including real-time health monitoring,

smart buildings of reduced energy footprint and automated industrial infrastructures.

Among the different topologies of WSNs, asymmetric networks organized in a 'star'

topology represent the vast majority of WSNs and are the focus of this chapter. In

these networks, low power and energy constrained sensor nodes are directly commu-

nicating with nearby collection hubs which are typically more powerful and serve the

role of the network coordinator, or gateway, connecting the local network to the rest

of the Internet.

Optimizing the communications efficiency of battery operated or energy harvest-

ing asymmetric WSNs, sometimes at the expense of additional complexity at the

receiving hubs, is of major importance in order to ensure extended operation times.

The harsh environments these networks typically operate in, with frequent channel

quality variations and external interference from nearby networks of several order of

magnitude higher transmission power, i.e. WLANs and cellular networks, imposes

severe challenges in ensuring the required data reliability and desired efficiency.

Several schemes have been proposed to achieve reliable and efficient communica-

tion over unreliable channels in asymmetric WSNs. Physical layer (PHY) forward

error correction (FEC) schemes insert redundancy in the transmitted information by

transforming an uncoded message of k bits into a coded packet of n bits. Thus, FEC

schemes increase the probability of successful recovery of the channel-corrupted mes-

sage at the receiver at the expense of bandwidth efficiency [4]. The efficiency benefits

of these schemes have been studied in numerous works, including [5, 6, 7]. An al-

ternative approach for improved communications reliability is the use of packet-level

erasure codes, inserting redundancy across packets [8]. Performance advantages of

using packet-level erasure codes in terms of delay, reliability and energy efficiency are

analyzed in [9, 10, 11].
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Figure 2-1: Block diagram of the proposed 2.4GHz transmitter for asymmetric WSNs.

In this chapter, we consider the use of random linear network coding (RLNC)

and we explore its energy efficiency and reliability benefits in asymmetric WSNs.

RLNC is a relatively new coding paradigm which encourages intermediate nodes

within a network to code and mix information, and lets the final destinations decode

the mixtures. A vast literature exists in theoretically characterizing the performance

of RLNC in WSNs, reporting significant benefits I , ]. The analysis presented in

this chapter investigates the benefits of RLNC in asymmetric WSNs and its interplay

with PHY FEC schemes, as well as the design of a low power transmitter for these

resource constrained applications and over-the-air experimental results.

In more detail, we present the energy benefits of RLNC in asymmetric WSNs under

specific scenarios of operation. In addition, we propose a low power architecture for

a 2.4GHz transmitter operating at 1Mbps, with variable output power and custom

accelerators for FEC and RLNC schemes, using a TSMC 65nm process. The chip

consumes 580pW while transmitting at -10dBm and, to the best of our knowledge, it is

the first reported implementation of a transmitter with custom multi-rate accelerators

for FEC and RLNC in the literature. The fabricated chip is co-packaged with film

bulk acoustic wave resonators (FBAR), generating the carrier frequency in a PLL-less

manner, similarly to [ ]. The block diagram of the proposed transmitter architecture

is shown in Fig. 2-1.

The main contributions of this chapter are summarized below:
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* Investigation of the power savings benefits of RLNC in asymmetric WSNs.

* Design of the first reported custom hardware implementation of RLNC and

co-optimization of the code performance with the computational complexity.

" Integration of the RLNC engine with a low power 2.4GHz transmitter, support-

ing different FEC and RLNC rates.

" Experimental measurements on the reliability and energy efficiency of the de-

signed transmitter in typical indoor environments, communicating with com-

mercial receivers.

The rest of the chapter is structured as follows. In Section 2.2, a brief overview

of RLNC is provided and its energy savings are quantified in a few representative

scenarios. In Section 2.3, the system architecture is presented and the operation

of every major block is explained, while in Section 2.4 the low power design of the

RLNC accelerator is presented. Section 2.5 provides the measurement results of the

proposed design and Section 5.6 concludes the chapter.

2.2 Background and Related Work

In this section, background information on the RLNC scheme is provided, its

encoding and decoding processes are described, and its energy savings in asymmetric

WSNs are quantified.

2.2.1 Random Linear Network Coding

Network coding [16, 17] is a new coding technique which has received significant

attention in the Wireless Communications research community due to its advantages

in a wide range of applications. From a data reliability perspective, network coding

can be considered a cross-packet rateless coding method, similar to LT and Raptor
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Figure 2-2: Encoding process of RLNC. K initial packets are mapped to N coded

packets. Each of the coded packets is a linear combination of the initial packets,
weighted according to a set of randomly selected coefficients.

codes [ j but, in general, its use extends to many broader scenarios which go beyond

the scope of this chapter. The mixing of packets can be performed with several tech-

niques which determine the specific type of network coding. According to random

linear network coding (RLNC) [ ], encoded packets are produced as linear combina-

tions of the initial packets, weighted according to randomly selected coefficients.

Assume that K packets have to be transmitted (P1 , P2 , ..., PK) from a sensor

node to a receiving coordinator, each of them containing L symbols of data, i.e.

PI {P119 P12, --- ,P1L}, as shown in Fig. 2-2. Let every symbol contain q bits; thus,

every packet for transmission is assumed to be Lq bits long. Assuming K/N is the

coding rate, the encoding process of RLNC transforms the K packets and creates

N coded packets (PI, P ,..., P>) of equal length, where N > K. A coded packet

i= {P', ... ,p} is produced by randomly selecting a set of K coefficients (Ci

{ci, ci 2 , ... , ciK}), each of them being q bits long, and creating a linear combination

of the initial packets, according to

K

p't = x cij, (2.1)
j=1
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where 1 < 1 < L and 1 < i < N. Using matrix notation, the encoding process is

described by

P' = C x P, (2.2)

where P is the matrix of initial packets, C the matrix composed of the sets of coef-

ficients and P' the matrix of coded packets. The set of coefficients associated with a

coded packet is usually appended to its header.

The encoding process of RLNC can be considered as the creation and transmission

of N linear equations of K unknowns. Thus, at the destination's side, receiving any

K out of the N transmitted packets is sufficient to recover the initial packets. The

decoding process consists of the opposite process of inverting the coefficients matrix

(C) and multiplying it by the coded packets,

P = C1x P'. (2.3)

RLNC encoding and decoding processes, described by Eq. (2.2) and (2.3), are

performed over finite fields. A finite field of size 2 q, usually represented as GF(2q)

in honor of Evariste Galois, is a set of 2 q elements, with the operations + and x,

often called addition and multiplication, satisfying certain properties. One of these

properties is that the field is closed under the two operations, meaning that when an

operation is applied to some elements, the result will also be an element of this field.

This property guarantees that the result of any operation has the same length as the

initial operands. Thus, the encoded packets will be of the same length as the initial

ones. The details of finite field operations and their implementation are covered in

Section 2.4.

2.2.2 RLNC in WSNs

Several researchers have analyzed and demonstrated the potential benefits of

RLNC in WSNs. For instance, authors of [19] presented a protocol design which
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uses RLNC to encode transmitted information and achieves a significant reduction

in the required time the receiver of a sensor node has to be listening. Considering a

small network of a few sensors and assuming transmission energy per packet to be

equal to reception energy per packet, simulation results reveal that the total energy

consumption of sensors is reduced by 30% [20]. In [13], RLNC increases data relia-

bility in dynamic scenarios of WSNs by 50% and, according to experimental results

[11], RLNC masks inefficiencies of the physical layer and offers a 2.7dB coding gain.

In addition, use of RLNC can simplify other part of the protocol stack, such as data

encryption. According to [21], encryption of the coefficients only instead of the whole

packet payload can ensure the same level of security while reducing the encryption

energy consumption by approximately 10x. According to [22], 40% less data traffic

is required to be communicated when firmware is updated in WSNs by the use of

RLNC, while [23] leverages the same coding scheme to extend the duty cycle of low

power WSNs.

2.2.3 Implementation of RLNC

Because of its advantages in both wireless and wireline networks, RLNC has at-

tracted a lot of interest and its implementation has been considered by many re-

searchers. Multi-core CPUs and GPUs have been used to accelerate its encoding

and decoding processes, achieving throughput in the order of hundreds of MB/s

[24, 25, 26]. Implementation of RLNC on FPGA platforms has been considered

in [27]. In addition, MCUs and embedded processors have been used as implementa-

tion platforms for RLNC, exploring its energy requirements in portable applications

[28, 29].

The strict energy consumption constraints associated with asymmetric WSNs re-

quire a very detailed description of the energy overhead of RLNC. In the follow-

ing sections, we present a custom, low power implementation of RLNC encoder and

its integration in a complete 2.4GHz transmitter architecture targeting asymmetric
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Figure 2-3: Block diagram of the 2.4GHz transmitter, targeting asymmetric WSNs.

The system supports multiple FEC and RLNC coding rates while using a FIFO-less

architecture.

WSNs.

2.3 System Architecture

In this section, an overview of the designed system is provided, along with details

on its architecture and its main processing blocks.

2.3.1 Architecture Description

The architecture of the proposed system is shown in Fig. 2-3. The system is

designed to transmit information at a constant rate of 1Mbps in short-range dis-

tances of up to 6 meters. Because of the channel quality variations and path losses in

typical WSN environments, the system is designed to offer different levels of redun-

dancy in the transmitted data in order to meet the desired BERs. The RLNC and

FEC/Interleaver engines support different coding rates and the RF block adjusts its

output transmission power through pre-configuration by external control signals or

adjusted on the fly.

Incoming data from a sensor's AFE are temporarily stored on on-chip register

banks and, when sufficient information is accumulated, the encoding and transmis-
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sion processes are triggered. First, the RLNC block processes the stored data, and

after the formation of an appropriate packet structure, the FEC/Interleaver block

encodes the data before their transmission by the RF block. Apart from the RLNC

encoder which is described in more detail in Section 2.4, the main building blocks of

the transmitter are the following:

Register banks: The system is designed to receive information at different rates

and duty cycles, independent from the later stages of processing and transmission.

Thus, an on-chip memory is included in the design in order to decouple information

acquisition and transmission. Because of the low power requirements and the near-

threshold operation of the system, the memory is based on registers in order to avoid

the low voltage performance challenges of SRAMs [30]. The total size of the memory

is 2Kb and is organized in four segments, each one corresponding to the payload of a

packet for transmission.

Packetizer: Every transmitted packet contains, apart from its payload, required in-

formation for its correct reception, synchronization and parsing. For instance, special

bit sequences of preambles are appended at the beginning of the packet and sequence

numbers for identification are contained in packets' header. This extra information,

along with protocol related data, are properly added by the packetizer in an efficient

manner.

CRC: An error detection parity check is added on the transmitted information, en-

abling the receiver to identify if the captured and decoded packet is erroneous or not,

before its propagation to the application layer. The system attaches a 16bit checksum

to every packet, calculated through a shift register line according to the polynomial:

x16 + x15 - x2 + 1.

FEC/Interleaver: A convolutional encoder of constraint length 4 is used to protect

transmitted information against channel impairments, followed by a 32 bits interleaver

to combat bursty transmission errors. The convolutional encoder supports four cod-

ing rates (1, 3/4, 1/2 and 1/3), each one used for different channel qualities. The
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encoder is implemented by a shift register line, while the interleaver using 32registers,

written and read in the opposite directions.

Controller: The operation of all blocks and data transfer among them are orches-

trated by a main controller, implemented as a finite state machine. The controller is

externally pre-configured and its settings include the RLNC/FEC coding rate, length

of coded packets together and output transmission power.

FBAR oscillators: Because of the improved power trade-off and high-Q factor

of micro-electro-mechanical (MEM) devices, we make use of FBAR oscillators, co-

packaged with the fabricated die. This enables the carrier frequency generation with-

out the use of a PLL, reducing the power consumption of the system.

RF: Information is transmitted using Frequency Shift Keying (FSK) modulation by

tuning the center frequency of the high-Q FBAR-based local oscillator by switching

the capacitor bank between two codes depending on the data [15]. For minimum

bandwidth at 1Mbps, a frequency separation of 500kHz is used.

Pulse shaping: FSK modulation produces side-bands in the spectrum, but it is

highly desirable to reduce this emission to improve interoperability in the busy 2.4GHz

ISM band. Fig. 2-4 shows the implemented architecture for Gaussian pulse-shaped

FSK (GFSK) with BT product = 0.3. Fixed coefficients are used to reduce the FIR

filter to simple shift and add operations. The coefficients and the 5x oversampling

speed are chosen as a trade-off between power and spectral efficiency through Matlab

simulations. Fig. 2-5 shows the coefficients used, along with the error with respect

to an ideal 5 x oversampled filter. The sum of coefficients is designed as a power of 2

(512 in this case) so that the inputs to the FIR filter can be the required max and min

capacitor bank settings. The lower bits of the FIR filter are dropped before driving

the oscillator.

Low power design techniques are used in order to achieve minimum energy oper-

ation. Near-threshold voltage scaling is applied to the digital part of the system and

low voltage operation on the RF. Through careful design, the chip is functional while
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Figure 2-4: Architecture for the pulse shaping block.
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Figure 2-6: Block Diagram of the RLNC encoder. All operations are performed over

GF(2q).

2.4 RLNC Accelerator

The block diagram of the RLNC encoder, implementing Eq. (2.1), is shown in

Fig. 2-6. It is a fully parallel implementation, calculating one symbol of a coded

packet in every clock cycle. Stored data from the register banks are fetched and

processed by the RLNC encoder. The incoming symbols are first multiplied with the

coding coefficients and then added together to form the coded packet symbols. The

pseudo-random coefficients are produced by linear feedback shift registers (LFSRs)

which are initialized by appropriate values in order to ensure linear independence in

the decoding process.

2.4.1 Finite Field Arithmetic

In general, finite fields play an important role in many communication systems

and cryptographic schemes, such Reed-Solomon codes and AES encryption. Since

digital computing machines use Boolean logic, the binary field GF(2)={0, 1}, and its

extension fields GF(2q), are widely used, due to the direct map between their elements

and the Boolean values. All operations of the RLNC block are performed over the

GF(28 ). Elements of a finite field of size 2q are considered and treated as vectors
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aq1, ... , ao] or polynomials of degree at most (q-1) with coefficients from GF(2)

GF(2q) = {AIA(x) = aq_ 1 xq-1 + ... + a1x1 + ao}, (2.4)

where ai E GF(2) and 0 < i < q-1. Assume A(x) and B(x) are two GF(2q) elements.

Their sum is equivalent of the bit-wise XOR of their polynomial representation while

their multiplication is a two step operation composed by typical polynomial multipli-

cation followed by modulo reduction:

P(x) = A(x) x B(x) = (A(x) - B(x)) mod p(x), (2.5)

where p(x) is the primitive polynomial of the field.

2.4.2 Representation Basis

The representation basis of the elements of a field is of crucial importance, de-

termining the efficiency and complexity of the implementation of different arithmetic

operations. There are several field representation bases; the standard (or polyno-

mial) and the normal basis are the most common ones. Although the normal basis

facilitates the multiplication of two numbers, we choose for our implementation to

work entirely on the standard basis in order to avoid conversion and the associated

energy consumption when data are exchanged between the RLNC encoder and other

hardware modules; standard basis represents numbers in the same way as fixed-point

representation does [31].

2.4.3 Low-power GF(2 8) Adder and Multiplier

Targeting resource constrained WSN nodes, both the GF adder and multiplier

are designed to consume the lowest power consumption. As shown in Fig. 2-6, a

tree-based, balanced adder structure is used of multiple GF(28) adder cells of 8 XOR
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Figure 2-7: Block diagram of the bit-parallel GF(25 ) multiplier, showing its stages.

The product of two numbers is calculated in one clock cycle.

gates each. Because multiplication is a more comiplex operation compared to addition,

several works have proposed optimized algorithms and architectures {, ]

Our multiplier is a bit-parallel architecture of 8 stages using only XOR and shift

operations in order to calculate the product. Implementation details of the h stage

of the multiplier are shown in Fig. 2-7. The low data rate requirements of our system

enable us to operate at a supply voltage near transistors' threshold and at low clock

frequencies without the need for pipelining. The standard representation basis is used

arid the primitive polynomial is p(x) = r[1, 0, 0,a0, 1,t1, 1,u0,r1.

2.5 Performance measurements

In this section, the experimental setup is described, the power consumption of the

chip is presented and the results of the performance comparison are discussed.

2.5.1 Experimental Setup

The experimental comparison of FEC and RLNC schemes, as well as their joint

operation, is performed through careful and controlled experiments. The setup is

shown in Fig. 3-9. The custom transmitter, representing a sensor node in a typical

asymmetric WSN, is controlled by a Matlab program on a PC through an FPGA.

A generic commercial transceiver (Texas Instruments CC2511 [ ]) is used to receive
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Figure 2-8: Block diagram of our experimental testing setup.

the data from the transmitter. A transmission data rate of 500 kbps is used for

all our measurements, which is limited by the maximum supported data rate of the

CC2511 receiver. FSK modulation is employed for data transmission and coherent

demodulation is performed at the receiver; hard Viterbi decoding and an interleaver

of 4 bytes length are also used. A PC-based packet sniffer software transfers the data

from the CC2511 over a USB interface. This software then sends the received data

over to the Matlab program which then computes the packet error rate.

The CC2511 chip provides the Received Signal Strength Indicator (RSSI), which

is a good proxy for the SNR on the channel. In the rest of the chapter, RSSI and SNR

values will be treated interchangeably. In order to perform detailed PER measure-

ments and estimate coding gains, the SNR of the received signal needs to be changed.

The intrinsic output power tuning on the transmitter is limited (about 7dB), and it

is not possible to physically move the devices apart in a repeatably accurate manner.

To overcome this issue, a digitally controlled RF attenuator is connected between the



CHAPTER 2. JCNC: ALGORITHM AND HARDWARE DESIGN

Figure 2-9: Chip die photo.

transmitter IC and the antenna. A 31dB dynamic range, with 1dB/step [ ] provides

a very repeatable method of sweeping the SNR of the channel. For each setting of

the attenuator and code rate, 103 packets are transmitted, each of 48 bytes length.

2.5.2 Chip Power Consumption Measurements

The chip is implemented in 65nin CMOS. The 2mx 1.3nmm chip is co-packaged

with an FBAR resonator in a 44-pin QFN package. The chip die photo is shown

in Fig. 2-9. The digital part of the system consumes only 30pW for 1Mb/s data

rate, when operating at O.4V. The RF section consumes 550pW while transmitting

with FSK modulation and -10dBin output power, achieving an energy efficiency of

550pJ/bit at 1Mb/s. The FIR filter for lMb/s GFSK consumes 15PW from a IV

supply, running off a 5MHz clock. Fig. 2-10 shows the spectra of 1Mb/s FSK and

GFSK. The first side-lobe is reduced by 11dB and the second by 28dB. The much

improved spectral efficiency occurs with only 15pJ//b overhead.
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Table 2.1: Summary of chip measurements.
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Technology 65nm

Datarate 1Mb/s

Modulation FSK, GFSK

Digital blocks

Supply (RLNC, FEC, etc) 0.4V

Supply (pulse shaping) 1V

Power 30pW

RF block

Supply 0.7V

Power 550pW
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Figure 2-10: Spectra of 1Mbps FSK and GFSK.

2.5.3 Performance of FEC and RLNC Operating Separately

The error correction performance of the PHY-layer FEC code is shown in Fig. 2-

11. The measured PERs for different code rates are plotted. A FEC of code rate 3/4

provides only a marginal improvement over uncoded data transmission, while FEC of

code rate 1/2 provides approximately 2.25dB SNR improvement. Use of a FEC code
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GFSK

28 dIB
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Figure 2-11: Measured packet error rate (PER) curves for a convolutional (FEC) code
of rate =3 /4, 1/2 and 1/~3 compared with uncoded packets' transmission.

with rate 1/3 offers only a small additional coding gain compared to the rate 1/2

code; as expected, increasing the redundancy of the FEC code provides diminishing

returns in the coding gain.

Fig. 2-12 shows the performance of RLNC for several code rates, when no FEC

code is used. At a PER of 10-2, its effective SNR improvement is 2.5dB and 3.4dB

for the 4/6 and 4/8 code rate, respectively. The PER curve of the FEC of rate 1/'2

is also plotted in the same figure with dashed line. Comparing the PER curves of

the two coding schemes in Figs. 2-11 and 2-12, a very important characteristic about

their behavior becomes evident. Although the same amount of total information is

transmitted for both PHY-layer FEC and RLNC of code rate 1/2, in the low RSSI

regime, the FEC code performs better than RLNC but, for higher RSSI values, the

roles are reversed. For instance, at PER of 102, RLNC offers an additional coding

gain of 1.1dB. This happens because the slope of the PER curves for RLNC is much

steeper compared to that of the FEC curves.

The difference in the PER curves for the two coding schemes can also be explained
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by examining the behavior of the wireless channel in typical indoor environments.

For a AWGN channel with fixed and known SNR, FEC codes can be designed to

communicate packets reliably, as long as their transmission rate is below the capacity

of the channel. In that case, packet-level erasure codes are not necessary. On the

other hand, for an erasure channel, in which packets are either received entirely correct

or completely erased, a packet-level erasure code (such as RLNC) can be sufficient

to provide the necessary reliability, making a physical layer code unnecessary. In

practice, a realistic wireless indoor channel lays somewhere between these two extreme

limits. Although noise is always present in the wireless medium causing random bit

errors within a packet, its effects are more pronounced in the low SNR regime and

these random errors are better corrected by a PHY-layer FEC code. However, for

higher SNR values, interference from nearby networks operating at the same frequency

band becomes the dominant limiting factor, creating packet collisions with large burst

errors and making the channel behave like a block fading channel. In that case, RLNC

performs better by introducing a longer dependency across packets, which can be

translated to diversity gains.

2.5.4 Joint Performance of FEC and RLNC

The performance of the joint channel-network coding (JCNC) scheme is shown

in Fig. 2-13. According to our measurement results, JCNC of effective rate 1/3

performs better than the FEC code of the same rate by approximately 1dB at PER

of 10-2. However, at the very low SNR regime, the FEC code has the best performance

because, as explained earlier, use of RLNC requires successful reception of at least

K packets for a block to be decoded. This graph confirms the harmonic synergy

between FEC codes and RLNC in a joint coding scheme. As is shown, the coding

gain of joint PHY-layer FEC and RLNC is 5.6dB for an effective code rate 1/4.

Table 2.2 summarizes the effective SNR improvements for different PHY-layer FEC

and RLNC code rates at two target PERs.
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Figure 2-12: Measured packet error ate (PER) curves for RLNC of rate =- 4/5, 4 6
and 4/8 compared with uncoded packets.

2.6 Summary

This work presents the first custom VLSI implementation of RLNC, integrated

with a multi-rate convolutional FEC code arid a low-power 2.4GHz transmitter, im-

plemented in a 65nm CMOS process. RLNC is shown as a promising coding scheme

which can enhance the reliability of transmitted data in resource constrained asym-

metric WSNs. According to our measurement. results, RLNC rate 48 offers 3.4dB

coding gain compared to the uncoded case, and when combined with FEC rate 1/2,

the coding gain is close to 5.6dB. The power consumption of the digital part of the

chip, including the pulse shaping block, is 3OpJ/bit at 1Mbps datarate, operating at

O.4V, whereas the RF block consumes 550pJ/bit, transmitting at -l0dBm output

power. More detail can be found in [ , ]
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Figure 2-13: Measured packet error rate (PER) curves for the joint channel-network
coding (JCNC) scheme.

Table 2.2: Effective SNR improvement for the JCNC scheme.
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FEC Rate RLNC Rate SNR improvement

PER= 10-1 PER 10-2

1 1 -

1 41/5 OdB 1.5dB

1 4/6 0.625dB 2.5dB

1 4 8 1.5dB 3.4dB

1 2 1 2.5dB 2.25dB

1 2 4 5 2.25dB 4dB

1 2 4 6 2.75dB 4.25dB

1 2 4/8 3.5dB 5.6dB
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Chapter 3

PRA C: Harnessing Partial Packets in

Wireless Networks - Throughput and

Energy Benefits

In light of the requirements for increased data reliability and higher energy ef-

ficiency in modern WSNs, this chapter proposes a partial packet recovery (PPR)

scheme, called Packetized Rateless Algebraic Consistency (PRAC). PRAC exploits

intra- and inter-packet consistency to identify and recover erroneous packet segments,

without recourse to soft physical layer (PHY) or detailed feedback information. In

the absence of cross-layer coordination or detailed feedback, the prevailing methods

proposed in the literature have discarded packets with errors. PRAC uses a rateless

linear packet code for data encoding and an iterative decoding process for data re-

construction. It allows, but does not rely upon, the use of any PHY forward error

correction (FEC) code, requires no feedback other than a notification of completion

and, in the absence of partial packets, incurs no overhead. In order to quantify

PRAC's performance in terms of both throughput and energy efficiency, experiments

are conducted using wireless off-the-shelf transceivers in two scenarios: a static, in-

door testbed of seven nodes and a dynamic scenario of sensors being attached to a
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person while doing typical body movements. Our implementation results reveal that

PRAC offers an average throughput gain of 35% compared to a baseline automatic

repeat request (ARQ) scheme discarding partial packets and 13% compared to an

ideal genie-aided hybrid-ARQ (iHARQ) scheme. On high packet error rate (PER)

links, throughput is improved by 148% and 34%, respectively. In addition, according

to our experiments, PRAC reduces on average the total energy consumption of the

transmitting nodes by 16%, while its energy savings benefits are increasing when links

of high PER are considered.

3.1 Motivation

Wireless communication networks achieve reliable communication over unreliable

channels using either physical layer (PHY) forward error correction (FEC) codes, au-

tomatic repeat request (ARQ) protocols, hybrid ARQ (HARQ) methods, cross-layer

schemes or a combination of these techniques. PHY FEC schemes intelligently in-

sert redundancy by transforming an uncoded message of k bits into a coded packet

of n bits, increasing the probability of successful decoding of the channel-corrupted

message at the receiver [37]. In general, data reliability increases with extra redun-

dancy at the expense of bandwidth efficiency. Although PHY FEC codes significantly

improve the data reliability, under certain conditions, they fail to ensure complete

correctness in the decoded information. In order to prevent erroneous packets to be

forwarded to higher layers of the protocol, error detection codes (e.g. cyclic redun-

dancy checks-CRCs) are typically used, identifying packets with erroneous bits. In

the rest of the chapter, packets which satisfy the error detection rule and can be

propagated to higher layers are called valid, while packets which have been processed

by the PHY and contain at least one erroneous bit are called partial. In a typical

ARQ protocol, when a partial packet is detected, a retransmission is requested and

all the information associated with the partial packet is discarded.
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In communication channels with large signal-to-noise (SNR) variations, rate adap-

tation schemes are used to estimate the channel quality and adapt the modulation and

coding scheme (MCS) accordingly [38]. In principle, exact knowledge of the channel

state information combined with rate adaptation and infinitely long FEC codes can

asymptotically guarantee reliable communication [391. However, the highly varying

nature of the wireless medium usually results in significant SNR dynamic ranges and

makes quite challenging the task of channel tracking. Unlike ARQ protocols, HARQ

schemes accumulate PHY soft information across multiple received copies of the same

block, or its parity bits, and, by combining their redundancy, lower the effective cod-

ing rate to match the channel condition [40]. This approach usually results in higher

throughput and improved energy efficiency at the expense of extra computational

complexity. Similarly to HARQ schemes, partial packet recovery (PPR) schemes

harness information contained in partial packets without discarding erroneous data

blocks [41]. PPR schemes can be designed to be PHY independent [42] and offer more

flexibility in their implementation, covering a wide range of communication networks,

from high-speed WLANs to low-power wireless sensor networks (WSNs).

In this chapter, a new PPR technique is proposed, called Packetized Rateless Al-

gebraic Consistency (PRAC), which leverages the information contained in partial

packets in a PHY-independent manner and reduces the overall number of retrans-

missions. The main challenge in any PPR scheme is the identification of correct

information within a partial packet. PHY soft information, multiple CRCs and/or

pilot bits within a packet, detailed feedback information and additional redundancy

enabling error estimation codes have been proposed as potential solutions. PRAC

does not use any of these methods. Instead, transmitted data are encoded using a

rateless linear cross-packet code and correct information is harnessed from partial

packets making use of PRAC's algebraic consistency rule (ACR) check. ACR check

exploits the property of linear (n, k) codes, according to it any k out of the n symbols

are sufficient to decode the initial data and the other (n - k) are linear combinations
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of them. The recovery process is performed iteratively using an optimized search

algorithm, ACR checks and CRC updates.

The main characteristics of the proposed scheme are the following:

* PHY soft information is not required to be exposed to higher layers, making

the proposed algorithm easily deployed in current wireless networks'.

" PRAC's encoding process incurs no transmission overhead for correctly received

packets.

" PRAC requires minimal feedback information since it can operate with only a

notification of completion.

" The computational requirements of PRAC's recovery algorithm can be easily

adapted to the available resources, balancing the recovery performance with the

algorithmic complexity.

We test and evaluate the performance of the proposed PPR mechanism in terms

of both throughput and energy efficiency in typical indoor wireless network settings.

Commercial boards with CC2500 and CC2511 radio modules are used [43, 34] in two

sets of experiments. First, PRAC is tested over a 7-node indoor testbed investigating

its reliability and throughput benefits. In addition, we use an experimental setup

of four sensor nodes mounted on a human body and transmitting information to

a nearby receiving hub, evaluating PRAC's energy efficiency. In both experiments,

data traces are collected and processed off-line. PRAC's throughput performance is

compared against a baseline ARQ protocol and an ideal genie-aided HARQ (iHARQ)

scheme whose performance, in the absence of detailed feedback, is an upper bound on

all cross-layer schemes. PRAC's average throughput improvement is 35% and 13%

compared against the baseline and iHARQ, respectively, considering all links of the

testbed. On high packet error rate (PER) links, throughput is improved by 148% and

'To the best of our knowledge, none commercial wireless card exposes cross-layer information,
such as symbol-level PHY soft information, at the driver level.
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34%, respectively. In terms of energy efficiency, PRAC achieves an average increase

of 16%, while, in high PER links, savings can exceed 50%.

The rest of the chapter is structured as follows. Section 3.2 presents a summary

of related techniques and an overview of the proposed scheme. Section 3.3 describes

PRAC's encoding process while the decoding process is presented in Section 3.4.

Section 3.5 provides details on the performance evaluation and experimental setups.

Sections 3.6 and 3.7 present PRAC's measured throughput and energy benefits, re-

spectively. Finally, Section 5.6 concludes the paper.

3.2 Background and Related Work

Achieving reliable communication over unreliable wireless links and exploiting

correct information contained in partial packets in order to increase performance

of wireless networks, including WSNs, have attracted extensive attention. In the

following subsections, we present some of the main approaches.

3.2.1 FEC Codes and Rate Adaptation Techniques

One widely used approach for increasing reliability of wireless links and reducing

the effect of channel-induced errors is the use of PHY FEC codes. The literature on

this topic is vast and some of the codes are described in [37, 4]. Different channel

conditions require different amounts of redundancy, since fixed code rate FEC schemes

can operate well only within a specific SNR regime. Powerful low-rate FEC codes

can deal with severe channel conditions, while high-rate codes are used under good

channel conditions as being more throughput and energy efficient [5, 44].

Rate adaptation techniques are used in order to estimate the channel quality and

adapt the modulation and coding rate accordingly [38, 45]. A trade-off exists between

the amount of associated overhead (i.e. probing or channel state feedback) versus the

accuracy of the measurements. In general, the incorporation of channel measure-
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ment mechanisms increases system's complexity, and, in mobile environments, a rate

adaptation mechanism might be inefficient to track changes of a wireless fast-varying

channel [46]. For this reason, rateless codes which do not require a priori knowledge

of the channel quality have been proposed. For instance, coding schemes described in

[47] and [48] asymptotically achieve the capacity of the binary erasure channel (BEC)

without knowledge of the erasure probability. More recently, [49] and [50] proposed

practical rateless codes for AWGN and binary symmetric channels, respectively.

3.2.2 HARQ and PPR Schemes

HARQ schemes eliminate the inefficiency associated with ARQ protocols of com-

pletely discarding packets with some errors and requesting retransmissions. Instead,

they incrementally adjust the effective code rate, dealing with the "all-or-nothing"

behavior of fixed rate PHY FEC codes. For instance, the HARQ scheme analyzed

in [40] accumulates PHY soft information corresponding to incoming and previously

received partial packets, gradually increasing the probability of a successful reception

by combining the corresponding information. According to another HARQ scheme

[51], different coded versions of the received partial packet or extra amount of redun-

dancy is transmitted, incrementally increasing the correcting ability of the scheme.

Owing to their performance benefits, HARQ schemes have been adopted in several

modern wireless communication systems, e.g. WiMax [52] and LTE-A [53], but, in

general, they exhibit high computational complexity and limited flexibility, being

almost prohibitive for WSNs.

Several PPR schemes have been proposed in the literature, operating at the data

link or higher layers, independently or not of the PHY. Cross-layer PPR schemes,

which operate in synergy with the PHY, typically annotate every decoded bit with a

confidence hint, as shown in Fig. 3-1. This enables the link layer to identify which

chunks of a packet have higher probability of being erroneous and request, through

the use of additional feedback information, only those chunks, as in [41]. Similarly,
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Figure 3-1: Simplistic block diagram of a protocol stack in a receiver using a cross-

layer PPR scheme with propagation of PHY soft information to higher layers.

schemes proposed in [ ] and use PHY soft information from multiple receivers,

leveraging spatial diversity.

PHY-independent PPR schemes typically identify correct segments by introducing

some overhead within the transmitted packets, such as multiple CRCs per packet [ I

or additional redundancy for error estimation codes [ ]. Other schemes modify

the feedback mechanism to include additional information in the acknowledgment

frames [ or use cross-packet coding methods based on erasure codes [ j. Table 3.1

summarizes some of the proposed approaches listing their main design features with

respect to requiring access to PHY soft information, introducing fixed overhead for

every transmitted packet and increasing the feedback information.

3.2.3 PRAC's System Architecture

PRAC sits between the data link and network layer. It is a PHY-independent

scheme and does not violate the typical PHY and link layer interface of modern wire-

less systems. In addition, it can be transparent to higher layers; the only consideration

is that packets are delivered to and from the the network layer in a batch mode, as it

is explained in the next sections, right after a successful decoding. These two features

enable PRAC's implementation either as a driver extension or a firmware patch, as

t
Routing:]

t
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opposed to schemes requiring PHY soft information.

PRAC's encoding process introduces no fixed overhead to any transmitted packets

and doesn't modify or increase the feedback information. More specifically, PRAC's

core component is a cross-packet random linear rateless code, explained in Section

3.3, which enables its optimal operation without knowledge of the channel quality.

Finally, the detection of correct and erroneous parts of partial packets is performed

with a mechanism based on the cross-packet algebraic consistency rule (ACR) check,

followed by an iterative correction algorithm, presented in Section 3.4.

3.3 PRAC at the Transmitting Node

At the transmitter side, packets arriving from the network layer to the data link

layer are buffered and processed in batches before their transmission, since the en-

coding process is performed upon groups of packets. Let k be the number of packets

CHAPTER 3. PRAC: HARNESSING PARTIAL PACKETS

Table 3.1: Summary of partial packet reception schemes.

PHY Zero fixed Not increased
Scheme

independent overhead feedback

PPR,[ X /
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coded together. Following the typical nomenclature, k will be called generation size

in the rest of the chapter. Several approaches, mainly based on erasure codes, can be

used for packets encoding. This section analyzes the different trade-offs associated

with some of them and describes PRAC's encoding process.

3.3.1 Packet Erasure Coding Schemes

PRAC introduces cross-packet dependency by using a random linear code and

exploits some properties of the coded packets in order to detect and correct erroneous

information [3]. The performance of random linear codes in terms of reliability and

throughput-delay trade-off has been studied in [60] and [9]. The interaction of packet

erasure codes with the PHY is analyzed in [61, 10, 11], suggesting that spreading the

transmitted redundancy across and within packets significantly outperforms the case

in which only one method is used, especially for wireless fading channels.

Although a fixed-rate code, such as a Reed Solomon (n,k) code, can be used to

introduce the cross-packet dependency, the use of a rateless code may be preferable

since it does not require knowledge of the channel characteristics in order to select

the appropriate rate. Fountain codes, such as LT [47] and Raptor [48] codes, are

excellent rateless code candidates with low encoding and decoding complexity re-

quirements. However, these codes do not perform well with short block lengths and

a coding overhead (f) is associated with them. If k initial packets are encoded to-

gether, approximately k(1 + E) correct packets are required on average to be received

for successful decoding. Although this overhead asymptotically approaches zero as

k -- oo for appropriately designed degree distributions, in most practical scenarios,

c has a non-negligible value since latency requirements of data link or higher lay-

ers limit the number of packets (k) buffered and coded together. Thus, considering

WSNs applications with small values of k (typically less than 10), coding overhead

results in transmission of extra packets which negatively affects the achieved network

performance. A family of codes with the desired characteristics of being rateless,
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Figure 3-2: The four steps of the ACR check are shown, processing sequentially each

of the columns of the received packets. If the condition of step 4 is true, the next

column is examined; otherwise, the correction process is triggered.

performing well over small block lengths and having zero coding overhead are ran-

don linear codes. Although these codes do not provide similar encoding/ decoding

complexity guarantees as Fountain codes, they are selected as PRAC's core coding

component.

3.3.2 PRAC's Encoding Process

Let P, where i = 1, 2, .., k, be the ith uncoded packet for transmission and pij,

where i = 1, 2, .., k and j = 1, 2, .., 1, be the jth symbol of ith packet. In addition,

let every symbol have q bits and be considered as an element from a finite field,

Pij e F(2q). We assume that all packets have the same length of q1 bits; if not, zero

padding is applied. Using matrix notation, the uncoded packets can be represented

as a k x l matrix P, whose entries are the symbols pij.

The encoding process transforms the k initial packets into k coded ones by the

matrix multiplication, performed over finite field operations:

P' = C x P, (3.1)

where C is a randomly generated matrix of coefficients cij over F( 2q), with ij =
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1,2, .. , k, P' is a matrix with the coded packets and x defines a matrix multiplica-

tion operation over finite fields. Thus, every coded packet is associated with a set of

coefficients which can be conveyed with the packet transmission (e.g. in the header)

or locally produced at the receiver by a random generator in sync with one at the

transmitter. For the rest of the description, we assume that they are locally pro-

duced and error free. It can be seen that, when the channel is good, only k coded

packets are transmitted, so PRAC incurs zero fixed overhead. If channel quality

drops and additional packets are requested by the receiver, a new set of coefficients

{ ci}, where i = 1, 2, ... , k, is generated. Using Eq. (3.1), a new coded packet can be

created and transmitted by the PHY.

3.4 PRAC at the Receiving Node

Upon the reception of a new coded packet (Pi), its CRC status is checked and it

is properly buffered as valid or partial, along with the remaining packets of its batch.

When the total number of received (valid and partial) packets exceeds the generation

size (k), PRAC's recovery process is initiated. The correct and erroneous information

within a packet are distinguished using an algebraic consistency rule (ACR) check, and

the identified errors are corrected by an iterative process consisting of an optimized

search algorithm and ACR checks.

3.4.1 Algebraic Consistency Rule Check

PRAC identifies correct information within partial packets by taking advantage of

the algebraic consistency of the encoded packets. This process is performed column-

wise over the matrix of received packets (P') in a sequential manner. The steps of

ACR check for column j, assuming n packets have been received, including partial

and valid ones, are the following ones:

Step 1 - Create a set of (k + 1) symbols which contains the symbols belonging to all
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valid packets.

Step 2 - Pick randomly k symbols out of this set and multiply them by their inverted

coefficients matrix to estimate the values of the uncoded symbols:

p[ j 1 11 -C. k pj
x (3.2)

P J ... Ckk pkJ

where "*" denotes recovered symbol values.

Step 3 - Re-encode the estimated symbol values with the coefficients associated with

the (k + 1)th packet:

1
p'k+1)j = [C(k+1)1 - C(k+1)k] x [ (3.3)

and compare the result with its value.

Step 4 - If equality holds (p' 1)J Pjk+1)j), the set of the (k+1) symbols is consistent

with high probability and the initial packet symbols of column j are the recovered

symbols p* from Eq. (3.2). If not, PRAC's correction process is triggered.

An example of the steps of the decoding process for k = 3, q = 4, 1 = 4 and x = 4

are shown in Fig. 3-2.

3.4.2 Multiple rounds of ACR checks

When the result of the ACR rule for a column indicates consistency, there is also a

probability for a false positive event (pfpe), as with any other checking rule. Assuming

that the effect of the channel on the received packets is uniform, the false positive

event rate depends only on the value of field size ( 2q) used. Thus, by increasing

the field size, pfpe can be set under any desired threshold. However, increase in the
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Figure 3-3: False positive event rate for different values of field size and number of

ACR rounds.

field size, increases exponentially the complexity of PRAC's correction process. An

alternative way to lower pfpe is by executing multiple ACR rounds (step 1 to 4) for

the same column with considering a different set of (k + 1) symbols each time.

If q is the length of each symbol and r is the number of consistency check rounds,

the probability of a false positive event (pfpe) of our check rule is:

Pfpe - I . (3.4)

This means that, by using a field size of eight and two ACR rounds for each column,

Pfpe equals 1/216, which is the same as the false negative event rate of 16-bit CRC

rule. The desired value of pfpe is an application specific choice and can be adjusted

depending on the available computational resources and the desired algorithmic per-

formance.

3.4.3 Correction Process

When ACR detects an erroneous column, PRAC's correction process is triggered

to correct its erroneous symbols. This is an iterative process and each iteration
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involves ACR checks, a search algorithm and CRC updates. The search algorithm

attempts to identify the correct symbols until the ACR check associated with the

specific column is satisfied. At the end of the correction process, the CRC status of

the partial packets with corrected symbols is updated before the recovery algorithm

processes the next column, gradually reducing the number of partial packets as the

cross-column recovery scheme progresses.

Since no PHY soft information exists indicating potential erroneous bits, an ex-

haustive search algorithm is the optimal strategy in terms of recovering performance,

whose complexity grows exponentially with the field and generation size. A reduced-

complexity search algorithm is used in PRAC's correction process, examining first

symbols with minimum Hamming distance from the received ones and setting a limit

on the maximum number of trials. This provides a reduction on the average searching

time and a trade-off between recovery performance and processing time, respectively.

3.5 Implementation and Performance Evaluation

PRAC is implemented as a software module and its performance is evaluated by

processing stored data traces offline. Small values of field size reduce the probability of

a column containing erroneous symbols and the search space of the correction process

but increase ACR's false positive event probability. In terms of the generation size,

increasing its value up to a certain point increases the channel diversity gains but it

also exponentially increases the correction process's search space. Finally, the number

of ACR rounds lowers the false positive probability of the check rule but increases the

required computations. In our experiments and performance comparison, a field size

of eight is used, a generation size of five and two ACR rounds, keeping the overall

computational load of the CPU used at minimal levels.

PRAC's encoding process has minimal computational requirements. The recovery

process exhibits higher complexity but it can be adjusted depending on the desired
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Figure 3-4: Floorplan of the indoor testbed.

performance. Its implementation in resource constrained devices can be challenging.

However, due to its inherent parallelism, it can be efficiently mapped to a multi-

threaded computing platform or an application specific circuit architecture, aspects

which go beyond the scope of this chapter.

III

3.6 Throughput and Reliability Benefits

3.6.1 Experimental Setup

A static, indoor 7-node testbed is used, with fixed transmission rate links and de-

terministic routing, as shown in Fig. 3-4. Commercial boards [ ] with CC2500 radio

transceivers are used in the experiments, communicating in the 2.4GHz band, similar

to the majority of current WSNs. The nodes are connected to a central PC, storing

data traces and other link statistics" and operate in a centrally-controlled time division

manner. Throughout all of our experiments, FSK modulation, 500Kbps transmission
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Figure 3-5: Packet format used in our experiments.

rate and +dBm output transmission power (PTx 0 Ut) are used, unless otherwise spec-

ified. A rate 1/2 convolutional encoder, a Viterbi decoder and an interleaver are also

used. The packet format contains: 8-byte preamble, 4-byte synchronization word, up

to 250 bytes payload and 2-byte CRC check, as shown in Fig. 3-5. It should be em-

phasized here that, since PRAC is PHY-independent, any implementation platform

can be used for evaluation without affecting its performance.

In the feedback mechanism 6-byte acknowledgment frames are used, transmitted

upon the reception of a packet, indicating only its CRC status. No detailed feedback

information about which segments of a packet are corrupted or how many errors exist

in a packet is required. Data packets, including the retransmitted ones, have the same

length. Although PRAC is a rateless code and feedback reduction techniques [ ]

could be applied, we use the traditional per-packet acknowledgment throughout our

experiments, for all recovery schemes tested, in order to decouple the benefits of

harnessing partial packets from feedback suppression methods.

3.6.2 Channel Measurements

Our testbed consists of links with a wide range of link qualities; packet error rate

(PER) varies from 0.1% to 68%, with an average value of 14%. Channel measurements

are taken across several days and hours in a typical office environment without control

over the external interference. PER accounts for both completely erased (not received

at all) and partial packets. However, the benefit of any PPR scheme depends only on

the percentage of partial packets since erased ones are not captured at all. Upper Fig.

3-6 shows the PER of three randomly selected links. The transmitter output power is
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Figure 3-6: Packet error rate (upper figure) and ratio (q) of the number of partial
over erased packets (lower packets) as a function of the output transmission power
for three links in our testbed (link i - j corresponds to link from node i to node j).

varied in order to emulate the behavior of links across the whole PER spectrum values.

The ratio (rI) of the number of partial over erased packets is plotted in the lower Fig.

3-6, in which it can be observed that the number of partial packets is significantly

higher (on average 5.2x more) than the number of erased ones across the whole range

of transmitter output power, or equivalently across links of any PER. This verifies

the potential improvement in network's performance from a PPR mechanism.

3.6.3 Compared Schemes

PRAC's performance is compared against a baseline ARQ scheme, which discards

partial packets, and a genie-aided ideal HARQ scheme, called iHARQ, which exploits

partial packets by combining them with their retransmitted copies. A significant
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difference between PRAC and iHARQ, which will be shown to have a major effect on

performance, is that PRAC encodes and recovers a group of packets synergistically,

while iHARQ processes and recovers individual packets. In more details, PRAC's

performance is evaluated against:

" Baseline ARQ scheme - It is the combination of a convolutional code of rate

1/2 and an ARQ protocol. When a partial packet is detected, it is discarded

and a new retransmission is requested. This approach is used in the majority

of WSNs.

" Genie-aided iHARQ - This hypothetical scheme represents an ideal recovery

mechanism with the ability to recover any received packet with at most one

retransmission, if needed. In case a packet is detected as partial, it is buffered

and a genie guarantees that, with its upcoming retransmitted copy, successful

recovery will take place, even if the second retransmitted packet is partial as well.

Obviously, this is an upper bound on the performance of combining schemes

operating without detailed feedback.

3.6.4 Performance Evaluation Results

The performance evaluation of the aforementioned schemes is shown in upper Fig.

3-7. The achieved end-to-end throughput of 40 randomly picked source-destination

pairs is plotted for each scheme. The baseline ARQ scheme performs well in links

with low PERs but its performance degrades drastically in less robust links. This is

explained by the "all-or-nothing" operation of FEC codes; they perform well up to a

certain channel SNR and poorly beyond that. A rate adaption algorithm would limit

the performance degradation but it is not included in any of the considered schemes.

The bottleneck in any wireless network comes from links of high PER, which usu-

ally limit the overall network performance. For instance, in our testbed, the baseline

ARQ and iHARQ schemes fail to provide guarantees of robust connectivity across all
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Figure 3-7: Performance comparison among the baseline ARQ scheme, iHARQ and

PRAC, for 40 randomly picked source-destination pairs in our testbed (upper figure)

and zoomed view including the error bars (lower figure).

nodes for an application of 100Kbps information rate, as shown in lower Fig. 3-7.

The error bars reveal that only 65% and 77% of the links in our testbed will always

support the required throughput threshold, for baseline and iHARQ schemes, re-

spectively. However, PRAC significantly enhances the robustness of low quality links

and, as shown from the error bars, guarantees that 100% of links meet the throughput

requirement, enabling all nodes to reliably operate without communication outages.

Fig. 3-8 plots the average throughput of links in our testbed with PER > 3%. The

iHARQ scheme achieves an average throughput gain of 17% over the baseline ARQ

scheme, while its maximum observed throughput improvement is 82%. PRAC out-

performs on average the baseline by 35% and the iHARQ by 13%, while its maximum
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Figure 3-8: Average throughput performance of the baseline ARQ, iHARQ and PRAC

schemes in links with PER > 3%.

observed throughput improvement in the network is 148%. Although PRAC does

not require use of cross-layer information, it outperforms the genie-aided iHARQ.

Similarly to other packet erasure codes, PRAC offers diversity benefits, especially

in channels with deep fades and strong interference [ ], such as in typical indoors

channels experienced in our testbed. Since every received packet equally contributes

towards the recovery of an entire group of packets, PRAC's performance can tolerate

a few bad channel realizations, since they are amortized across the entire group. In

contrast, iHARQ's performance considerably degrades in these challenged channel

conditions due to the absence of diversity.

3.7 Energy Savings

3.7.1 Experimental Setup

Four transmitting sensor nodes attached to a human body are communicating with

a receiving hub, mounted on a wall and connected to a PC storing the collected data

traces and processing them offline. The on-body sensors are equipped with CC2511
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Figure 3-9: Experimental setup: four on-body sensors transmit information to a

receiving hub while person is performing typical body movements. Collected data

traces are stored in a laptop for further processing.

transceivers transmitting an ECG waveform stored in the on-board memory, and the

receiving hub is a CC2500 development board [ 1. The sensors are placed in four

different body locations: i) top of scalp, ii) left chest, iii) back, and iv) right ankle.

Scheduling among the sensors is performed by the hub, allocating time slots in each

sensor, ensuring that no cross-sensor interference exists.

The output transmission power (PTx0 ,t) of the sensors is adjusted from -25dBm

to 1dBm. The transmission rate is fixed at 250kbps and communication is performed

at the 2.4GHz ISM frequency band. Binary FSK modulation and coherent demodu-

lation, a short interleaver, a convolutional rate 1/2 code and a hard Viterbi decoder

are used at the PHY. The same packet format is used as the one shown in Fig. 3-5.

Upon the reception of a packet by the hub, its CRC status is examined and it is

buffered on the PC as valid or partial, depending on the result of the CRC check.

The packet encoding described by Eq. (3.1) is performed by the microcontroller of

the sensor, while PRAC's decoding process is implemented in software on the PC.
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All experiments and measurements are performed in a typical indoors campus

environment, with no control over the external interference. The distance between

the sensors and the receiving hub varies in the 3-8m range as the person with the

mounted sensors is performing typical tasks, including sitting in a chair and moving

in the room.

3.7.2 Channel Measurements

Channel modeling and experimental measurements have been considered in several

works, capturing the detailed characteristics of the wireless medium around the human

body in indoors and outdoors environments [64]. In this thesis, we provide some

experimental measurements of typical low power sensors communicating around the

human body, not as an exhaustive modeling effort, but more as a characterization of

the channel quality experienced during our measurements.

Fig. 3-10 plots the average PER for each PTXOst value in the four links of our

experimental setup. As expected, the PER increases as PTxout decreases. All four

links exhibit approximately similar channel characteristics, with sensor 1 achieving

the best average performance because of its position and the almost always available

line-of-sight path to the receiver. Fig. 3-11 plots the variations on the channel quality

due to channel impairments and body movements for one link of our experimental

setup. Error bars for all links are not included for readability purposes.

3.7.3 Energy Modeling and Compared Approaches

In our analysis, we consider the energy consumption of the sensors only, without

taking into account the energy of the receiving hub, assuming it is a less constrained

device. This is a typical assumption in the majority of asymmetric networks, like

many WSNs. For the energy consumption calculations, we assume that sensors are

transitioning among four different states: transmission, reception, idling and sleep

states. The power consumption associated with each state is shown in Table 3.2,
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according to the data sheet of [ j. As expected, the power consumption during the

transmission state depends on PTXOt. In the rest of our analysis, we assume that

the power consumption during sleep states is approximately zero and sensors do not

consume any energy.

The upper part of Fig. 3-12 shows the sequence of transmitted and received

packets by a sensor, with timing details, which applies in both scenarios of using

the baseline ARQ and PRAC scheme. Transmission of a packet is followed, after an

interframe space interval (t8 irf), by an acknowledgment packet (ACK) sent by the

hub, indicating its successful reception or not. The transition timings between the

different states (ti, t2 , t3 , t4 and tsifs) and the packet (ACK) transmission (reception)

durations are summarized in Table 3.3 [ , 1. In the lower part of Fig. 3-12 the

power consumption of a sensor is shown over time. We assume that during the

transition times, i.e. sleep to transmission mode, reception to idle mode, etc., the

sensor has a constant power consumption.

The expected energy consumption of a sensor (Ese,), given a transmission output

- Sensor 1
Sensor 2
Sensor 3

-a Sensor 4

- _

73

-

-



74

0

U]
a_

70

60

50

40

30

20

10

n

CHAPTER 3. PRAC: HARNESSING PARTIAL PACKETS

- Sensor 1

-25 -20 -15 -10 -5
Output transmission power (dBm)

Figure 3-11: Channel quality variation of the link 'Sensorl-hub'; similar

observed in the other links but not included for readability purposes.

power, in order to transmit N data packets to the hub is:

Esen (N)
PT Xou t

= E[NEpack]

0

behavior is

=NEpack
T X out

(3.5)

where N is the expected number of transmitted packets and received ACKs, including

the retransmitted ones, and Epack is the energy of the sensor to transmit a packet at

PTxout and receive its ACK. N depends on the transmission parameters, e.g. PTXout,

experienced channel, receiver's sensitivity and the use of a PPR scheme or not. Ac-

cording to Fig. 3-12, Epack is:

Epack = PTx(t1 - tpack - t 2 ) + PENCtpack

+ PIDLEtsifs - PRX(t3 - tack - t4 ). (3.6)

Examining Eq. (3.5) and (3.6), Esen depends linearly on PTX; however, decreasing

PTx impairs packets' received signal quality, increasing the PER and consequently

N. Thus, a trade-off exists and careful optimization is required to ensure minimum
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Table 3.2: Power consumption of a sensor node in different states.

State Symbol Value

78mW, PTXOt = OdBm

54.5mW, PTxt = -6dBm
Transmission PTX

48mW, PTxt = -12dBm

42mW, PTxt = -20dBm

Reception PRX 63mW

Idling PIDLE 14.4mW

Encoding PENC ~ OW

Sleep PSLEEP ~ OW

Table 3.3: Timing notation and their values.

Symbol Description Value

ti transition time from SLEEP to TX mode 0.9ms

t2 transition time from TX to IDLE mode 1ys

t3 transition time from IDLE to RX mode 0.3ms

t4 transition time from RX to SLEEP mode lys

tsif interframe time interval 0.4ms

tframe transmission time of a packet 4.45ms

tack reception time of an ack 0.7ms

energy consumption.

PRAC's recovery performance is compared against an idealized HARQ, represent-

ing an upper bound on the performance achieved by PPR schemes without detailed

feedback in Section 3.6. In this section, PRAC is used in order to capture the potential
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Figure 3-12: State transitions and power diagram for a sensor.

energy benefits of harnessing partial packets. Thus, its energy efficiency performance

is compared against a baseline ARQ protocol which requests a retransmission upon

the reception of a partial packet.

3.7.4 Performance Evaluation Results

Fig. 3-13 plots Esen, the total energy consumption for each of the four sensors,

for both the baseline ARQ protocol and PRAC. In the high PTxOt regime, PER is

low because of the adequate SNR value at the receiving hub. The high PTXout regime

corresponds to SNR values for received packets, reducing average PER. Using Eq.

(3.5), it can be shown that the energy consumption is dominated by the Epack factor

and scales with it.

On the other hand, decreasing PTxOut below some value significantly impairs qual-

ity of transmission, increases PER and results in very frequent retransmission. The

energy overhead associated with these retransmitted packets exceeds the energy sav-

ings through scaling PTXO,'U and dominates the total energy consumption. This be-

havior is depicted by the "u-shape" of all lines in Fig. 3-13.

The lower point in each line corresponds to the optimum PTxOut value for each
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Figure 3-13: Total energy consumption of sensors for both using the baseline ARQ
protocol and PRAC. In this experiment, we assume transmission of N = 100 packets
to the hub.

sensor. In the absence of continuous power adaptation because of the additional

required system complexity for channel tracking, PRAC lowers the energy penalty by

not operating at the optimum energy point compared to the ARQ protocol. This is

captured by the flatter "u-shape" of the lines. In addition, PRAC's recovery process

decreases the required number of total transmitted packets and results in lower energy

consumption. In Fig. 3-14, the average energy savings are plotted for each sensor

with respect to PrxOt. As expected, the benefits are pronounced in the moderate

to high PER regime (medium to low PTxOt) and can be up to 50% in challenged

channel conditions. Averaging the energy savings of each sensor in our experimental

setup across all values of PTXout range, a 8-20% energy reduction is observed with

PRAC.
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Figure 3-14: Average energy savings by harnessing partial packets.

3.8 Summary

The majority of current cWSNs operate in an "all-or-nothing" mode, discarding

partial packets. Because of the useful information contained in these packets, several

schemes have been proposed in the literature to harness partial packets by either mak-

ing use of cross-layer information, introducing some overhead in transmitted packets

or increasing the feedback information sent to the transmitter. In this chapter, a

novel PPR scheme was presented, called Packetized Rateless Algebraic Consistency

(PRAC). PRAC exploits the intra and inter-packet algebraic consistency of a group

of packets, introduced by a rateless linear code and using an iterative decoding al-

gorithm, identifies and corrects erroneous packet segments, significantly reducing the

number of retransmissions. to harmoniously recover them through an iterative de-

coding algorithm. Being PHY independent, it does not require recourse to cross-layer

information. In addition, no overhead occurs in the absence of partial packets and

minimum feedback information is required.

Our implementation and experimental results in a 7-node indoor testbed of fixed

rate links demonstrate an average throughput improvement of 35% compared to a
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baseline ARQ scheme discarding partial packets, which can be up to 148% in chal-

lenged links. PRAC's performance is also compared against a genie-aided recovery

scheme which represents the upper bound of performance for cross-layer schemes

without detailed feedback, achieving an average throughput gain of 13% and 34% in

high PER links. In terms of energy efficiency, PRAC achieves an average increase of

16%, while in high PER links, savings exceed 50% [66, 67].
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Chapter 4

Backward Adaptation for Power

Efficient Sampling

Apart from data communication, information acquisition usually consumes a sig-

nificant factor of the total power consumption in typical WSNs. In this chapter, the

rate and energy efficiency of a nonuniform sampling scheme, called time-stampless

adaptive nonuniform sampling (TANS) is examined. A new method is proposed,

called TANS with finite sampling rates (TFR), and compared against state-of-the-

art methods. Practical implementation details of TFR are discussed. Our simula-

tion results in the context of a health monitoring application demonstrate that TFR

provides significant improvements in terms of both rate-distortion performance and

energy consumption compared against other approaches.

4.1 Motivation

For bandlimited signals, the Nyquist sampling theorem provides an appropriate

uniform sampling setup which leads to a signal reconstruction with zero error [68].

Although the Nyquist sampling theorem defines a sufficient condition on the sampling

rate for bandlimited signals, it does not necessarily provide an efficient representation
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because a signal may seem to have a lower bandwidth locally and thus sampling at

the Nyquist rate seems to be a waste [69]. These extra samples not only increase

the energy consumption of the sampling process, they also create some processing

and transmission overheads. To avoid these energy and rate inefficiencies, sample

redundancies can be removed using a compression method at the expense of increased

computational costs.

An alternative to uniform sampling would be to take samples only when they are

innovative for the relevant application. This leads to an adaptive nonuniform sam-

pling scheme. For instance, a nonuniform sampling scheme based on level-crossing

with iterative decoding is considered in [70], while reference [71] presents an approach

based on level crossings with a filtering technique, which adapts the sampling rate

and filter order by analyzing the input signal variations online. Two adaptive sam-

pling schemes for bandlimited deterministic signals are also proposed in [69]. These

schemes use definitions of local bandwidth, based on linear time-varying low pass

filters [72] and time-warping of bandlimited signals [73]. Two main issues about these

nonuniform sampling schemes make them difficult to be applied in practical applica-

tions: first, they are designed for specific signal models (i.e., they are not generic),

and second, sampling times are required to be kept or transmitted in addition to

sample values, in order to be used in the reconstruction process.

A relatively recent technique, called compressed sensing (CS) [74], has been used as

a signal-agnostic acquisition method for highly sparse signals. In CS-based schemes,

sampling is performed approximately at the information rate, rather than the Nyquist

rate. Since CS has low encoding complexity, it has been adopted in several low power

systems with the goal of reducing the power consumption [75, 76].

In this chapter, we consider a framework proposed in [77] to address the main lim-

itations of previous sampling approaches. This new adaptive nonuniform sampling

framework has two key characteristics: first, it continuously adapts the sampling rate

according to the local bandwidth of the signal and consequently reduces the num-
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Figure 4-1: TANS setup.

ber of captured samples; second, unlike traditional nonuniform sampling procedures,

sampling times do not need to be transmitted, since the receiver can recover them

from the sample values themselves, thus avoiding the overhead of transmitting the

sampling times which is required for traditional nonuniform sampling schemes. This

sampling framework is called time-stampless adaptive nonuniform sampling (TANS).

A new TANS scheme is presented in this chapter, called TANS with finite sampling

rates (TFR). We illustrate its energy efficiency in the context of transmitting an

electrocardiography (ECG) signal from the MIT-BIH database [78]. By using detailed

Verilog modeling of an ECG processor and transmitter, we show that TFR provides

significant improvements in terms of energy consumption compared to the state-of-

the-art.

4.2 Time-Stampless Adaptive Nonuniform Sampling

In this section, we review the TANS framework, proposed in [77]. Consider a

continuous-time signal X(t). Suppose the i-th sample is taken at time ti. Define

T A tj+1 - tj and j A X(ti+1 ) - X(ti), as shown in Fig. 4-1. We take the (i + 1)st
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sample after a time increment of

Ti -"f (ti-M+1 I -.-., ti_1, ti, X(ti-m+J), . .. , X(ti_1),I X (ti)),

where f is called the sampling function, that allows us to reconstruct the time samples

from the sample values themselves. Since the next sampling time step is a function of

the m most recently taken samples, we say the order of the sampling function f(-) is

m. The sampling function has to be known at both the sampling and reconstruction

sides.

This sampling structure is nonuniform except in trivial cases, when the sampling

function is a constant-valued function. The key characteristic of our approach is that,

unlike traditional nonuniform sampling procedures, keeping sampling times (time-

stamps) is not necessary in our framework because these times can be recovered by

using the sampling function and previously taken samples. In the above example, we

have ti+1 = ti + f(Ujim+1{Tj, Aj}). Note that the first m sampling times should be

kept to initialize the process. However, the effect of those initial samples is negligible,

on average, when the number of samples increases.

In the above case, TANS is causal because the next sampling time depends on

samples taken before that time. In general, it can be designed to be non-causal.

TANS is an adaptive process which learns from the signal through the taken samples,

since the sampling function depends on local characteristics of the signal. Finding

an appropriate sampling function depends on different applications with various re-

quirements such as the sampling rate, the distortion requirement, the computational

complexity, etc. Here, to maintain focus on sampling rate and adaptation of sampling

increments, we do not explicitly include quantization effects.
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4.3 TANS with Finite Sampling Rates

In [79], two TANS schemes are proposed; one based on polynomial extrapolation

(TPE), which assumes the third derivative of the signal is bounded, and a TANS

method by incremental variation (TIV). In this section, we introduce a TANS scheme

where sampling rates cannot be arbitrary as in the ones of TPE, but should be chosen

from a finite set {R1, R, ... , Rk}, created according to a specific signal model. In

other words:
__1

Ti = R (4.1)

where si is the sampling index which belongs to {1, 2, ... , k}. This scheme is called

TANS with finite sampling rates (TFR). Similarly to a general TANS framework, the

sampling index at time tj (si) should only depend on previously taken samples so that

storing/transmitting sampling time-stamps would be unnecessary. Computing this

sampling index function depends on the signal model and sampling characteristics.

For instance, consider a signal X(t) with k states which are repeated periodically

with a known order. The expected length of state j is denoted by 1j. We use TFR

with k rates {R 1 , ... , Rk} to take measurements from this signal. Suppose Ni is the

number of taken samples until time tj from the current period of the signal. Then,

the following is a TFR sampling scheme based on a mean-field approximation:

si = arg min r
1<r<k

r

s.t. Z(1,Rs - Nj) > 0. (4.2)
S=1

This sampling function uses N to estimate the state of the signal at time ti, and

then takes samples with the corresponding rate of that state. There are some points

to be noted about this sampling function:

o The TFR sampling function of Equation (4.2) assumes that the beginning of
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Figure 4-2: An ECG signal modeled as a P-QRS-T complex.

each signal period is known or can be detected using the taken samples. This

assumption can be satisfied for some signal models. For example, ECG signals

have a distinguished peak in each of their periods that can be used to detect

the index of the signal period. We will discuss this in more detail below.

" Several parameters of this sampling function should be learned from the signal

during a training period. Specifically, the number of states of the signal, their

expected lengths and their rates should be learned if they are not given.

* Suppose Di(R) is the expected distortion of the state i of the signal given the

sampling rate is R. If Di(R) > Dj (R) for all R, then Ri > Rj. In other words,

a higher sampling rate is used if the signal is more variable in a state.

One practical example of such a signal model is an ECG signal model depicted in

Fig. 4-2. We call the peak region around the point R, state 1, while state 2 covers

the area close to the peak between points Q and S, and state 3 covers the rest of

the ECG signal period. We learn TFR sampling parameters of Equation (4.2) using

a training dataset once, where R1 = 180, R2 = 360, and R3 = 36 samples/sec and

11 = 6,1 2 = 23 and l = 33, on average. Note that, state 2 has the highest sampling

rate among others since detecting a transition from state 2 to 1 at the end of each

signal period is crucial. Specifically, if X(ti) > th (in our example, th = 50), we say
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a transition occurs from state 2 to 1 and a new signal cycle has been started. State

3 is assigned to the lowest sampling rate since there is not much information in this

region of the signal.

4.4 Performance Evaluation on Real Datasets

In this section, we examine the performance of TFR against the other TANS

methods and state-of-the-art sampling schemes in a real application. Although the

comparison is performed in the context of a health monitoring application, the pro-

posed approach and results are generally applicable to a wide range of signals and

applications. Fig. 4-3(a) shows an ECG signal from the MIT-BIH database' [78],

which has been sampled with a frequency of 360Hz and quantized to 10 bits. Us-

ing this signal, the performance of different sampling and compression schemes are

examined and compared based on their rate-distortion curves generated through sim-

ulations. The best scheme would have the lowest rate (i.e. highest compression ratio)

for the same distortion level, or equivalently, the lowest distortion for the same rate.

Since the energy consumption of the sampling process is approximately propor-

tional to its sampling frequency, it is desirable from an energy perspective to take

as few samples as possible. However, the limit on the sampling rate imposed by the

Nyquist theorem guarantees that distortion will be introduced if a signal is sampled

below that limit. Fig. 4-3(b) shows the ECG signal after having been downsam-

pled by a factor of 6 and reconstructed with linear interpolation. As can be seen

in this figure, many of the features of the initial signal are missing. Thus, although

this simplistic technique lowers the energy consumption of sampling and transmission

processes by approximately a factor of 6, it does not provide satisfactory results in

terms of the distortion.

Other techniques have been proposed in the literature which have better rate-

1The DC component of the signal has been removed.
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Figure 4-3: (a) A 6-sec ECG signal from MIT-BIH database, with the DC compo-
nent removed. (b-h) Reconstructed ECG signals with an effective compression ratio
of 6, using different sampling-compression schemes: (b) Uniform Downsampling, (c)
Uniform Sampling followed by a DCT-based compression scheme. (d) Level-crossing
Nonuniform Sampling. (e) Compressed sensing. (f) TANS by polynomial extrap-
olation (TPE). (g) TANS by incremental variations (TIV). (h) TANS with finite
sampling rates (TFR).

88

2 0 0 - - -- - - - - - - --

>100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

(b) Uniform Downsampling

200-

>100 -

10-

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

(d) Level Crossing

200--

100 --

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Samples

(f) TPE

0



4.4. PERFORMANCE EVALUATION ON REAL DATASETS

distortion performance at the expense of higher complexity. In our analysis, we

compare the performance of a few widely used schemes against the proposed TANS

schemes. Fig. 4-3 (c)-(h) show the reconstructed signals of the original ECG signal

after having been compressed by a factor of 6 using different schemes. In more details,

the compared approaches are:

(i) Uniform sampling and compression: One widely used technique to mini-

mize the amount of captured data sampled uniformly at Nyquist rate is to use com-

pression algorithms, either lossless or lossy, where data is mapped to a more efficient

representation before transmission. The majority of lossy compression algorithms

proposed in the literature are transformation-based methods, such as wavelet- and

DCT-based algorithms. These methods project signals to a certain domain with a

more compact representation and, exploiting signal energy concentration, discard the

smallest coefficients through thresholding.

Depending on the application, different transformations may be preferable. In

our comparisons, we use a DCT-based compression algorithm where DCT coefficients

with magnitude smaller than a threshold are discarded. We choose this method

mainly because it exhibits a better rate-distortion trade-off than using a wavelet

transformation [80] and has practical implementation benefits as well [81]. Fig. 4-

3(c) shows the reconstructed ECG signal after having been compressed with a DCT

based algorithm with block size of 2048 samples, resulting in a compression ratio of

6. Adjusting the threshold of the encoding process balances between the required

number of transmitted signal samples and the reconstruction distortion.

The main energy inefficiency of this approach is that samples are taken at the

acquisition stage at a relatively high frequency and then, some of these samples are

discarded during the compression stage, resulting in extra energy consumption. For

this reason, several nonuniform schemes have been proposed in the literature, in which

the sampling moments are triggered only when the signal crosses some predefined

thresholds and consecutive samples close to the same value are not taken.
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(ii) Level crossing sampling: A common nonuniform sampling technique is

level-crossing sampling, where the signal is compared with its previously taken value

continuously and a new sample is taken when the difference exceeds a threshold [82].

However, apart from the samples themselves, time-stamps have to be transmitted

since they are required in the reconstruction process. The reconstructed ECG signal

using level-crossing sampling is shown in Fig. 4-3(d).

(iii) Compressed Sensing (CS): CS is an efficient signal-agnostic acquisition

method for sparse signals [74]. The encoding process of a signal X E RN, being

k-sparse in some domain, is:

Y = 4X, (4.3)

where 4 E RMxN and is called measurement matrix. If M ~ O(k log (N/k)) mea-

surements are taken from a signal X, CS exactly recovers the initial signal with high

probability [83] if 4 satisfies the RIP condition:

(1 - )11s112 5 IIsII 5 (1 + Jk)II s12, (4.4)

for all k-sparse signals s, where 6 k is a constant E (0, 1). Signal reconstruction may

be performed through an optimization problem which can be formulated as:

min 11 8 Il,, s.t. Y = (PIPS, (4.5)
gERn

where AF E RNXN is a matrix representing the synthesis operator of an orthonormal

basis where the signal X has a sparse representation. The initial signal is recovered

by multiplying the solution of the optimization problem with the inverse basis matrix:

X( = I'. (4.6)

Alternatives to this basis pursuit (BP) formulation [84] include lasso [85], the

Dantzig selector [86], greedy methods [87, 88] and iterative methods related to belief
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propagation [89]. Exact asymptotic performance under Bayesian formulations can

be computed using the methods of [90]. In our simulations, a BP reconstruction

algorithm is used, implemented with the CVX optimization package [91]. A Gaussian

matrix is used as the measurement matrix with entries from K(0, 1/N), and a wavelet

basis (coiflet 4) is used as the sparsifying domain. The result of the reconstruction

process is shown in Fig. 4-3(e) for a compression ratio of 6.

(iv) TPE, TIV and TFR: These TANS schemes are adaptive sampling schemes

and their sampling moments are calculated based only on previously taken samples

through their sampling functions, without the need for tracking the current value of

the signal continuously and for transmitting time-stamps. The sampling function of

TFR used in the experiments is described in Section 4.3. Fig. 4-3(f-h) shows the

reconstructed signals using these three adaptive schemes where most of the original

signal features are preserved.

Although subjective distortion metrics have been proposed in the literature specif-

ically designed for ECG signals, here we use two distortion metrics, MSE and PRD,

defined as follows:

N

MSE = (X (n) - Xk(n))
n=1

N 1(~)-Xn 2

PRD(%) = Z"=N X(n) x 100%.
n= 1 X 2 (n)

Different distortion levels for uniform sampling and DCT-based compression is

performed by adjusting the threshold of the encoding process, resulting in a variable

number of DCT coefficients, while for the nonuniform scheme, the rate distortion

curve is derived by using different numbers of quantization levels. For TFR, the curve

is derived by modifying the rates of each sampling region while for TPE and TIV, D

and (thl, th2) parameters are tuned respectively. For the rate-distortion comparison

of these schemes, several ECG signals were used, each of approximately an hour
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Figure 4-4: PRD in terms of the transmitted number of samples for each technique.

long duration. As illustrated in Fig. 4-4 and 4-5, TFR consistently outperforms the

other techniques in terms of distortion across all rate regimes. For instance, at a

PRD of 10%, the approximate rate improvement of TFR is a factor of 1.2, 2.5, 2.5

and 3 compared to a uniform downsampling, a DCT-based compression scheme, a

level-crossing nonuniform sampling scheme and compressed sensing, respectively.

4.5 Energy Analysis of TFR

4.5.1 Implementation Considerations of TFR

A high-level block diagram of a system implementing TANS is shown in Fig. 4-6.

It is composed of a nonuniform ADC and a block implementing the sampling function,

called timing control logic (TCL). The nonuniform ADC shown in the block diagram

is a standard ADC with the only difference that the sample spacing is not even but

rather is dynamically adapted. Thus, triggering the ADC to capture a sample is
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Figure 4-5: MSE in terms of transmitted number of samples for each technique.

not performed by an oscillating clock, as in a uniform ADC, but by the TCL block.

This means that at the acquisition stage, TFR does not need extra circuitry, such as

input voltage comparators, integrators and time-to-voltage converters which are used

in nonuniform sampling schemes such as level crossing. Thus, no additional energy

dissipation is consumed at the acquisition stage.

Depending on the memory (m) of the sampling function, the TCL block stores

the m most recently taken samples and determines the next sampling time. The

block diagram of Fig. 4-6 represents the general case of implementing the proposed

adaptive sampling framework where different variations of the TCL block are used for

different TANS schemes. For instance, the TCL block in the case of TIV calculates

w(ti) using an adder and a divider, compares T with two predefined thresholds and

adjusts its value accordingly. In the case of TFR, the TCL block implements a finite

state machine using log 2 (k) registers, indicating the current sampling rate (Ri). Three

accumulators and two comparators are used to calculate/store the current values of
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Figure 4-6: High-level block diagram of a system implementing TFR. A nonuniform
ADC is controlled by a timing control logic, implementing the sampling function
depending on the signal and sampling model.

the length of each state (1j) and to trigger a state transition, respectively.

4.5.2 Energy Comparison and Evaluation

In this section, we use a detailed system-level analysis in order to examine and

compare the energy efficiency of different sampling and compression schemes. In our

comparisons, state-of-the-art published results are used for each individual component

of these schemes, such as ADC, compression algorithms, etc. Although our analysis is

not an exhaustive comparison of all sampling schemes that have been proposed so far

in the literature, it illustrates the advantages of TFR in terms of its rate and energy

efficiency. In more detail, TFR is compared against the following methods:

" Uniform sampling and DCT-based compression: A high-level block dia-

gram of this scheme is shown in Fig. 4-7(a), where uniformly sampled data at

fixed sampling frequency F, are compressed by a DSP block implementing the

DCT transform and the thresholding process, described in Section 4.5.1.

* Level-crossing nonuniform sampling: Fig. 4-7(b) shows the block diagram

of a level-crossing sampling system using a nonuniform ADC, which can be

viewed as a joint sampling and compression stage. When the local bandwidth

or activity of the signal is low, automatically less samples are taken. To achieve

this, the voltage difference of the input signal with the previously taken sample
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is compared continuously by an analog-front-end (AFE) circuit. When the

difference exceeds a threshold value, the ADC is triggered and a sample (xi)

is taken, along with its time-stamp (ti). This extra circuitry which tracks the

input signal continuously, needs to be powered on all the time which consumes

power constantly. Implementation challenges as well as simulation results are

described in detail in [92], where a low power, low sampling frequency level

crossing ADC is designed and optimized.

9 Compressed Sensing (CS): Two main approaches exist for the implementa-

tion of the CS block shown in Fig. 4-7(c). According to the first, a signal is

sampled with a rate above the Nyquist limit by a standard uniform ADC and

then multiplied by the CS measurement matrix, as explained in Section 4.4, re-

sulting in the transmission of a number of samples (M < N) corresponding to

sub-Nyquist sampling. This approach uses CS as a signal-agnostic compression

technique and, because of its low complexity requirements, has been used in the

design of low power systems [76, 93].

The second approach targets directly capturing signals at sub-Nyquist rates.

Examples of this approach include the analog-to-information converters (AIC)

and random modulators [94, 95]. As explained in [96], for low sampling fre-

quency applications, similar to the one considered in our case, these schemes

consume higher power mainly because of their implementation requirements of

multiple parallel branches with mixers and amplifiers, which makes them more

suitable for high-speed applications. Demonstration of a low power implemen-

tation of these schemes, competitive to the original CS approaches, is still an

ongoing effort. Thus, relying on the arguments of references [93] and [96], al-

though the sampling rate is lower compared to the previously described CS

method, the overall energy consumption tends to be higher and therefore it is

not included in our comparisons.
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Figure 4-7: (a) A system using uniform sampling followed by transformation-based
compression. (b) A level-crossing nonuniform sampling system. (c) A compressed
sensing system.

In our analysis, we assume that all schemes sample the same ECG signal, use a

compression ration (CR) which results in a target PRD value of 10%, and use the

same transmission block2 . The total energy consumption for each scheme is:

Etot =Esamp + Ecompr + ETX, (4.7)

where Esamp, Ecompr and ETx are the energy consumption of the sampling, compres-

sion and transmission stages, respectively. In addition, we assume that the energy

consumption at the acquisition stage is approximately proportional to the sampling

frequency, ignoring any leakage component. So, Esamp can be written as:

Esamp =R - Eref = R pref . t (4.8)

samp samp

2As a reference, we assume that transmitting a bit of information consumes: Ebit = lOpJ/bit in
the transmission block and each transmitted sample is quantized using: Bquant =10 bits.
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where R is the sampling rate and EI,/PM, is a reference energy/power consump-

tion. Based on an ultra low power ADC optimized for low sampling rate applications

[981, we assume that a reference ADC power consumption is 1.6uW for 1kHz sampling

frequency. For the purpose of this comparison, we assume that the time period (t)

equals 6 seconds, which corresponds to the signal duration of Fig. 4-3.

The uniform sampling followed by DCT-based compression and CS schemes sam-

ple the signal at 360 samples/sec, thus their energy consumption is:

Eu, = E , - (0.36 .1.6 -6)pJ = 3.45p J. (4.9)

Using reported results from [92], the power consumed at the acquisition stage of

a low-power level-crossing nonuniform scheme is approximately 23uW, therefore its

consumed energy at the acquisition stage is:

El"m = (23 -6)p J = 138p J. (4.10)

TFR achieves the same PRD by taking fewer samples. According to Fig. 4-4, its

sampling rate for the target PRD is approximately 50 samples/sec, since a compres-

sion ratio (CR) of approximately 7 is achieved, thus its consumed sampling energy

is:

E TFR = (0.05 - 1.6 -6)p J = 0.48p J. (4.11)

The data compression blocks of the considered schemes have different computa-

tional requirements and, therefore, different energy consumptions (Ecomp,). Based on

[99], a low-power implementation of a DCT-based compression algorithm consumes

approximately 166uW, while in [75] the power consumption of CS block is reported

to be around 1.9uW. Thus, their energy consumption for our ECG signal comparison

would be:

Eunif = lmJ and ECSfp 11.41tJ (.2
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Table 4.1: A energy comparison of 3 different schemes for
transmitting a 6-sec ECG signal.

sampling, compressing and

Uniform Sampling Nonuniform Compressed

and Compression Sampling Sensing TFR

ADC 3.45ptJ 138 pJ 3.45 pJ 0.48 pJ

Compression 1 mJ 0 11.4 pJ 6pJ

Transmission 80 pJ 44 pJ 80 pJ 30 jpJ

Total 1083.45 pJ 182 pJ 102.45 pJ 36.48 tJ

Compression in TFR is performed by the sampling function which calculates the

next sampling time. We use a hardware description language (HDL) to model the

sampling function described in Section 4.3 and, using the standard hardware design

flow 3 , we measure the energy consumption of the TCL block of TFR to be:

EFR,. = 6pJ. (4.13)

Finally, the transmission energy is given by:

R
Erx = Ebit- - -Bquant - t+ H),C R

(4.14)

where Ebit is the energy per bit, Bquant is the number of quantization bits and H

is the overhead information in bits used in the DCT thresholding process indicating

the indexes of non-zero coefficients, and in the level-crossing scheme representing the

time-stamps required for the reconstruction process. For the CS and TFR schemes,

H equals zero.

3We model the sampling function using Verilog and then we proceed with synthesis, place-and-
route, extraction and post-layout simulation. CAD tools from Cadence and Synopsys are used, as
well as libraries from a 65nm TSMC process.
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Table 4.1 shows the energy components for each sampling scheme as well as their

total energy consumption. It can be seen that, TFR outperforms all approaches con-

sidered in the analysis. Specifically, TFR provides a benefit of at least an order of

3 in terms of the total energy consumption compared to state-of-the-art sampling

approaches. This energy efficiency benefit is achieved by adapting the sampling rate

without requiring extra circuitry at the acquisition stage and by avoiding the trans-

mission of the time-stamps. In addition, the energy overhead of the TCL block, which

controls the ADC, is significantly lower when compared to standard block-based com-

pression algorithms.

4.6 Summary

In this chapter, we proposed TANS with finite sampling rates (TFR) and analyzed

its rate and energy efficiencies.We demonstrated that TFR reduces the sampling rate

and therefore the energy consumption of the acquisition process. In this framework,

time intervals between samples can be computed by using a function of previously

taken samples, called the sampling function. After creating a detailed implementation

model, we compared the performance of TFR against uniform sampling, level-crossing

nonuniform sampling and compressed sensing. We showed that TFR outperforms all

the compared approaches and significantly improves the rate and energy consumption

of the acquisition process of WSNs [100, 101, 102J.
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Chapter 5

AdaptCast: Efficient and reliable

acquisition, transmission and

reconstruction of sparse signals

This chapter studies the problem of efficient acquisition and reliable transmission

of sparse sources over wireless channels with additive noise. The considered setup

is of major importance for several WSNs since they usually have strict reliability

and power consumption constraints, and the majority of physical signals encountered

in them are inherently sparse. We propose AdaptCast, a PHY integrated signal

representation-to-transmission scheme which parsimoniously describes the collected

sparse data and ensures increased robustness against channel errors across a wide

range of signal to noise (SNR) values in a rateless fashion. AdaptCast's performance

doesn't suffer from the sudden degradation in the tradeoff between distortion and

SNR of rated channel coding schemes owing to its direct, relative bit importance

preserving modulation mapping and denoising reconstruction algorithm. Through

rate-distortion analysis, we prove that AdaptCast is asymptotically optimal in terms

of distortion in the high SNR regime in point-to-point links. Our simulation results

validate our analysis and demonstrate that AdaptCast is applicable to a wide range of
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applications and performs close to an idealized layered transmission scheme in terms

of reliability and end-to-end distortion.

5.1 Motivation

5.1.1 Related Work

A common layered approach for transmission of information in WSNs, justified

by Nyquist's sampling [68] and Shannon's separation theorem [39], is to decouple

signal acquisition, compression of sources (source coding) and reliable information

transmission (channel coding), as shown in Fig. 5-1(a). Source coding techniques

compress acquired data by transforming them to other domains and/or exploiting

statistical source properties [103, 104]. Channel coding techniques insert redundancy

in transmitted data for increased communications reliability in the presence of chan-

nel noise and their incorporation in WSNs is considered in numerous works [5, 6, 7].

Most practical PHY FEC schemes operate without knowledge of the source, treating

equally every bit; unequal error protection (UEP) schemes weight the assignment

of additional resources, e.g. power, frequency or rate redundancy, to each bit de-

pending on its relative importance [105, 106], but their adoption in WSNs is limited

mainly due to their high computational complexity and application specific nature.

Rateless coding schemes are proposed as an alternative approach without requiring

feedback information [49, 107] while some cross-layer schemes provide a wider range

of operational channel SNR [59, 66].

Joint source-channel coding (JSCC) schemes, as shown in Fig. 5-1(b), simul-

taneously compress and enhance the reliability of the acquired information against

channel errors. In certain scenarios, these schemes might achieve superior perfor-

mance compared to layered coding schemes, or the same but with significantly less

delay and complexity. For instance, in the non-asymptotic regime, it has been shown

that the error exponent of JSCC outperforms that of layered coding [108, 109] and
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Figure 5-1: Block diagram of the typical approaches acquiring, compressing and

transmitting analog sparse signals in WSNs. (a) Layered approach following Shan-

non's separation theorem, (b) Joint source-channel coding approach, (c) Compressed

sensing with channel coding scheme, and (d) AdaptCast.

considerable advantages are associated with it in point-to-point [ ] and multiuser

scenarios I , ]. Although these schemes might guarantee gracefully degrading

quality of received information and lower complexity than the layered approach, they

are usually signal-specific approaches [ and/or imply implementation unfriendly,

fully analog or hybrid systems [ I.

Because a plethora of naturally occurring signals exhibit high sparsity levels, e.g.

images and human biosignals, as well as several signals in practical systems can be well

approximated by sparse models, e.g. RF signals in radio receivers, researchers have

proposed specific coding schemes to efficiently represent and process this family of

signals. Compressed sensing (CS) is such a scheme for efficient acquisition of sparse

signals based on random projections and incoherent sampling [ , . Although

systems with CS acquisition, as the one shown in Fig. 5-1(c), have several advantages

over the aforementioned ones, e.g. signal independent operation and lower complexity,

they inherit the typical limitations of PHY FEC schemes of requiring channel state
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information (CSI) for appropriate rate selection and do not perform well in multiuser

scenarios. Apart from signal acquisition, signal sparsity has been exploited in several

works on designing robust channel coding schemes through efficient recovery methods

[116, 1171. The trade-off between the number of measurements and detection errors is

addressed in [118, 119] and the rate distortion behavior of sparse sources is studied in

[120]. The sub-Nyquist sampling effects on the channel capacity and robust channel

coding schemes through efficient sparse recovery methods are considered in [1211.

In summary, the most prominent drawbacks and challenges associated with the

prevailing acquisition, source and channel coding techniques in WSNs of Fig. 5-1(a)-

(c) are the following:

" Signal-specific assumptions: The vast majority of compression techniques and

JSCC schemes are tailored and customized to a specific signal model, preventing

its use across multiple applications.

" "Threshold effect": Practical PHY FEC schemes exhibit an all-or-nothing behav-

ior, operating very well in a point-to-point channel of known SNR, but poorly

in a more challenged environment.

" Limited performance in multiuser scenarios: Coding and transmitting informa-

tion at a rate limited to the worst receiver, which is the prevailing approach for

multiuser transmission in WSNs, and not serving each node at a rate commen-

surate with its channel quality and processing capabilities, severely impacts the

total network performance.

" Feedback and CSI requirements: Instantaneous and perfect feedback increases

the system requirements in terms of transmitted information and available re-

sources, making its incorporation and implementation in WSNs a challenging

and sometimes impractical task.
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5.1.2 Overview of AdaptCast

This thesis proposes an integrated signal representation-to-transmission PHY de-

sign architecture, called AdaptCast, which not only combines the main advantages of

the aforementioned approaches but also addresses their limitations. AdaptCast, ini-

tially presented in [122], is composed of a joint representation-channel coding scheme

followed by an "analog-like" modulation block, as shown in Fig. 5-1(d). The first block

uses concepts from CS in order to take advantage of the inherent sparsity in physical

signals and efficiently represent the captured information without assuming a detailed

signal model. The second block uses dense constellations coupled with a relative bit

importance and distance preserving modulation mapping. Based on the synergistic

operation of these two blocks, AdaptCast exhibits the following characteristics:

* it is application and signal model independent,

9 it provides graceful degradation in signal distortion as channel quality degrades,

* it can simultaneously serve multiple receivers at their highest possible informa-

tion rate, and

9 it operates in a rateless fashion without requiring channel estimation and feed-

back for rate selection.

We investigate AdaptCast's performance through both a rate distortion analysis,

providing asymptotic bounds on its achieved distortion, and simulations with signals

captured in typical sensor applications, demonstrating its signal model independent

operation. In more detail, considering strictly sparse signals with nonzero coefficients

from a Gaussian distribution, we prove the optimality of the proposed method in

terms of distortion asymptotically in the high SNR regime. In addition, we compare

through simulations AdaptCast's performance against an idealized, layered trans-

mission scheme with instantaneous and perfect CSI, and a more realistic one with

outdated CSI in a slow fading environment. Our results show that AdaptCast can
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efficiently transmit information in WSNs across a wide range of channel conditions,

performing close to the idealized scheme in a unicast scenario, while providing signif-

icant advantages in a multiuser setting.

5.2 Notation and System Architecture

This section introduces the notation used across the rest of the chapter and de-

scribes AdaptCast's fundamental ideas and main building blocks.

5.2.1 Notation and Source Model

Consider a memoryless source X which emits an i.i.d. sequence of random vari-

ables X1, X2, - - - . Let x E R' represent a vector of n source realizations, where

x = {X 1i, X 2, -. - X, }. We will refer to x as the source signal and xi as its ith Compo-

nent or coefficient. In our analysis, we consider a high dimensional setting in which

n -+ oc and examine the asymptotic performance of the various coding schemes,

while, in our simulations, n is finite. We define signal sparsity density (p) as the ratio

P= -, k(5.1)n

and based on its value, we identify two regimes: (i) linear regime, where p >-+-o (0, 1),

and (ii) sublinear regime, where p n > 0.

Definition 1 A source signal x E Rn is a strictly k-sparse signal (x E Ek(p)) if it has

at most k non-zero coefficients in a transformation domain defined by an orthogonal

matrix T E Rfln

X E Ek(p) := {x = TO : 0 E R" and IIOIo <_ k}, (5.2)

where 11 o is the o-norm and denotes the number of nonzero components of a signal.
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Several models for the amplitude of non-zero coefficients have been proposed in

the literature, e.g. power laws and Laplacian models. In this chapter, we assume that

they are realizations of i.i.d. Gaussian random variables, mainly because it provides

a worst-case analysis in terms of minimum square error, but also for practical and

tractability purposes.

Definition 2 A source signal x E R" is a Gaussian k-sparse signal (x E Gk(p, ci))

if (i) x is strictly k-sparse, (ii) the position of the k non-zero coefficients is uniformly

selected out of the (') possibilities and (iii) their magnitude is an i.i.d. random

variable, drawn from the normal distribution

x E Gk(p, U ) :={x E R' : x E Ek, Q - .U(1, ()
k/ (5.3)

and xi ~ K(0, x)},

where Q = supp(x) := {i E [n] : xi = 0}.

We assume the signal is transmitted through an AWGN channel of capacity C(oa)

and we measure the end-to-end distortion (D) between the initial (x) and recovered

source signal (X) by the mean squared error (MSE)

MSE(x, -) := E [|Lx - 112]. (5.4)

and the percentage root-mean-square difference (PRD)

PRD(x, X^) := E x 100%. (5.5)

5.2.2 Signal Acquisition

AdaptCast follows the random projections and incoherent bases principles to

achieve a parsimonious signal representation, similarly to CS. In more detail, as-

sume signal x needs to be transmitted to an intended receiver and let di E RMxN
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be a measurement matrix. According to [74], if the measurement matrix satisfies the

R.I.P. condition [123] for all x E Ek(p), where 6 k is a constant E (0, 1), then only

M = O(k log N) coefficients suffice to reconstruct the initial signal with very high

probability. These coefficients are given by the linear operation of

y = <V -X. (5.6)

Each element of y is called a measurement of x. Thus, by only acquiring and com-

municating M measurements of x, the receiver can decode the initial signal within

some desired distortion limits.

Although random projections and CS form an information theoretic suboptimal

compression method in terms of rate [124], it has been widely considered as a can-

didate method for signal-independent acquisition in resource constrained systems

mainly because of its low computational implementation requirements and the fact

that several signals typically encountered in WSNs naturally exhibit high sparsity lev-

els [125, 126]. Section 5.3 and 5.5.1 provide some fundamental bounds and simulation

results on the rate distortion performance of AdaptCast, respectively.

5.2.3 Signal Transmission

After the sparse signal has been efficiently represented by the measurements vector

(y) and quantized to the appropriate level, a dense constellation of a digital modula-

tion scheme is used to transmit the information across the channel. Standard PHY

randomization techniques, such as scrambling and interleaving, and typical PHY FEC

schemes usually result in obliviously created modulated symbols. However, Adapt-

Cast does not use any of these techniques, ensuring that measurements' relative am-

plitude information is preserved across their entire transmission. In particular, the

proposed design preserves the relative importance of transmitted bits by using a di-

rect, distance-based mapping rule and a dense constellation of order matching the
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Figure 5-2: AdaptCast uses dense modulation schemes in which signal measurements

(yi) are mapped to modulated symbols (si) for transmission through a direct mapping.

precision of the transmitted measurements.

An example of such a transmission approach is shown in Fig. 5-2. A QAM

modulation scheme is used with a constellation order that enables direct mapping of

quantized measurements yj's to constellation symbols si's. This property guarantees

that additive channel noise and its local perturbations to the transmitted symbols

will have minimum effect in terms of distortion which will directly depend on the

experienced channel quality, similarly to analog modulation schemes. For instance,

if the '011' symbol is transmitted on the Q-axis and noise causes its demodulation

as a neighboring symbol, e.g. '100', the absolute value of the error is minimum

although three error bits, defined by the conventional BER analysis approach, have

occurred. Thus, unlike Gray coding that ensures one bit error between neighboring

symbols in the constellation diagram, AdaptCast's direct mapping maintains relative

bit significance and provides inherent unequal error protection. This concept is further

explained and its performance benefits are explored in Section 5.4.1.

5.2.4 Signal Reconstruction

At the receiver side, a noise-corrupted signal (s) is received, demodulated and

mapped to an incomplete and noisy set of measurements (s). The recovery of the
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reconstructed signal (X) follows the reverse order of the encoding process and is based

on principles of CS reconstruction [74]. An optimization problem, formulated as

mnin 0| 11|1, subject to y= <b - x - , (5.7)

where - = 0 6, provides the sparsest solution that corresponds to the received

signal. Numerous convex relaxations, such as basis pursuit (BP) [74] and Dantzig

selector [127], and greedy algorithms, such as matching pursuit (MP) [128] and itera-

tive thresholding methods [129, 88], have been proposed in the literature with close to

optimal performance and strong analytical guarantees. AdaptCast approximates the

reconstruction problem of Eq. 5.7 using an optimized orthogonal matching pursuit

(OMP) [130] algorithm, providing a good tradeoff between reconstruction quality

and computational complexity. Section 5.4.2 presents the detailed description and

performance results of the reconstruction algorithm.

5.3 Performance Bounds of AdaptCast

In this section, we examine AdaptCast's rate distortion performance and compare

its performance bounds with the ones of a layered coding scheme. Our analysis

considers only strictly-sparse sources but results can be extended to approximately-

sparse sources as well.

5.3.1 Rate-distortion Performance

The rate distortion function of a source provides a fundamental lower bound on

the rate (R) required to achieve on average a description of the source with certain

reconstruction distortion (D). Closed form expressions of the R(D) function are

known for only a limited number of cases with simple source distributions [103]. A

Gaussian k-sparse source has a mixed distribution and can be written as the product
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of a discrete Bernoulli r.v., which determines the positions of the non-zero coefficients,

and a continuous normal r.v. representing the amplitude [131]. Thus, we can write

X=v - (5.8)

where V - B(p) with p = Pr{V = 1} < 1 and g ~ K(O,u,-3). An asymptotic

approximation of the R(D) function of x E Gk(p, 9-,) is given by Eq. 5.9 and it can

be proved that it is tight in the low distortion regime.

Lemma 1 The rate distortion function of x E Gk(p, o-) can be approximated by

2

R(D) ~ h(p) + - log( ), (5.9)
2 D

where h(p) is the binary entropy function.

Eq. 5.9 can be derived by considering a two-step coding approach for source x E

Gk (p, U). First, the positions of the non-zero coefficients are sequentially encoded fol-

lowed by encoding of their magnitude information. This requires h(p) and _ log( p)

bits, respectively. In the low distortion regime, this process is shown to be asymptot-

ically optimal [120].

5.3.2 Performance of Layered Coding Schemes

According to Shannon's separation theorem, a rate-distortion achieving source

code followed by a capacity achieving channel code does not incur any performance

penalty on the channel cost-distortion trade-off in point-to-point channels, asymptot-

ically [39]. Thus, in layered coding schemes, as shown in Fig. 5-1(a), a source signal

x c R1 is processed by two independent encoders, sequentially mapping the n-symbol

source sequence to an intermediate compressed sequence w E R' (1 < n) and then

to a channel coded sequence y E R" (m > 1) before being mapped to modulated
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symbols s for channel transmission. This optimal performance in terms of the rate

distortion trade off is usually known as optimal performance theoretically attainable

(OPTA).

Lemma 2 The optimal performance theoretically attainable (OPTA) by layered cod-

ing schemes in terms of distortion (Dopta) for communicating x E Gk (p, o) over an

AWGN channel with capacity C(o-) is

P po 22h(p)/p
Dopta (+SNR) 2 .p' (5.10)

Eq. 5.10 can be easily derived by considering the requirement that any coding

scheme should satisfy in order to achieve reliable transmission

R(D) < C(o2), (5.11)

where C(o-) = j log(1 + SNR) and SNR = 4. Thus, the lowest achieved distortion
oz

by layered coding schemes (Dopta), assuming infinite delay and complexity, can be

derived by equating R(D) in Eq. 5.11 with the channel capacity

R(Dopta) = C(o). (5.12)

Using Lemma 1 and the capacity formula of an AWGN channel, Dopta can be achieved.

5.3.3 Performance of Sparse Recovery

AdaptCast does not make the distinction between source and channel coding, as

shown in Fig. 5-1(d). It uses a linear encoding function to map the initial source

signal to a set of measurements and then an analog-like modulation scheme to preserve

the relative importance of transmitted data. Thus, assuming an AWGN channel of
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capacity C(os), the received signal Y E R m is

j = y + z = <Dx + z, (5.13)

where <D E Rxm with n > m and zi ~ K(0, a').

The reverse process of the encoder is followed at the decoder, recovering X through

a demodulation and reconstruction process exploiting the signal's structure - = D(9)

where D(-) : Rm -+ R'. Estimating the initial sparse signal x based on the noisy

received signal (Y) is a foremost problem in signal processing and statistics. Con-

sidering the linear encoding process given by Eq. (5.13), fundamental results from

estimation theory suggest that multivariate linear regression via least squares can

recover the transmitted signal and no other linear reconstruction process can achieve

lower average distortion [132]. Since this approach assumes knowledge of the signal

support (Q), it will be called an oracle-assisted reconstruction process, recovering X.

In more detail, the recovered signal is given by

:i_ = Aiy, and X1, = 0, (5.14)

where Qc denotes the complement of the support set and t the Moore-Penrose pseudo-

inverse operator. Even in the absence of knowledge of the signal support, it has

been shown that the distortion of the recoverred signal can be approached within

a logarithmic factor [86] and many practical reconstruction algorithms have been

proposed with remarkable performance and robustness [88, 129]. Thus, a bound on

the distortion achieved by AdaptCast can be derived and is presented in the following

Lemma.

Lemma 3 Considering the communication of a source signal x E Gk(p, u) over an

AWGN channel of capacity C(u2), the minimum achieved distortion by AdaptCast is

2,2
DAC = C N (5.15)

SN R
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where c is a constant.

Proof sketch: Assuming knowledge of the signal support and appropriate con-

struction of the encoding matrix A so that only the non-zero components are taken

into account, the minimum reconstruction distortion would be

DAC = k . (5.16)

Substituting k = pn and m = O(n) required for successful recovery, we get Eq. 5.15.

Lemma 3 enables us to prove the main result of this chapter, which is the asymp-

totic optimality of the considered coding approach in the high SNR regime. In the

finite SNR regime, it becomes obvious that the distortion of layered coding schemes

reduces faster than the distortion of the proposed sparsity-exploiting scheme, based

on Eq. 5.10 and 5.15.

Theorem 1 In the high SNR regime, the asymptotic performance of AdaptCast in

terms of distortion approaches the distortion achieved by capacity achieving layered

coding schemes

lim (Dopta - DAC) = 0 (5.17)
SNR-*oo

Proof sketch: In the linear sparsity regime (k = p > (0, 1)), Eq. 5.17 can be

derived by combining Eq. 5.10 and 5.15, and applying basic calculus techniques. In

the sublinear regime ( = p -- > 0), we substitute p = c1t and SNR = , and by

letting t -+ 0 we validate Eq. 5.17.

5.4 Signal Reception and Reconstruction

This section describes AdaptCast's demodulation and signal reconstruction pro-

cess. Simulation results on the relative bit importance preservation and smooth degra-

dation of signal distortion as channel noise increases are also presented.

114



5.4. SIGNAL RECEPTION AND RECONSTRUCTION

5.4.1 "Analog-like" Modulation/Demodulation

At the receiver, AdaptCast first demodulates the received symbols (S) using a

standard minimum-distance demodulation rule. The modulation properties, i.e. mod-

ulation type and constellation order, are agreed with the transmitter once and remain

fixed during the signal transmission. The demodulated symbols are parsed and di-

rectly mapped to received signal coefficients (y), following the reverse process de-

scribed in Section 5.2.3. The described pipeline is a linear system which ensures

channel noise is strictly additive and relative bit-importance is preserved, as opposed

to typical modulation pipelines used in state-of-the-art WSNs, in which oblivious

creation of modulated symbols destroys the relative bit-importance information.

Contrary to many applications, such as transmission of big digital files over wire-

less backhaul links, which have strict distortion requirements usually expressed by

specific BER thresholds, several WSNs applications can tolerate some end-to-end

distortion. This implies that BER is not always the most efficient and represen-

tative metric to quantify and optimize for the performance of any communication

system, especially when there are soft distortion constraints. AdaptCast's transmis-

sion paradigm, including the modulation/demodulation step, is specifically designed

to efficiently support the soft transmission of signals in WSNs and achieve a smoothly

degrading performance with respect to the channel noise. This is demonstrated by

an experiment in which a signal is randomly generated, quantized in five bits and

transmitted through an AWGN channel. Two different constellation mapping ap-

proaches are compared: a Gray mapping and AdaptCast's direct mapping. Fig. 5-3

shows the performance of the two approaches measured by PRD(y, ^). AdaptCast's

direct mapping ensures a significantly smoother increase in the distortion as the SNR

decreases due to the relative bit-importance preservation.

The same result can be better visualized by examining not only the frequency

of errors but also their magnitude. Fig. 5-4 plots the error magnitude between

115



CHAPTER 5. ADAPTCAST

40 

-0

0
0

301

1
0-

10 15 20 25
SNR (dB)

30 35 40 45

Figure 5-3: Effect of the constellation order and mapping approach on the received
signal distortion. Gray coding is used for all constellations with dashed lines while
direct mapping is used for the constellation corresponding to the solid one.

transmitted and demodulated samples:

6& = yi - yi. (5.18)

This corresponds to two lines of Fig. 5-3 for a specific SNR value. It can be seen

that, although the frequency of erroneous symbols is higher in the denser (second)

constellation because of the decreased distance of neighboring symbols, the error

magnitude takes significantly smaller values compared to the first constellation. This

happens because of the inherent unequal error protection of AdaptCast's "analog-like"

modulation/ demodulation and direct mapping. The distribution of the normalized

error probability with respect to bit location and importance is shown in Fig. 5-5, in

which bit-1 and bit-5 correspond to MSB and LSB, respectively.
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Figure 5-4: Magnitude of error in the received 5-bit samples transmitted over the

channel.
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Figure 5-5: Normalized distribution of errors in each bit position. Bit 1 corresponds

to MSB and bit 5 to LSB.

5.4.2 Signal Reconstruction

AdaptCast uses a dense constellation with symbols having small distances from

their neighboring ones but channel noise affects mainly their LSBs, as shown above.

Numerous signal denoising methods have been proposed in the literature, successfully

suppressing unwanted noise in captured or received signals. The vast majority of these

techniques are application specific [ , making use of precise signal features

to identify and separate noise. However, since AdaptCast targets a wide range of
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Figure 5-6: Distortion of a reconstructed ECG signal transmitted through an AWGN
channel in terms of its SNR. A block size of 2048 samples (N = 2048) is used.

WSNs applications, a signal-agnostic method is used based on sparse signal recovery

principles. BP [ ], OMP [ ], ROMP [ ] and CoSaMP [ ] are some widely

used reconstruction methods, each of them with different reconstruction quality and

computational complexity.

AdaptCast uses an OMP-based algorithm, mainly because of its robustness in

the presence of noise and relatively low computational requirements. Fig. 5-6 shows

the reconstruction distortion of the algorithm for an ECG signal [ ] transmitted

through an AWGN channel, parameterized by the number of measurements (M), or

equivalently, the compression ratio. It can be seen that the reconstruction algorithm

performs well across a wide range of SNR values and efficiently increases robustness of

transmitted data. AdaptCast's acquisition process not only results in a parsimonious

signal representation but also in increased data reliability by enabling the reconstruc-

tion algorithm to leverage the signal structure and suppress the added channel noise.
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5.5 Performance Evaluation

This section demonstrates AdaptCast's applicability in a wide range of typical

WSNs applications. In addition, it evaluates its performance in the context of a

health monitoring application against two layered coding schemes.

5.5.1 Signal Independent Operation

AdaptCast's acquisition, transmission and reconstruction process is signal agnos-

tic without requiring knowledge or being tailored to a detailed signal model. This

is in contrast with the majority of WSN protocols and systems which employ signal

dependent acquisition, compression and decompression techniques. AdaptCast sup-

ports interoperability among different applications and could potentially contribute

to a universal scheme for WSNs.

The end-to-end distortion achieved by AdaptCast depends on the signal sparsity

and the experienced channel quality, which do not need to be known in advance.

Fig. 5-7 shows AdaptCast's representation and reconstruction performance using

signals typically encountered in WSNs. In more detail, an ECG signal from MIT-BIH

arrhythmia database [136], images from a thermal camera [137], seismic data [138]

and a hydraulic pressure signal from underwater pipe leak detection systems [139] are

used. As expected, every signal has its own information rate and as the compression

ratio increases, representing the signal with fewer coefficients, the distortion increases

as well. However, the figure shows that AdaptCast follows the rate distortion trade

off for all signals in a universal manner, regardless of their signal model and sparsity

levels.

5.5.2 Compared Approaches

We compare AdaptCast against two layered coding schemes following Shannon's

separation theorem, a "genie-aided" and a baseline scheme, in the context of a health
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Figure 5-7: AdaptCast's representation performance for four different signals encoun-
tered in typical WSN applications: ECG signal, IR image from thermal camera,
seismic signal and sound (hydraulic pressure) signal from underwater leak detection.

monitoring application. We assume that a captured biosignal is transmitted from a

sensor node to a receiving hub and we are interested in the achieved reliability and

distortion performance. In more detail, we use an ECG signal from [ ], which is

sampled at 360Hz, quantized in 8 bits and processed in blocks of 2048 samples.

The two layered schemes use a lossy ECG compression scheme of a wavelet trans-

formation with adaptive coefficients thresholding, similar to [ ]. A BCH code sup-

porting two coding rates of (63,30) and (63,51) is used as the channel coding method,

and QAM schemes of three constellation orders (QAM-2 2, QAM-2 4 and QAM-2 6) are

used for signal modulation. The rate selection in the genie-aided scheme is performed

by an ideal genie providing perfect and instantaneous CSI at the transmitter, always

making the optimal rate selection. The baseline uses feedback information trans-

mitted from the receiving node with the acknowledgment frames every fifth packet

in order to adjust the transmission rate. Finally, we assume a slow fading channel

model with coherence time greater than the packet transmission.

AdaptCast operates in a rateless fashion without relying on feedback informa-
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tion. Its system parameters are optimized once for the specific application, providing

the best balance between compression performance, resilience against channel noise

and reconstruction distortion, and are fixed during the entire experiment. In our

experiments, the number of measurements (M) is 800 and a QAM-2 12 modulation

scheme is used. Unlike the genie-aided and baseline scheme, AdaptCast does not

require CSI. Although the reduced feedback information is a crucial design property

of AdaptCast that can lead to significant performance gains, it is not quantified in

the comparison results of this work since we want to decouple any advantage associ-

ated with improved feedback mechanisms from benefits related to the proposed novel

transmission method.

5.5.3 Performance Comparison

The performance of AdaptCast and genie-aided scheme is shown in Fig. 5-8.

The six different rate configurations of the genie-aided scheme correspond to the

dashed lines of the graph and all exhibit similar "threshold effect" behavior; they

perform well above a given SNR value but have a rapid performance degradation

below that. As expected, lower coding rates and smaller constellations correspond to

smaller threshold SNR values. Assuming the existence of the genie and the selection

of the highest possible transmission rate which results in the lowest distortion, the

performance of the genie-aided scheme is the lower envelope of all coding rates. For

instance, at a SNR of 20dB the idealized scheme uses QAM-2 6 and BCH (63,30) since

a choice of the higher coding rate would result in excessive distortion and the lower

rate would lead to unnecessary use of resources, e.g. power and bandwidth.

AdaptCast performs very close to the genie-aided scheme, without access to any

CSI. In the high SNR regime, the additional distortion is due to the sparse reconstruc-

tion algorithm. As the SNR decreases, AdaptCast's distortion is smoothly increasing

resulting in a graceful degradation of the reconstruction quality as the channel noise

increases. This is achieved by the preservation of the relative bit importance and the
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in the absence of instantaneous CSI. In more detail, the fading channel causes signif-

icant performance degradation of the baseline scheme with a considerable standard

deviation, as shown by the error bars. In contrast, AdaptCast exhibits a smooth dis-

tortion increase with the channel SNR and small deviations around the mean PRD

values. Compared to the baseline scheme, for a target PRD of 30%, AdaptCast

performs better by approximately 10dB.

Apart from the good performance in point-to-point scenarios, AdaptCast can offer

significant advantages in multiuser settings in WSNs. For instance, considering a

broadcasting scenario, a sensor node using the predominant layered schemes for WSNs

would transmit in the lowest rate corresponding to the receiver with the worst channel.

This could significantly limit the overall performance. However, because of its analog-

like modulation and rateless coding method, AdaptCast can achieve transmission

information rate to each node commensurate with their individual channel quality

and without requiring feedback information.

5.6 Summary

In this chapter, we present an application-independent integrated source repre-

sentation to transmission scheme, called AdaptCast, for efficient communication of

captured sparse signals in WSNs [122]. AdaptCast leverages sparsity existing in many

physical signals to parsimoniously represent them and, by preserving their relative

bit importance during transmission, it achieves a graceful degradation of the signal

distortion as the channel SNR decreases. According to our simulations results, it

performs close to an idealized layered scheme with perfect CSI in a point-to-point

scenario and provides several performance benefits in multiuser settings. AdaptCast

does not introduce any computational intense algorithm in the transmitting sensor

nodes, limiting its encoding process to a linear operation and pushing most of the

system's complexity to the receiver's side. This property makes it very appealing in
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asymmetric networks, such as the majority of WSNs [67].



Chapter 6

Conclusion and Future Directions

6.1 Summary of Contributions

WSNs is an emerging technology with enormous potential to transform human

lives, improve the operations in several industries and assist in protection of the

environment, just to mention a few compelling uses of this technology. The list

of applications is lengthly and is constantly growing. Their importance has been

highlighted by several governmental, academic and industrial parties, and WSNs are

expected to be a crucial component of the connected and data-driven future world.

Although there are several engineering challenges associated with the widespread

deployment and operation of WSNs, ensuring efficient methods for information ac-

quisition and reliable transmission within the stringent energy constraints of typical

sensor nodes is of utmost importance. This thesis proposes new acquisition schemes

and communication algorithms in order improve the transmitted reliability and overall

energy efficiency of WSNs. Benefits of the proposed techniques are captured through

theoretical analyses, simulations, as well as experiments with off-the-shelf or custom

built systems under realistic conditions. The unique approach of the thesis is to ex-

amine system optimizations, not only across layers of the protocol stack, but also

across different blocks of the sensor node, such as the acquisition and communication
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blocks. In addition, it presents co-optimizations of the proposed algorithms and the

underlying hardware platforms, and the design of custom circuit architectures when

necessary.

The main contribution of the thesis are summarized in Table 6.1, organized per

chapter. Interested readers can also read the corresponding references for more details

on the work beyond what was presented in this thesis.

6.2 Future Directions

Numerous research and engineering challenges need to be addressed in order for

WSNs to realize their full potential. As explained in the previous chapters, signal

acquisition and information transmission are two crucial blocks of any WSN, and op-

timizing their performance could have a significant impact on the overall system. This

thesis covered some topics on these two areas, however there are several opportunities

for future work.

Chapter 2 considers the performance of FEC schemes typically used at the PHY

of WSNs, such as convolutional codes. More powerful coding schemes have been

proposed but they are not currently practical in WSNs because of their high compu-

tational complexity. Low complexity coding schemes or codes performing very well

with short packet lengths are currently investigated in the literature [107, 141]. In

addition, technological advances might allow the efficient implementation of complex

algorithms in low power systems in the near future. Thus, a careful examination and

design of appropriate FEC schemes should be considered.

RLNC is considered in star topology WSNs and its interplay with FEC schemes

is explored through analytical and experimental results. In order to fully exploit

the benefits of RLNC, more complex topologies have to be considered. In addition,

performance benefits of RLNC have to be examined with the whole communication

stack of a sensor node, including the MAC, TCP and application layers, in order to
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Table 6.1: Main contributions of the thesis, organized per chapter.

Thesis Contributions

* Identifies performance benefits of RLNC in star topology WSNs
and explores its interaction with FEC schemes

* Presents the co-optimization of code performance and computa-
Chapter 2 tional complexity

e Proposes the first custom hardware design of a low power trans-
mitter with variable rate FEC and RLNC accelerators

e Proposes a PHY-independent PPR scheme, called PRAC, which
harnesses information from partial packets and reduces the number

Chapter 3 of required retransmissions in WSNs

o Experimental validation of PRAC and assessment of its through-
put and energy efficiency

o Investigates the rate and energy efficiency of a nonuniform sam-
pling scheme, called TANS, and propose a new sampling method,

Chapter 4 called TANS with finite set of sampling rates (TFR)

o Demonstrates the efficiency benefits of TFR against state-of-the-
art sampling methods through simulations in the context of a health
monitoring application

o Proposes a joint signal representation-to-transmission scheme for
WSNs, called AdaptCast, leveraging the inherent signal sparsity

o Proves AdaptCast's asymptotic optimality in terms of end-to-end
Chapter 5 distortion through a rate-distortion analysis

o Validates AdaptCast's signal-model independent operation and
performance in several WSNs scenarios through simulations and
comparisons with other schemes

precisely characterize the benefits. Experimental results presented in Chapter 2 assess

performance of FEC and RLNC schemes assuming no higher layers exist, measuring

the raw performance at the link layer.
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Chapter 3 presents a PHY independent PPR scheme, harnessing information from

partial packets captured in WSNs. Currently, no wireless sensor or card, including

the ones in WLAN systems, exposes PHY soft information to higher layers. However,

because of the advances in the software defined radio (SDR) platforms, that might be

the case in the near future. Thus, extending PRAC to exploit PHY soft information

would significantly reduce the number of retransmitted packets, increasing throughput

and energy efficiency.

A novel integrated representation-to-transmission scheme is proposed in Chapter

5 and its performance is investigated through simulations. The hardware implemen-

tation analysis and practical energy efficiency examination based on detailed energy

models of the underlying circuit architectures is the next logical step for the analy-

sis of the proposed scheme. Technological advances are rapidly changing the design

of different circuit components and the relationship among their main performance

metrics. For instance, micro-electromechanical devices have been proposed in spe-

cific use cases as more efficient compared to traditional RF blocks with better power

consumption and noise behaviors. Even if, based on current designs, AdaptCast is

viewed as less attractive for an efficient implementation targeting WSNs, a detailed

hardware analysis would indicate the break points in the technological roadmap in

which the proposed scheme would be practical and more energy efficient.

Last but not least, considering modern WSN applications, security has emerged as

a crucial feature. As WSNs are serving more and more use cases, sometimes associated

with high monetary values or life critical applications for the general public, protecting

the transmitted information and ensuring resiliency against different attacks becomes

necessary. A holistic consideration of signal acquisition, transmission and encryption

could lead to new insights and practical schemes, which would unleash the potential

of WSNs.
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