
CServ: An Internetwork Architecture Supporting Mission-
Critical Messaging with Probabilistic Performance Guarantees

by

Matthew F. Carey

S.M. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2011

B.S. Electrical Engineering
Boston University, 2009

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in MASSACHUSETTS INSTITUTE

in OF TECHNOLOGY
Electrical Engineering and Computer Science

at the APR 15 2015
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LIBRARIES
February 2016 ARCHIVES

2016 Massachusetts Institute of Technology. All rights reserved.

Signature redacted
A uth o r- --- --- --De p x m en- rical Engineering and Computer Science

January 4, 2016

Signature redacted
C e rtifie d b y ...

Vincent W. S. Chan
Joan and Irwin M. (1957) Jacobs Professor of Electrical Engineering

Thesis Supervisor

Signature redacted
A ccepted by

(I U) Leslie A. Kolodziejski
Professor of Electrical Engineering

Chair, Department Committee on Graduate Students

CServ: An Internetwork Architecture Supporting Mission-
Critical Messaging with Probabilistic Performance Guarantees

by

Matthew F. Carey

Submitted to the Department of Electrical Engineering and Computer Science on
January 4, 2016 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

ABSTRACT

We present the fundamental framework for a multi-service, heterogeneous internetworking
architecture that provides probabilistic, end-to-end quality of service guarantees to the data application
for short critical messages prior to transmission. The class of critical network messages spans many
applications in the civilian and defense network realms, including command and control of crucial public
infrastructure, early warning alerts, and military command dissemination. These network applications
share a need for a high probability of successful delivery with stringent delay requirements. The IP
Internet is not well-suited to bear mission-critical messages across administrative domain boundaries
with these demands because IP is a purely best effort network service and Border Gateway Protocol
intentionally obscures the detailed administrative domain state information needed to describe the
performance of internetwork paths. Current solutions to critical messaging involve the quasi-static
provisioning of circuit connections, an approach that is not scalable for general mission requirements.
The Critical Service architecture presented in this work directly addresses the need to generate a priori
probabilistic guarantees without explicit path reservation overhead in an on-demand and dynamic
fashion.

The Critical Service architecture leverages a logically-centralized control plane, divorced from the
network data plane, which aggregates a compact set of performance state information from
participating networks. While these networks retain autonomy and routing control, we introduce the
State Measurement Service necessary to characterize the intranetwork services offered by these
networks to critical message datagrams. The learned performance measurements are aggregated and
pruned by a local controller such that only the minimal required internal state is revealed to the
centralized arbiter. Internetwork routing decisions for critical messages are made on a transaction-
specific basis using this global state information and the specified service demands of the network
application. An algorithmic method is developed that discovers internetwork paths and composes
diversity-routed solutions that satisfy the requested minimum reliability and maximum tolerable delay
bound performance requirements. A form of source routing using the computed internetwork service
enforces the network-granularity routing solution.

Thesis Supervisor: Vincent W. S. Chan
Title: Joan and Irwin M. (1957) Jacobs Professor of Electrical Engineering

3

4

Acknowledgment

Despite the name on the cover, this thesis is not the product of an individual. It is only through the
inspiration, guidance, and support of many that this work came to be, and I am honored to acknowledge
those contributions here.

First and foremost, I owe the deepest gratitude to my research advisor, Professor Vincent W. S. Chan,
for everything he has done for me during my tenure at MIT. His guidance served as the crux of my
education. Not only did he help to inspire and shape this research, but helped develop my methodology
and calculated manner of approaching all of life's challenges. From my first MIT semester as a pupil
absorbing the basics in his Heterogeneous Networks class to my last MIT semester as a PhD student
under his tutelage, I learned something new from our interactions each and every day. I feel that not
only have I gained a great mentor through this process, but also a great friend.

The other members of my doctoral thesis committee panel served as very important contributors to my
education and research as well. I offer my thanks to both Professor Anantha Chandrakasan and Alan
Kirby for their patience, enthusiasm, and assistance throughout the process of forming and composing
this dissertation. Without their expertise and advice, this work would not be nearly as complete or as
intelligible. I also want to extend my gratitude to John Chapin, in absentia, for his help towards
developing my clarity in preparation and presentation of research material early in my graduate student
life.

I am thankful for the faculty both at MIT and at Boston University who have provided mentorship,
support, and dedication to my education throughout the years. In particular, I acknowledge Professor
Muriel Medard, Professor Robert Gallager, Professor Mark Horenstein, Professor David Starobinski, and
the late Professor Sasha Taubin. These individuals both served as sources of inspiration and provided me
opportunities to become acquainted with the excitement of pursuing the scientific and engineering
unknown.

My time at MIT would not have been quite as enjoyable, productive, or mentally rewarding without my
fellow researchers in the "Chan Clan." Throughout the years, my officemates Shane Fink and Manishika
Agaskar have been a constant source of support, riveting discourse, and hearty laughter. All other
members of the Communication and Network Group of the Research Laboratory of Electronics,
including Henna Huang, Anny Zheng, Esther Jang, John Metzger, Andrew Moran, Antonia Feffer,
Katherine Lin, David Cole, Lei Zhang, Andrew Puryear, Mia Yinuo, Lillian Dai, Etty Lee, Guy Weichenberg,
Joseph Junio, and others, have similarly contributed to my academic development and made coming to
the office every day a pleasing adventure. I am also indebted to Donna Beaudry for her assistance with
logistics throughout the years and for her own delicious "research."

5

I am very appreciative of my "research cousins" across the hall in the Network Coding and Reliable
Communication Group. Many of us began the doctoral program at MIT as a group, and they have
pushed me to success through the desire to compare with their impressive feats, academic
contributions, and buoyant spirits.

I am forever thankful for my other wonderful friends from MIT for keeping me sane and becoming
lifelong companions in the process (some going so far as to serving as groomsmen in my wedding),
especially Bridget Sharei, Collin Mechler, Anisa Mechler, and Ryan Thurston, among everyone else.

Finally, I would like to recognize the most important people in my life: my family. My parents, Kathleen
and Francis, instilled in me the importance of education and a passion for knowledge at a very young
age, ultimately making this academic journey possible. More importantly, they have given me their
unconditional love and encouragement throughout my life, always supporting my varied aspirations and
goals. I am lucky to have such a great brother, Robert; I could not ask for a better sibling or friend. I am
also blessed to have recently gained a second family, including Isaac, Jean, Ian, Emily, William, and
Helena. They have been my sanctuary away from home, accepting and supporting me from our first
meeting. And even more significantly, they have trusted me with the hand of their charming and
gorgeous daughter, Taryn.

It is to my wife, Taryn, that I dedicate this dissertation. On September 13, 2015, as I was finishing this
research and writing this document, I had the honor and pleasure of marrying my best friend and
soulmate. I will forever be thankful for her companionship in my life. Without her love, patience, and
support, this would not have been possible.

Matthew F. Carey
Cambridge, Massachusetts

6

The research in this thesis was funded, in part, by the U.S. Defense Advanced Research Projects Agency
(DARPA) and the U.S. Office of the Secretary of Defense (OSD). Without this support, the work presented

herein would not have been possible.

The views expressed in this article are those of the author and do not reflect the official policy or position
of the U.S. Department of Defense or the U.S. Government.

7

8

Contents

Chapter 1 Introduction...15

1.1 Service Demands of High-Frequency Trading.. 21

1.2 Service Demands of the Tactical Defense Network.. 23

1.3 Mismatch of TCP/IP Internet to the Desired Service.. 26

1.4 Border Gateway Protocol: the Internetworking Impediment... 27

1.5 Proposals for Dynamic Service-Oriented Networking ... 29

1.5.1 Dynamically-signaled Virtual Circuits .. 29

1.5.2 QoS-modified Border Gateway Protocol.. 32

1.5.3 D ifferentiated Services.. 33

1.5.4 Software-defined Networking.. 34

1.6 The Critical Service Architecture Proposal .. 35

1.7 T hesis O rga n izatio n .. 38

Chapter 2 CServ Architecture Overture...39

2.1 Design Objectives of the CServ Architecture.. 39

2.1.1 Probabilistic Delay G uarantees ... 44

9

2.2 Network M odels and Assum ptions ... 51

2.2.1 The Subnet .. 51

2.2.2 Internal Subnet Structure..55

2.2.3 Active versus Passive Routers ... 60

2.3 Flow of a CServ Transaction..63

2.3.1 Pre-Transaction State M aintenance... 66

2.3.2 CServ Transaction Setup .. 71

2.3.3 CServ Datagram Transm ission.. 78

2.3.4 End-to-End Internetwork Diversity Routing.. 88

2.4 Alternate Im plem entation of CServ Intranetwork Service... 92

2 .5 C o n c lu sio n .. 9 6

Chapter 3 CServ Internetwork and Intranetwork Service Headers..........99

3.1 Prelim inary Discussions on Header Control Information ... 101

3.1.1 Addressing ... 101

3.1.2 Datagram Integrity and Authentication..108

3.1.3 Signaling Between Protocol Layers ... 110

3.2 CServ Internetwork Service Header.. 115

3.2.1 Size Analysis of the CServ Internetwork Service Header .. 120

3.3 State M easurem ent Service Header... 122

3.4 CServ Intranetwork Service Header..123

3.4.1 IP-based CServ Intranetwork Service .. 124

3.4.2 M PLS-based CServ Intra network Service .. 125

3.4.3 Explicit Path Forwarding as CServ Intra network Service...126

3.5 CServ Datagram Protocol Overhead Analysis...133

3 .6 C o n clu sio n .. 1 3 6

10

Chapter 4 CServ Performance Metric Learning Protocols 139

4.1 Network Model for State Measurement Protocol Discussion.. 142

4.2 The Learning Session Protocol..146

4.2.1 Endpoints of the Learning Sessions... 147

4.2.2 Datagram s in the Learning Session ... 149

4.2.3 Measurement Components of the Learning Session .. 150

4.2.4 State Measurement Service Header for Learning Sessions .. 155

4.2.5 Learning Session Param eters of Estim ation..159

4.2.6 Learning Session CServ Performance Metric Estimators .. 160

4.2.7 Learning Session Protocol Description .. 164

4.2.8 Analysis of the Learning Session Protocol Subnet Burden.. 172

4.2.8.1 Learning Session Burden: The Petersen Graph..173

4.2.8.2 Learning Session Burden: The Line Network Graph .. 178

4 .3 T he Co llecto r Protoco l .. 182

4.3.1 Endpoints and Participants of the Collector Protocol... 183

4.3.2 Breakdown of Collector Protocol Measurements...184

4.3.3 State Measurement Service Header for Collectors... 189

4.3.4 Collector Protocol Param eters of Estim ation..194

4 .3 .5 T he C o llectio n Process .. 196

4.3.6 Collector Protocol Description .. 204

4.3.7 Analysis of the Collector Protocol Subnet Burden .. 211

4.3.7.1 Collector Protocol Burden: The Petersen Graph ... 213

4.3.7.2 Collector Protocol Burden: The Line Network Graph .. 216

4.4 Com parison of State M easurem ent Protocols ... 218

4.5 State Measurement Service Outside the Routing Core.. 225

4.5.1 External Gateway-to-Gateway Performance Estimation .. 225

11

4.5.2 Access Network Performance Estimation...228

4.6 CServ Performance Metrics Reporting Responsibilities ... 234

4 .7 C o n clu sio n .. 2 4 4

Chapter 5 CServ Internetwork Service - Discovery and Composition.. 247

5.1 The CServ Pre-Transaction Control Flow .. 247

5.2 Fundamental Considerations for Internetwork Service ... 252

5.2.1 Controlled Diversity Routing ... 253

5.2.2 Subnet-Disjoint Paths .. 260

5.2.3 The Reliability and Delay of an Internetwork Path ... 264

5.2.4 Finding Shortest Paths with Reliability and Delay...270

5.2.4.1 Dijkstra's Algorithm and Reliability..276

5.2.4.2 Dijkstra's Algorithm and Delay... 279

5.3 The Graphical Internetwork Representation..289

5.3.1 The "Natural" Representation... 291

5.3.2 The Common Internetwork Representation ... 294

5.3.2.1 The Common Internetwork Cost-Adjacency Matrix..297

5.3.3 The Tra nsaction-specific Internetwork Representation.. 301

5.3.3.1 The Necessary Additional State Information ... 303

5.3.3.2 The Transaction-specific Cost-Adjacency Matrix... 307

5.4 The Critical Service Discovery and Composition Algorithm.. 317

5.4.1 Visualizing the Algorithm Phases .. 317

5.4.2 A Few Supporting Considerations for the CSDCA ... 326

5.4.2.1 The CServ Request Delay Adjustment ... 326

5.4.2.2 Removing Transit Subnets ... 328

5.4.2.3 Composing a Solution .. 331

5 .4 .3 T h e A lgo rith m .. 3 38

12

5 .5 C o n clu sio n .. 3 4 4

Chapter 6 Con clusion ... 34 7

6.1 Final Thoughts .. 348

6.2 Future W ork .. 350

B ibliography ... 355

13

14

Chapter 1

Introduction

The modern Internet is one of society's most important complex engineering systems. It facilitates

communication and the exchange of ideas between individuals separated by vast distances, both

nationally and intercontinentally. Initially designed as a platform for file exchange and text-based

communication between a subset of academic institutions as ARPANET [1] (see Fig. 1-1 for the logical

network map circa 1977), the Internet has evolved in unpredictable ways to support many well-known

communication services, reshaping them along the way. The world has gradually moved from print to

digital publishing, where news stories and magazine articles are increasingly accessed through a vast set

of interconnected hypertext documents known as the World Wide Web (WWW). Traditional telephony

has evolved into Voice over IP (VoIP), eschewing switched circuit-based service. Television broadcast

and on-demand video services are now delivered via IP Television (IPTV), an Internet service that

embodies the aggressive growth of Internet data traffic. In 2011, Internet video traffic, including web-

based video, IPTV, on-demand video, and peer-to-peer (P2P), amounted to 51 percent of all consumer

data traffic, and it is forecasted to encompass 86 percent of consumer data traffic by 2016 [2].

What is fascinating is that a system engineered to provide file exchange services has been successfully

extended to support such varied applications with different service demands. Consider the service

demands of file transfer compared to that of voice or streaming video delivery. File exchange, such as

email service, requires high reliability. A file may be segmented and transmitted in multiple datagrams,

but the requirement is that all of these datagrams arrive at their destination without error. A single

datagram lost or received in error could result in the corruption of the file. However, we do not impose

a strict time deadline on the transfer of the file; the file may arrive at the destination within seconds or

15

it may take minutes or longer. On the other hand, voice and video streaming impose nearly the opposite

demand on the network. Voice and video encoders create datagrams in such a way that not all of them

need to arrive at the destination to hold a conversation or successfully play a video (generally, the

quality of the service is allowed to gracefully degrade as fewer datagrams in a stream arrive successfully

at the destination). In this way, these services do not place strict reliability requirements on the

network. However, there is a stringent delay requirement on each encoded datagram. For voice, there is

a fixed deadline for the reception of some datagrams in order to avoid unnatural speaker interruption

which disrupts the conversation. In the case of streaming video, there is no use for a datagram after its

scheduled playback deadline. In spite of their differences from the exchange of text files, both of these

services have thrived and driven the use of the Internet. In no small part, the use of the Internet to

deliver these services is expected to push global Internet traffic beyond a zettabyte per year in 2015 [2].

At its heart, Internet Protocol (IP), the convergence network layer of the packet-switched Internet,

provides a "best-effort" datagram delivery service. The protocol specification explicitly acknowledges

that the following problems may occur during the delivery of datagrams:

* duplication of datagrams;

* delayed or out-of-order delivery;

data corruption and datagram loss [3].

These errors and losses necessitate the Transmission Control Protocol (TCP), an endpoint belt-and-

suspenders endpoint transport layer that enforces the reliable transfer of information across the

unreliable network and its underlying physical substrates. Based on the tenets of the Internet

architecture, the intelligence of the system is expected to reside at the endpoints rather than within the

network itself. The three functions of TCP are:

1. to provide end-to-end reliability through a datagram retransmission protocol, typically called an

Automatic Repeat Query (ARQ) protocol;

2. to match rates between the source and destination hosts through a dynamic, variable-sized

transmission window (admission control);

3. and to work in conjunction with IP to manage network congestion and enforce a notion of fair

allocation of the network's shared resources.

16

We do not cover the functionality and implementation of TCP here in detail, but a thorough overview is

provided in [3]. The TCP/IP protocol suite was designed with the early driving applications of the

Internet in mind, such as file transfer, focusing on the reliable delivery of all datagrams in a transaction

without enforcing strictly specified time deadlines.

Emergent applications, such as video and voice, with wildly different service requirements have been

designed to use the TCP/IP Internet as their transport, even though this system is not engineered to

provide their ideal service class. Since the Internet layer is a "dumb" best-effort service and the

intelligence resides in the transport layer, these new applications only require software modifications at

the endpoints rather than network infrastructure upgrades. In this sense, TCP/IP has been immensely

successful, enabling rapid innovation without fundamental Internet architecture changes.

However, we consider a class of network applications in this dissertation that require both guaranteed

highly reliable message delivery and guaranteed stringent time deadlines, demands that the current

Internet architecture is not designed to meet simultaneously. What kinds of data applications require

guarantees on both of these service demands simultaneously? We begin by considering some non-

exhaustive application examples from the civilian network space:

* High-frequency automated algorithmic trading - High-frequency trading is a strategy that uses

automated algorithms to hold very short-term positions in financial instruments with electronic

trading capabilities [4]. A lost or unexpectedly delayed trade execution could cost a trading firm

millions in profit. We consider this application in more detail in Section 1.1.

* Emergency alerts - Sensor systems can be deployed to detect and provide warning for natural

disaster, such as monitoring for seismic activity that precedes an earthquake. These networked

sensors can generate emergency warning messages that can be used to proactively mitigate the

impact of such a catastrophic event. However, if the alert message is lost or delayed, the

information may not reach decision makers or countermeasure systems in time, if at all.

* Command and control of crucial infrastructure - The national power grid is becoming an

increasingly networked and automated system (the "smart" grid), where control is often

enacted from operations centers [5]. Critical command messages to the grid's supervisory

17

control and data acquisition (SCADA) system or distributed intelligent power creation,

harvesting, and distribution agents are of utmost importance to the success of this networked

infrastructure. Should these command messages be delayed or lost, particularly if they are

generated in response to the detection of anomalous events, the results on the system could be

ruinous and jeopardize national security.

We can also consider some examples from the defense network space, since many military operations

are becoming increasingly reliant upon the network for critical communications [6]:

* Leadership command dissemination - The delivery of orders down the military chain of

command from human to human is crucial to the success of military operations. In the modern

military, this communication may occur using networked electronic devices. We consider that

the loss or delay of a time-sensitive command message may result in the desynchronization

between military units that are engaged in a joint effort.

* Fire-control systems - A fire-control system requires the coordinated interaction between a gun

data computer, a director calculating trigonometric firing solutions, and a radar tracking

mechanism to facilitate the targeting functionality of a weapon. The networked messages

between these subsystems require strict reliability and bounded time deadlines in order to

ensure that the projectile accurately meets its intended target.

* Tactical early warning alerts - These detection systems and consequent early warning alert

messages are much like those described for the civilian network above. An example in this space

might be a satellite constellation that actively scans for indication of a missile launch and reports

this event to military command, as illustrated in Fig. 1-2. A successful launch detection and alert

allows for the deployment of countermeasures, whereas a lost or delayed early warning alert

message can result in devastating casualties.

These examples are by no means an exhaustive coverage of the applications that require both highly

reliable message delivery and stringent time deadlines simultaneously. We consider the defense

network space in more detail in Section 1.2.

18

ARPANET LOGICAL MAP, MARCH 1977

& L60 OP I PDP -- 0 C Pop -1u EC250||PUI

PP-10 tLTAN IINOIS WPAV [POP-1 PDP-i POP-10

NIV1FET LK9MA SCRI. *k a0

PL I PO 0 MIT S CCA RCC R CC
O/ 41 160/ POP -P -

po-I POP-11gsi~5 SPS- I
POP1 PL IP C PCB6 POP-11

HAWAIo P0 2 t PSA-LT MIT4 -

INMORUTS O OBTANAO 1,N CLAIM CA S MCEPO IS CCRA

4 A M E S S A E l 5M P D P -10 4 9/

PO- 1 0 ECC Iw PSP-i pp

P ~ ~ OV -0 RAV9US Ci0 4 CA O S

Fd om P ut so m ths ap s t lal i rco

networkUME betweenE hosts patiiatn inF th-RAE so ac 197.Cnieig httemdr

F P OP F NW i POP - i \ Y

SCRL I POP

M76 POP AW it 360/$ PIDP-E1 EALII .. _ENa447

V C =STLLE 36C0T 1C 40

P UE -tE NTE t pHA -1. HSM PSM W H 4S OP LAINO N P T R leu ACCO AM TOOI LONDOEN
FPSRATO AP-A120L P -C 9MCNB AG O T ACRC

Internet developed from this project, it is worth noting the stark contrast in scale between this network

and the Internet which now reaches nearly one-half of the world's population [7].

19

F.11 370, RAU Pz -I P p-s 000 PO 41 P P-I

I
/ U

;1~.

I'.M'

Fig. 1-2: This cartoon illustrates tactical early warning alert generation, an application in the defense

network space requiring simultaneous stringent reliability and delay deadlines for the resulting data

message.

20

1.1 Service Demands of High-Frequency Trading

As previously introduced, high-frequency trading is a trading strategy that uses automated algorithms to

hold short-term positions in financial instruments with electronic trading capabilities [4]. At the heart of

high-frequency trading is the objective to exploit securities volatility, sometimes to the tune of fractions

of a cent on the trade [4]. Although this represents a small margin, firms balance this small margin with

high trading volume. To take advantage of slight price variations, these strategies move in and out of

positions rapidly.

Firms generally disaggregate trade flow into components, such as application, middleware, server, and

network, and attempt both to optimize and characterize latency in each functional area through

microsecond-accurate measurements [8]. While high-frequency transactions used to have an execution

requirement of several seconds, the requirement has decreased by 2010 to milliseconds or even

microseconds [9]. Depending on the transaction, a network data packet indicating buy or sell that is lost

or delayed in the network could cost a high-frequency trading firm millions in profit.

Because the current public Internet architecture is deemed not well-suited to bear these trade

executions with guaranteed reliability and delay, trading firms currently purchase expensive highly over-

provisioned network services (capable of satisfying peak demand), reserving resources that are

dedicated to their company's transactions and not multiplexed with exogenous data traffic.

Headquarters where high-frequency transactions are initiated are also established as close as possible to

trade servers to avoid the need for any network routers in the communication path between the

endpoints, as depicted in Fig. 1-3. Reliability and delay performance guarantees are then enforced

through carefully-constructed service level agreements with the network service provider and lengthy

legal battles [10], not through technological means. A network architecture designed to natively provide

reliability and delay guarantees simultaneously for these types of transactions and messages would

likely represent a much more cost-efficient solution for the algorithmic trading firm compared to these

approaches.

21

Fig. 1-3: This illustration shows the typical network approach of the modern day high-frequency trading

firm. The financial transaction center is set up geographically close to trade servers and the company

purchases highly-overprovisioned network circuits between them to circumvent routers and exogenous

data traffic flow.

22

AF

VAT

*4(f

1.2 Service Demands of the Tactical Defense Network

Tactical defense data networks are highly heterogeneous collections of internetworked systems

spanning multiple physical communication modalities, including fiber optics, free space optics, SATCOM,

and tactical edge wireless networks. Many aspects of military operations are becoming increasingly

reliant on these data networks [6] even though they do not currently provide data delivery assurances

as they typically implement IP/TCP protocols and services. Service interruptions due to datagram loss or

network disconnection could have severe operational consequences. In addition to benign sources of

data loss and corruption that most civilian networks must handle, such as link failures and network

congestion, military networks must bear the additional burden that they are high value targets for

adversarial action and thus often subjects of both kinetic and cyber-attack.

In [11], the authors identify a set of defense network applications that they describe as "connectivity-

centric" military applications, or those which require a network service that maximizes the probability of

on-time delivery to mission-critical messages. In Fig. 1-4, we reproduce a tabular summary of the

identified defense applications from this work and their identified differentiation in service demands

compared to the Internet's best-effort network service (referred to as the "high-capacity service" in [11]

and in Fig. 1-4). The specifications in Fig. 1-4 are estimated application communication needs, not

precise or official requirements.

Consider the applications identified in Fig. 1-4, several of which were previously identified in this

introduction chapter. These applications generally want to transmit small messages, on the order of one

kilobyte, with strict time deadlines, on the order of seconds. We had previously mentioned leadership

command dissemination as one of the defense network applications that requires simultaneous high

reliability and stringent delay requirements. The authors of [11] identify that this network application

would like the delivery of the top priority message of one kilobyte within one second. They also identify

a second priority attachment that may accompany the high priority command message, but we focus on

the top priority data. Next consider the emergency alert application, also previously mentioned in this

introduction as an application in this space. The authors of [11] also identify this application as one that

would like the delivery of a critical message of one kilobyte within one second. More applications are

described in Fig. 1-4, most of which are seeking the delivery of short messages on the order of one or

several kilobytes within a few seconds. The primary distinction between the network service that these

23

applications require compared to those that only need best-effort network service are that these

applications want "very high" reliability and "hard deadlines" for the transaction delay.

However, we have indicated that the military already relies upon the data network for many of these

operational applications, even though the modern IP/TCP Internet does not provide the reliability and

delay assurances strictly required. What are the current approaches in the defense network to meeting

these application needs? Much like the solutions to the "high-connectivity" service in the high-

frequency trading space identified in Section 1.1, the defense network currently utilizes techniques that

isolate traffic flows and overprovision resources in order to create guaranteed network service between

endpoints. Specifically, many military communications leverage pre-configured, dedicated circuits

between endpoints. As the terminology indicates (it is rooted in the telephony network heritage),

circuits are provisioned and reserved end-to-end paths that offer predictable communication delay and

constant rate. Through reservation and provisioning, circuit-oriented communication isolates the traffic

from the effects of multiplexing datagrams with exogenous traffic which introduces delay variability and

possibly datagram loss. Further, the use of excess resource headroom through heavy overprovisioning

minimizes the occurrence of data corruption or loss during flight.

The problem with these approaches is that they offer very quasi-static communication channels

between endpoint hosts. After hefty manual configuration to plan operations and allocate network

circuits between critical entities, the network does not dynamically acclimatize to a changing

operational picture that diverges from the original plan. In the very fluid modern operational theater,

especially at the tactical edge, this lack of adaptation can prove disastrous for the mission if conditions

veer into the unexpected.

24

Priority 1 Priority 2 Time
Message Attached data deadline

Command I KB 100 KB I secDissemination (image ilmi)

Emergency 1 KB 100 KBSe
Alerts (image map)

Op. Coordination I KB 0 4 sec
Air Asset Retask 10 KB 0 60 sec
Blue Force Track 0.2 KB 0 1 sec
Over Air Rekey 5 KB 0 20 sec

Recovery 1MB (erg. 4sec
Network Crisis -Blg ones) ________

High-Capacity Service High-ConnectivityAttr-ibute Servxice
Rate Moderate to very high Low to moderate
Delay Best-effort: normally less Hard deadline

than application timeouts e.g. I sec
Reliability Best-effort Very hi2h
Security Minimal Very high
Cost MB Very low High if need be

Fig. 1-4: These tables describing the "high-connectivity service" and a set of defense network

applications in that service space are reproduced from [11] with added emphasis on the service

attributes central to the discussion in this dissertation.

25

1.3 Mismatch of TCP/IP Internet to the Desired Service

The TCP/IP Internet does not provide the network behavior or functionality that we need to guarantee

reliability and delay performance for the classes of applications previously described. We discuss a few

sources of the suitability mismatch here, but this is by no means an all-inclusive consideration.

The IP network service uses shortest path routing to determine the path between source and

destination based on minimizing some cost metric that is determined by the network administrator. This

often means that the endpoint application has no knowledge of the reliability or delay performance of

the chosen path to the destination. If the datagram transaction crosses Internet network domains, this

concern is further complicated by the fact that different network administrators may select different

cost metrics for routing purposes. Thus, there is no guarantee that the path used for transmission of the

datagram is the most reliable end-to-end path or the minimal delay end-to-end path. Even if the path

happens to be one or both of these, there is no way for the network to relay or quantify that for the

endpoint application in order to determine if the path performance meets the application service

demands (such as those discussed in Sections 1.1-1.2).

Although the TCP transport layer provides a retransmission mechanism to achieve eventual end-to-end

transaction reliability, it does not account for the urgency of the message in that retransmission; there is

no distinction between a message that requires high reliability and stringent delay deadline service or

the best-effort message that just needs to get to the destination at some future time (such as an email

exchange). The retransmission of a lost or corrupted datagram is treated just the same as the original

datagram transmission, regardless of the datagram class. Furthermore, since there is no quantification

of the end-to-end reliability of the network path, the first transmission and subsequent retransmissions

of the datagram could be over a path with very low reliability or it could be over a very reliable path.

Retransmission over the same low-reliability path is unlikely to result in the high-reliability and stringent

end-to-end delay service required by the class of data applications that we are interested in. There is no

a priori understanding of the performance of the path or the transmission, hindering the IP network

from providing reliability or delay guarantees to the application.

26

1.4 Border Gateway Protocol: the Internetworking Impediment

There is an additional impediment to providing guaranteed service in the modern TCP/IP Internet, and

that is the standard internetwork routing protocol, Border Gateway Protocol (BGP) [12]. The Internet is

composed of interconnected network systems, called Autonomous Systems (ASes). According to [13],

the AS "is a connected group of one or more IP prefixes run by one or more network operators which

has a single and clearly defined routing policy" that it presents to the Internet. As part of the IP protocol

suite, BGP enables the forwarding of datagrams across administrative boundaries allowing one AS to

exchange datagrams with another. To do so, BGP is used to exchange IP address prefix reachability

advertisements between neighboring or peering ASes. These advertisements specify the destination

addresses reachable by way of that AS network and, if applicable, the path of ASes through which the

datagram would traverse to ultimately reach the destination prefix. Thus, if it so chooses, an AS can re-

advertise a path to a particular address prefix after receiving a reachability advertisement for that prefix

from its neighboring AS peer. An internal version of BGP is further employed to distribute the

information from these reachability advertisements within an AS. Through this protocol behavior, the

federated Internet appears to the source endpoint application as one large network where any IP

address prefix is universally reachable.

As part of a BGP design tenet, the reachability advertisements contain no more performance state

information than the descriptive AS-to-AS path to the advertised destination prefix. They do not provide

details about the delay of that internetwork path or its reliability. Although individual network providers

and administrators have full visibility into their detailed network telemetry (up to the point that their

network equipment allows them), they are reluctant to share the detailed state of their network with AS

peers. This reluctance stems from economic incentives; if a network administrator knows the state of its

competitor, it can leverage this knowledge to suck data traffic load to its own network and generate

additional revenue. Alternatively, a network provider may not want to reveal to its competitor the

detailed internal state of its network when it is oversubscribed and struggling to keep up with demand.

For these reasons, BGP intentionally obscures the exchange of network state information between

neighboring networks. Instead, the protocol is designed to enforce configurable local policy decisions

and enable fair competition between network service providers.

27

In terms of AS internal state exchange, at most BGP allows for the use of a Multi-Exit Discriminator

(MED) attribute to be attached to the advertised AS path. The MED is an abstract value with no concrete

physical interpretation; it does not represent any specific path performance metric, such as reliability or

delay. It is used to indicate to an AS neighbor the preferred peering connection if there are multiple

peering connections between the two ASes. This attribute is generally only used by an AS neighbor if it

has no local preference for one peering connection or another; it may be completely ignored by the AS

receiving the route advertisement if it does not favor its own intra-AS routing policy. Furthermore, this

attribute is non-transitive. The AS receiving the route advertisement does not include this MED attribute

with the AS path if it chooses to re-advertise the BGP route to another of its AS peers. If it includes a

MED attribute with this re-advertisement, it chooses its own MED value based on its preferred peering

connection with the AS neighbor it re-advertises the BGP path to. This behavior means that the MED

attribute cannot be leveraged to reliably pass network state information between ASes even if desired.

Ultimately, there is no global state information available across administrative boundaries in the

Internet due to the intentional obscuration of state by BGP [14], and this inhibits the desire to make

performance guarantees to the identified class of data applications with simultaneous high reliability

and hard delay deadline requirements.

In order to make performance guarantees to the interesting class of applications, we need some

understanding of the performance of end-to-end paths. Many of these paths, especially in defense

networks which involve the interconnection of many disparate, heterogeneous systems, involve

internetwork hops between administrative domains. With the IP Internet and the BGP internetwork

routing protocol, we are hamstrung by the lack of state knowledge of the constituent networks and their

advertised paths. Although the obscuration of state is sensible in some civilian networks that involve

competition between network providers, BGP is not necessary the correct internetwork solution in

other network deployment scenarios, such as with tactical defense networks. In the case of defense

networks, there is often only one "network provider," the national interest. For this reason, state

obscuration by default is not necessary the best approach to internetworking when the network aims to

provide guaranteed service. Even with the exposure of minimal local network performance information,

useful end-to-end performance metrics can be composed for network data applications requiring

rigorous service levels.

28

1.5 Proposals for Dynamic Service-Oriented Networking

In Sections 1.1-1.2, we discussed some current approaches to guaranteed service networking in the

civilian and defense network domains. These approaches, such as static planning and provisioning,

dedicated circuit-oriented communication, and traffic isolation, represent static or quasi-static service

solutions that cannot evolve and adapt at the speed of the network. In many operational scenarios,

network allocation and pre-configuration is impossible to predict with complete accuracy. Particularly in

the scope of military networks, fluid operational pictures make it challenging to plan communications

between all necessary parties. In this section, we consider some existing proposals and techniques for

dynamic service-oriented networking. The discussion of these approaches elucidate the current space of

networking architectures in this area and highlight the lack of an architecture that provides explicit end-

to-end internetwork performance guarantees of the nature required by the class of applications we

have introduced, namely those that require datagram transmission with simultaneous high reliability

service and stringent delay deadlines.

1.5.1 Dynamically-signaled Virtual Circuits

The existing networking technique that gets closest to the goal of providing guaranteed end-to-end

service is that of dynamically-signaled virtual circuits (VCs). VCs are end-to-end packet-switched paths

between source and destination hosts that mimic permanent circuit-oriented communication by

reserving network switching and transmission resources along the path and installing VC label state on

the intermediate routers. The design of early VC technologies reflected the interest of telephone service

providers to use them to carry real-time audio and video traffic over datagram networks [15]. Like

permanent connection-oriented circuits, VCs provide guaranteed service by establishing virtual bit pipes

between hosts that present fixed transmission rate and well-characterized delay and delay jitter to the

endpoints. However, unlike permanent circuits that rely heavily on manual configuration, virtual circuits

use signaling protocols to dynamically establish VCs, reserve network resources, and install the

necessary router state on-demand. The dynamic signaling of VCs generally requires a round trip worth

of communication over the path to reserve and confirm the reservation of the path resources. Once a

VC has been set up, the communicating hosts can exchange data with some guaranteed level of service

that can be characterized in terms of its end-to-end reliability and delay performance.

29

There are many network architectures and mechanisms, past and present, which implement VCs on a

connectionless datagram network, including X.25 [16], Frame Relay [17], ATM [18], and Multiprotocol

Label Switching (MPLS) [19]. MPLS is one of the more ubiquitous VC technologies in the modern

network, encapsulating various network protocols (including IP) and using short label state information

to route labeled datagrams over reserved paths rather than complex routing table lookups. Additionally,

there are several standardized protocols for signaling dynamic MPLS VC tunnels, including the Label

Distribution Protocol (LDP) [20] and the traffic engineering extension to the Resource Reservation

Protocol (RSVP-TE) [21].

We consider that the manual pre-configuration of permanent circuits between every pair of possible

communication peers in a network is infeasible for reasonable size networks. This level of configuration

and management overhead becomes intractable for networks of reasonable size. Additionally, as the

number of hosts in the network increases, the required number of permanent circuits grows

quadratically. Instead, can we use transaction on-demand dynamically-signaled VCs between

internetwork communication endpoints to generate guaranteed service paths for the interesting class of

data applications? If we assume that all network domains in the internetwork path support the

establishment of inter-domain VCs (which is not necessarily a given), consider the following

internetwork example illustrated in Fig. 1-5. In this instructive toy example, using a defense network

framework, we assume that military headquarters wants to disseminate a critical command to an officer

in the field with guaranteed end-to-end delay of at most one second (see Fig. 1-4 for this service

requirement). The network path that connects the command base to the officer involves the transit of

multiple network domains, including transmission over a ground fiber optics backbone connecting the

base to a satellite ground terminal, a SATCOM relay in geosynchronous orbit, and a tactical edge

wireless hop. Considering the one round trip time required to dynamically reserve the tunnel, this VC

establishment phase may at minimum require two-thirds of a second due to the geosynchronous

satellite relay hop which can easily contribute up to one-third of a second delay in each direction.

Ignoring the transmission delays in the other network domains in the path, this setup time plus the

command message transmission delay is already riding the very ragged edge of the one second service

requirement. This example demonstrates that dynamically-signaled VCs are not necessarily feasible

service solutions in the domain of some of the driving data applications that we are interested in. We

would like a dynamic solution that avoids this per-transaction path round trip time for service setup.

30

G EO

........ 1/3 s

Round trip internetworkVC setup

Fig. 1-5: The round-trip time required to establish a dynamically-signaled internetwork VC prior to data

transmission is limited by the delay of the path, which in this example is dominated by the SATCOM

relay in geosynchronous orbit (and can be on the order of 1/3 second).

31

AA. - -dh; __ ___ - - - ---

1.5.2 QoS-modified Border Gateway Protocol

In [22], the authors propose to add Quality of Service (QoS) state information as attributes to BGP

advertisement update messages to supplement the specified AS path information, addressing the

opaqueness of the protocol as described in Section 1.4. To quantify and exchange QoS state, the

proposal requires that interior gateway routing protocols (IGPs), such as Open Shortest Path First (OSPF)

[23] [24] or Intermediate System to Intermediate System (IS-IS) [25] [26], are QoS-aware and implement

traffic engineering extensions (e.g. OSPF-TE [27] and ISIS-TE [28]). Their internetwork routing protocol

modification includes several enhancements to BGP that enable inter-domain routes to be selected by

an AS using the local QoS-aware IGP state and BGP advertisements from peers with summarized QoS

state for the advertised paths. These inter-domain routing decisions can be based on path mean delay,

minimum bandwidth, and datagram reliability. The selected routes are then enforced either by explicit

source routing [29] or inter-domain dynamically-signaled MPLS forwarding.

Although this proposal enables internetworking with some performance quantification, a feature we are

unable to achieve with BGP alone, it directly violates the privacy design precept of the protocol by

exchanging internal network performance state directly with AS peers. After the receipt of a BGP route

advertisement with attached performance attributes for that AS path, an AS neighbor has learned some

internal state of a network that it may be in competition with. We would like to avoid directly exposing

internal network state to neighboring networks in a service solution for the interesting class of

applications.

Additionally, since BGP is a policy-oriented protocol, an AS must trust that it is receiving advertisements

for the best AS paths from its peers, or at accurate performance metrics for the paths. If the objective of

the network is to offer guaranteed inter-domain service that meets the performance demands of the

interesting class of data applications, this approach does not afford much opportunity for path choice or

flexibility in service composition. If a BGP neighbor advertises one AS path for a particular destination

prefix with one set of QoS state, that may be the network's only known option for reaching the intended

destination even if other options exist. Should the performance of this advertised path not meet the

needs of the data application, the network receiving this advertisement is not aware of any other

opportunities to reach the destination prefix with superior end-to-end performance. An ideal

32

architecture would be aware of the breadth of opportunities for composing end-to-end internetwork

paths, which would allow for efficient routing and decision making at the global scale.

Once a path is chosen, even if its one-way transmission delay does meet the needs of the data

application, dynamically-signaled inter-domain VCs may still be necessary to enforce the selected

internetwork path. This means that we are potentially back in the same situation as identified in Section

1.5.1 where the per-transaction round trip overhead associated with VC setup precludes the ability of

the tunnel to ultimately satisfy the performance requirements.

1.5.3 Differentiated Services

Differentiated Services (DiffServ) [30] is a coarse-grained, class-based mechanism for traffic

management that is integrated with IP. This technique uses IP-based QoS markings on individual

datagrams to specify router per-hop behaviors, indicating the level of treatment that datagram should

receive compared to those of other classes. The details of how individual routers deal with DiffServ

markings are configuration specific, but they may involve prioritized queueing and switching or

guaranteed rate service for a particular service class. This service-oriented networking mechanism does

not entail any per-transaction setup or resource reservation. As long as routers in the network are

DiffServ capable and have stored pre-defined per-hop behaviors for a given class marking, the DiffServ

datagram needs only to be marked by the source or network edge router as a member of that traffic

class to receive treatment as such.

The issue with this approach to service-oriented networking is that it does not provide any end-to-end

guarantees. Marking a datagram as a member of a particular DiffServ class indicates to the routers that

the sender wants the datagram to be treated with some priority compared to the other markings. The

actual implementation and realization of this prioritization in the network is not assured. Since datagram

treatment is configuration specific, one router may treat a class of datagrams completely differently

than a neighboring router, or it may not necessarily respect the DiffServ class marking at all. This lack of

consistency makes it difficult to predict or characterize end-to-end behavior within a network domain,

let alone inter-domain end-to-end performance. Ultimately, the DiffServ architecture is useful to

indicate relative datagram priority, requesting that a class of traffic receive a distinguished level of

treatment with respect to another.

33

1.5.4 Software-defined Networking

Software-defined networking (SDN) is an emerging research and development area in the service-

oriented networking domain. The scope of this area is fairly broad and often difficult to capture

succinctly and inclusively, particularly as the field is experiencing rapid growth among both the research

and commercial communities. It is generally accepted that there are two characteristics that define SDN

architectures:

1. the decoupling of the network control and forwarding planes;

2. and the programmability of the control plane [31].

Neither of these characteristics is particularly new in and of itself; the novel aspect of SDN comes from

the fact that it provides programmability through the decoupling of the network control from the data

plane. In the extreme, intelligence previously required at the router can be moved to the network

controller, allowing for simplification of the switching device architecture. All routing decisions can be

made by the logically-centralized control plane, and the data plane is only required to enforce the rules

composed by this entity. The logically-centralized controller is exposed as a programmable interface,

introducing flexibility into the offered network services. With such a general definition, it is impossible

to describe the scope of SDN in this introduction chapter. We refer the reader to [31] and [32]; these

surveys discuss the SDN concept, the benefits, the challenges, the security concerns, and some of the

previously proposed architectures.

We identify the SDN research area as an attractive opportunity for providing end-to-end internetwork

performance guarantees. The existence of a logically-centralized control plane introduces the

opportunity to aggregate necessary performance state from disparate network domains to characterize

end-to-end inter-domain path behavior without the need to expose this information directly to

neighboring networks. However, most existing SDN proposals have focused on other applications, such

as implementing virtual private networks (VPNs) or green computing architectures [31]. Proposals to use

the SDN approach for the composition of specific network services have focused on the incorporation of

organization-specific policy (e.g. Health Insurance Portability and Accountability Act compliance) or

application servers (e.g. servers running virus scanning programs) [33], rather than the formation of

performance-guaranteed network services that meet the specified QoS needs of network applications.

34

With this in mind, we present our proposed architecture which provides explicit end-to-end

internetwork service guarantees to critical network applications, such as those previously identified in

this chapter, that require high reliability service with hard delay deadlines.

1.6 The Critical Service Architecture Proposal

In this dissertation, we propose an internetwork architecture that is natively designed to serve the needs

of the interesting class of data applications previously identified. We call this the Critical Service

architecture, or CServ architecture. As individual network domains have deep visibility into their own

detailed state and operating conditions, we consider that the internetwork transmission of datagrams

with strict reliability and delay requirements provides the most challenge to the current IP architecture

with BGP as the internetwork routing protocol.

We denote the class of network applications that want simultaneous high reliability and stringent delay

deadlines for their datagram transmissions, some of which were described in Sections 1.1 and 1.2, as

critical service (CServ) applications. Similarly, we identify the datagram traffic they generate as critical

service (CServ) datagrams. These are the most critical of all applications using the network - those that

control crucial infrastructure, relay time-sensitive military commands, execute high-risk algorithmic

trades, and provide early alerts about impending situations or dangers to systems and command

centers. As motivated by these examples, the CServ datagram traffic class uses short critical messages,

usually on the order of one kilobyte, to transit the necessary information. For the purposes of this

dissertation, we assume that these transmissions are unicast, meaning from one specific source host to

one specific destination host. If multicast transmission is required, it can be treated as the superposition

of multiple unicast transmissions. And, importantly, this CServ traffic represents a very small fraction of

the total network traffic, on the order of less than one perfect of all datagrams in the network. The

network applications generating datagrams in the critical service class must ensure that these are the

most important messages in the network. If too many datagrams are generated in the critical service

class, they quickly begin to appear as best effort datagrams respectively. There must be a clear and

significant distinction within network applications between typical best effort datagrams, such as IP

datagrams, and critical service datagrams.

35

The CServ architecture is a multi-service, packet-switched internetwork architecture designed to

natively support two distinct traffic classes: critical service datagrams and standard best-effort

datagrams. While the network service provided for best-effort datagrams is functionally equivalent to

that offered by IP networks, the experience of the critical service class diverges significantly. Prior to the

transmission of a CServ datagram in the CServ architecture, the source host application receives two

explicit end-to-end guarantees regarding the internetwork service offered for that datagram. Namely,

the source host application receives a guarantee on the reliability of that transmission, or the one-shot

probability of success that the CServ datagram will arrive at the specified destination host, and a

probabilistically bounded guarantee on the end-to-end transmission delay.

In providing these guarantees, the CServ architecture has a very specific goal. Unlike the specification of

"connectivity-centric applications" in [11] which generally desire the maximized probability of on-time

delivery to support mission-critical messages, the CServ architecture takes the performance

requirements of the specific mission-critical application and specific datagram transmission in terms of

reliability and allowable delay and explicitly computes an internetwork (or possibly an intranetwork)

service solution that satisfies those demands. The solution is tailored to the needs of the application.

In computing the dynamic and on-demand application-specific network service for CServ datagrams, the

CServ architecture does not require any per-transaction end-to-end reservation (such as needed for the

creation of internetwork VCs). Simultaneously, the CServ architecture continues to allow for

autonomous control within individual network domains in the internetwork topology; network providers

and administrators are not required to implement any new routing or forwarding solution within the

core of their network domain if desired. The CServ architecture levies only minimal upgrade

requirements on the edge routers within a domain, as well as the inclusion of a novel logically-

centralized control entity. Furthermore, network providers and administrators do not need to directly

expose internal network state to neighboring or peering networks. The CServ architecture requires only

minimal exposure of internal network state at a high description level to a logically-centralized control

structure, and the minute details of the internal state of the network (such as topology, loading, and

network health) are free to remain concealed from other network providers or administrators.

36

There are several pillars to the CServ architecture that makes its design possible, several of which share

traits with the related proposals for dynamic service-oriented networking in Section 1.5. We summarize

those vital aspects of the architecture here:

1. a hierarchical control structure allows individual network domains to retain control over their

own internal routing and forwarding decisions while a logically-centralized global control plane

can make internetwork routing decisions;

2. a state measurement and reporting service serves as the glue between the hierarchical control

layers, allowing individual networks to estimate and report the performance of their preferred

intranetwork routing service solutions in terms of reliability and delay which empowers the

global controller to determine internetwork routing service;

3. an internetwork diversity routing strategy enables a highly-reliable and survivable one-shot

internetwork messaging service that can meet the service requirements of critical network

applications;

4. and priority queueing and transmission for CServ datagrams where available (but not strictly

needed in all networks) ensures some distinction in data plane service for the most important

messages in the network compared to the best effort messages.

This list of central features for the CServ architecture indicates that it is not wholly detached from other

service-oriented network proposals. For example, the separation of the control plane from the data

plane shares the primary characteristic of an SDN, but the CServ architecture takes this separation a step

further and introduces the notion of hierarchical control plane design. Similarly, priority queueing and

transmission for one traffic class and not another resembles the intent of DiffServ, but the CServ

architecture places this capability in a holistic internetwork framework that can leverage this technique

to actually provide end-to-end explicit performance guarantees.

Although none of these architectural concepts are particularly novel alone (several of these architectural

building blocks were indeed identified as necessary for a survivable tactical defense network in [34]), the

framework and interaction between these architectural components is what sets the CServ architecture

apart as a fresh service-oriented network proposal. In the remainder of this thesis, we discuss these

components and their interaction in much more detail after introducing the operation of the CServ

architecture more thoroughly in Chapter 2.

37

1.7 Thesis Organization

The following provides a brief outline of the dissertation document.

Chapter 2 provides further motivation for the CServ architecture and its operation before walking

through the details of a CServ transaction. The description of the transaction flow includes pre-

transaction network state maintenance, pre-transmission control plane transaction setup, and the data

plane internetwork transmission of the CServ datagram.

Chapter 3 focuses on the operation of the data plane, specifying the data plane header control

information required to simultaneously enforce the routing decisions of both the global internetwork

controller and the local intranetwork routing and forwarding policies.

Chapter 4 examines the State Measurement Service that provides the connection between the different

control levels in the control plane hierarchy. This service is used to learn the performance of the

network services offered by the different network domains without disclosing detailed state and

topology information. In this chapter, we discuss several protocol options that realize the goals of this

architectural component.

Chapter 5 considers the representation of the network at a global level and the operation of the

logically-centralized top-level controller. As a chapter highlight, the algorithm used to determine

internetwork service that meets the transaction-specific demands of the critical service applications is

described and analyzed.

Chapter 6 concludes the dissertation and, as this work represents an initial architecture consideration

and description, discusses some necessary directions for future research on the CServ architecture

design.

38

Chapter 2

CServ Architecture Overture

This chapter serves as an overture to the remainder of the thesis; the objective is to introduce the

reader to the Critical Service (CServ) architecture and its operation. After specifying the design goals of

the architecture, we present the primary components, both hardware and software, through a step-by-

step walkthrough of the flow of a typical CServ transaction. While not a thorough coverage of all details,

this is intended to familiarize the reader with the different aspects of the architecture and promote the

in-depth treatment and discussion of these components in the subsequent chapters. Several

architectural design features lend themselves to alternative implementations, and this chapter also

serves to introduce some of these considerations and trade-offs.

The structure of the chapter is as follows. In Section 2.1, we explicitly describe the goal of the CServ

architecture, as seen from the viewpoint of the end-user of the service. Section 2.2 outlines assumptions

about the network structure used in the remainder of the dissertation and the significance of the

validity of these assumptions. A step-by-step presentation of the end-to-end flow of a standard CServ

transaction, from transaction setup to data plane transmission, follows in Section 2.3. Finally, Section 2.4

considers an alternative approach to the CServ transmission flow, framing further discussion for

architectural implementation alternatives and options as the treatment of the CServ architecture

progresses throughout the document. We conclude the chapter in Section 2.5 and highlight the

architectural components to be covered in more detail in the remainder of the document.

2.1 Design Objectives of the CServ Architecture

As motivated by the discussion of the driving application spaces and related service-oriented

architectures in Chapter 1, we present the objective statement of the CServ design.

39

CServ Architecture Objective Statement - The objective of the CServ architecture is to provide

explicit, probabilistic guarantees on the performance of the end-to-end internetwork

transmission of critical service datagrams, which exist alongside best-effort traffic, from source

host to destination host.

These probabilistic guarantees are based on the most recently available global network state

information, and they are presented to the source host end-user application prior to the transmission of

the critical datagram. In doing so, the end-user is endowed a priori with an understanding of how its

internetwork transmission of the important datagram will fare, a vital component of planning and risk

management when transmitting critical, time-sensitive data over an unreliable set of network

substrates.

We break down the different aspects of the design objective statement, beginning with the critical

service datagram itself. The payload supported by the service is a short message, approximately one

kilobyte, such that the CServ datagram with header control information is approximately the size of one

standard Internet Protocol (IP) datagram (1.5 kilobytes, based on the Ethernet v2 maximum

transmission unit [35]). The structure of the CServ datagram header and payload are further discussed in

Chapter 3. The size of the datagram should be sufficient to bear entire transactions for most applications

that wish to leverage the critical service class, including the examples discussed in the defense network

application space [36] and the commercial high-speed algorithmic trading space. If an application

generates a critical message payload that exceeds one kilobyte, the application should fragment the

data and transmit the message as multiple independent CServ transactions. The decision to constrain

the size of the payload supported by the critical service is manifold:

1. It avoids head-of-the-queue blocking by an "elephant"-sized CServ transaction.

2. It promotes high-availability of the service for many CServ users.

3. It enables the architecture to use CServ datagrams for active probing purposes without

needlessly degrading excess network bandwidth.

4. It allows for an alternative CServ implementation proposal where there is no service class

distinction between CServ datagrams and IP-like best-effort datagrams (to be discussed later).

40

The second component of note from the objective statement is the existence of the critical service class

alongside best-effort traffic. Best-effort delivery service does not provide any guarantee on message

performance or specify any particular quality of service level. An everyday example of this type of

service is the postal service - delivery of letters are not scheduled in advance, the delivery of letters may

be delayed unexpectedly if there is a burst of postal service demand, and the sender of a letter is not

informed of letter delivery (at least for the baseline postal service level). Compare this with a

communication network best-effort delivery service, where the most ubiquitous example is the network

layer Internet Protocol (IP) [291. Internet Protocol datagrams may be lost, arbitrarily delayed, corrupted,

or duplicated as they traverse the network. Endpoint transport layer protocols and applications

implement the necessary additional end-to-end services on top of this inherently unreliable data

delivery network service. Many network applications have been developed in this way, including file

exchange using the supplemental reliability of Transmission Control Protocol (TCP) [37] and Internet

streaming video through specific video encoding techniques (e.g. MPEG-4 AVC [38] [39]) that accept

periodic datagram loss at the network level. However, as discussed in Chapter 1, the best-effort service

of IP is not sufficient for explicit end-to-end quality of service guarantees across network boundaries,

such as those that the CServ architecture is designed to provide. Thus we differentiate between the two

different classes of service in the CServ architecture: critical service and best-effort. We assume that the

best-effort class continues to provide network service for those applications it is well-suited for,

whereas the critical data class is only used by the high priority subset of network applications that

require its a priori end-to-end guarantees. Internet Protocol can be used to implement the best-effort

service to ease the transition from today's predominantly IP-centric networks to the CServ architecture,

but this is not required in the design. Furthermore, a central concern in the design of the CServ

architecture is to ensure that the operation of the critical service class does not needlessly degrade the

operation of the best-effort service class, even though critical service data is tacitly a higher-class

network citizen compared to best-effort data. (We note here that this prioritization between the classes

may be explicit depending on whether or not parts of the network implement priority queueing and

transmission for CServ traffic; more on this to come later.)

The third component of the objective statement we discuss further is the specification of internetwork

critical datagram transmission. Most network systems are in fact a network of networks, such as the

Internet, a federated collection of many interconnected Autonomous Systems (ASes). ASes are a

collection of IP address prefixes under the control of a single administrative domain (or entity, such as

41

an Internet Service Provider) that present a common routing policy to the rest of the Internet [401.

Network administrators are afforded wide latitude in the design and implementation of the internals of

their network, such as with the selection of hardware and software vendors, topology optimization and

routing strategies, and security and management practices. The autonomous but interconnected

structure of the Internet allows for growth at scale, as well as healthy competition. For the purposes of

conveying data between ASes, Border Gateway Protocol (BGP [12]), part of the Internet Protocol Suite

standard, enables forwarding of IP datagrams across administrative boundaries. Through this federated

internetworking behavior, the Internet appears to the end-user as one large entity where all IP address

prefixes are universally reachable. We anticipate that future network architectures will also be

implemented as an interconnected set of systems, where different systems may be administered by

disparate organizations or entities. While network providers have full visibility into their detailed

network telemetry, they are understandably resistant to share this information with their competitors

who may operate neighboring (or peering) networks. As discussed in Chapter 1, this desire for network

state privacy is readily observed in the design of BGP, which advertises IP address prefix reachability to

neighboring networks without any path performance metrics. For these reasons, we consider the

eminent challenge of the CServ architecture to be the implementation of guaranteed-performance

paths across network boundaries, where detailed network state is frequently not exchanged. Even with

common administrative control over different networks and the elimination of the need for state

obscuration, full state exposure of many networks poses a scalability concern that the CServ

architecture design aims to avoid. Before moving on, we mention here that intranetworking service with

performance guarantees can be achieved since the necessary state is readily available within a network

domain. In general, we need to understand intranetwork performance before we can characterize

internetwork performance, and thus we consider this as a subproblem of internetworking critical

service.

The part of the architecture objective statement that indicates the characterization of performance end-

to-end, from source host to destination host, is the fourth aspect that we highlight for discussion. There

are several implications that can be collected from this phrase. First, we are interested in capturing the

performance of the entire internetwork path that connects the two communicating parties, not the

performance of a subset of the path. This is particularly significant in light of the above consideration of

the challenges of internetworking, where state of the different network components of the route are

traditionally not revealed globally. Second, we consider a host-centric communication model where the

42

two endpoints of the critical data exchange are individual network hosts. Specifically, this means that a

critical message is generated by a specific host on the network and is ultimately destined for another

explicitly named host on the network. This is in contrast to some future network architecture proposals

(e.g. the eXpressive Internet Architecture [41] and Named Data Networking [42] Future Internet

Architectures) that shift the network addressing focus from hosts to content; in these frameworks, the

addressing scheme specifies desired content requests rather than the host on which the content resides.

And lastly, our architectural emphasis is on unicast critical communication between two hosts, the

source and the destination, and multicast critical messaging transactions are currently implemented as

multiple unicast CServ transactions initiated by the same source host. That being said, the presented

CServ architecture can be extended to address explicit multicast CServ transactions.

The last, and arguably most crucial, component of the architecture objective statement is that of a priori

probabilistic guarantees on critical datagram performance. To begin, we clarify what we mean by

performance. In the CServ architecture, we have two primary metrics of concern that together describe

the end-to-end performance of a critical datagram: reliability and delay. With the intention of endowing

end-user applications with knowledge of how the CServ datagram will fare before it is transmitted, we

posit that these two metrics summarize the information necessary to encapsulate that knowledge. Let

us formally define the two metrics:

Definition 1 - The reliability of a CServ datagram is the probability that the datagram arrives

successfully (in other words, the datagram is not dropped, lost, or corrupted in transit) at the

intended destination host at some time after transmission by the source host. As a probability,

the support of reliability is the set of real values between 0 and 1, inclusive.

Definition 2 - The delay of a CServ datagram is the total elapsed time between the generation

of the datagram at the source host and the reception of the datagram by the destination host.

As an elapsed time, the support of delay is the set of real, nonnegative values.

Before a CServ message is transmitted, the source host application is aware of the probability that the

message will arrive successfully at the specified destination and the elapsed time the CServ datagram

will take to arrive (if it does indeed arrive). However, this form of performance guarantee is not yet

reasonable. The delay in a datagram network from source host to destination host along a specified path

43

cannot be characterized by an absolute value; although transmission delay over the path may be

predicted precisely, variable cross-traffic patterns and queueing delay components make the end-to-end

delay random. Consider the simple example of Section 2.1.1, which illustrates this point. End-to-end

delay from a source host to a destination host in a datagram network should be treated as a

distribution. For this reason, we propose a more appropriate form of delay performance guarantee, a

probabilistic guarantee. Specifically, before a CServ message is transmitted, the source host application

is aware of the probability that the message will arrive successfully at the specified destination and the

maximum elapsed time the CServ datagram will take to arrive, if it does so, within some probabilistic

margin of certainty. With this information, the application that generates the critical message can

employ the necessary form of planning and risk management required for its specific task and the

purpose of the CServ datagram.

Before moving on, we note that reliability and delay are not independent metrics; networking

techniques generally can realize increased reliability at the expense of increased delay or decreased

delay at the expense of decreased reliability. In fact, the former is exactly the operational mode of the

Internet's TCP [43] which provides reliable end-to-end connections over the inherently unreliable

network, while the latter is the operational mode of the User Datagram Protocol (UDP) [44] which

emphasizes reduced latency over individual datagram reliability. Consider that TCP employs an

Automatic Repeat Query (ARQ) error control method at the endpoints that leverages acknowledgments,

timeouts, and retransmission of data packets to ensure that all data in a transaction successfully reaches

the destination, all of which incur additional delay.

2.1.1 Probabilistic Delay Guarantees

In this section, we motivate the need for probabilistic delay guarantees in the CServ architecture using a

simple, but illuminating, example, which provides necessary insight into a more rigorous and complex

network model. The objective of the CServ architecture is to provide a priori guaranteed service to

critical datagrams, so we must consider the extent to which performance can be guaranteed over a

communication network composed of unreliable components and substrates. Ideally, we would like to

provide an absolute end-to-end guarantee of the following form to the source host prior to

transmission: "The critical datagram generated by source host s will arrive at destination host d within

one second." The example discussed here shows that we must reconsider the form of the guarantee.

44

Consider the example network segment depicted in Fig. 2-1. This segment could represent the edge of a

larger network topology, where router R is an edge access router connected to destination host d via

some reliable communication link of constant rate, denoted r [bits/second]. For illustration, we stipulate

that all datagrams arriving at R are destined for d. As shown in the top diagram of Fig. 2-1, these arriving

datagrams from an arbitrary number of sources are multiplexed into a single service queue, and the

aggregate arrival rate of these datagrams is denoted Ad [datagrams/second]. Without the complication

of multiple sources for datagrams arriving at R destined for d, this situation is equivalently depicted as

in the bottom diagram of Fig. 2-1.

For this analysis, we assume a deterministic datagram arrival process, denoting datagram interarrival

time as -r [seconds], and thus the packet arrival rate Ad = 1/r. We also assume a deterministic

datagram length of 1 [bits], a reliable access network communication channel to destination host d at

the given rate r (in other words, there is no datagram packet loss due to bit errors over the channel),

and a constant propagation delay between R and d denoted by t, [seconds]. In practice, this reliable,

constant-rate channel would likely represent a direct connection from an output port of router R to the

destination host d by some wired transmission medium (e.g. twisted pair or fiber optics) or a local area

network (LAN) broadcast topology using wired transmission media (e.g. Ethernet [45]). We let tx

[seconds] denote the transmission delay of a datagram on the channel from R to d. Given our previous

assumptions, we have:

t - -(2.1)
r

An illustration of the datagram arrival and transmission process at router R is shown in the blue box of

Fig. 2-1 where the datagram interarrival time exceeds the transmission delay (i.e. T > tx).

For analysis purposes, we assume that the depicted system is empty at time t = 0, and we consider a

stream of m arriving datagrams, denoting the elapsed time between the arrival of the ith datagram at R

and its delivery at d, or datagram delay, as di, i = 1,2,...,m. The objective of the analysis is to

characterize the datagram delay of all datagrams in the stream. To do so, we need to consider two

distinct cases:

45

I. T > tX;

11. and T < tx.

The primary distinction that we immediately make between the cases is that a buffered transmission

queue is required for the multiplexed input stream at R for Case 11, but not in Case 1.

We begin with the analysis of Case 1, which covers when the interarrival time of the datagram arrival

process exceeds the transmission delay of the datagram as given in Eq. (2.1). In this situation, the

transmission of the previous datagram in the stream will have completed by the arrival of the next

datagram, so no transmission queue forms at the input port of R and the transmission buffer remains

empty. The datagram delay for each datagram is thus the physical limit per packet, denoted tn,, or the

transmission delay plus the propagation delay from R to d. More concretely, we have:

di = txpA= tx + tp, (2.2)

where i = 1,2, ... , m. The datagram delay is a constant for all m datagrams in the stream.

Now we proceed with the analysis of Case 11, which covers when the interarrival time of the datagram

arrival process is less than the transmission delay of the datagram as given in Eq. (2.1). This case requires

use of the input transmission queue at R to buffer datagrams as they await access to the output port

and communication channel. When the datagram interarrival time is less than the transmission delay of

the previous datagram, the new datagram arrival will need to wait while the previous arrival is served by

the router and transmitted via the interface to destination host d. Using the previously addressed

assumption which states that the system is empty at an arbitrary time t = 0, the datagram delay of the

first datagram in the stream will be the physical minimum ta,, while the datagram delay of all

subsequent datagrams in the stream will be strictly greater than tx, due to time waiting in the

transmission buffer. We let wi, i = 1,2,...,m, represent the time spent in the transmission queue by the

ith datagram in the stream. Consider the illustration of Case 11, as shown in Fig. 2-2, which depicts the

total time of each of the first four datagrams of the stream spent at router R, both waiting in the queue

and in transmission. As we can readily glean from the figure, the total time spent at R increases

monotonically for each subsequent datagram arrival because the time spent waiting in the queue

46

increases for each datagram in the stream. Noting that di - wi = txp, i = 1,2, ... , m, we find the general

expressions for both wi and di, i = 1,2, ... , m, are as follows:

wi= (tX - r)i - (tX -),(2.3)

di= (tx - z)i + (tP +

where i = 1,2, ... ,m. From these expressions, we observe that both transmission queueing delay and

datagram delay increase linearly with the datagram index i which represents the datagram's relative

position in the stream. Both the transmission queueing delay and the datagram delay are shown for an

illustrative example in Fig. 2-3 assuming a large-enough buffer at R such that the buffer never fills to

capacity and no datagrams in the stream are dropped.

Comparing the results of Case I in Eq. (2.2) (where the implied queueing delay for each datagram is zero)

with the results of Case 11 in Eq. (2.3), we see that we can only provide an absolute guarantee on

datagram delay for all datagrams in a stream under Case 1. All datagrams arriving at R and destined for d

are delivered in txp seconds. However, this is only possible under a very specific set of assumptions that

govern this example. Most critically, the interarrival time of datagrams at R destined for host d must be

consistently greater than the transmission time of a datagram. If the datagram arrival process were not

deterministic, it is not sufficient for the average interarrival time to satisfy this property; the minimum

interarrival time of the process must be greater than the transmission time of a datagram, otherwise

there is a nonzero probability that a transmission queue would form at R which would violate the

absolute delivery guarantee of txp seconds from router R to destination host d.

If we consider Case 11, it is clear that for any fixed time horizon chosen as the absolute guarantee on

datagram delay from R to d, the datagram delay will surely exceed this value for some datagram in the

stream as the index increases. In a non-idealized case, the transmission buffer would be finite length,

allowing us to bound the queueing delay based on the buffer capacity. However, we would then need to

account for the effect of blocking (datagrams arriving at R when the transmission queue is full) in the

guarantee, further obstructing the ability to form an absolute guarantee on delay. A similar result for

Case 11 can be developed for a non-deterministic, random datagram arrival process where the average

interarrival time is less than the transmission delay of a datagram.

47

The question then becomes: is it possible to ensure that a network always operates under the

conditions of Case I? Let us revisit the conditions that enable Case I in the example. First, relaxing the

deterministic arrival process assumption, the maximum aggregate arrival rate of datagrams at R

destined for host d is constrained to be less than the router's service rate for these datagrams, which is

r/I [datagrams/second]. Our simple example does not stipulate the full network topology; however,

these datagrams destined for d are possibly generated by many source hosts which may be operating in

different network segments. During actual operation, we would need to know the set of all possible

sources generating datagrams for d ahead of time in order to constrain the individual source datagram

generation rates to satisfy this property. The objective of the CServ architecture is to allow on-demand

access to the critical service, and thus we do not have prior knowledge of the CServ datagram traffic

flow. And second, we have completely ignored all exogenous traffic flow in this example. As described,

all datagrams arriving at router R are destined for d. The router does not have to share its resources

with any cross traffic destined for other output ports. If we were to include the effect of cross traffic that

competes for router processing time in the example, we would need to further introduce constraints on

its aggregate arrival rate (and enforce some sort of fair queueing policy) in order to operate under the

conditions of Case 1. And this does not yet introduce the notion that most datagrams from the arbitrary

set of source hosts would likely traverse multiple routers along the path to R, each of which would be

subject to these constraints on aggregate cross traffic. It should be clear by now that the conditions

necessary to operate under Case I couple the traffic state of the network in its entirety, making it

infeasible to ensure that the network can always operate in such a way. In fact, these observations allow

us to make a significant assertion:

Assertion - An absolute guarantee on end-to-end delay in a packet network cannot be made

without constraining the maximum aggregate datagram arrival rate at each and every network

queue to be less than the datagram service rate for that queue at all times.

Put another way, iron-clad performance guarantees require end-to-end circuit reservation without

statistical sharing or multiplexing of resources such as in a datagram or packet network. Consequently,

the CServ architecture focuses on providing a priori probabilistic delay guarantees to the service end-

user in the form discussed previously. Before a CServ message is transmitted, the source host

application is given the maximum elapsed time the CServ datagram will take to arrive at the destination,

48

if it does so, within some probabilistic margin of certainty. This probabilistic margin is formalized later

when we discuss the details of a CServ transaction.

Before concluding the discussion of this section, we briefly discuss another simplification made in the

preceding example. Specifically, we have assumed a reliable communication channel between R and d,

which is unrealistic for most data networks. We should account for the possibility of datagram loss due

to data corruption during transmission; this corruption could be a result of natural noise processes or

multiple-access interference, for example. A theoretical problem of two armies, physically separated by

a hostile army, attempting to coordinate their attack is presented in [46]. The two friendly armies must

use messengers to synchronize their battle plan, but these messengers may be killed or captured

indefinitely by the enemy army. This problem is an analogy for reliable communication over an

unreliable channel. In fact, it can be shown that no strategy exists that allows the two armies to

synchronize their attack with absolute certainty, although a solution can be found if we relax the

problem and require only a specific probability of synchronization. This message further drives home the

need for probabilistic guarantees in the CServ architecture, and it explains the need for the reliability

metric in addition to a probabilistic delay guarantee.

_ _d r

/ R

Fig. 2-1: Two equivalent views of an example network segment used to illustrate the need for

probabilistic delay guarantees rather than absolute delay guarantees. In this illustration, the datagram

interarrival time exceeds the transmission delay.

49

Aa ~rd

4

S 2

St

Fig. 2-2: Another illustration of the example network used to illustrate the need for probabilistic delay

guarantees. In this version, the datagram interarrival time is less than the transmission delay.

25 ________

20 -

15
E

10

5-

Queueing delay
fotal delay

0*
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Datagram index

Fig. 2-3: Plot of both queueing delay and datagram delay (total delay) as a function of datagram index in

the stream for r = 1 Gbps, I = 10 kb, T = 1 ts, and t, = 5 ms. The expressions are found in Eq. (2.3),

and they assume a large enough queueing buffer such that it never fills to capacity and no datagrams in

the stream are dropped.

50

2.2 Network Models and Assumptions

In this section, we address some of the network model assumptions used throughout the dissertation to

both simplify and unify the discussion from chapter to chapter. Specifically, we consider the network

structure, develop the necessary terminology to describe the structure, and we make comments on the

rigidity of the assumptions. In many cases, the assumed network structure is not fundamental to the

CServ architecture or its operation; rather, we make the assumptions to help formalize the discussion of

the architecture and its protocols. We comment here briefly on the necessary degree of adherence to

the assumptions and how it impacts the CServ design, and we continue to address these issues

throughout the rest of the document when appropriate.

2.2.1 The Subnet

The subnet is the central logical participant of the CServ network and global internetwork routing

architecture. Specifically, internetwork paths for critical datagrams (where the inter- prefix indicates the

forwarding of a datagram across subnet boundaries) follow an explicit subnet-to-subnet granularity

route, where the internal routing behavior of the subnet appears to be a "black box" to the global

network. The design choice that designates the subnet as the central participant in internetworking is

discussed in depth throughout the dissertation.

Specifically, we define the subnet as follows:

Definition 3 - The subnet is an interconnected set of routers that implement a unified routing

solution and share a common network controller.

The definition of the subnet may initially give the impression that the subnet is synonymous to the

Internet Autonomous System (AS). According to [13], the AS "is a connected group of one or more IP

prefixes run by one or more network operators which has a single and clearly defined routing policy"

that it presents to the Internet. Whereas the definition distinguishes the AS unit by the prefix

reachability policy that it chooses to announce externally, the subnet is distinguished by two important

factors:

51

1. a set of routers that agree upon an internal routing strategy;

2. and the existence of a shared network controller.

The subnet does not necessarily correspond one-to-one with an Internet AS; the definition of the CServ

subnet is more specific than that of an AS. The CServ architecture introduces the notion of a logically-

centralized controller entity which is called the subnet controller (SC). The specific responsibilities of this

controller entity are discussed later, but for now it suffices to say that the SC is accountable for the

aggregation of performance state information needed for CServ internetworking functions.

Furthermore, all routers in the subnet implement a common set of routing protocols and forwarding

techniques, or a common routing strategy. For example, all routers may be configured to implement a

form of shortest path routing, such as commonly seen with the Internet, and IP-based data plane

forwarding. One such routing protocol is Intermediate System to Intermediate System (IS-IS) [26], a link-

state routing protocol that uses Dijkstra's Algorithm to compute shortest paths. Alternatively, routers in

a subnet can jointly support more than one routing and forwarding method; for example, a subnet's

routers may employ a hybrid of IP-based shortest path routing and administrator-managed virtual circuit

(VC) label-based connections, such as those that could be implemented with Multiprotocol Label

Switching (MPLS) [19]. All datagram exchange between subnets is brokered by routers that function as

subnet gateways, isolating the internal routing and forwarding details of each subnet. In theory, an AS

could be comprised of multiple CServ subnets as long as the host reachability advertisement announced

externally is unified across the constituent subnets. We conclude this discussion and do not invite

further direct comparison between the two definitions because of the critical point of differentiation for

the CServ subnet - the addition of the logically-centralized SC.

Our definition of the subnet and its isolation from other subnets via gateway routers lends itself directly

to distinguishing among heterogeneous network segments, and this is precisely how we use the subnet

terminology and structure in the CServ architecture. There are many forms of network heterogeneity

exhibited by modern data networks. The following non-exhaustive list identifies some common forms of

network heterogeneity:

1. physical communication modality heterogeneity (e.g. twisted pair, fiber optics, RF wireless,

satellite communication, and laser optics);

2. hardware and software component heterogeneity;

52

3. network resource provider and/or administrator heterogeneity (e.g. service providers);

4. security architecture and protocol heterogeneity;

5. and network management framework heterogeneity.

One might suggest that the first item on the above list is the most fundamental form of communication

network heterogeneity. The interconnected set of networks that form the modern Internet represents a

mix of these communication modalities, specifically fiber optics in the long-haul backbone and twisted

pair copper and RF wireless at the access edge. All of these communication modalities exhibit different

properties and present different physical layer behavior to the higher network layers. For example,

wired connections, such as copper and fiber links, are generally stationary channels with independent,

low-rate symbol errors and short propagation times (even transiting a continent), whereas satellite

connections exhibit channel fading due to atmospheric turbulence, long-term attenuation from weather

effects, and long propagation delays (approximately quarter-second round trip times for systems in

geosynchronous orbit). There is no single statistical channel model that uniformly captures all of these

communication substrates. Furthermore, the modern Internet exhibits all other forms of network

heterogeneity listed above as well, although many are transparent to the end-user other than the vast

selection of providers, hardware, and software available to access the Internet and set up home or

office networks.

Since the subnet naturally encapsulates important points of divergence that represent network

heterogeneity, such as communication substrates, service providers and administrators, datagram

routing strategies, and separation of network control responsibilities, the subnet is the chosen as the

logical participant of the internetwork at the global level. The CServ architecture introduces a logically-

centralized global controller entity which is called the master controller (MC), and the network is

represented as a collection of interconnected subnets at this level of control. An illustrative example is

depicted in Fig. 2-4, which shows the interconnection of multiple subnets that are differentiated both

among communication modality and service provider. By design, subnets then exhibit a notion of

statistical independence due to their intentional heterogeneity. Even under adversarial attack, we

assume that their dissimilitude renders them "independent enough" such that significant targeted effort

is required to undermine operation in each and that the compromise of one subnet does not directly

correlate to the compromise of its peers. This is an important, but possibly fragile, assumption that is

later invoked when we describe the global internetworking algorithm that supports CServ operation

53

across the disparate subnets. For this reason, we keep this property and its potential frailty under

reflection as we proceed. Consider, for example, that the three fiber backbone subnets with different

providers in Fig. 2-4 may in fact share the same physical plant, using fibers in the same cable or conduit.

The infamous "backhoe attenuation" problem, where a backhoe unintentionally digs a fiber cable out of

the ground during excavation work, could render all three of these subnets inoperable simultaneously in

this case. This is an example where the "independent enough" property does not hold; rather, these

three subnets are highly correlated since they share the same physical plant. Maintaining the property

of statistical independence between subnets in the CServ architecture is not without challenge and does

not come unintentionally. The network planner must be aware of such pitfalls and very deliberately

provision subnets to support this assumed property.

Fiber
Backbone

(Provider 1)

Fiber
Backbone

Wireless
Access

Network

Fiber
Backbone

(Provider 3)

/
SATCOM

Relay

Fig. 2-4: An example network at the global abstraction level, where the subnet is the central logical

participant. Here, the three peering fiber backbone subnets are distinguished by their network resource

providers, whereas the RF wireless access subnet and satellite relay subnets are differentiated from the

fiber subnets by their physical communication substrates.

54

/

2.2.2 Internal Subnet Structure

In order to both simplify and homogenize the discussion of the CServ architecture, we standardize the

internal subnet structure and terminology with a generic model that can readily be adapted to many

subnet realizations. In this section, we begin with definitions of the different components of the generic

subnet structure. As illustrated, the example closely resembles a fiber Wide Area Network (WAN)

backbone or a Metropolitan Area Network (MAN). However, we illustrate its generality by applying it to

a very specific subnet example, namely a SATCOM relay.

The generalized subnet structure is shown in Fig. 2-5. We do not assume any particular internal subnet

topology; the depiction in the figure is purely for illustration. The focus of the terminology is to

distinguish a hierarchical relationship between endpoint hosts and different types of routers in the

subnet. For the purpose of this section, we ignore the distinction between a standard router and its

counterpart "active" version; this differentiation is addressed in the subsequent section. Referring to the

entities highlighted in Fig. 2-5, we discuss in more detail four of the primary components of the subnet

model:

1. access networks;

2. access routers;

3. core routers;

4. and gateway routers.

Access networks are local area connections between endpoint host machines and their upstream access

routers. Host machines that are CServ-enabled are the source and destination points of CServ

transactions, or the exchange of a critical message datagram. But as depicted in the illustration, not all

hosts that are part of the subnet are necessarily CServ-enabled. The technology and topology of access

networks may take many different forms. For example, as illustrated in Fig. 2-5, the hosts may be

arranged in a logical bus, ring, or tree topology, among others. Furthermore, the actual access

communication technology may be, for example, passive optics, edge RF wireless, or twisted pair

Ethernet interconnected with multiple layer-2 switches, among others.

55

Together, access routers, core routers, and gateway routers and their interconnections form the layer-3

core routing topology of the subnet. The naming distinction stems from the specific roles that they play.

At their heart, the primary responsibility of all three devices is to parse and forward datagrams

appropriately (although what exactly "appropriately" means is at the crux of the discussion in the rest of

this dissertation!), much the same as Internet routers. However, the types of connections each support

distinguishes between the three flavors in our nomenclature.

The access router provides upstream admittance for endpoint hosts in access networks to the subnet

core network. In addition to access networks, the access router can also connect to other access routers,

core routers, or gateway routers.

The core router fulfills a role similar to the access router in the core topology of the subnet network,

except that the core router does not provide direct upstream access for an access network. The core

router simply functions as an interconnection between other core routers, access routers, and gateway

routers.

Lastly, the gateway router functions as a core router with the additional responsibility of providing

connection to, or peering with, neighboring subnets. These routers sit at the logical edge of the subnet

and provide the interface to other subnets; the links illustrated in Fig. 2-4 between subnets represent

connections between gateway routers at the edge of the subnet peers. Gateway routers may have

connections to other gateway routers with the same subnet, as well as core routers and access routers.

Note that although the illustration of Fig. 2-5 depicts the gateway router as belonging to a particular

subnet, this may not be the case. For uniformity in the dissertation, we represent a peering connection

as a communication link between two distinct gateway routers at the edge of each subnet peer;

however, this may actually be implemented as one gateway machine with a virtual link between the two

routing interfaces. If BGP is used for best effort service as in the TCP/IP Internet, gateway routers act as

border routers in the BGP nomenclature and maintain peering external BGP (eBGP) connections.

We illustrate the generality of this network model by using the terminology to describe a very specific

subnet instance that differs significantly from the one portrayed in Fig. 2-5, namely a geosynchronous

SATCOM relay. This subnet does not support any access networks, and the only internal "router" in the

subnet is the satellite transponder. Specifically, the ground terminals can be considered the gateway

56

routers for the subnet, and the satellite itself can be treated as core router. That being said, most

SATCOM relay transponders operate on a bent pipe principle and do not perform traditional layer-3

routing; the transponder only amplifies the signal and shifts it to the downlink frequency channel. But

there have been attempts to implement IP routing functionality on the satellite, such as Cisco System's

Internet Routing in Space (IRIS) Router which was launched on board the Intelsat IS-14 [47]. For this

reason, we use the general approach of treating the SATCOM relay as a core router. This subnet

example is depicted in Fig. 2-6 using the same color identification scheme as in Fig. 2-5. This specific

subnet example illustrates that a subnet instance does not necessarily contain all of the primary

components of the subnet model established in this section. In fact, minimally, a subnet may be

composed only of interconnected gateway routers, with no additional core routers, access routers, or

access networks.

In the dissertation, we use this generic subnet structure to streamline the discussion, but we note that

the subnet structure does not need to strictly follow the preceding description. For example, a router

could simultaneously function as both an access router and a gateway router if it peers with neighboring

subnets and also provides admittance to the subnet core for an access network. That being said, the

router is then responsible to fulfill the duties of both network components (to be discussed and clarified

later).

Since the primary focus of the CServ architecture is on internetworking with performance guarantees,

most CServ transactions that we discuss originate in one subnet, leave the subnet, and terminate at a

destination host in a separate subnet. For this reason, we adopt the convention for the terms

"upstream" and "downstream" shown in Fig. 2-7. This terminology naturally induces a sort of

hierarchical relationship between the endpoint hosts and the routers. Logically, the depiction of a

connected subnet could be rearranged with gateway routers as the root(s) of a rooted tree topology

(and at the top of the hierarchy), the access routers as the next level of the tree, and the hosts as the

leaves of the tree (and at the bottom of the hierarchy). We stress that this is a logical depiction, and the

links between the levels of the tree would not directly correlate with the physical links depicted in a

representation such as Fig. 2-5.

57

Active gateway
-------------------- ?-----. Subnet controller router

Core router

Active access
router

Host (with CServ
capability)

Access router
Access
network

-- Host (without
CServ capability)

Gateway router

Fig. 2-5: A representation of the internal components of a subnet and the corresponding terminology,

shown for a generic example topology.

58

Subnet controller

Fig. 2-6: Application of the subnet model to a specific subnet example, namely a geosynchronous

SATCOM relay interconnecting two ground terminals. The satellite relay is represented as a router for

generality even though it may not necessarily perform the functions of a layer-3 device.

*~ mu amuUmuuu'1~mUImumuUauUmUuaa

4
a

a

U

U
a
a
a
4

4
a a a

Gateway Router j

Upstream Downstream .

Access Router ."

Upstream Downstream

Host

Subnet .n

Fig. 2-7: The standardized use of the "upstream" and "downstream" terminology and their relationship

to the internal components of the subnet.

59

'

2.2.3 Active versus Passive Routers

Considering Fig. 2-5, there is a distinction between "access routers" and "active access routers," and

similarly there is a distinction between "gateway routers" and "active gateway routers." Only the active

versions of these components are connected to the SC. In this section, we clarify the difference between

these subnet components, and then we present a homogenized subnet model that we use for most of

dissertation discussion.

We have previously defined access routers and established what differentiates them from core routers

and gateway routers in Section 2.2.2. In doing so, we discussed that access routers provide upstream

admittance for access networks of endpoint hosts. As depicted in Fig. 2-5, endpoint hosts may either

support CServ operation or not. A host machine that supports CServ operation can initiate the

transaction of a critical message, whereas other hosts cannot. In order to facilitate the transmission of

this critical message, the upstream access router must support processing of CServ datagrams and run

the necessary CServ protocol, specifically that which is used to actively learn the details of the subnet

performance (these protocols, part of the State Measurement Service, are discussed in detail in Chapter

4). Furthermore, this access router must report the learned performance metrics to the logically-

centralized SC. We call an access router that supports CServ operation and protocols an active access

router. Not all access routers need to be active access routers, but an active access router is required to

support CServ-enabled hosts in a constituent access network for which is provides upstream access to

the subnet core. The implicit benefit here is incremental deployment; within a subnet, only access

routers connecting access networks with CServ-enabled hosts need to be upgraded to active access

routers. Later, we discuss additional benefits as they relate to architecture scalability.

Analogously, we draw the distinction between gateway routers and their active counterparts. As

established in Section 2.2.2, gateway routers sit at the logical edge of the subnet and provide peering

connections with neighboring subnets. With the architecture objective of providing internetwork service

with a priori guarantees, CServ datagrams are expected to traverse multiple disparate subnets by way of

these peering points from source host to destination host. Like access routers, the upstream gateway

routers used to bear CServ transactions between subnets must support processing of CServ datagrams

and run the CServ protocol used to learn and report the details of the subnet performance to the SC.

Borrowing from the access router nomenclature, we call a gateway router that supports CServ operation

60

and protocols an active gateway router. Not all gateway routers need to be active gateway routers, but

an active gateway router is required to bear critical CServ datagrams between neighboring subnets.

Without the presence of active gateway routers, a peering connection between subnets is not

considered when determining the appropriate internetwork paths to convey the CServ message from

source host to destination host. Again, this flexible requirement on gateway router technology in a

subnet provides the benefit of incremental adoption and deployment, but we show later that the

penetration level of active gateway router upgrades is a fundamental concern to the success of the

global internetworking routing algorithm.

Although access routers and gateway routers without CServ capabilities cannot directly support CServ

protocols and operation, they may still participate in intrasubnet CServ service. All routers in a subnet,

active or not, implement a unified subnet-internal routing solution. This internal routing strategy is used

to bear CServ datagrams between entities in the subnet's set of active access routers and active gateway

routers, and the paths used to do so may traverse access routers, core routers, and gateway routers that

are not active. For example, these components may forward CServ datagrams internally within the

subnet core using IP-based forwarding tables or MPLS label-switching mechanisms. We expound upon

this in the following sections with visual illustrations of the flow of a CServ transaction.

Having made the distinction between subnet routing components and their active complements, we

typically rely on a homogenized subnet model throughout the rest of the dissertation for analysis, as

shown in Fig. 2-8. In this model, all hosts are assumed to be enabled with CServ capability, all gateway

routers are assumed to be active gateway routers, all access routers are assumed to be active access

routers, and core routers can be treated as active access routers with no connected CServ-enabled

endpoint hosts. Although this homogeneity is certainly not required in practice as previously discussed,

this representation helps to simplify architecture analysis, particularly architecture scalability

considerations. In fact, this simplified subnet model usefully encourages a pessimistic scalability analysis

which guides worst-case discussions. Before moving on, we note that we may sometimes drop the

"active" terminology from access and gateway routers in this and the following chapters. When the

discrepancy between a legacy router and its upgraded CServ-enabled active counterpart is necessary,

we emphasize routers that do not support CServ processing and protocols as non-active routers.

61

Subnet controller

Active access
router

Host (with CServ
capability)

Access
network

Active gateway
router

Fig. 2-8: This homogenized subnet internal representation is used throughout the dissertation to unify

the architecture description and analysis. Logical connections to the SC are omitted for illustration

clarity.

62

2.3 Flow of a CServ Transaction

We proceed to walk through a CServ transaction step-by-step, including a description of the network

state pre-transaction, the transaction setup phase, and the CServ datagram transmission phase. In doing

so, we introduce the fundamental components and algorithms that support the CServ architecture

(although the details are left for treatment later in the dissertation).

For the purpose of this description, we assume that the network subnets implement some form of IP

interior gateway protocol, such as Open Shortest Path First (OSPF) [23] [24] (the details of the exact

protocol are immaterial for our purposes here) and IP-based datagram forwarding. This interior gateway

protocol serves as the CServ Intranetwork Service for each component subnet of the global network. The

treatment here shows that subnets in the CServ architecture can operate much the same as ASes in the

current IP Internet, implementing the internal routing protocol of their choice; only the gateway routers

and access routers for CServ-enabled endpoint hosts need to be upgraded to support processing of

CServ datagrams and implementation of the CServ protocols. This overview discussion is continued in

Section 2.4, where we present an alternate way to implement the CServ Intranetwork Service within the

subnet that takes full advantage of the capabilities of a logically-centralized SC. Although we see that

this implementation requires more pervasive adoption of CServ-capable routers within the subnet core.

Before we begin with the description of the transaction flow, we introduce some transaction-specific

notation that is used to differentiate subnet components based on their relationship to the CServ critical

message intersubnet path. The terminology that we present here is illustrated in Fig. 2-9. The source

subnet is the subnet that contains the access router that provides upstream connection to the source

host of the CServ transaction in its routing core; analogously, the destination subnet is the subnet that

contains the access router that provides upstream connection to the destination host of the CServ

transaction in its routing core. We note here that endpoint hosts may be multihomed - provided

upstream core access via multiple access routers in the same subnet or multiple access routers in

disparate subnets. In the latter case, there may be more than one source subnet or more than one

destination subnet. However, we assume that the source and destination hosts are single-homed for the

current discussion and that there is a unique source subnet and destination subnet. A transit subnet is a

subnet that the CServ datagram traverses on its path from source subnet to destination subnet, but that

does not contain either the source or destination host. And lastly, we formalize the use of the modifiers

63

ingress and egress. An ingress gateway router is one that provides entry to a subnet for a CServ

datagram from a peering subnet, whereas an egress gateway router is one that serves as the "last hop"

for a CServ datagram in a subnet before it is handed off to a neighboring subnet peer. A gateway router

can serve as either an ingress or an egress gateway, and the distinction depends on the orientation of

the critical message intersubnet path. Fig. 2-9 also shows the CServ Application Programming Interface

(API), which serves as the communication interface between the CServ-enabled host and the logically-

centralized MC. We present the high-level functions of the API in the following overview of the CServ

transaction setup.

For the purpose of describing the flow of the CServ transaction, we use a specific network example, as

shown in Fig. 2-10. An arbitrary human-readable decimal addressing scheme is used in this illustration to

distinguish between the different network components, although lPv4 [48] or IPv6 addressing [49] could

be used in practice (among other less widely adopted alternatives).

Master controller

Ingress gateway

Subnet controller
Egress gateway

router
W ,<otnotnection

Subnet controller
. 4 Subnet controller

Transit subnet
Access router Destination

Source Critical message intersubnet path host
host Source subnet Destination subnet

Fig. 2-9: This shows CServ transaction-specific terminology, where the source, destination, and

intersubnet path of the CServ datagram determines the relative names of the network components.

64

-.--- --

Subnet controller 14

Source
host

Master Controller

Subnet controller

Subnet controller
22

Destination
host

Fig. 2-10: This example network is used to describe the basic flow of a

2.3.1-2.3.3, including pre-transaction state maintenance, transaction

datagram transmission.

CServ transaction in

setup, and critical

Sections

message

65

________________________________ _____________ ______________ I

2.3.1 Pre-Transaction State Maintenance

The key to the success of the CServ Internetwork Service architecture is the learning, collection, and

maintenance of the necessary subset of network state information. Specifically, in order to provide a

priori end-to-end guarantees on critical message performance, the logically-centralized MC must have

some knowledge of the performance offered by the underlying subnets that bear the datagram from

source host to destination host. It is with this state information that the MC is able to discover and

compose subnet-to-subnet granularity paths that meet the CServ host's performance requirements. In

this section, we do not delve into the details of the state learning, collection, and maintenance

techniques and protocols. These issues are presented in detail in Chapter 4. But we take a moment to

discuss the necessary pillars of subnet state collection and maintenance that precede and enable a

CServ transaction.

First and foremost, the subnet is responsible for the learning and reporting of the necessary CServ

performance metrics that are used by the MC for CServ internetworking service discovery and

composition. As previously discussed, a subnet maintains a unified routing solution, where the choice of

the routing policy is left to the subnet administrator. Consistent with this routing policy, the subnet is

required to measure and learn the CServ Intranetwork Service performance in terms of the CServ

performance metrics between its CServ network components using the State Measurement Service.

Specifically, the CServ performance metrics must be captured between each pair in the set of (active)

access and gateway routers. Furthermore, each access router is responsible for measuring and learning

some succinct set of CServ performance metrics that capture the upstream and downstream

performance to their constituent access networks. The learned CServ performance metrics are reported

to the local SC, which is responsible for the maintenance and synchronization of the most up-to-date

subnet-internal state. It is then the responsibility of the SC to report updates regarding the necessary

condensed subset of this collected state to the global MC system. For now, we suppress the discussion

of which state is necessary at the global level and leave that for later in the dissertation. The MC is

responsible for the maintenance of the state required to perform service discovery and computation for

CServ end-to-end intersubnet paths.

Together, the SCs and the MC form the fundamental control hierarchy of the CServ architecture,

separating the control responsibilities based on their respective domain. The SC is responsible for

66

control and state aggregation at the local subnet level, while the MC is responsible for the aggregation

of state necessary only for the composition of internetwork service and control of routing at this subnet-

to-subnet granularity. Both levels of control require logical centralization, even if they are implemented

as physically distributed controllers to mitigate single point-of-failure pitfalls inherent in physically-

centralized systems. There is a breadth of literature in the software-defined network research area that

is concerned with the design and synchronization of distributed but logically-centralized controllers

through distributed system algorithms, and this is not the focus of this document. Furthermore, a robust

off-band control channel is provisioned to connect the CServ-enabled hosts and routers to the SCs, and

the SCs to the MC. As we describe later, the off-band control channel is used both by the CServ-enabled

hosts to request CServ internetwork service and by the active subnet routers to report measured CServ

performance metrics. Reliability, availability, and predictable signaling delay with minimal jitter are vital

concerns for the design of the control channel. Likely, a heavily overprovisioned control network with a

simple topology, such as a tree, to avoid contention between end-users would best suit the need for this

system. This concept is illustrated in Fig. 2-11. The dissertation does not focus on the design and

allocation of the off-band control channel, but its use and requirements are considered in detail.

Second, at a more fundamental level, the subnet is responsible for reporting the host membership of

the subnet - that is, the addresses of the CServ hosts that have upstream access to the subnet core

through an active access router. As another use of the robust off-band control channel, a simple

association protocol can be used to register CServ-enabled hosts and routers with the SC when they join

the subnet, while a complementary dissociation protocol can be used to remove registered CServ

devices when they leave the subnet. The local SC can, in turn, report aggregated sets of addresses

registered with CServ capabilities to the MC. This is a low overhead maintenance requirement for the

CServ control hierarchy that generates infrequent updates. We discuss later when describing the MC

service discovery and composition algorithm that the MC also needs to know the address of the access

router that provides this upstream connection to the subnet core. The hierarchical addressing scheme of

lPv4 and IPv6 naturally lends itself to this need, but we do not require the use of these specific

addressing structures in the CServ architecture. The choice of addressing framework is considered in

more detail later in the dissertation.

Lastly, each subnet is responsible for the measurement, collection, and maintenance of the state

information required to operate its internal routing solution. For example, this interior routing method

67

may be some form of IP interior gateway protocol, such as OSPF or IS-IS which only require distributed

link state protocol updates, or it could involve the use of pre-established MPLS circuits, or it may even

implement some local form of the MC intersubnet service discovery and composition protocol (more on

this briefly in Section 2.4). The CServ architecture does not specify the use of any particular interior

routing protocol or forwarding mechanism. In this way, subnet administrators are free to implement a

strategy that best suits their network capability and business needs. However, this chosen interior

routing strategy serves as the CServ Intranetwork Service for transiting critical messages. The routing

solutions dictated by the policy are those that are used to learn and measure the CServ performance

metrics that are in turn employed by the MC for internetwork service discovery and composition. For

this reason, the unified routing strategy of a subnet is critical both to its capability to bear critical

datagrams and to accurately measure and report that capability.

In our step-by-step example in this section, we assume that the network subnets each implement some

form of IP interior gateway protocol, such as OSPF, and IP-based forwarding. In this scenario, the subnet

administrators would only need to upgrade gateway routers to support CServ service (and any subnet

access routers that provide upstream connection to an access network with CServ-enabled hosts). Other

core and access routers in the subnet could operate in legacy modes without upgrade or replacement.

OSPF is an IP link state protocol that uses Dijkstra's Algorithm [50] to find shortest network paths. After

the exchange of link state protocol updates, each router in the subnet builds a graph that represents the

interior subnet topology map and then computes shortest paths based on the interior routing metrics.

The results of this computation are generally summarized in the router's forwarding information base

(FIB), often implemented with fast hardware lookup mechanisms such as ternary content addressable

memory (TCAM), which allows for quick resolution of a datagram's IP destination address. In Fig. 2-12,

we show abbreviated portions of the FIBs at a subset of the routers in each subnet that could result

from the use of OSPF as an interior routing policy. Although the route options are limited and obvious in

both the source and destination subnets, we note that the shortest path in the transit subnet is the two-

hop path between the gateway routers rather than the direct path. We also note that, in practice, the

"Next hop interface" field would be populated by the MAC address of the network interface card for the

appropriate outgoing router interface rather than the address of the next hop router; this convention is

used in the illustration for simplicity.

68

Prior to the initiation of the CServ transaction, the state related to the interior routing policies of each

subnet would already be established - the FIBs would be populated at each router with appropriate

forwarding rules. This is not calculated and populated on-demand when the CServ transaction begins.

Furthermore, the CServ performance metrics related to these routing policies and the CServ

Intranetwork Service paths would have been measured by the subnets, and the SC and MC systems

would have the most up-to-date performance metrics stored in memory. The ongoing maintenance of

state is a fundamental requirement in the CServ architecture because it reduces the amount of pre-

transaction overhead and improves network response time when a CServ message is generated.

Otherwise, the on-demand, per-transaction learning and reporting of the necessary CServ performance

metrics would severely limit the ability of the service to provide reasonable end-to-end delay and

impede the efficacy of the design. In the next section, we describe the remaining pre-transaction

communication and computation overhead, noting here that the execution speed of this process is of

integral concern since pre-transaction delay contributes to the overall critical datagram delay and the

ability of the CServ architecture to provide probabilistic performance guarantees.

Logically-centralized
--

Master controller r------------ Master controller

- _________ -___ --_ __ ----- -- --- -- ---

I ISubnet cont

I Subnet controller .----- Subnet controller

Logically-centralized

roller

Fig. 2-11: This is a notional illustration of the control hierarchy composed of logically-centralized SCs at

each subnet and a global, logically-centralized MC. This illustration also depicts the robust off-band

control channel structure connecting CServ-enabled devices and the controllers themselves. This control

channel is provisioned to bear service requests/responses and state measurement reports.

69

.. . Master Controller

Subnet controller

n47
Subnet controller

Subnet controller

..........rce
D stination

Source
L hhsthost 47 47

14 14 29 29
47 40 29 21

Fig. 2-12: Prior to the initiation of a CServ transaction, routers populate their forwarding tables with the

appropriate state information consistent with the unified internal routing strategy of their subnet. In

this example, a distributed IP shortest path routing protocol, such as OSPF, is employed in each network

subnet and is used to build the forwarding tables at each router.

70

2.3.2 CServ Transaction Setup

With the necessary state learning and collection procedures in place and routine state maintenance

ongoing, the network is ready to handle a critical message datagram transaction. We describe the

transaction-specific control plane process that precedes the data plane transmission of the critical

datagram in this section.

In the first step of this pre-transmission transaction setup, the creator of the critical message requests a

desired level of service in terms of the CServ performance metrics. Once the critical datagram payload is

generated at the source host, the source host initiates a CServ Request (CSR) via the CServ API, as

depicted in Fig. 2-13. The purpose of the CSR is to describe the desired level of service for the critical

datagram in a structured way, which in turn is used by the MC to algorithmically determine the ability of

the network to bear the critical message with this level of service. The CSR contains the following fields:

" Source host - The source host includes its own network address in the CSR (where the

addressing scheme depends on the network implementation). This address is used by the MC as

the starting point of the CServ transaction in the service discovery and composition algorithm,

and it is also used as the return address for the eventual service response generated by the MC.

* Destination host - The destination address for the CServ critical message datagram is specified.

For now, we assume a unicast messaging service, so this is a unique host address. (in the future,

we can consider expansions to the CServ architecture that allows for addressing multicast

groups. For now, multicast can be implemented as the superposition of multiple unicast

transactions.) This address is used by the MC as the terminal point of the CServ transaction in

the service discovery and composition algorithm.

* Primary CServ performance metric - For the purpose of service discovery and composition at

the MC, the source host specifies which of the two CServ performance metrics is deemed "more

critical" to the application, either the message reliability or delay. This performance metric is

used to algorithmically discover intersubnet paths in the MC service discovery and composition

algorithm, rather than jointly optimizing over some heuristic combination of the disparate

metrics. The MC algorithm and considerations are covered in detail in Chapter 5.

71

* Minimum reliability - The CServ source host application specifies a numerical value for the

minimum tolerable end-to-end reliability, or the complement of the datagram loss probability

(for more detail, see Definition 1). The support of this value is the real numbers between 0 and

1, inclusive. We note that a value of 0 imposes no service constraint on the achievable reliability

of the service, whereas a value of 1 is infeasible to achieve in any real network deployment. We

anticipate that reasonable and useful minimum reliability requirements will be greater than 0.9.

For the purpose of discussion, the minimum reliability value is represented as a 32-bit single-

precision floating point number [51], although any numerical representation format that allows

for appropriate precision in the valid parameter range would suffice for the implementation of

this field.

* Maximum delay - The CServ source host application also specifies a numerical value for the

maximum tolerable end-to-end delay for the critical message datagram from the time that the

CSR is generated to the time that the critical datagram is received by the destination host

(including the delay incurred for the pre-transaction control process overhead). For a more

precise description, see Definition 2. The support of this parameter is the nonnegative real

numbers. We note that a value of 0, however, is infeasible to achieve in any real network

deployment. Based on the driving design applications as discussed in Chapter 1, we anticipate

that useful maximum delay requirements will be on the order of seconds. For the purpose of

discussion, the maximum delay value is represented as a 32-bit unsigned integer that specifies

the number in terms of microseconds. This format allows the CServ-enabled application to make

requests up to a maximum delay value of approximately 4,295 seconds (or approximately 71.5

minutes).

* Minimum path diversity - Although we have yet to discuss in detail the role that path diversity

plays in the CServ architecture (see Chapter 5), we note here that the source host application

has the opportunity to request some minimum number of end-to-end disjoint paths. The

support of this parameter is positive integer values. Ample discussion of the use of diversity

routing follows later in the dissertation, but for now we summarize the dialogue by saying that

end-to-end path diversity allows both for improved CServ transaction reliability and for

survivability against unpredictable "Black Swan" events [52] that are not part of the CServ

72

performance metric learning model. Considering survivability against unpredictable events

alone, we suggest that an implementation of the CServ architecture uses 2 as a default value for

this field if the user does not explicitly specify a value for this field. However, we note, without

further detail, that the use of end-to-end path diversity requires additional pre-transmission

computation overhead and delay at the MC. For that reason, the MC limits the maximum

number of end-to-end disjoint paths that it can discover (not to the mention that the network

topology itself may further limit this number). In the MC service discovery and composition

algorithm to be introduced shortly, the actual minimum path diversity used is the minimum

between the CServ user-specified value and the MC's maximum number of end-to-end disjoint

paths considered by the service discovery and composition algorithm. Only a few bits are

required to represent this value in the CSR - somewhat arbitrarily, we choose 8 bits for the time

being, allowing for 255 as the maximum value for minimum path diversity (which is far beyond a

useful request in practice).

* Generation timestamp - Lastly, the source host application places a timestamp in the CSR that

represents the time of generation of the request for critical service and serves as the official

"start of the clock" for the maximum tolerable delay of the transaction. The CServ architecture

assumes access to a synchronized global clock, such as that available through Global Positioning

System (GPS) timing.

These constitute the most important fields of the CSR. Additional control information may be useful in

implementation, such as a request sequence number that distinguishes between two identical CSRs

from a particular source host destined for a particular destination host with the same CServ

performance metric requirements. Additionally, some effort is required to ensure the integrity and

validity of the CSR. Beyond a typical checksum to ensure that the data is not modified intentionally or

naturally in transit, we would want to consider the use of a cryptographic signature to validate the

authenticity of the CSR-generating source. This would help to subvert attempts to forge CSRs or to

mount a denial-of-service (DoS) attack on the MC. Security concerns of the CServ architecture are

discussed in more detail as future work in Chapter 6.

The CServ architecture design uses a robust off-band control channel to bear CSRs via the CServ API and

connect CServ-enabled hosts to the logically-centralized MC. This off-band control channel additionally

73

carries state measurement updates from the subnet routers to the SC and, in turn, the MC. As we see

later, predictable timing and reliable transmission on the control channel is essential to accurate MC

service computation, so careful attention must be given to the control plane design.

The next step of the pre-transmission transaction setup process is the MC service discovery and

computation procedure. After receiving the CSR, the MC executes the Critical Service Discovery and

Composition Algorithm (CSDCA) to determine whether or not the network can bear the critical service

datagram to its intended destination host with the requested level of service, and, if so, how exactly that

level of service can be achieved (see Fig. 2-14). In addition to the CSR, the global subnet-level network

topology description, learned as part of the state measurement and maintenance procedure, is an input

to the CSDCA. Specifically, this global network representation visualizes the intersubnet topology as a

graph of interconnected active gateway routers joining the constituent subnets. The graphical

representation of the global network and the rationale behind the representation is covered in depth in

Chapter 5. Furthermore, the details of the CSDCA are discussed in full in that chapter as well. For now, it

suffices to say that after the execution of the algorithm, the MC decides if it can support the requested

service or not. If it can support the requested service, it has found an explicit intersubnet path or set of

diversity paths in terms of the intermediate gateway router hops from source host to destination host

that support the service level based on the known state information.

The third and final step of the control plane transaction setup involves returning the result of the CSDCA

execution to the source host application via the CServ API on the off-band control channel. This

response takes the form of either a service access or service denial. A service access response grants the

source end-user application permission to transmit the critical datagram payload in some specified

manner; namely, the response itself bears the explicit intersubnet route or set of routes that the CServ

datagram must follow from the source host to the destination host - we call this the CServ Internetwork

Service path or paths. As the illustration of Fig. 2-15 shows, these routes begin with the source subnet

upstream access router (which is particularly useful when the source host is multihomed), followed by a

string of subsequent gateway routers (that describe the path from subnet to subnet), and ending with

the destination subnet upstream access router (which is particularly useful when the destination host is

multihomed). We note again here that the service access response prescribes the intersubnet path that

the CServ datagram must follow, but it does not specify the intrasubnet path that the datagram follows

within any particular subnet. Consider the example of Fig. 2-15, the service access response dictates that

74

the CServ datagram transits ingress gateway router 42 and continues on to egress gateway router 47,

but it does not specify if the datagram should follow the one-hop route interconnecting these gateway

routers or if it should take the two-hop route that traverses access router 40 in the core of the transit

subnet. This determination is left up to the subnet administrator and the CServ intrasubnet service

routes established by the subnet's unified internal routing policy. In this way, the CServ service access

response only provides the source host to destination host route or set of routes at subnet-level

granularity, while the paths internal to subnets along the route are left up to the discretion of the

subnet network provider.

Alternatively, a service denial response indicates to the source end-user application that the MC has

determined that the network cannot provide the requested level of service for the CServ transaction. So

long as the request is reasonable, the CServ network should be designed and dimensioned to avoid this

response. In the future development of the CServ architecture, we suggest the inclusion of an

intermediate response, the service counteroffer. This would allow the MC to propose what it determines

to be its best available service level, even if it does not meet the original demands of the CSR. It would

then be up to the requesting application to decide whether or not to transmit the datagram at this

newly offered level of service. That being said, this scheme would require a different paradigm of CServ

application design; the application requests a particular level of service, knowing that it is willing to

accept service at a degraded level (meaning with either less reliability, longer end-to-end delay, or both).

In addition to the type of response and explicitly-routed address string or strings of the service access

response, additional control information may be required in the responses from the MC. As in the CSR, a

response sequence number that distinguishes between two identical service responses for a particular

source host and destination host pair may be useful. The response should include a timestamp that

indicates the latest time at which the source host can transmit the CServ datagram on the data plane

without violating the computed service. Even though the CSDCA execution attempts to account for the

transmission time of the control messages in the pre-transmission transaction setup, this "belt-and-

suspenders" field ensures that the source application is protected against any improbable and

unforeseen delays or disruptions in the robust off-band control channel. Lastly, methods to ensure the

authenticity of the response and the integrity of the returned explicit route information, such as a

cryptographic signature, would be helpful to provide defense against a malicious actor trying to spoof

the MC service.

75

Master Controller

CServ
Request

Subnet controller 14
U

Source
host

42

Subnet controller

Subnet controller

Destination
host

Fig. 2-13: When the critical datagram payload is created at the source host, the CServ source application

generates a CServ Request via the CServ API which is transmitted to the MC on the off-band control

channel.

Critical S
and

Subnet controller

Source
host Payload

Master Controller

ervice Discovery
CompoitionSubnet controllerComposition

AUgorithm

47
Subnet controller

14 22

Destination
host

Fig. 2-14: After receiving the CSR, the MC executes the discovery and composition algorithm which

determines the availability of an intersubnet path or set of paths that meet the service requirements

required by the pending critical message transaction.

76

(U

a)

In

up-IrVIV-0 -W

[- ----
CServ Access

Response

10,14,42,47,22,29

Subnet controller 14

Source
host Pjyload

Master Controller

Subnet controller

42

Subnet controller

Destination
host

Fig. 2-15: Following execution of the CSDCA, the MC forms a service response, either a service access or

service denial, and returns the result to the source host application using the CServ API on the off-band

control channel.

77

I

2.3.3 CServ Datagram Transmission

Following the on-demand, transaction-specific setup process described in Section 2.3.2, the critical

message is ready for internetwork data plane transmission. This process bears the message from the

source host to the destination host according to the intersubnet route or routes specified by the service

access response of the MC. Along the way, the path followed by the critical message as it traverses each

subnet along the intersubnet route depends on the routing strategy and policy of that individual subnet.

In the following step-by-step example using the network of Fig. 2-10, the subnet internal routing state of

Fig. 2-12, and the service access response of Fig. 2-15, we describe this process as the critical message

traverses a three-subnet data plane path from source host to destination host, including the source

subnet, one transit subnet, and the destination subnet. Consistent with the subnet internal routing state

illustrated in Fig. 2-12, we assume that each subnet along the path uses IP forwarding mechanisms for

their CServ Intranetwork Service.

Upon reception of the MC service access response, the source host begins the transmission of the

critical message by preparing the CServ datagram, as shown in Fig. 2-16. This preparation process

involves the generation of the CServ Internetwork Service header, which is used to encapsulate the

critical message payload to form the internetwork CServ datagram. This header bears the explicit CServ

Internetwork Service path computed by the MC to satisfy the service demand of source host's CServ

application, as depicted in the figure. There are other components of the CServ Internetwork Service

header, but we save the discussion of the details of these fields for Chapter 3. Once the internetwork

CServ datagram is prepared, the source host transmits the datagram to its upstream access router. If the

source host is multihomed and has network access through multiple upstream access routers in the

same subnet or multiple upstream access routers in disparate subnets, the first address of the CServ

Internetwork Service path in the datagram header specifies the correct transmission interface.

When the upstream access router receives the CServ datagram, it has the responsibility to prepare the

internetwork CServ datagram for CServ Intranetwork Service, as illustrated in Fig. 2-17. Throughout this

step-by-step example, we show that it is always the responsibility of the first active router that

encounters the internetwork CServ datagram within a subnet to prepare it for intrasubnet transmission,

although this first active router is not always an access router (in fact, it is frequently an ingress gateway

router). Using the next hop of the explicit CServ Internetwork Service path (which will be a gateway

78

router in the source subnet), the access router forms the appropriate CServ Intranetwork Service header

according to the subnet internal routing policy. In this case, using IP forwarding mechanisms, the access

router generates an IP header (either IPv4 or IPv6) and uses the next hop address of the CServ

Internetwork Service path as the destination address in the header. If the subnet allows for priority

queueing and transmission at its routers, the datagram header can be marked to indicate the desire for

priority treatment compared to best effort traffic. In the case of IP intranetwork service, this can be

done using the DiffServ field in the header [30]. After populating the other necessary IP header fields,

the access router encapsulates the internetwork CServ datagram, where it becomes the payload of an IP

datagram. The IP datagram header is then matched against the forwarding table at the access router to

determine its outgoing, or next local hop, interface, and the IP datagram is then transmitted on that

interface. The internetwork CServ datagram is tunneled through the subnet inside an IP datagram, the

network transport of the subnet's CServ Intranetwork Service. In the case of our example, the next hop

of the Internetwork Service path is gateway router 14, so access router 10 forms an IP header with 14 as

the destination IP address. Since gateway router 14 is directly connected to access router 10, the

forwarding table at router 10 specifies that the next hop interface for the CServ Intranetwork Service is

that which connects to router 14.

When the source subnet egress gateway router receives and processes the IP datagram, it finds that it is

the destination of the CServ Intranetwork Service path. As shown in Fig. 2-18, it removes the leading IP

header (the CServ Intranetwork Service header) to reveal the internetwork CServ datagram. It then uses

the next hop of the explicit CServ Internetwork Service path (which is often a peering gateway router in

a neighboring subnet) to decide how to forward the CServ datagram. Although the forwarding table

state of the egress gateway router is not shown in the illustration, gateway routers in peering subnets

should know how to forward datagrams between them. Since both gateway routers must be active

(CServ-capable), encapsulation in an IP datagram is not necessary for this transmission, but it can be

used if the exchange policy between the peering subnets requires it. In our example, egress gateway

router 14 of the source subnet transmits the internetwork CServ datagram to the next hop in the CServ

Internetwork Service path, which is peering ingress gateway router 42 of the neighboring subnet.

The ingress gateway router of the transit subnet receives the internetwork CServ datagram and assumes

responsibilities similar to the upstream access router in the source subnet; we illustrate in Fig. 2-19 that

the ingress gateway router prepares the internetwork CServ datagram for intrasubnet transmission.

79

Using the next hop of the explicit CServ Internetwork Service path (which again will be a gateway router

in the transit subnet), the ingress gateway router forms the appropriate CServ Intranetwork Service

header according to the transit subnet's internal routing policy. Again, since we assume IP forwarding

mechanisms, the ingress gateway router creates an IP header and uses the next hop address of the

CServ Internetwork Service path as the IP destination address in the header. The gateway router

encapsulates the internetwork CServ datagram as the payload of an IP datagram, preparing the

internetwork CServ datagram for an IP transport tunnel, and then the IP datagram header is matched

against the gateway router's forwarding table state to determine its outgoing interface. In the example,

the next hop of the CServ Internetwork Service path is gateway router 47, so the ingress gateway router

42 forms an IP header with 47 as the destination IP address. The forwarding table state of router 42

then specifies that the IP datagram should be transmitted on the outgoing interface for router 40 for the

CServ Intranetwork Service.

In Fig. 2-20, we show the actions of the core access router in the transit subnet when it receives and

processes the critical message encapsulated in an IP datagram. The router checks the destination

address of the CServ Intranetwork Service header, an IP header in this case. Upon finding that it is not

the destination, the core access router consults the state of its forwarding table to look up the outgoing

interface for the datagram and transmits it on that interface. In the example, router 40 is not the

destination of the IP datagram, so it performs a forwarding table lookup for the destination IP address.

The forwarding information base of router 40 specifies that the IP datagram should be transmitted on

the outgoing interface for router 47 for the CServ Intranetwork Service. Note that this process does not

require that router 40 is a CServ-enabled, or active, router. What we have described in this paragraph is

standard IP datagram processing.

Upon datagram reception, the egress gateway router of the transit subnet performs the same

processing tasks as the egress gateway router of the source subnet. As shown in Fig. 2-21, it finds that it

is the destination of the CServ Intranetwork Service path by checking the destination IP address of the

CServ Intranetwork Service header (the IP header, in this case). It then strips away the leading IP header

to reveal the internetwork CServ datagram. The next hop address of the explicit CServ Internetwork

Service path in the CServ Internetwork Service header is used to determine how to forward the CServ

datagram. The transit subnet egress gateway router of our example, router 47, transmits the

80

internetwork CServ datagram to the next hop in the CServ Internetwork Service path, which is peering

ingress gateway router 22 of the neighboring subnet.

When the ingress gateway router of the destination subnet receives the internetwork CServ datagram, it

performs the same processing tasks as the ingress gateway router of the transit subnet previously

described. The difference for the destination subnet is that the next hop address of the explicit CServ

Internetwork Service path is not a gateway router, but the access router that provides upstream

connection for the destination host. So when the ingress gateway router of the destination subnet

generates the appropriate CServ Intranetwork Service header according to the subnet's internal routing

policy (in this example, an IP header), it uses the access router IP address as the destination field of the

header. This is depicted in Fig. 2-22. After encapsulating the internetwork CServ datagram as the

payload of the intranetwork CServ datagram (which is an IP datagram), the ingress gateway router uses

its local forwarding table state to determine the appropriate outgoing interface. In the example, the

next hop of the CServ Internetwork Service path is access router 29, so the ingress gateway router 22

creates an IP header with 29 as the destination IP address. The forwarding table state of router 22 then

specifies that the IP datagram should be transmitted on the outgoing interface for router 21 for the

CServ Intranetwork Service.

Fig. 2-23 illustrates the role of the core access router of the destination subnet (router 21 in the

example), which performs in the exact same manner as the core access router of the transit subnet.

After the datagram is transmitted to and received by the upstream access router of the destination

subnet, it finds that it is the destination of the CServ Intranetwork Service header (or in this example

implementation, the destination of the IP header). It then strips away the leading IP header to reveal the

internetwork CServ datagram, as shown in Fig. 2-24. Upon examining the explicit CServ Internetwork

Service path in the CServ Internetwork service header, the upstream access router of the destination

subnet determines that it is at the end of the explicitly-routed path, the last hop. This signals to the

access router that it provides upstream access to the destination host in one of its connected access

networks. Using the destination host address in the CServ Internetwork Service header (which is not

shown in the cartoon of Fig. 2-24), it transmits the internetwork CServ datagram on the appropriate

outgoing interface. In the example, the upstream access router for the destination host, router 29,

removes the CServ Intranetwork Service header, recognizes that it is the last hop of the CServ

81

Internetwork Service path, and then transmits the internetwork CServ datagram via the appropriate

connected access network to destination host 8.

Finally, completing our step-by-step example, the destination host receives the internetwork CServ

datagram and removes the leading CServ Internetwork Service header to reveal the critical message

payload, as shown in Fig. 2-25.

Subnet controller 114

Source
host

10,14,42,47,22,29

Master Controller

Subnet controller

42

Subnet controller

Destination
host

Fig. 2-16: Prior to passing the CServ datagram to the upstream access router prescribed by the MC-

computed route, the source host prepends the CServ Internetwork Service header which contains the

explicit subnet-to-subnet path information.

82

'U

0

"""{ Master Controller

Subnet controller

Subnet controller 14

.......... o i
Source
host

14 14

10,14,42,47,22,29 Payload

Subnet controller
22

Destination
host

Fig. 2-17: Upon receiving the CServ datagram, the access router uses the CServ Internetwork Service

path next hop address (here, router 14) and the subnet's routing policy to generate and prepend the

CServ Intranetwork Service header, which in this example is an IP header (with destination address 14).

In this way, the CServ datagram is encapsulated in an IP datagram.

Master Controller

Subnet controller
10,14,42,47,22,29

-4k
Subnet controller

Subnet controller 2

Source Destination

host host

Fig. 2-18: The source subnet egress gateway is the "destination" for the CServ Intranetwork Service, so it

removes the leading header from the CServ datagram. It then uses the exposed CServ Internetwork

Service header to forward the datagram to the appropriate peering subnet gateway (here, router 42).

83

1I

(F

Master Controller

CU

0

CU

Fig. 2-19: Just like the upstream access router in the source subnet, the ingress gateway of the transit

subnet uses the CServ Internetwork Service path next hop address (here, router 47) and the subnet's

routing policy to generate and prepend the new CServ Intranetwork Service header, an IP header here

(with destination address 47). In this way, the CServ datagram is encapsulated in an IP datagram.

Master Controller

Subnet controller

Source
host

Subnet controller

42

Subnet controller

747 [1 442,47,22,29 Payload

Destination

Fig. 2-20: The CServ Intranetwork Service header is used to direct the CServ datagram through the

transit subnet according to the appropriate CServ service path and unified subnet routing policy as

stored by the forwarding table state of the routers. In this example, router 40 need not be active or

CServ-enabled, as the CServ datagram is encapsulated as an IP datagram.

84

Subnet controller

42

Subnet controller
Subnet controller 14 22

47 10,14,42,47,22,29

Destination
Source

hs
host

47 40

0)

01

--------- i

.......--

CU

Subnet controller 14

Source
host

Master Controller

Subnet controller 10,14,42,47,22,29 Payload

42

Subnet controller

Destination
host

Fig. 2-21: As in the source subnet, the transit subnet's egress gateway is the "destination" for the CServ

Intranetwork Service path, so the gateway router removes the leading header from the CServ datagram.

The exposed CServ Internetwork Service header is then used to forward the datagram to the

appropriate peering subnet gateway router (here, router 22).

-----f Master Controller

Subnet controller

Subnet controller
Subnet controller 22

29 T 10,14,42,47,22,29 ayload

Source Destination

host host

29 21

Fig. 2-22: Like the ingress gateway of the transit subnet, the ingress gateway of the destination subnet

uses the CServ Internetwork Service path next hop address (here, router 29) and the subnet's routing

policy to generate and prepend a new CServ Intranetwork Service header, an IP header in this example

(with destination address 29).

85

U

Q-)

L

42

Subnet controller 14

Source
hos

Master Controller

Subnet controller

Subnet controller

Pa*odDestination29 10,14,42,47,22,29 Payload st

29 29

Fig. 2-23: The CServ Intranetwork Service header is used to direct the

destination subnet. In this example, router 21 need not be active or

datagram is encapsulated as an IP datagram.

.-----

(-)

CServ datagram through the

CServ-enabled, as the CServ

Master controller

Subnet controller

Subnet controller

Subnet controller

Source Destination

host host

10,14,42,47,22,29

Fig. 2-24: The destination host's upstream access router is the "destination" for the CServ Intranetwork

Service path, so it strips the leading CServ Intranetwork Service header from the CServ datagram. The

exposed CServ Internetwork Service header indicates to router 29 that it is the last hop in the CServ

Internetwork Service path, so it forwards the CServ datagram to the destination host in its connected

access network.

86

1

I
I

Subnet controller

Source
host

Master Controller

Subnet controller

Subnet controller
22

Destination
oad host

Fig. 2-25: Upon receiving the CServ datagram, the destination host removes the leading CServ

Internetwork Service header to reveal the payload of the critical datagram that was initially generated

by the source host.

87

I,

I

i

2.3.4 End-to-End Internetwork Diversity Routing

We briefly reconsider the previous example of Sections 2.3.1-2.3.3 with a new network topology, as

shown in Fig. 2-26. In this network, there is more than one option for an intersubnet path from source

subnet to destination subnet, unlike in our previous topology example of Fig. 2-10 with a degenerate

CServ Internetwork Service solution. As previously mentioned, the use of diversity routing solutions is a

central feature of the CServ architecture since it allows both for an improvement in end-to-end

reliability and a degree of survivability against unpredictable, high-impact events. Imagine now that the

MC returns the service access response of Fig. 2-27 after reception of the CSR and execution of the

CSDCA. This response prescribes the use of a two-fold end-to-end diversity solution, where the CServ

datagram should be transmitted over two CServ Internetwork Service paths.

Note that the intersubnet paths included in the example response of Fig. 2-27 are disjoint except for the

two endpoints where the routes converge - the access routers that provide upstream connection for

the source and destination hosts. In our context, we consider these disjoint intersubnet paths even with

the common access router endpoints. In fact, we typically generalize and describe two paths as subnet-

disjoint paths as long as the only subnets they share are the source and/or destination subnets (this

relaxed definition allows them to even share the same source subnet egress gateway router or

destination subnet ingress gateway router). Without this relaxed definition of disjoint internetwork

paths, the network topology places a tight constraint on the existence of disjoint internetwork paths.

Before moving on, we mention that CServ-enabled hosts multihomed to distinct subnets provide the

CSDCA with the additional flexibility to find truly subnet-disjoint internetwork paths.

Upon receiving the service access response with a two-fold diversity routed solution, the source host

replicates the critical message payload and prepares two separate internetwork CServ datagrams before

transmission, as depicted in Fig. 2-28. A distinct CServ Internetwork Service header is generated for each

internetwork CServ datagram, with one of the explicit CServ Internetwork Service paths placed in each

header. Although we continue to delay discussion of the full header details until Chapter 3, we note that

the CServ Internetwork Service header contains a session sequence number - a unique increasing

counter based on the source host and destination host double. This value identifies the critical message

payload, so each of the internetwork CServ datagrams generated during the preparation process are

88

UAE1111

endowed with the same value. After prepending the CServ Internetwork Service headers to each of the

datagrams, the source host transmits them, in series, to the appropriate upstream access router.

After replication, preparation, and transmission of the two internetwork CServ datagrams by the source

host, these datagrams are treated during data plane transmission just as described in Section 2.3.3. It is

shown in Fig. 2-29 that each datagram is processed by the upstream access router as before, where the

next hop address in the explicit CServ Internetwork Service path is used in the determination of the

CServ Intranetwork Service path. In this example, the two internetwork CServ datagrams have different

next hop addresses, and this is reflected in the prepended CServ Intranetwork Service headers and the

forwarding action at the source subnet upstream access router.

If both internetwork CServ datagrams reach the destination host successfully, the replication of the

critical message payload is quenched through the use of the session sequence number in the CServ

Internetwork Service header. The destination host is responsible for maintaining a counter state for the

source host and destination host double, and repeated receptions of the same critical message payload

are discarded.

r .-...-.. Master Controller

Subnet controller

7 subnet controller
Subnet controller n

Sou r ce Subnet controller Destination

host 23 host

30

Fig. 2-26: This modified example network topology is used to describe the transmission of a CServ

datagram when the MC service access response indicates the use of end-to-end diversity routing to

achieve the desired level of service, as in Section 2.3.4.

89

-. -- - ~m . -

(F
V)

Fig. 2-27: Following execution of the CSDCA, the MC prescribes the use of two-fold end-to-end diversity

routing in its service access response to satisfy the demands of the CSR.

-- .---- Master Controller

Subnet controller

47 Subnet controller
Subnet controller 14 22

Source Subnet controller Destination

host 17 host

10,14,42,47,22,29 Payload

10,17,30,32,23,29 Payload

Fig. 2-28: Before transmission, the source host replicates the payload and prepends each of the MC-

computed intersubnet routes to one of the datagrams. The source host then transmits each of the two

CServ datagrams in series to the upstream access router prescribed by each particular path (in this

example, the same upstream access router for both datagrams).

90

..---..-. Master Controller

CServ Access
Response Subnet controller

{10,14,42,47,22,29}&
{10,17,30,32,23,29}

Subnet controller
Subnet controller

Source Subnet controller Destination
17 hosthost Pald

EL

Master Controller

Subnet controller

14 10,14,42,47,22,29 Payload 42

47Subnet controller
Subnet controller 14

Subnet controller DestinationSource
host 17 23 hs

17 10,17,30,32,23,29 Payload

Fig. 2-29: Just as in Fig. 2-17, the access router uses the CServ Internetwork Service path next hop

address in each CServ datagram and the subnet's routing policy to generate and prepend the

appropriate CServ Intranetwork Service header for each datagram. The transmission of each datagram

follows as previously described in Section 2.3.3.

91

t

2.4 Alternate Implementation of CServ Intranetwork Service

As previously stressed, the CServ architecture does not rely on IP as the subnet network transport for

CServ Intranetwork Service. In fact, IP routing and forwarding represents what is likely the most basic

intranetworking service since most current networks support this capability in the core. A subnet

administrator would only need to upgrade the necessary gateway routers and access routers to support

CServ service, while the CServ Intranetwork Service could run using native IP capabilities and legacy

equipment in the rest of the subnet backbone.

Other network transport techniques serve as viable candidates for a subnet's CServ Intranetwork Service

according to the network topology and the policy of the subnet operator. For example, we have

previously discussed VC designs, such as MPLS, in Chapter 1. Rather than IP routing and forwarding,

static or dynamically-signaled VCs could be used to form label-switched paths between pairs of active

routers in a given subnet as long as these routers are capable of performing the functions of a label

switch router and/or a label edge router. These paths would need to be established prior to the arrival

of a particular CServ datagram rather than signaled and reserved on-demand, as the signaling overhead

and label state management at the subnet routers would present an unpredictable source of delay

which would not be accounted for in the CServ Internetwork Service path. The use of VCs allows for

quasi-static traffic planning and engineering, directing CServ sessions as desired through the subnet core

along pre-specified routes. When the internetwork CServ datagram arrives at an ingress gateway router

in the subnet, the gateway would be responsible for determining the appropriate label-switched path

based on its internetwork next hop and for prepending the necessary MPLS label information as the

CServ Intranetwork Service header (these tasks satisfy the job description of a label edge router in

addition to those of an active gateway router in the CServ architecture).

A subnet need not rely on one network transport to serve as its CServ Intranetwork Service. For

example, a subnet administrator may choose to employ a hybrid IP/MPLS approach, where MPLS label-

switched tunnels are established for subnet transit between gateway routers, but IP forwarding is used

to direct CServ datagrams destined for a local access network and its upstream access router. This type

of approach can reduce implementation cost and simplify the administrative burden of a traffic

engineering technique like MPLS.

92

Additionally, we propose an even more powerful option for CServ Intranetwork Service. If a subnet has

widely adopted the use of CServ-enabled routers in the network core, then the subnet administrator has

the option of employing a form of centrally-computed explicit path routing such as performed by the

MC at the global level. The CServ architecture already requires the subnet to implement a logically-

centralized SC for the use of CServ performance metric state collection, summarization, and reporting.

The existence of a controller entity with a thorough view of the subnet along with this detailed

collection of state provides the opportunity to implement a version of the CSDCA for computation of

CServ Intranetwork Service paths. Although we have yet to discuss the specifics of the algorithm (see

Chapter 5), the ability to discover paths based on their CServ metric performance and compose

diversity-routed service solutions opens a potent traffic engineering opportunity to the subnet provider.

While the objective of the CSDCA is to find internetwork paths and compose service solutions based on

a specific CServ request, this algorithm can be adapted for the subnet to maintain intranetwork paths

and diversity-routed solutions that meet administrator-defined requirements in terms of the CServ

performance metrics, reliability and delay. Once discovered and composed at the SC, the CServ

Intranetwork Service solutions can be distributed to the active subnet routers and stored as entries in

their data plane forwarding tables. Consider the example of Fig. 2-30, which illustrates how the

explicitly-routed entries could be stored at several routers in the network. The forwarding table lookup

for the next hop along the CServ Internetwork Service path now yields an explicit intrasubnet hop-by-

hop path or set of paths. Upon arrival of an internetwork CServ datagram at the ingress gateway router

of a subnet (or an upstream access router in the source subnet), the router retrieves the explicit CServ

Intranetwork Service path and prepends it to the internetwork CServ datagram as part of the CServ

Intranetwork Service header, which looks much like the CServ Internetwork Service header. Importantly,

this lookup may actually return a diversity-routed set of paths such as depicted in Fig. 2-31, which can be

used to provide additional reliability and survivability during subnet transit. In this case, the ingress

gateway router or upstream access router replicates the incoming CServ datagram and generates a

separate CServ Intranetwork Service header for each copy before transmitting them along the specified

routes. As with end-to-end internetwork diversity routing, repetitive copies of the same CServ datagram

are quenched at the terminus of the CServ Intranetwork Service path (either at the specified egress

gateway router or the destination host's upstream access router). Routers along a specified

intranetwork path now need only to refer to the CServ Intranetwork Service path in the CServ datagram

93

control information to determine the next hop interface for the CServ datagram, circumventing any

further forwarding state lookup.

The bottom line is that, using this alternative CServ Intranetwork Service implementation, the

internetwork CServ datagram is encapsulated in an intranetwork CServ datagram that provides access to

an explicitly-routed CServ Intranetwork Service tunnel (or set of tunnels), affording the network

administrator much greater control over the subnet's performance. The caveat is that the subnet

routers must be CServ-enabled and capable of processing explicitly-routed CServ Intranetwork Service

headers and forwarding these CServ datagrams, much like how active gateway routers and access

routers must be ready to process and interpret CServ Internetwork Service headers. In Chapter 3, we

formalize the explicitly-routed CServ Intranetwork Service header and datagram format alongside the

CServ Internetwork Service header and datagram format.

Master Controller

Subnet controller

Subnet controller

Sourc e
host

14 {10, 14}

47
f42, 471}&

f42, 40, 47}

Subnet controller

Destination
host

29 {22, 21, 29}

Fig. 2-30: Prior to the initiation of a CServ transaction, routers populate their forwarding tables with the

appropriate state information consistent with the unified internal routing strategy of their subnet. In

this example, the subnets use an explicitly-routed path solution where the full hop-by-hop path is stored

in the forwarding tables. The explicit path is then prepended to the CServ datagram and used for

forwarding much like the CServ Internetwork Service header.

94

--------- Master Controller

42,47 10,14,42,47,22,29 Payload
ubnet controller

42

4 Subnet controller Subnet contro ler Subnt cntroler 14

42,40,4 10,14,42,47,22,29 PayDoad

orc DestinationSource
hosthost

{42, 47} &
{42, 40, 47}

Fig. 2-31: When the CServ datagram arrives at the ingress gateway router, it prepends the full explicitly-

routed path to the datagram as the CServ Intranetwork Service header. In this example, we illustrate

that this provides the flexibility to use subnet-internal diversity routing to improve the reliability

performance of the subnet. The ingress gateway router replicates the incoming CServ datagram,

appending a different explicitly-routed path to each, and the egress gateway router (here, router 47)

quenches the datagram replication if both copies arrive successfully.

95

2.5 Conclusion

In this chapter, we have introduced the CServ architecture and walked through an overview of its

operation. We began with a description and discussion of the internetwork architecture objective,

complete with definitions of the important terms used to specify this objective. The CServ design goals

had been previously motivated by the example driving applications and use cases discussed in the

beginning of the dissertation document. The use of probabilistic performance metrics, both for CServ

datagram reliability and end-to-end delay, to stipulate the desired level of service was motivated

through a simple analytic example that illustrated the need for this paradigm, showing that strict

deterministic guarantees cannot be made in a data network.

We next discussed network models and assumptions used throughout the remainder of the thesis to

unify the architecture description and analysis. This included treatment of the internetwork structure,

the subnet unit and its internal composition, and the differentiation between CServ-enabled devices and

legacy hardware. Although the assumptions on the internetwork and subnet structure do not need to

hold strictly for CServ architecture implementation and operation, we noted that this set of conventions

helps to streamline the coverage of the CServ design. Throughout the document, we highlight aspects of

the architecture that do not rely on the network model assumption set where appropriate.

Finally, the operation of the CServ architecture was described using an example critical datagram

transaction. This description included the pre-transaction state collection and maintenance process, the

initiation of the transaction through the CServ API and the pre-transmission overhead, and the

transmission of the internetwork CServ datagram from source host to destination host as it traverses

multiple disparate subnets. Initially, this example is presented using legacy IP routing and forwarding

techniques for the CServ Intranetwork Service in the constituent subnets along the internetwork path;

later, with ubiquitous intrasubnet adoption of CServ-enabled hardware, we showed the opportunity to

employ more sophisticated routing and forwarding techniques to implement the CServ Intranetwork

Service which are more closely aligned with the CServ Internetwork Service routing and forwarding

mechanisms. This discussion highlights the opportunity for flexible implementation and incremental

deployment of the CServ hardware and software. As we present the CServ architecture components in

more detail in the subsequent chapters, this is a theme that we frequently revisit. Subnet administrators

are not required to immediately upgrade all control system and routing core hardware and software to

96

support all of the CServ architecture features. However, eventual comprehensive adoption of the new

technology allows for the implementation of a more robust and reliable intranetwork service, which in

turn is favorable for the discovery and composition of internetwork service.

We have introduced the primary components of the CServ architecture with this design overture. In the

following chapters, we consider the critical features that enable the CServ objective in more detail.

Specifically, we discuss the following:

* the CServ Intranetwork and Internetwork Service datagram format and processing (Chapter 3);

* the CServ performance metric learning, collection, and maintenance techniques (Chapter 4);

* the internetwork topology representation and manipulation at the global level (Chapter 5);

* and the MC Critical Service Discovery and Composition Algorithm operation (Chapter 5).

The final chapter of the dissertation considers some open problems, particularly those addressing the

architecture security framework, and future work opportunities to further develop the CServ

architecture.

97

98

Chapter 3

CServ Internetwork and Intranetwork Service Headers

This chapter discusses the header control information used to direct the Critical Service (CServ)

datagrams from source host to destination host. Following the pre-transmission transaction setup

procedure discussed in Chapter 2, the CServ datagram is transmitted on the data plane, and it is the

responsibility of the header control information to guide the message to its destination along a path that

is part of a service solution that meets the critical service metric requirements of the transaction. This

end-to-end path from source host to destination host includes at least one intranetwork path, or one

confined to a subnet, and often involves an internetwork path, or a subnet to subnet granularity path

from the source subnet to the destination subnet. For the purpose of this chapter, we focus the

discussion on an end-to-end path that involves an internetwork route.

As introduced in the overture of Chapter 2, the CServ internetwork architecture includes the use of both

CServ Internetwork Service and CServ Intranetwork Service. The CServ Internetwork Service is an

internetwork path or set of internetwork paths that satisfies the service demands of the CServ Request

(CSR). This service solution is computed by the Critical Service Discovery and Composition Algorithm

(CSDCA) at a logically-centralized master controller (MC) entity, the details of which are discussed

further in Chapter 5. As part of the CSR solution, a subnet-to-subnet granularity path in the CServ

Internetwork Service is called a CServ Internetwork Service path. The details of this path are carried in

the CServ Internetwork Service header which is prepended to a CServ message payload to create the

internetwork CServ datagram. Similarly, the CServ Intranetwork Service is defined as an intranetwork

path or set of intranetwork paths that bears the internetwork CServ datagram from CServ-enabled

router to CServ-enabled router with some measured and reported level of performance. Namely for the

purposes of the internetwork CServ datagram, the CServ Intranetwork Service represents the

intranetwork path or set of intranetwork paths between an access router and an egress gateway router,

99

an ingress gateway router and an egress gateway router, or an ingress gateway router and an access

router that serve to carry the internetwork CServ datagram between the designated CServ-enabled in its

explicit CServ Internetwork Service path. As part of the CServ Intranetwork Service, a router-to-router

granularity path in the service is called a CServ Intranetwork Service path (note that these routers are

not necessary CServ-enabled active routers). The header control information prepended to an

internetwork CServ datagram and used to bind the CServ datagram to a path in this service is called the

CServ Intranetwork Service header, however we mention now that this header does not necessarily

include the explicit details of the path (unlike the CServ Internetwork Service header).

Although we do not finalize all of the details of the CServ datagram header control information in this

chapter, this coverage concentrates on describing the type of information necessary for successful data

plane operation rather than the specifics. The decision on some of the protocol details are outside the

scope of this dissertation, as highlighted during this chapter. However, we consider some alternative

implementation options and underscore the differences between them where applicable. Furthermore,

this level of discussion allows for the sizing of the header control information and the CServ datagram

which is utilized for analysis in the remainder of the thesis coverage.

The outline of the chapter is as follows. In Section 3.1, we present some initial considerations that are

used in the creation of the CServ datagram headers. Although the details of these aspects are beyond

the scope of the document, this discussion presents some basic principles and deliberations by which

the header control information fields are sized for the purpose of later analysis. Section 3.2 presents the

structure and describes the fields of the CServ Internetwork Service header. Then in Section 3.4, the

CServ Intranetwork Service header is addressed. This conversation is less structured than that of Section

3.2 since the details of the CServ Intranetwork Service header depends on the routing and forwarding

strategy chosen by a specific subnet administrator to implement its CServ Intranetwork Service. Rather

than focus on any given possibility, we present a few non-exhaustive options and consider the

corresponding CServ Intranetwork Service header. Finally, we conclude the chapter and discussion of

data plane control fields in Section 3.6.

100

3.1 Preliminary Discussions on Header Control Information

The formulation of the CServ header control information is presented in this chapter as a preliminary

design. Fundamental fields for CServ service are presented, but the details of their implementation

(including the number of bits allotted to each) may later be reconsidered. Other less fundamental fields

and control information are also described, along with the rationale for their inclusion, but the

implementation details of these control fields are only presented at an overview level. Further research

is required to fully understand the requirements of this set of control information. That being said, we

generally employ an approach of overprovisioning for the different header control fields in this chapter

in order to facilitate worst-case analyses later in the thesis document.

In this section, we consider three topics that ultimately need more future research to define their

requirements in the context of the CServ architecture:

1. addressing;

2. datagram integrity and authentication;

3. and signaling between protocol layers.

In spite of the incomplete design specification, we contemplate possible implementations for each and

justify the initial sizing for their respective control fields in the CServ service headers.

3.1.1 Addressing

The addressing scheme, or identification structure for network subnets, routers, and host interfaces,

used in the CServ architecture is not yet specified definitively. We begin this discussion by presenting

the desired properties of a candidate addressing framework, and then we proceed to give a suggestion

for its implementation and the associated rationale. That being said, our suggestion in this section is

merely one possibility, as we conclude this section by highlighting a drawback of the suggested scheme

that merits future attention.

We identify three primary desired properties of the addressing framework used in the CServ

architecture:

101

1. a hierarchical structure;

2. sufficient addressing space;

3. and interoperability with addressing used for best effort datagrams.

In Section 2.2 of Chapter 2, we introduce a natural hierarchy between the primary components of the

network model: the endpoint hosts, the routers, and the subnet. Endpoint hosts can be considered the

lowest member of the hierarchy. Routers (specifically access routers) provide upstream access for

endpoint host nodes into the core of the subnet network, and thus routers can be considered the next

level of the hierarchy. Finally, a subnet consists of a collection of cooperating routers that form its core

network - the top level of the hierarchy. An ideal addressing framework would provide the flexibility to

represent this natural hierarchy within the addresses themselves. For example, knowledge of a router's

network address would indicate its subnet membership, and knowledge of a terminal host's network

address would similarly indicate both its provider subnet membership and the address of its upstream

access router.

Address exhaustion occurs when the unallocated pool of network address space has depleted, and it is a

well-known problem in the context of the Internet and the Internet Protocol Version 4 (IPv4) addressing

space. IPv4 uses 32-bit addresses, a field length which allows for 232 ~ 4.3 billion unique addresses [29].

The top-level exhaustion of IPv4 space occurred on January 31, 2011 [53], and the exhaustion of IPv4

address space allocated to the North American regional Internet registry occurred on September 24,

2015 [54]. The proliferation of Internet-connected devices, each of which may have multiple IPv4

addresses corresponding to different network interfaces, and the inefficient allocation of address space

has led to the exhaustion of the available pool, even with architectural modifications to delay the

inevitable (such as the transition from classful network addressing to Classless Inter-Domain Routing and

the introduction of network address translation). The long-term mitigation technique for this problem

has been the gradual transition to Internet Protocol Version 6 (IPv6) [55], which employs 128-bit

addresses rather than 32-bit addresses, allowing for 2128 ~ 3.4 x 1038 unique addresses. An

appropriate choice for the CServ architecture addressing framework should avoid the address

exhaustion issue to a reasonable extent.

A third desirable property for a candidate addressing framework is interoperability with the addressing

scheme used for best effort traffic in the CServ architecture. As a CServ-enabled endpoint host may both

102

generate CServ datagrams or best effort traffic, it befits the design to choose an addressing framework

that generalizes to both services rather than to differentiate between addresses or addressing schemes

based on the intended network layer service. The latter introduces an additional level of unnecessary

complexity. Furthermore, and although outside the scope of this document, this interoperable

framework enables customers of the CServ class and the best effort class to leverage common support

infrastructure, such as address resolution services like the Domain Name System [56] [57].

As the Internet addressing framework is gradually shifting from IPv4 to IPv6 in response to the

exhaustion of IPv4 address space, we identify IPv6 as a promising candidate for the addressing scheme

in the CServ architecture. We present a brief overview of the IPv6 address structure, and then we

consider its viability in terms of the three identified desired properties.

IPv6 uses 128-bit addresses that are intended to permit hierarchical address allocation to facilitate

efficient route aggregation. Generally, these addresses are represented as eight groups of four

hexadecimal digits (or 16 bits) separated by colons, such as illustrated in Fig. 3-1. The specification

introduces several address classifications based on the routing methodology, such as anycast and

multicast, but we focus on the unicast address format here since the critical datagram service is design

for unicast message transmission. As depicted in Fig. 3-1, the most significant 64 bits are reserved for

the network prefix used for routing, while the least significant 64 bits are used as an interface identifier

to pinpoint the host's network interface. The network prefix is further decomposed into routing prefix

and subnet identification fields, which are variable in length but typically 48 bits and 16 bits respectively.

The routing prefix, a /48 (or sometimes as little as a /56 [58]), is generally distributed by local Internet

registries to end sites, such as companies and organizations, and serves as the network address. The

subnet identification field provides the end site the flexibility to configure a hierarchy of smaller

networks within that space (note the different use of the term "subnet" in the description of the IPv6

architecture) [49]. The standardized 64-bit field for the host interface identification allows for automatic

derivation from its unique 48-bit media access control (MAC) address to form an EUI-64 [59], although

alternate mechanisms to obtain the identifier through an address server, random choice, or manual

configuration are available.

As considered above, the flexibility of the 128-bit IPv6 address is intended to promote the creation of a

hierarchical routing space. This suits our first desired property. Second, the approximately 3.4 x 1038

103

possible unique addresses provide more than sufficient addressing space to avoid near-term address

exhaustion, meeting our second desired property. Third, the adoption of IPv6 in the Internet for best

effort Internet Protocol (IP) service makes this addressing framework very attractive for interoperability

purposes. The CServ architecture can make use of IPv6 for the best effort traffic class, while

simultaneously leveraging the IPv6 addressing scheme to identify subnets, routers, and hosts for the

CServ traffic class. Furthermore, the prescribed procedure to generate interface identifiers from unique

MAC hardware addresses ensures uniqueness among addresses used for both CServ-enabled hosts and

those without CServ capability.

We suggest the use of the 128-bit IPv6 address as shown in Fig. 3-1, reallocating some of the most

significant bits in the network prefix to suit our network hierarchy. Adopting the terminology of the

CServ architecture, we allot the most significant 32 bits for the Subnet Identifier, where we now use the

"subnet" as introduced in Chapter 2. Although subnets in our architecture do not necessarily correspond

one-to-one with Internet Autonomous Systems (ASes), we posit that the magnitude of their respective

sets could be more or less comparable. As of November 2015, the number of unique ASes in the

Internet routing system is approximately 52,180 [60]. AS Numbers (ASNs) were originally 16-bit integers,

but the standard was later updated to 32-bit integers to account for growth in the number of ASes [61].

This 32-bit field allows for more than 4 billion unique ASes, and should easily suit the requirements for

subnet addressing given that there are less than 53,000 ASes in the Internet routing system. The size

agreement between Subnet Identifier and ASN also enables the opportunity to leverage Border Gateway

Protocol to serve the subnet internetworking connectivity needs of the best effort traffic class. The next

32 bits in the address are reserved for router identification within the subnet, again providing address

space for more than 4 billion routers per subnet routing core (a unique address can be assigned to each

router interface if required for implementation, as there is abundant address space). The least

significant 64 bits are left unmodified, as we allow for the use of the same techniques introduced by the

IPv6 addressing framework for automatic host interface ID generation.

In the following discussion, we employ some standard representations of IPv6 addresses as text as

outlined in [62]. Namely, we suppress leading zeros in each 16-bit run, and multiple consecutive 16-bit

runs of all zeros are replaced by an empty group using two colons (i.e. "::").

104

The address structure can then be used in the following way. A subnet address has the form of

2001:db8::, for example, where the first 32 bits specify the subnet and the remaining 96 bits are all

zeros. The address of a router should reflect its membership within the core routing plane of a subnet by

using the same most significant 32 bits as the subnet. For example, an access or gateway router in

subnet 2001:db8:: could have the address 2001:db8:0:1::, where the 32 bits following the subnet

identification specify the router and the least significant 64 bits are all zeros. Lastly, the address of a host

interface then reflects both the upstream access router which provides network access into the subnet

routing core and the subnet membership of that access router. As an example, a host interface

connected to access router 2001:db8:0:1:: could have the address 2001:db8:0:1::1, where the least

significant 64 bits are generated from the interface's hardware MAC address. This use of the addressing

framework immediately indicates information about other addresses in the hierarchy. For example,

given a host's interface address such as 2001:db8:0:1::1, application of a bitwise AND operation with the

router bitmask (ffff:ffff:ffff:ffff::) or the subnet bitmask (ffff:ffff::) directly reveals the addresses of the

host interface's upstream access router and the host interface's connected subnet, respectively.

Similarly, application of a bitwise AND operation with the subnet bitmask on a router address, such as

2001:db8:0:1::, reveals the subnet membership of that router device, whereas application of a bitwise

AND operation with the router bitmask on a router address can be viewed as a trivial identity operation.

Although not necessarily unique to this addressing framework, we note that an endpoint host with

multiple network interfaces has multiple network addresses since each interface has a unique hardware

address. The source of a CServ transaction likely wants the critical message to reach the intended

destination host with multiple network interfaces regardless of which interface the message is received

on. Thus, even if one address is used to specify the destination of the transaction, the CServ architecture

should have the capability to resolve that address into all possible interface addresses for the same

endpoint host. The primary benefits of multiple network interfaces are availability and survivability,

particularly if the multiple network interfaces are used for multihoming. Consider the two multihoming

examples in Fig. 3-2 and Fig. 3-3. In the first example, the host device is redundantly connected to two

upstream access routers in the same subnet via its multiple network interfaces. The multiple

connections render the host still available even if one of the interfaces goes down or if one of the

upstream access routers fails, a highly desirable property if this host is either the source or intended

destination of a CServ transaction. Alternatively, in the second example, the host device is connected to

upstream routers in two different subnets via its multiple network interfaces. In this scenario, the host

105

additionally remains reachable by one subnet even if the other subnet completely fails or becomes

compromised, an even more resilient use of the dual interfaces. In both examples, the interface

addresses would be different given our proposed scheme even if we unified the least significant 64 bits,

or the interface identifier, in the address, since the upstream access router (and possibly connected

subnet) addresses are unique. The use of this addressing framework requires the ability to bind multiple

unique addresses as belonging to the same host device, and it is possible that there are addressing

frameworks that handle the multiple interface and multihoming issues more efficiently.

Before we continue to the next section, we reiterate that the use of IPv6 is only one of many

alternatives for an addressing implementation in the CServ architecture. For the reasons previously

identified, we believe that it is a promising candidate, particularly because of its acceptance in the

context of the Internet's best effort service. Other addressing frameworks not yet explored, however,

may exhibit the same desirable properties and even more effectively handle some of the identified

challenges. The majority of the discussion in the rest of this document does not rely on the specifics of

IPv6, but rather only on the capability to use the addressing structure in a hierarchical manner. That

being said, we adopt 128-bit address fields when analyzing the size of header control information

because of the broad addressing space it provides and the flexibility available with that address length.

2001:Odb8:acl:feOl: 1234:ba98:0011:0000

IPv6 Unicast Format: Network Prefix: Interface ID
48(+) bits Routing Prefix

16(-) bits Subnet ID

CServ Proposed Usage: Subnet ID Router ID Interface ID

Fig. 3-1: This shows the detailed structure of a 128-bit IPv6 unicast address in hexadecimal notation and

a proposed restructuring for possible use in the CServ architecture.

106

Subnet
2001:db8::

Access Router 1 Access Router 2
2001:db8:0:1:: 2001:db8:0:2::

Host Interface 1 Host Interface 2
2001:db8:0:1::1 2001:db8:0:2::2

Fig. 3-2: In this multihoming example, the host is connected to two upstream access routers in the same

subnet via its multiple network interfaces.

Subnet 1
2001:db8::

Subnet 2
2001:db9::

Access Router
2001:db8:0:1::

Host
2001

Interface 1 Host Interface
:db8:0:1::1 2001:db9:0:1::

Access Router
2001:db9:0:1::

Fig. 3-3: In this multihoming example, the host is connected to two upstream access routers in two

disparate subnets via its multiple network interfaces.

107

I

2
2

3.1.2 Datagram Integrity and Authentication

The CServ datagram integrity and authenticity are two vital concerns. The integrity of the datagram is

concerned with the validity of the payload. Was the message corrupted in transit from source host to

destination host? And the authenticity of the datagram is concerned with the identification of the

originating source. Was the message truly generated by the source host claimed in the control

information of the datagram? Both of these concerns should be addressed by the CServ architecture, as

they are central to the success of the CServ messaging service designed to bear the most important data

in the network. A CServ datagram that arrives at the destination host with a corrupted message or,

worse, that has been forged by an adversarial third party is either useless or harmful to the recipient. In

this section, we very briefly consider these topics for the purpose of sizing the control information fields

in the CServ datagram headers. However, a more thorough treatment of these considerations is

necessary. In particular, the security of a system designed to handle mission-critical messaging is of

utmost concern; we deliberate upon the many outstanding security questions in the future work section

of Chapter 6.

First, we consider how we can protect the integrity of the CServ datagram. A typical approach to this

problem in data transmission is the inclusion of a checksum in the datagram header, or a small-size hash

of the data. Checksum functions are typically designed to output a significantly different value even for a

slight change in the input data. By computing the checksum with the same function at the destination

and comparing with the value transmitted with the datagram, the recipient can verify with high

probability that the data has not changed or been corrupted during transit. We note here that the next

generation of Internet network service, IPv6, does not compute or include a checksum in the header

control information [55] because link level protocols are assumed to almost always provider a stronger

data integrity check (such as a cyclic redundancy check) and the higher layer reliable transport protocol,

Transmission Control Protocol (TCP), provides end-to-end checksum protection [63]. As it has been

observed that the TCP checksum is not redundant [64], we choose to reintroduce an integrity check in

the CServ Internetwork Service header because the CServ messaging architecture does not assume nor

require the use of a higher-layer transport protocol, and thus the CServ Internetworking Service serves

as an end-to-end protocol. We assume the use of a simple 16-bit checksum, as in TCP, and allow for this

in the allocation of the header control fields.

108

We additionally consider allocating control fields for the use of verifying the authenticity of the CServ

datagram, a concern at the crux of a network service that bears the most important messages including

early warning notifications and command and control messages. A forged CServ datagram could have

severe consequences. Although we do not give the full treatment of the consideration here, we

introduce some of the issues in the decision upon one authenticity protocol or another.

As a typical approach, cryptographically-generated codes are often attached to network messages to

give reason to believe the message was created by the specified sender. These authenticity measures

are at the center of many security-centric Internet protocols, including IPSec and Transport Layer

Security. Broadly speaking, cryptographic techniques can be decomposed into symmetric schemes and

asymmetric schemes. In a symmetric scheme, the two communication endpoints have a shared secret

key that is used to generate and validate the transmitted authentication code, called a message

authentication code. These techniques require that the two endpoints have established and agreed

upon a shared secret in advance of initiating the authenticated communication. In an asymmetric

scheme, a private key is used to generate an authentication code which is transmitted with the

message, called a digital signature in this context. This signature can be verified, but not forged, using an

openly announced public key in the key pair. This technique requires that the recipient has the message

source's public key prior to initiating the authenticated communication.

The security level of these authentication schemes is frequently characterized by bits of security, where

a scheme with n bits of security requires 0(2) operations on average for an adversary to compromise

the secret key. Symmetric schemes, such as those that generate keyed-hash message authentication

codes, are designed to achieve a level of security equal to their key length. Asymmetric schemes do not

meet this property; they require longer keys (and often longer signatures) to attain the same bits of

security. For example, a popular asymmetric public-key signature scheme uses the RSA cryptosystem.

The level of security with a 1024-bit key, and consequently 1024-bit digital signature, in RSA is

approximately equal to an 80-bit symmetric key algorithm [65]. Alternatively, the Digital Signature

Algorithm (DSA), a variant of the ElGamal algorithm [66], produces a 320-bit signature with a 1024-bit

key and 80 bits of security. An elliptic curve version of DSA (ECDSA) allows for shorter key sizes for a

given level of security, although the signature length remains unchanged. Generally, elliptic curve-based

security has a level of security roughly half its key length. For 80 bits of security, ECDSA only needs a

160-bit public key, but the resulting signature remains 320 bits in length. Using either DSA or ECDSA, 112

109

bits of security can be realized with 448-bit signatures, and 128 bits of security can be realized with 512-

bit signatures [67]. Generally, 128 bits of security is widely considered to be out of reach for

conventional digital computing techniques in the foreseeable future.

The question of how to size the header control field allocated for authentication depends jointly on the

cryptographic authentication scheme (symmetric or asymmetric), the authentication code generation

algorithm, and the level of security desired. We consider it infeasible for all possible pairs of CServ

communication endpoints to exchange secret keys. For m total CServ-enabled devices, this would

require 0(m2) secret key pairs to be prearranged in a distributed fashion prior to the transmission of

CServ datagrams. And this distribution of secret keys would require some method that does not utilize

the network itself, as this would negate the "secret" aspect. This consideration rules out symmetric

signature schemes. Focusing then on asymmetric schemes which require the distribution of m public

keys in the open, the choice boils down to the overhead we are willing to accept in the CServ datagram

headers and the level of security needed. This decision on a cryptographic signing scheme remains an

open problem in the CServ architecture and requires more detailed consideration. Suffice it to say, we

choose to reserve 512 bits in the CServ datagram header for an authenticating signature, and we find

that this allocation already imposes a heavy burden in terms of overhead. Standards recommendations

require at least 112 bits of security [68]. This excludes the use of RSA, which would need 2048-bit

signatures [65] and much more space in the CServ datagram header. However, 112 bits of security can

be achieved using DSA or ECDSA with only 448-bit signatures, or we can leverage all 512 available bits in

the authentication field and realize 128 bits of security with one of these schemes. The complexity of

signature generation and verification should additionally be considered in the future when determining

which scheme best suits the CServ architecture, as well as any other candidate schemes that are not

discussed here.

3.1.3 Signaling Between Protocol Layers

An important consideration in packet encapsulation and processing is that of indicating the protocol

type of the encapsulated payload. This is necessary to indicate to the router or other network device

how to handle the internal datagram or packet once the outer protocol information is stripped away.

Otherwise, the router does not know how to process or interpret the information in the header of the

next protocol layer. For example, if the next protocol layer is an IP datagram, then the router needs to

110

direct the datagram into the IP forwarding processing pipeline after stripping away the data link layer

information. Alternatively, if there is a Multiprotocol Label Switching (MPLS) label present, then the

router needs to direct the datagram into the label lookup processing module. Most protocols reserve

fields in their control headers specifically to embed a code representing the next layer protocol type.

In the context of the CServ architecture, there are two main considerations:

1. How does the data link layer protocol signal that the encapsulated datagram is a CServ

datagram?

2. And does the CServ datagram need the capability to signal the type of a higher layer protocol?

Although we do not specify all possibilities or standardize any set of type codes, we discuss some of the

options that could be used to address these considerations in order to choose appropriate control field

sizes in the CServ headers.

We begin by addressing the first question above. First, let us consider how this is done in the Internet in

the context of the IP stack. The lower layer protocol indicates the encapsulation of an IP packet through

a field in its control header. As discussed earlier in this chapter, there are multiple flavors of IP in the

wild, namely IPv4 and IPv6. Although the IP header itself has a field that encodes the particular version

used, this differentiation is typically made in the encapsulation type field by the lower layer protocol as

well. As an example, let's consider the Ethernet frame [451, a data link layer protocol that can

encapsulate an IP packet. The header of the frame includes a two octet field called EtherType, which can

be used to indicate the protocol type of the payload. Specifically, the hexadecimal code Ox0800 is used

for IPv4 and Ox86dd for IPv6. As another example, the EtherType code Ox8847 represents that the

encapsulated datagram has an MPLS unicast label. Other data link layer protocols have similar methods

of identifying their encapsulated payload type.

The CServ architecture could take this approach. In fact, this could be considered the "correct" approach

in that it conforms to the standard method of introducing new protocol formats. The challenge here is

that all possible data link layers in the network need the flexibility to encode several types of

encapsulated CServ datagrams. Consider the generic decomposition of a CServ datagram in Fig. 3-4. As

introduced in Chapter 2, the CServ Intranetwork Service header may in fact be an IP header, an MPLS

111

label, a CServ proprietary header, or another format. Additionally, the CServ Internetwork Service

header, which is always CServ proprietary format, may appear alone at the network edge without a

CServ Intranetwork Service header. This wide range of encapsulation possibilities makes it difficult to

guarantee that the lower layer protocol has enough freedom to express this variety, even if it can be

assumed that it is easy enough to reserve these type codes for CServ purposes.

Alternatively, we propose a second approach that may be better suited to the variety of possible

datagram formats and should ease adoption of the CServ architecture, even if it represents a sort of

system hack. Since IP packet formats are widely recognized by network devices and the 4-bit Version

header field is only sparingly assigned, we suggest borrowing the Version field from IP and taking

advantage of the sparsely-populated code to indicate CServ datagram types. Consider that codes for

lPv4 and IPv6 are the only two widely used in IP (more precisely, codes for decimal values 1-3 and 10-14

are unallocated). With this approach, CServ headers, including the proprietary Intranetwork Service

header, the proprietary Internetwork Service header, and the optional State Measurement Service

headers (to be discussed in more detail in Chapter 4), lead with a 4-bit field in the most significant

location mimicking an IP header and specifying the type of CServ header. Data link layer protocols can

then encapsulate any datagram that leads with a CServ header using an IP protocol code, which is

already assumed to be supported by link layer technologies such as Ethernet. The challenge with this

approach is to ensure that CServ-enabled routers are configured to process the 4-bit Version field

correctly and interpret CServ datagram types, distinguishing them from actual IP datagrams.

Additionally, lPv4 and lPv6 both have a one octet field in the header to indicate the next header type (or

protocol type). This is frequently used to indicate the encapsulated higher layer protocol, such as TCP or

User Datagram Protocol (UDP). As of the time of publication, there are 110 unassigned codes for this

field in the decimal range of 143-252. We take this approach and suggest the inclusion of a 4-bit Next

Header code in all CServ headers. The architecture currently does not need the flexibility of a full octet-

length field, and this should suffice to indicate the type of the next header, be it a CServ datagram

payload (no additional header), a CServ Internetwork Service header, or a state measurement header.

This Next Header code enables us to build arbitrary header stacks in the form of Fig. 3-4 where each

header segment can indicate its own format and the header format of the encapsulated datagram type.

Note that there may be some implementation-specific exceptions to this design, since we do not have

design control over some CServ Intranetwork Service header formats (such as IP headers or MPLS

112

labels). While IP headers have unused codes in the Next Header/Protocol field that we can leverage, a

format such as an MPLS label does not. Consider an example where MPLS is used as the CServ

Intranetwork Service and thus the CServ Intranetwork Service header is an MPLS label. These labels do

not have fields available to indicate the next header protocol in their control overhead. However, since

MPLS supports the transport of IP packets, this approach fits naturally with next headers that are

mimicking IP headers with the leading Version field.

We now briefly address the second question posed above. As previously mentioned, IP provides support

to specify the higher layer endpoint transport protocol that it encapsulates, such as TCP or UDP. The

CServ data plane protocol, as described in this dissertation, represents both the network protocol and

the transport protocol. Since our data transaction of interest is a short, critical payload with stringent

time deadline requirements that may be on the order of the one-way transmission time, we do not

necessarily have the luxury to implement a higher layer transport protocol to ensure end-to-end

delivery reliability through retransmission protocols. That being said, there is no technical barrier to

developing a transport protocol that treats CServ purely as a network service. The specification of

reliability and delay requirements through the CServ API presents the opportunity to design unique

transport protocols that leverage these CServ performance metrics for more efficient retransmission

decisions. Further consideration of this possible future development is out of the scope of this work, but

we note that any unused codes in the 4-bit Next Header field could be used to specify the encapsulated

higher layer transport protocol if it exists (otherwise, the CServ Internetwork Service header always

encapsulates the CServ message payload). If greater flexibility is demanded in the future, this control

header field could be expanded to an 8-bit length since the current four bits need to be jointly shared

with the codes for encapsulated CServ network service header layers.

113

CServ Intranetwork OPTIONAL:
Serviceraewrk State measurement
Service header fields

CServ Internetwork
Service header

CServ message payload

It
Y

I nternetwork CServ datagram

OPTIONAL: State measurement datagram

IntranetworkCServ datagram (e.g. IP datagram, MPLS-labeled packet)

Fig. 3-4: This is the general format for the encapsulation of a CServ payload, including the placement of

optional State Measurement Service fields that depend on the CServ performance metrics state learning

protocol used. Without the optional fields, the CServ Intranetwork Service Header directly encapsulates

the Internetwork CServ datagram.

114

I

3.2 CServ Internetwork Service Header

With the preliminary considerations of Section 3.1 under our belt, we proceed to discuss the structure

of the CServ Internetwork Service header, describing the use of the control fields. This is followed by an

analysis of the overhead imposed by this header layer.

The organization of the CServ Internetwork Service header is depicted in Fig. 3-5. This format is used as

the first CServ header layer for all CServ datagrams; there is only one type of CServ Internetwork Service

header. That being said, this is a variable length header, as we describe as we walk through the

descriptions of the illustrated fields. As more functionality is considered for the CServ architecture, the

design of this header control information may need to be modified, as we mentioned in the chapter

introduction. However, we consider that this is the fundamental information required for successful

CServ data plane operation as outlined in this document.

The following describes the purpose and use for each field in the CServ Internetwork Service header:

" Version (VER) - As discussed in Section 3.1.3, this leading 4-bit Version field allows the

internetwork CServ datagram to masquerade as an IP packet, which also leads with a 4-bit

version code. We employ an unused code (codes for decimal values 1-3 and 10-14 are

unallocated) to specify that the following is a CServ Internetwork Service header. In this way,

lower layer data link protocols can encapsulate the internetwork CServ datagram as an IP packet

with the appropriate signaling in its header control information. The only layer-3 routers that

should encounter an internetwork CServ datagram are CServ-enabled active devices by design,

and they should be capable of interpreting the Version field code to distinguish the internetwork

CServ datagram from an IP packet.

* Next Header (NH) - The 4-bit Next Header field is used to indicate the format of the

encapsulated datagram header, if indeed there is one, as introduced in Section 3.1.3. For the

time being, we assume that there is no encapsulated header for internetwork CServ datagrams

and the default Next Header code (say, for example, 0000) is a sort of null value that indicates

the encapsulated payload is the CServ message data to be delivered to the destination host's

CServ application. However, as discussed before, this field can later be used to indicate the

115

existence of a transport protocol control header if one is developed that supports CServ

network service. Furthermore, all CServ header formats begin with the 4-bit Version and 4-bit

Next Header fields, and the latter is needed for other CServ header formats (to be discussed in

Section 3.4).

* Path Length (PL) - The Path Length field is used to indicate the number of CServ routers in the

explicit CServ Internetwork Service path, the details of which are included later in the CServ

Internetwork Service header. The decimal value encoded in this field corresponds to the number

of addresses in the explicit path. For example, the decimal value of the PL field would be 8 for a

path with two transit subnets since the full path includes the source and destination subnets

and two CServ routers per subnet. Although most paths are only expected to traverse a handful

of subnets, four bits would allow for only a maximum of 15 routers in the CServ Internetwork

Service path. We choose eight bits for this field to allow for additional path length flexibility (up

to 255 routers in the CServ Internetwork Service path), but we do not expect the full flexibility of

this field to be often used. In fact, the MC's service discovery and composition algorithm may

limit the length of candidate CServ internetwork paths. Indirectly, this field also specifies the

total size of the CServ Internetwork Service header since it controls the length of the variable

part of the header as shown in Fig. 3-5, and thus delineates the boundary between the CServ

internetwork Service header and the CServ data payload (or, possibly, the next header if there is

support for one in the future).

* Payload/Data Length (DL) - This field is used to encode the size of the encapsulated payload in

bytes. As mentioned above, the payload is currently the bare CServ message data (as indicated

by the default Next Header code). If support for a higher layer transport protocol is developed in

the future, this value would specify the size of the encapsulated protocol data unit payload

(both the transport control information header and the CServ message data). With 16 bits, this

field can encode payloads up to 65,535 bytes. Our driving applications are expected to transmit

CServ message data on the order of one kilobyte, making this field sufficiently expressive for

these purposes.

* Checksum (CS) - As motivated in Section 3.1.2, we include a 16-bit Checksum field to store the

value of simple hash of the internetwork CServ datagram to ensure its integrity as it traverses

116

the network. This integrity protection takes the place of similar checks in Internet transport

protocols (such as TCP), since the CServ network service plays the dual role of the network and

transport layers in the CServ architecture.

* Source Address (SA)/Destination Address (DA) - These self-explanatory fields are used to store

the network addresses of the source and destination hosts for the unicast CServ transaction, the

same addresses specified in the CSR to request CServ network service. Per the discussion of

3.1.1, we allocate 128 bits for each network address.

* Sequence Number (SN) - We use a sequence number to identify unique CServ message data

payloads between a particular source and destination host. Since the CServ Internetwork Service

may specify the use of subnet-disjoint path diversity to meet the demands of the CSR, the

sequence number is required to alert the destination host to multiple receptions of the same

CServ message data such that the two messages are not treated as unique transactions. In other

terms, the {SA, DA, SN}-tuple is used to quench CServ message replication for diversity-routed

solutions at the internetwork endpoint. This does require stateful CServ processes at the

endpoints of the CServ transaction to maintain a current sequence number for the {SA, DA} pair.

Although it likely represents an overly conservative allocation, we mark off 32 bits for the

Sequence Number field, which allows for more than four billion CServ transactions between a

pair of endpoint hosts before the value wraps around. It is very feasible that fewer bits are

actually required for this field.

* Expiration Time (ET) - This 64-bit field can be considered a "belt-and-suspenders" check to

ensure that the destination host receives the CServ message data within the maximum tolerable

delay specified by the source host CServ application. This value, the current time plus the

maximum tolerable delay, is calculated from the moment that the source host application

generates the CServ message and CSR. By placing this timestamp in the CServ Internetwork

Service header, the destination host can verify that the internetwork CServ datagram has been

received by the intended deadline by checking that the current time is later than the value in the

Expiration Time field. This may be useful for the CServ application, which can implement an

appropriate policy for CServ datagrams that are received by the destination host application

after the deadline. The 64-bit timestamp conforms to many standard system time

117

representations, such as the nanosecond-accurate real-time clock supported by Linux kernels

which uses 64 bits to specify the number of nanoseconds since the Unix Epoch. With 64 bits, it

would take more than 584 years for this timer to wrap around. Note that the CServ architecture

assumes access to a synchronized global clock, such as that available through Global Positioning

System (GPS) timing.

* Authentication Mark (AM) - Per the discussion in Section 3.1.2, we allocate a 512-bit field for

CServ datagram authentication. Although we do not formalize the cryptographic algorithm used

to generate digital signatures in the CServ architecture at this time, the consideration earlier in

the chapter describes some of the options and tradeoffs.

* Hop X E {1, 2, ... , h} Address - The final part of the CServ Internetwork Service header is the

explicit representation of the CServ Internetwork Service path determined by the MC and the

CSDCA. This path consists of h 128-bit network addresses, where h is the decimal integer

specified by the Path Length field. Each of these addresses corresponds to a CServ-enabled

router, either an access router or a gateway router in the CServ nomenclature, in the path from

the source host to the destination host, and it represents the explicit subnet-granularity path

that the internetwork CServ datagram follows through the network.

It is possible that additional fields may be necessary in the CServ Internetwork Service header as

additional functionality is developed for the CServ architecture. However, this formulation gives us a

foundation in order to analyze the protocol overhead.

118

Bit Position
0 3 4 7 8 11 12 15

octet
- v 114

128

130

144
146

160

98+16h

112+lHr
J114+1Wh-

Bit Position
0 3 4 7 8 11 12 15

Hop 1 Address

Hop 2 Address

Hop 3 Address

VFR NH Pt
Payload/Data Iength WOu

Cherksum(C-SI

Source Address (SA)

Destination Address (DA)

Sequence Number (SN)

Expiration Time (ET)

Fig. 3-5: The variable length format of the CServ Internetwork Service header is depicted here, to scale,

based on the sizing discussions in Sections 3.1 and 3.2. The realized header length depends on the value

stored in the Path Length (PL) field.

119

Octet
0i
2i
4'
6

20
22

36
38
40
42

48
50

112

Hop h Address

Daa Payod

Variable length CServ
Internetwork Service path
Decimal value of PL = h

Authentication Mark (AM)

=|=:11======

'

3.2.1 Size Analysis of the CServ Internetwork Service Header

We consider the control overhead imposed by the CServ Internetwork Service header as described in

this section. In particular, we want to analyze the range of possible header sizes based on the header

format and system parameters. For the purpose of analysis and computation of the overhead efficiency,

we denote the size of the CServ message data payload as 'message and assume a payload of one

kilobyte.

We begin with the analysis of the lower and upper bounds on the CServ Internetwork Service header

size. The lower bound for internetwork service requires a CServ Internetwork Service path specified by

four hops, namely the source host's upstream CServ access router and egress gateway router in the

source subnet and the destination host's ingress gateway router and upstream CServ access router in

the destination subnet. The upper bound, alternatively, is determined by the Path Length field, which

encodes the length of the variable part of the header, the sequence of CServ Internetwork Service path

hops. As Path Length occupies an 8-bit field, it is able to encode unsigned integers up to 255. We denote

these two values as hmin and hmax, respectively. Referring to Fig. 3-5, the byte (or octet) numbering

system to the left of the header description guides the size analysis by indicating the leading byte index

for each header row (and each row consists of two bytes). The general expression for the length in bytes

of the CServ internetwork Service header that encodes a CServ Internetwork Service path with h hops,

denoted linter(h) is:

linter(h) = 114 + 16h. (3.1)

We can use the expression in Eq. (3.1) to compute the lower and upper bounds on the CServ

Internetwork Service header as follows:

er = linter(hmin) = 114 + 16hmin = 114 + 16(4) = 178, (3.2)

iner = linter(hmax) = 114 + 16hmax = 114 + 16(255) = 4194.

We note the large range imposed by these bounds: 178 linter(h) 4194. In particular, the upper

bound on the CServ Internetwork Service header is four times the size of the expected CServ message

120

data payload of one kilobyte. The CSDCA, which computes CServ Internetwork Service paths, limits the

possible path lengths by the algorithm design since it requires bounded and well-defined execution

time. Thus, even though the header is technically capable of encoding paths with 255 CServ router hops,

this full flexibility is not used in practice.

The typical CServ Internetwork Service header is expected to fall near the lower end of these bounds.

We define a typical CServ Internetwork Service path as one with two transit subnets. Therefore, the

typical CServ Internetwork Service header needs to encode eight hops, namely the source host's

upstream CServ access router and egress gateway router in the source subnet, the ingress-egress

gateway router pairs in each transit subnet, and the destination host's ingress gateway router and

upstream CServ access router in the destination subnet. We denote the typical number of hops in a

CServ Internetwork Service path as htypical. With Eq. (3.1), we have the following for the typical CServ

Internetwork Service header length in bytes:

lntera linter (htypical) = 114 + 16htypical = 114 + 16(8) = 242. (3.3)

Using the values for r ,tcal and le.r we can compute the fractional overhead required by the

CServ Internetwork Service header with respect to the CServ message data payload, Imessage. We

denote the fractional overhead for the CServ Internetwork Service header that encodes h hops as

inter(h), and we have the following:

Fnin 178
inter = inter) 1000 = 17.8%,

message

1 typical 242
ptypica= inF r (htypical)= inter 2= - = 24.2%, (3.4)
inter inte 'message 1000

lmax 4194
x inter (hmax) = - 1000 = 419.4%.

=message

Considering the range on the CServ Internetwork Service header length, the range in overhead values

for a constant CServ message data payload is not surprising. Considering these results, we can accept a

reasonable overhead which is less than 25% for typical CServ Internetwork Service paths. However,

121

without bounding the length of these paths, the protocol control overhead can grow out of control and

become quite unreasonable with respect to the message size.

3.3 State Measurement Service Header

A critical component of the CServ architecture is the measurement of subnet internal CServ

performance metrics which are used to discover CServ Internetwork Service paths and compose end-to-

end service that meets the demands of the CServ application. This is necessary since the MC otherwise

has no direct visibility into the topology or routing state of the individual subnets, which are left to

operate autonomously in terms of their routing and forwarding strategy in order to best meet the needs

of their own system. To this end, the CServ design uses internetwork CServ datagrams to measure the

actual performance of CServ Intranetwork Services as they traverse the network.

The full details of subnet state learning and reporting protocols are covered in Chapter 4. State

measurement service headers prepended to the internetwork CServ datagram could be considered,

informally, as part of the CServ Intranetwork Service header since they are specific to the subnet. We

choose to treat them separately because:

1. individual subnets may employ different state measurements protocols and thus require

different state measurement service headers;

2. these headers are strictly optional since not every internetwork CServ datagram is used as a

state learning probe;

3. and CServ Intranetwork Service headers may be standard network protocols (such as IP or

MPLS) so we differentiate CServ-exclusive fields by identifying state measurement service

headers as their own header layer in the stack.

For the purposes of this chapter, we only wish to characterize the protocol overhead required in the

datagram header, so the remainder of this section treats the optional state measurement service

headers generally and simply provides an upper bound on the size requirement without details. As

introduced in Section 3.1.3, each CServ proprietary header begins with a 4-bit Version field identifying

the type of header (in this case, the specific state measurement protocol header), followed by a 4-bit

Next Header field that allows for the specification of the next header in the layered header stack

122

(typically the CServ Internetwork Service header in this situation). Following this initial octet, we allot 36

maximum additional bytes for the fields required by the state measurement service header. Denoting

the maximum size of the state measurement service header in bytes as 1max (and noting that the size is

independent of any CServ Intranetwork Service path length), we claim here without further detail that

Smax = 37. We denote the maximum fractional overhead for the state measurement service header as

rsmax, and we have the following:

Imax 3
-max _sms__ 3.% (3.5)

ms =imessage 1000

This is the maximum overhead imposed by the state measurement service header, a fairly trivial amount

compared to the requirement of the CServ Internetwork Service header. In fact, the overhead for one of

the state learning protocols that does not represent this maximum is closer to 1%. We leave the

remainder of this discussion for Chapter 4, which is devoted to learning the state of CServ performance

metrics.

3.4 CServ Intranetwork Service Header

The CServ Intranetwork Service header used within a subnet depends on the routing and forwarding

policies of the individual subnet. As previously discussed, the subnet administrator may choose to

employ IP-based longest-prefix matching as the forwarding mechanism along shortest-path routes in

order to minimize the number of CServ router upgrades required within the subnet's routing core.

Alternatively, the subnet administrator may want to use a label-based forwarding mechanism to

implement CServ-enabled router to CServ-enabled router virtual circuits (VCs). These CServ

Intranetwork Service tunnels serve as a hook for efficient traffic engineering decisions. The subnet

administrator may even choose to pervasively adopt CServ-enabled routers in the routing core and then

employ centralized route computation and explicit path forwarding just as the CServ architecture uses

on a per-transaction basis for the CServ Internetwork Service (see Section 2.4).

These are among a few of the many possible implementations of the CServ Intranetwork Service.

Alongside the breadth of choices for the service comes a breadth of possibilities for the CServ

Intranetwork Service header. For example, an IP-based longest prefix matching scheme requires an IP

123

header, a labeled VC requires an MPLS label, and explicit path forwarding in the CServ architecture can

use a CServ Intranetwork Service header that closely resembles the CServ Internetwork Service header.

We briefly consider each of these options in more detail and analyze their respective overhead

requirement, noting that there are many other possibilities for CServ Intranetwork Service that are not

covered in this section.

3.4.1 IP-based CServ Intranetwork Service

We first consider the use of IP-based forwarding within a subnet for CServ Intranetwork Service, where

each router uses longest-prefix matching to determine the next-hop interface for the intranetwork

CServ datagram. The attractiveness of this option is that much of a subnet's routing core can operate

using legacy equipment without upgrade, since most network providers already support IP mechanisms.

The only routers that need to be CServ-enabled are those directly providing upstream access to access

networks with CServ-enabled end hosts and those gateway routers that are part of the CServ

internetwork routing topology.

The discussion here focuses on IP encapsulation with the lPv6 header format as specified in [55] since

we are assuming 128-bit network addresses. The lPv6 header has a 40 byte structure, as long as no

extension headers are employed. The Version field of the header would be used to indicate that it is

indeed an lPv6 header (using the decimal value 6, or binary value 0110). Just as for CServ proprietary

headers, the Next Header field would be used to encode the header type of the encapsulated payload

(which, considering the discussion of Section 3.1.3, could masquerade as an IP header itself even if it is

not). The Source Address field would be used for the address of the entry point into the subnet's IP

domain, which is generally the ingress active gateway router or the upstream active access router

generating and prepending this lPv6 header. The Destination Address field stores the next address in the

explicit path sequence of the CServ Internetwork Service header, which serves as the departure point

from the subnet's IP domain. The other header fields are populated just as they would be for normal IP

service operation, where the 8-bit Traffic Class field for differentiated services (DiffServ [30]) can

indicate the request for priority queueing and switching where available in the subnet through the

Expedited Forwarding Per-Hop Behavior defined in [69].

124

For the purposes of this discussion, we consider the use of IPv6 in its basic form without extension

headers. We use f't1ra to denote the size of the CServ Intranetwork Service header in bytes when using

IP-based forwarding mechanisms, and thus lltra = 40. As before, we can consider the fractional

overhead levied by using this CServ Intranetwork Service, which we represent by F Ita, and we have the

following:

IPv6 40
rIPv6 _ =ntra 4%. (3.6)
intra - Imessage 1000

3.4.2 MPLS-based CServ Intranetwork Service

Next we consider the use of MPLS label-based forwarding within a subnet for CServ Intranetwork

Service, where the next-hop interface for the intranetwork CServ datagram is dependent only on the

label value and pre-established label-switched path. The attractiveness of this option is the opportunity

for the network administrator to deploy simple traffic engineering solutions that direct CServ traffic

between CServ-enabled routers. MPLS is also designed to support the tunneling of IP packets, and the

CServ architecture is designed such that the encapsulated internetwork CServ datagram (or state

measurement datagram) can masquerade as an IP packet until the leading Version code is processed by

the endpoint CServ router, acting as a label edge router. (If necessary, the MPLS label allocates three

experimental bits in the control information for a service code which can be used to signal the next

header type in the header stack, or alternatively to request priority label-switching where available in

the subnet.)

The format of the MPLS label is standardized in [19], which describes a short 32-bit label containing four

fields. When an internetwork CServ datagram enters the MPLS domain, the ingress gateway router,

acting as a label edge router, maps the next address in the explicit path sequence of the CServ

Internetwork Service header to the appropriate label-switched path that provides the CServ

Intranetwork Service. The corresponding 20-bit MPLS label (which totals 32 bits with the additional

MPLS control information) is prepended to the CServ datagram. At the egress gateway router (or

upstream access router in the destination subnet), the MPLS label is popped as the CServ datagram exits

the MPLS domain. We do not cover the implementation details of MPLS route determination or the

label distribution protocol in this document, although we note for the interested reader that two

125

standardized protocols for the management of MPLS paths are the Label Distribution Protocol [70] and

an extension of the Resource Reservation Protocol (RSVP) for traffic engineering purposes [71].

When using MPLS for the CServ Intranetwork Service, we denote the size of the CServ Intranetwork

Service header in bytes as L . Based on the discussion above, fMPLS - 4 The fractional overheadSevie eaerinbyesasjML intra-.Thfrc

imposed by using this CServ Intranetwork Service, represented by r tas, is correspondingly:

MPLS 4
MPLS intra 0.4%. (3.7)ntra imessage 1000

The data plane protocol overhead associated with MPLS-based CServ Intranetwork Service is negligible,

but this does not account for the control plane overhead required for the management of label-

switched paths and the distribution of the associated labels.

3.4.3 Explicit Path Forwarding as CServ Intranetwork Service

As the last example of CServ Intranetwork Service and its associated protocol control overhead, we

consider the scheme introduced in Section 2.4. This approach leverages the existence of the subnet

controller (SC) and the pervasive collection of state for CServ internetworking purposes to perform

logically-centralized route computation for CServ Intranetwork Service paths. These routes are

distributed to and stored by the CServ-enabled gateway and access routers, which prepend them to

transiting CServ datagrams to explicitly guide them through the subnet.

Using the SC to determine the intranetwork service gives the subnet administrator the opportunity to

maintain CServ Intranetwork Service paths that conform to defined standards in terms of the relevant

CServ performance metrics, reliability and delay. Forwarding based on explicit route description in the

intranetwork CServ datagram avoids costly lookups, such as required when doing IP longest-prefix

match forwarding. Furthermore, this route computation approach opens the door for the use of router-

disjoint path diversity between CServ-enabled routers to improve the subnet's transit reliability. On the

flip side, this routing and forwarding strategy requires pervasive adoption of CServ-enabled routers in

the subnet since each router along the explicit path must be capable of processing CServ formats.

Additionally, explicit path computation requires significant processing effort at the SC to maintain

126

n(n - 1) CServ Intranetwork Service solutions for n active CServ-enabled routers in the subnet's routing

core, and thus the solutions may be slower to update in response to the dynamic state evolution of the

subnet.

When an internetwork CServ datagram enters the domain of a subnet using the CServ explicit path

forwarding approach for CServ Intranetwork Service, the ingress gateway router or upstream active

access router uses the next hop address in the CServ Internetwork Service path to look up the

appropriate stored CServ Intranetwork Service. The resulting path (or set of paths if diversity routing is

specified in the solution) is used to generate the CServ Intranetwork Service header. This header could

take the same form as that depicted in Fig. 3-5 for the CServ Internetwork Service header, but we can

bowdlerize some unnecessary fields to reduce the significant overhead imposed by this large set of

control information (as shown in the fractional overhead analysis of Eq. (3.4)).

Let's consider the essential header fields required for the CServ Intranetwork Service; the resulting

format for a CServ Intranetwork Service header using explicit path forwarding is illustrated in Fig. 3-6. As

with other CServ-proprietary formats, the most significant 4-bit position is reserved for the Version

(VER) field, which is used to mimic the leading IP field and signal the flavor of CServ header to follow.

The next four bits, called Next Header (NH), are allocated to encode the header type of the datagram

encapsulated by this intranetwork CServ datagram, typically a CServ Internetwork Service header or one

of the state measurement service headers. The subsequent 8-bit Path Length (PL) field is used to encode

the decimal number of hops in the CServ Intranetwork Service path, which is later specified in the

header. The value of this field also controls the overall size of this variable length header format since it

is dependent on the number of hops in the CServ Intranetwork Service path. The next 16 bits, the

Payload/Data Length (DL) field, encode the decimal number of bytes of payload encapsulated by this

intranetwork header. With 16 bits of precision, this can represent up to 65,535 bytes, which is

significantly more than necessary for our purposes. This is followed by two 128-bit fields, one for the

Entrance Address (EA) and one for the Departure Address (DA). These addresses are retrieved from the

CServ Internetwork Service header. The Entrance Address is the address of the router that serves as the

ingress into the routing core of the subnet (and the router that is generating this CServ Intranetwork

Service header), while the Departure Address is the next hop address in the CServ Internetwork Service

path specified in the CServ Internetwork Service header. These addresses are followed by a 32-bit

Sequence Number (SN) that is used to quench diversity at the Departure Address router if diversity

127

routing is used for the CServ Intranetwork Service, and then a 64-bit Origin Timestamp (OT) that holds a

value representing the current time when the CServ Intranetwork Service header is created. A sequence

of h' 128-bit addresses completes the CServ Intranetwork Service header, where h' is the decimal value

specified in the Path Length field. This sequence of addresses represents the explicit CServ Intranetwork

Service path that the intranetwork CServ datagram follows to transit the subnet, and the sequence does

not need to specify the first and last hop since these addresses are included in the Entrance Address and

Departure Address fields, respectively.

Comparing this format to the CServ Internetwork Service header, shown in Fig. 3-5, we note that the 16-

bit Checksum and the 512-bit Authentication Mark fields have been discarded. The inclusion of the

Checksum in the CServ Internetwork Service header was intended to replace the weak checksum usually

included in the transport layer protocol header. Stronger data integrity checks at the data link level are

assumed, and thus we do not need another weak checksum in the network protocol header stack.

Although the omission of the Checksum does not significantly impact the amount of overhead, the

removal of the Authentication Mark field represents a hefty reduction in control information overhead

compared to the CServ Internetwork Service header (where the Authentication Mark field represents

56.14% of the fixed-length section of the control information overhead). The authenticity check is used

by the destination endpoint host to have reason to believe that the critical message data originated

from the source host claimed in the internetwork CServ datagram. At the most fundamental level, this

verification of authenticity is not necessary for CServ Intranetwork Service since the receiving router at

the end of the CServ Intranetwork Service path is not the recipient of the critical message data.

Let us analyze the protocol overhead associated with this CServ Intranetwork Service. As with the CServ

Internetwork Service header, the size of the control information overhead depends on the value

encoded in the Path Length field. We can consider the lower and upper bounds on the CServ

Internetwork Service header size, as well as an expected typical size. The lower bound for a subnet's

intranetwork service requires a path specified by only two hops if the routing core ingress router (either

a gateway router or access router) is adjacent to the routing core egress router at the network layer. In

other words, if the router specified by the Entrance Address is connected to the router specified by the

Departure Address through one of its interfaces with no additional routers in between, then only two

hops are required for intranetwork service. Since these two hops are specified by the Entrance Address

and the Departure Address fields in Fig. 3-6, the decimal value for the Path Length field in this case is 0.

128

Using h' to generically represent the decimal value encoded in the Path Length field, we denote the

minimum valid value for h' as h' in. As just explained, h'in_ = 0. Note that this is different from the

lower bound value encoded in the Path Length field when we analyzed the size of the CServ

Internetwork Service header. The upper bound on the size of the CServ Intranetwork Service header,

just like the CServ Internetwork Service header, is determined by the maximum integer value that can

be encoded in the Path Length field specifying the intermediate sequence of CServ Intranetwork Service

path hops between the endpoints. We denote the maximum valid value for h' as h' ax, as we have that

h,'ax = 255 as in the CServ Internetwork Service header analysis.

Referring back to Fig. 3-6, the byte (or octet) offset numbering system to the left of the header

description guides the size analysis by indicating the leading byte index for each header row (and each

header row consists of a pair of bytes). The general expression for the length, in bytes, of the CServ

Intranetwork Service header that encodes an explicit CServ Intranetwork Service path with h' hops,

denoted ~ina(h'), is:

, (h') = 48 + 16h'. (3.8)

We then use the expression in Eq. (3.8) to compute the lower and upper bounds on the CServ

Intranetwork Service header for CServ explicit path forwarding as follows:

I tra-n a (h'ami) = 48 + 16hin = 48 + 16(0) = 48, 3.9)

,path-max path (h' ax) = 48 + 16h'ax = 48 + 16(255) = 4128.intra -intram

As in the CServ Internetwork Service header case, we note the wide latitude for header sizes imposed by

these bounds: 48 ia(h') 4128. In practice, the CServ Intranetwork service paths are limited by

several factors that further bound the realized header sizes away from the theoretical upper bound

lpath-max including:
intra

1. the number of unique CServ-enabled routers in the subnet's routing core;

2. the diameter of the subnet's routing core graph;

129

3. and the CServ performance metrics associated with any candidate paths between a pair of

CServ-enabled routers in the routing core.

So even though the header format is capable of encoding paths with 255 intermediate CServ router

hops between the routers that serve as the ingress and egress from the subnet's routing core, this full

flexibility is generally not exploited for practical reasons.

As is the case with the CServ Internetwork Service header, the typical CServ Intranetwork Service header

for CServ explicit path forwarding is expected to fall near the lower end of the above bound. For

analysis, we define a typical CServ Intranetwork Service path as one with four intermediate router hops

connecting the endpoint routers (those specified by the Entrance Address and the Departure Address

fields). Therefore, the typical header needs to encode four hops in the variable-length section of the

header. We represent the typical number of intermediate hops in a CServ Intranetwork Service path as

htypicai, and we have htypical = 4. With Eq. (3.8), we have the following for the typical CServ

Intranetwork Service header size, in bytes, when used for CServ explicit path forwarding:

,path-typical path yc)= 48 + 16hy = 48 + 16(4) = 112. (3.10)
intra -intra typical) =4+ 6typical

Comparing this result with Eq. (3.3), we note that this is less than half the typical size for the CServ

Internetwork Service header.

Using the values for 1path-min iath-typical, and path-max, we can compute the fractional overhead

required by the CServ Intranetwork Service header for CServ explicit path forwarding with respect to the

CServ message data payload, 'message. We denote the fractional overhead for the CServ Intranetwork

Service header for CServ explicit path forwarding that encodes h' intermediate router hops as

F'inta(h'), and we have the following:

130

1path-min 4
path-min path , _ntra - _ 4intra - intra -min) 1000 '

1message

hpath-typical 112
path-typical pat ~h')cL) intra _(321 11.2%1)
intra intra ktypical m 1000'1message 10

path-max 4128
rpath-max path pintra xintra - intra hmax) = -4128% 1000message 10

Although comparatively large to an IPv6 header or an MPLS label as the CServ Intranetwork Service

header (compare with Eq. (3.6) and Eq. (3.7)), the typical overhead for a CServ Intranetwork Service

header for CServ explicit path forwarding seems acceptable (we try to put this into perspective in the

subsequent section of this chapter). However, without bounding the length of the CServ Intranetwork

Service paths, the protocol overhead can grow out of control and become quite unreasonable with

respect to the critical message data size.

131

Bit Position

0 3 4 7 8 11 12
Octet

0
2
4

18
20

34
36
38
40

46
48

62

Encapsulated datagram payioad
(internetwork CServ datagram,
sJoie mensuremen! datagramn)

VLR NH R
Payioad/Data Le:'gth (DLI

Entrance Address (EA)

Departure Address (DA)

Sequence Number (SN)

Origin Timestamp (OT)

Hop 1 Address

Hop 2 Address

Hop 3 Address

e

Hop h'Address

0

Fig. 3-6: The variable length format of the CServ Intranetwork Service header used for CServ explicit path

forwarding service is depicted here, to scale, based on the discussion of Section 3.4.3. The realized

header length depends on the value stored in the Path Length (PL) field.

132

1s

Variable length CServ
- Intranetwork Service path

Decimal value of PL L h'

78
80

94

32+16h

46+16h
(48+16h'l+

3.5 CServ Datagram Protocol Overhead Analysis

In this section, we put the CServ protocol overhead together as a holistic picture, synthesizing the

analyses from Sections 3.2-3.4. Although there are several flavors of CServ header stacks as described

throughout the chapter, we consider a few representative examples and use the typical CServ

Internetwork Service path and typical CServ Intranetwork Service path lengths.

Example 1: Intranetwork CServ Datagram with State Measurement Header using IPv6 CServ

Intranetwork Service

in'ra + te+ ryial = 40 + 37 + 242 = 319 octets

Fn't + Fms + m fyal = 4% + 3.7% + 24.2% = 31.9%

Example 2: Intranetwork CServ Datagram with State Measurement Header using MPLS CServ

Intranetwork Service

Snra+ + 1typial = 4 + 37 + 242 = 283 octets

Ir'Mt +s rmax + typical = 0.4% + 3.7% + 24.2% = 28.3%

Example 3: Intranetwork CServ Datagram without State Measurement Header using CServ Explicit

Path Forwarding

,path-typical + 1 typical = 112 + 242 = 354 octetsintra inter

,path-typical + [typical = 11.2% + 24.2% = 35.4%intra inter

Example 4: Intranetwork CServ Datagram with State Measurement Header using CServ Explicit

Path Forwarding

,path-typical + 1max + 1 typical = 112 + 37 + 242 = 391 octetsintra + "s inter

[pat h-typical +[rmax + typical 12/ 30 40 90rintra + m+ inter 11..0+ 3.0%+ 2.0%= 3.0%

133

We note that the actual protocol overhead may vary from the numbers calculated above. Not only are

the CServ Internetwork Service header and the CServ Intranetwork Service header for CServ explicit path

forwarding path-length dependent, but the state measurement header value we use is a maximum. The

actual details of the state measurement protocols are discussed in Chapter 4, and at that time we

describe a protocol with a state measurement header of only 13 bytes.

The next observation we make is that the CServ architecture imposes a relatively large network protocol

overhead for its datagrams (although, one may understandably argue that the state measurement

protocol is outside the traditional network protocol layer). Even with reasonable internetwork and

intranetwork path lengths, the fractional overhead borders on 40%. Each additional transit subnet in the

CServ Internetwork Service path would contribute another 32 bytes to the overhead, whereas each

additional intermediate hop in the CServ Intranetwork Service path (assuming the use of CServ explicit

path forwarding) contributes another 16 bytes to the protocol overhead. This is a direct result of

encoding explicit paths of 128-bit addresses directly into the critical message datagram header.

Although this burden is a requirement of the CServ architecture at the Internetwork Service level, we

can avoid the overhead explosion within the subnet by using a protocol that does not grow with the

length of the CServ Intranetwork Service path. For example, MPLS as the CServ Intranetwork Service

uses pre-computed service tunnels between CServ-enabled routers, giving the same control as directly

encoding that path, hop-by-hop, into the datagram control information. That being said, modifying the

CServ Intranetwork Service path using CServ explicit path forwarding only requires the manipulation of

the forwarding table state on the ingress router, whereas changing an MPLS label-switched path

requires installing new forwarding state on each router along that path. The centralized computation of

explicit paths also facilitates the use of diversity-routed solutions for improved CServ performance

metrics. The trade-off between CServ Intranetwork Service options such as MPLS and CServ explicit path

forwarding is not as clean-cut as comparing the respective protocol overhead burden and demands

careful consideration of other factors.

Before moving on, we pose one more important consideration with respect to the CServ datagram

protocol overhead examples above. The CServ message transaction should avoid datagram

fragmentation between the transaction endpoints as this incurs fragmentation/reassembly overhead

and additional delay. The objective of the CServ critical messaging service is to send one datagram with

a priori performance metric guarantees. This formulation is complicated if the critical message needs to

134

be fragmented into multiple CServ datagrams at the CServ source host. Although the CServ specification

does not assume control over data link layer designs and transmission protocols, we briefly consider

some ubiquitous examples and the interplay with the CServ datagram size.

We would like to present a datagram for transmission that does not require host endpoint

fragmentation. Although we control the CServ-specific network protocols, namely the CServ

Internetwork Service and the CServ explicit path forwarding service for CServ Intranetwork Service, we

need to be wary of the restrictions of other network protocols, such as the use of IPv6 as a CServ

Intranetwork Service or any data link layer transmission protocols that restrict the unit transmission size.

By precept, IPv6 does not perform fragmentation to simplify router processing requirements (although

we note that optional header extensions allowing IPv6 fragmentation do exist for the extreme case). The

IPv6 specification requires endpoints to perform path maximum transmission unit (MTU) discovery and

then present appropriately sized payloads for IPv6 network transit such that the IP datagrams do not

exceed the path MTU. Additionally, IPv6 makes the hard promise to deliver any IPv6 packet smaller than

or equal to 1280 octets without the need for network layer fragmentation (if a link transmission

protocol cannot convey a 1280 octet payload, IPv6 requires the existence of link-specific fragmentation

and reassembly at a lower layer) [55].

Considering Example 1 above, it is clear that the CServ datagram exceeds 1280 octets for reasonable

CServ Internetwork Service path lengths and a one kilobyte CServ message payload, even if we remove

the state measurement service header. With fewer transit subnets in the CServ Internetwork Service

path or a smaller CServ message payload, the datagram could be condensed to fewer than 1280 octets,

but this cannot be guaranteed. However, the 1280 byte clause is just a minimum guarantee of lPv6. The

reality is that many practical path MTU values are closer to 1500 bytes; this is because the maximum

payload size of the Ethernet v2 data link frame is 1500 octets, and thus the maximum datagram size at

the network layer is 1500 octets [35]. If we assume this as a reasonable path MTU, then we have room

for the encoding of additional transit subnets in the CServ Internetwork Service path without worrying

about the need for endpoint fragmentation. The encoding of each additional transit subnet in the CServ

Internetwork Service path requires an additional 32 bytes, meaning that we could extend the path to

include another five transit subnets (for seven total transit subnets in the source subnet to destination

subnet internetwork path) without exceeding the 1.5 KB MTU constraint.

135

The bottom line is that the ideal CServ datagram would never exceed the source host to destination host

path MTU, avoiding the need for CServ message fragmentation at the endpoint and, additionally,

avoiding the increased delay and jitter associated with any data link layer fragmentation/reassembly.

While 1500 octets is a reasonable assumption on network-wide minimum MTU for the purposes of this

document (and there are certainly data link protocols with larger MTU values, such as IEEE 802.11 [72]

with a 7981 octet MTU), its future acceptance network-wide must be enforced and not just assumed.

Endpoint hosts do not have the luxury to perform path MTU discovery prior to each CServ datagram

transaction since this would incur a prohibitive amount of pre-transmission delay (see [73] and [74] for

the description of a path MTU discovery protocol). Thus, the CServ architecture needs to be aware of

the network minimum MTU to work within the parameters this restriction presents and avoid CServ

datagram fragmentation. This may be challenging in light of Examples 3 and 4 above, where there are

two sources of overhead control information variability - the CServ Internetwork Service path length

and the CServ Intranetwork Service path length. In our analysis using typical path lengths, we see that

there is not much more than 100 bytes worth of headroom remaining to encode longer internetwork or

intranetwork paths without bumping up against the 1500 byte ceiling. But in a subnet with pervasive

CServ-enabled router adoption and the use of CServ explicit path forwarding, it is not a stretch to

imagine that the interconnection link transmission technologies could be upgraded to allow for a larger

subnet-wide minimum MTU than the suggested 1.5 KB baseline.

3.6 Conclusion

In this chapter, we covered the datagram formats and required control information used to direct CServ

datagrams from source host to destination host along the data plane of a CServ Internetwork Service

path, traversing multiple subnets with provide their own CServ Intranetwork Service. The CServ

datagram design takes full advantage of the power of encapsulation, which allows for the tunneling of

CServ-proprietary datagram formats through a subnet which provides some other CServ Intranetwork

Service, such as IP or MPLS. The CServ message data payload is encapsulated in an internetwork CServ

datagram, which in turn can be encapsulated in one of various types of intranetwork CServ datagrams

based on the CServ Intranetwork Service provided by each subnet along a CServ Internetwork Service

path. Additionally, although without any specifics, we identified the position in the CServ datagram

encapsulation process for the header fields related to CServ performance metrics measurement. As we

136

introduced in Chapter 2, the use of CServ datagrams to learn the performance of CServ Intranetwork

Service paths is a fundamental requirement of the CServ architecture.

Through the description of the header formats and encapsulation methods, we alluded to the CServ

datagram processing required at CServ-enabled routers in the network, particularly those routers that

define a CServ Internetwork Service path or those that sit at the edge of a CServ Intranetwork Service

path (the subnet domain entrance and departure routers). These routers use the information in the

CServ Internetwork Service header to generate appropriate CServ Intranetwork Service headers

corresponding to the next hop in the CServ Internetwork Service path before enqueueing these

datagrams for priority switching and transmission (when available). The CServ Intranetwork Service

header is then responsible for bearing the CServ datagram across the data plane of the subnet to the

CServ-enabled departure router. In the next chapter, we describe additional CServ-enabled router

processing requirements related to the measurement and reporting of CServ performance metric state.

Along the way, we considered some implementation details not yet formalized in the CServ architecture,

such as the addressing scheme, the integrity and authentication protocols, and cross-layer signaling

methods. These discussions were essential for the sizing of the respective control information fields, but

the final decision on the protocols or methods has been left for future determination. The

authentication field, in particular, is a dominant contributor to the overhead levied by the CServ

Internetwork Service header. An authentication scheme requiring smaller digital signatures or

authentication codes, yet with a realizable implementation within the delay-constrained CServ

messaging framework, would be greatly welcomed as it would free up space in the CServ header

overhead for the encoding of longer CServ Internetwork Service paths or longer explicit CServ

intranetwork paths.

Finally, we analyzed the typical overhead incurred by the different header layers within this stacked

CServ datagram format for several cases. This effort is used extensively in the subsequent chapter in the

analysis of CServ performance metric state measurement protocols. Since we propose to use CServ

datagrams to infer the state of the network, we need to consider the burden that this datagram traffic

places on the data plane. It is necessary to bound the CServ traffic far away from the network routing

and transmission capacity since the CServ performance metrics necessarily suffer as the load increases

(not to mention that it could render the best effort network service inoperable). This control

137

information overhead analysis also highlights a point of potential fragility for the CServ architecture; the

explicit encoding of path information in the CServ datagram can lead to datagrams that are either too

large for the network or that adversely impact other CServ datagrams. While all CServ datagrams are

intended to bear short message payloads, control information explosion can make one CServ datagram

appear as an elephant in comparison to the mouse, or a CServ datagram with minimal control

information overhead.

138

Chapter 4

CServ Performance Metric Learning Protocols

Learning and reporting the state of the subnet in terms of the CServ performance metrics is a critical

pillar of the CServ architecture. Leaving the internal subnet routing and forwarding control to the subnet

administrator is an important aspect of the design, minimizing the network details that the master

controller (MC) needs to manage while simultaneously allowing the subnet provider the freedom to

make internal policy decisions that align with their network capabilities and business needs. This

freedom of internal implementation, however, requires that the subnet measure and announce the

resulting CServ performance metric state in order for the MC to make any meaningful end-to-end

determination on critical message internetwork service. By learning and reporting the reliability and

delay statistics for the chosen CServ Intranetwork Service paths that bear CServ datagrams between

CServ-enabled gateway (and access) routers, the subnets enable the logically-centralized control entity

to compose CServ Internetwork Service paths that meet the performance requirements of a CServ

Request (CSR) specifying a desired level of reliability and bound on tolerable source host to destination

host service delay, all without disclosing the details of the subnet's internal routing policy or network

topology.

In this chapter, we describe two possible protocols that empower the subnet to measure CServ

performance metrics for the chosen CServ Intranetwork Service paths. While the objective of these two

protocols is the same, we motivate the inclusion of both in this document. The first protocol uses

Learning Sessions to learn the CServ performance metrics, while the second protocol shifts the workload

to the network routers and employs infrequent Collector datagrams to amalgamate the details for each

CServ Intranetwork Service path. Although we consider the usage of these alternatives in more depth as

we describe their implementations, we begin here by highlighting a few of the primary considerations

139

for the selection of one or the other. Either protocol may be deployed within a subnet for the purpose

of CServ performance metric learning depending on the network's capabilities.

The Learning Session protocol uses live CServ datagrams to estimate the CServ performance metrics

between two CServ-enabled routers in the subnet routing core. Supplementing real CServ traffic with

"dummy" CServ traffic that serve the role of active probes, fixed rate CServ traffic sessions between

router entities are used to learn the reliability and delay statistics of the CServ Intranetwork Service path

(or paths) that connects them logically during fixed interval learning periods. In order to learn the CServ

performance metrics with acceptable precision, this technique requires relatively high session rates

compared to the alternative Collector approach. The benefits of using these sessions are that:

* it imposes fewer computational requirements at each CServ-enabled subnet router;

* is opaque to any non-active router (one that is not upgraded for CServ support);

* and finds more accurate and robust performance measurements.

Real CServ traffic can expect to encounter the same performance since it is learned using fixed-rate

sessions composed of that same type of traffic. The drawbacks of this approach, in addition to the

session rate overhead that the subnet must support, are that it introduces a challenging access control

problem (if the aggregated real CServ traffic exceeds the session rate, then the measured performance

does not accurately indicate the experience of any particular CServ datagram) and that it consumes a

significant subnet transmission and switching capacity overhead even when the subnet behavior is

stable and the CServ performance metrics are not changing. For this reason, the subnet must be

capable of supporting the Learning Sessions with plenty of capacity headroom to simultaneously bear

best effort traffic. If CServ Intranetwork Service paths are recomputed, then it must be done with care

not to oversubscribe any particular link or router's switching ability since this can lead to subnet

instability or degradation of best effort service capabilities. This management and traffic engineering

burden may be prohibitive or impossible (depending on routing and forwarding implementations) in

some subnets. We consider these trade-offs in more detail after presenting the details of the Learning

Session protocol.

Alternatively, the Collector protocol shifts the work to the subnet's routers to reduce the burden on the

subnet transmission and switching capacity. This approach requires that all CServ Intranetwork Service

140

paths traverse only routers that are upgraded for the CServ architecture. The active routers then use all

traffic, real CServ datagrams and best effort, to maintain running estimates of the CServ performance

metrics each fixed interval learning period. This is done without the supplement of any "dummy" active

probe traffic. Infrequent Collector datagrams in the CServ traffic class are then used to amass the CServ

performance metric statistics along the chosen CServ Intranetwork Service paths as they traverse the

constituent routers. The benefits of using the Collector protocol is that it introduces minimal

transmission and switching capacity overhead and provides more flexibility for CServ Intranetwork

Service path rerouting without concerns about link or router oversubscription. There are several

drawbacks for this approach, however, including that:

* it necessitates a higher penetration rate for CServ-enabled routers in the routing core to support

CServ Intranetwork Service paths;

* it requires additional router processing capabilities to monitor datagram performance maintain

CServ performance metric estimates;

* and it finds less accurate and robust CServ performance metric estimates since it uses traffic in

the best effort class for learning purposes.

In fact, we expect the performance that a real CServ datagram encounters to often outperform the

learned CServ performance metrics since CServ traffic gets switching and transmission priority over best

effort traffic. From this point of view, the Collector approach finds conservative CServ performance

metrics estimates. However, it is not robust against influxes of real CServ traffic that alter the collective

subnet traffic statistics during an event that generates many critical messages, whereas the Learning

Session approach provides a safeguard against these transient periods of traffic fluctuation through its

relatively high-rate traffic sessions that can be "filled" with real critical messages. Again, we consider

these trade-offs in more detail after presenting the details of the Collector protocol.

In the end, it is up to the subnet administrator to choose between the two protocols presented in this

chapter as candidates for learning and reporting the CServ performance metrics that correspond to their

internal CServ Intranetwork Service paths. This decision may be dependent upon the physical network

modality and available transmission and switching capacity, the subnet topology, or even the

administrator's desire and ability to adopt CServ-upgraded routers in the subnet core. Additionally,

there may be other reasonable protocols yet explored that meet the same goals. At the end of the

141

chapter, we briefly consider a more theoretical approach to CServ performance metrics estimation that

could further reduce the learning protocol burden on the subnet. However, further studies and

experimentation would be required to determine how much accuracy is lost in such an approach and

whether or not the reduction in overhead is worth this compromise. Ultimately, the CServ user and

CServ-dependent application needs to be aware of the limitations of the architecture regardless of the

state measurement protocols deployed. Although the architecture objective is to provide probabilistic

guarantees, these guarantees are made based on the details of the CServ performance metrics learning

protocols. And as we see in this chapter, these learning protocols are grounded in measurements from

the observed state of the constituent subnets. As such, this state is always necessarily stale to some

extent, and these approaches cannot account for the "Black Swan" network events [52] that have not

been previously observed or encountered.

In this chapter, we present the details of both the Learning Session and Collector approaches to the

subnet CServ state measurement protocol. We analyze these approaches in terms of the network traffic

burden that they impose for two representative topologies that notionally represent a sort of upper and

lower bound in our context. Finally, we discuss the tradeoffs between these two approaches, the

peering gateway router CServ performance metrics learning approach, the access network CServ

performance metrics learning approach, the reporting responsibilities of the routers and subnet

controller (SC), and a possible direction for a more theoretical approach to CServ performance

prediction. This coverage of the state measurement protocol prepares us for discussion of the

internetwork graphical representation and MC path discovery and composition algorithm for CServ

Internetwork Service in the next chapter.

4.1 Network Model for State Measurement Protocol Discussion

Before we begin with the coverage of the CServ performance metrics state learning protocols, we

standardize the network model that we use in the description and analysis of the approaches.

The purpose of the CServ performance metrics learning protocols are to measure the reliability and

delay statistics between pairs of CServ-enabled routers in a subnet that may serve as endpoints for

CServ Intranetwork Service bearing critical datagrams along their prescribed CServ Internetwork Service

path. For the purpose of protocol description and analysis, we are interested in the number of routers in

142

the subnet routing core topology, the number of routers that are CServ-enabled, and the routing

connection topology. We denote the set of routers in a subnet's routing core as NR, which includes both

active CServ-enabled routers and non-active legacy routers that are not capable of processing CServ

datagrams or interpreting CServ header control information. For notational simplicity, we define the

cardinality of the set NR as follows: INRI - nR.

As introduced in Section 2.2, the set of routers includes access routers, gateway routers, and core

routers, all of which may either be active (upgraded to support CServ datagram processing) or non-

active (not capable of CServ datagram processing). We assume in analysis that all routers in NR are

CServ-enabled active routers (although we make comments about situations where there are non-active

routers in the subnet core). We denote the set of access routers as NR-A, the set of gateway routers as

NR-G, and the set of core routers as NR-c. We have previously discussed in Chapter 2 that a router may

technically serve both as an access router and gateway router, for example. However, for simplicity in

the discussion and analysis here, we assume that all routers serve in one role exclusively (a gateway

router that provides upstream connection for an access network can be logically separated into two

routers to align with this assumption). With this assumption, the sets NR.A, NR-G, and NR-c do not

intersect, and NR = NR.A U NR-G U NR-c. Further for the purposes of analysis, we assume a null set of

core routers that do not serve the purpose of providing upstream connection for access networks or of

providing peering connection to neighboring subnets (i.e. NR-c = 0). Core routers capable of processing

CServ datagrams are significant only for the Collector protocol or for the forwarding of CServ datagrams

that use explicit-path forwarding for their CServ Intranetwork Service. However, they do not need to

generate or sink any Learning Sessions or Collector datagrams. With this additional assumption, we have

that NAR NR-A U NR-G. We use the following notation for the cardinality of the sets NR.A and NR-G:

INR-A_ = nR-A and INR-G I -R-G. Thus, we have nR = nR-A + nR-G'

As far as routing topology is concerned, we employ two distinct topology examples in this chapter which

are meant to represent upper and lower bound analysis scenarios for the traffic burden imposed by the

state learning protocols. For these topologies, we standardize the number of routers to facilitate

comparison between the two. In particular, we choose to consider two topologies where nR = 10. We

do not need to distinguish between the cardinality of the access router and gateway router sets for the

purpose of the routing core topology learning protocol analysis. The upper bound, or worst-case

topology, is a line network, as shown in Fig. 4-1. This topology is a particularly pessimistic case since

143

there are no routing options. For each pair of routers in NR, there is only one candidate path connecting

them to bear the Learning Session traffic or the Collector datagram. We shall see in the analysis that the

links in the middle of the line network need to carry the heaviest transmission burden for the state

measurement protocol traffic. On the other hand, the selection of the best-case, or "lower bound,"

topology requires more careful consideration. The subnet topology that would actually minimize the

transmission burden on any given link is a fully-connected topology where each router in NR is directly

connected to all other routers in the set. This requires nR(fR - 1) links (or nR(fR - 1)/2 undirected

links) and scales as 0(nR2). While this type of topology might be reasonable for small subnets with

nR = 10, most subnet realizations will likely have restrictions on router degree based on the physical

network layout and cost of link deployment (for example, consider the capital and operational

investment required to dig and pull additional fiber cables between sites). For this reason, we prefer to

consider a representative best-case topology with constrained router degree rather than the overly

optimistic fully-connected case, even though the representative topology is not a true analytic lower

bound. Under the all-to-all learning condition that we consider where all nR = 10 routers are CServ-

enabled and engaged as endpoints in the state measurement learning protocol, the Petersen graph

serves as a reasonable best-case topology to analyze since it belongs to family of Generalized Moore

graphs (it is, in fact, a Moore graph) and the all-to-all protocol load can be distributed uniformly over all

links in the strongly regular topology. A Generalized Moore graph for a given number of vertices and

fixed degree serves provably as a lower bound for the average minimum hop distance between vertices

for any irregular topology with the same number of vertices and a maximum degree equal to the Moore

graph's degree [75]. The Petersen graph topology is depicted in Fig. 4-2.

For the analysis of the CServ performance metrics learning protocols, we make two additional

assumptions for tractability. First, we assume that CServ Intranetwork Service does not use path

diversity to connect any pair of routers in the set NR. The use of diversity routing in CServ Intranetwork

Service can increase the reliability of the connection, but it does so at the expense of consuming

additional subnet transmission and switching bandwidth. A subnet administrator must take this

additional overhead burden into account if diversity routing is used to improve the measured and

reported CServ performance metrics. And second, we assume shortest-path routing between the

routers in NR for CServ Intranetwork Service paths where all links are given the same weight.

Equivalently, these paths are those with the fewest number of intermediate routers (or fewest hops).

This routing strategy may not necessarily be employed by a subnet administrator. In an actual

144

deployment, traffic engineering techniques, such as Multiprotocol Label Switching (MPLS) virtual circuits

or strategic link weighting, could be leveraged to direct CServ Intranetwork Service paths over preferred

links or paths. The subnet administrator needs to consider the impact of CServ Intranetwork Service

path routing on the distribution of the CServ performance metrics learning protocol burden.

I

----------------------- %%___

Fig. 4-1: The line network subnet topology with nR = 10 is used as a worst-case (upper bound) example

for the state measurement protocol overhead analysis. In this illustration, nR-A = 6 and nR-G 4

52

Fig. 4-2: The Petersen graph subnet topology is used as a representative best-case ("lower bound")

example, assuming restricted router degree, for the state measurement protocol overhead analysis. In

this illustration of the Petersen graph subnet, nR-A = 5 and nR-G = 5.

145

4.2 The Learning Session Protocol

As introduced earlier in the chapter, the Learning Session protocol uses live CServ datagrams to estimate

the CServ performance metrics between two CServ-enabled routers in the subnet routing core.

Supplementing real CServ traffic with "dummy" CServ traffic that serve the role of active probes, fixed

rate CServ traffic sessions between router entities are used to learn the reliability and delay statistics of

the CServ Intranetwork Service path (or paths) that connects them logically during fixed interval learning

periods. The fixed-rate session does the work in this protocol, while the endpoint routers have simple

tasks. The source endpoint router is responsible for generating dummy active probe datagrams to

supplement the actual transiting CServ traffic to fill the rate of the session, labeling these datagrams

with the appropriate state measurement service headers for the Learning Session protocol. The

destination endpoint router in the subnet has the responsibility of counting the received datagrams

within a fixed-interval learning period to compute the CServ Intranetwork Service reliability and

calculating the delay of each datagram while maintaining a running estimate of mean delay and delay

variance for each learning period. The destination endpoint router for the session is also responsible for

reporting the estimated CServ performance metrics to the SC when they deviate far enough to consider

the change in state worth updating in the control hierarchy (this is considered more in Section 4.6 since

the reporting responsibilities are the same regardless of the state learning protocol used). Throughout

this Section, we describe this protocol in more detail and then analyze the burden imposed by its

operation.

Before starting, we introduce the requirement of a specific processor at each CServ-enabled active

router for the purpose of performing tasks specific to the CServ Internetwork Service and the State

Measurement Service (as well as the CServ Intranetwork Service if the subnet administrator chooses to

employ a CServ-specific routing and forwarding strategy). The primary processor workhorse of the

router architecture, the Network Processing Unit (NPU), is generally pushed to the limits of its

processing capability for the purpose of standard processing for arriving datagrams (say the processing

of best effort datagrams) and the near-optimal scheduling of the switch fabric for high throughput. The

CServ architecture introduces the need for active CServ routers to perform additional processing of

CServ Internetwork Service headers, the mapping of CServ Internetwork Service to appropriate

intranetwork service, the maintenance of State Measurement Service state, and the reporting of CServ

performance metric estimates as they evolve with the network state. In order to avoid taxing the NPU

146

further, we suggest the use of a separate CServ Processing Unit (CSPU) in the datagram processing path

at the CServ-enabled active router to perform these new tasks. This isolates the CServ-specific

processing responsibilities from those that are native to the core router design, allowing the NPU to

focus on the processing responsibilities that it is designed to handle most efficiently. This should also

minimize the impact on router throughput incurred by the introduction of CServ-specific processing.

4.2.1 Endpoints of the Learning Sessions

Within the subnet, all active access routers and gateway routers are participants in the Learning Session

protocol. Each router in this set establishes a Learning Session with each other router in this set. This is

necessary because we do not assume that CServ Intranetwork Service paths are symmetric between any

given pair of routers. Using the notation introduced in Section 4.1, each router in NR establishes a

pairwise Learning Session with each other router in NR, which means that there are nR(nR - 1)

Learning Sessions within a subnet. Without the assumption that all routers in NR are CServ-enabled

access or gateway routers, there would be fewer Learning Sessions in the subnet. Non-active routers

and core routers that are CServ-enabled but do not provide upstream connection for an access network

do not need to generate or sink Learning Sessions. For example, consider the example of Fig. 4-3. This

illustrates a subnet with two CServ-enabled gateway routers and one active access router providing

upstream connection for an access network with CServ-enabled hosts. The other routers in the subnet

are core routers and a non-active access router. The Learning Sessions are depicted following some

arbitrarily determined CServ Intranetwork Service paths as arrows that are color-coordinated with the

color used for the router's identifying address. As we observe, only six total Learning Sessions are

necessary even though there are six routers in the subnet routing core.

The responsibility of facilitating these Learning Session connections is that of the SC. All CServ-enabled

access and gateway routers in a subnet need to associate themselves with the SC such that it has a

database of the internal routers participating in the CServ architecture. The SC then distributes the

compiled list of addresses of the CServ-enabled routers to the members of the set. Once this list has

been distributed from cold start, only incremental list updates are required when a new router

associates with CServ or when a router previously in the set disassociates with CServ (possibly because

all of the CServ-enabled endpoint hosts in its downstream access network have disconnected). The

147

concept of CServ-association is considered briefly in Chapter 5, although the protocol details of this

elementary process are not fleshed out in whole in this document.

Subnet controller

C SPU

CSCPU

Fig. 4-3: This example subnet illustrates the Learning Sessions required for three active routers in the

routing core. The color-coordinated arrows indicate the CServ Intranetwork Service paths connecting

the active access routers and gateway routers. The CServ Processing Units (CSPUs) are the processors

responsible for CServ-specific tasks at each active router.

148

4.2.2 Datagrams in the Learning Session

In this subsection, we consider a Learning Session from router A and router B within the subnet of

interest, where A, B E NR. Router A may be an access router and router B may be a gateway router. As

another example, both routers A and B may be the gateway routers. Depending on the CServ

Intranetwork Service employed by the subnet to connect routers A and B and the topology of the

routing core, this Learning Session may traverse multiple intermediate routers in NR between A and B.

As mentioned previously, the Learning Session is composed of two types of traffic:

1. passive real CServ datagrams;

2. and active "dummy" probe datagrams.

As a network that supports the transmission of critical messages, there exists some rate of real CServ

datagrams that flow from router A to router B according to the route specified in their respective CServ

Internetwork Service paths computed by the MC. This rate is designed to be very low and generally

varies over time. These real CServ datagrams are used opportunistically as part of the Learning Session.

We call these datagrams passive probes because router A does not need to actively generate them to

learn the performance of the CServ Intranetwork Service to router B. As real CServ traffic arrives at

router A, it considers the next hop in the CServ Internetwork Service path specified in their CServ

Internetwork Service headers. This is necessary for the determination of the appropriate CServ

Intranetwork Service. Simultaneously, it uses this CServ Intranetwork Service destination address to

assign the CServ datagram to the appropriate Learning Session. Before enqueueing the datagram in the

router A's interface input buffer, the state measurement service header for Learning Sessions is

prepended to the internetwork CServ datagram, followed by the CServ Intranetwork Service header. The

real CServ datagram that is transiting router A to router B is now part of the Learning Session

established between the two routers to measure the CServ performance metrics of the CServ

Intranetwork Service.

By the design and intention of the critical messaging service, the rate of the real CServ datagrams

traversing router A to router B is low (and also time dependent, since certain events may generate

service transients with an influx of critical messages). This rate is generally expected to be insufficient to

149

estimate the CServ performance metrics accurately, particularly the reliability of the CServ Intranetwork

Service between routers A and B. For this reason, we supplement the real CServ datagrams with active

"dummy" probe datagrams in the CServ class to generate the full rate of the Learning Session. We call

these active probes because router A must proactively form and transmit these datagrams in order to

learn the CServ performance metrics. During a learning interval, a predetermined number of CServ

datagrams are needed in the Learning Session between router A and router B. The difference between

this number and the number of opportunistic real CServ datagrams are the number of active probe

datagrams that router A must generate and transmit for the Learning Session during each learning

interval.

These active probes are formed to resemble real CServ datagrams and are indistinguishable except that

the Source Address in the CServ Internetwork Service header is the address of router A and the

Destination Address in the CServ Internetwork Service header is the address of router B with no other

hops specified in the CServ Internetwork Service path (i.e. the Path Length field is set to a decimal value

of 0). This is because these "dummy" probes are not actually internetwork CServ datagrams. The use of

a router as the CServ Internetwork Service header Destination Address signals that these are active

probes in a Learning Session that can be discarded by the endpoint router (router B in our nomenclature

here). Furthermore, these active probes can carry "dummy" placeholder critical message payloads; the

actual CServ message payload contents are never examined or used. The tradeoff between using a

"dummy" CServ message payload or not is considered further during the analysis of this protocol. As

these active probes are generated and released, router A is responsible for prepending a state

measurement service header for Learning Sessions and the appropriate CServ Intranetwork Service

header before enqueueing them in the input buffers of the router interfaces.

4.2.3 Measurement Components of the Learning Session

We need to specify the measurement components of the Learning Session protocol in order to fully

understand what is captured by the CServ performance metrics reported to the control hierarchy of the

CServ architecture. The state measurement protocols report a compact set of statistics, namely the

reliability, the mean delay, and the delay variance or standard deviation, for CServ Intranetwork Service;

this compact set captures contributions from many different sources of delay and datagram integrity

loss as a datagram traverses the path or paths specified by the CServ Intranetwork Service. Identifying

150

these contributions not only helps motivate the Learning Session protocol details, but it lends insight

into the composition of CServ Internetwork Service performance from the performance of the

constituent CServ Intranetwork Services. We want to ensure that the design of the Learning Session

protocol does not neglect the measurement of any sources of delay or degraded reliability, and we want

to be certain that the composition of CServ performance metrics for CServ Internetwork Service paths

using the reported CServ Intranetwork Service performance does not omit any delay or integrity

degradation contributions.

For discussion, again consider a Learning Session from router A and router B within the subnet of

interest, where A, B E NR. Router A may be an access router and router B may be a gateway router,

both routers A and B may be the gateway routers, or router A may be a gateway router and router B

may be an access router. Depending on the CServ Intranetwork Service employed by the subnet to

connect routers A and B and the topology of the routing core, this Learning Session may traverse

multiple intermediate routers in NR between A and B. We illustrate this scenario in Fig. 4-4 with no

intermediate routers between A and B, highlighting the sources of reliability loss and delay along the

datagram path. For the purpose of this section, we adopt the terminology of the CServ Intranetwork

Service and denote router A as the Entrance Router and router B as the Departure Router. This

terminology stems from the view of CServ Intranetwork Service as an opaque tunnel that chauffeurs the

internetwork CServ datagram from one address specified in the CServ Internetwork Service path to the

next without MC control over the forwarding mechanism or path used to do so. In the following

conversation, we consider the different contributions to the measurement of the reliability and delay

values captured by the Learning Session estimation of these CServ Intranetwork Service performance

metrics.

When the internetwork CServ datagram arrives without error at the input interface of the Entrance

Router, the CSPU determines the appropriate CServ Intranetwork Service based on the subnet's routing

and forwarding strategy and the next hop in the datagram's CServ Internetwork Service path. The

internetwork CServ datagram is then prepended with a State Measurement Service header for a

Learning Session (see Section 4.2.4 for details of the State Measurement Service header) before it is

encapsulated as a protocol data unit of the CServ Intranetwork Service using the corresponding CServ

Intranetwork Service header. The router's NPU may take further actions to process the arriving

datagram after the CSPU. After being processed, the intranetwork CServ datagram is then enqueued in

151

the input buffer (priority input buffer, if available) of the Entrance Router's input interface. The

intranetwork CServ datagram then waits for access to the router's switching fabric. There is one primary

source of datagram loss during this phase; during periods of heavy utilization, the input buffer may

overflow (or approach overflow, depending on the drop policy of the router) and the datagram may be

discarded. There are two primary sources of delay during this phase. First, the initial internetwork CServ

datagram processing by the CSPU and NPU introduces a relatively deterministic delay component along

the datagram path. Second, the waiting time in the input buffer contributes a random delay component

depending on the occupancy of the input buffer and the scheduling of the router's switching plane.

Once the intranetwork CServ datagram is cleared for access to router A's switching fabric, the datagram

is dequeued from the interface's input buffer and switched to the appropriate output interface based on

the CServ Intranetwork Service header. There is one opportunity for loss during this phase, in general; in

the case of imperfect scheduling of the switching plane by the NPU, two datagrams may collide during

this process, garbling the contents of the datagram. This is an unlikely opportunity for datagram loss

since most routers avoid contention in their switch scheduling algorithm. This phase also contributes a

relatively deterministic delay component as the datagram is transmitted between router interfaces via

the switching fabric.

After being switched to the appropriate router output interface, the intranetwork CServ datagram is,

generally, enqueued once more in the output buffer (priority output buffer, if available) of the Entrance

Router's output interface. This buffer meters access to the output's datagram transmission interface. As

with the input interface's input buffer, this buffer may overflow during periods of heavy utilization,

leading to datagram loss. Additionally, waiting time in the output buffer contributes another random

delay component along the datagram path depending on the occupancy of the output buffer and the

rate of the transmission interface.

Once the output transmission interface is available for the intranetwork CServ datagram, the

intranetwork CServ datagram is transmitted on the interface destined for the Departure Router, router

B. (Note here that the intranetwork CServ datagram might be destined for an intermediate router if

there are additional hops along the CServ Intranetwork Service path. We use this simple scenario for

ease and clarity of discussion.) This datagram transmission may be over fiber optics, radio frequency

channels, or other physical data transmission media. The transmission of the datagram between the

152

routers, at a minimum, incurs additional delay in the form of transmission delay as the data is pushed

onto the communication substrate and propagation delay between the routers. These components of

delay are generally predictable, deterministic values. The transmission of the intranetwork CServ

datagram may also contribute to datagram loss if the data is corrupted in transit (due to interference,

multipath fading, dispersion, or atmospheric scintillation, among other actors in data corruption) and

cannot be recovered by the physical and data link control layers' integrity check and forward error

correction techniques. The processing required by these lower layer protocols are considered part of the

data transmission delay; these are often very fast operations implemented in hardware and are not

expected to contribute significantly to the estimated delay. We also note that in some cases there may

be layer-2 devices used to switch the intranetwork CServ datagram between routers, such as routers A

and B in this case. These switches do not process the CServ Intranetwork Service header (or any other

CServ header), and we consider their behavior invisible to the CServ architecture. However, any

additional contributions to delay or reliability loss made by these lower layer devices would be captured

by the Learning Session protocol.

After successful transmission, the intranetwork CServ datagram arrives at the Departure Router at the

end of the CServ Intranetwork Service path, or router B in our illustration. This may be after traversing

multiple intermediate routers along the CServ Intranetwork Service path, although this is not shown in

the example of Fig. 4-4. Once the lower layer protocols confirm that the intranetwork datagram has

arrived without error, the datagram is surrendered to the Departure Router's CSPU and NPU for

processing (as discussed for the Entrance Router). The delay incurred during this processing is not

included in the measurement of the delay by the Learning Session protocol, otherwise this would lead to

double-counting of the contribution as these learned performance metrics are composed to find the

performance of the end-to-end CServ Internetwork Service path. However, all previously discussed

sources of datagram loss and delay are captured by the Learning Session protocol state measurement

service. And if there are any intermediate routers between the Entrance Router and the Departure

Router, the same four identified phases of reliability degradation and delay would be captured as well

by the Learning Session protocol for each intermediate router in the CServ Intranetwork Service path.

153

Learning Session

NPU '
Router A

Router Input
Reliability: Input buffer overflow

Delay: Processing & Input queueing delay

Switching Fabric
Reliability: Collision

Delay: Switching delay

Router Output
Reliability: Output buffer overflow

Delay: Output queueing delay

Data Transmission
Reliability: Corruption loss

Delay: Transmission & propagation delay

Fig. 4-4: The contributing components of the CServ performance metrics estimated by the Learning

Session protocol are shown here for a pair of active routers. If there were an intermediate router along

the path, the same four identified phases of datagram loss and delay for that router would be

additionally captured by the protocol.

154

Mleasurement CP

NPU
Router B

4.2.4 State Measurement Service Header for Learning Sessions

In Chapter 3, a placeholder was included for the use of the State Measurement Service in the stacked

CServ header description. Although a bound for the maximum length required for this header was

presented, we did not discuss the details of the control information that would be included. We now

describe the State Measurement Service header for Learning Sessions in terms of the fields that it

includes and the use for these fields.

The State Measurement Service header is prepended to the internetwork CServ datagram when it

arrives at an Entrance Router (an active access router or an active gateway router) that determines the

appropriate CServ Intranetwork Service for the particular next hop in the CServ Internetwork Service

path. The Learning Session protocol prefers the use of real CServ datagrams before the generation and

inclusion of active "dummy" probe datagrams in the CServ class to meet the required Learning Session

rate. Thus, if a subnet is using the Learning Session protocol to estimate the CServ performance metrics

of the CServ Intranetwork Service, then the State Measurement Service header for Learning Sessions is

always included when a real CServ datagram traverses the Entrance Router. The exception to this rule is

if the rate of real CServ traffic exceeds the Learning Session rate during a learning period; in this case,

those datagrams beyond the prearranged number to be transmitted in the Learning Session do not get

State Measurement Service headers for Learning Sessions. However, this situation should never occur in

the wild. The rate of real CServ datagrams arriving at the Entrance Router and destined for a particular

Departure Router in the subnet should be significantly less than the Learning Session rate. When the

Learning Session protocol generates active probe datagrams to fill the rate of the Learning Session,

these CServ datagrams always contain the State Measurement Service header for Learning Sessions.

The format of the State Measurement Service header is shown in Fig. 4-5 and placed in the context of

the intranetwork CServ datagram as discussed in Chapter 3. The following describes the purpose and use

for each control field in the State Measurement Service header for Learning Sessions:

* Version (VER) - As for all other CServ headers, this leading 4-bit Version field is used to specify

the type of State Measurement Service header (in this case, the State Measurement Service

header for Learning Sessions). Since this field is based on the IP header field, we employ an

unused code (codes for decimal values 1-3 and 10-14 are unallocated) to specify that the

155

following is a State Measurement Service header for Learning Sessions. This code allows the

Departure Router to correctly process the intranetwork CServ datagram when it arrives.

* Next Header (NH) - This 4-bit field is used to encode a value specifying the format of the

encapsulated datagram header, which is typically the CServ Internetwork Service header.

Although there is only one flavor of CServ Internetwork Service header currently, future CServ

architecture developments may call for different types of CServ Internetwork Service headers.

This field is included for encapsulation flexibility, and it is the joint existence of the Version and

Next Header fields in all CServ proprietary header formats that allows for dexterity in stacking

different chains of headers together at the CServ network service level.

* Sequence Number (SN) - As we discuss shortly, the estimators for CServ performance metrics

using Learning Sessions involve counting datagrams and identifying unique datagrams. Since

CServ Intranetwork Service may employ diversity path routing (for example, using the centrally-

computed explicit path forwarding technique introduced in Section 3.4.3), we do not want to

double-count replicated datagrams that are routed over multiple disjoint paths for increased

CServ Intranetwork Service reliability. For this reason, active routers using Learning Sessions

maintain a set of monotonically increasing sequence numbers, one for each other active router

that they establish a Learning Session with in the subnet. Simultaneously, they also maintain a

set of sequence numbers that represent the largest value that they have received from each

other active router in the subnet. When a passive, real CServ datagram joins a Learning Session

(or when an active dummy CServ datagram is generated to fill the rate of a Learning Session),

the Entrance Router includes the next sequence number value for the Departure Router of the

CServ Intranetwork Service in the Sequence Number field of the header. Furthermore, if the

CServ Intranetwork Service specifies that the datagram should be replicated and transmitted

over multiple paths, the same value is used for the Sequence Number field in both copies of the

datagram. This field allows the Departure Router to both track the number of lost datagrams in

the Learning Session and identify duplicates of a datagram that were generated for diversity

routing purposes to avoid double-counting. We use a 32-bit Sequence Number field in the

header, allowing for over 4 billion unique datagrams before the counter wraps around. Note

that this is the same Sequence Number field used in the CServ Intranetwork Service header for

156

Explicit Path Forwarding as introduced in Section 3.4.3. The Sequence Number is also included

here in case a different forwarding and routing strategy is used for CServ Intranetwork Service.

Origin Timestamp (OT) - The Origin Timestamp field is used to calculate the CServ Intranetwork

Service delay experienced by an intranetwork CServ datagram in a Learning Session. When the

State Measurement Service header for Learning Sessions is generated and prepended to the

internetwork CServ datagram by the Entrance Router, the current time value is included in this

64-bit field (the choice of a 64-bit field was previously explained in Section 3.2). The Departure

Router of the CServ Intranetwork Service can then identify the realized delay of the

intranetwork CServ datagram by finding the difference between the time it arrives at the

Departure Router and the value contained in the Origin Timestamp field. Note that this is the

same timestamp as in the Origin Timestamp field used in the CServ Intranetwork Service header

for Explicit Path Forwarding as introduced in Section 3.4.3. The Origin Timestamp is also

included here in case a different forwarding and routing strategy is used for CServ Intranetwork

Service and, consequently, a different header without this information.

Using the octet offsets indicated in Fig. 4-5, we see that the State Measurement Service header for

Learning Sessions requires a total of 13 bytes of overhead (not the maximum 37 bytes allowed in the

analysis of Chapter 3). Additionally, both the Sequence Number and Origin Timestamp fields are

redundant if the CServ Intranetwork Service uses the CServ Intranetwork Service header for explicit path

forwarding (see Section 3.4.3).

157

IntranetworkCServ datagram (e.g. IP datagram, MPLS-labeled packet)

State measurement session datagram

CServ Intranetwork State Measurement
Service header - Internetwork CServ datagram

Service header Learning Session

Octet
Offset

0

1

4

5

12

0
Bit Position

3 4 7

Fig. 4-5: The fixed length format of the State Measurement Service header for Learning Sessions is

depicted here, to scale. The use of the Learning Session is encoded in the Version (VER) field.

158

VER INH

Sequence
Number (SN)

Origin
Timestamp (OT)

4.2.5 Learning Session Parameters of Estimation

Before we introduce the estimators used by the Departure Router for the CServ performance metrics,

we consider a few of the fundamental parameters of the Learning Session estimation procedure. We

have alluded to these parameters in the discussion thus far, but we formalize them here. We then

discuss that these parameters are not independent considerations, but rather they are intimately

coupled.

The first parameter that we consider is the Learning Session rate. We denote this rate as As

[datagrams/second]. Active routers in a subnet using the Learning Session protocol to estimate the

CServ performance metrics of CServ Intranetwork Service paths maintain fixed rate Learning Sessions at

this specified and prearranged rate. Note that we do not quantify the Learning Session rate as a raw

data rate in bits per second. This is because passive real CServ datagrams that join a Learning Session are

not necessary uniform in length due to varying critical message payload sizes and variable length CServ

Internetwork Service headers. As mentioned in Section 4.2.4, the Learning Session rate should be

greater than the ingress rate of real CServ traffic arriving at any given active Entrance Router and

destined for any other active Departure Router in the subnet that may be reasonably observed. We use

the modifier "reasonably" since it is impossible to account for network "Black Swan" events [52] without

a process that strictly polices the admission rates of real CServ traffic.

The second parameter that we discuss is the learning interval. We denote the learning interval length as

r [seconds]. During each learning interval, an independent estimate of the CServ Intranetwork Service

performance metrics are generated by the active routers in the subnet. These intervals are synchronized

using the assumption of a synchronized clock for the CServ-enabled network devices (for example, a

GPS-based clock).

The third parameter that we consider is the reliability precision. Reliability precision indicates how we

are able to specify the CServ reliability performance metric. For example, specifying reliability as 0.999

("three nines") requires finer reliability precision than specifying reliability as 0.99 ("two nines"). We use

a proxy variable to denote this parameter. Specifically, we consider the total number of Learning Session

datagrams transmitted in a learning interval of length z as the proxy. We denote this as N, [datagrams].

With this proxy variable, we see that we can express reliability with a precision of 1/N. For example, we

159

need N, = 1000 to specify three nines reliability while we only need N, = 100 to specify two nines

reliability.

Based on the parameter definitions, we recognize that N, = As x z, a relationship that conflates the

three Learning Session parameters. In general, we would like to be able to express the reliability of

CServ Intranetwork Service with a minimum precision of two nines reliability. Achieving finer precision

for estimation of reliability requires either a higher Learning Session rate or a longer learning interval. As

we shall observe when we analyze the burden of the Learning Session protocol in Section 4.2.8, higher

Learning Session rates place a larger transmission and switching burden on the subnet. This corresponds

to degrading the subnet's capability to provide adequate best effort network service, or it requires the

subnet to be dimensioned and managed to account for the headroom required of the aggregate

Learning Sessions burden. Higher Learning Session rates are also more robust to severe actual CServ

traffic peak rates that might result from an unexpected network event. Alternatively, a longer learning

interval means that the state measurement protocol is slower to react and estimate changes in the state

of the CServ Intranetwork Service due to transient congestion conditions, faltering subnet components,

or reconfiguration of the CServ Intranetwork Service paths. That being said, a longer learning interval is

not as susceptible to frequent state estimation updates due to transient conditions that are short with

respect to the learning interval. This may improve the stability of CServ performance metric estimations

from one learning interval to the next. Clearly, there is a careful tradeoff that should be considered

between the Learning Session rate and the learning interval length required to estimate reliability with a

desired level of precision.

4.2.6 Learning Session CServ Performance Metric Estimators

In this section, we describe the estimators used by the Departure Router for a particular Learning

Session before specifying the Learning Session protocol in full. Let us consider again the example of a

Learning Session from router A and router B within the subnet of interest, where A, B E NR. Router A

may be an access router and router B may be a gateway router, both routers A and B may be the

gateway routers, or router A may be a gateway router and router B may be an access router. Depending

on the CServ Intranetwork Service employed by the subnet to connect routers A and B and the topology

of the routing core, this Learning Session may traverse multiple intermediate routers in NR between A

and B. Router B computes the CServ performance metrics estimations for this Learning Session, as this

160

is the Departure Router's responsibility. However, we note here for clarity that there would also be a

Learning Session from router B to router A to learn the CServ performance metrics of the CServ

Intranetwork Service for the reverse direction of subnet traversal - we do not assume that the CServ

Intranetwork Service paths are equivalent or that the CServ performance metrics are reciprocal.

First, let's consider the estimator used for the reliability CServ performance metric. We use the naive

estimator that considers the ratio of the number of datagrams that arrive successfully in a learning

interval to the number of datagrams that should arrive based on the Learning Session rate and the

learning interval length. Abstractly, this means that router B computes the reliability as follows:

Count of CServ datagrams received successfully in interval
Reliability Estimate ~.

Number of CServ datagrams that should be received in interval

We formalize this estimator with the following notation. Let Ti, i E 2 represent an indexed learning

interval instance of length r. Let p,-7 B denote the reliability estimate for a particular interval Ti for the

CServ Intranetwork Service from active router A to active router B. Let XAB represent the realized

count of successfully received intranetwork CServ datagrams from active Entrance Router A to active

Departure Router B for a particular learning interval ri. This is the count of datagrams in the Learning

Session that arrive successfully at their local destination, router B, while discounting any repetitions

from diversity routing using the Sequence Number field in the State Measurement Service header for

Learning Sessions and a stateful counter at router B. As established in Section 4.2.5, N. denotes the

total number of Learning Session datagrams transmitted in a learning interval of length r. Equivalently,

N, is the total number of intranetwork CServ datagrams that should be received by the Departure

Router in a particular Learning Session during a learning interval of length r. In Section 4.2.5, we

explained that N, = AS X T. Since both the Learning Session rate and learning interval length are

uniform for all Learning Sessions within a subnet, N, is also a constant value for all Learning Sessions

within a particular subnet. Using this notation, we can express the reliability estimator for learning

interval ri as:

^A-XB ATi (4.1)
Pr = N '

161

Second, we discuss the estimators for the delay CServ performance metrics. As previously addressed, we

do not consider only the mean delay for the CServ Intranetwork Service, but also the delay variance (or

standard deviation). Similar work in the area of providing inter-domain service performance guarantees

has typically leveraged only the mean delay values [22]. With the end-to-end mean delay alone, we have

no power to characterize the spread of the distribution. However, with the inclusion of the delay

variance, we can generate end-to-end delay bounds even though we do not know the details of the

delay distributions. The use of the delay statistics is considered in much more detail in Chapter 5.

Recall that the State Measurement Service header for Learning Sessions has a field for the Origin

Timestamp (see Section 4.2.4). When the internetwork CServ datagram becomes part of a Learning

Session at the Entrance Router (router A in our example) or an active dummy CServ datagram is

generated to fill the Learning Session rate at the Entrance Router, the State Measurement Service

header is marked with the current timestamp. When the CServ datagrams in the Learning Session arrive

at the Departure Router (router B in our example), the CSPU finds the difference between the current

time and the time in the Origin Timestamp field of the State Measurement Service header. This realized

delay for each errorless CServ datagram in the Learning Session is used to compute a running estimate

of both the mean delay and delay variance statistics during each learning interval of length r. This use of

a fresh, independent estimate for each learning interval period limits the effect of any transient

conditions that might induce anomalous estimation outliers during otherwise nominal subnet

conditions.

We now proceed to formalize these delay statistic estimators, starting with the mean delay. We create a

running estimate for the mean delay that can be updated iteratively upon the arrival of each CServ

datagram in the Learning Session during a particular learning interval. Consider the arrival of the nth

intranetwork CServ datagram in the Learning Session from router A to router B during a particular

indexed learning interval -. We define the delay of this CServ datagram, the difference between the

current time and the value of the Origin Timestamp in the datagram's State Measurement Service

header, as dn7iB. We denote the current mean estimate as /In-1 and update this estimate upon the

arrival of the nth intranetwork CServ datagram in the Learning Session with a cumulative moving average

as follows:

162

"A-)B 1 [] ̂A- AB (.2/i n(r - 1)- + dnjri , (42
n

We arbitrarily define go-B A 0, although we note that this does not impact Eq. (4.2) thanks to the

(n - 1) term during the calculation of gAjB after the arrival of the first CServ datagram during the

learning interval. At the end of the learning interval -r, the final estimate of the mean delay is A;ABB. As

previously mentioned, this mean delay estimate starts from scratch with gA-B = 0 during the next

learning interval.

The creation of the delay variance estimate proceeds in a similar fashion to that of the mean delay. We

also utilize a running estimate for the delay variance that can be updated iteratively upon the arrival of

each CServ datagram in the Learning Session during a particular learning interval. We again consider the

arrival of the nth intranetwork CServ datagram in the Learning Session from router A to router B during

a particular indexed learning interval -r and use the definition of the delay of this particular CServ

datagram as before. The iterative update of the delay variance must occur after the update of the mean

delay. We denote the current mean estimate as 1 2 -+B, the previous mean estimate as A-r, and the

A-Bth
current variance estimate as P . Upon the arrival of the n intranetwork CServ datagram in the

Learning Session, we update the delay variance estimate using an online estimator of population

variance as follows:

P A->B 1 + *B _ -- B _ A-4B) E+(4.3)
n [(n - n-1B (di - 1 'iflT ,n n E

n

A-B
We define P2 o e 0, noting that this value does not impact Eq. (4.3) due to the (n - 1) term during

o A-+.B
the calculation of 2 after the arrival of the first CServ datagram during the learning interval. At the

A->-B
end of the learning interval Ti, the final estimate of the delay variance is P2XAB. Just as with the

A-*B
estimate of the mean delay, this estimator starts from scratch with 2 = 0 at the start of each new

learning interval.

Before we pull everything together into the Learning Session protocol description, we briefly consider

how we can mitigate a situation which could artificially inflate the estimated reliability value and bias

163

the delay estimates. Since CServ Intranetwork Service specifies the routing and forwarding of an

intranetwork CServ datagram in a Learning Session, we do not generally need to worry about out-of-

order delivery. In some transient scenarios, we may find anomalous CServ performance metric

estimations as a CServ Intranetwork Service path changes, but this should be mitigated by the

estimation of the next learning interval. However, consider the case where the CServ Intranetwork

Service path or paths do not change, but an anomalous subnet event induces unexpected CServ

congestion at some intermediate router that holds up the forwarding of many datagrams in a particular

Learning Session. After the anomalous "Black Swan" congestion event, these datagrams may be

artificially grouped and forwarded together, skewing the reliability, mean delay, and delay variance

estimations for the current learning interval. One option is to accept this possible behavior as inevitable

and allow for the transient effect to die out, correcting the estimations in the next learning interval.

Alternatively, we could allow the subnet administrator to set an upper limit to acceptable CServ

datagram delay using CServ Intranetwork Service. If the calculated CServ Intranetwork Service traversal

time of the intranetwork CServ datagram in a Learning Session exceeds this value, the datagram is

dropped and its delay is not included in the current running estimates of mean delay or delay variance.

The issue with this approach lies in correcting tuning the delay upper limit in the subnet and the

potential to drop CServ datagrams unnecessarily. The concern of CServ performance metric estimation

outliers and related methods to improve estimator stability require additional attention in future

research.

4.2.7 Learning Session Protocol Description

With the fundamentals of Learning Sessions under our belt, we are prepared to describe the Learning

Session protocol that serves as the State Measurement Service for the subnet, learning the CServ

performance metrics that capture the behavior of the CServ Intranetwork Service. This protocol is

illustrated in Fig. 4-6 (with no intermediate routers between the Entrance Router and Departure Router

for the Learning Session). The following describes the protocol responsibilities for both the Entrance

Router and Departure Router of the Learning Session, pulling together the fundamentals from Sections

4.2.1-4.2.6. For the simplicity of discussion, we assume that all subnet routers in NR are active CServ

routers. If there are non-active routers in the subnet's routing core, they should be excluded from the

following discussion since non-active routers do not generate or sink Learning Sessions with their subnet

peers.

164

The following protocol applies for every Router i E NR and every Router j E NR\{i}. We use the

convention that Router i is the Entrance Router and Router j is the Departure Router for the Learning

Session.

Entrance Router (Router i) CSPU

* Create and maintain a CSPU process for a Learning Session with each Router j E NR\til using

the address set NR distributed by the SC

o Terminate any existing Learning Session CSPU process with Router k if it is removed on

latest update of address set NAR distributed by the SC (i.e. k E NR)

* Maintain a 32-bit incrementing, wrap-around counter for Router j that is used as a sequence

number

" Ensure that the rate of CServ datagrams destined for Routerj and part of the Learning Session is

equal to As

o Stagger creation and transmission of active dummy CServ datagrams destined for

Router j to realize this rate, allowing the transmission of an arriving passive CServ

datagram to preempt the transmission of the next active dummy CServ datagram in this

process

o Do not allow the rate of datagrams destined for Router j and part of the Learning

Session to exceed As (if the rate of arriving passive CServ datagrams destined for Router

j exceeds As, passive datagrams in excess of this rate should not be included as part of

the Learning Session and do not get the State Measurement Service header)

* Upon arrival of a passive CServ datagram with Router j as the next hop in the CServ

Internetwork Service path:

o Prepend a State Measurement Service header for the Learning Session and set the fields

as follows:

" Version - Use the encoding that represents a State Measurement Service

header for a Learning Session

" Next Header - Use the appropriate encoding (this code represents the CServ

Internetwork Service header for internetwork CServ datagrams)

- Sequence Number - Use the next value of the incrementing counter for Routerj

(and increment the counter state for the CSPU process)

165

- Origin Timestamp - Use the current time

o If the appropriate CServ Intranetwork Service for Departure Routerj specifies the use of

diversity routing over multiple CServ Intranetwork Service paths, replicate the state

measurement session datagram the appropriate number of times prior to prepending

the appropriate CServ Intranetwork Service headers for each

- Note that this follows the design that each replication should have the same

values encoded in the Sequence Number fields

o Prepend the appropriate CServ Intranetwork Service header based on Routerj (the next

hop in the CServ Internetwork Service path) to each replication (if any)

o Enqueue the passive CServ datagram (or datagrams) in the input buffer of the arriving

interface (using the CServ class priority queue if available)

Upon creation and transmission of an active dummy CServ datagram destined for Router] to

realize the Learning Session rate As:

o Generate a dummy internetwork CServ datagram that mimics a real passive

internetwork CServ datagram with the following specifications:

- Version - Use the encoding that specifies the CServ Internetwork Service header

consistent with a real passive internetwork CServ datagram

- Next Header - Use the default Next Header code that indicates that the

capsulated payload is the CServ message data (which is a dummy placehoider in

this case)

" Path Length - Encode the decimal value 0 in this field (there is no real CServ

Internetwork Service path since this is a dummy internetwork CServ datagram

used only for the Learning Session)

- Payload/Data Length - Use the correct value to describe the size of the dummy

CServ message data payload in bytes (default is one kilobyte, but this can vary

between the implementation depending on the needs and capabilities of the

subnet)

- Checksum - This field is unnecessary and can be set to all zeros since the CServ

Internetwork Service header integrity check is only used at real CServ

transaction endpoint hosts and the integrity check for CServ Intranetwork

Service is either at the data link layer and below or included as part of the CServ

Intranetwork Service protocol

166

" Source Address - Use the address of Router i, the Entrance Router for the CServ

Intranetwork Service and the "source" of the Learning Session

" Destination Address - Use the address of Routerj, the Departure Router for the

CServ Intranetwork Service and the "destination" of the Learning Session (note

that it is the use of the Learning Session endpoints as the Source and

Destination Addresses, the lack of a CServ Internetwork Service path, and the

default dummy CServ data payload that indicate to Routerj that this is an active

dummy probe in the Learning Session and not a real passive internetwork CServ

datagram)

" Sequence Number - Use some subnet-specific default value in this field to

further indicate that this is a dummy active probe in the Learning Session and

not a real passive CServ datagram

" Expiration Time - Use some default value since this field is not used by the

Departure Routerj

" Authentication Mark - For now, use some default value since this field is not

used by the Departure Router j (however, if necessary, this could be employed

in the future to authenticate the active dummy probe in the Learning Session as

a legitimate probe generated by Entrance Router i)

" Hop Addresses - There are no additional hop addresses encoded since there is

no CServ Internetwork Service path for active dummy probes in the Learning

Session and the value encoded in the Path Length field is zero

" CServ Data Payload - Fill the payload with the appropriate number of bytes

encoded in the Payload/Data Length field (typically all zeros, but it depends on

the subnet's implementation of the Learning Session protocol)

o Prepend a State Measurement Service header for the Learning Session, just as for real

passive CServ datagrams, and set the fields as follows:

" Version - Use the encoding that represents a State Measurement Service

header for a Learning Session

" Next Header - Use the encoding that represents the CServ Internetwork Service

header for internetwork CServ datagrams

" Sequence Number - Use the next value of the incrementing counter for Routerj

(and increment the counter state for the CSPU process)

167

" Origin Timestamp - Use the current time

o If the appropriate CServ Intranetwork Service for Departure Routerj specifies the use of

diversity routing over multiple CServ Intranetwork Service paths, replicate the state

measurement session datagram the appropriate number of times prior to prepending

the appropriate CServ Intranetwork Service headers for each

* Note that this follows the design that each replication should have the same

values encoded in the Sequence Number fields

o Prepend the appropriate CServ Intranetwork Service header (to each replication, if

applicable) based on Departure Routerj, the other endpoint for the Learning Session

o Enqueue the active dummy CServ datagram (or datagrams) in the input buffer of a

random interface (using the CServ class priority queue if available) since there is no

"arriving interface"

" This choice should be selected independently for each transmitted active

dummy CServ datagram and uniformly over all possible Entrance Router i

interface input buffers to avoid any interface-specific measurement

dependencies over the Learning Session

Departure Router (Router i) CSPU

* Create and maintain a CSPU process for a Learning Session with each Router i E NR\Uj using

the address set NR distributed by the SC

o Terminate any existing Learning Session CSPU process with Router k if it is removed on

latest update of address set NR distributed by the SC (i.e. k E NR)

* Maintain a 32-bit incrementing, wrap-around counter for Router i that reflects the largest

Sequence Number value seen in the State Measurement Service headers of arriving CServ

datagrams in the Learning Session for Entrance Router i

* Maintain values for the last reported CServ performance metric estimates for each Entrance

Router i in the subnet

* Upon the successful arrival of an intranetwork CServ datagram with Router j as the Departure

Router (or destination router) for the CServ Intranetwork Service, perform the following steps:

168

o If diversity routing is enabled for the CServ Intranetwork Service, verify that the

Sequence Number in the CServ Intranetwork Service header or State Measurement

header is greater than the value of the counter for Router i

" If it is, this is a unique CServ datagram and the counter should be updated to

reflect its Sequence Number

= If it is not, it is a replicated datagram that has already been received and should

be discarded to quench diversity replication without updating the counter

o Check the State Measurement Service header for Learning Sessions to verify if the

datagram is part of the Learning Session with the CServ Intranetwork Service Entrance

Router (or source router) i

m Unless the rate of real passive internetwork CServ datagrams arriving at

Entrance Router i destined for Departure Router j exceeds As, which it should

not by design in all but the most extreme conditions, all CServ datagrams should

be part of the Learning Session

o If the datagram is part of the Learning Session:

- Increment the counter for unique CServ datagrams received during the current

learning interval

= Extract the Origin Timestamp value in the State Measurement Service header to

calculate the delay of the datagram as the difference between the current time

and that extracted value

" Remove the leading CServ Intranetwork Service header and State Measurement

Service header before continuing processing of the encapsulated internetwork

CServ datagram

" If the encapsulated internetwork CServ datagram indicates that it is an active

dummy probe datagram, discard the datagram; otherwise, process the CServ

Internetwork Service header and use the next hop in the CServ Internetwork

Service path to forward the passive real CServ datagram appropriately

o if the datagram is not part of the Learning Session:

- Remove the leading CServ Intranetwork Service header

" The encapsulated CServ datagram cannot be an active dummy probe datagram

because it is not part of the Learning Session, so process the CServ Internetwork

169

Service header and forward the real internetwork CServ datagram appropriately

based on the next hop in the CServ Internetwork Service path

During a particular learning interval indexed Ti:

o Maintain the count of unique CServ datagrams in the Learning Session with each

Entrance Router i that arrive successfully (i.e. after verifying the integrity of each

arriving CServ datagram using the link layer integrity check or the CServ Intranetwork

Service integrity check if it exists), which generates the value X,' at the end of the

learning interval

o For each CServ datagram in the Learning Session with each Entrance Router i that

arrives successfully, use the calculated datagram delay to update the online cumulative

mean delay estimate and the delay variance estimate

* At the end of each learning interval of length T:

o Generate the CServ performance metric estimate for reliability and finalize the CServ

performance metric estimates for mean delay and delay variance for the Learning

Session with each Entrance Router i using the appropriate estimators (specifically, those

described in Eq. (4.1)-(4.3) of Section 4.2.6)

o Report the new CServ performance metric estimates for the Learning Session with each

Entrance Router i to the SC if the new values are different enough from the last

reported values (see further discussion of this in Section 4.6)

* Update the last reported CServ performance metrics for the Learning Session

with Router i if the new estimates are reported

o Reset the count of unique received CServ datagrams and zero out the running estimates

of the mean delay and delay variance for the Learning Session with each Router i

170

Learning Session CServ performance metrics state measurement

X'j(t) A(t D D(t))

CServ da0agram destined for CServ Router I

CServ datagram not destined for CServ Routerj

BRest Effort datagram

Fig. 4-6: This illustration depicts the Learning Session protocol used to estimate the CServ performance

metrics for CServ Intranetwork Service from active Entrance Router ito active Departure Router]. The

variable rate of passive real CServ datagrams traversing Entrance Router i en route to Departure Router

j is denoted notionally as Ap(t), while the variable rate of active dummy CServ datagrams that the CSPU

at Entrance Router i must generate for this Learning Session is denoted notionally as neA(t). These rates

are, in general, time varying and must together satisfy the relationship X(t) + At - As, where 2s is

the Learning Session rate. The random process D(t) represents the unknown stochastic delay of the

CServ Intranetwork Service path between Entrance Router i and Departure Router] and encapsulates

the delay components illustrated in Fig. 4-4. The thickness of the illustrated arrows notionally rreResents

the contributions of active CServ traffic compared to passive CServ traffic in the Learning Session and

assumes no datagram loss. Note that priority queueing for CServ datagrams is depicted only for the

input interfaces of these routers; the output interfaces show a merged-class buffer. However, in general,

priority queueing can be implemented both for input and output router interfaces.

171

4.2.8 Analysis of the Learning Session Protocol Subnet Burden

Since the Learning Session protocol establishes a fixed-rate session between each pair of active CServ-

enabled routers, both access routers and gateway routers, in the subnet, this approach to estimating

the CServ performance metrics imposes a heavy burden on the subnet data plane. It is necessary to

characterize the data plane overhead since the subnet must be capable of supporting this CServ traffic

while maintaining ample headroom for best effort traffic. Otherwise, the Learning Session protocol

burden itself inhibits the ability of the subnet to support both network services simultaneously. The

Learning Session protocol burden is intimately tied to the number of active CServ-enabled routers in the

subnet, the subnet topology, and the routing strategy employed by the subnet for CServ Intranetwork

Service. In this section, we consider and analyze the Learning Session burden for the two subnet

topologies introduced in Section 4.1, the Petersen graph network and the line network. These

topologies serve as representative "lower" and "upper" bounds, respectively, for subnet routing core

topologies with bounded degree.

Before discussing the two subnet topologies, we reiterate the three important assumptions made for

the tractability of the analysis, first presented in Section 4.1. For the purposes of analysis, we assume

the following in this section:

1. All routers in the subnet routing core topology are either active CServ-enabled access routers or

active CServ-enabled gateway routers. Thus, all routers in the subnet routing core topology

participate in the Learning Session State Measurement Service protocol.

2. The routing scheme used for the purpose of analysis is that of shortest-path routing, where the

shortest path is defined by the fewest number of intermediate hops in the path. This

assumption is necessary for the analysis of the Petersen graph subnet topology, but not for the

line network subnet topology (which presents a degenerate case with no routing decisions).

3. The CServ Intranetwork Service does not employ path diversity between Entrance and

Departure routers. There is only one unique CServ Intranetwork Service path connecting any

pair of active routers in the subnet routing core as described by the second assumption.

172

4.2.8.1 Learning Session Burden: The Petersen Graph

We consider the Petersen graph for the subnet routing core topology as a form of "lower" bound for the

analysis of the Learning Session protocol data plane burden, as discussed previously in Section 4.1. The

Petersen graph topology is shown in Fig. 4-2, where we assume that all vertices in the graph are active

CServ-enabled routers participating in the Learning Session protocol. The router numbering (addressing)

is arbitrary, as is the distinction between active access routers and active gateway routers, for the

purpose of this analysis of the data plane burden in the routing core topology. The Petersen graph

routing core topology has 10 routers, so nR = 10 using the notation introduced in Section 4.1. The total

number of logical directed links in the topology is 30, where two logical directed links are used to realize

each logical undirected link shown in the figure. The degree of each router is 3 in the nomenclature of

the undirected graph and as depicted in Fig. 4-2 (the equivalent digraph indegree is 3 and the digraph

outdegree is also 3). Finally, the Petersen graph has a graph diameter of 2, which we see when we next

consider the form of the shortest-path trees in the topology.

Consider a shortest-path tree rooted at Router 1, as illustrated in Fig. 4-7. The links connecting Router 1

to all other routers in the routing core topology are given an orientation for this shortest-path tree (even

though they are bidirectional links in the Petersen graph network), and the dotted blue links are unused

for this particular, but unique, shortest-path tree for Router 1. All rooted shortest-path trees have the

exact same structure if we consider the other routers as the roots due to the strong regularity of the

Petersen graph.

Now consider the nine Learning Sessions generated by Router 1 for all other nine routers in the routing

core topology. Using the shortest-path tree rooted at Router 1 shown in Fig. 4-7, we see that one-third

of these Learning Sessions generate one hop worth of traffic (those sessions with Departure Routers 2,

5, and 6). The other two-thirds of the Learning Sessions created by Router 1 generate two hops worth of

traffic (those sessions with Departure Routers 3, 4, 7, 8, 9, and 10). The nR(fR - 1) = 90 Learning

Sessions correspond to the following total hops worth of Learning Session traffic, which we call "traffic

units" in this argument, since one-third of them generate one hop worth of traffic while the remaining

two-thirds generate two hops worth of traffic:

173

Traffic unit
G x 90 Learning Sessions x 1)

3 LLearning Session

150 Traffic units.

Furthermore, by the strong regularity of the topology, the 90 total Learning Sessions for all 10 active

routers in the subnet routing core are distributed uniformly over the 30 logical directed links. Thus, we

have that each logical directed link bears the burden of 5 traffic units worth of the total Learning Session

traffic.

For generality, we define the average number of Learning Session traffic units per logical directed link in

the Petersen graph topology as CPetersen. We note that this is not actually an average in the case of the

Petersen graph topology, but the use of the average nomenclature is useful in the analysis of the line

graph network. As we have just shown, CPetersen = 5. Similarly, we define the average data rate of

aggregate Learning Session traffic carried per logical directed link in the Petersen graph topology as

Cr-"tersen. Again, this is an exact value and not actually an average in the case of the Petersen graph, but

the terminology is useful in the next section when we discuss the analysis of the line graph subnet

routing core topology. For the purpose of analysis, we assume a uniform size for all CServ datagrams in

the Learning Session (regardless of whether or not each datagram is a real, passive internetwork CServ

datagram or an active, dummy probe CServ datagram), and we define the size of the CServ datagram in

the Learning Session as bs [bits/datagram]. With the Learning Session rate As [datagrams/second], we

can further define the data rate of the Learning Session as Rs [bits/second], where we have that:

Rs = As x bs.

As previously discussed in Section 4.2.5, As and the learning interval duration r jointly determine how

precisely the Learning Session protocol can estimate a value for the reliability CServ performance metric.

Specifically, this precision is dependent upon the number of datagrams transmitted in a Learning Session

in a learning interval of length T, which was given previously as N, = As x r. With this, we can further

specify the data rate of the Learning Session as follows:

174

Rs = X = X bs. (4.4)

With these definitions, we have that the aggregate Learning Session data rate that traverses each logical

directed link in a Petersen graph routing core topology is:

Cfetersen = CPetersen x Rs

N.
= CPetersen x (_TYr x bs (4.5)

5Nrbs

T

To get a sense of the aggregate traffic traversing each link, or the data plane transmission burden, we

need reasonable values for bs, NT, and r. Considering the analysis of Chapter 3, we use an approximate

value of bs = 12,000 [bits], allowing one kilobyte for the CServ message payload and a half-kilobyte for

the total header control information, including the CServ Internetwork Service header, the State

Measurement Service header for Learning Sessions, and the specific CServ Intranetwork Service header

used by the subnet. This choice is also aligned with a typical network maximum transmission unit, as

considered in Chapter 3. The choice of NT depends on the precision at which we wish to estimate the

reliability CServ performance metric. At a minimum, we would like to have two-nine precision, meaning

that we need N, = 100. (Ideally, we would like finer precision, but we see that this minimal

requirement already strains the subnet data plane.) And the choice of r can be viewed as the

measurement granularity with which the protocol can react to a change in subnet state since a new set

of CServ performance metrics can only be estimated after T seconds. In general, we would like this

parameter of the Learning Session protocol to be at least on the order of the subnet's "coherence time,"

or the average time between significant subnet state changes. For the purpose of this analysis, we

consider - = 1 second. A smaller learning interval allows for quicker reactions to a change in state, but it

may also trigger state measurement oscillation or instability due to short transients. With these example

parameter choices (and approximate Learning Session datagram size) and the expression derived in Eq.

(4.5), we have:

5 x 100 x 12,000
C.Fftersen = 1 = 6 Mbps.S 1

175

While this may be a reasonable state measurement protocol burden for multi-gigabit fiber links, this

data plane transmission burden for the Learning Session protocol may be too great for edge wireless

links in challenged environments where the CServ architecture is most likely to be used, even with this

optimistic subnet routing core topology. Furthermore, this transmission burden increases by an order of

magnitude if we either want to capability to estimate three-nine reliability (i.e. N, = 1000) or increase

the frequency of CServ performance metric estimation such that T = 100 Ms.

We can also consider the data plane switching burden of the Learning Session protocol. Specifically, this

is the aggregate rate of Learning Session traffic that each router in the subnet routing core topology

must switch to maintain the protocol sessions. If we consider one router in isolation, say Router 1 in Fig.

4-2, we know that there is a total of 15 traffic units worth of Learning Session traffic arriving on its

incoming logical edges (there are three directed links incident at Router 1, and each bears CPetersen = 5

traffic units of Learning Session traffic). Nine of these traffic units are Learning Sessions destined for

Router 1 from the other routers in the subnet routing core topology, and these traffic units do not need

to be switched by Router 1 according to the protocol presented in Section 4.2.7. However, Router 1 also

generates nine Learning Sessions, or nine traffic units of Learning Session traffic, for the other nine

routers in the subnet routing core topology, and these must be switched through Router 1's switching

fabric. Thus, we can conclude that a total of 15 traffic units worth of Learning Session traffic need to be

switched by Router 1. Due to the strong regularity of the Petersen graph topology, the same scenario

holds for all routers in the topology. We can use the Learning Session data rate (using the same

parameters as before: bs = 12,000, N, = 100, and -r = 1) to conclude that the switching throughput

for each router must be 18 Mbps just to support the Learning Session State Measurement Service

protocol.

The overall router switching bandwidth must be significantly higher to support additional best effort

traffic. In general, we would like the Learning Session traffic to take up no more than 10% of the

switching or transmission capacity, which implies that we would need active routers with switching

throughput of at least 180 Mbps. This requirement may stress the capabilities of all but some of the

higher-end router designs [76]. Additionally, the logical links in the subnet with a Petersen graph routing

core topology would need to be designed to support at least 60 Mbps according to this guideline.

176

.....,,..,,..

Fig. 4-7: A rooted shortest-path tree is shown for Router 1, where the shortest path is defined as the

path with the least number of intermediate hops. The dotted blue links are unused by the shortest-path

tree for Router 1.

177

4.2.8.2 Learning Session Burden: The Line Network Graph

As an "upper" bound to contrast to the optimistic analysis of the Petersen graph, we select the line

network graph with nR = 10 for the routing core topology. This example forms an "upper" bound in

that it maximizes the average number of hops between vertices, and thus it maximizes the average

number of links that the Learning Sessions traverse. The subnet line network topology is depicted in Fig.

4-1, where we assume that all vertices in the graph are active CServ-enabled routers participating in the

Learning Session protocol. For the purpose of this analysis of data plane burden in the routing core

topology, the router addressing is arbitrary, as is the distinction between active access routers and

active gateway routers in the figure. The total number of logical directed links in the topology is 18,

where two logical directed links are used to realize each logical undirected link shown in Fig. 4-1. The

degree of all routers except Router 1 and Router 10 is 2 (the equivalent digraph indegree is 2 and the

digraph outdegree is also 2), while the degree of the other two routers at the ends of the subnet line

routing core topology is 1 (the equivalent digraph indegree is and the digraph outdegree is also 1).

Finally, the line network has a graph diameter of 9 (consider the path from Router 1 to Router 10).

We note that there are no routing decisions for the line graph. There is one unique path connecting any

pair of routers in this subnet routing core topology. However, we see that the Learning Session from

Entrance RA.Utr - to Departure Router 10 traverses 9 logical links between routers, whereas no

Learning Sessions generated by Router 5 traverse that many. Unlike the Petersen graph topology, the

line network graph does not exhibit the same regularity properties.

If we consider the distribution of the 90 Learning Sessions over the logical directed links in the topology,

we see the distribution illustrated in Fig. 4-8. The logical links between Router 5 and Router 6 bear the

heaviest burden in terms of the aggregate Learning Session traffic, each carrying 25 Learning Sessions,

because they serve as the connection between the left and right "halves" of the topology. Counting up

the distribution of the Learning Session load in the figure, we see that the 90 Learning Sessions

correspond to 330 hops worth of Learning Session traffic, or traffic units. Thus we note that the average

Learning Session traverses 11/3 hops and thus generates 11/3 traffic units worth of burden on the line

graph network routing core topology.

178

Using the nomenclature introduced in Section 4.2.8.1, we define the average number of Learning

Session traffic units per logical directed link in the line network graph topology as CLine. Unlike in the

case of the Petersen graph routing core topology, this is actually an average value due to the lack of

uniformity in the distribution of the Learning Sessions over the links of the topology. Averaging over the

number of Learning Sessions traversing each link, we have that Chine = 55/3. We additionally consider

the worst-case links, the links between Router 5 and Router 6. We define the maximum number of

Learning Session traffic units per logical directed link in the line network graph topology as CLine-max,

and we have that CLine-max = 25. As before, we can denote the equivalent average and maximum data

rate for the aggregate Learning Session traffic carried per logical directed link in the line network graph

topology as Cine and CIine-max, respectively.

Following the same analysis as in Section 4.2.8.1, we have that the average and maximum aggregate

Learning Session data rates that traverse each logical directed link in a line network graph routing core

topology are:

C,ine = CLine x Rs

= CLine x - x bS) (4.6)

55Nbs

Cine-max = CLine-max x Rs

= CLine-max x x bs) (4.7)

25N~bsTT

With the same reasonable parameter choices (and approximate Learning Session datagram size) as used

in Section 4.2.8.1 and Eqs. (4.6)-(4.7), we have:

179

CLLie 55 x 100 x 12,000
Cl3 x1 = 22 Mbps;

25 x 100 x 12,000
Cfr!e-rnax = 1= 30 Mbps.s 1

Considering that 6 Mbps may be an unreasonable rate for the data plane transmission burden of the

State Measurement Service protocol, the average rate here is 11/3 times greater than the rate required

for the optimistic Petersen graph routing core topology, while the maximum rate is a full five times

greater. This Learning Session transmission burden may be reasonable for multi-gigabit fiber

wavelengths, but we need to consider an alternative for subnets using other transmission substrates,

such as wireless communication. Although State Measurement Service overhead can be reduced if not

all routers in the routing core topology participate in the Learning Session protocol (for example, non-

active routers that support CServ Intranetwork Service), subnets with limited transmission bandwidth

likely still need a State Measurement Service protocol with less data plane burden. In the next section,

we discuss an alternative approach to the State Measurement Service protocol that is better suited for

subnets with limited transmission capacity in the routing core.

Before proceeding, we can again also consider the data plane switching burden of the Learning Session

protocol for this "upper" bound subnet topology example. We focus here on the worst-case routers,

specifically Router 5 and Router 6 in Fig. 4-8. For each of these routers, there is a total of 49 traffic units

worth of Learning Session traffic arriving on its incoming logical edges. Although nine of these traffic

units are Learning Sessions destined for the router in consideration, this router must also generate and

switch nine traffic units worth of Learning Sessions destined for the other subnet routers in the routing

core topology. Thus, 49 units of Learning Session traffic must be switched by both worst-case routers.

With the same parameters as above, we can use the Learning Session data rate to conclude that the

switching throughput for these routers must be 58.8 Mbps just to support the State Measurement

Service protocol using Learning Sessions. This worst case requires approximately 3.3 times more

switching bandwidth to support the Learning Sessions than in the "lower" bound Petersen graph case.

The overall router switching throughput must then be significantly higher to support additional best

effort traffic. If we consider the "10% rule" introduced in Section 4.2.8.1, this implies that we would

need active routers with switching throughput of at least 588 Mbps, where we have identified in the

previous section that 180 Mbps may already strain the capabilities of many typical router switching

180

designs. Additionally, the worst-case logical links in the subnet with a line graph routing core topology

would need to be designed to bear, at a minimum, 300 Mbps.

9 16 21 24 25 24 21 16 9

9 16 21 24 25 24 21 16 9

Fig. 4-8: This depicts the number of Learning Sessions supported by each logical directed link in the

routing core of a subnet with a line network topology. Note that all routers in the routing core are

assumed to be active CServ-enabled routers that are participating in the Learning Session protocol.

181

4.3 The Collector Protocol

In contrast to the Learning Session protocol for the State Measurement Service, we now present an

alternative approach - the Collector protocol. The objective of this protocol is the same as that of the

Learning Session protocol; it generates estimates of the CServ performance metrics, both reliability and

delay statistics, for CServ Intranetwork Service between two active CServ-enabled routers in the subnet

routing core. However, this protocol shifts the estimation workload to the individual routers in the CServ

Intranetwork Service path. In the Learning Session protocol, the CServ Intranetwork Service endpoints

(Entrance and Departure Routers) assume the majority of the workload; the Entrance Router of the

CServ Intranetwork Service is responsible for transmitting a fixed-rate traffic session while the Departure

Router computes and tracks statistics based on the realized performance of the traffic session during

each learning interval. In the Collector protocol, the routers along the CServ Intranetwork Service path

are now responsible for computing and tracking their own performance statistics, and a Collector

datagram that traverses the CServ Intranetwork Service path "collects" these statistics once per learning

interval. The reporting responsibilities for CServ performance metric updates remain with the

destination endpoint router (the Departure Router) for the CServ Intranetwork Service.

Before we begin with the detailed discussion of the Collector protocol, we outline both the benefits of

this approach an t s This potoco' require significanty less transmission and

switching data plane overhead since it does not require the workload of a significant session rate

between the CServ Intranetwork Service endpoints. It is this benefit that motivates its development as

an alternative to the Learning Session protocol. It also reduces the responsibilities of the endpoint

routers; the Entrance Router does not need to concern itself with metering the session rate and

generating dummy active probes to supplement the variable rate real passive CServ datagrams, while

the Departure Router does not need to maintain complicated running estimates of the CServ

performance metrics for each peer active router in the subnet.

On the flip side, the estimates of this protocol are much more conservative compared to ground truth

compared to those of the Learning Session protocol. Since real passive CServ datagrams are participants

in the fixed-rate Learning Sessions, the estimates accurately capture actual performance of a CServ

datagram traversing the CServ Intranetwork Service path and the cross-interaction with other CServ

Intranetwork Service paths at intermediate routers. The Collector protocol, on the other hand, does not

182

have the benefit of high-rate sessions of CServ traffic to form CServ performance metric estimates. Since

real passive CServ datagrams are intended to contribute a negligible amount of rate in most all network

conditions, the Collector protocol relies on the best effort traffic that traverses each router during a

learning interval to measure performance. The performance experienced by a CServ datagram should

then outperform these estimates, since CServ datagrams receive priority queueing and transmission

where possible. This approach requires the assumption that nominal use of the CServ messaging service

does not significantly affect the statistics of the best effort traffic state (and we note here that this

assumption may not hold during a significant network "Black Swan" event which generates a sharp

increase in CServ messages). Additionally, we describe that this protocol requires both greater

penetration of upgraded, CServ-enabled routers in the subnet routing core and more complex datagram

processing and state tracking by the CSPU of intermediate active routers in the CServ Intranetwork

Service paths.

4.3.1 Endpoints and Participants of the Collector Protocol

Unlike the Learning Session protocol where only the endpoints of CServ Intranetwork Service participate

in the State Measurement Service, all routers in the CServ Intranetwork Service paths of the subnet are

participants in the Collector protocol.

The endpoints of the Collector protocol are the same as the endpoints of the Learning Sessions, as

described in Section 4.2.1. All active access routers and all active gateway routers in the subnet routing

core are endpoints of the Collector protocol. The CServ Intranetwork Service connects each router in

this set to every other router in this set via some CServ Intranetwork Service path or set of paths. Using

the notation of Section 4.1, each router in NR transmits a periodic collector datagram destined for each

other router in NR, which implies that there are at most nR(fR - 1) periodic collector datagram

exchanges. Without the subnet modeling assumption that all routers in NR are CServ-enabled access or

gateway routers, there would be fewer collector exchanges in the subnet. Core routers that are CServ-

enabled can participate in the Collector protocol, as we shall describe in the subsequent paragraph, but

they do not need to generate or sink collector datagrams to estimate the CServ performance metrics of

any specific CServ Intranetwork Service path. As with the Learning Session protocol, the SC is responsible

for facilitating the exchange of collector datagrams between the appropriate endpoints in the subnet

183

routing core. It distributes a compiled list of addresses of CServ-enabled routers that need to exchange

collector datagrams (and this is the list of active CServ-enabled access routers and gateway routers).

Endpoints of collector datagram exchanges are not the only participants in the Collector protocol. Each

router that is part of a CServ Intranetwork Service path must be CServ-enabled and participate in the

protocol. We refer to these routers as intermediate routers in a CServ Intranetwork Service path. It is for

this reason that the Collector protocol requires a greater adoption rate of active routers (and, likely, a

greater capital investment to upgrade the routing core) than the Learning Session protocol. Each pair of

endpoints for CServ Intranetwork Service must be connected by at least one path that contains only

active, CServ-enabled routers as intermediate routers. Although a subnet that utilizes the Collector

protocol can have non-active core routers, these routers cannot be members of CServ Intranetwork

Service paths (unlike with the Learning Session protocol). The determination of CServ Intranetwork

Service must be aware of this requirement, generating only CServ Intranetwork Service paths that

traverse appropriate active CServ-enabled routers. Otherwise, the Collector protocol is unable to

estimate the CServ performance metrics of the specified path. Both active routers that serve as

endpoints for the exchange of collector datagrams and intermediate routers have similar responsibilities

for maintaining performance statistics; the only difference is that intermediate routers do not need to

generate or receive any collector datagrams.

4.3.2 Breakdown of Collector Protocol Measurements

Since the Collector protocol is not an end-to-end estimation of CServ performance metrics for CServ

Intranetwork Service like the Learning Session protocol, we need to characterize the components of a

CServ Intranetwork Service path and the estimation responsibilities of the constituents of the path to

ensure that the collector datagram can capture the same performance contributions as the Learning

Session.

Let us begin with a general description of a CServ Intranetwork Service path that uses the Collector

protocol to estimate CServ performance metrics. Specifically, consider a CServ Intranetwork Service path

that logically connects router A and router B within the subnet of interest, where A,B E NR. In the

terminology of the Collector protocol, we say that router A is the Entrance Router for the collector

datagram exchange and router B is the Departure Router for the collector datagram exchange. This

184

terminology stems from the view of the CServ Intranetwork Service as an opaque subnet tunnel that

bears the internetwork CServ datagram between two routers in its CServ Internetwork Service path

without the explicit control of the MC. This CServ Intranetwork Service path may or may not contain

intermediate routers based on the subnet routing core topology and the routing strategy used to

generate the paths. For the purpose of discussion, we assume that there is at least one intermediate

router in the CServ Intranetwork Service path, which we designate router C. Router C does not need to

be an active access or gateway router, but it does need to be an active CServ-enabled router as

discussed in Section 4.3.1.

If the Learning Session protocol were used to estimate the CServ performance metrics of the CServ

Intranetwork Service path connecting router A to router B, the estimates would include contributing

factors from the enqueueing of CServ datagrams at the input interface buffer of router A until the

successful reception of the CServ datagrams at the input interface of router B (see Section 4.2). Using

the Collector protocol, these path CServ performance metric estimates are broken into components,

where each router in the path is responsible for contributing its component when it is aggregated by a

collector datagram. We break the path CServ performance metric measurement into areas of

responsibility for each router participating in the Collector protocol, while capturing the same set of

end-to-end contributors as the Learning Session protocol. The remainder of this section describes the

estimation responsibilities of each active CServ-enabled router that participates in the Collector

protocol. When applied to our example for router A and router B, with intermediate router C, we note

that it enables the aggregation of the same contributing performance components as a Learning Session

between routers A and B.

Each active router participating in the Collector protocol, either as an endpoint of a collector datagram

exchange or as an intermediate router in a CServ Intranetwork Service path, has the purview to maintain

two sets of estimates that are periodically refreshed (namely, each learning interval). One set of

estimates pertains to the communication reliability of the input transmission interfaces, and the other

set of estimates captures the router traversal reliability and delay. The separation of responsibility for

these estimates is depicted in Fig. 4-9.

First, consider the estimate that concerns the communication reliability of the input transmission

interfaces. The transmission of a datagram between two adjacent routers can contribute to datagram

185

corruption in a variety of ways, including atmospheric interference, multipath fading, dispersion, cross-

channel interference, and multiple access collision, among other actors in data corruption. As datagrams

arrive on the input interfaces of the router in question, the lower layer protocol integrity checks verify

that the datagram has in fact been received without error (or in some cases, if the error can be rectified

by the forward error correction mechanism). If the datagram cannot be recovered successfully, it is

considered lost and dropped. Even though this processing is frequently performed at the physical or

data link control layer, the operations are implemented on the router input interfaces. It is the

responsibility of the CSPU to maintain an estimate of the Last Hop Transmission Reliability, which can be

estimated each learning interval as the ratio of the number of successfully received datagrams to the

total number of arriving datagrams at the aggregate router input interfaces. A similar estimator is used

for reliability in the Learning Session protocol (see Section 4.2.6), except that this version of the

estimator is local to the input interfaces of a particular active router in the subnet. This estimate counts

datagrams in both the best effort and CServ classes, and we note here that Collector datagrams are in

the CServ class and can also be used to generate new estimates.

Next, consider the set of estimates that cover the traversal of the router itself. As introduced in Section

4.2.3 in more detail, the traversal of the router includes the arrival processing of the datagram to

determine its router output interface, the waiting time in the input buffer of the arriving router

interface, the transmission of the datagram across the switching fabric at the scheduled time, and the

waiting time in the output buffer of the output router interface. Section 4.2.3 further describes the

opportunities for datagram loss (or reliability degradation) and delay throughout this traversal process;

we do not reiterate the details here. With the Collector protocol, it is the responsibility of the CSPU to

maintain three separate estimates for the router traversal process which are generated each learning

interval: the Traversal Reliability, the Mean Traversal Delay, and the Traversal Delay Variance.

Leveraging information that is generally available from the NPU for the purpose of scheduling the

switching fabric, the CSPU calculates the three estimates as follows. The Traversal Reliability is

computed, similarly to the Last Hop Transmission Reliability, as the ratio of the number of datagrams

successfully transmitted on the aggregate output router interfaces (again in both the best effort and

CServ classes, including Collector datagrams) to the total number of datagrams enqueued in the

aggregate input router interfaces. In order to calculate the delay statistics, each datagram that is

enqueued in an input buffer on the router input interfaces is tagged with a current time timestamp. As

datagrams are removed from the output buffers on the router output interfaces, the difference

186

between the current time and the tagged timestamp value is calculated, representing the traversal delay

of that particular datagram. The CSPU maintains running estimates of the Mean Traversal Delay and

Traversal Delay Variance that it updates with these computed traversal delay values during each

learning interval. The forms of the estimators are the same as in Eq. (4.2) and Eq. (4.3). Note that router-

specific datagram timestamp tags and counts should be available from the NPU. However, the NPU

interface may require modification to expose this information to the CSPU for the computation of these

estimates.

We now return to the example of the CServ Intranetwork Service path that logically connects router A

and router B to show that, with this separation of estimate purviews by each router, the Collector

protocol can amalgamate this information to measure the performance contributions from the same

sources as the Learning Session protocol. When router A, the Entrance Router, generates a Collector

datagram destined for router B, it enqueues it in the input buffer of a random input interface of the

router, just like a datagram in a Learning Session. Since this Collector datagram has not traversed an

intranetwork router-to-router hop prior to router A, it does not collect the current Last Hop

Transmission Reliability estimate at router A. However, as it does traverse router A, it collects the

current Traversal Reliability, Mean Traversal Delay, and Traversal Delay Variance estimates at router A.

Once the collector datagram reaches router C, the intermediate router in the CServ Intranetwork

Service path, it collects both sets of estimates since it has been transmitted over a previous

communication hop to reach router C and it will traverse router C itself. Finally, when the collector

datagram arrives at router B, the Departure Router, it only collects the current Last Hop Transmission

Reliability estimate at router B since this Collector datagram will not traverse the router. Comparing the

contributions captured by this process to that of the Learning Session described in Section 4.2.3, the

only contributions that are missing are the transmission and propagation delays between routers in the

CServ Intranetwork Service path. These are considered deterministic delay components that can be

measured by the transmission of the Collector datagram itself. As a Collector is dequeued from the

output buffer of an active router for transmission, it is updated with a current time timestamp. Upon

arrival processing at the next router, the difference between the current time and the Collector

timestamp, the Transmission and Propagation Delay, is collected by the datagram to account for this last

component that contributes to the CServ Intranetwork Service delay.

187

Communication Reliability

i i i I

T1 _I L I

Traversal Reliability & Delay

CSPU

-I -
/

\ i _______________I
I I I % I...........I

, = N P

Datagram arrival processing:
" CSPU: Maintain running estimate of Last Hop

Transmission Reliability per learning interval
* Last Hop Transmission Reliability: count of arriving

datagrams that pass integrity check / count of total
arriving datagrams

Datagram router traversal processing:

" CSPU: Maintain running estimates of router's Traversal

Reliability, Mean Traversal Delay, and Traversal Delay
Variance per learning interval

- Traversal Reliability: count of datagrams transmitted on
output interfaces / count of datagrams enqueued on input
interfaces

* Mean Traversal Delay and Traversal Delay Variance:
e Tag each datagram enqueued on input interfaces with

timestamp and find the traversal delay - the difference
between output interface transmission time and this

timestamp
* Update mean & variance accordingly per traversal

delay measurement

Fig. 4-9: This illustration depicts the separation of estimation responsibilities for the two sets of

estimates maintained by an active CServ-enabled router participating in the State Measurement Service

Collector protocol.

188

4.3.3 State Measurement Service Header for Collectors

In this section, we discuss the use of the State Measurement Service header placeholder from Chapter 3

for the purposes of the Collector protocol. Unlike the State Measurement Service header described for

Learning Sessions in Section 4.2.4, several of the fields in the State Measurement Service header for

Collector datagrams are mutable. That is, these fields are modified in transit as the datagram "collects"

the CServ performance metrics for the CServ Intranetwork Service path. The header also utilizes the

maximum length bound presented for the CServ overhead analysis of Chapter 3.

To begin, a real internetwork CServ datagram is never used as a Collector datagram, the preferred

datagram type in the Learning Session. All Collector datagrams are active probes that are generated by

the Entrance Router endpoint and terminated by the corresponding Departure Router endpoint of the

particular CServ Intranetwork Service. Since Collector datagrams include mutable fields that are

modified frequently during the transit of a CServ Intranetwork Service path, we choose to use active

probes so as not to risk corruption of real critical messages during datagram modification.

As an active probe, the Collector datagram retains the structure of a typical internetwork CServ

datagram traversing the routing core of the particular subnet in question. That is, it contains a dummy

CServ message payload, a CServ Internetwork Service header, a State Measurement Service header for

Collector datagrams, and a CServ Intranetwork Service header that binds the Collector datagram to a

particular CServ Intranetwork Service path. Although the CServ Internetwork Service header and CServ

data payload are not strictly necessary for the workload of the Collector datagram, the standard CServ

datagram structure is used since the Collector datagram itself generates measurements of transmission

delays along the CServ Intranetwork Service path.

The format of the State Measurement Service header for Collector datagrams is depicted in Fig. 4-10

and placed in the context of the intranetwork CServ datagram, or more specifically the Collector

datagram in this case. The following describes the purpose and use for each control field in the State

Measurement Service header for Collector datagrams:

* Version (VER) - As with all other CServ-proprietary headers, this leading 4-bit Version field is

used to specify the type of State Measurement Service header (in this case, the State

189

Measurement Service header for Collector datagrams). This field is based on the IP header field,

so we employ an unused code (codes for decimal values 1-3 and 10-14 are unallocated) to

specify that the following is a State Measurement Service header for Collector datagrams. This

code allows the active CServ-enabled routers that compose the CServ Intranetwork Service path

to correctly process and update the Collector datagram when it arrives. This is a non-mutable

field in the State Measurement Service header for Collector datagrams.

* Next Header (NH) - The 4-bit Next Header field specifies the format of the encapsulated

datagram header. In the case of Collector datagrams, this is the CServ Internetwork Service

header. This field is included for flexibility should future CServ architecture developments

change the structure of the Collector datagram. Additionally, this field is included to maintain

the consistency among CServ-proprietary headers, each of which leads with both the Version

and Next Header fields that allow for dexterity in the stacking of headers and generation of

datagrams. This is a non-mutable field in the State Measurement Service header for Collector

datagrams.

" Diversity Degree (DIv) - The 4-bit Diversity Degree field is used to specify the degree of path

diversity used by the particular CServ Intranetwork Service, with a default value of 1 (note that

this then allows for the use of a maximum of 15 diverse paths for CServ Intranetwork Service).

All Collector datagrams that are replicated for the purpose of a diversity-routed CServ

Intranetwork Service bear the same value in this field, as well as in the following Sequence

Number field. We consider the importance of this field in more detail in Section 4.3.5. This is a

non-mutable field in the State Measurement Service header for Collector datagrams.

" Sequence Number (SN) - The 28-bit Sequence Number is used in a similar fashion as with the

Sequence Number field in the State Measurement Service header for Learning Sessions (see

Section 4.2.4). The only difference is that four of the bits have been "stolen" for the Diversity

Degree field. Although the Sequence Number is not necessary to count unique arriving

datagrams at the Departure Router for the estimation of reliability, it is used to identify

datagrams replicated for the purpose of diversity routing. Replicated Collector datagrams sent

over the disjoint paths in the same CServ Intranetwork Service carry identical Sequence Number

190

field values. We consider the importance of this field in more detail in Section 4.3.5. This is the

last non-mutable field in the State Measurement Service header for Collector datagrams.

* Timestamp (TS) - The Timestamp field is the first mutable of the mutable fields of the State

Measurement Service header for Collector datagrams. All following fields are also mutable. The

64-bit Timestamp is used throughout the collection process to calculate the transmission delay

experienced by the Collector datagram. Before transmission, the field is marked with the current

time. At the receiving end of the transmission, the active router in the CServ Intranetwork

Service path uses the difference between the current time and the value in the Timestamp field

to compute the transmission delay. Note that this is not the same timestamp as in the Origin

Timestamp field used in the CServ Intranetwork Service header for Explicit Path Forwarding,

which is a non-mutable field and represents the time the intranetwork CServ datagram is

enqueued in the input buffer of the Entrance Router's input interface. We discuss the utilization

of this Timestamp field in more detail in Section 4.3.5.

* Reliability (RL) - The Reliability field is a mutable 64-bit field that encodes a double-precision

floating-point number representing the collected reliability of the CServ Intranetwork Service

path thus far. When the Collector datagram is generated by the Entrance Router endpoint of the

CServ Intranetwork Service, this field is initialized to a decimal value of 1. At each active CServ-

enabled router that forms the CServ Intranetwork Service path, this field is updated

appropriately according to the most recent Last Hop Transmission Reliability and/or Traversal

Reliability estimates. The update process for this field is discussed in more detail in Section

4.3.5. Together with the Delay Mean and Delay Variance fields, this triplet holds the collected

CServ performance metrics for the CServ Intranetwork Service path upon arrival at the

Departure Router of the CServ Intranetwork Service.

* Delay Mean (DM) - The Delay Mean field is another mutable 64-bit field that encodes a double-

precision floating-point number representing the collected mean delay statistic of the CServ

Intranetwork Service path thus far. When the Collector datagram is generated by the Entrance

Router endpoint of the CServ Intranetwork Service, this field is initialized to a value of 0. At each

active CServ-enabled router that forms the CServ Intranetwork Service path, this field is updated

appropriately according to the computed Transmission Delay and/or the most recent Mean

191

Traversal Delay and Traversal Delay Variance statistic estimates. The updated process for this

field is discussed in more detail in Section 4.3.5.

Delay Variance (DV) - The Delay Variance field is the final field of the State Measurement

Service header for Collector datagrams and is also a mutable 64-bit field that encodes a double-

precision floating-point number. The current value of this field represents the collected delay

variance statistic of the CServ Intranetwork Service path thus far. At the time of generation, the

Entrance Router endpoint of the CServ Intranetwork Service initializes the value of this field to 0,

and it is updated at each active CServ-enabled router that forms the CServ Intranetwork Service

path according to the most recent estimate of Traversal Delay Variance, if appropriate. The

updated process for this field is discussed in more detail in Section 4.3.5.

With the convenience of the octet offsets illustrated in Fig. 4-10, we see that the State Measurement

Service header for Collector datagrams requires the maximum 37 bytes allotted in the analysis of

Chapter 3. This additional overhead compared to the State Measurement Service header for Learning

Sessions is due to the need for the header to encode the current collected estimates of the CServ

performance metrics for the CServ Intranetwork Service path. Even though double-precision may not be

strictly required for any of the CServ performance metrics, Collector datagrams are transmitted

infrequently enough that this conservative allocation does not significantly contribute to the subnet

transmission and switching burden incurred by the Collector protocol.

192

Intranetwork CServ datagram (Collector datagram)

State measurement collector datagram

CServ Intranetwork State Measurement

Service header Service header -
Collector

Bit Position

0 3 4 7

VER NH

DIV

Sequence
Number

(SN)

Timestamp
(TS)

Internetwork CServ datagram

Bit Position

Offset 0 3 4 7

-- 13

Reliability
(RL)

Octet
Offset

0

1

4

5

12

Delay Variance
(DV)

Fig. 4-10: The fixed length format of the State Measurement Service header for Collector datagrams is

depicted here, to scale. The use of the Collector protocol is encoded in the Version (VER) field. The

Timestamp, Reliability, Delay Mean, and Delay Variance fields are mutable.

i

193

Delay Mean
(DM)

4.3.4 Collector Protocol Parameters of Estimation

Before we consider the process of updating the Collector datagram as it traverses the active CServ-

enabled routers in the CServ Intranetwork Service path between Entrance Router and Departure Router,

we consider the fundamental parameters of the Collector protocol and the generation of the

performance estimates collected by the protocol datagrams. The Collector protocol has a reduced

parameter dimensionality compared to the Learning Session protocol. Whereas the Learning Session

protocol has three fundamental parameters (two of which can be controlled independently), the

Collector protocol has only two fundamental parameters (only one of which is independently under the

discretion of the subnet administrator).

The first parameter discussed in Section 4.2.5 was the Learning Session rate. There is an equivalent rate

for the Collector protocol, the rate at which Collector datagrams are generated by a particular active

CServ-enabled Entrance Router in the subnet routing core destined for a particular active CServ-enabled

Departure Router. We call this the Collector protocol rate and denote it as Ac [collector

datagrams/second]. Active routers in a subnet using the Collector protocol to estimate the CServ

performance metrics of CServ Intranetwork Service paths maintain fixed rate Collector datagram

exchanges, similar to the Learning Session protocol. However, this is a low rate exchange with respect to

Me Interval of estimate generation, which motivates the use oft he "exchage" terminology rather than

the "session" nomenclature. This becomes clearer after we introduce the other parameter of the

protocol.

The second parameter discussed in the context of the Learning Session protocol was the learning

interval, which was denoted as -r [seconds]. The same parameter is used for the Collector datagram

protocol. During each learning interval, independent estimates are generated by each active CServ-

enabled router for the local performance components, the Last Hop Transmission Reliability, the

Traversal Reliability, the Mean Traversal Delay, and the Traversal Delay Variance. As with the Learning

Session protocol, these intervals are synchronized using the assumption of the availability of a global

synchronized clock for the CServ-enabled network devices.

The third parameter considered in Section 4.2.5 for the Learning Session protocol was that of reliability

precision, indicating the granularity at which the CServ reliability performance metric could be

194

estimated. To characterize this parameter, we presented a proxy parameter, the total number of

Learning Session datagrams transmitted in a learning interval of length -r. In the Collector protocol, the

frequency of Collector datagram generation and transmission does not determine the precision at which

the CServ reliability performance metric can be specified. Each active CServ-enabled router in the subnet

routing core generates two estimates related to the reliability of a CServ Intranetwork Service path each

learning interval: the Last Hop Transmission Reliability and the Traversal Reliability. The precision at

which either of these can be estimated depends on the traffic load seen at that particular router during

the previous complete learning interval (the aggregate of both best effort traffic and real CServ

datagrams), not on a parameter of the Collector protocol. And, in general, an active router can refuse to

update the current set of estimates if there is not enough traffic to accurately capture the performance

during any particular learning interval.

As far as the number of Collector datagrams exchanged between two active routers in the subnet

routing core each learning interval, we do not consider this a formal parameter of the protocol for now.

By default, the Collector protocol generates and transmits one Collector datagram between each pair of

active routers during each learning interval. However, we note that this could be considered a

maximum. In the future, the rate of Collector datagram exchanges could be reduced such that a

Collector datagram is exchanged only every few learning intervals in stable subnets. It does not make

sense to increase the rate of exchanges beyond this maximum since new performance estimates along

the CServ Intranetwork Service path are only generated once every learning interval; additional

Collector datagram exchanges per learning interval would be redundant, aggregating the same set of

performance estimates along the path.

Based on the parameter definitions, and following the example of Section 4.2.5, we note that Lc = 1/-

since only (or at maximum) one Collector datagram is exchanged between an active router pair via the

CServ Intranetwork Service per learning interval. The subnet administrator's choice of learning interval

length becomes the primary consideration in configuring the Collector protocol. If the learning interval is

small compared to the delay of the CServ Intranetwork Service paths in a subnet, the performance

estimates gathered early in the CServ Intranetwork Service path by a Collector datagram are stale

estimates by the time the Collector reaches the Departure Router. In general, the learning interval

should not be shorter than the CServ Intranetwork Service path delays, and simultaneously it should be

on the order of the coherency of the subnet state.

195

4.3.5 The Collection Process

Before presenting the "collection process" that updates a Collector datagram as it traverses an active

CServ-enabled router participating in the Collector protocol as part of a CServ Intranetwork Service path,

we consider the incremental updates to the three CServ performance metrics of interest: reliability,

mean delay, and delay variance.

Recall that reliability represents the probability that a datagram transmitted by some source host arrives

successfully at the intended destination host, meaning without corruption or loss. For the sake of

discussion, assume a toy example scenario where our source and destination hosts are connected by a

path with two intermediate routers, routers A and B, and that the reliability of each router is known (as

one variable) as pA and PB. Further, we assume that all communication links between the routers along

this path are completely reliable. We denote the reliability of the path as p. If we can assume that the

loss processes captured by the reliability variables are statistically independent, then we can conclude

that the reliability of the path between the source and destination hosts p = PA X PB. That is, the

reliability of the path is the product of the reliability among the statistically independent elements along

the path. This requirement of statistical independence between subnet elements is vital to the

collection process, but it does require some careful consideration. If the primary source of loss at both

r ei rq A -%m I !~~-~ 4 . & L .routersl AI Inu Is sbnU congestion, then it is highly unlikely that these two loss processes are

statistically independent; the oversubscription of the subnet transmission or switching bandwidth could

induce correlation between them. Additionally, consider the case now where the reliability of router A is

captured with two separate variables, one denoting the reliability of the buffering process, pbuffer, and

the other representing the reliability of the switching process, p"witch If we can assume statistical

independence between these two processes, then the reliability of the path between the source and

destination hosts becomes p = pbuffer x witCh X pB. However, if the buffering process at a particular

router is congested and has higher loss, then the likelihood that loss is observed from imperfect router

switch scheduling increases. These loss processes are clearly not statistically independent as described.

We utilize the statistical independence assumption throughout the Collector protocol and collection

process for implementation simplicity and computation tractability. This assumption enables the use of

a compact set of performance estimates with very simple collection update rules. Thus, the reliability of

a CServ Intranetwork Service path is a product of the estimated reliability values of the elements that

196

compose the path. To update the Reliability field, the collected reliability estimate is multiplied with the

current value in the field. The resulting value is then used to update the Reliability field of the collector.

That being said, it is necessary to remain skeptical of the results and consider sources of correlation

between elements in the subnet, particularly during significant subnet transient conditions or instances

of network stress.

We apply the same assumption of statistical independence as we collect the delay statistics along a

CServ Intranetwork Service path in the Collector protocol. The mean delay of a path is the sum of the

mean delays along the path. We note that this statement alone does not invoke the assumption on

statistical independence. It holds even if there were correlation between the path delay processes.

However, we do need the assumption for the next statement; the delay variance of a path is the sum of

the delay variances along the path. With the statistical independence assumption and these statements,

we provide the rules to update the delay statistic fields in the Collector datagram during the collection

process. To update the Delay Mean field, the collected mean delay estimate (or computed transmission

and propagation delay value, as this is treated as a deterministic DC component of delay) is added to the

current value in the field. The result then replaces the original value and updates the Delay Mean field.

To update the Delay Variance field, the collected delay variance value is added to the current value

stored in the field. The resulting value is then used to update the field. As with the reliability collection,

we need to maintain a healthy feeling of trepidation with the resulting path delay variance since we

have assumed away any correlation between the subnet delay processes.

Endowed with these incremental update rules for the Reliability, Delay Mean, and Delay Variance fields

of a Collector datagram, we describe the collection process at an active router participating in the

Collector protocol (that is, it is part of the CServ Intranetwork Service). The process is illustrated in Fig. 4-

11. For the detailed discussion of the process, we consider a CServ Intranetwork Service path that

logically connects router A and router B within the subnet of interest, where A, B E NR, as in Section

4.3.2. In the terminology of the Collector protocol, we say that router A is the Entrance Router for the

collector datagram exchange and router B is the Departure Router for the collector datagram exchange.

For the purpose of discussion, we additionally assume that there is at least one intermediate router in

the CServ Intranetwork Service path, which we designate router C, where C E NR.

197

First, let us consider the Entrance Router, router A. This router serves as the source endpoint of the

Collector datagram exchange. When the appropriate CSPU process for this exchange creates the

Collector datagram, it initializes the Reliability, Delay Mean, and Delay Variance fields as discussed in

Section 4.3.3. The initialization of the Timestamp field is inconsequential, but it can be set to the current

time at Collector datagram generation. Before the Collector datagram is enqueued in the input buffer of

a random input interface of the Entrance Router, the Reliability field is updated by the current estimate

of Traversal Reliability at router A, the Delay Mean field is updated by the current estimate of the Mean

Traversal Delay at router A, and the Delay Variance field is updated by the current estimate of the

Traversal Delay Variance at router A. These updates follow the rules previously established in this

section. The use of a random input interface for the initial enqueueing of the Collector datagram is not

fundamental to the aggregation of the final CServ performance metric estimates; this tactic only spreads

the load of generated Collector datagram traffic over the router interfaces. When the Collector

datagram is dequeued from the output buffer of router A's output interface, the CSPU updates the

Timestamp field with the current time immediately before the datagram is sent on the output

transmission interface.

Next, consider the intermediate router in the CServ Intranetwork Service path, router C. When the

Collector datagram is successfully received on one of its input interfaces, the CSPU initiates the following

collection steps. immediately upon successful arrival, the last hop's realized Transmission and

Propagation Delay is computed as the difference between the current time and the value in the

Collector datagram's State Service Measurement header Timestamp field. The Delay Mean field of the

Collector datagram is then updated by this computed value. Furthermore, the Reliability field is updated

by the current estimate of the Transmission Reliability at router C. This completes the datagram arrival

collection steps. The CSPU then proceeds to complete the router traversal processing steps as described

in the previous paragraph for router A: the Reliability field is updated by the current estimate of

Traversal Reliability at router C, the Delay Mean field is updated by the current estimate of the Mean

Traversal Delay at router C, and the Delay Variance field is updated by the current estimate of the

Traversal Delay Variance at router C. Following the collection of traversal estimates, the Collector

datagram is enqueued in the input buffer of the arriving input interface at router C to await scheduled

access to the switching fabric. And just as with the Entrance Router, the CSPU updates the Timestamp

field with the current time immediately after the Collector datagram is dequeued from the output buffer

and immediately before the datagram is transmitted on the output transmission interface.

198

Lastly, consider the Departure Router in the CServ Intranetwork Service path, and consequently in the

Collector datagram exchange. In our example, this is router B. The collection process at the Departure

Router only involves collecting the datagram arrival estimates, specifically the last hop's realized

Transmission and Propagation Delay and router B's current estimate of the Transmission Reliability.

Traversal performance estimate collection does not occur at the Departure Router. So immediately

upon successful arrival, the last hop's realized Transmission and Propagation Delay is computed as the

difference between the current time and the value in the State Service Measurement header Timestamp

field. The Delay Mean field of the Collector datagram is updated by this computed value, and the

Reliability field is updated by the current estimate of the Transmission Reliability at router B. Following

these updates, the appropriate CSPU process (the peer process with Entrance Router A) discards the

Collector datagram after extracting the aggregated CServ Intranetwork Service path estimated CServ

performance metrics. Comparing these end-to-end updates from the Entrance Router to the Departure

Router with the overview of Section 4.3.2, we see that the finalized CServ performance metric estimates

for the CServ Intranetwork Service path match the intended purview of the State Measurement Service

for the subnet routing core.

What we have yet to discuss is the combination of Collector datagrams in the collection process when

path diversity is used for CServ Intranetwork Service connecting a particular pair of Entrance and

Departure Routers. In Section 4.3.3, we allocated a 4-bit State Measurement Service header field for the

Collector datagram to specify the number of diverse paths employed to realize the CServ Intranetwork

Service. This is necessary because we wish to use the Collector protocol to collect the CServ

performance metrics for a CServ Intranetwork Service, not for a particular CServ Intranetwork Service

path. If we consider the operation of the Learning Session protocol, we notice that the output CServ

performance metric estimators summarize the reliability and delay statistics of the union of the paths if

diversity routing is employed. It does not individually characterize the CServ performance metrics of

each diverse path in a particular CServ Intranetwork Service.

Consider the case where diversity routing of at least two disjoint paths is used as the CServ Intranetwork

Service to connect a particular Entrance and Departure Router pair in a subnet. When the Entrance

Router generates the Collector datagram and binds it to the appropriate CServ Intranetwork Service, it

must replicate the Collector datagram instance such that it can prepend the appropriate CServ

Intranetwork Service header for each diverse path to a separate State Measurement Service datagram.

199

The appropriate encoding representing the number of replications or number of diverse paths in the

service is written into the Diversity Degree field of each State Measurement Service header, and the

next sequence number maintained by the Entrance Router CSPU process for the destination Departure

Router is applied to the Sequence Number field (which is only 28-bits for Collector State Measurement

Service headers). The behavior of the Departure Router in the Collector datagram exchange is modified

when path diversity is used to implement the CServ Intranetwork Service. Assuming that value encoded

in the Diversity Degree field is greater than one, the Departure Router cannot generate an update to the

CServ Intranetwork Service performance metric estimates until it receives all Collector datagrams with

the same sequence number value. That is, if the degree of path diversity used is two, then the Departure

Router does not finalize new performance metric estimates until it receives two Collector datagrams

with the same sequence number. After the first Collector datagram is received on the first path, it

extracts the aggregated CServ Intranetwork Service path performance metric estimates from the State

Measurement Service header fields and stores them with the appropriate CSPU process while it waits

for the arrival of the second Collector datagram. Upon arrival of the second Collector datagram and

extraction of its aggregated CServ Intranetwork Service path performance metric estimates for the

second path, the CSPU process is able to finalize new CServ performance metric estimates for the CServ

Intranetwork Service. Should the second Collector datagram not arrive due to loss or corruption, the

extracted information from the first is discarded when Collector datagrams for the Collector datagram

exchange in the next learning interval (with a new sequence number) begin to arrive. This behavior is

consistent with the update policy when path diversity is not used to implement CServ Intranetwork

Service; if the one Collector datagram does not arrive successfully at the Departure Router due to

corruption or loss, the current CServ Intranetwork Service performance metric estimates are not

updated.

The following process is used to combine the collected metric sets from the Collector datagrams when

path diversity is used for CServ Intranetwork Service. For discussion, assume that k-diversity is

employed where k > 1 for the particular CServ Intranetwork Service between active router A E NR and

active router B E NR (meaning that there are k diverse paths used in the CServ Intranetwork Service to

logically connect the Entrance and Departure Router pair). We enumerate the paths as path i E

{1,2,...,k}, and we define the set of path performance estimates collected by the respective Collector

dlatagrams as {A, Pi, U}i ,e{2,.,k) where fij denotes the value from the Reliability field, f4 denotes the

value from the Delay Mean field, and - denotes the value from the Delay Variance field. The CServ

200

Intranetwork Service performance metric updates occur once all k Collector datagrams with the same

value in the Sequence Number field have arrived at the Departure Router. Using the statistical

independence assumption, we can abstractly describe the reliability of CServ Intranetwork Service using

k disjoint diversity paths as:

Service Reliability a Pr{Transmission over at least one of k paths is successful)

= 1 - Pr{Transmission over none of the k paths is successful)

k

= 1 - Pr{Transmission over path i is not successful)
i=1

k

= 1 - (1 - Reliability of path i).
i=1

Note that the statistical independence assumption is leveraged in the third line above (as well as in the

collection process for each Collector datagram). With the notation we have introduced for this

discussion, the updated CServ reliability estimator generated at Departure Router B, p,-B, after the

successful reception of the k Collector datagrams with the same sequence number during learning

interval ri is:

k

A 1-BJ1~) (4.8)

Note that this formula is consistent with the Collector protocol when diversity routing is not employed

for CServ Intranetwork Service (i.e. k = 1). Defining the CServ Intranetwork Service delay statistics

updates is trickier, and we devote more attention to the matter in Chapter 5 in the context of defining

the delay of a CServ Internetwork Service path. For now, we present the update rule without further

exposition. As the Departure Router receives the k Collector datagrams from the exchange, it computes

the following Path Delay estimate, di, for each path i E {1,2, ... , k}:

di Pi + 10 ~i. (4.9

201

The aggregated Collector datagram delay statistics for the path with the maximum estimated Path Delay

are maintained as the CServ Intranetwork Service delay statistic estimates (with an arbitrary tie

breaker). Formally, the updated CServ mean delay and delay variance estimates generated at Departure

Router B, Ti~f) and 2a-* , after the successful reception of the k Collector datagrams with the same

sequence number during learning interval ri is given by:

{ A-B 2 A--, +B, 2
(4.10)

where < = argmax d1 .
iEf1,2,...,k}

It is worth mentioning that the Collector protocol and collection process opens the opportunity for a

centralized version that completely eschews the exchange of datagrams in the subnet routing core data

plane. This centralized version leverages the full potential of the logically-centralized SC structure within

the subnet. We can consider the collection process described so far as the "distributed Collector

protocol," and we briefly outline the "centralized Collector protocol." In the distributed version, the

active CServ-enabled routers perform the majority of the performance estimation workload, leaving the

Collector datagrams to measure the transmission and propagation delays for a CServ datagram using the

CServ Intranetwork Service. If adjacent active CServ-enabled routers in the subnet implement a protocol

to measure the transmission and propagation delay between them, the routers in the subnet jointly

now have all necessary state estimates and measurements needed to determine the end-to-end CServ

performance metric estimates for a CServ Intranetwork Service path. The centralized version of the

Collector protocol would have the active routers that can participate in the CServ Intranetwork Service

report this full set of estimates to the SC. By means of the appropriate routing policy for the CServ

Intranetwork Service, the SC uses the reported estimates from each active router and the network

topology to compute the CServ performance metrics for the CServ Intranetwork Services in the subnet.

The logically-centralized computation capability of the SC replaces the need for the exchange of

Collector datagrams. Furthermore, if the routing and forwarding policy allows, the SC can use the

reported performance metric estimates to optimize the CServ Intranetwork Service paths. This makes

the determination of CServ Intranetwork Service performance-aware, a much more proactive approach

than collecting the estimates of CServ performance metrics with Collector datagrams only after the

paths are established. The detailed development of this approach is left as future work in the CServ

framework.

202

I ~

I I

5 |' |

Arrival rocessig if no th nrne Arvlp

Router for Collector datagram exchange:
- Calculate last hop's realized

Transmission and Propagation Delay -
difference between current time and
value in State Measurement Service
header Timestamp field

- Collection: Modify arriving Collector
datagram header with arrival state
information

* Update Reliability field using
current estimate of Transmission
Reliability

- Update Delay Mean field using
Transmission and Propagation
Delay

CSPU

NPU

CServ dlatagramn

Collector (CServ) data

0Best effort dlatagram

I ~
I ~
I ~
I ~

I [i|
I I
I'
III

I i
I I
I I

_____________ I I

ZLET _

gram

ocessing if not the Departure
Router for Collector datagram exchange:

Collection: Modify Collector datagram
with traversal state information

* Update Reliability field using
current estimate of Traversal
Reliability

* Update Delay Mean field using
current estimate of Mean
Traversal Delay

- Update Delay Variance field
using current estimate of
Traversal Delay Variance

Pre-transmission processing if not the
Departure Router for Collector datagram
exchange:

Update Timestamp field to reflect
current time after dequeue Collector
datagram from output interface buffer
for transmission

Fig. 4-11: This is a depiction of an active CServ-enabled router that participates in the State

Measurement Service Collector protocol, describing the "collection process" used to update Collector

datagrams with the appropriate performance estimates and calculations.

203

4.3.6 Collector Protocol Description

With the fundamental descriptions of the Collector protocol components, we are ready to formalize the

protocol responsibilities of the primary participants in the State Measurement Service, the active CServ-

enabled routers in the subnet. Pulling together the coverage from Sections 4.3.1-4.3.5, the following

outlines the protocol responsibilities for the following router designations:

1. all CServ-enabled routers participating in the Collector protocol;

2. the Entrance Router of a particular Collector datagram exchange;

3. and the Departure Router of a particular Collector datagram exchange.

Note that an active CServ-enabled router participating in the Collector protocol assumes all of the above

roles, depending on the endpoints of the Collector datagram exchange considered. For the simplicity of

discussion, we assume that all subnet routers in NR are active CServ-enabled routers participating in the

Collector protocol. If there are non-active routers in the subnet's routing core, they should be excluded

from the following discussion since non-active routers do not participate in the Collector protocol, nor

can they serve as constituents in CServ Intranetwork Service paths in the subnet.

The following protocol applies for every Router i E NR and every Router j E NR\til. We use the

convention that Router i is the Entrance Router for the considered Collector datagram exchange

described in the protocol (alternatively, Router i is the Entrance Router for the CServ Intranetwork

Service that the Collector datagram traverses to integrate the estimated performance components

along the path or paths), while Router j is the Departure Router for the exchange.

All CServ-enabled Routers Participating in Collector Protocol: Router r E NR CSPU

* Create and maintain a CSPU process for maintaining the current value of the following

performance estimates and updating the values as new estimates are generated:

o Last Hop Transmission Reliability

o Traversal Reliability

o Mean Traversal Delay

o Traversal Delay Variance

204

o During a particular learning interval indexed -r:

" Maintain a count of the total arriving datagrams in any class (best effort and

CServ, including Collector datagrams) on all input interfaces, Nr

" Maintain a count of the total arriving datagrams in any class on all input

interfaces that pass physical and data link layer integrity checks (along with any

forward error correction) and are not dropped due to corruption, Xr

" Maintain a count of the total datagrams in any class dequeued from output

buffers on all output interfaces for transmission, Dr

* Maintain a count of the total datagrams in any class enqueued in input buffers

on all input interfaces, Er

* For each datagram in any class enqueued in an input buffer of any input

interface, tag it with a metadata timestamp representing the current time (this

may be done by the NPU for switch scheduling and optimization purposes)

* For each datagram x E {1,2,...,Dr} in any class dequeued from an output

buffer of any output interface, compute the traversal delay value for that

datagram, tx, as the difference between the current time and the metadata

timestamp

* Maintain running estimates of Mean Traversal Delay and Traversal Delay

Variance using cumulative moving average and online estimator of population

variance of the forms described in Eq. (4.2) and Eq. (4.3) and the tx, x E

{1,2, ... , Dr} values

o At the end of each learning interval indexed ri:

* Finalize the running estimates of Mean Traversal Delay and Traversal Delay

Variance, updating the current value maintained by the CSPU

" Generate a new estimate for Last Hop Transmission Reliability as Xr/Nr,

updating the current value maintained by the CSPU

= Generate a new current estimate for Traversal Reliability as Dr/Er, updating the

current value maintained by the CSPU

- Reset the counts for the next learning interval (i.e. Xr = 0, Nr = 0, Dr = 0,

Er = 0)

* Reinitialize the running estimates of Mean Traversal Delay and Traversal Delay

Variance

205

* Upon the successful arrival of a Collector datagram, perform the following "collection"

processing:

o If r = i (this is Entrance Router for the Collector exchange, or for the CServ

Intranetwork Service):

" Update the Reliability field with the product of its current value (should be 1)

and the current Traversal Reliability estimate value

- Update the Delay Mean field with the sum of its current value (should be 0) and

the current Mean Traversal Delay estimate value

" Update the Delay Variance field with the sum of its current value (should be 0)

and the current Traversal Delay Variance estimate value

o Else if r =j (this is Departure Router for the Collector exchange, or for the CServ

Intranetwork Service):

- Update the Reliability field with the product of its current value and the current

Last Hop Transmission Reliability estimate value

" Update the Delay Mean field with the sum of its current value and the

difference between the current time and the time stored in the Timestamp field

(the last hop's realized transmission and propagation delay)

o Otherwise (r # i and r # j, this is an intermediate router for the Collector exchange

and part of the CServ intranetwork Service path):

- Update the Reliability field with the product of its current value, the current Last

Hop Transmission Reliability estimate value, and the current Traversal Reliability

estimate value

" Update the Delay Mean field with the sum of its current value, the difference

between the current time and the time stored in the Timestamp field (the last

hop's realized transmission and propagation delay), and the current Mean

Traversal Delay estimate value

" Update the Delay Variance field with the sum of its current value and the

current Traversal Delay Variance estimate value

* Upon dequeueing a Collector datagram from the output buffer of an output interface for

transmission to the next router in the CServ Intranetwork Service path, update the Timestamp

field with the value that represents the current time

206

Entrance Router (Router i) CSPU Responsibilities for Collector Datagram Generation

* Create and maintain a CSPU process for a Collector exchange with each Router] E NR\ti} using

the address set NR distributed by the SC

o Terminate any existing Collector exchange CSPU process with Router I if it is removed

on latest update of address set NR distributed by the SC (i.e. 1 0 NR)

* Maintain 28-bit incrementing, wrap-around counter for Router j that used as a sequence

number

" Generate one Collector datagram destined for Departure Routerj during each learning interval

of length r (one per learning interval is the default, but it could be less often if the protocol is

modified to reduce the collection rate)

o Generate a dummy internetwork CServ datagram that mimics a real internetwork CServ

datagram with the following specifications:

m Version - Use the encoding that specifies the CServ Internetwork Service header

consistent with a real passive internetwork CServ datagram

- Next Header - Use the default Next Header code that indicates that the

encapsulated payload is the CServ message data (which is a dummy placeholder

in this case)

m Path Length - Encode the decimal value 0 in this field (there is no real CServ

Internetwork Service path since this is a dummy internetwork CServ datagram

used only for the purpose of the Collector protocol)

m Payload/Data Length - Use the correct value to describe the size of the dummy

CServ message data payload in bytes (default is one kilobyte, but this can vary

between implementations depending on the needs and capability of the subnet)

m Checksum - This field is unnecessary and can be set to all zeros since the CServ

Internetwork Service header integrity check is only used at real CServ

transaction endpoint hosts and the integrity check for CServ Intranetwork

Service is either at the physical or data link layers (depending on the CServ

Intranetwork Service implementation)

" Source Address - Use the address of Router i, the Entrance Router for the CServ

Intranetwork Service and the "source" of the Collector datagram exchange

207

" Destination Address - Use the address of Routerj, the Departure Router for the

CServ Intranetwork Service and the "destination" of the Collector datagram

exchange

" Sequence Number - Use some subnet-specific default value in this field to

further indicate that this is a dummy Collector datagram probe in the Collector

protocol and not a real passive CServ datagram

" Expiration Time - Use some default value in this field since it is not examined by

the Departure Routerj

- Authentication Mark - For now, use some default value since this field is not

used by Departure Routerj (however, if necessary, this could be employed in

the future to authenticate the dummy Collector datagram as a legitimate probe

generated by Entrance Router i)

" Hop Addresses - There are no additional hop addresses encoded since there is

no CServ Internetwork Service path for dummy Collector datagram probes in

the Collector protocol and the value encoded in the Path Length field is zero

- CServ Data Payload - Fill the payload with the appropriate number of bytes

encoded in the Payload/Data Length field (typically all zeros, but depends on the

subnet's implementation of the Collector protocol)

o Prepend a State Measurement Service header for Collector datagrams and set the fields

as follows:

" Version - Use the correct encoding that represents a State Measurement

Service header for a Collector datagram (this is the primary indicator to any

intermediate router or to Departure Router j that this is a dummy Collector

datagram probe)

" Next Header - Use the encoding that represents the CServ Internetwork Service

header for internetwork CServ datagrams

* Diversity Degree - With the lookup for appropriate CServ Intranetwork Service

for the "destination," Departure Router j, encode the correct value here

representing the number of diverse paths that are used for the service or,

equivalently, the number of Collector datagram replications are needed for the

particular Collector exchange

208

" Sequence Number - Use the next value of the incrementing counter for Routerj

(and then increment the counter state for the CSPU process)

" Timestamp - Mark this field with the current time, although this initialization

value is not used during the collection process

" Reliability - Initialize the value of this collection field to the decimal value 1,

encoded as a double-precision floating point number, as discussed in Sections

4.3.3 and 4.3.5

* Delay Mean - Initialize the value of this collection field to the decimal value 0,

encoded as a double-precision floating point number, as discussed in Sections

4.3.3 and 4.3.5

" Delay Variance - Initialize the value of this collection field to the decimal value

0, encoded as a double-precision floating point number, as discussed in Sections

4.3.3 and 4.3.5

o if the appropriate CServ Intranetwork Service for Departure Routerj specifies the use of

diversity routing over multiple CServ Intranetwork Service paths, replicate the state

measurement collector datagram the appropriate number of times (to match the value

encoded in the Diversity Degree field) prior to prepending the appropriate CServ

Intranetwork Service headers for each

- Note that this follows the design that each replication should have the same

values encoded in the Diversity Degree and Sequence Number fields

o For each replication of the state measurement collector datagram (if any), prepend the

appropriate CServ Intranetwork Service header as specified by the service lookup for

Departure Routerj

o Enqueue the dummy Collector datagram probes in the input buffer of random input

interfaces (using the CServ priority queue if available, but not necessary) since there is

no "arriving" interface

* As with active dummy CServ datagrams in Learning Sessions, these interfaces

should be chosen independently for each transmitted Collector datagram and

uniformly over all possible Entrance Router i interface input buffers, although

this is just to spread the Collector datagram traffic load rather than to avoid

interface-specific measurement dependencies

209

o Continue with all additional necessary Collector protocol processing as described under

All CServ-enabled Routers Participating in Collector Protocol (namely, with the

exception of updating collection fields with any last hop transmission performance

values)

Departure Router (Router j) CSPU Responsibilities for Collector Datagram Termination

" Create and maintain a CSPU process for a Collector exchange with each Router i E NR\{j} using

the address set NR distributed by the SC

o Terminate any existing Collector exchange CSPU process with Router I if it is removed

on latest update of address set NR distributed by the SC (i.e. 1 1 NR)

" Maintain 28-bit incrementing, wrap-around counter for Router i that reflects the largest

Sequence Number field value seen in the State Measurement Service headers of arriving

Collector datagrams from Entrance Router i

* Maintain values for the last reported CServ performance metric estimates (specifically,

Reliability, Mean Delay, and Delay Variance) for the CServ Intranetwork Service connecting

Entrance Router ito Departure Routerj

* Upon arrival of Collector datagram and after necessary Collector protocol processing as

described under All CServ-enabled Routers Participating in Collector Protocol (namely, update

collection fields with last hop transmission performance values and update datagram arrival

counters as appropriate), continue with the following protocol processing steps

o If the value encoded in Diversity Degree field is the decimal value 1:

- Extract the finalized collected values in the Sequence Number, Reliability, Delay

Mean, and Delay Variance fields, then discard the Collector datagram

m Verify that the value of the Sequence Number is greater than the counter, and if

so:

* Update the counter to reflect the new value

* Report the new CServ performance metric estimates for the CServ

Intranetwork Service with Entrance Router i to the SC if the new values

are different enough from the stored last reported values (see further

discussion of this in Section 4.6)

210

* Update the stored last reported CServ performance metrics for the

CServ Intranetwork Service with Entrance Router i if the new collected

estimates are reported

o Else if the value encoded in the Diversity Degree field is a decimal value k > 1:

" Extract and store the set of finalized collected values in the Diversity Degree,

Sequence Number, Reliability, Delay Mean, and Delay Variance fields, then

discard the Collector datagram

" Verify that the value of the Sequence Number is either greater than or equal to

the value of the counter, and if so:

* if the counter value is strictly less than the Sequence Number value,

update the counter and discard any stored sets of collected values with

an associated Sequence Number less than the new counter value

* Calculate the Path Delay estimate as described in Eq. (4.9) and store

with the extracted set of collected values

* If there are now k sets of collected values with the same Sequence

Number with the addition of this new set (along with the k computed

Path Delay estimates), generate CServ Intranetwork Service Reliability,

Mean Delay, and Delay Variance estimates using the k sets according to

Eq. (4.8) and Eq. (4.10)

* Report the new CServ performance metric estimates for the CServ

Intranetwork Service with Entrance Router i to the SC if the new values

are different enough from the stored last reported values (see further

discussion of this in Section 4.6)

* Update the stored last reported CServ performance metrics for the

CServ Intranetwork Service with Entrance Router i if the new collected

estimates are reported

4.3.7 Analysis of the Collector Protocol Subnet Burden

The Collector protocol exchanges Collector datagrams at regular intervals between each pair of active

CServ-enabled routers, both access and gateway routers, in the subnet. It is important to bear in mind

that not all active CServ-enabled routers are required to serve as endpoints in Collector datagram

211

exchanges, only those access routers that provide upstream routing core access to CServ-enabled hosts

and active gateway routers. This is an especially important consideration for the subnet implementing

the Collector protocol for the State Measurement Service since CServ Intranetwork Service paths must

consist exclusively of active CServ-enabled router hops. Thus, it requires a much more ubiquitous

adoption of active CServ-enabled routers to support the CServ Intranetwork Service paths and ensure

connectivity. Even though the penetration of upgraded routers in the routing core may far exceed the

penetration rate in subnets leveraging the Learning Session protocol, this consideration limits the

number of Collector exchanges required.

Although the Collector protocol is designed to levy a very light transmission and switching burden

compared to the relatively-heavy fixed-rate sessions of the Learning Session protocol, it still imposes

some overhead on the subnet routing core's data plane. We shadow the analysis of the Learning Session

protocol from Section 4.2.8 here, omitting most of the derivation details since they directly follow the

previous results. This enables us to compare the burden of this protocol to that of the Learning Session

protocol. As in the previous analysis, we continue to employ the three assumptions first presented in

Section 4.1 to ensure the tractability of the analysis on our two "lower" and "upper" bound subnet

topologies. We update these assumptions in the context of the Collector protocol as follows:

1. All routers in the subnet routing core topology are either active CServ-enabled access routers

participating in the Collector datagram exchange or active CServ-enabled gateway routers

participating in the Collector protocol.

2. The CServ Intranetwork Service routing strategy used for the purpose of analysis is that of

shortest-path routing, where the shortest path is defined by the fewest number of intermediate

router hops in the path.

3. The CServ Intranetwork Service does not employ path diversity between Entrance and

Departure routers. There is one unique CServ Intranetwork Service path connecting any pair of

active routers in the subnet routing core as described by the second assumption above.

Note that this last assumption implies that our analysis finds the minimum necessary transmission and

switching data plane burden of the Collector protocol in the case where all routers in the subnet routing

212

core topology are endpoint participants in the protocol. With the addition of diversity routing in the

CServ Intranetwork Service, the data plane burden of the protocol increases as a function of the degree

of diversity employed.

4.3.7.1 Collector Protocol Burden: The Petersen Graph

As for the Learning Session protocol, we consider the Petersen graph for the subnet routing topology as

a form of "lower" bound for the analysis of the Collector protocol data plane burden (this was motivated

previously in Section 4.1). The Petersen graph topology is shown in Fig. 4-2, where we assume that all

vertices are active CServ-enabled routers participating as endpoints in the State Measurement Service

Collector protocol (the distinction between access routers and gateway routers is immaterial for the

purposes of this analysis).

Based on the modeling assumptions, each router in the routing core generates periodic Collector

datagrams to exchange with the other nine routers. Paralleling the Learning Session analysis, we

observe that, of these nine periodic exchanges, one-third of them do not traverse any intermediate

routers along their CServ Intranetwork Service path, while the other two-thirds traverse exactly one

intermediate routers on their CServ Intranetwork Service path. This can be seen readily in Fig. 4-7.

Following the derivation and terminology from before, we can conclude that the nfR(R - 1) = 90

aggregate periodic Collector datagram exchanges in the subnet generate 150 units worth of Collector

datagram exchange traffic. By the strong regularity of the topology, the 90 aggregate periodic Collector

datagram exchanges are distributed uniformly over the 30 logical directed links. Thus, each logical

directed link bears the burden of 5 traffic units worth of the aggregate periodic Collector datagram

exchanges.

We use the same notation as in Section 4.2.8.1 with the substitution of "Collector datagram exchange

traffic units" for "Learning Session traffic units." Namely, we define the average number of Collector

datagram exchange traffic units per logical directed link in the Petersen graph topology as CPetersen,

where we have that CPetersen = 5. As before, this is actually an exact value, not an average, in the case

of the Petersen subnet routing core topology. The "average" nomenclature is useful for the analysis of

the "upper" bound case next. We also define the average data rate of aggregate Collector datagram

exchange traffic carried per logical directed link in the Petersen graph topology as Cr etersen (this is also

213

an exact value, not an average, in the case of the Petersen graph topology). For the purpose of analysis,

we assume a uniform size for all Collector datagrams. This is a very reasonable assumption as all

Collector datagrams are dummy active probes generated specifically for the purpose of the protocol,

and thus the generation process can employ a standard dummy CServ message payload such that the

datagrams are all the same size. Using similar terminology as before, we define the size of the CServ

Collector datagram as b, [bits/datagram]. With the Collector protocol rate Ac [Collector

datagrams/second], we further define the Collector protocol data rate as Rc [bits/second], where we

have that:

Rc = Ac x bc.

Employ the Collector protocol default (and maximum) of one Collector datagram exchange per learning

interval r, we have that Ac = 1/ T (as explained in Section 4.3.4). With this, we can further specify the

Collector protocol data rate as follows:

Rc = b. (4.11)
'r

With these definitions, we have that the aggregate Collector protocol data rate that traverses each

logical directed link in a Petersen graph routing core topology is:

Cr-ecersen = CPetersen x Rc

= CPetersen x b (4.12)

Sbc

T

To get a sense of the aggregate traffic burden of the protocol, we need reasonable values for bc and T.

Considering the analysis of Chapter 3 and the very small difference between the State Measurement

Service header overhead for Learning Session datagrams versus Collector datagrams (a difference of

only 24 octets or 192 bits) relative to the CServ message payload size of one kilobyte or 8,000 bits, we

continue to use an approximate value of bc = bs = 12,000 [bits]. And as before, the choice of -r can be

214

viewed as the granularity at which the protocol can generate new CServ performance metric estimates

and react to changes in the subnet state. Refer to the discussion of the subnet's "coherence time" in

Section 4.2.8.1 for more consideration. For the purpose of analysis and comparison with the previous

results, we continue to use -r = 1 [second]. With these parameter choices and the expression derived in

Eq. (4.12), we have:

Cretersen - x 12,000 60 kbps.
1

This is precisely a reduction of two orders of magnitude in the state measurement service protocol

transmission burden compared to Cfetersen using the same parameters, a difference which results from

the two orders of magnitude difference in the Collector protocol rate compared to the Learning Session

rate. This is a much more reasonable state measurement protocol transmission burden for subnet's with

less transmission capacity, such as edge wireless subnets operating in challenged environments. We

note that the transmission burden of the Collector protocol can be reduced even further by reducing the

Collector protocol rate (exchanging Collector datagrams only every few learning intervals) or increasing

the learning interval in more stable subnets.

As before, we can also consider the data plane switching burden of the Collector protocol, or the

aggregate rate of Collector datagram traffic that each router in the subnet routing core topology must

switch to maintain the exchange of the Collectors. Using the same argument as presented in Section

4.2.8.1, a total of 15 traffic units of Collector protocol traffic need to be switched by any given router in

the Petersen graph routing core topology. With the same Collector protocol data rate from above, we

conclude that the switching throughput for each router in the subnet routing core must be 180 kbps just

to support the State Measurement Service Collector protocol. Considering the "10% rule" of Section

4.2.8.1, this implies that the subnet routing core would require active CServ-enabled routers with

switching throughputs of at least 1.8 Mbps (a very reasonable switching capacity for modern routers,

considering some typical industry performance values [76]), a reduction of two orders of magnitude

compared to the Learning Session protocol case. However, in the case of the Collector protocol, the

State Measurement Service does not subsume real CServ datagram traffic. From that point of view, the

"10% rule" should be reduced (implying the need for larger switching capacity) since the headroom now

must accommodate both best effort traffic and the live CServ datagrams with critical messages. The

215

minimal state measurement service transmission and switching burden of the Collector protocol leaves

plenty of opportunity for dimensioning both the subnet's transmission and switching facilities to allow

for significant CServ traffic and best effort traffic rates.

4.3.7.2 Collector Protocol Burden: The Line Network Graph

As with the Learning Session protocol data plane transmission and switching burden analysis, we use the

line network graph as an "upper" bound to contrast the optimistic analysis of the Petersen graph as the

subnet's routing core topology. The subnet line network topology is depicted in Fig. 4-1, where we

assume that all vertices are active CServ-enabled routers participating as endpoints in the State

Measurement Service Collector protocol (again, the distinction between access routers and gateway

routers is immaterial for the purposes of this analysis). Further description of the basic properties of the

graph was presented in Section 4.2.8.2.

Our modeling assumptions imply that each router in the routing core generates periodic Collector

datagrams to exchange with the other nine routers in the subnet routing core topology. If we

considering the paths of the nR (R - 1) = 90 aggregate periodic Collector datagram exchanges in the

subnet, we see the same distribution as with the Learning Session protocol analysis as illustrated in Fig.

4-8. The logical directed links between Router 5 and Router 6 bear the heaviest transmission burden in

terms of aggregate Collector datagram exchange traffic, each carrying Collector datagrams from a total

of 25 exchanges. Just as in the Learning Session analysis, the average Collector datagram exchange

traverses 11/3 hops and thus generates 11/3 traffic units worth of transmission burden on the line

graph routing core topology.

Mimicking the nomenclature of Section 4.2.8.2, we define the average number of Collector datagram

exchange traffic units per logical directed link in the line network graph topology as CLine, and we have

that CLine = 55/3 from before. Considering, additionally, the worst-case logical directed links in the

topology (the links connecting Router 5 and Router 6), we define the maximum number of Collector

datagram exchange traffic units per logical directed link in the line network graph topology as

cLine-max. From Section 4.2.8.2, we also know that CLine-max = 25. We denote the equivalent

average and maximum Collector protocol data rate for the aggregate Collector datagram exchange

216

traffic carried per logical directed link in the line network graph topology as Cfrine and CLine-max,

respectively.

Following the analyses of Sections 4.2.8.2 and 4.3.7.1, we have the following expressions for CLine and

Crfine-max.

= CLine x Rc

= cLine x (4.13)
T

55bc

3T

CIine-max = CLine-max xRc

= CLine-max x
(1

T

25bc

T

With these results and the same parameter choices (and approximate Collector datagram size) as used

in Section 4.3.7.1, we have:

55 x 12,000
Cine = x1 = 220 kbps;_rC 3 x 1

Cine-max - 25 x 12,000
Cice-a = = 300 kbps.1

Again, we observe a reduction in the data plane transmission burden by two orders of magnitude

compared to the Learning Session protocol used for the same subnet routing core topology. This

difference is a result of the two orders of magnitude reduction in the Collector protocol rate compared

to the Learning Session rate, all other parameters equal. The worst-case links have transmission burdens

under 1 Mbps, indicating the Collector protocol is much better suited to implement the State

Measurement Service for challenged subnets with minimal transmission capacity and uncontrollable

routing core topologies (for example, an infrastructureless multi-hop wireless network). As discussed at

the end of Section 4.3.7.1, there are several opportunities to reduce the data plane transmission burden

217

further using a more minimalist version of the Collector protocol which employs less frequent Collector

datagram exchanges between CServ Intranetwork Service endpoints.

Finally, we consider the data plane switching burden of the Collector protocol for the line network graph

routing core topology, our "upper" bound topology. Following the analysis of Section 4.2.8.2, we focus

on the worst-case routers for this discussion, specifically Router 5 and Router 6 in Fig. 4-8. For each of

these routers, there are a total of 49 traffic units of Collector datagram exchange traffic that must be

switched to maintain the periodic subnet routing core exchanges. With the same parameters as before,

we use the Collector protocol data rate to discover that the switching throughput for these worst-case

active CServ-enabled routers must be 588 kbps to support only the Collector protocol exchanges.

Although this worst-case requires slightly more than three times more switching bandwidth than the

"lower" bound Petersen graph routing core case, this still represents a very reasonable switching

capacity for modern routers even after applying the "10% rule" (which implies that the router switching

throughputs should be at least 5.88 Mbps to allow headroom for the service of best effort traffic). We

note once again, however, that the Collector protocol does not carry live CServ datagram traffic; rather,

it uses active dummy probes exclusively. So the "10% rule" should be adjusted slightly to account for the

shift of the real passive CServ traffic from the Learning Sessions to the transmission and switching

facilities overhead dimensioned by this informal guideline.

4.4 Comparison of State Measurement Protocols

In this section, we summarize the qualitative and quantitative analyses of the two proposed State

Measurement Service protocols from Sections 4.2-4.3 before presenting their suggested use.

The Learning Session protocol was motivated by the desire to learn high-fidelity CServ performance

metrics for CServ Intranetwork Service paths that very closely represent the true experience of a real

internetwork CServ datagram using the CServ Intranetwork Service to traverse a subnet. To do so, we

deploy a fixed-rate session between the CServ Intranetwork Service endpoints, the Entrance and

Departure routers, composed of a mixture of real CServ traffic and active dummy probes in the CServ

traffic class. Capturing the interplay with other Learning Sessions in the subnet, including the associated

congestion loss, critical datagram corruption rate, and queueing delays, these sessions closely estimate

the performance of a real CServ datagram using that particular CServ Intranetwork Service in the future

218

(noting that this requires some level of subnet state coherency, as does most all other aspects of the

CServ architecture). These real CServ datagrams are substituted for active dummy probes in the session

and thus receive the same general performance experience as estimated, while simultaneously helping

to discover any changes in CServ performance metric state for future critical datagrams using the CServ

Intranetwork Service. In Chapter 5, it becomes clear that these accurate CServ performance metric

estimates enable the MC to more frequently satisfy CServ Requests (CSRs) and provide reliable network

service to internetwork CServ transactions.

However, this State Measurement Service design does introduce a feeling of establishing "circuit

switched" paths between the CServ Intranetwork Service endpoints, especially since the

recommendations are to grant priority switching and transmission for CServ datagrams where possible

and to dimension the subnet such that the aggregate Learning Session traffic only accounts for at most

10% of the transmission or switching bandwidth at any routing core link or router. The difference

between the Learning Session approach and circuit switching is that there is no explicit resource

reservation, either for transmission or switching facilities, along the CServ Intranetwork Service paths

(although it is possible that the CServ Intranetwork Service, not the Learning Session protocol, employs

resource reservation for virtual circuits, such as with MPLS). During unprecedented "Black Swan" events,

transient bursts exceeding the Learning Session rate of real critical message traffic on a CServ

Intranetwork Service could affect intersecting Learning Sessions and the subsequent CServ performance

metric estimations since those Learning Sessions are not guaranteed any particular share of the network

resources. Furthermore, and maybe more importantly, is that the relatively high rate Learning Sessions

compared to expected real CServ traffic means that a significant subnet bandwidth is used (although not

reserved) regularly to maintain the State Measurement Service process and prepare for normal influxes

of real critical message transactions. Table 4.1 summarizes the analytic results from Section 4.2.8 on the

data plane burden of Learning Sessions for representative "upper" and "lower" bound core routing

topologies.

At the risk of approximating a circuit switched design, the Learning Session protocol requires relatively

simple processing to maintain the State Measurement Service process. The Entrance Router is required

to do little more than to generate dummy active Learning Session datagram probes to maintain the

required Learning Session rate with its Learning Session protocol peers in the subnet, substituting the

dummy probes with real traversing internetwork CServ datagrams when they arrive. Additionally, the

219

CServ performance state estimators at the Departure Router have simple forms as introduced in Section

4.2.6. Meanwhile, intermediate routers along the CServ Intranetwork Service paths connecting Entrance

and Departure Routers have no protocol responsibilities. The use of the Learning Session protocol is

obscured from these routers, as the Learning Session datagrams are encapsulated in the native protocol

datagrams for CServ Intranetwork Service. From this point of view, subnet routers that are not active

gateways nor access routers providing upstream access for CServ-enabled end hosts do not need to be

upgraded or run CServ-related processes related to the Learning Session protocol. These can be legacy

routers that only understand the routing and forwarding rules for CServ Intranetwork Service (such as

IPv6 routing and forwarding), greatly reducing the implementation costs of the Learning Session

protocol. CServ Intranetwork Service paths can be routed through intermediate routers without CServ-

enabled capabilities, which improves routing core connectivity in subnets that cannot deploy active

CServ-enabled routers universally. The Learning Session design does require some prearrangement of

protocol-related parameters between the active routers participating in the protocol (such as the

Learning Session rate and learning interval, see Section 4.2.5), but these parameters can be synced by

the SC and distributed as part of the CServ association list.

To mitigate the cumbersome data plane transmission and switching burden of the Learning Session

protocol, we introduced an alternative approach to the State Measurement Service, the Collector

protocoL. -his approach substitutes CServ-specific performance tracking responsibilities at ail routers in

the set of CServ Intranetwork Service paths for the relatively high rate sessions that shoulder the

workload in the Learning Session protocol. Each router that participates in CServ Intranetwork Service is

required to run CServ processes related to the Collector protocol, estimating a set of performance

metrics related to the reliability and delay incurred by traversing the router. To do so, these routers

leverage whatever traffic they have access to without the introduction of any significant set of passive

probes, meaning that the performance estimates are primarily generated from best effort traffic.

Infrequent Collector datagrams are exchanged between CServ Intranetwork Service endpoints (i.e.

Entrance and Departure Routers) to aggregate the performance estimates along the CServ Intranetwork

Service paths logically connecting the endpoints. This protocol also reduces the parameter

dimensionality under the control of the subnet administrator. The only significant parameter of the

protocol is the learning interval, which does not even require strict synchronization between protocol

participants. The Collector protocol can perform even if constituent routers in the CServ Intranetwork

Service path use different learning interval lengths to generate new performance estimates. Although

220

we choose a default for the frequency of Collector datagram exchanges between CServ Intranetwork

Service endpoints, the rate can be reduced if necessary and also does not need to be strictly agreed

upon by all participants.

This protocol very nearly eliminates the addition of data plane transmission and switching overhead for

the purpose of the State Measurement Service (see the analytic results from Section 4.3.7 summarized

in Table 4.1), but it does so with several compromises. First and foremost, the estimated performance at

each router does not represent the ground truth for the experience of CServ datagrams. Since CServ

datagrams receive priority queueing and switching when available, the statistics computed from the

nominal best effort traffic represents a very conservative performance estimate. In general, the

experience of a real CServ datagram traversing the router will outperform the reported reliability and

delay metrics using this approach. As we see in Chapter 5, these loose resulting CServ performance

metric estimates from the Collector protocol make it more challenging for the MC to satisfy the service

demands of "tight" CSRs riding the edge of the network capabilities, leading to a higher likelihood of

internetwork service denial.

Additionally, the Collector protocol approach requires much more complex subnet router processing.

The responsibilities specific to the Entrance Router are not much more significant than in the Learning

Session case, but the Departure Router must generate intermediate calculations and perform

comparisons over multiple Collector datagrams to determine a final CServ performance metric estimate

when diversity routing is leveraged for the CServ Intranetwork Service. More importantly, all routers

participating in the Collector protocol must maintain CServ-specific running estimates of performance

over all arriving and traversing datagrams, refreshing these estimates each learning interval. This

requires that all routers participating in the Collector protocol be upgraded with a CSPU for CServ-

proprietary processes. This implies that the deployment of the Collector protocol is a more expensive

endeavor than that of the Learning Session protocol. If a subnet administrator cannot afford to upgrade

all routers in the routing core, this impacts the richness of the CServ Intranetwork Service connectivity

graph structure and the opportunities for robust traffic engineering.

The preceding discussion is summarized in Table 4.2. The recommendation for the subnet routing core is

to use the Learning Session protocol where the subnet data plane capabilities render this feasible, such

as for a subnet with a robust fiber optic backbone. The precise CServ datagram performance estimation

221

makes this the more attractive option. However, for subnets that cannot dimension the data plane

facilities to accommodate the Learning Session burden or operate over physical transmission modalities

in situations that restrict their physical capabilities (such as edge wireless or satellite subnets), the

Collector protocol can be deployed as an alternative approach. The loss of CServ performance metric

estimation fidelity is not ideal, but this protocol ensures that the State Measurement Service does not

impede subnet operation or the simultaneous support of best effort traffic.

As one more alternative option, it is possible to implement the Learning Session protocol with payload-

less active probe datagrams in the Learning Session. By removing the default one kilobyte dummy CServ

message payload from these probes, the Learning Session rate is reduced by a multiplicative factor of

approximately 1/3 (the CServ message payload cannot be removed from any passive real CServ

datagrams that contribute to the Learning Session). This option may help bridge the gap for subnets that

cannot handle the transmission and switching data plane burden of the Learning Session protocol.

However, the subnet administrator must bear in mind that this approach impacts the integrity of the

CServ performance metric estimates; the shorter CServ datagrams in the Learning Session means that

there is less tolerance for the influx of real passive CServ datagram traffic, and the shorter datagrams

experience and estimate reduced transmission delay and possibly different loss statistics. It may be an

alluring option to implement the Learning Session protocol with payload-less dummy probe datagrams,

but the operator should also consider the Collector protocol as a practical alternative. Future work could

focus on the comparative estimation performance of these approaches in real subnet deployments or

simulations to better characterize this trade-off.

The opportunity exists to consider the hybrid adoption of both Learning Session and Collector protocols

within one subnet; the designs of these protocols do not preclude the simultaneous use of the other.

The subnet administrator then has the flexibility to deploy a Learning Session or Collector datagram

exchange selectively for each CServ Intranetwork Service supported by the subnet. However, this quickly

increases the administration and management complexity of the State Measurement Service. For

example, consider Fig. 4-12 which illustrates the input processing alone for an arriving CServ datagram

at a router in a subnet implementing a hybrid of the two State Measurement Services. This processing

path is significantly streamlined if either the Learning Session or Collector protocol branches are

removed. This hybrid opportunity is not further explored in this dissertation, but it could be considered

in the future if this tactic seems most appropriate for a particular subnet.

222

Table 4.1: This table compares the data plane burden of the two proposed State Measurement Service

protocols, the Learning Session protocol and the Collector protocol, for representative "lower" and

"upper" bound subnet core routing topologies. All values are in kilobits per second (kbps).

Subnet Routing Date Plane Learning Session Collector Protocol
Core Topology Burden Protocol
"Lower" Bound: Per-link Transmission 6000 60

Petersen Graph Per-router Switching 18000 180

Average Link 22000 220
Transmission

"Upper" Bound: Worst-case Link 30000 300
Line Network Graph Transmission

Worst-case Router 58800 588
Switching

Table 4.2: This table summarizes the qualitative comparison between

Measurement Service protocols, the Learning Session protocol and the

categories where the characterization of one protocol is clearly preferred

corresponding protocol characterization is coded red.

the two proposed State

Collector protocol. Those

is coded green, while the

223

I

Learning Session Comparison Category Collector
Protocol Protocol

Higher Data Plane Burden Lower

CServ Performance Metric Estimation
Higher AcuayLowerAccuracy

CServ Traffic Used for Estimation CServ + Best Effort

Approx. up to Robustness Against Real CServ Approx. up to

Learning Session Message Fluctuations nominal Best

traffic rates Effort traffic rates

Approx. same Entrance Router Responsibilities Approx. same

Slightly fewer Departure Router Responsibilities Slightly more

Additional Intermediate Some
Router Responsibilities

Lower CServ Router Complexity Higher

Less pervasive Required CServ Router More pervasive
Deployment Density

Required Parameter Synchronization Not required

Start: Datagram
arrives successfully

CServ No Best effort datagram
datagram? processing

Yes

CServ datagram processing

Update fields in State Is this
Collector Measurement Service Intranetwork Yes

datagram? collector header using arrival Service path
state estimates destination?

No N

Update fields in State
Measurement Service
collector header using

traversal state estimates

Is this Use difference between

IntranetworkLearning Yes current time and State
nrnethrSession Measurement Service header

estination datagram? timestamp to update delay
estintion?<j ~oestimates

No N0

Remove CServ Intranetwork Increment successfully
Service header & State received datagram count for

Measurement Service header {Entrance Router, Departure
(if applicable) Router} pair

sthis
YU

Internetwork '" Deliver datagram to CServ
Service path Collector process endpoint

estination

It No

Apply rules for CServ Apply CServ forwarding rules

Intranetwork Service using next hop address in End of input processing
forwarding CServ Internetwork Service path

path or Destination Address

Enqueue in priority CServ End of input processing
input buffer of arriving path

interface for service

Fig. 4-12: This flowchart depicts the notional input processing at an active CServ-enabled router in a

subnet that has deployed a hybrid State Measurement Service using both the Learning Session protocol

and the Collector protocol.

224

4.5 State Measurement Service Outside the Routing Core

The CServ performance metric characterization of the subnet does not end with the routing core that

interconnects the active CServ-enabled access and gateway routers. An end-to-end internetwork path

between a CServ-enabled source host and a CServ-enabled destination host requires additional hops in

the context of the general network model put forth in Chapter 2. Before the critical message transaction

reaches the source subnet's routing core, it must traverse the access network infrastructure that

connects the host to the upstream access router. An internetwork CServ datagram later leaves the

confines of the source subnet and traverses an external active gateway router to active gateway router

hop which connects the adjacent subnets. And when the internetwork CServ datagram finally reaches

the destination subnet in the CServ Internetwork Service path, it will traverse the downstream hop from

the access router to the destination CServ-enabled host. The CServ performance metric estimation of

these hops was not covered in our previous discussion of the State Measurement Service protocols,

where the focus has been solely on the subnet routing core. We complete the estimation of all hops in

the end-to-end CServ Internetwork Service path by addressing these two additional domains for the

State Measurement Service:

1. external gateway-to-gateway CServ performance metrics estimation;

2. and upstream and downstream access network CServ performance metrics estimation.

4.5.1 External Gateway-to-Gateway Performance Estimation

Our coverage of CServ performance metric estimation using the State Measurement Service in the

subnet routing core includes the estimation of internal gateway router to gateway router performance,

or the performance of CServ Intranetwork Service connecting two active gateway routers within the

same subnet domain. According to the network model presented in Chapter 2, the purpose of the

gateway router is to provide connection to a neighboring subnet, interconnecting their respective

routing cores. We refer to the interconnection between gateway routers in neighboring subnets as a

subnet peering connection, or an external gateway-to-gateway connection in the context of this chapter.

In the terminology of Border Gateway Protocol [121, the status quo best effort protocol for

interconnecting subnet domains in an IP network, these are the edge router pairs that would exchange

route advertisements via External BGP (eBGP).

225

Many external gateway-to-gateway pairs are directly connected without any lower-layer switching

technologies in the link span, although sometimes switching fabrics are used (such as at large exchange

points of presence). Sometimes peering gateway router pairs are even implemented as virtual routers

on the same machine, where the interconnection between them is on-rack or even in software (note

that, based on the addressing discussion of Chapter 3, these two virtual routers would have their own

hierarchical addresses that reflect their membership to separate subnet domains in the CServ

architecture). The physical connection between peering gateway routers is frequently a high-speed

optical line or other high-speed wired transmission substrate. If the gateway pair is implemented

virtually, the interconnection is likely a high-speed switching fabric or high-throughput software process.

For these reasons, the interconnection between peering gateways likely presents relatively stable and

reliable behavior in terms of the CServ performance metrics. The primary source of variability is the

queueing of datagrams while they await access to the output interface that connects to the external

(and possibly virtual) gateway router peer.

The neighboring subnet administrators may choose to implement either the Learning Session or

Collector protocol between their active gateway peering points depending on their joint capabilities,

both of which are illustrated in Fig. 4-13. Both peering subnet operators must agree on the State

Measurement Service protocol, where we designate the Learning Session protocol as the default that

both must be capable of deploying. With high-bandwidth interconnections, we further suggest the use

of the Learning Session protocol as the State Measurement Service for external gateway-to-gateway

connections. This suggestion is based on the discussion of Section 4.4 which identifies the Learning

Session protocol as the high-fidelity option for estimating CServ performance metrics. Although a

subnet's active gateway router may peer with multiple active gateway routers in a neighboring subnet

or active gateway routers in multiple neighboring subnets, the set of these external gateway-to-gateway

connections is usually not in any danger of scaling uncontrollably and the interconnection topology is

normally point-to-point. This means that each directed interconnection link would generally only need

to bear the transmission burden of one Learning Session, which is unlikely to place much strain on the

link's transmission bandwidth. And with a limited set of peers, the additional data plane switching

burden of external Learning Sessions should not overwhelm the bandwidth of the active gateway

router's switching bandwidth. That being said, should the implementation of the Learning Session

protocol with external gateway peers overtax the router when combined with the switching burden of

internal Learning Sessions, the Collector protocol can serve as an alternative State Measurement Service

226

option. In either case, as with subnet routing core CServ performance metric estimation, it is the role of

the Destination Router in the peering pair (the destination or the Learning Session or the exchanged

Collector datagram) to generate the finalized CServ performance estimates and report relevant state

updates to its respective SC.

N
/7 ~7//

CSKC JsXA CSPU

XS

(a) Learning Session protocol

Collector Collector

CS~flCSPU

(b) Collector protocol

Fig. 4-13: Either the (a) Learning Session protocol or (b) Collector protocol may be implemented as the

State Measurement Service between external active gateway router peers based on the joint

capabilities of the neighboring subnets.

227

I

4.5.2 Access Network Performance Estimation

Although our discussion of the estimation of CServ performance metrics in the subnet routing core

includes characterizing the CServ Intranetwork Service paths from active access routers to other active

access routers and active gateway routers, it did not comprise the access network hop between the

CServ-enabled end host and the active access router itself. As introduced in the network model of

Chapter 2, the access network is the local area interconnection between the end host devices and the

upstream access router that provides access to the subnet routing core. The technology and topology of

access networks may take many forms, from optical rings and trees to an RF base station directly

connected to each wireless host device. Additionally, the local infrastructure may include lower-layer

devices, such as active switches (such as with Ethernet) or passive splitters and combiners (such as in

Passive Optical Networks). Following the coverage of Section 4.5.1, the access network is the last

component of CServ Internetwork Service path needed to complete the end-to-end picture.

In deciding upon the State Measurement Service approach suited to the access network, there are three

primary considerations that drive the result. First, access networks may connect tens to hundreds of

host machines to the routing core via the upstream access router, making scaling considerations

essential to the deployment of the State Measurement Service protocol. Recall the analysis of the

transmission burden on the subnet routing core using the Learning Session protocol from Section 4.2.8.

Even with only ten active devices in the routing core and a favorable Petersen graph topology that

efficiently distributes the load over all links, there was still a significant transmission burden on the

communication edges. If we extrapolate and scale this result to an access network with hundreds of

host devices and likely a less-efficient interconnection topology (for example, links close to the access

router root of a tree topology would need to bear many Learning Sessions compared to the links closer

to the leaves), it is clear that the Learning Session protocol could impose a restrictive burden on the

access network's transmission capabilities. This leads to the second consideration, which is that access

networks generally have much less transmission bandwidth than the routing core. Typical access rates

for standard access technologies, such as Ethernet, are on the order of hundreds of megabits per second

to gigabits per second. However, if these transmission capabilities are shared over hundreds of host

devices, we can reduce the bandwidth by multiple orders of magnitude to find the fair-share fraction.

From Section 4.2.8, we know that Learning Sessions with reasonable protocol parameters can easily

exceed one megabit per second, already consuming much of the share allotted to the host on the more

228

conservative side of the access technology rate range. Edge wireless access networks typically have even

less transmission bandwidth than wired technologies like Ethernet. The third consideration is that,

because of the possibly large number of CServ-enabled hosts connected to access networks, we do not

want separate CServ performance metric estimates for each pairwise connection between the access

router and an individual host. This is a scalability concern for the network as a whole. Even though the

total estimated state would only scale linearly with the number of host devices connected to access

networks, this could rapidly exceed the total state needed to characterize the CServ Intranetwork

Services of the network's subnets. Consider that 90 sets of CServ performance metrics are estimated in a

routing core with ten active routers. It would take only 45 CServ-enabled hosts in a subnet to generate

the same number CServ performance metric estimates if the design learned the upstream and

downstream performance for each host individually. Extending this conclusion to all CServ-enabled

hosts in all subnets, the access network CServ performance estimates would quickly dominate the total

state the MC must maintain and access.

As a result of the above considerations, we make the following design choices for the State

Measurement Service for access networks:

" the Collector protocol is used for the State Measurement Service in access networks with CServ-

enabled hosts;

* but the protocol is modified such that CServ performance metric estimates are summarized for

upstream and downstream service.

As we have seen, the operation of the Collector protocol generates a minimal amount of protocol traffic,

making it well-suited for the limited transmission capacity of access networks. We need to modify the

implementation of the Collector protocol, however, because the operation as described for the subnet

routing core would generate a pair of upstream and downstream CServ performance metric estimates

for each CServ-enabled host in the access network. Instead, we describe how the protocol can be

adapted such that one summarized pair of performance estimates are generated per active access

router: the upstream CServ performance metrics and the downstream CServ performance metrics.

The access router is the convergence point for all active CServ-enabled hosts in its attached access

network, and thus it is responsible for the generation and reporting of both the upstream and

229

downstream CServ performance metric estimates. The host machines participate in the modified

Collector protocol, but they do not report downstream CServ performance metric estimates directly to

the SC. The modified Collector protocol for access networks seeks the worst-case access network

connection and uses this to represent the CServ performance metrics of the access network. This

characterization is critical to the ability of the MC to compose CServ Internetwork Service for the CServ-

enabled hosts in the access network, and thus it is considered in more detail after we provide an

overview of the protocol operation.

We assume that the active access router has a set of addresses for the CServ-enabled hosts in its access

network. During each learning interval, the access router generates and transmits up to five Collector

datagrams downstream to its access network. Two of the Collector datagrams are sent to the hosts that

are currently characterized as the "reliability worst-case" hosts, one for downstream performance and

one for upstream performance. If one host represents the worst-case for both directions, only one

Collector datagram is required. The next two Collector datagrams are sent to the hosts that are currently

characterized as the "delay worst-case" hosts, one for downstream performance and one for upstream

performance. Again, if one host represents the worst-case for both directions, only one Collector

datagram is required. Furthermore, if one of the worst-case hosts is already covered by the reliability

worst-case, a second Collector datagram for that host is not needed. The characterization of "delay" in

terms of the two CServ performance metric statistics, mean delay and delay variance, is the same as

given by Eq. (4.9). The final (and, at a maximum, fifth) Collector datagram is transmitted to a random

host in the set of CServ-enabled hosts in the access network, less the up to four worst-case hosts already

being probed with Collector datagrams. This host should be chosen independently and uniformly over

the set described during each new learning interval. As with the normal Collector protocol, these

Collector datagrams are enqueued in the input buffers of random input interfaces of the access router

and updated with the appropriate access router traversal statistics. As the Collectors are transmitted to

and successfully received by the appropriate active CServ-enabled hosts in the access network, the

Transmission and Propagation Delay is calculated and the datagrams are updated with the necessary

Last Hop Transmission Reliability estimates at the receiving endpoints to complete the downstream

performance estimates.

Active CServ-enabled hosts in the access network do not actively generate and transmit Collector

datagrams during each learning interval. Only when a host successfully receives a Collector datagram

230

from the upstream access router does it generate and transmit a return Collector datagram to

characterize the upstream access link performance metrics. Specifically, after finalizing the downstream

performance estimates, it creates a new return Collector datagram with the downstream performance

estimates encapsulated in the datagram as the CServ message payload; this is what distinguishes a

return Collector datagram from a typical Collector datagram. The return Collector datagram is then

enqueued for priority transmission by the CServ-enabled host and updated with the current estimates of

the "traversal" performance metrics. Generally, there should not be much buffer waiting time for

transmission unless the CServ-enabled host is currently transmitting a real CServ datagram (the host's

transmission of a real CServ transaction should always be prioritized over a return Collector datagram).

These "traversal" performance metric estimates for the CServ-enabled host primarily capture channel

access waiting times (and possibly ARQ protocol delays) if the access network technology uses a shared

communication substrate.

When the return Collector datagram arrives successfully at the access router from the access network

(and after being updated with the appropriate delay and reliability estimates for the access network

hop), the access network Collector process at the access router's CSPU extracts the two sets of

estimates - the downstream estimates from the payload and the upstream estimates from the State

Measurement Service header for Collector datagrams. These two sets of collected performance

estimates are used to update the downstream CServ performance metric estimates and upstream CServ

performance metric estimates, respectively. If the return Collector datagram is from one of the worst-

case hosts (either the reliability worst-cases or the delay worst-cases), the current performance metric

estimates are updated at the access router CSPU process if the change (either positive or negative) is

different enough from the currently stored estimate. To avoid instability, the subnet administrator must

choose an appropriate threshold for a metric update, usually as some fixed increment. Otherwise if the

return Collector datagram is from a randomly-probed host in the access network, it is only used to

update the upstream or downstream performance estimates if it becomes a new worst-case. In other

words, it takes over as the new reliability and/or delay worst-case if the estimated upstream or

downstream reliability or delay estimates are worse than the currently stored worst-case estimates by

the required threshold. In this way, the modified Collector protocol probes for, and tracks, the

performance of the worst-case hosts in the access network.

231

This modified Collector protocol for access networks transmits up to five Collector datagrams in both

the downstream and upstream directions during each learning interval. Using the numbers for analysis

from Section 4.3.7, this requires at most 60 kbps in the upstream and downstream directions for the

State Measurement Service protocol. This represents transmission bandwidth savings over the burden

of the standard implementation of the Collector protocol as long as there are more than five active

CServ-enabled hosts in the access network. As with the standard Collector protocol, the access network

implementation can reduce the transmission frequency of Collector datagrams to every few learning

intervals to further reduce the overhead burden if the performance estimates are relatively stable. This

avoids frequently probing an access network with no changes in CServ performance metric estimates.

Furthermore, the end result of the modified protocol characterizes the CServ performance metric

estimates for the access network in terms of only two sets of metrics, the downstream CServ

performance metrics and the upstream CServ performance metrics, rather than with a number of sets

that scales with the number of active CServ-enabled devices in the access network. These savings come

at the expense of slightly more complicated processing at the active access router's CSPU and the worst-

case characterization of the access network.

The summarization of upstream and downstream performance into two sets of CServ performance

metrics carries the danger that it sacrifices detailed accuracy for the purpose of a low-overhead

protocol. The proposed modification to the Collector protocol conservatively searches for a

representative worst case among the CServ-enabled hosts connected to the access network and uses

the connection to this host to characterize the upstream and/or downstream CServ performance

metrics for all hosts in the access network. Although this avoids the use of overly optimistic performance

metrics that could lead to misrepresentation of CServ Internetwork Service performance guarantees,

this worst-case characterization can paint a pessimistic picture of the access network and potentially

challenge the ability of the CServ architecture to discover satisfactory CServ Internetwork Services.

As an example of this, a wireless access network would likely be characterized by the upstream and

downstream performance of the device that is furthest from or that has the worst RF channel

connection to the access router. Although the difference in delay for this device compared to a device

that is closer to the access router may not be substantial compared to the delay of the CServ

Internetwork Service path, the datagram transmission loss rate may vary wildly between them. It is

worth noting that the use of a well-designed ARQ retransmission algorithm at the data link or media

232

access control layer should stabilize the reliability between the wireless devices at the expense of

increasing the mean delay and delay variability of the hosts. The use of ARQ techniques at the data link

or media access control layers is common practice for many wireless access network protocols, such as

Wi-Fi [77].

With that example in mind, access networks with CServ-enabled hosts should be designed such that the

performance is roughly equalized over all CServ-enabled devices. Although this may be a challenge for

some specific access network cases, it should be feasible for most. The general guideline is that CServ-

enabled hosts should have favorable connections to the access router such that the access network's

estimated upstream and downstream CServ performance metrics are amenable to the successful

composition of CServ Internetwork Service paths. This implies that the set of CServ-capable hosts should

be "network close" to the access router, increasing the reliability and minimizing the delay, and that any

given access router should not be oversubscribed by many CServ-enabled devices. Ideally, an access

network providing connection for CServ-enabled hosts should have only a handful of devices connected

directly or near directly to the access router without any non-essential (non-active) hosts competing for

the access network resources. This access network design and deployment for CServ-enabled devices is

critical since an access network hop is part of every valid CServ Internetwork Service path. This is also

why multihoming CServ-enabled hosts to multiple access networks (or, better, multiple access networks

in different subnets) where possible is strongly recommended. Otherwise, the upstream active access

router is the first opportunity for path divergence, and thus the access network hop is the common link

between CServ Internetwork Service paths even when internetwork path diversity is employed by the

CServ Internetwork Service (see Chapter 5).

As a final note, the need for all active access routers to implement a version of the Collector protocol for

access networks may influence the subnet administrator's choice between deploying the Learning

Session or Collector protocol as the State Measurement Service in the routing core. In a routing core

with a large number of active access routers compared to active gateway routers and strong

connectivity, it may be more resource and cost efficient to rely on the Collector protocol as the active

access routers are already estimating and tracking their detailed traversal performance metrics.

233

4.6 CServ Performance Metrics Reporting Responsibilities

Thus far we have focused on the techniques used to learn the performance of CServ Intranetwork

Service paths, as well as the external performance between active gateway routers and the upstream

and downstream performance of access networks with CServ-enabled endpoints. As introduced in

Chapter 2, the purpose of learning how these services perform is to enable the composition of CServ

Internetwork Services that satisfy the CServ transaction performance demands of CServ-enable hosts

without subnets needing to disclose specific details about their internal topology and state. The State

Measurement Service provides the least-invasive way to describe the performance offered by subnet

CServ Intranetwork Services, abstracting away the routing protocols, the forwarding methodologies, the

traffic load, the subnet topology and capabilities, and the composition of the paths connecting the

external gateway interfaces. However, in order to leverage the output of the State Measurement

Service (see Chapter 5), the CServ performance estimates need to be reported to the CServ architecture

control hierarchy, specifically the subnet's own SC and the logically-centralized global level MC. We

discuss this final component of the state learning protocols in this section, highlighting the set of

estimated CServ performance metrics that needs to be reported locally to the SC and the subset that

needs to be relayed from the SC to the MC.

We gin wihLI a UIsLUssIUn U Lilt LUIIUILIUI Udieir whIILF riew CServ performance estimates need to be

reported to the control hierarchy. Intuitively, reporting updates every learning interval, particularly if

the new estimates are redundant (essentially the same as previously reported values), could overwhelm

the off-band control channel and the SC and MC with state updates. Both the Learning Session protocol

and the Collector protocol have the capability to generate new CServ performance estimates each

learning interval; the Learning Session protocol by definition has the Departure Router endpoints

generate new estimates each learning interval, and the Collector protocol transmits a Collector

datagram exchange over each CServ Intranetwork Service (or access network) up to once a learning

interval and thus can generate new CServ Intranetwork performance estimates with the rate of up to

once per interval.

However, the Departure Routers for the CServ Intranetwork Services (or Departure Routers for an

external gateway-to-gateway peering connection, or the active access routers) do not report each

generated set of CServ performance metric estimates. Rather, these devices track the last reported

234

values and only report and update that set when the new estimated set is considered different enough

from the previously reported set. We do not specify what must be considered "different enough" in this

dissertation. This is a decision that can be made by each subnet administrator depending on the relative

state stability of their subnet. In general, though, this should be characterized as some deviation in any

of the three metrics (reliability, mean delay, or delay variance) by some absolute increment or by some

fractional amount from the last reported value. If one estimated metric value meets the reporting

criterion, the whole updated set of metrics for that particular CServ performance estimate purview

should be reported (and the last reported values updated). These updates are transmitted on the off-

band control channel to the local logically-centralized SC, which in turn updates its database of CServ

performance estimates for the subnet domain appropriately.

Additionally, the routers should generate updates to transmit to the logically-centralized local SC as a

keep-alive mechanism if the estimates of CServ performance metrics are stationary and do not require

updates based on changing state. This allows the SC to differentiate between an active router in the

subnet that is estimating stationary CServ performance metrics versus an active router that has gone

offline or stopped functioning properly. These keep-alive updates can be relatively simple messages

transmitted on the control channel. The SC should periodically purge state reported by active router if it

has not received a CServ performance metric update or, alternatively, a keep-alive message within the

appropriate time-to-live period. This keep-alive or time-to-live period does not need to be the same for

all subnets. In subnets with relatively stable topologies and communication substrates (such as a subnet

with a fiber optic routing core), this keep-alive interval can be increased compared to a subnet with

frequent state changes (such as an edge wireless subnet). In these less-stable subnets, the keep-alive

interval should be on the order of the subnet coherency time (the time between impactful subnet state

changes) or, at the very least, on the order of strenuous CSR delay requirements (i.e. one second).

Using our representative subnet routing core topologies (the "lower" bound Petersen graph and the

"upper" bound line graph network), we present a brief analysis of the estimated performance update

rate burden on the control channel. To do so, we define a simplified and unified subnet routing core

logical link model. Namely, we model each directed logical link between routers in the subnet routing

core as an independent and identically-distributed two-state Markov process. Abstractly, we let the two

notional states represent different CServ performance metric sets that capture the contribution of that

logical link (this is a tuple of reliability, mean delay, and delay variance). The specific sets of CServ

235

performance metrics are immaterial for this analysis; we simply assume that if the link transitions form

one state to the other, the change in performance is significant enough to require an update to the

CServ performance metric estimation of any CServ Intranetwork Service that uses that link. Without loss

of generality, we denote the two states for the logical directed link in the model as state "0" and state

"1." Next we define the mean time to a link state change, or the link coherence time, as T. This Markov

process model is depicted in Fig. 4-14.

We define the size of an update message to be bu [bits]. We do not specify the exact format of an off-

band control channel update message (it does not have the same rigid formatting requirements and

restrictions as the internetwork and intranetwork CServ datagram, which traverses the data plane).

However, we know that at a minimum it bears the 128-bit address of the reporting active CServ-enabled

router, the 128-bit address of the Entrance Router for the CServ performance metrics reported (or the

address of the external gateway router peer, or a special address that could be used to represent the

upstream or downstream access network performance), three 64-bit double-precision floating point

numbers for the reliability, mean delay, and delay variance performance estimates, and likely a 64-bit

timestamp and an 8-bit type code describing the type of update (keep-alive, internal gateway-to-

gateway, external gateway-to-gateway, access network upstream or downstream, access router to

gateway router, and others). Together this forms an update message that is a minimum of 520 bits.

Although an authentication mark and some integrity check might be deemed necessary in the future, we

use bu = 520 bits for this first-cut analysis. Lastly, we define several more variables as follows:

* Bgetersen a the average aggregate update data size in bits per state change with the Petersen

graph routing core;

* Bu" = the average aggregate update data size in bits per state change with the Line network

graph routing core;

* BLine-max e the maximum update data size in bits per state change with the Line network

graph routing core.

From the analyses of the "lower" bound Petersen graph subnet routing core (see Sections 4.2.8.1 and

4.3.7.1), we know that when the state of one directed link changes, it affects CPetersen = 5 CServ

Intranetwork Services. This means that CPetersen update messages would be generated and transmitted

on the off-band control channel to the SC reflecting this change. Thus, we have that:

236

BPetersen = CPetersen x bu = 5bu. (4.15)

Similarly from the analyses of the "upper" bound Line network graph subnet routing core (see Sections

4.2.8.2 and 4.3.7.2), we know that when the state of one directed link changes, it affects, on average,

CLine = 55/3 CServ Intranetwork Services and, at most, Cinemax = 25 CServ Intranetwork Services (if

the link that changes state is at the center of the topology). Consequently, the average number of

update messages generated from a link state change is CLine, and the maximum number of update

messages generated from a link state change is CLine-max. Thus, we have the following:

. 55bu
B Line = Line bu 5u

B e n 3 ' (4.16)

Bbine-max = CLine-max x by = 25by.

To complete the analysis of the data rate burden on the off-band control channel, we need to

characterize the rate at which there is a link state change under the model considered. We define the

number of logical directed links in the Petersen graph topology as lPetersen = 30 links, and we define

the number of logical directed links in the Line network graph topology as 1Line = 18 links. We define

the merged logical link process rate (by the independence of the link states in the model) in the

Petersen graph and the line network graph as r/etersen [state changes/second] and r/i"n [state

changes/second], respectively. Similarly, we define the subnet coherence time (or the average time until

the next state change in the subnet) in the Petersen graph and the line network graph as TUetersen

[seconds] and T/ne [seconds], respectively. With the established logical link Markov process model, we

have:

Peersen -Petersen 30
?u - T T TPetersen'

S Line 18 1
ru =- -Line'T T I

We define the average aggregate update data rate transmitted to the SC on the off-band control

channel with the Petersen graph subnet routing core and the line network subnet routing core as

RPetersen [bits/second] and Rhine [bits/second], respectively. Further, we define the maximum

237

aggregate update data rate transmitted to the SC on the off-band control channel with the line network

subnet routing core (under the case where all link state changes are for the two central links in the

topology) as Rhine-max [bits/second]. With the set of expressions from Eqs. (4.15)-(4.17), we have the

following results:

RPetersen = rPetersen x BPetersen .CPetersenb

RLine = ine x B =Line cLinebU (4.18)
T

UL ine U L Tn -a

R ine-max =rine x BLine-max - iLinecLine-maxbu
T

We can also characterize the minimum keep-alive update message data rate in this analysis, where we

assume that each router in the subnet routing core needs to generate at least one update message per

keep-alive interval, at least, to maintain the previously reported state at the SC. To derive the minimum

update rate with keep-alive messages only, we assume that the link state in the subnet routing core

does not change and that all logical directed links are stationary. If the keep-alive update messages use

the same format as the control messages to report updated CServ performance metric state, then each

keep-alive message is bu bits. We note that the aggregate keep-alive update message data rate is

independent of the subnet routing core topology, and we define this value as RK [bits/second]. We

define the time between the required generations of periodic keep-alive messages at each active CServ-

enabled router as TK [seconds]. Using the notation from Section 4.1, the number of active CServ-

enabled routers generating these keep-alive updates in each subnet routing core is nR = 10. Using this

notation, we have the following:

RK=R X bu (4.19)
TK

The results from Eq. (4.18) and Eq. (4.19) are compared in Table 4.3 with the approximate update size

bu = 520 bits, a logical directed link coherence time of T = 1 second, and a periodic keep-alive interval

equal to the link coherence time (i.e. TK = 1 second). Under this logical directed link model, the

aggregate average control channel rate for the reporting of CServ performance metric updates in the

worst-case topology is more than two times that of the representative best-case topology. However,

238

even the average control channel reporting rate is a manageable 171.6 kbps in the worst-case line

network graph topology. And while the maximum aggregate update rate in the worst-case topology

increases to three times that of the Petersen graph core routing topology, this is still a very manageable

234 kbps. The minimum keep-alive rate is a fairly negligible 5 kbps. Since the control channel burden of

the State Measurement Service is low, this shows that the off-band control channel can be easily

designed in a very robust manner with large overhead in most subnet deployments. This analysis of the

learning protocol overhead is encouraging as the CServ architecture requires a highly reliable and

overprovisioned off-band control channel. However, we must bear in mind that this analysis did not

include CServ performance metric updates that would be generated as a result of access network state

changes in the subnet or from state changes between external active gateway router peers.

We conclude this section with a discussion of the scale of the CServ performance metric state that the

SC needs to maintain as it is reported. We have identified three "types" of CServ performance metric

estimates throughout this chapter as we discussed the State Measurement Service protocols. These

types are:

1. CServ Intranetwork Service performance estimates between active routers in the subnet routing

core (including active access routers and active gateway routers);

2. external peering connection performance estimates between active gateway routers;

3. and upstream/downstream CServ performance estimates for an access network.

If we consider a naive tabular storage implementation at the SC where each set of CServ performance

metrics corresponds to a row, we can model each row as a field-by-field representation of the CServ

performance metric update message. Specifically, the row stores the addresses of the two endpoints

characterized by the CServ performance metrics (where a special address code can be used to represent

the upstream and downstream directions for a particular access network), the triplet of estimated CServ

performance metrics (reliability, mean delay, and delay variance), a timestamp indicating either the last

time the estimate was updated or the remaining time to live for the row, and last the 8-bit convenience

type code that represents the type of entry. With this representation, each row requires 520 bits

according to our assessment from earlier in the section. But how many rows do we need the SC to store

and maintain in the table? In the following paragraphs, we model the number of rows required and

describe the scaling behavior.

239

Based on the model from Section 4.1, we have that the set of CServ-enabled routers in the subnet

routing core is NR, where all routers in the set are either active access or active gateway routers.

Specifically, we stated that NR = NR-A U NRG. Although we proceed with this model, recall that should

the routing core contain non-active routers or CServ-enabled core routers that are neither access nor

gateway routers, these routers do not participate as endpoints in the State Measurement Service and do

not report any performance metric estimates. This can clearly reduce the complexity in the storage

requirements at the SC.

The first type of CServ performance metric estimates that are stored at the SC are those that represent

the performance of CServ Intranetwork Services connecting the active subnet routers in NR. Since there

is a CServ performance metric estimate set for each CServ Intranetwork Service and there is a CServ

Intranetwork Service between each pair of unique routers in NR, this type requires a total of nfR(R - 1)

rows in the SC storage table. From this expression, we see that the contribution to the table for this type

of CServ performance metric estimate scales polynomially with the number of active CServ-enabled

routers in the subnet routing core. Rigorously, this contribution scales as O(nR2).

The second type of CServ performance metric estimates that are maintained at the SC are those that

represent the external peering connections between the subnet's active gateway routers and the active

gateway routers in adjacent subnets. As discussed in Section 4.5.1, the subnet is responsible for the

CServ performance estimates of incoming connections - meaning the CServ performance metrics for

CServ datagram transmissions from neighboring subnets that enter the domain of the subnet in

question. For the purpose of an analytical model, we assume that each active gateway router has p 1

peering connections with active gateway routers in adjacent subnets. Thus this type of CServ

performance metric estimates requires a total of pnr-g rows in the SC storage table, and its

contribution scales linearly with the number of active gateway routers in the subnet (or, formally,

0(nr-,)). Note that in the worst-case scenario in terms of required storage, the number of peering

connections per gateway router could be equal to the number of other subnets in the network (as long

as it does not peer with more than one gateway router in any given neighboring subnet).

Finally, the third type of CServ performance metric estimates maintained by the SC are those that

summarize the upstream and downstream performance for access networks connected to active access

routers. In Section 4.5.2, we described that only two sets of estimates are maintained for each access

240

network. For the purpose of this analysis, we assume that each active access router in the subnet has

a > 1 connected access networks. With this assumption, this type of CServ performance metric

estimates requires a total of 2 anr-a rows in the SC storage table, and its contribution scales as

O(nr-a), or linearly with the number of active access routers in the subnet. There is no clear way to

bound the value of a, except to note that it is likely limited by the number of interfaces or the switching

bandwidth of the access router.

In terms of the notation developed so far, the total number of rows in the CServ performance metrics

table at the SC, or w, is given by:

w = nfR(nR - 1) + Pr-g + 2anr-a- (4.20)

If the subnet does not contain any active access routers (and thus, is purely a transit subnet in the CServ

architecture), then nr-g = nR and Eq. (4.20) becomes:

w = nR(nR + P - 1.

We can see that the number of rows in the SC table for CServ performance metrics scales as O(nR 2) in

this case. Alternatively, the subnet could contain the minimum of active gateway routers, or nr-a =

nR - 1 and nr-g = 1 (without at least one active gateway router, this would be an isolated subnet and

have no part in the CServ internetwork architecture). In this case, Eq. (4.20) becomes:

w = nR(nR 2a - 1) + (p - 2a).

Again, the number of rows in the SC table for CServ performance metrics scales as O(nR 2) in this case.

From this we conclude that the size of the table that the SC must store and maintain for CServ

performance metric estimates scales as O(nfR 2), where nR is the number of active CServ-enabled

routers in the subnet routing core.

241

The SC is responsible for reporting all of the row entries in the table, and their respective updates, to the

MC except for those CServ performance metric estimates between pairs of active access routers in NR.

The CServ Intranetwork Services that connect two access routers in the same subnet domain are useful

only for CServ transactions that do not require internetwork service. If a CSR specifies a destination host

in the same subnet as the source host, the SC can resolve the request using the reported CServ

Intranetwork Service performance between the respective active access routers in the subnet since it

does not require any knowledge of performance metrics in other subnets. Therefore, the number of

entries relayed from the SC to the MC is reduced by nr-a(nr-a - 1).

Before moving on, we consider the size of the SC table in bits for some representative numbers. If we

denote the size of the table as Wb [bits], we have that Wb = w x bu based on the transcription of the

update message details into the table. We consider a subnet routing core with nR = 10 active CServ-

enabled routers (such as in our "lower" and "upper" case topologies), with p = 5 external active peers

per active gateway router, and with a = 5 access networks per active access router. If we allow for an

even mixture of active gateway and access routers (nr-g = nr-a = 5), then the SC table that stores

CServ performance metric estimates for the subnet has a total of 165 row entries and requires 85.8 kb

(- 10 kB) of space for storage. This is an easily maintained and indexed table requirement considering

that typical home and office computer memory is frequently on the order of several gigabytes. This

storage requirement grows quickly to 10,650 row entries needing 5.538 Mb (< 1 MB) of space if

nR = 100 under the same conditions, demonstrating the scaling dependency on nR.

242

1/T
IT

1/T

Fig. 4-14: This two-state Markov process is used to model each directed logical link in the subnet core

routing topology, where the two states notionally represent different sets of CServ performance metrics

that affect the performance estimation of the CServ Intranetwork Service paths traversing the link.

Table 4.3: This table describes the aggregate off-band control channel update message rates required to

inform the SC of changes to the CServ Intranetwork Services in the subnet's core routing topology. The

results are based on the Markov process link model illustrated in Fig. 4-14.

Subnet Routing Average Update Maximum Update Minimum Keep-
Core Topology Rate Rate Alive Update Rate
"Lower" Bound: 78 78 5.2
Petersen Graph

"Upper" Bound: 171.6 234 5.2
Line Network Graph 1 2 5

243

4.7 Conclusion

In this chapter, we discussed two possible protocols to implement the State Measurement Service of the

CServ architecture. The protocols were described in detail for use in the subnet routing core, and they

were ultimately compared through both qualitative and quantitative analyses. This development and

comparison produced suggestions for their use based on the capabilities and design of the individual

subnet. Later in the chapter, we discussed the use of these protocols to learn the CServ performance

metrics outside the subnet routing core, including between external active gateway router connections

and within access networks providing access for CServ-enabled hosts.

The State Measurement Service is central to CServ design since it allows for the summarization of

subnet internal performance without disclosing sensitive details about the subnet's topology, loading,

and policies, among other factors. With the output of the State Measurement Service, namely the

estimated CServ performance metrics, the MC can compose a CServ Internetwork Service specific to the

requirements of a particular CServ transaction without detailed understanding of or control over the

handling of the CServ datagram as it traverses the constituent subnets in the service path or paths. The

discovery and composition of CServ Internetwork Service using the product of the State Measurement

Service is the third pillar of the CServ architecture and the focus of the next chapter.

Before we move on, it is worth noting one final future possibility for the State Measurement Service.

Both proposed approaches to the service in this chapter, the Learning Session protocol and the Collector

protocol, rely on the estimation of CServ performance metrics using real traffic. The Learning Session

protocol actively generates CServ traffic in order to characterize the performance of the individual CServ

datagrams. Alternatively, the Collector datagram protocol uses whatever traffic is available, best effort

and CServ datagrams together, to loosely approximate the performance of a real CServ datagram which

should generally outperform the resulting estimates. Neither of these protocols is capable of generating

CServ performance metric estimates that allow for the unseen or the unexpected. Since "Black Swan"

network events that generate large influxes of CServ transactions are a concern for the CServ

architecture, an approach that can extrapolate and generate CServ performance estimates for

unobserved subnet traffic loads could be greatly useful. An example idea for the approach would be to

leverage simple analytic queueing models for the subnet routers. Although most queueing models rely

on highly idealized memoryless exponential distributions, there are some general models (such as G/G/1

244

queueing models and associated queueing time bounds like the exponentially-tight Kingman bound [78])

suited for this purpose. These models can empower a protocol to theoretically extrapolate the delay for

higher router loads than actually observed in the network. However, there are many challenges

associated with this approach. One problem is that generic queueing models and bounds are

unavoidably loose since no assumptions are made on traffic arrival and router processing distributions.

Another issue is that these models typically do not account for finite interface buffer space and

datagram loss. This type of modeling direction for the State Measurement Service may prove fruitful,

but there are many open research problems that must be addressed first.

245

246

Chapter 5

CServ Internetwork Service - Discovery and Composition

The operation of the master controller (MC) is the crux of the CServ architecture and CServ Internetwork

Service. We can consider that the previous chapters, albeit critical parts of the whole, describe

supporting components that bolster the operation of the MC's algorithm that directs individual CServ

transactions at the internetwork level based on their specific performance requirements. Through the

description of the transmission of CServ datagrams through a series of independently administered

subnets in Chapter 2, we illustrated the need for a control entity with a global perspective to choose a

sequence of ingress and egress routers to escort the datagram appropriately from source to destination

subnet, all the time avoiding fine-grained network control by allowing the constituent subnets to

implement their own internal routing and forwarding policies. In Chapter 4, we provided a framework to

characterize the CServ Intranetwork Services implemented by these independently administered

subnets connecting the ingress and egress routers such that the global control entity does not need

detailed knowledge of the internal state of the subnets in order to choose these coarse-grained

internetwork paths. To wrap up this architecture description, we now need to describe the use of this

captured and reported state summarization for the purpose of discovering and composing the CServ

Internetwork Services that become the strings of addresses in the internetwork CServ datagram control

headers.

5.1 The CServ Pre-Transaction Control Flow

Here we recall the description of the input and output of the MC with respect to CServ transaction setup

from Section 2.3.2, while adding some details concerning the use of the off-band control channel. This is

a per-transaction control procedure that precedes the transmission of each critical message using the

247

CServ data plane, effectively acting as admission control since an internetwork CServ datagram cannot

be processed without an explicit CServ Internetwork Service path in the header (see Chapter 3).

To begin a transaction setup, the CServ-enabled host that generates a critical datagram payload for

transmission forms a request for a desired level of service from the CServ network. This request is made

in the form of a CServ Request (CSR) via the CServ API, which is borne to the logically-centralized MC

server by way of the robust off-band control channel. The CSR provides a structured way for the CServ

source host to indicate its desired level of service for the transaction, which in turn allows the MC to

algorithmically determine the ability of the network to bear the critical message with this level of

service. The CSR contains the following information, described in more detail previously in Chapter 2:

* a control message type field;

* the source host address;

* the destination host address;

" the primary CServ performance metric;

* the minimum service reliability value;

* the maximum service delay value;

* the minimum path diversity value;

* a timestamp indicating the time of CSR generation and transmission;

" and a source-host specific sequence number.

Allowing for 128-bit addresses as previously used in the dissertation, 8 bits for the control message type

field (indicating that this is a CSR rather than a State Measurement Service report or an

association/disassociation message), 64 bits each for the specified performance metric requirements, 1

bit for the indication of the primary performance metric, 7 bits for the minimum path diversity value, 32-

bits for the sequence number, and a 64-bit timestamp, this CSR comprises a 496-bit control message. In

practice, some additional fields may be included for the purposes of CSR integrity (such as a checksum

value) or authenticity (such as a digital signature) verification. For now, we assume that the off-band

control channel is heavily overprovisioned and designed for highly-reliable signaling such that the

integrity check is not necessary. Furthermore, we assume that host authenticity verification can be

completed during CServ device association with the control hierarchy. Although some notion of CSR

248

authentication should be considered in future work to protect against CSR-based denial-of-service

attacks. We note here that even with 1,000 CServ hosts generating a CSR every one second across the

network, this comes to less than 500 kbps of CSR traffic directed towards the logically-centralized MC on

the aggregate off-band control channel across all subnets, generally a very manageable data rate. CServ

hosts, however, are expected to use CServ capabilities sparingly and at rates much less than one CServ

transaction per second. A host with high service utilization rate might generate a CServ transaction

every minute, whereas a typical CServ endpoint should generate CServ message payloads on the order

of one every hour. Thus our numerical example here greatly overestimates the off-band control

aggregate CSR data rate for 1,000 CServ-enabled source hosts.

Upon receiving the CSR via the CServ API, the MC executes the Critical Service Discovery and

Composition Algorithm (CSDCA) to determine whether or not the network can bear the critical message

transaction to its intended CServ-enabled destination host with the requested level of service, and, if so,

how exactly that level of service can be achieved. The development and description of this algorithm is

the focus of this chapter. As indicated by the algorithm title, this is a two-phase procedure. The

discovery phase finds end-to-end paths between the source host and destination host at a subnet-

granularity. Specifically, other than the access routers that provide connection to the subnet routing

cores of the source and destination subnets, all other routers in the paths are active gateway routers at

the edge of the subnets transited by the path. As part of this phase, the algorithm computes the CServ

performance metrics for these paths. In the second phase, the composition phase, the algorithm

attempts to create a CServ Internetwork Service solution that meets the demands of the CSR using the

paths found during the discovery phase. This solution may be a single path, or it may be a set of subnet-

disjoint paths that are used together as a diversity-routed solution. The rationale behind the use of

subnet-disjoint paths and controlled diversity routing are discussed in the next section of the chapter.

Following the successful execution of both phases, the algorithm output is an explicit internetwork path

or set of explicit subnet-disjoint internetwork paths from the source host to the destination host that

support the desired service level based on the currently known state information reported by the State

Measurement Service. If the execution of the algorithm is unsuccessful in meeting the requested

service, the output is a service denial response. (in Chapter 2, we suggested the future inclusion of a

service counteroffer if the best composed internetwork service falls slightly short of the requested

service level with respect to some CServ performance metric. For the purpose of this chapter, we do not

249

consider this option further and restrict our discussion to either a service access or service denial

output.)

After the completion of the CSDCA process, the final step of the control plane CServ transaction setup

involves returning the result of the algorithm to the source host via the CServ API on the off-band

control channel. As discussed, this response takes one of two forms: a service access response or a

service denial response. A service access grants the source host permission to transmit the CServ

payload as part of an internetwork CServ datagram using the discovered CServ Internetwork Service

path or set of CServ Internetwork Service paths in the CServ Internetwork Service solution. These paths

are a sequence of router addresses, beginning with the upstream active access router in the source

subnet (which is particularly useful if the source host is multihomed), continuing with a set of egress and

ingress active gateway routers which shepherd the internetwork CServ datagram from subnet to subnet,

and finally ending with the upstream active access router in the destination subnet (again, which is

useful if the destination host is multihomed). Note that while this prescribes the coarse-grained

internetwork path that the internetwork CServ datagram must follow, it does not control the local fine-

grained CServ Intranetwork Services that bear the datagram from active router to active router in the

path. The size of the service access response is highly variable, depending on the length of CServ

Internetwork Service paths and whether or not the solution employs end-to-end diversity routing. It

contains the following information:

* a response type field;

* the source host address;

" the destination host address;

" a timestamp indicating the time at which the service access response is invalidated;

* the sequence number from the CSR;

* the number of paths used in the internetwork solution;

* the length of the first CServ Internetwork Service path in terms of the number of addresses;

* the first CServ Internetwork Service path (a sequence of addresses matching the specified

length);

" the length of the second CServ Internetwork Service path in terms of the number of addresses;

" the second CServ Internetwork Service path;

0 ...

250

" the length of the last CServ Internetwork Service path (matching the specified number of paths

in the solution);

* and the last CServ Internetwork Service path.

We allow 4 bits for the encoding of the response type (access, denial, and space for expansion), 8 bits

for the encoding of the number of paths used in the solution, as well as 8 bits for each encoding of the

length of a CServ Internetwork Service path. If we consider a service access response employing diversity

routing over three CServ Internetwork Service paths, each with two transit subnets (for a total of eight

addresses in each explicit CServ Internetwork Service path), then the service access response requires

3.460 kb. The service access response can be significantly larger than the CSR since it may need to

encode multiple sequences of 128-bit addresses. Luckily, the off-band control channel communication

from the MC to the end hosts is used primarily for the CServ API responses, so the capability should exist

to overprovision this channel to support reliable response signaling. For example, if the MC processes

1,000 CSRs per second, the aggregate rate from the MC to the CServ-enabled hosts could be on the

order of 3.5 Mbps based on this analysis approximating the service access response size. Again, this is an

overstatement, as the submission of CSRs should be for the most critical traffic in the network and not

utilized this strenuously. This is all in contrast to the overprovisioning of the control channel from the

end hosts and routers to the MC, which must simultaneously bear association and disassociation

messages, CServ API CSRs, and CServ performance metric estimate reports from the State Measurement

Service.

As with the CSRs, some notion of MC response authentication should be considered for future inclusion

in the CServ architecture. This can mitigate exploits of the architecture which involves a malicious actor

spoofing the MC service and generating false responses to misdirect or deny critical message

transactions. The use of control plane authentication techniques needs to be carefully considered and

designed since, in light of the discussions of digital signatures in Chapter 3, it can add a significant

overhead to control messages.

We note here that, alternatively, the service denial response is a significantly smaller size than the

service access response. It only needs to contain the following information:

0 a response type field;

251

* the source host address;

* and the sequence number from the CSR.

The response type field would be used to identify the control message as a service denial response to

the CSR with the provided source-specific sequence number. Using the field sizes previously established,

this response requires only 164 bits, which likely represents a negligible contribution to the control

channel rate among the service access response control traffic since the network should be dimensioned

to avoid these responses to reasonable CSRs.

Once the CServ-enabled source host receives the access response from the MC via the CServ API on the

off-band control channel, it prepares the internetwork CServ datagram (or datagrams in the case of end-

to-end diversity routing) with the critical message payload and then transmits the datagram (or

datagrams) on the CServ data plane. The transmission procedure and the required data plane control

information (the CServ Internetwork Service header and CServ Intranetwork Service header) were

previously covered in Chapter 3. The hole in the description of the per-transaction control processing

thus far is the implementation of the CSDCA, including how it leverages the reports generated by the

State Measurement Service for each subnet in the network. In the remainder of this chapter, we

complete the picture in the following parts:

* we motivate the use of diversity routing within the CSDCA;

* we discuss the reasoning for subnet-disjoint paths in the diversity-routed solutions;

* we consider the definition of the delay of a path;

* we describe the MC's representation of the internetwork topology and integration of the State

Measurement Service reports;

* and we walk-through and characterize the details of CSDCA operation.

5.2 Fundamental Considerations for Internetwork Service

We present several fundamental topics in this section that drive the design of the CSDCA and influence

its operation. Namely, we discuss the use of controlled-diversity routing among subnet-disjoint paths, as

well as the characterization of the end-to-end CServ performance metrics for a multi-hop path. In doing

so, we present some critical assumptions invoked or subsumed by the algorithmic approach of the MC

252

presented in this chapter. Because of the nature of the assumptions, particularly those that involve

statistical independence, they should be regarded with an appropriate level of skepticism and revisited

in the context of adversarial action against the CServ architecture. Although the security framework for

the CServ architecture is not the focus of this document, we consider the potential collapse of these

assumptions and the resulting impact at the end of the chapter.

5.2.1 Controlled Diversity Routing

The CServ architecture employs end-to-end path diversity between the source and destination host

endpoints for two purposes:

1. diversity routing over multiple paths improves the end-to-end service reliability over the

reliability of the paths individually;

2. and the use of diversity routing over multiple paths provides a level of service survivability

against unpredictable failure (or "Black Swan" [521) events affecting a strict subset of the paths.

If we consider the first statement above, we recognize that the reliability improvement relies on the

hidden assumption of statistical independence between the paths used in the diversity solution under

nominal conditions. The end-to-end reliability does not improve if the random processes governing the

performance of the paths in the diversity solution exhibit perfect correlation. We need to be wary of this

requirement; in the next section, we explain the effort made to maintain some level of statistical

independence between the paths.

For now, we assume that the end-to-end internetwork paths are statistically independent. For

illustration, let us consider a situation where there are k paths in the diversity solution, and that the

reliability of the ith path, where i E f1,2,...,k}, is denoted 0 5 pi ! 1. The reliability of the end-to-end

service, p, is then given as:

k

p= 1p-7(1i-p). (5.1)

i=1

253

If we now assume that 0 < pi < 1 V i E {1,2,..., k}, then the sequential addition of each path to the set

of k paths strictly improves the reliability p of the end-to-end service since 0 < (1 - pi) < 1 V i E

(1,2, ... , k}, for each path. We note that the addition of a path with a reliability of 0 does not improve

the overall service reliability, while the addition of a path with perfect reliability (pi = 1) implies perfect

service reliability (making any subsequent addition of paths to the set unnecessary).

In the presence of an unprecedented "Black Swan" network even that disrupts a strict subset of the

paths in the diversity routed solution, the use of diversity routing provides a notion of end-to-end

service survivability. These unpredictable events may include Byzantine failure of routing or

transmission components in a path [79]. Because unprecedented events, by definition, have not been

previously observed in the operation of the network, their impact cannot be captured by the State

Measurement Service and its reported CServ performance metrics. As long as the event does not affect

all paths in the diversity routed solution, the service can still provide end-to-end connection between

the source and destination host at some reduced reliability level over the unaffected paths. Thus, even if

one path can satisfy the required level of reliability, the use of additional path diversity can protect the

service against an unexpected failure. This comes with an important caveat that we must bear in mind,

however. If the "Black Swan" event is the result of adversarial action, the motivated adversary that

intends to disrupt critical communication between a pair of hosts would attack critical components of all

possible paths connecting the devices. In this scenario, the use of additional diversity paths does not

improve reliability since the adversary seeks to correlate failure modes between all possible

internetwork paths. We can view this as a breakdown of the statistical independence assumption. Under

coordinated attack, the internetwork paths are likely anything but statistically independent.

In light of these considerations, one might ask why the CServ architecture does not, by default, choose

to transit a CServ transaction over all possible internetwork paths connecting the source and destination

hosts. This type of operation could be considered flood routing, or simply flooding. Flooding is a

datagram transmission paradigm that replicates a datagram on all outgoing router interfaces (other than

the one it is received on) with some control techniques to ensure that the datagram instance does not

circulate in the network forever. Since no intelligent routing decisions are made based on the datagram

destination, this is the antithesis of routing; if the source host is somehow connected to the destination

host, the datagram ultimately makes its way to the intended recipient. This approach clearly substitutes

protocol overhead for increased network data plane transmission and switching bandwidth

254

consumption. In [79], reliable flooding techniques are proposed for reliable network service in the

presence of constrained Byzantine network faults (without any guarantees on end-to-end datagram

delay).

Flooding can be interpreted as the extreme version of diversity routing. It eventually explores all

possible paths connecting the endpoints. The use of controlled diversity routing, on the other hand,

represents the selection of a subset of the paths explored by flooding, where the "controlled"

nomenclature highlights the decision to strategically exploit a select the number of paths between the

endpoints. Even though the reliability of flooding must be at least as great as the use of constrained

diversity routing based loosely on the argument of Eq. (5.1) (although this requires statistical

independence between all paths and does not truly apply to flooding due to the correlation induced by

the hop-by-hop replication scheme), why do we choose not to blindly flood CServ datagrams?

The objective of the CServ architecture is to discover a CServ Internetwork Service solution that meets

the reliability requirement of the CSR, not to transmit each critical message with the maximum possible

reliability. Controlled diversity routing represents the degree of risk management required to bear

internetwork CServ datagrams at a particular service level without needlessly consuming excess network

transmission and switching bandwidth. Our approach uses the State Measurement Service to learn the

network state, which is then leveraged to determine the minimal degree of diversity required in the

solution to meet the CSR requirement. Flooding's blind reliance on redundancy would significantly

reduce the capacity of the network to serve other CServ transactions, and our design aims to maintain

high CServ network availability even when many critical messages are generated. Furthermore, the use

of flooding makes it difficult to characterize the end-to-end performance of the CServ datagram prior to

transmission since this would require characterizing the performance of an exponential number of

paths. Even though it introduces the protocol overhead of the CSDCA, our controlled diversity approach

enables the generation of a priori service guarantees that satisfy the stated requirements of the CSR, a

capability aligned with the CServ architecture objectives.

In a simple and conservative analytic example, we illustrate the network transmission bandwidth savings

garnered from the deployment of controlled diversity routing over flooding. Consider a network model

with n disjoint paths between the source and destination hosts of a CServ transaction, where each path

traverses one intermediate network component (such as a router). This physical network model is

255

illustrated in Fig. 5-1. We assume that all n paths are statistically independent and can be characterized

by the same end-to-end reliability 0 p 5 1 and delay (such as can be learned by the State

Measurement Service protocols presented in Chapter 4). Specifically, we assume that the transmission

links are lossless and that all possible CServ datagram loss occurs at the unreliable intermediate network

component (independently with probability p).

Consider a situation where the source host generates a CSR with a reliability requirement of 0 po 1

and some maximum delay requirement that is less than the delay of the paths. We additionally

introduce a network fault model that attempts to capture the impact of unprecedented network "Black

Swan" failures. Let us assume that each intermediate network component depicted in Fig. 5-1 is affected

independently and identically by a Byzantine fault that renders it unable to process CServ datagrams

(thus disrupting the path) with probability 0 5 w 1. This is clearly an abuse of the "Black Swan"

concept since we cannot confidently assign a probability distribution to an unprecedented event.

However, for the convenience of this analysis and illustration, we allow for this simplified

characterization. How many paths are required to probabilistically ensure that the end-to-end service

solution meets the minimum reliability requirement of the CSR?

If we deploy flooding as the CServ network service, then we are guaranteed to do the best possible in

terms of reliability given the current network state. This does not necessarily mean that the service

satisfies the requirement of the CSR. Under some network conditions (or combinations of the

parameters p and a), flooding does not provide an end-to-end reliability of po. With the flooding

approach, we do not know a priori whether or not the service satisfies the demands of the CServ

transaction. Alternatively, we have a priori knowledge of the service reliability with the controlled

diversity approach (before the introduction of the random Byzantine faults). Under some network state

conditions, the use of controlled diversity routing can satisfy the end-to-end reliability requirement

while consuming less network transmission bandwidth than flooding. We proceed to show this

analytically. For the analysis, we consider the number of path links used by the CServ transaction as the

proxy for network transmission bandwidth. As illustrated in Fig. 5-1, each path is considered to have two

links. Thus there are 2n total links in the network model.

We begin by considering the network transmission bandwidth consumption of the flooding approach,

which always transmits the CServ datagram over all n paths. Without any Byzantine faults (i.e. when

256

a = 0), the flooding technique uses all n first-hop links and, on average, np of the second-hop links. As

w increases, the probability that the datagram survives the intermediate network device decreases

based on the chance that the component is suffering a Byzantine fault. The total expected number of

links used by the flooding technique under this model is then n + np(1 - W).

If we now consider the use of k-diversity routing, we can form a similar expression for the total

expected number of links used by the routing technique. Without any Byzantine faults (i.e. when o =

0), the approach always uses k of the first-hop links, and, on average, kp of the second-hop links. As

with the flooding case, the probability that the datagram survives the intermediate network device

decreases based on the likelihood that the component is affected by a Byzantine fault. Thus, the total

expected number of links used by the flooding technique under this model is k + kp(1 - o). But what

value of k is required to meet the CServ reliability requirement? To solve for the required degree of

diversity, we consider the value of k such that the probability that the transmission over at least one of

the paths is successful is greater than or equal to po, the CSR requirement. Doing this and ignoring the

integer constraint on k, we get the following:

1 - (1 -p(1- O)) po
(5.2)

log(1 - pO)
log(1 - p(1 - o))

Practically, k must take an integer value since it represents the diversity degree or the number of paths

the CServ datagram is transmitted over. Introducing the integer constraint and the physical limits of the

network model to Eq. (5.2), we have:

k = min(n, [10 07Pj) . (5.3)
log(0 - p(1 - O))

This result indicates that for some parameter values p, po, and co, the maximum number of paths, or the

physical constraint on the level of diversity, impedes the technique from meeting the end-to-end

reliability requirement of the CSR. However, in the case where the controlled diversity approach cannot

meet the requirement, nor can the use of flooding.

257

We visualize the results of this analysis in Fig. 5-2. Up to some threshold on the probability of a

Byzantine failure on the path, the expected network transmission bandwidth usage of controlled

diversity routing outperforms the expected network transmission bandwidth usage of flooding while

satisfying the reliability demand of the CSR. The transmission bandwidth savings are maximized when

there are no faults, and the gap closes as the likelihood of Byzantine faults on the paths increases. In

some scenarios, diversity routing can meet the requirement while using less than half of the network

transmission resources used by flooding even when an expected one-third of the paths are affected by

Byzantine faults.

The results indicate that while flooding provides survivability against unprecedented "Black Swan"

events up to a point without any knowledge of the fault conditions, controlled diversity routing is

capable of the same while consuming significantly less network bandwidth. We have demonstrated that

survivability against Byzantine failures can be realized without blinding relying on uncontrolled

redundancy. This result is actually quite conservative since all n paths in the model are disjoint. In a

more realistic scenario, there may be cross-links between the paths that connect the source and

destination hosts, and then the flooding approach would consume an even greater proportion of

network transmission resources compared to the controlled diversity routing technique.

In the analysis, we adopted an omniscient view that allowed us to choose the degree of diversity

optimally to meet the CSR reliability requirement while minimizing the network resources used. In

practice, we do not have this information since we cannot a priori model the impact of an

unprecedented network disruption event, and thus we do not have the necessary information to

optimally determine k for survivability purposes. The message remains clear, though; controlled

diversity routing has the capability to provide the same survivability property as flooding without the

excessive network transmission and switching bandwidth consumption. Additionally, we can choose the

optimal degree of diversity in nominal scenarios without "Black Swan" disruption events based on the

reports of the CServ State Measurement Service, whereas flooding does not afford the same flexibility.

258

n paths

----- Reliability A p

Probability of
-------------- Byzantine fault Ao

Fig. 5-1: The network model used for the comparison between flooding and controlled diversity routing

is depicted here. The reliability of the intermediate network component on each path is independent

and identically distributed, as is the probability that the component is affected by a Byzantine failure.

Transmission
09 bandwidth

C0.8 usage gap
between

E 0 flooding &
SO.6 diversity

0.4

C 3

c 0.2
o- -

01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Probability of Byzantine failure

Diversity no longer able to satisfy
CSR reliability requirement -

equivalent to flooding

090. ---

E08
- 0.7

- 0.6--

-0.4

0.3 t
C 0.2

S=0.8 0
09 0.1

i=0.99 C~9 0 --

0.9 1 2 0 0.1 02 0.3 04 0.> 0.6 0.7
Probability of Byzantine failure

Fig. 5-2: The expected network transmission bandwidth used by controlled diversity routing to achieve

an end-to-end reliability of po = 0.99 is shown, normalized to the expected network transmission

bandwidth consumed by the flooding technique. The left plot ignores the integer constraint on the

diversity degree, while the right plot does not. The number of paths n = 10 in these visualizations.

259

--S

0.8 0 .8 1
S=0.991

08 09 1

5.2.2 Subnet-Disjoint Paths

In Section 2.2.1, we introduced the subnet as the central logical participant in the CServ network and

global internetwork routing architecture. We stipulated that CServ Internetwork Service paths describe

explicit subnet-to-subnet granularity routes where the internal routing and forwarding behavior of the

subnet itself is a "black box" to the global network. More formally, CServ Internetwork Service paths

specify a sequence of active gateway routers (and access routers at the endpoints), indicating the

ingress and egress gateway for each traversed subnet without any further detail of how the datagram is

treated within the subnet.

Controlled diversity routing was discussed previously in Section 5.2.1, motivating the design choice to

use this technique to improve end-to-end CServ Internetwork Service reliability. In the discussion of

diversity routing, we made an assumption on the statistical independence of the paths for the purpose

of calculating the composed reliability of the diversity-routed service. Generally, statistical

independence assumptions are sticky statements. There is frequently little empirical reason to believe in

the independence of processes in the network, as the complex system dynamics tend to couple actions

and effects. This is further complicated by the presence of adversarial action; a sophisticated and

motivated adversary aims to correlate system failure modes in order to exact the most effective form of

network service disruption. As an example, rather than choose to target one possible path, an attacker

would want to disrupt all possible internetwork paths connecting a particular source and destination

host pair (or source and destination subnet pair) such as to counteract the CServ architecture's use of

diversity routing by effectively partitioning the internetwork connection graph.

In our definition of the subnet, we noted that it aptly lends itself to distinguishing between

heterogeneous network segments. In a non-exhaustive list of sources of heterogeneity, we highlighted

physical communication, hardware/software component, network resource provider and administrator,

security protocol, and network management framework heterogeneity. We argued that this

heterogeneous characterization, by design, can exhibit a notion of statistical independence between the

subnet units. However, the impression of statistical independence does not come easily nor

unintentionally. This dissimilitude between subnets needs to be built into the design and differentiation

of the subnets from the drawing board (and is, in part, why we do not consider the Internet AS and the

subnet equivalent).

260

As an example of the fragility of the independence assumption between subnets, we considered the

infamous "backhoe attenuation" problem. Adjacent fiber optics subnets operated by different

administrators, using different switch and router machines and frameworks, and employing different

network management and control protocols may share the same physical plant of cables and conduits

between points of presence. Should a backhoe unintentionally (or intentionally) uproot the cable

conduits during an excavation activity, this could simultaneously disrupt the operation of all of the

subnets. Clearly, these subnets do not exhibit the notion of statistical independence that we wish to

encapsulate in the subnet; they are highly correlated through their homogeneous fiber physical plant

infrastructure. As another example, adjacent infrastructure-based wireless subnets operated by

different network providers may use the same edge communication spectrum and protocols. Even

though the hardware and software may be highly heterogeneous, the shared wireless media induces

strong correlation between the over-the-air hops within these subnets since they can jointly experience

the disruption of a RF fade or shadowing event.

Although the notion of statistical independence is difficult to maintain between subnets thanks to the

complex interactions of the networked system and the examples of heterogeneity bottlenecks (such as

described above), the network planner must be aware of the potential pitfalls and deliberately design

and provision the subnets such that they appear "independent enough." Even if the subnets in the CServ

internetwork system do not exhibit strict statistical independence, we preserve the desire that

neighboring subnets should maintain at least some degree of intentional heterogeneity such that the

statistical independence assumption used in the architecture and protocol design does not completely

break down and that adversarial action against each requires considerably targeted and individualized

effort. As an example, a CServ network should not have three satellite relay subnets using the same

band. Or, as another example, disparate fiber optic subnets in the CServ network should use disjoint

physical plants with strict geographical separation between the conduits and switching points of

presence supporting the transmission fibers of each. This is a challenging requirement of the CServ

architecture, but it necessary both for the implementation of highly-reliable end-to-end internetwork

service and for some degree of survivability against the unprecedented disruption event.

With this intentional subnet design that renders them "independent enough," we leverage the statistical

independence assumption in the composition of end-to-end CServ Internetwork Service using diversity

routing over subnet-disjoint paths. This means that, given a set of CServ Internetwork Service paths

261

between a source and destination host used to realize a diversity-routed solution, all transit subnets are

unique and used only once in the set. Note that we have specified that "transit subnets" are unique. The

source and destination subnet for each CServ Internetwork Service path comprising a diversity-routed

service solution may be the same. If the source and destination hosts are single-homed, then the source

and destination subnets are logical points of convergence between the paths (they may not be physical

points of convergence is the CServ host is connected to several upstream active access routers in the

subnet). Ideally, with sufficient subnet-multihoming of both CServ-enabled endpoint hosts, the end-to-

end CServ Internetwork Service paths in a diversity-routed solution would be completely disjoint such

that all subnets are unique and used only once in the set. For now, however, we do not assume the

availability of sufficient multihoming connections to always implement this type of diversity-routed

solution between CServ transaction endpoints. The description of the MC's CSDCA describes the

discovery of paths that may have common source and/or destination subnets but are otherwise subnet-

disjoint.

Why do we require subnet-disjoint paths and not just gateway-disjoint paths? We propose that instead

of searching for subnet-disjoint paths, we could instead discover CServ Internetwork Service paths that

do not share any routers in the explicit path except possibly for the upstream access router in the source

and destination subnets. This opens up the discovery of a larger set of end-to-end paths than if we

enforce strict subnet-disjoint paths. Under the search for subnet-disjoint paths, the cardinality of the

possible set of paths we can discover is clearly limited by the logical degree of the source and

destination subnets (or, in other words, their number of subnet peers). This is not even the minimum on

the cardinality of this set; there are internetwork topologies with one bottleneck transit subnet through

which all possible CServ Internetwork Service paths between the source and destination subnets are

funneled through.

Recall that the CServ architecture has no control over routing and forwarding within any given subnet at

the global level; these are local decisions left to the subnet administrator based on their individual policy

and business needs. Thus, even if two CServ Internetwork Service paths specify the use of a transit

subnet through disjoint sets of ingress and egress gateway routers, there is no knowledge about the

CServ Intranetwork Service realization of those logical gateway-to-gateway connections. The CServ

Intranetwork Service paths joining the two disjoint pairs of ingress and egress gateway routers for a

particular subnet may in fact share the exact same physical transmission links and intermediate routers

262

in the subnet routing core, such as illustrated in Fig. 5-3. The CServ Intranetwork Services do not have

the same required intentionality regarding the notion of appearing "independent enough" through

heterogeneity as do the subnets themselves. For this reason, we rely on the more restrictive subnet-

disjoint requirement in the discovery of CServ Internetwork Service paths in order to utilize statistical

independence assumptions when composing the end-to-end reliability of the service. Consequently, the

CServ internetwork graph should be designed with sufficient logical connectivity to allow for the

discovery of subnet-disjoint CServ Internetwork Service paths and the composition of adequately

reliable CServ Internetwork Services that meet reasonable CSR demands.

-- ---- ---- --------

~~......................

a 4

) CServ Intranetwork Service path connecting Router 1 to Router 3

------ + Logical CServ Intranetwork Service connecting Router 1 to Router 3

- - CServ Intranetwork Service path connecting Router 2 to Router 4

------ + Logical CServ Intranetwork Service connecting Router 2 to Router 4

................... Subnet routing core link

Fig. 5-3: This figure illustrates that gateway-disjoint CServ Internetwork Service paths traversing a

particular subnet may be forwarded over the same links and switched by the same routers in the subnet

routing core based on the routing and forwarding policy of the CServ Intranetwork Service. For this

reason, the CSDCA searches strictly for subnet-disjoint CServ Internetwork Service paths.

263

5.2.3 The Reliability and Delay of an Internetwork Path

Before we approach the problem of discovering a CServ Internetwork Service path, let us consider how

to characterize the reliability and delay of a path. In this section, we assume that we have a CServ

Internetwork Service path (the discovery of this and other paths is the topic of the subsequent section),

and we assume that each hop of the path is characterized by the reports generated by the State

Measurement Service described in Chapter 4. That is, each hop or link between a pair of active CServ-

enabled routers in the CServ Internetwork Service path has an associated set of CServ performance

metrics, namely the reliability, mean delay, and delay variance, from the most recent State

Measurement Service report. Based on the previous discussions of the State Measurement Service, we

know that these hops or links in the CServ Internetwork Service path may represent upstream or

downstream access network connections, CServ Intranetwork Services presenting logical subnet interior

connections between active gateway routers, or exterior peering connections between active gateway

routers at the edge of adjacent subnets. An example CServ Internetwork Service path with the

associated hops is illustrated in Fig. 5-4, along with the reliability values from the last State

Measurement Service report received by the MC for each hop. Additionally, throughout this section, we

assume that the hops in a CServ Internetwork Service path are statistically independent.

We begin with the characterization of the reliability of a given CServ Internetwork Service path. As a

concrete example, consider the path illustrated in Fig. 5-4, along with the reliability values from the last

State Measurement Service report. If the hops in the path are statistically independent, then we can say

that the reliability of the path is the product of the reliability values of the hops that form the path. This

result is illustrated for the example of Fig. 5-4. Abstractly, consider a CServ Internetwork Service path of

h E Z+ hops from source host to destination host, comprising upstream and downstream access

network connections, the traversal of CServ Intranetwork Services, and connections between external

active gateway router peers. We enumerate these hops as hop i E {1,2, ... , h}. According to the most

recent set of State Measurement Service reports, the reliability of hop i is pi V i E {1,2, ... , h}.

Consistent with the probabilistic interpretation of reliability used in this dissertation, we have that

0 pi 1 V i E [1,2, ... , h). We denote the path reliability as p, and we have:

264

h

P= pi. (5.4)

From Eq. (5.4), we note that 0 p 5 1 thanks to the constraints on the range of the values in the set

(Pili=1,2,.,h, which is again consistent with our probabilistic interpretation of reliability.

We now consider the concept of the delay of a CServ Internetwork Service path. As an example, imagine

the same CServ Internetwork Service path as used in the reliability example above. Based on the most

recent State Measurement Service reports received at the MC, there is a mean delay and delay variance

value associated with each hop in the path. This is depicted in Fig. 5-5, where the mean delay values are

given in milliseconds for illustration. There is an unknown delay distribution associated with each hop in

the path, described only by the learned mean and variance values. The objective is to characterize the

path delay, which is equivalent to the summation of the random variables that represent the delay of

each hop in the path. Thus, the mean delay of the path is the sum of the mean delay values of the hops

that form the path. The previous statement does not require the assumption on statistical

independence between the hops in the path. However, if we invoke that assumption, we can further

state that the delay variance of the path is the sum of the variances of the delay distributions for each

hop that forms the path. These results are illustrated for the example in Fig. 5-5.

We have now characterized the path delay distribution for the given CServ Internetwork Service path in

terms of its mean delay and delay variance. But, since we do not know anything further about this

distribution, how can we say anything about the absolute delay of the path? If we knew the distribution

had a hard value as the upper limit for its support, then we could safely use that maximum as the path

delay. But we do not know the hard upper limit to its support. And extending that logic to a path delay

distribution with support over all positive real values (although this is unrealistic for practical scenarios),

the maximum path delay would be infinite and useless for our intentions.

To remedy this situation, we create a probabilistic definition of CServ Internetwork Service path delay.

Specifically, we turn to a sharp one-sided tail bound on a probability distribution with a given mean and

variance, but which is otherwise unknown. We are interested in a one-sided bound since we are

concerned with the positive deviation from the path delay mean, thus allowing the use of a bound that

265

is tighter than a two-sided bound that also captures the negative deviation from the mean. We leverage

Cantelli's Inequality [80] to prove a one-tailed variant of the celebrated Chebyshev's Inequality [81].

Cantelli's Inequality states that, for a real random variable X with finite mean p and finite variance a2,

the following holds:

Pr{X - f a} ! 2 (5.5)
a 2 + a2

where a 0. With a simple substitution in Eq. (5.5), we find the sharp one-tailed variant of Chebyshev's

Inequality with k > 0:

Pr{X - p :<- kc} 2 (5.6)
1 + k2

This is the most stringent possible bound for indiscriminate distributions with only known mean and

variance. We do not make any further assumptions on the path delay distribution. The use of Eq. (5.6) to

characterize CServ Internetwork Service path delay is a conservative approach since the inequality

accounts for arbitrarily heavy-tailed path delay distributions.

Let the random variable D with unknown distribution but with known, finite expected value p and

known, finite variance a-2 represent the delay from the source host to the destination host of a given

path. We choose to define the delay of a CServ Internetwork Service path, d, as the value such that:

Pr{D < d} 0.99. (5.7)

This definition of the delay of a CServ Internetwork Service path adopts a value such that we are "two-

nines" confident that the realized delay of the path is less than the value. Since the distribution of D,

save for its mean and variance, is otherwise unknown, we turn to the one-tailed variant of Chebyshev's

Inequality developed in Eq. (5.6). Rearranging Eq. (5.6), we have:

266

Pr{X- <ka}1- 1 k2= k2 Vk>0. (5.8)
1+2 1+k2

Massaging Eq. (5.8) into a form more suited to our purposes and substituting the generic random

variable X with our random variable D, we have the following:

Pr{D < d} + (2, d > /. (5.9)

This result matches the desired form of the definition of delay of a CServ Internetwork Service path from

Eq. (5.7). Note that condition that requires that the delay value in the expression must be greater than

the path mean. This results from our application of a one-sided inequality. It also provides a handy check

condition; if the mean delay of the path is greater than the delay requirement specified by the CSR, we

can be sure that the CServ Internetwork Service path does not meet the demands of the source host

based on this definition of delay.

Solving for the right side of the expression in Eq. (5.9), we can find the required condition on the delay

of a CServ Internetwork Service path such that Pr{D < d} y, 0 5 y 5 1:

1+ (d (5.10)

y=> d + -
1 -y

With the result of Eq. (5.10) and y = 0.99 (from the definition of delay of a CServ Internetwork Service

path), we require that d ~ i + 9.95or for Pr{D < d} 0.99.

Based on the result above derived from the one-sided variant of Chebyshev's Inequality, we

approximate the definition of delay of a CServ Internetwork Service path with finite mean y and finite

variance U2 as:

267

d = i1 + 10a.

This definition ensures that Pr{D < d} > 0.99 for any arbitrary delay distribution D with the given

moments. We note here that equivalent definitions of the delay of a CServ Internetwork Service path

with "three-nines" confidence or "four-nines" confidence require approximately 32 and 100 standard

deviations above the mean value, respectively. This is generally considered too restrictive for our

ultimate goal of discovering CServ Internetwork Service paths that meet stringent delay demands. The

definition of Eq. (5.11) is already very conservative since the delay distribution D may be arbitrarily

heavy-tailed, as long as it has finite mean and variance. Thus, it encapsulates an additional degree of

assurance for better-behaved path delay distributions. This is not overtly captured by the "two-nines"

confidence statement.

Definition 4 - The delay d of a CServ Internetwork Service path with aggregate path mean

delay y and aggregate path delay variance U2 is given as d = p + 10-.

This definition is illustrated for the example of Fig. 5-5. As we can see from the example, our definition

of delay can significantly extend the value beyond the path mean delay, which is frequently used alone

in service-oriented literature to characterize service delay (for instance, [22]).

8 097 0.99 09 0.99 095 099

Path reliability = 0.98 x 0.97 x 0.99 X 0.99 X 0.9 x 0.99 x 0.95 x 0.99 0.788623126

Fig. 5-4: The last reported reliability values at the MC are shown for this example CServ Internetwork

Service path. The path reliability is calculated according to the discussion of Section 5.2.3.

268

(5.11)

Mean: 10 Mean: 50 Mean: 10 Mean: 100 Mean: 10 Mean: 100 Mean: 5
Variance: 4 Variance: 25 Variance: 1 Variance: 36 Variance: 4 Variance: 25 Variance: 1

Path mean delay i= 10 + 50 + 10 + 100 + 10 + 100 + 5 = 285
Path delay variance a 2 = 4 + 25 + 1 + 36 + 4 + 25 + 1 = 96

Delay of the CServ Internetwork Service path yi + 10 a 382.98

Fig. 5-5: The last reported mean delay (in milliseconds) and delay variance values at the MC are shown

for this example CServ Internetwork Service path. The path delay is calculated according to the

definition of path delay presented in Section 5.2.3.

269

5.2.4 Finding Shortest Paths with Reliability and Delay

In Section 5.2.3, we presented the reliability and delay of a CServ Internetwork Service path. In doing so,

we assumed that we already had the path from source host to destination host. But how do we find the

CServ Internetwork Service path in the first place? The CSDCA must first discover a path from the source

to destination hosts of a requested CServ transaction before it can compute the path reliability or the

path delay; this is the chief objective of the discovery phase of the CSDCA. Recall that it is the primary

CServ performance metric specified in the CSR that is used to direct CServ Internetwork Service path

discovery. In this section, we present the general algorithm used for path discovery before specializing

its use to the cases where either reliability or delay is the primary metric of interest.

For the purposes of this section, we consider a generic weighted network graph G = (V, E, W). In the

next section of the chapter, we consider the specific graphical representation of the CServ internetwork

structure. It suffices for now that V = {1,2, ... , v} is the generic graph vertex set, and E is a set of

ordered pairs which represent directed edges in the graph. For example, (1,2) indicates a directed edge

from vertex 1 to vertex 2. For each edge e E E, there exists an additive and nonnegative real-valued

edge weight we E W. In the context of a communication network, the vertex set can be considered a set

of network devices, including endpoint hosts and routers, with unique addresses (where the

x a --acIolder -or th specIfII address In the addressing framework).

Furthermore, the edges in the edge set can be viewed as logical communication links between the

network devices in the vertex set. These are not necessarily physical connections. If the devices in the

vertex set are network layer devices (say, for example, devices with IP addresses), there may be lower-

layer switches subsumed by the logical edge representations.

Given a digraph G, Dijkstra's Algorithm is a well-known approach to find the "shortest paths" between

an input source vertex s E V and all other vertices in V\{s} [501. This algorithm is a classical instance of

dynamic programming that employs memoization to minimize redundant computation [82]. Shortest

paths are defined as those with the minimal sum over the edge weights of the edges that form the path.

We call these sums the path distances.

Before we describe the mechanics of Dijkstra's Algorithm, we introduce a few conventions and

additional notation. For edge weight conventions, we define weiE = 00. In other words, for an ordered

270

pair that represents an edge not in the edge set, we define the edge weight to be infinite. We can

imagine this as adding a directed edge between any given pair of vertices in the vertex set and then

setting the edge weight to infinity if the edge was not in the original edge set. This also includes notional

"self-edges," such as (1,1). There is no concept of self-connections in the graph, and we can

equivalently consider that these are edges with infinite weight. Next, we introduce a lVi x 1 vector F

that is used in the algorithm to store current estimates of the shortest distances from the source vertex

to all other vertices. Specifically, ri, i E V is the current estimate of the shortest distance from the

source to vertex i. We also define a IVI x 1 vector H that holds the current previous hop in the path

that represents the current estimate of the shortest path from the source to all other vertices. This

vector is referred to as the vector of "predecessor pointers." Namely, Hi, i E V is the previous vertex in

the path from the source vertex to vertex i based on the current shortest path estimates. When

Dijkstra's Algorithm terminates, the vectors F and H no longer represent estimates of the shortest

distances and the predecessor pointers for the shortest paths, respectively. Rather, these vectors then

hold the actual shortest distances and actual predecessor pointers for the shortest paths from the

source vertex to all other vertices. For the purposes of the algorithm description, Q is the set of vertices

for which the shortest path and shortest path distance has yet to be finalized. We also require one

helper function in the algorithm description. The function A = adj(i) returns a set of vertices A c V

that are adjacent to vertex i. That is, there is an edge (i, a) E E V a E A.

Our use of Dijkstra's Algorithm as a subroutine within the CSDCA is not interested in the entire set of

shortest paths from a given source vertex, so we can terminate its execution once it discovers a shortest

path to the intended destination. That being said, we present Dijkstra's Algorithm here in its most

complete form and leave the discussion of CSDCA application-specific optimizations for later.

Diikstra's Algorithm: F, H = Diikstra(G = (V, E, W), s)

Inputs: G, s
Outputs: F, H
Initialize:

Sri :=w(S) V E V

* H1 := undefined Vj E V
e Q V\{s}

While Q * 0:
* Step 1: "Find the next closest vertex"

o Find i E Q such that Fi = minjeQ rj

o Set Q := Q\{i}

271

* Step 2: "Update the estimates"
o For each j E adj(i):

" y = Fj +Wgj)
"if y < r;:

S Hj :=i
Return: F, H

After the execution of Dijkstra's Algorithm, how do we extract the details of the shortest path from the

source vertex to the destination vertex, say vertex t E V\{s}. The vector entry [t gives us the distance of

the shortest path from the source vertex, but it does not tell us the details of the path itself. That

information is encoded in H. Each entry in H represents the immediate predecessor vertex hop in the

shortest path from the source vertex. Leveraging the fundamental property that the subpath of a

shortest path is itself a shortest path (this invariant is the foundation of Dijkstra's Algorithm), we can

work backwards through the entries in H, starting with the destination vertex, to generate the details of

the shortest path from the source vertex. To do so, it is useful to define a helper function,

extractshortestpath. The input of the helper function is the output H from Dijkstra's Algorithm, along

with the source and destination vertices s # t E V. The output is an ordered h-tuple representing the

vertices in the path beginning with s and ending with t, where h is the number of vertices in the

shortest path. We let p denote a path data structure with several properties: p. path is the h-tuple array

that stores the explicit vertices in the path beginning with s and ending with t, p.reliability is the

reliability of the path p, and p. delay is the delay of the path p. The method is easily implemented with

a stack, or last in, first out data structure [83]. Consider the following pseudo-code for

extractshortestpath.

p. path = extractshortestpath (H s, t)

Inputs: H, s, t
Outputs: p. path
Initialize:

* i := 1

* := t
Create empty stack

* stack.push(t)
Whilej # s:

* stack.push(Hj)

* := Hi

272

While stack is not empty:
* p. pathi = stack.pop
* i := i +1

Return: p. path

When extractshortestpath returns, the output vector p.path is an ordered tuple that gives the indices

(or addresses) of the vertices in the shortest path from the source vertex s to the destination vertex t.

This is a fast method since the stack operations can be implemented in amortized 0(1) time.

Dijkstra's Algorithm is known to run, with the most naive implementation, in O(|V 12) time. Although for

sparse graphs (with IEI V1 2), the use of a Fibonacci Heap to carry out the minimum operation in Step

1 improves the worst-case running time to O(IEI + IVI log(IVI)). Since we make no assumptions on the

sparsity of the internetwork graph, we use the polynomial running time result to characterize the

process. Later in the chapter, it becomes clear that as the workhorse of the discovery phase, Dijkstra's

Algorithm plays a key role in the CSDCA. The CSDCA is part of the pre-transmission control overhead for

a CServ transaction, and thus the speed at which it is able to execute is critical. The delay incurred by the

control overhead, including the CSDCA, has to be accounted for by appropriately reducing the CServ

source host's maximum end-to-end CServ transaction delay allowance, which makes it more difficult to

satisfy the demands of the CSR. For this reason, we need to consider the running time of not only

Dijkstra's Algorithm, but of any additional component of the CSDCA.

The execution time of an algorithm in absolute time is greatly dependent on the software and hardware

used to implement it. For this reason, it is difficult to make statement in the vein of the following: "an

instance of Dijkstra's Algorithm on the internetwork graph requires 100 nanoseconds to execute." As

with other aspects of the CSDCA, we primarily focus on the asymptotic running time in an effort to

ensure that all components execute in no worse than bounded polynomial time. The absolute running

time of CSDCA and its subroutines would need to be characterized for the specific MC hardware and

software implementation.

For illustration, however, we briefly ballpark the absolute execution time of Dijkstra's Algorithm for both

a realistic optical backbone graph and a theoretical worst-case graph using a single high-performance,

but commodity, processor. The realistic graph is taken from a U.S. optical backbone network, as

depicted in Fig. 5-6 [84], where IVI = 60 and |El = 77. Alternatively, a worst-case graph for the

273

algorithm would be one with the maximum number of edges, or a complete graph. A complete graph

with lVi vertices has IVI(IVI - 1) edges. The reference commodity processor used for the analysis is the

widely-available Intel i7 Extreme Edition 3960X which executes 177.73 GIPS at 3.33 GHz. In the analysis,

we count all algorithm operations and, somewhat unsophisticatedly, treat each operation as a single

processor instruction in order to develop the absolute running time.

For a naive implementation of Dijkstra's Algorithm, it takes approximately 64.6 nanoseconds to execute

on the example graph of Fig. 5-6 using the reference processor. This is a fairly negligible execution time

considering the minimum CSR delay that we anticipate is on the order of a second. Rather than rely on

the result from this particular network graph, we additionally consider the execution time on a class of

worst-case complete graphs as a function of the cardinality of the vertex set, or IVI. The result is shown

in Fig. 5-7, which allows us to observe the polynomial growth with the graph size. Even so, with 1000

vertices, our first-cut analysis of the absolute execution time on a commodity processor doesn't exceed

50 microseconds. And we do not expect that the internetwork graph will approach this scale or this

connection density for practical deployments of the CServ architecture. The internetwork graph is

considered more thoroughly in Section 5.3.

Now with Dijkstra's Algorithm (and the extractshortestpath helper algorithm) in hand, we have the

necessary tools to find optimal paths on a network graph with nonnegative, additive edge weights. Our

goal is to discover CServ Internetwork Service paths from a given source host (or vertex) to a given

destination host (or vertex) based on the primary CServ performance metric specified in the CSR, namely

reliability or delay. In Section 5.2.3 we described that the reliability of a CServ Internetwork Service path

is a product of the reliability values, or edge weights, along the path - not a sum of the weights.

Furthermore, we discussed that the characterization of the delay of a CServ Internetwork Service path

involved summing the mean delay edge weights and the delay variance edge weights along the path

individually, not as one additive metric on each edge. How exactly can we leverage Dijkstra's Algorithm,

then, to find paths in terms of either of these types of metrics? In one case, the answer is simple and

straightforward. In the other case, it is not so cut and dry.

274

I aramietCr

Niumher of nodes

Number of fink..

Average Uode degree

ILlgest 44(4' deg ref.

Lcast node1 degree

p
Fig. 5-6: This example U.S. optical backbone network is reproduced from [84] and used to characterize

the absolute running time of an instance of Dijkstra's Algorithm on a realistic network graph.

600 800 1000

Fig. 5-7: The worst-case execution time of Dijkstra's Algorithm

using the Intel i7 Extreme Edition 3960X reference processor.

on a complete graph with IVI vertices

275

Value

60
77

2.6

-0 50-
C
0
U

o40-

E
(P 30 -E
txJ

C
20-

M010-.-

> 0-
0

/

/

/

'7

200 400

M

5.2.4.1 Dijkstra's Algorithm and Reliability

Let us consider how to use Dijkstra's Algorithm to find a CServ Internetwork Service path when the

primary CServ performance metric specified by the CSR is reliability. We continue to use a generic

network digraph G, but the additive, nonnegative edge weight set W is left unspecified for the moment.

Let us assume, instead, that we have an edge weight set P such that there exists a last reported

reliability value Pe E P from the State Measurement Service for each edge e E E, where 0 pe 5 1

V Pe E P. Because the reliability of a CServ Internetwork Service path is a product of the reliability of the

hops in the path, not the summation of the reliability of the hops, we cannot directly use P as an

additive, nonnegative edge weight set. However, there is a convenient mathematical transform that

allows us to map the reliability values in the edge weight set P to appropriate values in the nonnegative,

additive edge weight set W such that we can use Dijkstra's Algorithm as presented to find a CServ

Internetwork Service path with optimal path reliability.

We consider the following transformation of a reliability value Pe E P to a nonnegative, additive edge

weight we E W:

We = -ln(Pe). (5.12)

The function f(x) = -ln(x) is monotonically decreasing on the interval 0 < x 5 1, as shown in Fig. 5-8.

At the boundaries, -ln(O) = oc and - In(1) = 0. Thus, an edge with Pe = 1 maps to a nonnegative,

additive edge weight of 0, the minimal value over the support of the transform function, while an edge

with Pe = 0 (which can equivalently be considered the lack of an edge in terms of reliability) maps to a

nonnegative, additive edge weight of infinite value, the largest over the transform function's support. As

Dijkstra's Algorithm searches for the shortest path with the minimized sum of its edge weights, it would

therefore find the most reliable path using this mapping P -> W.

Additionally, the transform of Eq. (5.12) provides a convenient inversion method to recover the

reliability of the discovered CServ Internetwork Service path. Consider the effect of the transform on the

expression for the reliability of a CServ Internetwork Service path from Eq. (5.4) using the simple integer

enumeration of the hops in the path and letting w represent the transformed sum weight of the path:

276

h

p =Pi

h h

Sw = wi= -ln(p).
i=1 i=1

(5.13)

Note that for destination vertex t E V, the value w = [t from the output of Dijkstra's Algorithm.

Considering Eq. (5.13), we note that we can find p from w with the following inverse transform:

p = e " = ert. (5.14)

I
After the execution of Dijkstra's Algorithm using the nonnegative, additive edge weight set W generated

from the reliability edge weight set P using Eq. (5.12), we can recover the reliability of the shortest (or

most reliable) path and the details of the most reliable path itself using the output of the algorithm and

Eq. (5.14). This transform and inverse transform process is demonstrated visually for an example CServ

Internetwork Service path in Fig. 5-9. The delay of the discovered CServ Internetwork Service path can

then be computed using the sums of the last reported mean delay and delay variance performance

metrics and Definition 4.

6

w = -ln(p)

4-

3-

2

1o

0 0.2 0.4 0.6 0.8

Fig. 5-8: This transform is used to represent the reliability CServ performance metric as a nonnegative,

additive graphical edge weight.

277

7

8 0 0.99 0 0.99 095 09

Transform to nonnegative, additive weights:
w= -ln(pi)

0.0304592075; 0.1053605157 0-0512932944

0.0202027073 0.0100503359 0.0100503359 0.0100503359

Path distance 0.2374667326
Inverse transform to path reliability:

p = C-(0.2374667326) = 0.788623126

Fig. 5-9: This example illustrates the transformation of reliability edge weights and the inversion to

recover the CServ Internetwork Service path reliability from the output of the shortest path algorithm.

278

5.2.4.2 Dijkstra's Algorithm and Delay

We now wish to use Dijkstra's Algorithm to find a CServ Internetwork Service path when the primary

CServ performance metric specified by the CSR is delay. While the algorithmic discovery of the most

reliable CServ Internetwork Service path given the internetwork graph and last reported CServ reliability

performance metrics only required a weight transform function, the discovery of an optimal delay CServ

Internetwork Service path is not so straightforward.

In the terminology of equilibrium theory [85], we can a priori assign a total preference order the edges

of the internetwork graph in terms of reliability. Consider edge (ij) and edge (i,k) with their

associated last reported reliability metrics from the State Measurement Service, p(ij) and P(i,k)'

respectively. Let P represent a preference operator on edges, where (ij) P (i, k) reads "edge (ij) is at

least as preferred as edge (i, k)." If p(ij) P(i,k), we can say (ij) P (i, k) with respect to reliability.

And if P(ij) < P(i,k), we can say (i, k) P (ij) with respect to reliability. Note that the tiebreaker

between the two values is arbitrary. In this same way, we can create a total preference order using the

P operator for all edges e E E with respect to their reliability values. This fact underlaid our success with

the reliability transform function in Eq. (5.12), mapping reliability values into nonnegative, additive edge

weights for the purpose of Dijkstra's Algorithm. The transform preserved the implicit ordering on the

edges in terms of reliability. Let us denote the reliability weight transform generically here as fA(-). With

this notation, the previous statement says that if (ij) P (i, k) in terms of reliability, then (ij) P (i, k)

in terms of Dijkstra's Algorithm after the function fp(-) is applied to the reliability edge weight set P for

the edges e E E.

Consider that for each edge in the internetwork graph, there is, along with the reliability values, an

associated pair of statistics reflecting the most recently reported mean delay and delay variance from

the State Measurement Service. For an edge (ij), we can represent this pair of mean delay and delay

variance statistics as (Pi@,j), 2,j)). Now we consider two edges (ij) and edge (i, k) with their

associated last reported delay statistics metrics from the State Measurement Service. Comparing the

mean delays and delay variances pairwise, consider all the following cases:

1. P(Q) = p(i,k), any relationship between c anj) and U2

279

2. o-2ij) 7(,k), any relationship between I(i,) and p(i k);

3 2 2.3. P(ij) < P(i,k) , 0 ij) < (i,k);

4. t(ij) > (i,k), 2 i,k)

0ki~ (i k);
6. pt(ij) < P(i,k), 0'i,j) > (i,k)-

In cases 1-4, we can compare the two edges using the preference operator P. Consider case 1 first. If the

mean delays are equal, then we prefer the edge with the smaller delay variance (with an arbitrary tie-

breaker). In case 2 where the delay variances are equal, we prefer the edge with the smaller mean delay

value (again with an arbitrary tie-breaker). Case 3 allows us to clearly state (ij) P (i,k), while

(i, k) P (ij) for case 4. But what about cases 5 and 6? In terms of the ultimate path delay as defined in

Definition 4, how do we know a priori if we prefer an edge with greater mean delay and smaller delay

variance or an edge with smaller mean delay and greater delay variance? The answer is that we do not.

Pairs of mean and variance values do not form a well-order. And because of this, we cannot generally

assign a total preference order for the edges e E E with respect to their delay statistics. Consequently,

there is no deterministic function that allows us to transform these statistic pairs into nonnegative,

additive edge weights that preserve any preference ordering.

Abstractly, given a generic network digraph G and a source and destination vertex pair s # t E V,

imagine that we can enumerate all possible paths between the two endpoints and calculate their delay

according to Definition 4. We index these paths i E [1,2, ... , z} and denote their delays as {di}iE{1,2,...,z)-

For simplicity, we assume that these paths can be indexed such that d, 5 d2 5 ... < dz. Let H

represent a preference operator on paths, where i HLj reads "path i is at least as preferred as pathj." In

terms of delay according to Definition 4, we can say that 1 H 2 H ... H z. Ideally, we would like a

method to develop a nonnegative, additive edge weight for G, accounting for the contributions of both

the mean delay and delay variance statistics, such that this total preference ordering is preserved. In

other words, if the sum of the nonnegative, additive edge weights for path i is denoted qpi, we want

(P1 !5 P2 5 .'' 5 qpz. If this is possible, then the use of Dijkstra's Algorithm is guaranteed to find the path

with the optimal delay according to Definition 4, or path 1 in this example. Unfortunately, because of

the result introduced above for the edges that makes it impossible to a priori determine a total

preference order, it is not possible to preserve this path ordering with a deterministic transform.

280

Additionally, the definition of the delay of a CServ Internetwork Service path cannot be decomposed

into additive edge-by-edge weights since the presence of the standard deviation in the expression of Eq.

(5.11) couples the delay variance terms from each hop in the path.

If we cannot rely on Dijkstra's Algorithm as a subroutine to discover a CServ Internetwork Service path

with optimal delay, how do we discover such a path? The only known solution at this time is to

enumerate all possible paths between the source and destination vertices, compute the delay for each

path according to Definition 4, and then choose the path with the minimum delay. Unfortunately, for a

generic graph, there may be -lV! paths between a given vertex pair. More formally, in [86], it was

shown that the enumeration of all possible paths between a pair of vertices in a graph belongs to the

class of computationally equivalent #P-complete counting problems that are at least as difficult as NP-

complete problems. The proposed use of Dijkstra's Algorithm is for its polynomial-time execution; we do

not wish to fall back on the brute-force enumeration of exponentially-many paths for the discovery

phase of the CSDCA, as this is highly likely to bust any reasonable CSR maximum delay requirement.

Before becoming completely flummoxed, we consider the true objective of the CSDCA. The goal of the

algorithm is to discover paths that satisfy the requirements of the CSR, not necessarily to discover and

present the optimal CServ Internetwork Service paths as the service solution. So the fact that we do not

have a computationally efficient method to guarantee discovery of the CServ Internetwork Service path

from a source vertex to a destination vertex with the minimal delay is not automatically an issue for the

CServ architecture and the CSDCA. If we discover a suboptimal path that satisfies the delay requirement

of the CSR, then we have a perfectly valid path to include as the presented service solution or part of the

service solution when employing subnet-disjoint diversity routing.

We propose the following approach to this problem. We create a heuristic nonnegative, additive edge

weight from the last reported mean delay and delay variance CServ performance metrics for each edge

in the internetwork graph. With these heuristic edge weights, we discover paths in the CSDCA, when

delay is specified as the primary CServ performance metric in the CSR, with Dijkstra's Algorithm. And to

validate the choice of heuristic as a reasonable one (although surely not the only one), we run random

network simulations and benchmark its performance against the status quo approach in the literature

(which relies purely on mean delay values as naturally nonnegative, additive edge weights without

transform).

281

Leveraging the definition of delay of a CServ Internetwork Service path, we suggest to probabilistically

bound the delay of each edge in G in the same way as the heuristic nonnegative, additive edge weight.

This bound gives us the delay of the edge based on the reports of the State Measurement Service such

that we are sure the actual realized delay of that edge is less than the weight value with "two-nines"

probability. We then treat these probabilistic maximum delay values as additive weights such that the

path distance for a given CServ Internetwork Service path is the sum of the weights of the edges in the

path.

Let us formally describe the transformation, which we call the Cantelli transform. We continue to use

the generic network digraph G, and we momentarily specify the values in the additive, nonnegative

edge weight set W. We assume that we have an edge weight set M such that there exists a last reported

mean delay value Ye E M from the State Measurement Service for each edge e E E, where Me >

0 V Pe E M. Furthermore, we assume that we also have an edge weight set Y such that there exists a

last reported delay variance value u E Y from the State Measurement Service for each edge e E E,

where qe > 0 V u, E Y. We propose the use of the following transformation of a mean delay value

Pe E M and a delay variance value ue2 E Y to a nonnegative, additive edge weight we E W such that the

random delay of the edge with unknown distribution other than the finite mean and variance is less

than the nonnegative, additive edge weight with probability 0.99:

We el ~ 2. (5.15)
We = Pe + 10(e . (.5

The rationale for this transform was developed previously in Section 5.2.3. As Me > 0 and Ce 0,

we > 0, satisfying the nonnegative requirement of an edge weight in the set W. As Dijkstra's Algorithm

searches for a path based on delay as the primary CServ performance metric, it uses the mapping

M, Y} -* W as specified in Eq. (5.15).

We note here that, unlike the transform for reliability discussed in Section 5.2.4.1, the Cantelli transform

of Eq. (5.15) does not provide a convenient method to recover the delay of the discovered CServ

Internetwork Service path. After the algorithm executes, the path distance value Ft from the output for

destination vertex t E V cannot be inverted directly to find the path delay since the end-to-end delay

metric is not decomposable. Instead, the resulting discovered CServ Internetwork Service path, mined

282

from H with extractshortestpath, is used to compute the delay of the path d using the path sum mean ti

and sum variance U2 from the original edge delay statistics, {M,Y}, and Eq. (5.11). The Cantelli

transform process is demonstrated visually for an example CServ Internetwork Service path in Fig. 5-10.

The only useful thing that we can prove from the Cantelli transform is that the resulting F, d. This

follows from the subadditive property of the square root function. Consider a discovered CServ

Internetwork Service path from source vertex s E V to destination vertex t E V where we enumerate

the hops of the path as i = (1,2, ... , h). Based on the transform of Eq. (5.15), we have the following path

distance in terms of the reported delay statistics for each hop of the path:

h h

t = 10 C +I pt. (5.16)

Alternatively, using the result of Eq. (5.11), we have the following form for the delay of the CServ

Internetwork Service path in terms of the reported delay statistics for each hop of the path:

h h

d = 10 U + I,. (5.17)
d=1 =(ja)~i

The function f(x) = xa is subadditive for 0 < a < 1 (and specifically, for a = 1/2 for our purposes

here), meaning that f(b + c) f(b) + f(c). Applying the subadditive property to Eqs. (5.16)-(5.17),

we have:

h h

and the stated result that Pt d follows. What does this result mean for the CSDCA? If the path

distance of the discovered CServ Internetwork Service path using the heuristic nonnegative, additive

edge weight satisfies the delay requirement of the CSR, then the actual delay of that CServ Internetwork

283

Service path certainly does. From that point of view, we do not need to compute the actual delay of the

CServ Internetwork Service path explicitly. However, if the path distance of the discovered path using

the Cantelli transform exceeds the delay requirement of the CSR, then we still need to compute the

actual delay of the CServ Internetwork Service path since it may or may not satisfy the demands of the

CSR requirement.

The question remains as to the effectiveness of the Cantelli transform. How often does it discover the

actual optimal delay CServ Internetwork Service path? Does it outperform the status quo which employs

only the mean delay values as edge weights? And, most importantly, how frequently does it fail to find a

CServ Internetwork Service path that meets the delay requirement of the CSR when there exists such a

path? To answer these questions, we create a random network simulation to study the performance of

the proposed heuristic.

We generate random internetwork topologies of the form of Fig. 5-11. The variable of the experiment is

the number of candidate subnet-disjoint CServ Internetwork Service paths from a given source to a

given destination. The integer number of edges or hops in each candidate path is chosen independently

from a fixed uniform distribution with support over the range [3,5]. Once a random internetwork

topology is generated, we draw the delay statistics for each edge, namely the mean delay and delay

standard deviation, independently from two separate uniform distributions. For the results presented,

the mean and standard deviation of the mean delay generating distribution are 100 and 10 milliseconds,

respectively. And the mean and standard deviation of the delay standard deviation generating

distribution are 10 and 5 milliseconds, respectively.

Once the random network instance is fully characterized, we compute the nonnegative, additive edge

weights using the Cantelli transform as previously described and leverage Dijkstra's Algorithm to

discover the shortest path based on these weights. The resulting path with the minimal path distance is

compared to the actual minimum delay path based on the definition of the delay of a CServ

Internetwork Service path in order to calculate the frequency with which the optimal CServ

Internetwork Service path is discovered over 10,000 random internetwork realizations per independent

parameter value. The results of the simulation are depicted in Fig. 5-12.

284

The results indicate that the heuristic approach clearly outperforms the status quo technique. The

difference in their performance diverges as the number of candidate subnet-disjoint CServ Internetwork

Service paths increases, although they both eventually stabilize. At the point when the performance

begins to find a steady state, the path discovery approach using mean values as the edge weights finds

the optimal delay path less than 30% of the time, whereas the Cantelli transform heuristic does so more

than 80% of the time. It would seem that the suggested heuristic is a serviceable method to find CServ

Internetwork Service paths with reasonable delay, even if it misses the path with the minimum delay

13% of the time when there are ten candidate subnet-disjoint paths (which may be near the maximum

for realistic CServ network deployments) in our simulation. Similar comparative performance results

were observed for other generating distributions and simulation parameters.

But as we discussed previously, it is not really the frequency at which the algorithm fails to find the

optimum path in terms of delay that matters; it is the frequency at which the algorithm fails to find a

path that meets the CSR delay requirement when that path exists in the network. Using the same

simulation framework, we introduce the CSR delay requirement as a variable and quantify the frequency

with which Dijkstra's Algorithm with the Cantelli transform misses the discovery of a CServ Internetwork

Service path that satisfies the delay requirement of the CSR when it exists. As before, 10,000 random

network instances are used to characterize the performance for each tested value of the CSR delay

requirement. The number of candidate subnet-disjoint paths in each simulated network is 10, and the

integer number of hops per candidate path is again pulled independently from a uniform distribution

over the support [3,5]. The delay statistics generating distributions are left just as before. The results of

this experiment are visualized in Fig. 5-13.

Interestingly, there is a narrow window of opportunity as a function of the CSR delay requirement where

the algorithm may fail to find an existing path that meets the demand. This period occurs near the tail of

the observed "solution existence phase transition," after which paths that satisfy the CSR delay

requirement always exist. At its peak, the frequency of missing existing paths that satisfy the

requirement is only around 2%. However, once the CSR delay requirement reaches the point at which

solutions are almost always available, the heuristic algorithm no longer misses existing solutions. Rather,

there is an approximate steady-state distribution over finding the optimal delay path or finding a path

with delay that meets the CSR requirement but is suboptimal. We note here that the steady state

frequency of discovering optimal delay paths matches the results previously observed in Fig. 5-12 when

285

the number of candidate CServ Internetwork Service paths is also 10. As the CSR delay requirement

continues to increase, it becomes increasingly trivial for the algorithm to discover a path that represents

a solution as long as the random network parameters are held constant.

The bottom-line message developed by this simulation is that there is negligible risk of overlooking valid

paths in the operational regime where CServ Internetwork Service path solutions are readily available

for most network instances, say greater than 99% of the time. Thus, the strategy for CSDCA success

during the discovery phase when delay is the primary CServ performance metric is to avoid CSR

generation with delay requirements riding the ragged edge of solution availability. It is in this regime

that there is the greatest risk of missing existing path solutions. As long as CSR delay demands fall in the

regime where CServ Internetwork Service path solutions are readily available, the heuristic algorithm

using the Cantelli transform should find a path that meets the requirements even if it is not a path with

optimal delay. The CServ source host should generate CSRs with the maximum tolerable delay for its

critical messaging application. If the delay requirement is artificially tightened by the service requestor,

there is a risk of service access denial when the CSDCA cannot discover (or compose) CServ Internetwork

Service that satisfies the overly restrictive requirements.

286

Mean: 10 Mean: 50 Mean: 10 Mean: 100 Mean: 10 Mean: 100 Mean: 5
Variance: 4 Variance: 25 Variance: 1 Variance: 36 Variance: 4 Variance: 25 Variance: 1

Cantelli transform to nonnegative, additive weights:
w,= ji + 1OT

30 100 20 160 30 150 15

Path distance = 505
Path delay = 382.98

Fig. 5-10: This example illustrates the Cantelli transformation of delay statistic edge weights to

nonnegative, additive edge weights for Dijkstra's Algorithm, as well as the difference between the

resulting path distance output of the algorithm and the CServ Internetwork Service path delay.

Number of candidate
CServ Internetwork

Service paths

Maximum number of hops in a
CServ Internetwork Service path

Fig. 5-11: Random internetwork topologies for the simulation are generated using a particular number

of candidate CServ Internetwork Service paths and random number of hops per path drawn from a

uniform distribution with a particular maximum value.

287

Q- 0. 9

0.8

0.7

6-0.6

0.5

OU 0.4

0.3
0

0.2

0.1

L
2 4 6 8 10 12 14 16 18 20
Number of candidate subnet-disjoint CServ Internetwork Service paths

Fig. 5-12: These random simulation results show the frequency at which Dijkstra's Algorithm discovers

the optimal delay CServ Internetwork Service path using the Cantelli transform versus the mean delay

values as edge weights.

1

0.9

0.8

0.7

0. 6

0.5

0.4

0.3

0.2

0.1

0
200

-- No s
Opti
Subo

- Existi

olution available
nal path solution found
ptimal path solution found
ng solution missed

300 400 500 600
CSR delay requirement [milliseconds]

700 800

Fig. 5-13: These random network simulations show the frequency with which Dijkstra's Algorithm, using

the Cantelli transform to generate nonnegative, additive edge weights, misses the discovery of an

existing CServ Internetwork Service path solution that meets the CSR delay requirement.

288

- Mean edge weights
-- cantelli transform edge weights

1 1

I - I-

5.3 The Graphical Internetwork Representation

In the previous sections, we referred to a generic network graph of vertices and edges without context.

We are now prepared to discuss the actual CServ internetwork structure at the MC's global level and its

graphical representation. The importance of this internetwork graph is that it is the primary input to the

CSDCA, along with the information from the CServ source host-generated CSR. The constant

maintenance and availability of this graph at the MC is fundamental to the operation of the CServ per-

transaction, pre-transmission control overhead.

We briefly recall the types of reports generated by the State Measurement Service running in each

subnet that are propagated to the MC. After the SC filters the reports that are relevant only to

intranetwork service and intranetwork CServ transactions, the remaining CServ performance metric

estimation reports used by the MC are:

1. internal active gateway router to active gateway router performance measurements;

2. external active gateway router to internal active gateway router peering connection

performance measurements;

3. internal active access router to active gateway router, and vice versa, performance

measurements;

4. and each active access router's access network upstream and downstream performance

measurements.

Throughout the remainder of this chapter, we use the following notation when analyzing data size and

algorithmic complexity. This terminology differs slightly from that of Chapter 4 where the focus was on

the individual subnet. First, we assume that there are ns subnets that form the network, the addresses

of which are members of the set Ns. In each subnet, there are ng active CServ-enabled gateway routers

and na access routers. The assumption on the same number of active routers per subnet (and same

fractional division between active access and gateway routers) is for analytic convenience; the actual

number of active access and gateway routers would likely vary from subnet to subnet based on the

subnet's topology, structure, function, communication technology, and network operator. Also for the

purpose of an analytical model, we assume that each active gateway router has p > 1 peering

connections with active gateway routers in adjacent subnets and that each active access router in the

289

subnet has only one connected access network. Applying this terminology to the types of State

Measurement Service reports generated and transmitted to the MC from each subnet, we have that:

1. ng(ng - 1) internal active gateway router to active gateway router performance metric entries;

2. png external active gateway router to internal active gateway router performance metric

entries;

3. 2 ngna performance metric entries between internal active gateway routers and active access

routers;

4. and 2na active access router upstream and downstream performance metric entries;

are stored, and updated by future reports, at the MC.

As we present the discussion of the internetwork graph and the CSDCA, we rely on the recommendation

from Section 3.1.1 regarding the use of hierarchical addressing in the CServ network. Specifically, we

assume that given the address for a particular CServ-enabled host, the MC can quickly resolve the

address of the upstream active access router that provides connection to the subnet routing core and

the address of that subnet using simple bitmask operations on the host address. In other words, the

endpoint host address contains the addresses of the upstream active access router and its subnet. And

likewise, the upstream access router's address contains the address of its subnet.

As one final prerequisite for the discussion, we assume the existence of a database at the MC that

contains the identities of the participants in CServ operation. The population and maintenance of this

database is the result of the association-disassociation protocol that we have previously referred to,

although its implementation has not been explicitly covered in this dissertation. The concept is that

CServ-enabled host devices and active CServ-enabled routers need to inform the MC (and their

respective SCs) when joining or leaving the network. A CServ-enabled endpoint that has not associated

with CServ cannot request service until it has done so. Furthermore, an active CServ-capable router

cannot be part of the CServ network or internetwork graph until it has associated. The MC maintains a

data structure with the addresses of associated devices, which can be implemented in hierarchical

fashion in line with the hierarchical addressing structure. The most important aspect of this protocol is

that a multihomed CServ-enabled host with multiple addresses (corresponding to multiple upstream

access routers and, possibly, multiple subnets) needs to associate in order to bind these addresses as

290

one device. In this way, when a service request is made with one of those addresses as the source or

destination of the CServ transaction, the MC can map that address to the set of addresses representing

the same device in order to fully leverage the multihomed connections for the discovery and

composition of CServ Internetwork Service. This is considered in more detail later in this section and in

the next section covering the CSDCA.

5.3.1 The "Natural" Representation

In Section 2.2.1, we introduced the subnet as the logical participant in the CServ global internetwork

routing architecture. CServ Internetwork Service paths for critical datagrams follow explicit subnet-to-

subnet granularity routes, where the internal routing behavior of the subnet (the CServ Intranetwork

Service for that subnet) appears to be a "black box" to the rest of the global network. This lead us to

illustrate the network at a global abstraction level as shown in Fig. 5-14 (a simple internetwork example

with only four subnets), highlighting the role of the subnet as the central logical participant for CServ

Internetwork Service determination.

This type of representation seems most "natural" given our description of the CServ architecture. The

source host is part of a source subnet, the destination host (of an internetwork CServ transaction) is part

of a destination subnet, and the role of the MC is to discover paths of transit subnets that, together, get

the critical message from the source subnet to the destination subnet with a particular level of reliability

and within some probabilistically guaranteed amount of time. The type of representation of Fig. 5-14

not only represents the subnets participating in the CServ architecture at the global level, but it specifies

the logical peering relationships between them. An edge in this graph connecting two subnet vertices

tells us that there is at least one peering connection between active gateway routers in the subnets.

Thus, following the connectivity of this graph, we can say that there exists a path between a pair of

source and destination subnets. It even empowers us to search for the number of subnet-disjoint paths

available between a particular pair.

But this is not enough for the purposes of the CServ architecture. First, consider that the edges only tell

us about logical peering connections - that there is at least one pair of peering active gateway routers

between those neighboring subnets. If there are several pairs of peering active gateway routers that

comprise that logical peering connection, then the discovery and specification of a CServ Internetwork

291

Service path may need to distinguish between the use of one or the other. For example, imagine the

scenario where one physical peering connection between two neighboring subnets is perfectly reliable

and has almost zero delay according to the reports of the State Measurement Service, while a second

physical peering connection loses every other transiting datagram and has high delay variability. The

discovery of a CServ Internetwork Service path that includes that sequence of neighboring subnets in

the path would clearly want to explicitly specify the use of the first physical peering connection. And

second, consider that the performance experienced during the transit of a particular subnet by an

internetwork CServ datagram could (and probably does) depend on the physical pair of active gateway

routers used as the ingress and egress points for that subnet. The State Measurement Service used in a

particular subnet learns the CServ performance metrics between physical active gateway router pairs,

not between sets of gateway routers that together represent logical peering points with an adjacent

subnet. An understanding of the ingress and egress logical peering connections would not provide this

desired granularity of insight into the CServ Internetwork Service path.

So although the subnet is the central participant in the internetwork at the global level, particularly in

the determination of diversity-routed service that uses subnet-disjoint paths, the emphasis is on the fact

that it is the central logical participant. The objective of the CSDCA is to discover subnet-to-subnet

granularity paths, but it must do so in terms of the physical active routers that participate in the service

path in order to have a complete understanding over the performance of a particular path and control

over the composition of service using subnet-disjoint CServ Internetwork Service paths. Therefore, the

"natural" representation depicted in Fig. 5-14 is not the representation of the internetwork topology

maintained by the MC. In the next section, we formalize the actual CServ internetwork graphical

representation.

292

Fig. 5-14: This generic example demonstrates the "natural" representation of the CServ internetwork

structure with the subnet as the central participant. In this representation, the vertices signify subnets

while the edges represent logical peering connections between adjacent, or neighboring, subnets.

293

5.3.2 The Common Internetwork Representation

The discussion of Section 5.3.1 motivates the actual internetwork graphical representation maintained

by the MC. In this part, we describe the "common" representation. This is the version of the

internetwork graph that the MC holds, updating as new State Measurement Service reports arrive, and

provides as the baseline for all transaction specific CSRs. In the next section, we discuss the transaction-

specific graphical modifications to the common baseline necessary to discover and compose CServ

Internetwork Service particular to the source and destinations host of the transaction requested

through the CSR. The reliance upon the common internetwork graph framework, however, saves the MC

from constructing a separate internetwork representation for each incoming CSR, thus reducing the

controller workload and complexity.

The common internetwork graphical representation is predicated on the active gateway routers that

form the CServ network. Except at the ends of the CServ Internetwork Service path for the source and

destination subnets, all addresses in the path string are those of active gateway routers. These routers

serve as the interfaces that allow for the use of a subnet as a transit subnet in a CServ Internetwork

Service path. If we abstractly consider the subnet as a router in a "subnet-to-subnet" routing core, the

active gateway routers within the subnet are the "ports" for that router. The CServ Intranetwork

Services within the subnet, the details of which are unknown to the IVIC, connect the active gateway

router "ports" internally and form a "switching fabric." These internal connections between active

gateway routers are represented logically by the State Measurement Service reports from internal

active gateway router to active gateway router. The physical external peering connections between

active gateway routers in neighboring subnets, on the other hand, form the connections between

routers in this theoretical notion of the "subnet-to-subnet" routing core. These external connections are

also represented by the State Measurement Service reports, but they are physical peering connections

rather than logical representations of a connection.

Removing this illustrative "router" abstraction, the vertices in the common internetwork graphical

representation are the active gateway routers in the network. This means that there are n, X n.,

vertices in the graph according to our analytic notation. The edges between these vertices represent

one of the following:

294

1. logical internal active gateway router to active gateway router connections formed by the CServ

Intranetwork Services within the subnet;

2. or physical external peering connections between active gateway routers in neighboring

subnets.

The active gateway routers that belong to the routing core of the same subnet, then, are connected as

complete graphs (or full meshes) in the common internetwork graphical representation. Consistent with

our discussion of the State Measurement Service reports, there are ng(n - 1) directed edges internal

to each subnet within the representation and a total of n, x nq(ng - 1) of these types of edges in the

whole common internetwork graph. We can consider that the last reported CServ performance metrics

for these logical internal connections are the set of edge weights in the graph. The connections between

these local complete graphs of active gateway routers are the physical peering connections between

active gateway router pairs in neighboring subnets. With the assumption that each active gateway

router has p external active gateway router peers, there are a total of p x n. X ns of these types of

directed edges in the common internetwork graph. Again, the last reported CServ performance metrics

for these physical external connections are the set of edge weights for these edges in the graph. In the

end, we have a common internetwork graph with complete subgraph cliques of densely connected

vertices, each representing a subnet in the CServ architecture. The connections between the cliques,

however, are comparatively sparse.

We have specified that active gateway routers within a subnet should be connected as a full mesh in this

common internetwork graphical representation. What if there is a pair of active gateway routers within

a subnet that actually does not communicate or with a last reported State Measurement Service entry

that has exceeded its time to live without a keep alive or update report? This should be a rare situation,

but we would not want this pair of routers used within a CServ Internetwork Service path. Although we

show the connection graphically, this lack of a connection can be encompassed in the edge weights

applied to the edge between them. Specifically, the reliability of the edge can be set to zero, while the

mean delay and delay variance (or, equivalently, the Cantelli transform value) set to infinity. With these

modifications, the edge connecting this pair in the representation effectively disappears from the graph.

Note that only active gateway routers are represented in the common internetwork graph; non-active

gateway routers are not vertices in this representation. Since non-active gateway routers cannot process

295

internetwork CServ datagrams and their associated control header format described in Chapter 3, they

cannot be hops along the CServ Internetwork Service path. As the common internetwork graph is the

baseline for the discovery and composition of CServ Internetwork Services using the CSDCA, we do not

want any routers in this representation that cannot participate in the discovered output paths.

An example common internetwork graphical representation corresponding to the "natural"

representation of Fig. 5-14 is shown in Fig. 5-15. Note that this is only one of many possible networks

that would correspond to the same "natural" representation of Fig. 5-14. In Fig. 5-15, logical connections

representing CServ Intranetwork Service internally between active gateway routers are shown as dotted

edges. Alternatively, physical external peering connections between active gateway routers in

neighboring subnets are illustrated as solid edges. This figure drives home the fact that a logical peering

connection between adjacent subnets might actually subsume multiple physical peering connections

between sets of active gateway routers in both subnets.

Fig. 5-15: This shows one possible common internetwork graphical representation maintained by the

MC that corresponds to the "natural" representation of Fig. 5-14. The dotted edges are logical internal

connections implemented by local CServ Intranetwork Services, while the solid edges are physical

external peering connections between active gateway routers in neighboring subnets.

296

5.3.2.1 The Common Internetwork Cost-Adjacency Matrix

The description and illustration of the internetwork topology as a graph in Section 5.3.2 is didactic, but

we need a convenient data structure to summarize this information for the purposes of the CSDCA. In

this section, we describe the actual data structure maintained by the MC to encode the common

internetwork graph. Specifically, we use a cost-adjacency matrix.

We begin by defining a general cost-adjacency matrix, and we then specialize it for the purposes of the

common internetwork representation. A cost-adjacency matrix A is a square matrix, say n x n. Each

individual element of this square matrix, aij V iJ E 1,2,...,n} represents both the existence or non-

existence of a logical communication connection from device i to device j and the weight assigned to

that connection. Depending on the type of weight used and its numerical support, the non-existence of

a logical communication connection might either be represented as 0 or 0o. For now, we say that

aii = oo if there is no logical communication connection from device i to device j. Similarly, by

convention, we let ai = x. Otherwise, if there is a logical communication connection from device i to

device j, the element aij is set to the value of the weight of that communication link. Given a cost-

adjacency matrix A, we can interpret this visually as a directed graph of n vertices with a directed edge

from vertex i to vertex j whenever aij * oo.

We apply this cost-adjacency matrix representation to our common internetwork graph. For notational

simplicity, we let n = n, x ng. We define a three-dimensional cost-adjacency matrix C with the

dimensions n x n x 4 for the common internetwork graph. Each "plane" of the matrix, Cijk V iJ E

{1,2,...,n} and some k E {1,2,3,4}, is itself independently a cost-adjacency matrix. The need for four

"planes" comes from the set of different CServ performance metrics, namely the reliability, the mean

delay, and the delay variance. Why then are there four planes? The fourth is maintained for convenient

access to the Cantelli transform introduced in Section 5.2.4.2. We still need the original reported mean

delay and delay variance CServ performance metrics; we cannot discard these reported values once the

Cantelli transform values are calculated and updated. But we note that the maintenance of the mean

delay values, the delay variance values, and the Cantelli transform values is redundant. Any one of them

can be recovered from the other two. If necessary, the cost-adjacency matrix C can be reduced to

n x n x 3 to save space at the MC by only keeping two of these three values. For now, however, we

assume that all three values are held.

297

Let us formalize the contents of each plane of the cost-adjacency matrix C. In this description, we use

the notation i - j to mean that router i has a directed edge to router j in the common internetwork

graph. This edge may be either a logical connection resulting from CServ Intranetwork Service

connecting two active gateway routers within a subnet, or this link may be a physical connection

resulting from a peering connection between active gateway routers in adjacent subnets. Similarly, we

use the notation i -+ j to mean that router i does not have a directed edge to router j in the common

internetwork graph. Throughout this description, we enumerate the active gateway routers in the

common internetwork graph from the set {1,2,...,n = ns x n.) for notational convenience, but we

assume that the MC can index these routers and the entries of the cost-adjacency matrix by the actual

active gateway router addresses in the CServ framework.

First, we consider the "reliability" plane of the cost-adjacency matrix C. We call this the k = 1 plane. If

i -> j V i # j E [1,2, ... , n}, cLj1 is set to the negative logarithm of the last reported reliability value from

the State Measurement Service for the connection from active gateway router i to active gateway

router j. We pre-calculate and maintain the transform introduced in Eq. (5.12) since this is the input

used for CServ Internetwork Service path discovery (and the original reported reliability value can always

be recovered using the inverse transform). So if the last reported reliability value from the State

Measurement Service for the connection from active gateway router i to active gateway router j is pij,

then cijl = -lnfpij}. Otherwise, we set cijl = co if i -> j. Note that cijl = 0o can be interpreted as a

reported reliability of zero between active gateway router i and active gateway router j. By our

convention, we also have that ci1i = oo V i E [1,2,..., n}.

Second, we consider the "mean delay" plane and the "delay variance" planes of the cost-adjacency

matrix C. We call these the k = 2 and k = 3 planes, respectively. If i -> j V i # j E [1,2, ... , n}, cij 2 is

set to the mean delay value from the last State Measurement Service report for the connection from

active gateway router i to active gateway router j. Likewise, if i -* j V i # j E [1,2, ... , n}, ci3 is set to

the delay variance value from the last State Measurement Service report for the connection from active

gateway router i to active gateway router j. Specifically, if the last reported mean delay and delay

variance values from the State Measurement Service for the connection from active gateway router i to

active gateway router j are pij and a , respectively, then Cii2 = pij and Cii3 = 71. If i +> j]and there

298

are no received reports regarding the delay statistics between these routers, then we set Cii2 = Ci3=

oo. By convention, we also set cU2 = Ci3 = 0o V i E {1,2, ... ,n}.

Lastly, we consider the redundant "Cantelli transform" plane that is pre-computed and maintained by

the MC for convenience, which we call the k = 4 plane. Since the Cantelli transform values are used for

CServ Internetwork Service path discovery, the immediate availability of these values, which are

updated each time a new State Measurement Service report updates the mean delay and delay variance

values, saves the MC from computing this plane after receiving the CSR (and becoming part of the pre-

transmission control overhead delay of the CServ architecture). The mean delay and delay variance

planes are both kept in the cost-adjacency matrix C, however, because these raw values may be needed

to compute the delay of a CServ Internetwork Service path once it has been discovered by the Cantelli

transform heuristic. If i -+ j V i * j E f1,2,...,n}, cij4 is set to the Cantelli transform value calculated

from the last reported mean delay and delay variance values from the State Measurement Service for

the connection from active gateway router i to active gateway router j. Specifically, if the last reported

mean delay and delay variance values from the State Measurement Service for the connection from

active gateway router i to active gateway router j are pij and ?ij, respectively, then ci14 = pij +

10 a according to Eq. (5.15). If i +> j and there are no received reports regarding the delay statistics

between these routers, then we set Cij4 = co. By convention, we also have ciU4 = 00 V i E f1,2, ... , n}.

If all fields in the cost-adjacency matrix are represented as 64-bit double-precision floating point

numbers, what is the size requirement of the n x n x 4 common internetwork graph cost-adjacency

matrix C? There are 4n2 entries in the entire matrix, and thus its persistent storage requires at least

256n2 bits of memory at the MC. If we consider a CServ internetwork example with n, = 100 subnets

and n. = 10 active gateway routers per subnet (so n = 1000), then the common internetwork graph

representation C needs 256 Mb (or 32 MB) of storage. The minimum necessary memory for the

common internetwork representation grows asymptotically as O(n2) or O(n, 2 n. 2).

A small example of this cost-adjacency matrix representation of a common internetwork graph is shown

in Fig. 5-16.

299

C: k = 1 plane

00 0.0202 0.00501
0.0101 o 0.0513!
0.0050 0.0010 co

C: k = 3 plane

00 16 1]
25 oo 1.51
2 1 oo.

Fig. 5-16: The equivalent cost-adjacency matrix representation of a small toy common internetwork

graph is shown. The cost-adjacency matrix C is maintained and updated by State Measurement Service

reports at the MC for use in the CSDCA upon arrival of a CSR.

300

I1

Reliability: 0.995

Mean delay: 10

Delay Variance: 2
Reliability: 0.98

Mean delay: 40

Delay Variance: 16

Reliability: 0.99

Mean delay: 45

Delay Variance: 25

- _ 1_

C
Reliability: 0.995

Mean delay: 10

Delay Variance: 1

Reliability: 0.999

Mean delay: 8

Delay Variance: 1

Reliability: 0.95

Mean delay: 12

Delay Variance: 1.5

C: k = 2 plane

o 40 101
45 co 12
10 8 oo

C: k = 4 plane

80
co 24.

21 18

00
95

24.14

20
2475
o

5.3.3 The Transaction-specific Internetwork Representation

The common internetwork representation is the structural foundation for the CSDCA maintained by the

MC. CServ Internetwork Service paths consist primarily of a series of active gateway routers that serve

to direct the CServ datagram from subnet to subnet on its journey from source subnet to destination

subnet. However, the initial and ultimate hops are not yet part of this representation. Before the CServ

datagram departs the source subnet via an active egress gateway router, the critical message must first

find its way to the subnet's routing core. And once the CServ datagram reaches the ultimate subnet -

the destination subnet - it needs to find its way to the correct active access router in the subnet's

routing core that provides upstream access for the destination host of the transaction.

In some scenarios, this may be a simple default scenario. Consider the situation in which the source and

destination hosts are both single-homed devices in their respective subnets. Under this condition, there

is no concern as to which upstream access router the CServ datagram needs to make its way to - there

is only one option in each subnet. The only modeling aspect necessary for the CSDCA that is not part of

the common internetwork representation, then, is the learned and reported CServ performance metrics

that connect the source host to the source subnet's egress gateway router, and the destination host to

the destination subnet's ingress gateway router.

Alternatively, consider the scenario in which either or both the source and destination hosts are

multihomed. The host may either have upstream access to the source subnet's routing core by way of

multiple access routers in different access networks, or the host device may even be part of multiple

subnets with upstream access to the routing core in each source subnet via a different upstream active

access router. It is for this reason that CServ Internetwork Service paths contain the active access

routers in the explicit source subnet to destination subnet path information - to specify the correct

upstream active access router providing the desired level of performance in the case that there are

multiple options. In either case, we need the necessary connection information and last reported CServ

performance metrics from the State Measurement Service in order to complete the end-to-end picture

that allows the CSDCA to quantify the end-to-end performance of the requested CServ transaction. This

information is not part of the common internetwork representation.

301

Together, these scenarios motivate the need for a new CServ internetwork representation, one that is

specific to each particular CServ transaction request. This representation includes the endpoint host

devices of the requested transaction as well as their upstream connectivity to the routing core already

captured by the common internetwork representation. We call this representation the transaction-

specific internetwork representation. It is a simple transformation from the common internetwork

representation baseline that serves as input to the CSDCA based on a particular CSR, and it depends on

the source and destination hosts of the requested transaction as well as some State Measurement

Service information stored and maintained by the MC outside of the common internetwork

representation's cost-adjacency matrix.

Upon arrival of a CSR that identifies a particular unicast source and destination host pair, the

transaction-specific internetwork representation accounts for the following outstanding questions:

1. What is the source subnet or subnets in the CServ internetwork?

2. What is the upstream access router connectivity of the source host? Is this device a member of

multiple subnets? Is this device multihomed within the same source subnet?

3. What are the upstream CServ performance metrics for the access network or networks? What

are the last reported CServ performance metrics between the upstream access router and the

egress gateway routers of the source subnet or subnets?

4. What is the destination subnet or subnets in the CServ internetwork?

5. What is the upstream access router connectivity of the destination host? Is this device a

member of multiple subnets? Is this device multihomed within the same destination subnet?

6. What are the downstream CServ performance metrics for the destination access network or

networks? What are the last reported CServ performance metrics between the ingress gateway

routers of the destination subnet or subnets and the upstream access router?

Although it initially seems like a lot, the answers to most of these questions are contained within the

reports of the State Measurement Service to the MC from the constituent SCs, as described previously in

Chapter 4. The additional information needed comes from the association-disassociation protocol that

we have alluded to. In the following sections, we first describe the information that the MC needs access

to in order to prepare transaction-specific internetwork representation, and then we present the

302

modifications necessary to the common internetwork representation's cost-adjacency matrix to create

the necessary cost-adjacency matrix for the transaction-specific internetwork representation.

5.3.3.1 The Necessary Additional State Information

In this section, we discuss the additional state required to transform the common internetwork

representation into a transaction-specific internetwork representation. This state information is the

product of the State Measurement Service reports and the association-disassociation protocol, the

outputs of which are already stored and maintained at the MC upon the arrival of a CSR. The

information available when the CSR arrives is the information used in the creation of the transaction-

specific internetwork representation, and thus the information used in the discovery of CServ

Internetwork Service paths and the composition of CServ Internetwork Service.

The CSR specifies two fundamental addresses: the endpoints of the CServ transaction. We represent the

specified source address from the CSR as as, where this denotes the hierarchical address (possibly an

IPv6-style address) used to indicate the interface of the source device as discussed in Section 3.1.1.

Furthermore, we represent the destination host address specified in the CSR as at.

The first step of the state information retrieval process to prepare the transaction-specific internetwork

representation is to determine if either of these endpoint devices are multihomed. To do so, the MC

needs a data structure that stores the information of the association-disassociation protocol. Namely,

when a CServ-enabled device joins the network and intends to use the CServ architecture, it registers or

associates itself with the local SC and, in turn, that association message is passed to the MC. If the

device is multihomed, either connected to multiple access networks served by multiple upstream active

access routers or connected to multiple upstream active access routers in disparate subnets, the device

has multiple addresses due to the hierarchical nature of the addressing structure. The association

message binds these addresses together as representing one physical device. The multihomed device

does not necessarily care which interface the CServ datagram is transmitted on, as long as the service

provided over that path meets the requirements of the CSR. Therefore, the MC must maintain a

database which stores and, if necessary, updates these address bindings. We call this the address-

binding database. In general, this is a relatively static database; devices that are part of the CServ

network should change infrequently, and their address bindings are unlikely to change at all. If the CSR

303

indicates a source address a, that is bound to a physical device with multiple addresses, the result of a

lookup from this database keyed with source host address a, should return the set of any other

interface addresses bound to the same device, say As.b (which would be empty if the source host is

addr
single-homed). We represent this address binding lookup as as -- As-b. Together, we represent the

set of source addresses, which cannot be empty, as As = {as} U As.b. Regardless of the address

as E As used to perform the address binding lookup, the resulting set As should be the same. This is an

important consistency property required by the address-binding database. This lookup process can also

be used to determine that the requesting device is actually associated with CServ; if not, the MC can

reject the CSR and return a service denial message.

In the exact same way, the CSR indicates a destination address at. The source device for the CServ

datagram exchange does not care which interface the destination host receives the datagram on, as

long as the CServ Internetwork Service satisfies the performance demands of the CSR. Should the

destination host device be multihomed, we want to know the set of hierarchical addresses that are

bound to the same physical device. The address-binding database lookup procedure is repeated for the

addr
specified destination host address, at -- At-b, returning the set of any other interface addresses

bound to the same physical device through the association protocol, At-b. Together, the set of

destination addresses, which cannot be empty, as A, = {at} U At.h, and we require the same

consistency property in the lookup process as described for the CServ transaction source device. Again,

the address binding lookup process can be used to determine that the specified destination host device

is actually associated with CServ; if there are no entries for the device in the database, the MC can reject

the CSR as an impossible transaction and return a service denial message.

The second step of the state information retrieval process necessary to prepare the transaction-specific

internetwork representation is to find the upstream active access router for each interface address in

both sets, As and At, along with the necessary last reported CServ performance metrics from the State

Measurement Service. We begin the discussion with the source host and its associated set of source

host addresses, As. With the hierarchical addressing framework, we assume that there is a unique

upstream active access router for each address in the set As (in other words, active access routers

belong to one subnet routing core and are not themselves multihomed). In the case that there are

multiple access networks with the same upstream access router and the source host device is

304

multihomed to these access networks, the addressing scheme should be designed in a way such that the

upstream active access router can be treated as multiple devices since the reported CServ performance

metrics of the access networks are likely different. With this assumption, we have that there is a unique

upstream active access router with address aa-s for each a, E As. The address aa-s should be trivial to

determine with the hierarchical addressing style discussed in Section 3.1.1. Since the interface address

contains the address of the less-specific active access router providing connection to the routing core, a

simple bitmask operation is capable of recovering aa-s from as. We note that if hierarchical addressing

is not employed, an additional database for storage and lookup of the mapping from as to the

appropriate upstream access router address aa-s would be required for this operation. Likewise, the

subnet address a, for the source host interface and upstream access router can be easily recovered

from the source host interface address or upstream access router address using another bitmask

operation thanks to the hierarchical addressing scheme where the subnet address is contained in the

addresses of each.

With the upstream access router address aa.-s, we additionally require the State Measurement Service

reported performance information for this router. Namely, we need the upstream access network

performance metrics, denoted Tu", and the reported CServ performance metrics from the access

router to each upstream gateway router ag E Gans in the subnet, denoted a-. In the previous

statement, we used Gan-s to denote the set of addresses of active gateway routers in the subnet an.-s

Additionally, CServ performance metric sets T contain the last reported reliability, mean delay, and

delay variance values from the State Measurement Service. Ideally, we would like this last reported

State Measurement Service performance metric information to be stored in a database that is keyed

with the active access router address, aa-s. In other words, a lookup operation in this database using

aa-s should return 'Pu and wYu V ag E Gans. To make this database and lookup more general, it

could also return ow and pgowmn V a. E Gans , representing the downstream access network

performance metrics for the access router aa-s and the last reported CServ performance metrics from

each gateway router a. E Gan-s in the subnet to access router aa-s. As this is a source subnet, these

retrieved downstream metrics are not necessary and could be filtered after the database lookup. We

call this database the subnet internal-performance database, which is maintained by the MC and

updated by reports from the State Measurement Service running in each network subnet. We denote a

lookup of performance metrics using the subnet internal-performance database, and keyed by aa-s, as

305

perf(U lTOfl
aa-s a a, a-g a g a. E Gag uans). Applying the filter for a source subnet, we

effectively have aa-s a uj, au W } V a, E Ganj}

The same process is required for each upstream active access router aa-t for each at E At, except that

now we are interested in the downstream direction performance metrics as these are active access

routers providing upstream access to the routing cores in destination subnets. As before with the

hierarchical addressing framework, the addresses of the upstream access router, aa-t, and destination

subnet, an-t, for a particular destination host interface address at are trivial to determine with simple

bitmask operations. A lookup operation on the subnet internal-performance database keyed with the
u(qdown ftuP dw)aE

upstream access router address aa-t returns ty Wa , i g W2, 1 } V a E Gan-t , or with the

notation from before aa-t a aw, ag, a I V a. E Gan-t}. In this case, we can filter

the retrieved upstream direction performance metrics since aa-t is in the destination subnet, and

perf don yow Vaeffectively we have aa-t)- {WgO", {22Pr} V ag E Gan-ti.

We summarize the resulting additional state information gathered for a transaction-specific

internetwork representation, garnered from lookups using the address-binding and subnet internal-

performance databases. The input to this process is a pair of addresses, a, and at, the source and

destination host addresses specified in the CSR. The outputs of the process are the following sets of

trans
information, with the notation where a, {-} represents the transaction-specific state information

retrieved using the address as from the CSR:

t r a n s U V a E A s
* as -- {As, {aa-s, , Ya, t(agI V ag E GansV a E A);

trans
* at -- tAt, aa-t, an-t, Waown f go2n} V ag E Gant} V a E At}

The speed of these database lookups is of utmost importance since the delay of this state information

retrieval is part of the control overhead associated with the pre-transmission process that begins a

CServ datagram exchange. The transaction-specific internetwork representation cannot be prepared and

maintained prior to the arrival of a CSR since this would require the maintenance and storage of a

306

separate representation for each possible source and destination host pair in the entire CServ network,

most of which would be redundant information.

The design of the databases that are used to store and maintain this specific state information from the

State Measurement Service reports and association-disassociation protocol is not covered in this

dissertation. These structures should be considered in more detail in the future in order to minimize the

control delay associated with the preparation of the transaction-specific representation. In general, we

want the lookup and preparation process to be fast with predictable delay. Updates to these data

structures do not need to be as quick as the retrieval of information, but they should not be particularly

slow and cumbersome since the reports of the State Measurement Service may indicate fluctuating

CServ performance metric state during periods of subnet transience. Furthermore, these databases

should be accessible to multiple processes simultaneously, since each transaction-specific instance of

the CSDCA (and creation of a transaction-specific internetwork representation) needs access to the

information. Even without an optimized storage and retrieval framework, we expect the discovery phase

to dominate the running time required by the control overhead and CSDCA prior to the transmission of a

CServ datagram.

We suggest the consideration of multimaps (or multihash tables) [83] for the address-binding and

subnet internal-performance databases. Multimaps are generalizations of hash tables or hash maps,

which use hash functions to map single key-value pairs, for the mapping of one key to many values.

Since we have a fairly static set of well-known keys in both cases (either the hosts associated with CServ

or the active access routers in the network), the choice of perfect hash functions that avoid collisions

should be feasible. This allows for very desirable lookup performance properties. Specifically, perfect

hashing allows for constant time lookups in the worst case while the required storage space scales only

linearly with the number of entries.

5.3.3.2 The Transaction-specific Cost-Adjacency Matrix

With the necessary additional state information ready to go, we are ready to transform the common

internetwork representation into the transaction-specific internetwork representation. We first

introduce the concept graphically, and then we illustrate the creation of the transaction-specific cost-

adjacency matrix from the common cost-adjacency matrix. This transaction-specific cost-adjacency

307

matrix is the primary input to the CSDCA, along with the requirements from the CSR that initiates the

algorithm.

Considering the graphical interpretation of the common internetwork representation, developed in

Section 5.3.2, the only subnets in the graph that are modified to generate the transaction-specific

internetwork representation are the source and destination subnets (or, more generally, the sets of

source and destination subnets in case the source or destination hosts are multihomed). Otherwise, the

rest of the common internetwork representation remains unchanged.

At a minimum, the representations of two subnets are modified when the transaction-specific version is

created for the CSR of an internetwork CServ transaction: the source subnet and the destination subnet.

This is the case where both the source host and destination host specified in the CSR are single-homed.

We begin with this discussion, and then we generalize the discussion for the case where one or both of

the endpoints hosts are multihomed. As we discuss this case, consider the graphical example of Fig. 5-

17; the flow of the illustration shows the transformation of the common internetwork graph to a

transaction-specific internetwork graph.

In the first step, additional vertices are added to the graph. One vertex is added to represent the source

host, and another to represent the destination host. There is never more than one vertex for each

endpoint host, as the CSDCA functions to discover an internetwork path between these two explicit

endpoints. If we consider the domains of the subnets, the source host vertex is part of the domain of the

one source subnet in the single-homed case, and the destination host vertex is a member of the domain

of the one destination subnet. The next vertices appended to the graph represent the upstream access

routers that provide connection to the routing cores in the respective source and destination subnets.

One vertex is added for the upstream access router for the source host since the source host is single-

homed; this vertex can also be considered part of the domain of the one source subnet. And, likewise,

one vertex is added for the upstream access router for the destination host since the destination host is

also single-homed. Again, we can consider this vertex to be part of the domain of the one destination

subnet.

Then in the second step, the new vertices are connected to the baseline common internetwork graph.

Looking at the source subnet, the source host vertex is connected with a directed edge to its upstream

308

access router. This directed edge represents the access network that connects the source host device to

its upstream access router. The CServ performance metrics learned for the upstream connection to this

access router are applied to this edge. The upstream access router in the source subnet is then

connected, with a directed edge, to all active gateway routers that subnet (or to all other vertices in that

subnet except for the vertex that represents the source host). These directed edges represent the CServ

Intranetwork Services that connect the access router to each active gateway router in the subnet

routing core; the State Measurement Service reported CServ performance metrics for these connections

are applied to the new edges. Edges are added to connect the new vertices in the destination subnet in

nearly the same way; the different is in the orientation of the edges. Directed edges are added from

each active gateway router vertex in the destination subnet to the new vertex that represents the

upstream access router. These directed edges represent the CServ Intranetwork Services that connect

the gateway routers to the access router in the destination subnet routing core, and the learned CServ

performance metrics for these services are affixed to the edges. Finally, a directed edge from the new

vertex that represents the upstream access router in the destination subnet is connected to the

destination host vertex. This directed edge represents the downstream direction for communication on

the access network that connects the upstream access router to the destination host device. In the

single-homed case, this completes the graph modification process that converts the common

internetwork graph to a transaction-specific internetwork graph ready for use with the CSDCA.

Let us now consider a multihomed example to clarify the changes that must be made to accommodate

connections to multiple upstream access routers in the same subnet or in disparate subnets. As

previously mentioned, there are always exactly two vertices total for the source and destination host

devices. Even in the multihomed case, we do not replicate the source or destination vertex. The multiple

interfaces with different addresses are captured by the use of more than one edge leaving (or entering)

the source (or destination) host vertex. As we discuss this process, refer to the graphical example in Fig.

5-18 that illustrates the case of a multihomed source host with two upstream access routers in two

distinct subnets. For each source and destination host interface that represents an upstream access

network connection to a distinct access router (or possibly a distinct access network connected to the

same upstream access router as another access network interface), a vertex is added to the common

internetwork graph. For example, if the source host device is connected to two upstream access routers

in the same subnet, two vertices are added to the graph to represent these active access routers.

Alternatively, if the source host device is connected to two upstream access routers in distinct subnets

309

(as shown in Fig. 5-18), two vertices are added to the graph to represent these active access routers. The

difference is in how they are connected to the common internetwork graph, as we shall soon see. The

same process applies for adding vertices to the graph if the destination host is multihomed to multiple

upstream access routers. Once the new vertices have been introduced to represent the source and

destination hosts and the set of all upstream access routers, we connect these new vertices to the

baseline common internetwork graph as follows. First, directed edges are connected from the source

host vertex to each of its upstream access routers. These directed edges represent the upstream

connections from the source host to its upstream access routers via the appropriate access network,

and the appropriate State Measurement Service reported upstream access network performance

metrics are associated with these edges. Then, as in the single-homed case, directed edges are added

from each upstream access router to the upstream active gateway routers in the respective source

subnets. If all upstream access routers are in the same source subnet, then the directed edges are

connected to the same sets of source subnet active gateway router vertices. If the upstream access

routers are in different subnets (as in Fig. 5-18), then the directed edges are connected to disparate sets

of active gateway router vertices in the different source subnets. These connections all represent the

appropriate CServ Intranetwork Services, and the learned CServ performance metrics for these services

are associated with the edges.

in general, host devices that use the CServ architecture for critical messaging are unlikely to be

multihomed to more than a few upstream access routers via a handful of different access network

interfaces. The ability to connect an endpoint host to multiple access networks is an important

consideration of the CServ user since it allows for improved end-to-end transaction reliability and

survivability against the unexpected, such as network "Black Swan" events that might lead to service

disruptions or malicious denial on a particular interface or communication modality. That being said, we

are not talking about a large explosion in the graph size through the transformation from the common

internetwork graph to the transaction-specific internetwork graph. Most endpoint host devices are

expected to be limited to something on the order of three network interfaces. Let us assume that there

are ng active gateway routers in each subnet, and that the source and destination hosts of a CServ

transaction are each multihomed to A upstream access routers. Transformation from a common

internetwork graph to a transaction-specific internetwork graph in this case necessitates the addition of

a total of 2(A + 1) vertices to the common internetwork graph and 2 A(ng + 1) directed edges. If A= 3

and ng = 10, this is only eight additional vertices and 66 directed edges.

310

With this graphical intuition regarding the transaction-specific internetwork representation and the

transformation from the common internetwork representation, we consider the cost-adjacency matrix

representation of the transaction-specific internetwork topology and connection information. The cost-

adjacency matrix form of the common internetwork representation was previously developed in Section

5.3.2.1 as the data structure used to encode the graph. Throughout this section, we consider the

example of Fig. 5-19 and Fig. 5-20, which illustrate the transformation of a very simple common

internetwork cost-adjacency matrix (specifically, only the k = 2 plane of mean delay performance

metrics from the generally three-dimensional matrix) to a transaction-specific internetwork cost-

adjacency matrix. These figures simultaneously show the equivalent graphical representations of the toy

internetwork topology.

We consider the process in two steps. The first step, shown in Fig. 5-19, involves the copying of the

original common internetwork cost-adjacency matrix C into a new, larger matrix for the transaction-

specific representation, which we denote Cst. The baseline common topology serves as the framework

for the transaction-specific internetwork cost-adjacency matrix. Since each row (or column) in a plane of

the matrix represents a vertex in the equivalent internetwork graph, the square dimensions of the

transaction-specific internetwork cost-adjacency matrix are larger than those of the common

internetwork cost-adjacency matrix to account for the newly introduced vertices. Recall from Section

5.3.2.1 that the square dimensions of a plane of the common internetwork cost-adjacency matrix were

n x n, where n = ns X ng. The four planes of the transaction-specific cost-adjacency matrix remain

square, but we need to extend the dimensions of each side. Specifically, we know that we are

introducing exactly two vertices that represent the source and destination host devices. Additionally,

using the notation of Section 5.3.3.1, we are introducing 1As| na, vertices for the upstream access

routers for the source host and |At eI na, vertices for the upstream access routers for the destination

host. We note that the cardinalities of both of these sets may be as small as one in the case of single-

homed source and destination host devices. The addresses of these access routers in the transaction-

specific cost-adjacency matrix representation are part of the lookup results discussed in Section 5.3.3.1.

Thus the dimensions of a plane of Cst are (n + (2 + na, + nat)) x (n + (2 + na, + nat)). For

simplicity, we define nst -L n + (2 + nas + nat) = (ns x ng) + (2 + na +l nat). The dimensions of Cst

are nst x nst x 4, where we next discuss that the four square planes of the three-dimensional matrix

are used in the same way as presented previously for the common internetwork cost-adjacency matrix.

Having allocated working space in memory for the transaction-specific CSDCA process and the storage of

311

this transaction-specific internetwork cost-adjacency matrix, the n X n per plane entries of the original

common internetwork cost-adjacency matrix C are copied into the top left entries of each plane of Ct.

All other entries of Ct in the newly introduced rows and columns are initialized to infinite values.

The second step of the process involves introducing the directed connections between the new vertices

and the vertices of the common internetwork graph, as illustrated in Fig. 5-20. As the new entries in Cst

are all initialized to infinite values, this is done by setting the appropriate new entries in the expanded

cost-adjacency matrix to finite values based on the results of the lookups of previous State

Measurement Service reports. In Section 5.3.3.1, we discussed the additional state information required

to create the transaction-specific cost-adjacency matrix, which was summarized at the end of the

section. The CServ performance metric information in these sets is used to populate the new rows and

columns of Cst. As with the common internetwork cost-adjacency matrix, the k = 1 plane is used for the

reliability transform values covered in Section 5.2.4.1, the k = 2 plane holds the mean delay values, the

k = 3 plane stores the delay variance values, and the k = 4 plane is populated with the Cantelli

transform values as discussed in Section 5.2.4.2. These fields should be completed such that the source

host vertex has directed connections to its upstream access routers in the appropriate source subnet or

subnets, and furthermore the upstream access routers in the source subnet or subnets should have

directed connections to all gateway routers in their respective subnet. Likewise, the correct matrix

entries should be populated such that there are directed connections from all active gateway routers in

the destination subnet or subnets to the appropriate access router or routers in their respective

subnets, and then there should be directed connections from each introduced access router in the

destination subnet or subnets to the destination host vertex. This process is depicted in Fig. 5-20 using

the notation of Section 5.3.3.1 for clarity.

Once the new rows and columns of Cst have been populated according to the information retrieved

from the address-binding and subnet internal-performance database lookups, the transaction-specific

cost-adjacency matrix is ready to be used as an input to the CSDCA. With this data structure as the

representation of the entire CServ internetwork topology and its learned and reported CServ

performance metrics, we finally present the details of the CServ architecture's control plane workhorse

in the next section. This is the algorithm that ultimately determines if the network can support the

requested level of service for a particular critical message exchange between CServ users.

312

Source subnet Destination subnet

Transaction-specific Internetwork Representation:
Add new vertices in source and destination subnets

Source upstream Destination u

access router access ro
pstream
uter

Destination host

Transaction-specific Internetwork Representation:
Connect new vertices with appropriate last reported State

Measurement Service performance metrics

Access network upstream
performance metrics

Access network downstream
performance metrics

0*...@......

Upstream access router to active
gateway router performance metrics

Active gateway router to upstream

access router performance metrics

Fig. 5-17: In two steps, this shows the transformation of a simple common internetwork graph to a

transaction-specific internetwork graph in response to a CSR when both the source and destination

hosts are single-homed devices.

I
313

I

Source host

Source subnet *" ,Destination subnet

I m~l ---__ __- ", ---A dEMON.'0-dk

Source subnets

Destination subnet

Transaction-specific Internetwork Representation:
Add and connect new vertices

Source host

This subnet's source
This subnet's source host upstream access

host upstream access 0 -----.---..... router
router .

Destination host

6. Destination host

upstream access
router

Fig. 5-18: For the same simple common internetwork graph as in Fig. 5-17, this illustrates (in one

aggregate step) the transformation to a transaction-specific internetwork graph in response to a CSR

when the source host is multihomed to two upstream access routers in distinct source subnets. The

destination host is still a single-homed device in this example.

314

Common
internetwork

matrix

4I
= 2

40
00
8

plane

10-
12
00.

-00

45
10
00
00
00

-00

Cst: k

40 10
00 12
8 00
00 00
00 00
00 00
00 00

= 2 plane

00
00
00
00
00
00
00

00
00
00
00
00
00
00

)
as4

(~ 6
I

2

aa-s Gall, Gan-t

a5

a.

aa-t

Fig. 5-19: For a very simple common internetwork cost-adjacency matrix C, this shows the first step in

the transformation to a transaction-specific internetwork cost-adjacency matrix Cst by introducing

additional rows and columns for the new graph vertices.

315

I

C: k
[00

45
-10

0O
0O
00
0O
00
0O
00

CO-
00
00
O

00
00
CO-

/ 11 _-, % %

Cit: k = 2 plane

40 10 00 oo oo oo
00 12 oo oo oo oo
8 oo oo oo oo oo
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00 00.

Transaction-specific
internetwork matrix:

Ready for CSDCA!

I
Cst: k = 2 plane

00 40 10 oo oo oo oo
45 oo 12 oo oo oo oo

10 8 oo oo oo oo 88
00 00 0x 00 00 6 oo
00 00 00 00 00 00 00
30 55 oo oo oo oo oo
-00 00 00 00 4.5 oo oo

4

as

33 5 4a.

U qjdown

a0 . 5(i C a a-t

(us) V g' EGa -)dow n

Fig. 5-20: Continuing from Fig. 5-19, this shows step two in the creation of the transaction-specific

internetwork cost-adjacency matrix - introducing the last reported CServ performance metrics

associated with the additional directed graph edges as finite-valued entries in the new rows and

columns of the cost-adjacency matrix.

316

00
45
10
o

00
o

-00

5.4 The Critical Service Discovery and Composition Algorithm

The CSDCA is the brain of the logically-centralized MC in the CServ architecture. Prior to the

transmission of an internetwork CServ datagram, the algorithm performs a per-transaction computation

to find a CServ solution which conforms to the demands of the requested service level for the

transaction, if possible. This computation involves two distinct phases, as indicated by the algorithm's

name. The first phase discovers individual subnet-disjoint CServ Internetwork Service paths using the

transaction-specific internetwork cost-adjacency matrix (the data structure encoding the graphical

representation of the internetwork topology and State Measurement Report performance metrics). And

the second phase, if necessary, composes the CServ solution, or the CServ Internetwork Service solution,

by looking for appropriate diversity combinations of the discovered paths that jointly meet the

requirements of the CServ user application as indicated via the CSR using the CServ API.

In this section, we present the algorithm in several steps. In the first part, we use a convenient

visualization of the algorithm's operation to help further describe the details and complexities of the

procedure. In the second part, we discuss the particulars of a few supporting considerations needed to

fully understand the CSDCA; namely, we look at how the delay requirement as indicated by the CServ

user is adjusted to allow for the control overhead in the CSDCA execution, how transit subnets from

previously discovered CServ Internetwork Service paths are removed from the transaction-specific

internetwork cost-adjacency matrix to force the discovery of subnet-disjoint paths, and how individual

discovered paths are considered for inclusion in the composed solution. Finally, we put this all together

and present the pseudocode describing the operation of both phases of the CSDCA.

5.4.1 Visualizing the Algorithm Phases

In this section, we visualize the operation of the CSDCA. This illustration should help frame the

discussion and details to follow. The subsequently discussed visualization is given in Fig. 5-21.

The control overhead for a CServ datagram transaction begins with the user's transmission of a CSR on

the robust off-band control channel via the CServ API. As previously discussed, this control message

contains, in part:

317

* the source host address;

" the destination host address;

* the primary CServ performance metric;

* the minimum service reliability value;

* the maximum service delay value;

* the minimum path diversity value;

* and a timestamp indicating the time of CSR generation and transmission.

There are additional fields in the CSR that are not required for the discussion here. This CSR control

message traverses the off-band control channel, transiting the local logically-centralized subnet

controller (which can intercept the message if the specified destination host address is local to the

subnet and, thus, the transaction does not require internetwork service) on its way to the logically-

centralized MC. Since the MC is a logically-centralized architecture component (where the logical

centralization requires consistency among its stored internetwork state information), the destination

controller entity depends on the location of the source host that initiates the CServ transaction. In

general, we want minimal delay between the source host and the MC point-of-presence, since this delay

is part of the control delay incurred prior to the transmission of the CServ datagram with the critical

message.

Upon receipt of the CSR, the MC creates a transaction-specific process for the CSDCA. As previously

discussed in Section 5.3, this involves copying the baseline common internetwork cost-adjacency matrix

into a new, larger data structure that includes additional topology and state information for the

transaction-specific internetwork representation. This process was considered in detail in Section 5.3.3.

Once the transaction-specific internetwork representation is prepared in terms of a cost-adjacency

matrix, the CSDCA is ready to kick-off.

We can visualize the operation of the CSDCA on a two-axis plot, as shown in Fig. 5-21. The two axes,

which form the service plane, represent the CServ performance metrics of interest for the CServ one-

shot transaction from source host to destination host: reliability and delay. In the CSR, the source host

indicates the primary metric of interest, which we assign to the x-axis of the plane. The secondary

matrix is assigned then to the y-axis. In our example, the CSR has indicated that delay is the primary

CServ performance metric of interest to the CServ user.

318

In the CSR, the user indicates the performance requirements for the CServ transaction in terms of the

two CServ performance metrics. Namely, the source host application specifies the maximum tolerable

delay for the end-to-end transaction and the minimum required level of transmission reliability.

Together, these performance metrics allow the CServ user to specify and control the transaction risk;

risk management is a fundamental concept to critical messaging over unreliable networks and

substrates. The maximum tolerable delay and minimum tolerable reliability can be visualized as user

requirement demarcation points on the appropriate axes of the plane (the x-axis and y-axis,

respectively, in our example).

The minimum tolerable reliability user requirement forms a permissible reliability range. Namely, if the

CServ user specifies that 0 5 Pmin 5 1 is the minimum tolerable reliability for the end-to-end

transmission of the internetwork CServ datagram, then the permissible range for the CServ Internetwork

Service reliability, Pserv, is Pmin Pserv 1. Note that the CServ user could specify that Pmin = 0,

imposing no requirements on the reliability performance of the CServ Internetwork Service.

Alternatively, the CServ user could specify pmin = 1, effectively eliminating the permissible reliability

range. In this case, it is highly unlikely that the CSDCA would actually discover any CServ Internetwork

Service paths that meet the user requirement (and the composition of service from individual CServ

Internetwork Service paths with less than perfect reliability would likewise fail).

The maximum tolerable delay value itself does not form the permissible delay range for the CServ

Internetwork Service. The user requirement must first be adjusted to account for the delay overhead

associated with the control message delay and the CSDCA execution delay. This adjustment is

considered in more detail in Section 5.4.2.1. For now, we simply assume that the adjustment can be

easily calculated. Once the maximum tolerable delay value has been appropriately reduced to account

for the control and algorithm delay, the adjusted maximum tolerable delay value serves as a new

demarcation point on the appropriate axis of the service plane, and this value forms the permissible

delay range. Specifically, if the adjusted end-to-end transmission delay requirement is 0 5 dnax 00,

then the permissible range for the CServ Internetwork Service reliability, dserv, is 0 5 dserv < dnax-

The larger the value of d'ax, the more likely that the CSDCA successfully discovers a CServ Internetwork

Service solution. The CServ source application can effectively impose no restriction on delay by setting

the specified maximum tolerable delay as some excessively large value. Alternatively, as dmax

diminishes and approaches zero, the physical constraints of the internetwork topology and performance

319

may preclude the ability of the algorithm to create a service solution. Whereas diversity routing over

subnet-disjoint paths can improve the end-to-end reliability of a composed service solution, diversity

routing cannot reduce the delay of the composed service.

Jointly, the two permissible CServ performance metric ranges form the CServ Internetwork Service

solution space, or simply CServ solution space. The parameter space simultaneously carved out by the

Pmin ! Pserv : 1 and 0 5 dserv 5 d'nax constraints on both axes of the service plane show where the

CSDCA aims to either discover or compose the CServ Internetwork Service solution. In the visualization

of Fig. 5-21, this area is shaded in red. With this framework, we can discuss the two phase operation of

the CSDCA.

In the first phase of the CSDCA, the discovery phase, the algorithm uses successive iterations of Dijkstra's

Algorithm as a subroutine to find individual CServ Internetwork Service paths. The edge weights, or

equivalently the plane of the transaction-specific cost-adjacency matrix as described in Section 5.3, used

in Dijkstra's Algorithm for the discovery of paths from source host to destination host depends on the

CServ performance metric specified as the primary metric of interest in the CSR. If reliability is specified

as the primary CServ performance metric, then the reliability transform values are used as the

nonnegative, additive edge weights. Otherwise if delay is specified as the primary metric, then the

Cantelli transform values are used. In our visualized example, delay has been specified as the primary

CServ performance metric, and thus the Cantelli transform values are leveraged directly by Dijkstra's

Algorithm to discover CServ Internetwork Service paths.

As each path is discovered by Dijkstra's Algorithm, the transit subnets of that path are deleted from the

transaction-specific internetwork representation before the subsequent path discovery iteration of the

algorithm. In this way, each path discovered in this phase is guaranteed to be subnet-disjoint, as defined

in Section 5.2.2. The source and destination subnets of a particular path are not removed from the

internetwork representation for subsequent Dijkstra's Algorithm iterations in case either of the

endpoint hosts is single-homed. The algorithmic process for the deletion of transit subnets is further

described in Section 5.4.2.2.

The number of paths discovered in the discovery phase of the CSDCA is a function of two parameters,

one under the direct control of the MC and the other not. The CSDCA has a parameter common to all

320

transaction-specific instances of the algorithm, the maximum number of iterations of the discovery

phase. We denote this parameter as Pmax E Z+. This can be interpreted as the maximum number of

subnet-disjoint CServ Internetwork Service paths that the CSDCA is capable of searching for in the

discovery phase of the algorithm before it is forced to move on to the next phase. The Pmax parameter

is necessary to limit the execution time of the CSDCA, which is vital to ensure that the pre-transmission

transaction control overhead does not consume the entire time allotted for the transmission of the

actual CServ datagram. Although Pmax must be greater than or equal to one, in practice this parameter

should take a greater value (say on the order of at least five). The choice of this value is dependent upon

the specific hardware and software implementation of the CSDCA and the complexity of the

internetwork topology; a CSDCA implementation that executes very quickly with respect to the CServ

Internetwork Service path delays can afford to discover more paths in the discovery phase. The other

parameter that determines the number of paths that are discovered in the discovery phase is

transaction-dependent and related to the physical connectivity of the internetwork topology. As paths

are discovered and transit subnets deleted to force the discovery of subnet-disjoint paths, this may

eventually disconnect the source and destination hosts. Once the hosts are discovered disconnected by

an iteration of Dijkstra's Algorithm, the discovery phase terminates. We can denote this transaction-

dependent number of subnet-disjoint paths available as pposs E Z+, where we assume that the original

transaction-dependent internetwork graph is connected and thus there is at least one path available.

The transaction-dependent value of pposs is not necessarily known beforehand. Therefore, the discovery

phase of the CSDCA always attempts to find Pmax subnet-disjoint CServ Internetwork Service paths. But

depending on the internetwork topology, the actual number of paths found during this phase, Pdiscover,

is given as Pdiscover = min{pposs, Pmax}-

When a CServ Internetwork Service path is found during the discovery phase of the CSDCA, the

performance of that path is characterized in terms of both its reliability and its delay (regardless of

which CServ performance metric is deemed the primary metric). We denote each discovered path as

pi, i E {1,2, . Pdiscover}. Each of these CServ Internetwork Service paths can then be represented by a

pair of CServ performance metrics, (pi.reliability,pi.delay), the reliability and delay of the path

respectively. With these performance pairs, each path can be represented as a point in the service

plane, as illustrated for the four discovered paths in Fig. 5-21. If the edge weights used for path

discovery are the reliability transforms, then the reliability of the path can be recovered directly from

the Dijkstra's Algorithm-computed path distance using the inverse transform introduced in Section

321

5.2.4.1. However, if the edge weights used for path discovery are the Cantelli transforms, the delay of

the path cannot be retrieved directly from the output of Dijkstra's Algorithm. In either case, the

reliability and delay performance of a CServ Internetwork Service path can be computed from the path

pi and the information contained in the transaction-specific internetwork cost-adjacency matrix Cst

based on the definitions from Section 5.2.3. While the definition of the reliability of a path is

straightforward, the definition of the delay of the CServ Internetwork Service path is based on the one-

sided variant of the Chebyshev Inequality, derived from the Cantelli Inequality, and the sum of the mean

delays and delay variances for the path under consideration.

Once the Pdiscover subnet-disjoint CServ Internetwork Service paths have been found and characterized,

the CSDCA proceeds to the second phase: the composition phase. The objective of this phase of the

algorithm is to search among the discovered paths to find a CServ Internetwork Service that falls in the

CServ solution space previously discussed. This could be a trivial task if one of the CServ Internetwork

Service paths alone is characterized by a point in the interior of that space (and the CServ source host

application does not require a minimum level of diversity greater than one in the solution). Or this could

involve testing different combinations of the viable candidate paths to find one that jointly composes a

diversity-routed solution in the CServ Internetwork Service solution space.

As a first step to this phase, discovered CServ Internetwork Service paths with delay greater than the

adjusted end-to-end transmission delay requirement, d'ax, can be removed from the set of viable

paths. The delay of a diversity-routed CServ Internetwork Service is defined as the maximum delay of

the CServ Internetwork Service paths in the solution. Therefore, the delay of a path cannot be

"improved" through the use of subnet-disjoint diversity routing. In the visualized example of Fig. 5-21,

both p 3 and p4 are disqualified immediately from the composition phase because their delay exceeds

the adjusted end-to-end transmission delay requirement (although not the maximum tolerable delay

initially indicated by the CSR). We denote the number of remaining CServ internetwork Service paths as

0 Pdiscover Pdiscover. These remaining paths are then sorted in order of decreasing reliability.

Assuming that Pd'iscover > 0 (otherwise the CSDCA can terminate immediately and return a service

denial response), the second step of this phase is to search among the remaining available paths to find

a service solution. The objective of the CSDCA is to use the minimum necessary degree of diversity to

find a CServ Internetwork Service that satisfies the source host requirements, since this minimizes the

322

network transmission and switching bandwidth used by the transaction and avoids unnecessary

redundancy (see Section 5.2.1). As part of the CSR, the source host application specifies the minimum

required degree of diversity. We denote this value as Pmin E +. A specified value of Pmin = 1 indicates

that the source host application accepts CServ Internetwork Services that do not employ subnet-disjoint

diversity routing. Any pmin value greater than one necessitates the composition of a diversity-routed

solution. If Pmin > Pdiscover, the CSDCA can terminate and return a service denial response since it

cannot find a solution with the requested degree of diversity. Otherwise, if Pmin Pdiscover, the

process continues.

The service composition attempts begins by considering pmin-diversity combinations of CServ

Internetwork Service paths in the set of remaining viable paths. If Pmin = 1, the minimum reliability

path is checked. If the reliability of this path meets the requirement, then a random path from the set of

viable paths is chosen as the CServ Internetwork Service solution (we are sure that any individual path

meets the requirement if the minimum meets the requirement). If the reliability of the worst path does

not meet the minimal reliability requirement, then the maximum reliability path is checked. If the

reliability of this path meets the minimal reliability requirement, then this path is chosen as the CServ

Internetwork Service solution. Otherwise, if the reliability of the best path does not meet the minimal

reliability requirement, the composition process moves to considering 2-diversity combinations of CServ

Internetwork Service paths as the CServ solution (if the best path does not meet the minimal reliability

requirement, then no other individual path in the set of viable paths can meet the requirement).

If Pmin > 1, the service composition process proceeds in a very similar fashion to the search over single

CServ Internetwork Service path solutions. First, the pmin-diversity combination of the Pmin worst paths

are checked. How is the reliability of the diversity-routed combination computed? This is covered in

Section 5.4.2.3. For now it suffices to say that the reliability of the diversity-routed combination is

always greater than the reliability of paths individually. If the diversity-routed combination of the Pmin

worst paths satisfies the minimal reliability requirement, then a random set of Pmin paths from the

Pdiiscover viable paths are chosen as the service solution. If the reliability of the worst set of paths does

not meet the minimal reliability requirement, then the diversity-routed reliability of the set of Pmin best

paths is checked. If the diversity-routed reliability of this set of paths meets the minimal reliability

requirement, then this set of Pmin most reliable paths are selected as the diversity-routed solution.

Otherwise, if the reliability of the set of the Pmin best paths does not meet the minimal reliability

323

requirement, the composition process moves on to considering (Pmin + 1)-diversity combinations of

CServ Internetwork Service paths the CServ solution. If the best set of Pmin paths does not meet the

minimal reliability requirement, then no other diversity-routed combination of Pmin paths can satisfy it

either.

This process continues incrementally until all p'jiscover viable paths are considered simultaneously as a

possible diversity-routed solution. If this diversity-routed combination does not meet the minimal

reliability requirement, then the CSDCA returns a service denial response. When all piiscover paths are

considered together as a diversity-routed solution, there is no need to differentiate between first

checking the worst set of Piscover paths and then checking the best set of Pltscover paths; there is only

one possible set of cardinality pdiscover-

In our visualized example of Fig. 5-21, Pdiscover = 2. Regardless of whether or not the CSR specified

Pmin = 1 or Pmin = 2, the individual candidate CServ Internetwork Service paths p, and P2 do not

satisfy the minimal required reliability. As shown in the cartoon, the diversity-routed CServ Internetwork

Service using both of these paths does meet the minimal required reliability, and this is the CServ

solution that is returned to the CServ source host requestor that originally generated the CSR. The point

that represents this diversity-routed solution in the service plane indicates the reliability and delay

performance metrics of this composed CServ Internetwork Service, Pserv and dserv respectively.

Why does the composition phase choose a random set of path as the CServ Internetwork Service when

possible? This is to avoid overuse of any given path in the network. Some paths may serve popular

candidates for particular source host and destination host combinations. This randomization attempts to

distribute CServ transactions over a set of paths where possible, reducing any CServ traffic congestion,

rather than to rely on the same paths over and over for each transaction. Since we prefer this randomly-

chosen CServ solution, we check the worst set of paths of a given set cardinality before checking the

best set of paths of that cardinality in each step of the composition phase. Checking the diversity-routed

combination of the best set of paths of a given set cardinality tells us if there exists a solution at that

step, whereas checking the diversity-routed combination of the worst set of paths informs us that any

diversity-routed combination of paths of that set size meets the reliability requirement of the CSR.

324

Reliability
1- -

CServ user
requirement

(secondary metric)

0

Discovered CServ
Internetwork Service

path

" Permissible delay range CServ solution space

-- - ---- ------- 4-+-- ---- -- --- -- -

Permissible
reliability range

/2

3

ust for control delay &
I CSDCA execution time
<

Diversity-routed
combination of these paths
bumps reliability into CServ CServ userAdjusted CServ user I

solution space requirement requirement
(primary metric)

0 Delay d
PrtD < d} 0.99

Cantelli Delay Bound: Pr{D - p < k- 2 Pr{D < 8} ((5 2 2

+ k21 + (6 -)/C0)

Fig. 5-21: A visualization of the operation of the CSDCA, which discovers CServ Internetwork Service

paths before composing a CServ Internetwork Service solution that meets the CSR transaction

performance requirements. In this illustration, D denotes the distribution of CServ Internetwork Service

path delay, unknown except for its finite mean delay / and finite delay variance o.

325

5.4.2 A Few Supporting Considerations for the CSDCA

Before presenting the CSDCA as a complete algorithm, we want to focus on a few components

mentioned in Section 5.4.1 in more detail. Specifically, we want to discuss the delay adjustment which is

used to compute the new maximum allowable delay for the discovered paths, the method used to

remove transit subnets from the transaction-specific internetwork representation in order to discover

subnet-disjoint diverse paths, and the process of composing a solution from a set of discovered paths in

more precise detail. Along with the previous discussions of path discovery using Dijkstra's Algorithm

from Section 5.2.4, this prepares us to put the algorithm phase components together into a full

algorithm description in Section 5.4.3.

5.4.2.1 The CServ Request Delay Adjustment

In Section 5.4.1, we mentioned that the user requirement on maximum allowable delay from the CSR

must be adjusted to account for the delay overhead associated with the control message transmission

and the CSDCA execution delay. Namely, the requested maximum tolerable delay value presented in the

CSR is 0 dmax < o and the adjusted end-to-end transmission delay requirement is 0 5 d nax < 0o.

The adjustment intends to account for the entire pre-transmission setup overhead process such that the

delny experiencedl hy the inteornetwAoArn~ C~ nee-rv% datgrm eudg pre-trasmission setup and end-A
_y .IV MLL41AI 1111 A III5 L1C111uu3Imuua1%Ju ZILUV aiiu eIIU-LU-

end transmission) does not ultimately exceed the original maximum tolerable delay value, dmax. This

overhead includes the delay of the off-band control channel CSR transmission from the CServ source

host to the MC, the execution of the CSDCA algorithm, and the return delay of the off-band control

channel service access (or denial) response transmission from the MC to the CServ source host.

We begin by considering the transmission delay of the off-band control channel. When the off-band

control channel was introduced in Chapter 2, we stated that the control network topology and

communication technology must be designed such that the system is highly reliable and presents

predictable and constant delay to the CServ devices. The ultimate goal of the off-band control network

and MC design is to present constant two-way signaling delay between CServ users and the control

hierarchy with very little, if any, delay jitter. For this reason, the design likely requires heavy

overprovisioning such that there is virtually no contention on the off-band control network (and possibly

circuit-oriented connections between devices and the control plane entities). In the discussion of State

326

Measurement Service update reporting and CSR request generation, we have seen that the data rate

burden on this network should be fairly low, making overprovisioning for robustness an achievable goal.

Furthermore, the use of a physically-distributed but logically-centralized MC structure allows for the

design to place MC entities close to the end-users. This distributes the control network burden over the

physically-distributed entities and allows for predictable and minimal signaling delay between the CServ

users and the controller points of presence. The actual physical design of the control hierarchy and the

off-band control communication network is not the focus of this dissertation; future work should define

exactly what topology and technology achieve these requirements of the control plane architecture.

With predictable signaling delay, the delay of the control channel transmissions between the CServ

source host and the MC (and vice versa) can be easily computed and compensated for by the

adjustment process. The CSR itself includes a generation timestamp that is transmitted with the service

request. Upon receipt of the CSR at the MC, the difference between the current time and the timestamp

value can be used to calculate the delay of the control channel transmission. With the appropriate off-

band control channel design that presents constant and predictable two-way delay between the users

and the control hierarchy, this value can be doubled to account for both the realized CSR transmission

time and the future service access or denial response transmission time. Additionally, this value may be

padded by some fixed amount to allow for any unexpected delay jitter experienced by the return

transmission on the off-band control channel. As long as the control network is designed as required,

this pad should be unnecessary under most nominal operating conditions.

There are sufficient instances of the CSDCA execution to accurately characterize its execution time; each

time the CSDCA runs for a specific transaction, the MC should track its execution time from receipt of

the CSR to the issuance of the service access or denial response (and termination of the CSDCA process).

This set of execution times can be used to track the worst-case execution time which is used to further

adjust the maximum tolerable delay requirement. The MC entity should run each instance of the CSDCA

as a virtualized machine process such that the performance of each process is comparable. Since all

transactions operate from the same baseline common internetwork graph and with the same hard-

coded CSDCA algorithm parameters, there should then be little variability between the CSDCA execution

instances. The maximum algorithm execution time should be close to the mean algorithm execution

time, making the adjustment using the maximum an acceptable design decision that is not overly

conservative.

327

This maximum CSDCA execution time is added to the two-way control channel transmission delay value

computed from the CSR to form a transaction-specific value 0 < dadjust < oo. With this value, we have

that d'ax = dmax - dadjust. This adjusted maximum tolerable delay value is used to judge the

usability of the discovered CServ Internetwork Service paths found during the discovery phase of the

CSDCA.

A belt-and-suspenders timestamp is included in the service access response from the MC after the

execution of the CSDCA in case any of these delay adjustments should fail to accurately capture the

delay of the pre-transmission control overhead. Specifically, this timestamp indicates the time at which

the computed CServ Internetwork Service is invalidated. The CSR generation timestamp, the original

maximum tolerable delay value dmax, and the delay of the CServ Internetwork Service solution can be

used to create a timestamp that represents the latest time that a CServ datagram can be transmitted

using that solution and still meet the requested service performance requirements. The CSR generation

timestamp plus the maximum tolerable delay indicated by the CServ source host describes the latest

time at which the internetwork CServ datagram should reach the intended destination host. If the

composed CServ Internetwork Service solution delay is subtracted from this value, this gives the latest

possible transmission time for the CServ datagram such that the CServ Internetwork Solution can bear

the datagram to the destination host by the desired deadline. Therefore, if there are any issues in the

off-band control channel transmission or CSDCA execution that generate anomalous and unexpected

control overhead delay, this timestamp in the service access response can be used by the CServ source

host to invalidate the computed CServ Internetwork Service solution.

We note that this delay requirement adjustment process runs in 0(1), or constant, time. The complexity

of this process is independent of the number of vertices of the transaction-specific or common

internetwork representation.

5.4.2.2 Removing Transit Subnets

During the Discovery phase of the CSDCA, the objective is to find multiple subnet-disjoint diverse CServ

Internetwork Service paths between the source host and destination host as motivated in Section 5.2.2.

In order to find a subnet-disjoint path as defined in that section via Dijkstra's Algorithm, the transit

subnets of the last discovered path must be removed from the transaction-specific internetwork cost-

328

adjacency matrix representation before the next iteration of Dijkstra's Algorithm. In this section, we

discuss the process of excluding transit subnets from subsequently discovered CServ Internetwork

Service paths.

Following an instance of Dijkstra's Algorithm and the extractshortestpath helper function, the

discovered path data structure p contains the explicit sequence of addresses that form the CServ

Internetwork Service path in the path attribute p.path, starting with the source host address s and

ending with the destination host address t. Recall from the discussion of hierarchical addressing in

Section 3.1.1 that the addresses in this explicit path describe the subnets in the network that are

traversed by the path. These subnet addresses can be extracted from the addresses in the path using a

simple bitmask operation that retains the most-significant bits of the address (for example, the most

significant 32 bits). The objective of the transit subnet removal process is to ensure that subsequently

discovered CServ Internetwork Service paths do not traverse the same transit subnets, excluding the

source and destination subnets which can be reused. This process is completed in two steps:

1. First, the unique transit subnet addresses in the last discovered CServ Internetwork Service path

p are extracted from the path array attribute p. path;

2. Second, the vertices in these subnets that represent active CServ-enabled gateway routers in

the internetwork representation are effectively removed from the transaction-specific

internetwork cost-adjacency matrix.

We begin with the first step, which involves extracting the unique transit subnet addresses from the last

discovered CServ Internetwork Service path using the path array attribute that explicitly describes the

sequence of addresses in the path. These are used to form a set of transit subnets to be removed from

the transaction-specific internetwork representation. As previously mentioned, this explicit sequence

begins with the source host address s and ends with the destination host address t. Using the subnet

bitmask operation, the source subnet address and destination subnet address should be gleaned from

the first and last entries of the path array p.path, namely s and t. These subnet addresses are never

added to the set of transit subnets to be removed from the transaction-specific internetwork

representation. Next, each additional address in the path array attribute between s and t should be

considered one at a time. For each address, the subnet bitmask operation is first applied. After the

subnet address is recovered with this operation, the first check is whether or not the subnet address is

329

the same as either the source or destination subnet address in the path. If it is, the processing of that

address stops, and we proceed to the next address in the sequence. There should be an egress active

gateway router for the source subnet in the path and an ingress active gateway router for the

destination subnet in the path; the subnet addresses for these gateway routers would not be included in

the set of subnets to remove from the transaction-specific internetwork representation. Otherwise, if

the subnet address is neither the source nor the destination subnet address, we next check to see if the

transit subnet address has already been added to the set of transit subnet addresses to remove from the

internetwork representation. If it is already in the set, we move on to consider the next address in the

path array attribute sequence. If it is not already in the set, we add this transit subnet address to the set

of transit subnets to remove from the internetwork representation. Once all addresses between the

source and destination addresses in the p.path attribute have been considered, this step ends. This

entire step is completed using only the information in the last discovered path data structure, p. There

are at most 0(n,) operations to check for the subnet uniqueness of each address in the p.path

sequence, where ns is the number of subnets in the network, and the length of the sequence is

dependent upon the number of hops in the CServ Internetwork Service path. In the very worst case, this

path could, in theory, contain all vertices in the transaction-specific internetwork representation (this

would require that a Hamiltonian path [87] exists on the transaction-specific internetwork graph), or all

nst = (ns X ng) + (2 + na, + nfat) vertices using the notation from Section 5.3.3.2. This is not the likely

case, as no further subnet-disjoint paths could be found since this path would traverse all possible

transit subnets. In a more realistic scenario, the number of subnets in the path is unlikely to exceed the

diameter of the network in terms of subnet hops. Thus, this step runs in 0(nst x ns) = O(ns 2 ng) time.

In the next step, we remove vertices representing active gateway routers in these transit subnets from

the transaction-specific internetwork graph. To effectively remove a vertex from the graph, we need

only set the weights of incoming edges in the cost-adjacency to the infinite value such that these

vertices are isolated for the purpose of the shortest path Dijkstra's Algorithm. The weights of outgoing

edges from these vertices can also be set to the infinite value, but this is not strictly necessary. Based on

the description of the transaction-specific cost-adjacency matrix in Section 5.3.3.2, only the k = 1 and

k = 4 planes of the matrix need to be modified, as these are the planes used in Dijkstra's Algorithm for

routing purposes. More specifically, only the plane corresponding to the primary service metric needs to

be modified. If reliability is the primary metric used for path discovery, only the k = 1 plane needs to be

modified to remove transit subnets. Alternatively, if delay is the primary metric used for path discovery,

330

only the k = 4 plane with the Cantelli transform weights needs to be modified to remove transit

subnets.

The transit subnet removal procedure operates as follows. For each of the nst vertices in the cost-

adjacency matrix, one-by-one, the bitmask operation is applied to reveal the subnet that vertex belongs

to (recall that the MC can map indices of the matrix to their hierarchical addresses). The subnet address

of the vertex is then checked against the set of transit subnet addresses to be removed from the

transaction-specific internetwork representation. If the vertex belongs to one of the addresses in this

set, the entire column of nst entries of the appropriate plane of the cost-adjacency matrix (either the

k = 1 or k = 4 plane) is set to oo. (As noted, the entire row of the same plane for this vertex could also

be set to o0, but this is unnecessary.) Otherwise, the column of the cost-adjacency matrix remains

unmodified. After all vertices have been checked, the resulting transaction-specific cost-adjacency

matrix representation is ready for the discovery of a subnet-disjoint path during the next instance of

Dijkstra's Algorithm. In the most naive approach to this step, all nst vertices in the graph are checked

against the set of transit subnets to remove (note that some vertices do not strictly need to be checked,

such as the source and destination host vertices). Each vertex is checked against a set of at most

(ns - 2) addresses in the set of transit subnets to remove (excluding the possibility of the source and

destination subnets). If there is a match, nst operations are required to set the entire column of entries

in the appropriate plane of the cost-adjacency matrix to o. In the worst case scenario, all but six of the

nst vertices could match subnet addresses in this set; those six vertices represent the source and

destination hosts, their upstream access routers, and the active gateway routers in their subnets. Thus,

this step runs in O(nst2) = O(nS 2 n. 2) time. The entire transit subnet removal process, including both

steps, requires worst-case O(nst 2) = O(ns2 n. 2) time. We note that this is the same running time as

the basic implementation of Dijkstra's Algorithm on the transaction-specific internetwork graph,

O(nst2).

5.4.2.3 Composing a Solution

In Section 5.4.1, we introduced the composition phase of the CSDCA and briefly described its operation.

In this part, we motivate its operation and describe the process more generally.

331

Following the execution of the discovery phase of the CSDCA, we have a set of paths P, where each

p E P is characterized by three distinct attributes:

1. p. path is the array of addresses that describe the CServ Internetwork Service path from source

host to destination host;

2. p. reliability is the computed reliability value of the CServ Internetwork Service path using the

definition of Section 5.2.3;

3. and p.delay is the computed delay bound of the CServ Internetwork Service path using the

definition of Section 5.2.3 (this could also be the distance of the path using the Cantelli

transform nonnegative, additive weights if this distance is less than the adjusted maximum

tolerable delay requirement).

The size of the set P is dependent upon the parameter of the CSDCA discovery phase which specifies the

maximum number of subnet-disjoint diverse paths to discover, Pmax E Z+, and the topology of the

transaction-specific internetwork graph which may limit the possible number of subnet-disjoint diverse

paths between the source and destination host vertices to pPoss E Z+. The value of pposs depends on

the degree of the source and destination subnets, as well as the connection topology between them.

Ultimately, the number of discovered paths is Pdiscover = mintpmax,pposs). The cardinality of the set P

is thus Pdiscover, or |P| = Pciscover-

The first step of the composition phase is to exclude any path p E P that does not meet the adjusted

maximum tolerable delay value, dmax, as presented in Section 5.4.2.1. In other words, for each p E P,

we remove p from P if p. delay > dmax. This step is necessary since the diversity-routed solution using

multiple paths cannot improve the delay performance of any given path in the solution; the delay bound

of a diversity-routed solution is defined as the maximum delay of the constituent paths in the solution. If

the delay of a path exceeds the maximum tolerable delay, it cannot be used as part of the CServ

Internetwork Service solution. Following the consideration of each path p E P, we are left with a set of

delay-feasible paths P' c P such that IP' = Pdiscover E N and 0 5 Pdfiscover Pdiscover. This step

runs in 0(1), or constant, time with respect to the size of the transaction-specific internetwork graph

since the number of paths to consider, Pdiscover, is a value that, at its largest, is a constant independent

of the size and complexity of the graph. It is for this reason that we set a maximum number of paths to

consider in the composition phase as a parameter of the CSDCA. This limits the execution time of the

332

algorithm both through the number of iterations of the. discovery phase and the complexity of the

composition phase.

In the second step of the composition phase, we attempt to compose a reliability-feasible solution

based on the remaining paths for consideration, P'. As previously discussed in the dissertation, the use

of subnet-disjoint diversity routing as a CServ Internetwork Service solution can improve upon the

reliability of each individual path. With the fragile assumption of statistical independence between

subnet-disjoint CServ Internetwork Service paths, the reliability of a k-diversity routed CServ

Internetwork Service, where the reliability of a path pi E P', or pi.reliability, is given as pi, is given in

Eq. (5.1). The subsequent inclusion of any path to this diversity routed solution strictly improves upon

the reliability of the CServ Internetwork Service as long as the reliability of the newly added path is

greater than zero.

We begin by consider how many possible CServ Internetwork Service solutions there are in the set P'. If

we were to consider all possible solutions, including individual paths, 2-diversity routed solutions, 3-

diversity routed solutions, and so forth, the total number of possible solutions, fl, is given as:

I I
Pd'uscover ,P<'uscover ,

Pdiscover Pdiscoveriscover! (5.18)

() i (Paiscover -0!

The growth of the number of possible solutions is shown in Fig. 5-22 as we vary the cardinality of P' on

two different scales. As the number of paths to consider grows, the number of possible solutions

becomes computationally intractable. Since the number of possible solutions grows exponentially in the

size of P', we want to limit the number of solutions we consider, in addition to our parameter Pmax

which limits the maximum size of P' through the discovery phase, in order to quickly execute the

composition phase of the CSDCA.

In addition to limiting the number of solutions to consider during the composition phase, we have three

more concerns that we want to subsume into the design of the composition phase of the CSDCA. First,

we want to use the minimum required number of diverse paths in the CServ Internetwork Service

solution in order to minimize the amount of network resources used by the transaction and avoid

333

needless redundancy. Second, we want to respect the minimum required diversity request of the CSR,

pmin, which specifies the minimum number of subnet-disjoint paths that the CServ source host wants in

the composed CServ Internetwork Service solution. Third, and finally, we would like to randomize the

solution over the possible paths for consideration in P' when possible. This helps to avoid using the

same CServ Internetwork Service paths in many composed solutions, risking the oversubscription of

some network-wide CServ Intranetwork Services with real CServ datagram transactions (consider the

Learning Session rate of the State Measurement Service Learning Session protocol presented in Chapter

4). We incorporate all of these considerations in the following description of the service composition

process, which seeks to find a diversity-routed set of CServ Internetwork Service paths that, together,

are reliability-feasible and meet the minimum required reliability of the transaction's CSR.

The second step of the composition phase proceeds as follows. We begin by sorting the remaining paths

in P' in order of reliability. Let the reliability of path p1 E P', or pi.reliability, be denoted as pi.

Without loss of generality, we can index the paths in P' such that pi > P2 > ' p' . Since thePdiscover

set of remaining paths is a small data set (at most it contains Pmax paths), we can use a simple insertion

sort [83] which runs, worst-case, in quadratic time with respect to the size of the set P' (i.e. O(IP'12)

running time), and in constant time with respect to the size and complexity of the transaction-specific

internetwork graph.

We then initialize the number of paths to consider as a CServ Internetwork Service solution, k, as Pmin,

the minimum required diversity in the solution from the CSR. If pmin > Pd'iscover, we can immediately

give up and return a service denial. Otherwise, we proceed as follows. We first check the diversity-

routed reliability of the Pmin least reliable paths in the set, that is p, .. , . , using
t dtscover-Pmin~l " Pdiscoveri

Eq. (5.1). If the reliability of this diversity-routed CServ Internetwork Service solution meets the

minimum tolerable reliability requirement of the CSR, Pmin, then we are free to randomly select any

Pmin paths from the set P' as the CServ Internetwork Service solution. If the pmin least reliable paths

meet the minimum tolerable reliability requirement, then we know for sure that any pmin paths in the

set meet the requirement. If the reliability of this diversity-routed CServ Internetwork Service solution

does not meet the minimum tolerable reliability requirement of the CSR, we then check the Pmin most

reliable paths in the set P', that is {Pi' ., PPmj,}, using Eq. (5.1). We do this in lieu of checking all

possible sets of pmin paths from P' to speed up the composition phase process. If the reliability of this

334

diversity-routed CServ Internetwork Service solution meets the minimum tolerable reliability

requirement of the CSR, Pmin, we choose the Pmin most reliable paths in the set P' as the CServ

Internetwork Service solution. We are not free to randomly select paths in this case; if the Pmin most

reliable paths meet the minimum tolerable reliability requirement, there is no guarantee that any other

set of Pmin paths meet the requirement. If this combination of the Pmin most reliable paths does not

meet the minimum tolerable reliability requirement, then we increment the number of paths to

consider in the CServ Internetwork Service solution, k, such that k = Pmin + 1. The process then

proceeds as before, first checking the k least reliable paths from P', that is

{Ppi -k+1' -- P'}' before checking the k most reliable paths from P', that is {P, ., Pk},

using Eq. (5.1). If a solution that meets the minimum tolerable reliability from the CSR is still not found,

the number of paths to consider is further incremented such that k = Pmin + 2. This process continues

until a solution is found or until k = pdiscover. At that point, the Pdiscover-diversity routed solution of all

paths in P' either meets the minimum tolerable reliability requirement from the CSR or it does not. If it

does, a solution has been found. Otherwise, the composition phase returns a service denial.

The previously described process is illustrated in Fig. 5-23 for an example where Pdiscover = 5 and

Pmin = 2. At each value of k, there are constant number of operations using the aforementioned steps.

In the worst case (when Pmin = 1 and there is no solution in the set of paths), this process requires

linear running time in the number of paths in P', or O(IP'I), and constant running time with respect to

the size and complexity of the transaction-specific internetwork graph.

335

1200
0

8 1000

0

6- 800
E
0

600

E 400

E
: 200
E

00

x10s

5 10 15
Number of discovered paths

Fig. 5-22: The number of possible exhaustive composed solutions that can be considered during the

composition phase as a function of the number of subnet-disjoint CServ Internetwork Service paths

found during the discovery phase of the CSDCA.

336

2 4 6
Number of discovered paths

:12

L 10
a)
0a 8
E
0

6

.a
E4

E
:3 2

0

8 10

20

Pi P2 P3 P4 P5
Pmin I

Most Reliable

k-diversity reliability A 1 - H' L1(1 - pi)

Yes
Pmin? 3 Choose random Pmn paths

Check best paths No

Pi P2 P3 P4 PS Least Reliable

Pmin

k-diversity reliability 1 - H' 1 (1 - pi)

Yes

Pmin? - Choose best Pmin paths

Increment diversity and check worst paths No

Mo Reliable Pi P2 P3 P4 PS Least Reliable
Pnin + 1

k-diversity reliability A 1 - f 1(1 - p)

Most Reliable

Yes
> Pmin? l Choose random pmin + 1 paths

Check best paths No

Pi P2 P3 P4 PS Least Reliable

I- n~

k-diversity reliability a 1 - =1(1 - pi)

Pmin?

increment diversity and check worst paths INo

And so on...

Yes
3o Choose best pmin + 1 paths

Fig. 5-23: This figure illustrates the steps in the composition phase of the CSDCA after excessive delay

paths are excluded and the remaining paths are sorted based on their reliability performance. The

depicted example uses p'iscover = 5 and Pmnd = 2.

337

- " Ilk,

Most Reliable Least Reliable

5.4.3 The Algorithm

With the necessary foundations established, we bring together the parts of the CSDCA into a holistic

picture in this section with an accompanying block diagram description in Fig. 5-24. This section

formalizes the overview presented in Section 5.4.1 with the CSDCA visualization. For each non-trivial

component of the algorithm, we provide an asymptotic running time with respect to the size of the

transaction-specific internetwork graphical representation (which has nst vertices), the complexity of

which dominates the running time of the CSDCA. Following the presentation of the algorithm, we give

the overall CSDCA running time and make a few related comments.

The Critical Service Discovery and Composition Algorithm

Discovery Phase

Start:

0 The CServ Request arrives at the MC from the CServ source host on the off-band control channel

Initialization:

* The transaction-specific internetwork cost-adjacency matrix Cst is prepared from the current

common internetwork cost-adjacency matrix and additional stored state information

o Running time: 0(nst 2)

o Comment: This involves copying and lookups of nst X nst X 4 matrix fields.

Initialize discovery phase variables: i := 1, P := 0

Discovery of a CServ Internetwork Service path:

* Run in instance of Dijkstra's Algorithm on Cst using the appropriate source vertex and "plane" of

the three-dimensional matrix according to the primary CServ performance metric

o Running time: O(nst 2)

338

* Is a path with finite distance to the destination vertex found?

o No: Go to Composition Phase

o Yes: Continue

" Use extractshortestpath helper method to retrieve the explicit CServ Internetwork Service path

information, pi. path, for this discovered path pi

o Running time: O(nst)

o Comment: This is an absolute worst-case running time if the discovered CServ

Internetwork Service path traverses, on the order of, all vertices (assuming that a

Hamiltonian path exists); typically, the length of the path is realistically limited by the

transaction-specific internetwork graph diameter.

" Compute pi.reliability and pi. delay from the output of Dijkstra's Algorithm, the explicit path

information, and the transaction-specific cost-adjacency matrix

o Running time: O(nst)

o Comment: Refer to the previous comment; worst-case running time is O(nst) only when

a discovered CServ Internetwork Service path includes, on the order of, all graph

vertices.

* Add the newly discovered path to the set of discovered paths: P := P U pi

" Is i < pmax? (The parameter that describes the maximum number of paths to discover during

this phase of the algorithm)

o No: Go to Composition Phase

o Yes: Continue

* Remove transit subnets of path pi from the transaction-specific internetwork cost-adjacency

matrix Cs

o Running time: O(nst 2)

* Increment the counting variable of the Discovery Phase: i := i + 1

* Go to Discovery of a CServ Internetwork Service path

End of Discovery Phase

339

Composition Phase

Initialization:

* Compute the adjusted maximum tolerable delay requirement, d'ax, from the maximum

tolerable delay value presented in the CServ Request

* For each path p EI P, remove p if p. delay > d,ax, forming P' -c P

o Running time: 0(1)

o Comment: The maximum number of possible paths in P for consideration is limited by

the Pmax parameter of the Discovery Phase, not the topology of the transaction-specific

internetwork graph.

* Sort paths in P' according to their reliability attributes

o Running time: 0(1)

o Comment: A simple insertion sort, for example, runs in constant time with respect to

the size and complexity of the transaction-specific internetwork graph; an insertion sort

would be O(n 2) generally for n elements, but the number of elements in this sorting

operation is, at most, some small constant that is not dependent on the size of the

transaction-specific internetwork graph.

Initialize composition phase variables: k := Pmin

Sis k > P'?

o Yes: Go to End service denial

o No: Continue

Check for k-diversity solutions:

* Is the reliability of the k-diversity routed solution using the k least reliable paths greater than or

equal to the minimum tolerable reliability value from the CServ Request?

o Yes:

" Choose k paths at random from P' as the CServ Internetwork Service solution

" Go to End service access

o No: Continue

340

o Running time: 0(1)

" is k = IP'I?

o Yes: Go to End service denial

o No: Continue

" Is the reliability of the k-diversity routed solution using the k most reliable paths greater than or

equal to the minimum tolerable reliability value from the CServ Request?

o Yes:

" Choose the k most reliable paths from P' as the CServ Internetwork Service

solution

" Go to End service access

o No: Continue

o Running time: 0(1)

* Increment the diversity variable of the Composition Phase: k := k + 1

" Go to Check for k-diversity solutions

End service access:

* Return service access response using CServ Internetwork Service solution to the CServ source

host on the off-band control channel

End service denial:

* Return a service denial response to the CServ source host on the off-band control channel

End of Discovery Phase

End of The Critical Service Discovery and Composition Algorithm

341

The overall running time of the CSDCA is dominated by the steps that run in O(nst 2) time, namely the

preparation of the transaction-specific internetwork cost-adjacency matrix, the instance of Dijkstra's

Algorithm, and the removal of transit subnets from the cost-adjacency matrix following the discovery of

a CServ Internetwork Service path. While the preparation of the cost-adjacency matrix itself occurs only

one, the other two components may occur several times depending on the hard-coded value of pmax

and the connectivity and topology of the transaction-specific internetwork graph. At most, however, a

small constant number of iterations of Dijkstra's Algorithm and the removal of transit subnets from the

graph occur during the execution of the CSDCA. All parts of the composition phase execute in time that

is constant with respect to the size and complexity of the network.

In conclusion, the CSDCA running time is O(nt 2), where ns = (n, X ng) + (2 + na, + nfat) vertices

using the notation from Section 5.3.3.2. More specifically, the running time of the CSDCA is quadratic in

the number of subnets in the network and the number of active CServ-enabled gateway routers per

subnet (the [2 + nas + nat] term can be treated as a small constant that does not grow with the size or

complexity of the internetwork, only the upstream connectivity of the transaction source and

destination hosts). Although an optimized implementation of Dijkstra's Algorithm allows it to run in sub-

quadratic time, simultaneous running time improvements must be made to the preparation of the

transaction-specific cost-adjacency matrix and the process for removing transit subnets from the

representation in order to improve upon the overall running time of the CSDCA. And although it is

helpful to understand the asymptotic running time behavior, it is more important, for the purpose of

adjusting the maximum tolerable delay requirement, to characterize the realized maximum running

time of the CSDCA using the specific hardware and software implementation for the network's MC

entity.

342

Start: CServ Request Arrives at MC

Prepare transaction-specific internetwork cost-

adjacency matrix Cs,

Run Dijkstra's Algorithm on C, using primary metric
and source s

Path to No
destination t

found?

Yes

Use extroctshortestpoth to retrieve I, path

Compute 1i.p rellnlvlity and pi. delay

7 7= U [1),}

No

Yes

Remove transit subnets of p, from C

Discovery phase
L- ----.- - -- ---- -- ---- --- - --- -- -- ---- - -- -- --

Compute adjusted maximum tolerable delay
requirement d'n,

Remove patrs pi from 7 if p delay > d,, forming

Sort paths in by reliability

k > ITP ?)End: Return service denial response

No

Is k-diversity Yes Choose k random paths from 1' as CServ internetwork
reliability of k worst

paths Pm
Service solution

No End: Return service access response

k -........... -~' Ye i End: Return service denial response

No

Is k-diversity Yes Choose k best patns from Y as C Ie lnternetwork
reliability of k best Sersc s CSto

End: Return service access response

k := k + p

Composition phase

Fig. 5-24: This block diagram outlines the operation of the two phases, the discovery phase and the

composition phase, of the CSDCA.

343

5.5 Conclusion

In this chapter, we described the role of the MC in the CServ architecture's control plane structure.

Together, the State Measurement Service and the control hierarchy (SCs and MC) form the control plan

for the CServ network. The State Measurement Service empowers the MC to make internetwork service

decisions, which was the focus of this part of the dissertation. With the reports from the CServ

performance metric learning protocols, we described how the MC generates decisions on the requests

for internetwork CServ service. The focus was both on the representation of the global network at the

MC and the algorithmic process for determining the availability of an internetwork path or set of paths

that meet the requirements of the CServ source data application. In doing so, we defined the precise

way that we probabilistically describe the delay of a CServ Internetwork Service path, and we applied

this definition to our heuristic path discovery algorithm which precedes the composition of service from

the set of discovered paths.

Many of the techniques used in the CSDCA, such as the determination of the reliability and delay of a

path and the determination of the reliability of a diversity-routed internetwork solution, rely on the

brittle assumption of statistical independent between the network subnets. As motivated in Chapter 2,

this assumption is borne of the intentional heterogeneity that distinguishes the disparate CServ subnets.

nowever, even withl thLis intentionall design, the IrgILy of this assumpn dcUnbPLIU Ld qUUILy eKpUseU

during certain events, particularly those that involve adversarial action. An adversary is likely to attempt

to correlate all possible failure modes to exact impact on the operation of the CServ network. More

generally, "Black Swan" events in general are likely to impact the CServ network in unforeseen ways that

may challenge the assumption on statistical independence. However, this makes the use of subnet-

disjoint diversity routing as a CServ Internetwork Service solution even more critical, as it presents some

notion of survivability in the face of adversarial or dire situations that would otherwise easily disrupt

critical messaging service. It is vital to consider the meaning of the probabilistic guarantees during

unexpected, high-impact events and what it means to operate under these network conditions.

Throughout the chapter, we relied on two architectural aspects that have not been the focus of this

dissertation and require further attention. First, we assumed that the off-band control network can be

designed such that it presents reliable, robust, and predictable signaling delay between the end-user

hosts and the control hierarchy (namely, the MC in this chapter). We have motivated the reasoning

344

behind this architectural requirement and its feasibility. However, the actual control network and

communication design should be the focus of future work. Second, we assumed the availability of

efficient data structures for the storage of State Measurement Service reports that enable constant time

lookups. Without these efficient structures, the running time of the CSDCA could be worse than the

presented result in Section 5.4.3. We motivated and proposed multimaps (or multihash tables) as a

promising candidate for this storage structure requirement, but some details must be worked out in

order to realize this design. This should also be the focus of future work on the CServ architecture.

Finally, it is worth noting that there are many possible optimizations to the CSDCA that may, or may not,

be necessary to improve the realized running time on the MC entity's particular hardware and software

configuration. The most fundamental form of the CSDCA is presented in this chapter, but many other

forms exist that can meet the same goals. For example, there is no point in discovering five subnet-

disjoint CServ Internetwork Service paths if only two are needed to satisfy the demands of the CSR. This

approach uses wasteful iterations of Dijkstra's Algorithm. From this point of view, it might be more

efficient to interleave the discovery and composition phases appropriately rather than to always execute

the two phases in sequence as presented.

345

346

Chapter 6

Conclusion

In this thesis, we have addressed the architectural design of a novel internetwork architecture, the

Critical Service (CServ) architecture, which provides a priori explicit reliability and delay performance

guarantees to the end-user application on a transaction-specific basis in order to support mission-critical

messaging over unreliable and interconnected subnet systems. This work represents the foundations for

the system description; we have highlighted the primary enabling technologies and components,

describing their operation, interaction, and performance. However, this internetwork architecture

proposal is still in its infancy, and there are many aspects that have not yet been fully fleshed out and

require future research and development.

We considered related service-oriented architectures, and we identified their mismatch to the desired

goal of providing explicit internetwork guarantees to application-specific transaction needs. This

motivated the creation of the CServ architecture. We began with an overview of the system, presenting

the primary technologies and components through a transaction walk-through. This discussion started

with the presentation of pre-transaction state maintenance, which includes the active learning of subnet

performance through the State Measurement Service. The State Measurement Service allows the

individual networks to retain autonomous operation, choosing their preferred routing and forwarding

policies, while still participating in the CServ network. The consideration of pre-transaction state

maintenance necessitated the deployment of an off-band control plane used to collect and aggregate

estimated performance state at the local subnet. This subnet controller played a fundamental role in the

control plane hierarchy; the subnet controller represents the autonomous local control, relaying only

the necessary local performance state information to the global, top-level logically-centralized control

plane, the master controller (MC). The MC collects and maintains a subset of the learned and reported

network-wide state, facilitating its primary role as the arbitrator for internetwork critical messaging

347

service. This structure also shields subnets from the need to exchange estimated performance state with

their direct neighboring subnet peers.

With the help of the pre-transaction state maintenance, the CServ transaction is ready to commence

upon the generation of a critical message payload. The flow was considered step-by-step, beginning

with the MC conversation via the CServ API. The source of the critical transaction negotiates service with

the logically-centralized MC that acts as a service broker. The source states the minimal requirements of

the transaction, and then the MC attempts to compose service based on the most recently reported

network-wide, aggregate state in order to meet the demands of the application. Following a successful

service access response which describes the explicit internetwork service, the critical message is borne

on the CServ data plane from the source host to the destination host using the results from the MC

algorithm and the locally offered subnet intranetwork services along the way. In the subsequent

chapters of the thesis, we considered several of the CServ systems in more detail, including the

execution of data plane control in terms of the CServ datagram header information, possible protocol

methods to implement the requirements of the State Measurement Service, the representation of the

internetwork topology at the logically-centralized MC, and, the brains of the architecture, the MC

algorithm used to discover and compose internetwork service that meets the mission-critical messaging

needs.

6.1 Final Thoughts

Throughout the description of the CServ architecture, we have relied upon the statistical independence

between subnets of the network (and sometimes even within a subnet, as during the description of the

Collector protocol that can be used to realize the State Measurement Service). Although subnets need

only look "independent enough" such that there are no strong correlations between them for most of

the results to hold to some degree, there is a danger in making this type of modeling assumption. The

use of this statistical independence assumption, importantly, is how we compose subnet-disjoint

diversity routed solutions during the Critical Service Discovery and Composition Algorithm (CSDCA); if

the assumption does not hold, then the composed CServ Internetwork Service does not necessary meet

the demands of the source host application. This assumption is also invoked to define the delay of a

network path based on its performance statistics. The reliance upon this assumption means that we

must be wary of its validity.

348

In several locations during the dissertation, we alluded to the impact of "Black Swan" network events on

the CServ architecture. The concept of the "Black Swan" event was first introduced by statistician

Nicholas Taleb in his 2007 book, The Black Swan: The Impact of the Highly Improbable [52]. In this book,

the black swan is used as a metaphor for unexpected, unforeseen events that have major impact and

are often inappropriately rationalized subsequently with the use of retrospection. The very nature of

their improbability make these events impossible to assign probabilistic measure to a priori - they are

considered outside the realm of the human capability to generate models. For this reason, we have

made the reader as aware as possible to the potential impact of such events in the context of the CServ

architecture. Possible "Black Swan" impacts in the CServ network include the generation of unexpected

waves of mission-critical CServ messages beyond the expected peak rate or the simultaneous disruption

of many or all transit subnets interconnecting the source and destination subnet of a transaction. While

we can conceive of some possible outcomes, it is difficult to predict the "Black Swan" event that might

produce these results.

One thing is for certain: the CServ architecture does not explicitly provide opportunity to model or learn

what it has not observed. The State Measurement Service, for example, only estimates CServ

performance metrics based on the realized performance of past traffic. So when that unforeseen event

and impact occurs, there is no real understanding of guaranteed performance in the same vein as

previously presented in this work. Furthermore, if the "Black Swan" event is the result of a malicious

actor intent on the disruption of critical messaging service, the statistical independence assumption is

likely to completely break down; the malicious actor would seek to correlate all possible failure modes in

the network in order to exact maximum effect. The best that we can aim for in the design is survivability.

Through the use of subnet-disjoint diversity internetwork routing, even if the subnets are not strictly

statistically independent, we have gained some notion of survivability against an unexpected high

impact event so long as it does not affect all paths or subnets in the solution.

Another consideration that we must bear in mind in the context of the CServ architecture is the

limitation imposed by the speed of light. The design makes use of learned and reported state

information in order to compose internetwork service that meets the demands of critical applications.

Given that this estimated performance information must traverse an off-band control channel from the

network entity forming the estimate to the control plane hierarchy, there is a necessary staleness to the

information that the MC operates on due to physical propagation times. This is particularly true for a

349

physically-distributed but logically-centralized implementation of the MC entity, as the implementation

of consistency algorithms to synchronize the devices introduces additional delay thanks to the physical

separation of the components. Although we have to accept the physical restrictions of acting on

network telemetry reports, it is important to comprehend what it means to make guarantees with stale

state information. The application that utilizes the CServ architecture for critical messaging should be

designed with this in mind. There has been some work to quantify what it means to operate on old state

using information theoretic techniques in other architectures [88], and this type of understanding and

modeling could, in the future, be applied to the CServ architecture directly. But for now, we stand on the

belief that acting on slightly stale state is better for the purpose of high-performance service than acting

blindly on no state information at all.

6.2 Future Work

As the CServ architecture is a new internetwork proposal, there are many open research problems that

need to be considered and developed before this type of network can be deployed. Throughout the

dissertation, we have alerted the reader to some opportunities for additional research beyond what has

been presented. We consider some more directions here, although this is by no means an exhaustive list

of open problems.

A big "sore thumb" for the CServ architecture is its security architecture, which has not been covered in

this work. The CServ proposal is designed to bear the most critical of the critical messages in the

network, and it marks these messages using control header information as such. Due to the nature of

these mission-critical datagrams, they must immediately be considered as high-value targets for

adversarial action. The adversary who wishes to disrupt critical communications would look for manners

to divert, disrupt, destroy, or delay CServ traffic. Even though we have allocated a field in the CServ

Internetwork Service header for authentication of messages to ensure that a rogue host does not spoof

a critical alert or command message, future work needs to consider other aspects of the security

framework to further protect the critical messages and the CServ infrastructure.

For example, there should be some technique to positively verify that a CServ datagram has been

granted data plane access through the MC. This could be as simple as including a signature field for the

MC that can be verified by intermediate active routers in the CServ Internetwork Service path, but the

350

cryptographic process of signature verification could induce unnecessary or unacceptable delay into the

path. At the same time, the contents of the critical message in the CServ datagram should be protected

from prying eyes since the CServ datagram header control information identifies it as a critical message

and, thus, as a datagram likely to reveal important or sensitive information. Should the encryption of the

CServ datagram payload be the role of the network layer? Or should it be left to the application?

Datagram encryption for data privacy is included as part of some transport layer protocols, such as

Transport Layer Security (TLS) [89]. Since the CServ network layer is designed to absorb some

functionality of the transport layer, there is an argument to be made that the CServ network layer

should be accountable for protecting the privacy of the transmitted critical message. The inclusion of

encryption and decryption processes in the network layer, however, would generate additional CServ

Internetwork Service delays and further challenge the CServ architecture to successfully meet the

performance demands of CServ applications. The question of where the responsibility for message

encryption lies requires further thought and development. It is worth noting, however, that the use of

the Learning Session protocol for the State Measurement Service provides a sort of camouflage for the

critical message datagram, even if it does not encrypt the payload. Since the protocol stuffs real CServ

datagrams into Learning Session flows that are primarily comprised of active dummy datagrams in the

CServ traffic class, it is more challenging for an adversary to ascertain the real critical message of

interest.

As another example, there should be some method of checking the veracity of State Measurement

Service reports. Given the current architecture description, an active router within a subnet could

misrepresent estimated CServ Intranetwork Service performance metrics in order to black-hole critical

traffic or to divert it to other subnets. With global purview, the MC is in the perfect position to initiate a

protocol to check the realized CServ Intranetwork Service performance of a subnet using dummy active

probes. It could request that two peering subnets of the subnet in question exchange a dummy CServ

datagram that can be used to substantiate the reported CServ performance metrics. However, this

introduces additional data plane transmission and switching burden beyond the State Measurement

Service and requires more complex processing at the MC.

And as one final example, admission control is a vital concern of the CServ architecture and has not been

considered in detail in this thesis. It is important to ensure that CServ traffic does not overburden the

network, either benignly or due to adversarial action. If the transient volume of critical datagrams

351

entering the data plane exceed the dimensioning of the network (if it exceeds Learning Session rate or

goes beyond ten percent of the total network traffic, for example), this both jeopardizes the validity of

the performance guarantees of the MC and the ability of the network to simultaneously serve best

effort network traffic. In fact, an adversary may wish to exploit this using some sort of (distributed)

denial-of-service attack that floods the MC with CServ Requests. Luckily, the MC is again in the perfect

position to police network admission for critical messages since it serves as a service computation

broker, but the details of these algorithms and policies need to be further developed and analyzed.

Another area we have already alluded to that requires additional research and work is that of the

physical control plane, including the controller entities themselves and the off-band control network.

Although we have discussed the concept and requirements of the control plane and communication

channels, this network requires careful design consideration and dimensioning guidelines. First, the

actual physical topology of the network controllers should be considered in more detail. How should the

physically-distributed MC entities be allocated? Is it enough to have one or two physical MCs per "metro

area," or do we only need one or two for the entire network? This question is intimately coupled with

several others, such as the scale and physical distribution of the entire network, the cost of a MC entity,

and the performance of the distributed system protocol used to realize state consistency between the

entities and create a logically-centralized global control plane. The design of the off-band control

channel and network interconnecting the hosts and routers with the control plane also needs further

development. Specifically, what kind of communication substrate and protocol best suits the needs of

this robust, reliable, and predictable system? And how exactly would this off-band network be

implemented separately from the network data plane? Is there a logical control network topology that is

simple but efficient enough to distribute the aggregate load of the state measurement service reports,

CServ Requests, and service responses?

There is opportunity for additional work on the CServ architecture components covered in this

document as well, such as the State Measurement Service and the CSDCA. There may be other protocol

ideas that outperform those presented in this dissertation, or there may be useful optimizations to the

algorithms as presented here (we have already introduced a straightforward optimization to the MC

algorithm that interleaves the discovery and composition phases) that improve their efficiency and

execution time. Ultimately, many of these questions may be answered through verification of the CServ

architecture concept at scale, using a network testbed framework or, at the very least, some system-

352

level simulation. This would be a time-consuming and complex task, but this may be the last step after

the consideration of other open problems to confirm that the CServ architecture concept can provide

accurate-enough internetwork services in a timely fashion to satisfy stringent critical messaging

requirements.

353

354

Bibliography

[1] L. Roberts, "The Arpanet and computer networks," in HPW '86 Proceedings of the ACM Conference
on the history of personal workstations, New York, 1986.

[2] Cisco, "The zettabyte era - trends and analysis," 29 May 2013. [Online]. Available:
http://www.cisco.com/c/en/us/solutions/collateraI/service-provider/visual-networking-index-
vni/VNI_HyperconnectivityWP.html. [Accessed 7 May 2014].

[3] D. E. Comer, Computer Networks and Internets, 5th ed., Upper Saddle River: Pearson Education,
2009.

[4] 1. Aldridge, "What is high-frequency trading, afterall?," 8 July 2010. [Online]. Available:
http://www.huffingtonpost.com/irene-aldridge/what-is-high-frequency-tr-b_639203.html.
[Accessed 1 May 2014].

[5] Federal Energy Regulatory Commission, "Assessment of Demand Response and Advanced
Metering," 2008.

[6] D. S. Alberts, J. J. Garstka and F. P. Stein, Network Centric Warfare: Developing and Leveraging
Information Superiority, 2nd ed., CCRP Publication Series, 2000.

[7] "World Stats," Miniwatts Marketing Group, November 2015. [Online]. Available:
http://www.internetworldstats.com/stats.htm. [Accessed 31 December 2015].

[8] Cisco, "High-performance automated trading network architectures," 2010. [Online]. Available:
https://www.cisco.com/web/strategy/docs/finance/cll-600126_wp.pdf. [Accessed 1 May 2014].

[9] A. Haldane, "Patience and finance," 9 September 2010. [Online]. Available:
http://www.bis.org/review/r100909e.pdf. [Accessed 1 May 2014].

[10] V. W. S. Chan, Private communication, 2014.

355

[11] J. M. Chapin and V. W. S. Chan, "Ultra high connectivity military networks," IEEE Military
Communications Conference, pp. 1011-1018, 2010.

[12] Y. Rekhter, T. Li and S. Hares, "A border gateway protocol 4 (BGP-4)," IETF RFC 4271, Jan. 2006.

[13] J. Hawkinson and T. Bates, "Guidelines for creation, selection, and registration of an Autonomous
System (AS)," IETF RFC 1930, Mar. 1996.

[14] D. McPherson and V. Gill, "BGP MULTIEXITDISC (MED) considerations," IETF RFC 4451, Mar. 2006.

[15] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 4th ed., Boston: Pearson
Education, 2008.

[16] CCITT, Study Group VII, Draft recommendation X-25, March 1976.

[17] C. Brown and A. Malis, "Multiprotocol Interconnect over Frame Relay," IETF RFC 2427, Sep. 1998.

[18] A. Joel, Asynchronous Transfer Mode, IEEE Press, 1993.

[19] E. Rosen, A. Viswanathan and R. Callon, "Multiprotocol Label Switching Architecture," IETF RFC
3031, Jan. 2001.

[20] L. Andersson, I. Minei and B. Thomas, "LDP Specification," IETF RFC5036, Oct. 2007.

[21] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan and G. Swallow, "RSVP-TE: Extensions to RSVP for
LSP Tunnels," IETF RFC 3209, Dec. 2001.

[22] L. Benmohamed, B. Doshi, T. DeSimone and R. Cole, "Inter-domain routing with multi-dimensional
QoS requirements," in IEEE Military Communications Conference, 2005.

[23] J. Moy, "OSPF Version 2," IETF RFC 2328, April 1998.

[24] R. Coltun, D. Ferguson, J. Moy and A. Lindem, "OSPF for IPv6," IETF RFC5340, July 2008.

356

[25] D. Oran, "OSI IS-IS Intra-domain Routing Protocol," IETF RFC1142, Feb. 1990.

[26] International Organization for Standardization, "Intermediate system to Intermediate system intra-
domain routing information exchange protocol for use in conjunction with the protocol for
providing the connectionless-mode Network Service (ISO 8473)," ISO/IEC 10589:2002, Second
Edition, Nov. 2002.

[27] D. Katz, K. Kompella and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2," IETF RFC
3630, Sep. 2003.

[28] T. Li and H. Smit, "IS-IS Extensions for Traffic Engineering," IETF RFC 5305, Oct. 2008.

[29] J. Postel, "Internet Protocol," IETF RFC 791, Sep. 1981.

[30] K. Nichols, S. Blake, F. Baker and D. Black, "Definition of the Differentiated Services Field (DS Field) in
the IPv4 and IPv6 Headers," IETF RFC2474, Dec. 1998.

[31] W. Xia, Y. Wen, C. Heng Foh, D. Niyato and H. Xie, "A Survey on Software-Defined Networking," IEEE
Communication Surveys & Tutorials, vol. 17, no. 1, pp. 27-51, 2015.

[32] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka and T. Turletti, "A Survey of Software-Defined
Networking: Past, Present, and Future of Programmable Networks," IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1617-1634, 2014.

[33] T. Anderson et al., "The NEBULA Future Internet Architecture," in The Future Internet, vol. 7858,
2013, pp. 16-26.

[34] J. Chapin and V. Chan, "Architecture concepts for a future heterogeneous, survivable tactical
Internet," in IEEE Military Communications Conference, 2013.

[35] C. Hornig, "A Standard for the Transmission of IP Datagrams over Ethernet Networks," IETF RFC 894,
Apr. 1984.

[36] J. Chapin and V. Chan, "Ultra high connectivity military networks," in IEEE Military Communications
Conference, 2010.

357

[37] V. Cerf and R. Kahn, "A Protocol for Packet Network Intercommunication," IEEE Transactions on
Communications, vol. 22, no. 5, May 1974.

[38] Advanced video coding for generic audiovisual services, ITU-T Recommendation H.264, International
Telecommunication Union, 2003.

[39] Information Technology - Coding of Audio-Visual Objects - Part 10: Advanced Video Coding, ISO/IEC
14496-10, 2012.

[40] J. Hawkinson and T. Bates, "Guidelines for creation, selection, and registration of an Autonomous
System (AS)," IETF RFC1930, Mar. 1996.

[41] D. Naylor, M. Mukurjee, P. Agyapong, R. Grandi, R. Kang and M. Machado, "XIA: Architecting a More
Trustworthy and Evolvable Internet," ACM SIGCOMM Computer Communication Review, vol. 44, no.
3, pp. 50-57, July 2014.

[42] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley, C. Papadopoulos, L. Wang and B.
Zhang, "Named Data Networking," ACM SIGCOMM Computer Communication Review, vol. 44, no. 3,
pp. 66-73, July 2014.

[43] J. Postel, "Transmission Control Protocol," IETF RFC 793, Sep. 1981.

[44] J. Postel, "User Datagram Protocol," IETF RFC 768, Aug. 1980.

[45] IEEE Standard for Ethernet, IEEE 802.3-2012, 2012.

[46] D. Bertsekas and R. Gallager, Data Networks, 2nd ed., Upper Saddle River: Prentice-Hall, 1992.

[47] Cisco, "Cisco's Space Router Successfully Operates in Orbit," 19 January 2010. [Online]. Available:
http://newsroom.cisco.com/press-release-content?articleld=5315645. [Accessed 28 September
2015].

[48] V. Fuller, T. Li, J. Yu and K. Varadhan, "Classless Inter-Domain Routing (CIDR): an Address Assignment
and Aggregation Strategy," IETF RFC 1519, September 1993.

[49] R. Hinden and S. Deering, "IP Version 6 Addressing Architecture," IETF RFC 4291, February 2006.

358

[50] E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Numerische Mathematik, vol.
1, pp. 269-271, 1959.

[51] IEEE Standard for Floating-Point Arithmetic, IEEE 754-2008, 2008.

[52] N. N. Taleb, The Black Swan: The Impact of the Highly Improbable, New York: Random House, 2010.

[53] L. Smith and L. Ian, "Free Pool of IPv4 Address Space Depleted," Number Resource Organization, 3
February 2011. [Online]. Available: https://www.nro.net/news/ipv4-free-pool-depleted. [Accessed 3
November 2015].

[54] J. Curran, "ARIN IPv4 Free Pool Reaches Zero," American Registry for Internet Numbers, 24
September 2015. [Online]. Available: https://www.arin.net/announcements/2015/20150924.html.
[Accessed 3 November 2015].

[55] S. Deering and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification," IETF RFC 2460, Dec.
1998.

[56] P. Mockapetris, "Domain Names - Concepts and Facilities," IETF RFC 1034, Nov. 1987.

[57] P. Mockapetris, "Domain Names - Implementation and Specification," IETF RFC 1035, Nov. 1987.

[58] T. Narten, G. Huston and L. Roberts, "lPv6 Address Assignment to End Sites," IETF RFC 6177, Mar.
2011.

[59] IEEE, "Guidelines for 64-Bit Global Identifier (EUI-64)," IEEE Standards Association.

[60] T. Bates, P. Smith and G. Huston, "CIDR Report," 4 November 2015. [Online]. Available:
http://www.cidr-report.org/as2.0/. [Accessed 4 November 2015].

[61] Q. Vohra and E. Chen, "BGP Support for Four-Octet Autonomous System (AS) Number Space," IETF
RFC 6793, Dec. 2012.

[62] S. Kawamura and M. Kwashima, "A Recommendation for IPv6 Address Text Representation," IETF
RFC 5952, Aug. 2010.

359

[63] C. Partridge and F. Kastenholz, "Technical Criteria for Choosing IP The Next Generation (IPng)," IETF
RFC 1726, Dec. 1994.

[64] J. Stone and C. Partridge, "When the CRC and TCP checksum disagree," in SIGCOMM '00 Proceedings
of the conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, Stockholm, 2000.

[65] B. Kaliski, "TWIRL and RSA Key Size," 6 May 2003. [Online]. Available: http://www.emc.com/emc-
plus/rsa-labs/historical/twirl-and-rsa-key-size.htm. [Accessed 5 November 2015].

[66] T. ElGamal, "A public key cryptosystem and a signature scheme based on discrete logarithms," IEEE
Transactions on Information Theory, vol. 31, no. 4, pp. 469-472, 1985.

[67] Federal Information Processing Standards, "Digital Signature Standard (DSS)," FIPS PUB 186-4, Jul.
2013.

[68] E. Barker and A. Roginsky, "Transitions: Recommendation for Transitioning the Use of Cryptographic
Algorithms and Key Lengths," NIST Special Publication 800-131A, Revision 1 Draft, Jul. 2015.

[69] B. Davie, A. Charny, J. C. R. Bennett, K. Benson, J. Y. Le Boudec, W. Courtney, S. Davari, V. Firoiu and
D. Stiliadis, "An Expedited Forwarding PHB (Per-Hop Behavior)," IETF RFC 3246, Mar. 2002.

[70] L. Andersson, I. Minei and B. Thomas, "LDP Specification," IETF RFC5036, Oct. 2007.

[71] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan and G. Swallow, "RSVP-TE: Extensions to RSVP for
LSP Tunnels," IETF RFC 3209, Dec. 2001.

[72] IEEE, "IEEE Standard for Information Technology - Telecommunications and Information Exchange
Between Systems - Local and Metropolitan Area Networks - Specific Requirements. Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifica," IEEE Standards Association,
IEEE Std 802.11ac-2013, 2013.

[73] J. Mogul and S. Deering, "Path MTU Discovery," IETF RFC 1191, Nov. 1990.

[74] J. McCann, S. Deering and J. Mogul, "Path MTU Discovery for IP version 6," IETF RFC 1981, Aug.
1996.

360

[75] K. C. Guan, Cost-Effective Optical Network Architecture - A Joint Optimization of Topology,
Switching, Routing and Wavelength Assignment, PhD Dissertation, Massachusetts Institute of
Technology, 2007.

[76] Cisco, "Portable Product Sheets - Routing Performance," 3 November 2009. [Online]. Available:
http://www.cisco.com/web/partners/downloads/765/tools/quickreference/routerperformance.pdf.
[Accessed 3 December 2015].

[77] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 802.11,
2012.

[78] R. Gallager, Stochastic Processes: Theory for Applications, Cambridge: Cambridge University Press,
2013.

[79] R. J. Perlman, "Network layer protocols with Byzantine
Massachusetts Institute of Technology, 1988.

[80] F. Cantelli, "Intorno ad un teorema fondamentale della
dell'Associazione degli Attuari Italiani, pp. 1-23, 1910.

robustness," PhD dissertation,

teoria del rischio," Bollettino

[81] P. Tchebichef, "Des valeurs moyennes," Journal de mathematiques pures et appliquies, vol. 2, no.
12, pp. 177-184, 1867.

[82] M. Sniedovich, "Dijkstra's algorithm revisited: the dynamic programming connexion," Journal of
Control and Cybernetics, vol. 35, no. 3, pp. 599-620, 2006.

[83] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, 2nd ed., Cambridge: The
MIT Press, 2002.

[84] J. M. Simmons, Optical network design and planning, New York: Springer, 2008.

[85] J. Quirk and R. Saposnik, Introduction to General Equilibrium Theory and Welfare Economics, New
York: McGraw-Hill, 1968.

[86] L. G. Valiant, "The Complexity of Enumeration and Reliability Problems," SIAM J. Comput., vol. 8, no.
3, pp. 410-421, 1979.

361

[87] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer Science & Business
Media, 2012.

[88] L. Zhang, Fast Scheduling for Optical Flow Switching, Cambridge: Massachusetts Institute of
Technology, SM Thesis, 2010.

[89] T. Dierks and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2," IETF RFC 5246,
Aug. 2008.

362

363

