
A Systems Approach to Software Security in Aviation

by

Jonas Helfer

M. Sc. in Computer Science
Ecole Polytechnique Federale de Lausanne, 2011

department of Electrical Engineering and Computer
Fulfillment of the Requirements for the Degree

of

Science in Partial

Master of Science in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

February 2016

@ 2016 Massachusetts Institute of Technology

Signature of Author ..........

Certified by ....

Accepted by

Signature redacted
Department of Electrical Engineering and Computer Science

January 27, 2016

qnature redacted .. -..-....-........--------.-.---.-
Nancy G. Leveson

Professor of Aeronautics and Astronautics
Thesis Supervisor

Signature redacted
W'-I

MM'S9A-CN(SVTS'ST1TUTE
OF TECHNQLOGY

APR 15 2016

LIBRARIES
ARCHIVES

............ - --....... ..... .... ------.
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair of the Committee on Graduate Students

1

Submitted to the



Abstract
Field Loadable Software in commercial aviation is indispensable for vital avionics

functions yet its security has never been studied in depth. Due to the recent introduction of

wireless software loading capabilities and Internet-connected in-flight entertainment

systems along with several high-profile information security breaches in other sectors, the

security of Field Loadable software has come under closer scrutiny.

Conventional information systems security analysis approaches focus on finding and

preventing vulnerabilities in the implementation of a system, but they are not designed to

include the organizational "soft" components of a system.

The aim of this thesis is to provide a comprehensive security analysis of Field

Loadable Software that includes organizational aspects in order to find existing

vulnerabilities and propose security constraints that would fix the vulnerabilities or prevent

them from being exploited.

A novel safety approach from safety engineering, called Systems Theoretic Process

Analysis (STPA) was adapted and used to perform the security analysis of Field Loadable

Software in commercial aviation.

The analysis produced a simple systems model for Field Loadable Software and found

that current regulations and practices are not sufficient: there several significant

vulnerabilities in the way Field Loadable Software is currently designed and distributed.

However, the analysis also showed that the vulnerabilities could be removed with the

addition of simple technical measures and security constraints.
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Chapter 1 Introduction
Until recently, security played only a minor role in aircraft systems designs. Engineers

were mindful of safety, however, and the aviation industry's accident numbers have
dropped accordingly over the last 50 years [1]. After 9/11, significant efforts were made to

improve physical security, but regulation pertaining to information systems security, such

as DO-355, has yet to be adopted by the Federal Aviation Administration.

Avionics started to be used in commercial aircraft after WWII, but it wasn't until the

early 80's that aircraft were built with components whose software could be updated

without replacing the hardware-so-called field loadable software. The earliest versions of

field loadable software systems in the 80's used floppy disks to apply updates. More

recently, software suppliers and airlines have started distributing software over the Internet

[2] and transmitting it to aircraft via wireless networks at airports (GateLink). Without

security measures in place, critical avionics software in commercial aircraft could be

compromised by a determined adversary. In addition to the aforementioned new

technologies used for software distribution, other possible routes for an adversary to

compromise the integrity of an aircraft are present in the form of in-flight entertainment
systems and passenger WiFi.

Safety-critical software, such as avionics software used on commercial aircraft, is

subject to much higher standards of correctness than other software. In particular, it must

be possible to ascertain with an acceptable level of confidence that the software meets

airworthiness requirements, meaning that it conforms to its type design and is safe for

operation [3]. Software verification and validation was recognized as a very challenging

problem a long time ago [4]. While static analysis can prove certain properties of a

software's behavior, this alone is not enough to guarantee system safety [5, 6]. In fact, the

most commonly used approaches in industry make little use of formal methods and rely

instead on following a rigorous development process and performing extensive testing [7,
8, 3]. However, there is little to no research comparing the efficiency of different software

methodologies with respect to preventing safety-critical flaws, and software testing is still

largely an art and not a science [9].

The software currently used in commercial aircraft has to adhere to numerous

standards intended to ensure safety, and the industry has managed to significantly reduce

accident rates over the last 50 years [1]. However, the security of aviation software has

only recently started to gain attention, and is thus not very well understood [10, 11].

Operators and suppliers in the aviation industry assume that they are safe from attacks

because their systems do not run on commodity hardware. However, the operators of

industrial control systems held similar beliefs, until the first real attacks proved them wrong

[12,13].

While there are similarities between software safety approaches and software security

approaches, software security requires that the software not only be resistant to
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inadvertent actions by benevolent actors, but also resistant to advertent actions by a
determined opponent [14]. Security therefore requires different means than safety.

Commercial enterprises usually have very few incentives to invest in security until the
occurrence of an incident, and it is possible that the aviation industry is no different in this
regard. Security features are generally not part of the functional aspects of the system that
customers are willing to pay for. The challenge that companies face is therefore to invest
'just enough' into security to convince their customer that their product is secure, but no
more than what security incidents might cost the company [15].

This thesis summarizes the results of applying STPA (Systems Theoretic Process
Analysis) to the safety and security of aviation information systems [14,16].

Security is not an intrinsic property of any individual system component; It is an
emergent property of the whole system. Unsafe or insecure behavior at the system level
can be predicted by modeling the system as a hierarchy of controllers that provide input
and feedback to each other. A safe/secure system must ensure that the process it controls
remains within a specified set of safe/secure states (and clear of unsafe/insecure states)

by applying the proper control inputs to said process [5]. Rather than limiting the analysis
to the software itself, this approach recognizes that insecure system states may arise from
the interaction between people and software, and not just the software itself. It therefore
includes not only the software but also organizations, individuals and hardware in the
model of the system being analyzed. Such an approach has been successfully applied to
other complex systems, and this thesis shows that it works for aviation software as well
[17].
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Chapter 2 Background

2.1 Field Loadable Software
In aviation, the term Field Loadable Software describes any piece of software that can

be exchanged or updated without the need for replacing the hardware Line Replaceable

Unit (LRU). Since their first introduction to commercial aviation in the 1970s, field loadable

software units have become the de-facto standard. The main driving force behind this

trend is the reduction of development and maintenance costs associated with avionics.

Development is cheaper because the software runs on standardized hardware (even

commercial-off-the-shelf hardware in some cases) and maintenance costs are lower

because updating software takes less time and specialized equipment than replacing an

LRU.

The earliest forms of Field Loadable Software used in commercial aviation were

loaded with floppy disks. The different pieces of FLS used on the Boeing 777 for example

were distributed in floppy disks. Over the years, floppy disks were replaced with portable

media of higher capacity, such as CDs and portable hard drives. Currently, the state of the

art is to send the software to airlines over the Internet. The airline in turn distributes it to

the aircraft over wireless networks (GateLink). Once the software is on the aircraft,
mechanics can send it to the LRU whose software needs to be updated.

It is likely that at some point in the near future, aircraft manufacturers and airlines will

work together to reduce maintenance cost by altogether removing the need for manual

interventions by ground personnel during the software updating process.
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2.2 Aviation Systems Security
When avionics software was first introduced in the 70's, security was only a concern

insofar as the computers running the software had to be protected from physical sabotage.
This was mainly due to two reasons: (1) Most computers weren't networked and the
Internet did not exist yet, and (2) avionics software and hardware used to be custom made
for aviation. The systems were similar to more widely used commodity hardware and
software in the PC mass-market, but they had some significant differences as well. Attacks
that affected widespread commodity hardware and software were thus not a major
concern for aviation.

In recent years, both of these "defenses" have become significantly weaker or have
been removed altogether, explaining an increased focus on aviation information systems

security: More and more avionics systems are networked; they communicate with each

other and some of them communicate with airline or other ground services, which in turn
are connected to the Internet. Passenger entertainment and in-flight Internet have become
common, and they offer another vector of attack into avionics systems. In order to reduce

costs, newer avionics systems are increasingly built using commercial off the shelf (COTS)
hardware and software, which makes them cheaper to build and maintain, but also

potentially vulnerable to common types of attacks carried out over the Internet. Using

COTS hardware and software enables engineers to reuse code, tools and parts, but it also

enables attackers to do the same, thus dramatically reducing the cost of developing

exploits against aviation. It is even imaginable that aircraft could be affected by attacks not

specifically directed against them, such as a virus that spreads itself through a vulnerability
in a common operating system.

For all these reasons, the FAA, aircraft manufacturers and airlines have increased

investments into aviation systems information security. They are trying to analyze avionics

systems to determine whether they are vulnerable, and if so what measures can be taken

to make them more secure.

2.2.1 Overview of current regulation
While there is current FAA guidance and regulation pertaining to software development

(DO-178C [18], AC 20-115C [19] and Order 8110.49[20]), new guidance for cyber-security

(DO-326A [21] and DO-355 [22]) has not yet been accepted or required as a means of

compliance with airworthiness standards. It is unclear whether the current safety

guidelines in DO-178C pertaining to field loadable software are sufficient to guarantee

security as well, or whether DO-178C needs to be updated. ARINC Report 835 [23]
describes the digital signature based process used by Boeing and Airbus to distribute

software to their new aircraft.

DO-178C, DO-355 and DO-326 do not address physical security of aviation equipment

as this is considered to fall under the responsibilities of the Transportation Security

Administration (TSA) and the Department of Homeland Security (DHS).
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The following sections of this document contain only a high-level overview of parts of

DO-178C, DO-355, DO-326 and Order 8110.49. For a more detailed understanding, the
reader is referred to the original documents.

2.2.2 RTCA DO-178C
RTCA DO-178C - Software Considerations in Airborne Systems and Equipment

Certification outlines the process of developing software for aircraft. It also contains a

section of guidance for the safety of field loadable software that reads as follows:

The safety-related requirements associated with the software data loading function are

part of the system requirements. If the inadvertent enabling of the software data loading

function could cause erroneous loading of software parts, then a safety-related

requirement for the software data loading function should be specified in the system

requirements.

System safety considerations relating to field-loadable software include:

* Detection of corrupted or partially loaded software

* Determination of the effects of loading the inappropriate software

* Hardware/software compatibility

* Software/software compatibility

* Aircraft/software compatibility

* Inadvertent enabling of the field loading function

* Loss or corruption of the software configuration identification display.

Unless otherwise justified by the system safety assessment process, the detection

mechanism for partial or corrupted software loads should be assigned the same failure

condition or software level as the most severe failure condition or software level

associated with the function that uses the software load.

If a system has a default mode when inappropriate software is loaded, then each

partitioned component of the system should have safety-related requirements specified for

operation in this mode which address the potential failure condition.

The software loading function, including support systems and procedures, should

include a means to detect incorrect software and hardware, and should provide protection

appropriate for the function involved. If the software consists of multiple configuration

items, their compatibility should be ensured.

If software is part of an airborne display mechanism that is the means for ensuring that

the aircraft conforms to a certified configuration, then that software should either be

developed to the highest software level of the software to be loaded, or the system safety
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assessment process should justify the integrity of an end-to-end check of the software

configuration identification.

2.2.3 FAA Order 8110.49
FAA order 8110.49 is a guide for Aircraft Certification Service field offices and

Designated Engineering Representatives on how to apply RTCA DO-178B for approving

software used in airborne computers. Chapter 5 of order 8110.49 concerns itself

exclusively with the approval of field loadable software, and provides more detail than DO-

178B. Below is an extract of chapter 5:

5.2 APPROVAL OF FLS.

The following procedures should be carried out by the certification authority as part of the

authorization process for the approval of FLS.* Confirm that the software meets the

objectives of RTCA/DO-178B or another acceptable means of compliance, as agreed to

between the applicant and the certification authority.

* Confirm that the considerations outlined in RTCA/DO-1 78B, Section 2.5, have been

addressed.

* Confirm that the software and hardware configurations were verified together during the

verification process (that is, the software must be installed on the target computer in which

the approval was granted).

* Confirm that the applicant has a configuration management process in place to assure

that the installation configuration (that is, the software part number, the hardware part

number, the aircraft or engine model, and the aircraft or engine serial number

combinations, as applicable) is the same configuration that was approved during the

authorization process.

* If redundant parts on the aircraft or engine are field-loadable, confirm that the applicant

has defined the following: (1) the requirements for intermixing different software loads on

the parts, (2) requirements for partially successful and partially unsuccessful loads, and (3)

the aircraft or engine dispatchability effects of successful and unsuccessful loads on

redundant parts.

* Confirm that there is a process in place to ensure that the software loaded is the

software approved and that the software has not been corrupted (for example, verification

with an appropriate data transfer integrity check, such as a CRC).

[etc.]

5-3. FLS INSTALLATION CONSIDERATIONS.
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The approved FLS may be installed on the aircraft via Service Bulletin, Engineering

Change Request, or other FAA-approved means.

The approved means vary, depending on the method for granting approval. Whether the

FLS approval is through TC, ATC, STC, ASTC, TSO authorization, or some other approval

process, the document used to install the FLS should be approved by the certification

authority and should specify the following elements:

* The aircraft and hardware applicability and intermixability allowances for redundant

systems software loading.

* Verification procedures to assure that the software was correctly loaded into an

approved and compatible target computer and memory devices.

* Any post-load verification and/or test procedures required to show compliance to the

guidelines specified in this chapter.

* Actions to be taken in the event of an unsuccessful load (for example, prohibit dispatch

of the aircraft).

* Approved loading procedure or reference to approved loading procedure.

* Maintenance record entry procedures required to maintain configuration control.

* Reference to Aircraft Flight Manual, Aircraft Flight Manual Supplement, or Operator's

Manual, as appropriate.

2.2.4 RTCA DO-355 - Information Security Guidance For Continuing Airworthiness
RTCA DO-355, prepared by SC-216 describes its purpose as follows: "This document

provides guidance for the operation and maintenance of aircraft and for organizations and

personnel involved in these tasks. It shall support the responsibilities of the Design

Approval Holder (DAH) to obtain a valid airworthiness certificate and aircraft operators to

maintain their aircraft to demonstrate that the effects on the safety of the aircraft of

information security threats are confined within acceptable levels."

DO-355 does not describe the process used for the distribution of software but refers

to ARINC 667-1, ARINC 827 and ARINC 835 instead. It only provides guidance for the

operational aspects of software distribution, such as the management of tools and media,

the management of personnel and the handling of security incidents. It also describes

means to ensure the security of network access points on the aircraft, including

operational aspects of protecting the access points from unauthorized access.

DO-355 attempts to enumerate all possible vulnerabilities and describes ways to

mitigate them. It is the opinion of the author of this paper that this sort of approach to

security - finding all the vulnerabilities and plugging them faster than an adversary can
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exploit them - cannot possibly succeed in the long run. While this sort of tactical defense

is necessary to protect legacy systems that are exposed to new threats, the aviation

community should focus on developing systems that do not have that many vulnerabilities

in the first place. For instance, instead of taking operational measures to protect the

integrity of the software at every step between the supplier and the aircraft, the system

should be designed such that end-to-end verification is possible, thus making it

unnecessary to rely on all parties that handle the software in between.

2.2.5 RTCA DO-326A - Airworthiness Security Process Specification
RTCA DO-326A, prepared by RTCA SC-216 and EUROCAE WG-72 aims to specify

an acceptable means to demonstrate security of an aircraft system for the purposes of

certification: "This guidance material is for equipment manufacturers, aircraft

manufacturers, and anyone else who is applying for an initial Type Certificate (TC), and

afterwards ( e.g. for Design Approval Holders (DAH)), Supplemental Type Certificate

(STC), Amended Type Certificate (ATC) or changes to Type Certification for installation

and continued airworthiness for aircraft systems."

The purpose of the Airworthiness Security Process (AWSP) is to establish that, when

subjected to unauthorized interaction, the aircraft will remain in a condition for safe

operation (using the regulatory airworthiness criteria). To accomplish this purpose, the

Airworthiness Security Process:

- Establishes that the security risk to the aircraft and its systems are acceptable per the

criteria established by the AWSP, and

- Establishes that the Airworthiness Security Risk Assessment is complete and correct.

As part of the security process, DO-326A requires defining a security scope,

performing various security risk assessments, designing a security architecture and finally

performing a security verification. Each step is described in sufficient detail so it could be

implemented by a supplier, manufacturer or an airline.

Of all the documents presented here, DO-326A is the most extensive one and seems

to be inspired by best practices from the government and other industries. While the

described process will undoubtedly increase security, it is questionable whether the

provided security will be sufficient given the information security track record of

government and industry who have adopted similar practices. Rather than deriving

security requirements from external threat scenarios, which are inherently hard to predict,

the requirements should be derived from a thorough understanding of the system and its

components.

2.2.6 FAA Advisory Circular AC 20-115
This FAA advisory circular recognizes RTCA DO-1 78C and RTCA DO-33X supplements to
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DO-1 78C

2.2.7 ARINC Report 835
This report by Aeronautical Radio Inc. describes the standards used by Boeing and

Airbus for applying digital signatures to field loadable software for their new aircraft (B-787,
A-380). It is intended as guidance for other organizations who wish to implement digital

signature schemes. The two main purposes of digital signatures for field loadable software

parts that the report describes are integrity and authentication independent from the media

used for transporting the software (network, portable media, etc.). Non-repudiation is

mentioned as a secondary goal.

The schemes used by both Boeing and Airbus rely on a Public Key Infrastructure (PKI)

and add a header file to the software being signed, but they differ in the type and number

of signatures added to the software.

In the standard used by Airbus the software supplier will sign software before it leaves their

facility. Before loading software on an aircraft, the airline is responsible for checking the

validity of the supplier's signature. This requires a connection to an OCSP Server (on-line

certificate status protocol).

For the Airbus A-380, the load is verified by equipment on the aircraft itself (how it does

this is not specified in the report, but presumably it happens by checking the software's

signature against the root CA's public key which is pre-loaded on the aircraft). This

requires either that the aircraft is connected to an OCSP, or that the pre-placed root

certificate is changed whenever a private key is lost (which is impractical).

In some cases, the signature file used in Airbus' scheme may include a timestamp, which

enables keeping the validity of signatures that were created before a certificate was

revoked. In order to add a timestamp to the signature, the supplier must connect to a

trusted timestamp server when generating the signature.

In the standard used by Boeing, each party along the supply chain of the software will

apply their own signature to the software. The original signature comes from the supplier,
but the aircraft manufacturer (i.e. Boeing) will add its own signature after verifying the

signature of the supplier. This signature is called an approval signature. When the airline

receives a software part, it will verify Boeing's signature before applying its own. In this

way, the aircraft need only be pre-placed with the certificate of the airline, and an on-line

check of certificate validity becomes less important. However, the standard used by

Boeing envisions that each organization (software supplier, aircraft manufacturer and

airline) operate their own Certificate Authority.
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2.3 Systems Theoretic Process Analysis
Systems Theoretic Process Analysis (STPA) [24] is a hazard analysis technique based

on the STAMP model that has proven to be a powerful tool to study emergent properties of

systems such as safety and security.

STPA is based on systems theory. Systems theory was developed in the 1950's, based

on the realization that the reductionist approach common in science did not always provide

the right tools to understand complex systems and that a more holistic approach was

needed. It was first invented to deal with the complexity in biological systems, but since

then it has been used in engineering as well. The complexity of man-made systems has

increased greatly over the last 50 years, especially since the commercialization of

microprocessors. While earlier mechanical systems had limited interactions and could be

fully analyzed and understood, the systems built nowadays have thousands of

components and so many potential interactions that they cannot possibly be fully

analyzed.

Consequently, STAMP and STPA were motivated by several technological and societal

trends in safety engineering:

- The fast pace of technological change means that technology is changing faster than the

engineering methods invented to cope with it.

- The introduction of digital technology into almost all new systems has changed the nature

of accidents that occur in those systems by introducing new failure modes. Many of the

safety approaches that worked for electromechanical components - such as redundancy -

are ineffective at controlling hazards that arise from failure of software components.

- Software has allowed the creation of vastly more complex systems than was possible

before. The components of such systems are coupled in complex ways that defy

understanding by all but a few experts, and even they may have difficulty predicting all its

potential behaviors.

- Relationships between humans and automation are becoming more complex as

automation takes over tasks that used to be carried out by human operators, thus moving

the humans into higher-level decision making. These changes give rise to new types of

human errors, such as mode confusion. However, many accidents blamed on human

operators could be more accurately described as arising from flawed systems and

interface design.

Traditional accident analyses are based on the "chain of events" model. Under this

model, accidents are the result of a chain of events. Beyond the proximal physical events

involved in or leading directly to the accident, the decision of which events to include in the

analysis is subjective. Determining the "root cause" of the accident therefore amounts to

nothing else than deciding on when to stop including even earlier events in the chain.

According to Leveson, accident investigations have two potential goals:
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1) Assign blame for the accident

2) Understand why it happened so that similar accidents can be prevented in the future

While the first goal may be necessary from a legal perspective, only the second goal

helps engineer safer systems for the future. Event-based models may be sufficient for

assigning blame, but they will likely miss critical non-proximal factors that contributed to

the accident.

Systemic causes for accidents, such as unsafe work procedures, are often present

long before an accident occurs. In order to prevent similar accidents in the future, the

systemic causes need to be uncovered by an accident analysis. The proximal event that is

usually identified as the cause is simply the event that triggered the accident, but if the

systemic causes are not addressed, a different event may trigger a similar accident in the

future.

To address this challenge, STAMP is a new model for accidents that is based on

control theory. Under this model, safety is considered a control problem: Accidents occur

when the system does not adequately control the process it is built to control. This can

occur for a number of reasons, such as: component failures, component interaction and

events outside of the range the system was designed to handle. The goal of an STPA

analysis is therefore to find scenarios in which the system is unable to keep the process

from entering hazardous states in which accidents can occur.

2.3.1 STPA in practice
The initial step when performing an STPA analysis is to define the system losses and

the hazards that can lead to these losses. Usually, these are defined at a very high level.

As a rule of thumb, there are between 2 and 5 system-level losses and less than 10 high-

level system hazards leading to the system losses.

It is very important that the hazards are actually under the system's control. If the

hazards cannot be controlled by the system, then either the model of the system needs to

be re-scoped and its boundary expanded, or the hazards need to be redefined. If on the

other hand only a part of the system is necessary to control the hazards, the system

boundary may have been drawn too wide.

Examples of system-level losses for a hypothetical rail transportation system:

1. Injury or death of passengers in a train

2. Extensive damage to train or static infrastructure

3. Injury or death of personnel or bystanders

Examples of system-level hazards:

1. Derailing
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2. Train cannot be stopped in an emergency

3. Collision with another train or person

Once the losses and hazards are determined, a hierarchical control structure is drawn

that includes all the controllers and control actions in the system that are necessary to
keep the controlled process out of its hazardous states. Controllers are arranged in a

hierarchy, such that the controlled process is at the bottom.

The hierarchical control structure serves to illustrate the system architecture. For every

controller, each control action needs to be studied to determine whether it could potentially

be an unsafe control action. There are four ways in which a control action can be unsafe:

1. A hazard occurs because a control action was provided when it should not have

been

2. A hazard occurs because a control action was not provided when it should have

been

3. A hazard occurs because a control action was stopped too soon or applied for too

long

4. A hazard occurs because a control action was applied too soon or too late.

There is some redundancy in these four categories, but it has proven to be useful in

eliciting unsafe control actions that would have otherwise not been thought of.

Once the table or list of unsafe control actions for each controller is established, the

next step of STPA consists in finding scenarios that could lead to these unsafe control

actions in order to propose safety constraints that will keep these scenarios from

happening. Finding such safety constraints should be the final output of an STPA analysis,
and no analysis is complete without them. Scenarios should be generated in a methodical

way by people with expert knowledge in the system. A control loop diagram for each

controller can be used to assist in the process.

2.3.2 STPA-Sec

STPA for security (STPA-Sec) is an extension to STPA proposed by Dr. William Young,
a colonel in the US Air Force, during his time as a PhD student under Prof. Leveson. It

adds the following elements to the classical STPA analysis:

1. The realization that STPA can be applied to security equally well as safety.

2. Producing a high-level system description becomes an explicit first step in the analysis.

The high-level system description includes answering the following questions: What does
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the system do? How does the system do it? Why does the system do what it does?

3. Before listing losses and hazards, a "mission" for the system is explicitly written down.
The mission defines the initial state of the system, the end state of the system as well as
all intermediate states necessary to attain the end state. The mission can then be divided
up into stages, each of which is supposed to bring the system from one state to the next.

The third addition was clearly made with military applications in mind, but it can be

applied in other areas as well. Instead of looking at the mission as having a fixed and
limited duration, it can go on indefinitely, and all mission stages can be occurring

simultaneously. If interpreted in that sense, the mission description is simply a functional

description of the system or a more detailed answer to the question: how does the system

do what it does?

STPA-Sec differs from most other security analysis methods in that it uses a strategic

approach instead of a tactical approach. By forcing the analyst to think about the high-level

system goals, the method makes it more likely that simpler and more radical solutions will

be found where they are possible. Contrast this with more tactical approaches which ask

the analyst to identify and fix vulnerabilities. Such approaches are more likely to lead to a

patchwork of fixes, often with the ultimate result that security is only enhanced until the

next vulnerability is found.

Step 2 of STPA-Sec is largely identical to STPA, but the focus is on potential exploits

rather than failures or interactions. Figure 1 illustrates one way in which a control-loop can

be split between the cyber and physical domains. In this case the actuators and sensors

translate digital signals to physical signals and vice-versa. While figure 1 shows a control-

loop that is split between the cyber domain and the physical domain, some control loops in

the system may be entirely in the cyber or the physical domain.

The control-loop is simply an enumeration of several possible exploits and should not

be considered an exhaustive list. In particular, it should not be used as a "checklist" for

step 2 of STPA-Sec.
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Controller:
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Figure 1: The cyber control-loop shows possible ways to exploit security weaknesses in
the system design.

20



Chapter 3 Analysis of Field Loadable Software
Distribution
This chapter presents the steps and results of the STPA analysis performed for the

security of Field Loadable Software processes in commercial aviation. A similar analysis

was performed for General Aviation. This chapter sometimes refers to it, but it does not

present the complete results of that analysis (they can be found in the appendix). If not

otherwise stated, the text in this chapter refers to commercial aviation. A comparison

between the control structure and UCAs of commercial aviation and general aviation is

made at the end of this chapter.

The analysis in this chapter follows the structure of STPA-Sec. Choices for how to

abstract the system are justified where necessary, but for an explanation of the steps

involved in an STPA analysis, the reader is referred to the sub-chapters on STPA earlier in

this thesis.

3.1 System Purpose
The purpose of Field Loadable Software processes is to (what the system does)

keep Field Loadable Software safe and secure

by means of ( how the system does what it does )

1. Developing safe and secure software and updates

2. Distributing and installing only safe and secure software on all relevant aircraft

3. Monitoring field loadable software in operation for flaws and attempted manipulation

in order to contribute to ( why the system does what it does)

safe and efficient commercial aviation

3.2 Losses and Hazards
Losses:

LI: Death or injury to pilot, passengers or bystanders

L2: Damage to equipment

Hazards:

H1: Loss of aerodynamic/structural control -+ L1,L2

H2: Controlled flight into terrain -- L1,L2
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H3: Collision with other aircraft -* L1, L2

Secondary hazards (concern Field Loadable software only):

H3: Unsafe or insecure software is installed on the aircraft -+ H1, H2, H3

H4: Software is installed improperly on the aircraft - H1, H2, H3
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3.3 Control Structure
While the high-level control structure in the general aviation analysis contains only 5

controllers, commercial aviation has 9 controllers. See Figure 2. The Foreign regulatory

agency, Airline management and MRO management controllers do not have a counterpart

in general aviation. The repair station controller on the other hand is not found in

commercial aviation, as most of its roles are now done by the airline mechanics and MRO

mechanics.

FAA:

- Ensure that only safe and secure software and aircraft configurations get FAA type

certificates

- Issue Airworthiness Directive for any safety-critical flaws in FLS that have a type

certificate

- Ensure that airline operations follow FAA regulations

- Certify pilots

Foreign regulatory agency:

- Ensure that MROs are certified only in accordance with bilateral agreement/treaty

(Software) Supplier:

- Develop safe and secure field loadable software and accompanying manuals

- Distribute software and updates to airlines

- Deliver service bulletins to FAA and all airlines affected by an FLS flaw

Airline management:

- Provide manuals and training to pilots

- Ensure pilots are qualified and fit to fly

- Ensure that aircraft stays airworthy by sending aircraft to MRO for regular maintenance

- Ensure that pilot's work schedule is in accordance with local regulation

- Ensure that airline mechanics carry out work in accordance with local regulation
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Airline Mechanic:

- Install and update Field Loadable Software on aircraft according to instructions provided
by MRO

- Update EGPWS (FLS) terrain database

- Make sure aircraft is airworthy before takeoff

MRO management:

- Ensure that maintenance work is carried out as specified in contract with airline

management

- Supervise MRO mechanics

MRO Mechanic:

- Install and update Field Loadable Software on aircraft according to instructions provided

by MRO

- Update EGPWS (FLS) terrain database

Pilots:

- Operate aircraft safely ( including checking configuration before takeoff)

- Follow EGPWS warnings

EGPWS (included as a generic example of an FLS component):

- Issue warning when aircraft is in danger of flying into terrain or obstacles
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The control structure in Figure 2 reflects a setup that is quite common in commercial

aviation: some maintenance is carried out by the airline itself, while other maintenance is

carried out by so-called Maintenance Repair Organizations (MROs), which are often

located overseas. These MROs are not under direct oversight of the FAA. Instead, they

are certified and regulated by another country's or region's regulatory agency (e.g. EASA)

with whom the FAA has a bilateral agreement. The FAA can inspect these facilities, but

only after coordinating with the corresponding regulatory agency and the foreign

government, this is the reason why there is no direct control arrow between FAA and MRO

in the control structure. Technically the agreements are between governments and not

between the FAA and another regulatory agency, but for the purposes of this figure it was

simpler to draw a direct link without compromising the analysis.
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3.4 Unsafe Control Actions
This section lists the unsafe control actions (UCAs) for each controller, and provides

additional explanations where necessary.

3.4.1 MRO mechanics I Airline mechanics UCAs

Control Action Providing causes hazard Not providing causes Too soonitoo late causes
hazard hazard

Initial FLS install (1.1) Install FLS not as (1.2) Software install not
specified by type certificate performed when component
- H3, H4 is new - H4

Update FLS (2.1) Update FLS not as (2.2) Update FLS not
specified by AD or service provided in accordance with
bulletin -+ H3, H4 AD or service bulletin -- H3

Update terrain DB (3.1) Load terrain DB other (3.2) Not loading terrain DB
than official one -+ H2 with current obstacles -+ H2

Table 1: Unsafe control actions for MRO Mechanics / Airline Mechanics

The mechanic's responsibility is to keep the aircraft in an airworthy condition. With
respect to field loadable software this requires making sure that the software is installed
according to the type certificate and that it is up to date with service bulletins.

In addition, the mechanics are also responsible for updating the terrain database of the
enhanced ground proximity warning system, and other databases such as navigation
databases. The various databases are usually each updated at regular, but different
intervals.

Matters are complicated slightly by the fact that some maintenance work is performed
by airline mechanics while other maintenance work is outsourced to MROs. Especially for
large overhauls, airlines often use MROs in countries where the cost of labor is

significantly lower than in the US in order to save money. Dividing maintenance work
between different organizations requires that coordination or control is particularly well
organized. If this is not the case, misunderstandings can lead to hazardous situations.

27



3.4.2 Airline management UCAs

i P idVII.II

Instruct MRO to
perform maintenance

Instruct airline
mechanics to perform
FLS update

hazardControl Acton Too soon/too late causes
hazard

Table 2: Unsafe control actions for Airline management

The unsafe control actions of the airline management controller are related to its role
as coordinator between the airline mechanics and the MRO. Specifically, the airline
management has to ensure that its aircraft are maintained in an airworthy state by
assigning maintenance tasks to either the airline's mechanics or the MRO, but not to both.
Furthermore, it has to ensure that the tasks assigned to each are carried out as required.

3.4.3 Pilot UCAs

Control Action

Perform pre-filght
check of EGPWS

Pull up + TOGA

Providing causes
hazard

(7.1) Pull up + TOGA
performed when low
on fuel or there is
conflicting traffic - H1

Not providing causes
hazard

(6.1) Pre-flight check of
EGPWS not performed when
EGPWS does not conform to
type certificate -+ H3, H4

(7.2) Pull up + TOGA not
performed when EGPWS
correctly issued terrain alert
- H2

Too soon/too late causes
hazard

(7.3) Pull up + TOGA
performed too late when
EGPS correctly issued
terrain alert - H2

Table 3: Unsafe control actions for pilot

Pilots have many responsibilities, but only a few of those are relevant to our analysis:
verifying that the EGPWS is in working order before taking off and avoiding collisions with
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Not providing causes
hazard

(4.1) Instruction to update
FLS not provided when AD
or service bulletin requires it,
and airline mechanics are
not tasked with performing
update. -- H3lnstruction to
update FLS not provided
when AD or service bulletin
requires it, and MRO
mechanics are not tasked
with performing update.
H3

(5.1) Instruction to update
FLS not provided when AD
or service bulletin requires it,
and MRO mechanics are not
tasked with performing
update. -- H3



terrain, obstacles and other aircraft. The potentially unsafe control actions are: not

performing the pre-flight check of EGWPS and not properly reacting to a terrain alert.

There are many more control actions involved in manipulating the aircraft, but the two

control actions above capture the essence of what the pilots do with respect to the

EGPWS, which we are focusing our analysis on. Adding more details would only make the

analysis more complicated without generating further insights.

3.4.5 EGPWS UCAs

Control Action Providing causes Not providing causes Too soon/too late causes
hazard hazard hazard

Issue terrain alert (8.1) Does not provide (8.2) Warn too late of
terrain alert when collision imminent collision with
with terrain or ground terrain or ground structure
structure is imminent- H2 -+ H2

Table 4: Unsafe control actions for EGPWS

For the purposes of this analysis, we only consider one control action for the EGPWS:

issuing a terrain alert. Strictly speaking, issuing a terrain alert is not even a control action

per se because the pilot makes the ultimate decision and thus remains in control. The

EGPWS only notifies the pilot of terrain proximity. However, since rules require pilots to

react to EGPWS terrain alerts under almost all circumstances, it is acceptable to

characterize it as a control action for the purposes of this analysis.

29



3.4.6 Supplier UCAs

Control Action Providing causes hazard

Deliver software

Deliver update

issue service
bulletin

(9.1) Software is delivered
that is unsafe or insecure
-* H3, H4

(10.1) Update is delivered
that is unsafe or insecure
-+ H3

Not providing causes
hazard

(10.2) Update is not
delivered when current
version of FLS is unsafe or
insecure -+ H3

(11.1) Service bulletin is not
issued when current FLS is
unsafe or insecure -+ H3, H4

Too soon/too late causes
hazard

(10.3) Update is delivered
too late when current
version of FLS is unsafe or
insecure -- H3

(11.2) Service bulletin is
issued too late when current
FLS is unsafe or insecure -+
H3, H4

Table 5: Unsafe control actions for supplier

The supplier is responsible for developing safe and secure Field Loadable Software

and distributing it to airlines. It should make sure that any flaws in the software are fixed

quickly and airlines are notified by means of service bulletins. Potentially unsafe control

actions of the supplier include: delivering unsafe/insecure software or software updates,
delivering updates too late or not at all and issuing service bulletins too later or not at all.

3.4.7 FAA UCAs

Control Action

Provide initial type
certificate

Provide type
certificate for
update

Issue
airworthiness
directive

Certify airline

Providing causes hazard

(12.1) Provide type
certificate when FLS
software is unsafe or
insecure - H3, H4

(13.1) Provide type
certificate when FLS
update is unsafe or
insecure -+ H3, H4

(15.1) Certify airline which
does not handle FLS
install/update properly-)
H3, H4

Not providing causes
hazard

(13.2) Type certificate for
update is not provided when
current FLS is hazardous and
unsafe or insecure -> H3, H4

(14.1) Airworthiness directive
is not issued when current
FLS is unsafe or insecure -+
H3

Too soon/too late causes
hazard

(13.3) Certificate for update
is provided too late when
current FLS is unsafe or
insecure -- H3

(14.2) Airworthiness
directive is issued too late
when current FLS is unsafe
or insecure - H3

Table 6: Unsafe control actions for FAA

The FAA is responsible for overseeing airline, supplier and MRO operations, if the

organization falls under its jurisdiction. It should coordinate with foreign regulatory
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agencies for oversight of MROs that don't fall under it's jurisdiction (this is not a control
action, however).

The FAA must ensure that it does not issue type certificates for FLS configurations that
are unsafe or insecure. If an update to FLS is necessary, the FAA must provide any

necessary type certificates quickly and in some cases issues an airworthiness directive.

Furthermore, the FAA is responsible for licensing airlines. Airlines that do not follow safe

maintenance practices with respect to FLS should not be licensed.

The FAA obviously has many more responsibilities, but for the purpose of this analysis,

we consider just the above.

3.4.8 Foreign Regulatory Agency UCAs

Control Action Providing causes Not providing causes Too soon/too late causes
hazard hazard hazard

Certify MRO (16.1) Certify MRO
which does not handle
FLS install/update
properly -+ H3, H4

Table 7: Unsafe control actions for Foreign regulatory agency

The foreign regulatory agency technically has responsibilities similar to that of the FAA.
In an ideal world, the FAA and the foreign regulatory agency would complement each other

perfectly and each would fulfill their role of overseeing the aviation industry in their

respective countries. However, we live in an imperfect world, and not every foreign

regulatory agency is as well equipped to fulfill that task as the FAA is. It therefore makes

more sense to consider the FAA and the foreign regulatory agency to be asymmetrical in

their responsibilities: From the point of view of the US aviation industry (with respect to

FLS), the foreign regulatory agency's only responsibility is to ensure that only capable and

competent MROs are certified to perform maintenance on aircraft.

A careful reader will have noticed that the MRO management does not have any

UCAs. This is because of the way the roles are assigned: The MRO is not in fact

responsible for making sure that maintenance was performed properly, this is still the

airline's job. Someone in the airline management has to make sure that the commissioned

maintenance work was actually done (i.e. written into the maintenance log). As explained

later in this analysis, there are scenarios in which this division of tasks can lead to

hazardous situations.
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3.5 Scenarios for Unsafe Control Actions
This section presents a selection of scenarios in which the analysis suggests that an

attacker could cause one of the system losses through the manipulation of a field loadable
software component. The attacker could be anyone with the necessary expertise: a

dishonest employee, a spy, a terrorist, a criminal, a security researcher, etc.

Mechanic/
Pilot/Owner

update install
update s/w

4 ______________

terrain DB

terrain data

main
aircraft data

EGPWS

s/w loader

program

s/w version

s/w version

EGPS Software (FLS)

alerts
terrain info
s/w version

Multifunctional
Display

alerts
terrain info
s/w version

device status

Figure 3: A more detailed view of the EGPWS and its interactions with the mechanic,
illustrating that there is currently no way of determining the exact FLS version installed on
the device without relying on the installed software itself - a clear security vulnerability.

Scenario 1:

An attacker could send modified field loadable software to the airline by posing as the

supplier, or send modified field loadable software to the MRO by posing as the airline.

While all MROs and airlines have procedures in place for handling FLS, these measures

depend on the discipline of every single person involved. The prevalence of phishing and

other forms of social engineering shows that such defenses are generally not effective

enough. For parts that do not require digital signatures, there are currently no technical
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measures in place to prevent a mechanic from installing such software on an aircraft. In

fact, once the software is installed on the aircraft, the airline currently has no simple way of
finding out whether the software has been tampered with (see Figure 2).

Scenario 2:

An attacker could gain physical access to an aircraft and install modified software on a

FLS component. Once the attack is complete, there is no way to positively determine that

it happened. An airline mechanic can query the device for the installed software version,

but the device in turn obtains that information by asking the installed software, which may

claim to be the most recent version published by the manufacturer, even though its code

has been tampered with. If harmful software is installed on the aircraft, it cannot be trusted

with identifying itself correctly.

There are currently no controls in place to make sure that software that has been

tampered with cannot be installed on a field loadable component. The process guards

against accidental modification by using checksums, but an attacker could simply generate

a valid checksum (even the exact same checksum) after modifying the software.

Scenario 3:

An MRO could be forced by the government of the country it is operating in to install a

modified FLS version on the aircraft. Even when digital signatures are used, it is likely that

the government could either produce a valid signature or find ways to defeat the signature

verification on the component. This could be done without physically modifying the FLS

part. It is currently not possible to determine exactly what software is installed on most

components, thus the sabotage would be unlikely to be discovered.

Scenario 4:

An attacker could send a fake terrain database update to the airline or MRO and cause

them to install it on the component. The database could have added obstacles that cause

spurious terrain alerts and possibly dangerous evasive maneuvers, or it could have an

altered terrain profile, which may cause the pilot to fly the aircraft into terrain in bad

weather without ever getting a terrain alert. Currently, there are no technical measures in

place to ensure that only official terrain databases can be loaded. Neither is there a way to

tell a legitimate version of the terrain database from an illegitimate one after it has been

installed.

These scenarios show that in terms of security current field loadable software does not

meet the requirements of Order 8110.49. Specifically, the following points are not currently
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adequately addressed:

In chapter 5 -2 of Order 8110.49:

- Confirm that there is a process in place to ensure that the software loaded is the software
approved and that the software has not been corrupted.

Issue: Some current FLS use only checksums to verify the data load during the loading

process. Even for FLS that contain digital signatures, software can only be identified by its
version number once installed, which means that if an adversary succeeds in installing

modified software, it cannot be easily discovered.

- Confirm that the applicant has a configuration management process in place to assure

that the installation configuration (that is, the software part number, the hardware part

number, the aircraft or engine model, and the aircraft or engine serial number
combinations, as applicable) is the same configuration that was approved during the

authorization process.

Issue: Currently, field loadable software is generally identified by a version number that

could easily be falsified by an adversary.

In chapter 5 -4 of Order 8110.49:

- The applicants Aircraft Maintenance Manual or Instructions for Continued Airworthiness

should include a procedure that requires maintenance personnel to verify the software part

number configuration before and after maintenance is performed on the airborne

equipment.

Issue: Current FLS components do not provide a way to determine the exact version of

installed software without relying on the installed software itself to provide the correct

answer. An adversary could take advantage of this and modify the software while still

making it identify itself as an official version.

Note: The scenarios presented in this section are just a small fraction of the hazardous

scenarios that were found in the analysis. For a full list of scenarios, please refer to the

appendix.
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Chapter 4 Results and Recommendations
The STPA security analysis of Field Loadable Software showed that there are currently

two major issues (for more issues, refer to the appendix).

1. There is no secure way of identifying software once it is installed on the aircraft.

2. Not all FLS components prevent installation of software from non-official sources.

Based on the analysis, the following security controls could be used to ensure the
safety of the aircraft in the presence of adversaries who attempt to interfere with the proper

operation of the software:

1. A secure hash function could be used to uniquely identify software. This hash should be

explicitly mentioned in the type certificate and the manufacturer's manuals and service
bulletins. Mechanics should be required to verify this hash before and after installing

software.

Field loadable hardware should provide a secure way of computing this hash for the

currently installed software to make it possible to easily and quickly determine its exact

version. This would make it significantly more difficult for an attacker to surreptitiously

install modified software without physically tampering with the FLS component. This is

especially important for components that are loaded remotely via LoadStar or similar

technologies.

The advantage of simple cryptographic hashes over digital signatures is that hashes

do not depend on the secrecy of any keys, and they can be easily computed anywhere.

That means that the software and the valid hash for it can be independently distributed,
therefore eliminating single points of attack. Furthermore, there are ways to present
hashes such that they can easily be verified by humans if necessary, thus allowing

humans to be in the loop for updates.

2. To ensure that any modification of software installed on an aircraft is discovered, a

system could be used that securely combines the trusted hashes of all software

components installed on the aircraft. This list of hashes could in turn be hashed to provide

a unique fingerprint for all software installed on the aircraft. Since every combination of

hardware and software configurations must be covered by a type certificate, the airline

could use a list of type certified fingerprints provided by the FAA to quickly check an

aircraft's airworthiness.
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3. Secure digital signatures could be used to certify the origin of software and data loads.
Field loadable components could be pre-loaded with a root certificate such that software
without a valid signature could not be installed without physical tampering. Such schemes
are especially important for software that is loaded remotely via LoadStar where
installation could be automated.

Boeing and Airbus have both developed digital signature schemes based on a public
key infrastructure, but their schemes differ in significant ways: In the Airbus scheme, the
software contains only one signature, the signature by Airbus. In Boeing's scheme, there
are three (or possibly more signatures): The software supplier's signature, Boeing's
signature and the airline's signature. On the aircraft component, only the airline's signature

is verified. Both of these schemes have some advantages and some disadvantages:

Advantages of Boeing's scheme:

- The airline has the final say on what software can be installed on the aircraft.

- Not all Boeing aircraft in the world automatically accept software signed by a single key

Disadvantages of Boeing's scheme:

- Because there are three points at which signatures are generated and verified, an

attacker has more weak spots to attack. At most one of three keys has to be compromised
to insert malicious software into the chain.

- If airlines do not verify Boeing's signature at the same time as signing software with their

own, an attacker could modify the software between the time Boeing's signature was
verified and the Airline's signature is applied.

Advantages of Airbus' scheme:

- As long as Airbus' private keys are secure, software cannot be modified after it leaves

Airbus. This means that security is ensured regardless of how the airline handles the

software.

Disadvantages of Airbus' scheme:

- All eggs in one basket: Every Airbus aircraft will accept software signed by a single

private key. If an attacker can get their hands on the secret key, they can potentially attack

all airbus aircraft around the world (it would be possible to use separate keys to mitigate

this though).
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Both schemes share the disadvantage that their security depends on the secure
distribution of public keys. While the public keys are not secret, it must be ensured that
everyone holds the correct public keys. If a public key infrastructure is used for that, all
security will depend on the secrecy of the root CA's private key.

Should a private key ever be compromised, all components would need to have the
corresponding certificates revoked and a new public key loaded. This must by design be
expensive and difficult (e.g. physically removing the component and opening it) because if
such updates were easy, attackers could exploit this fact to install their own public keys.
Should a public key ever need to be revoked, the financial consequences for airlines or
aircraft manufacturers could be catastrophic.

Overall the digital signature schemes used by Airbus and Boeing are a reasonable way

to increase security from attackers that do not possess sophisticated skills. They do
however come at the costs of significantly increased risk from sophisticated attackers such
as nation states as soon as software distribution is completely automated.

In addition to the measures above, which are necessary for compliance with Order
8110.49, regulation and guidance should be updated to require a security assessment

such as described in DO-326A for any future certification. The security assessment should

clearly document the assumptions under which the system is considered secure. STPA
could be used to derive a systems model and find the security constraints that need to be

applied to avoid losses. The FAA should provide guidance on what kind of security threats

should be considered. Because the security landscape is constantly changing, such

guidance should be updated whenever new and relevant information becomes available
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Chapter 5 Future Work
STPA is very useful and powerful because it provides a means for abstracting systems

problems in a way that seems to be easy to grasp for people, i.e. it presents the relevant
information about a system in a very intuitive way.

However, because it is highly structured, it cannot easily be applied to all systems: The
assumption underlying STPA is that a system can be modeled as a set of hierarchically
organized controllers, each of which has a limited set of control actions. The space of
system states can be discretized and hazardous states occur when one or more control
actions are not applied properly in a given state.

A model of a system is necessarily a simplification of reality and does not perfectly
correspond to it. Some systems are a more natural fit for STPA than others. Industrial
control systems and cyber-physical control systems, for which STPA was initially invented,
generally fit the the model very well, but even then it may not be straightforward to find the
right mapping from reality to the abstract system. In reality even relatively simple systems

can have hundreds of controllers and thousands of control actions, and finding a good
abstraction be a challenge. This is especially true of computer systems that are not

organized in a clear hierarchical fashion.

Physical systems - systems that physically manipulate a part of the world, like many

industrial control systems do - are relatively tightly constrained by the laws of physics.

These physical constraints require the system to control parts of the environment it is in
and keep variables within safe bounds. In the case of industrial control systems, this has

led to a relatively standard hierarchical organization which tends to fit the STPA model

well.

In computer systems however, there are few physical constraints. The physical

constraints apply to the lower levels of abstraction (i.e. the hardware), but the software
itself is several steps removed from the hardware and has many more degrees of freedom,
all of which add complexity. While there are many patterns and paradigms in software
engineering, there is so far no one established way to structure software. Instead,
engineers can choose from many languages, architectures and patters, and they may
even freely combine them or make modifications to them. This freedom enables engineers
to implement very complex and sometimes hard-to-understand solutions. If given a very
powerful tool that makes certain solutions easier than others, software engineers will be

inclined to try to fit the problem to the tool instead of fitting the tool to the problem, leading

to solutions that are more difficult to reason about than necessary.

An additional problem posed by computer systems is that they are relatively opaque:

mechanical systems, such as a clockwork or a bicycle can be observed in action and it is

often very clear when they exhibit behavior that is not according to specification. Computer
systems however are harder to inspect. In order to understand their inner working, they

need to be instrumented. In ideal cases, a debugger can be used, but in many systems
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under real-time constraints, even that is not possible and the only thing engineers can do
is to run simulations or to study traces of the program's execution after the fact.

Due to all these factors, many computer systems do not fit STPA very well. Instead of
having clearly separated controllers all of them may be running on the same machine and
in the same process, instead of using hierarchical control the different parts may simply
communicate with each other through messages, instead of organizing the code by the
function it is supposed to achieve it may be organized by which physical components it
affects, etc.

It is not hard to imagine that for some systems this freedom of structure does more
harm than good, because it does not provide engineers with clear rules and guidelines to
follow. Indeed, many common programming frameworks currently in use actually force
programmers to do things in one specific way, thus taking away some power but adding

value through simplicity.

For all the reasons stated above, I think it would be interesting to undertake research
to see whether designing software systems according to the principles of STPA could help

make software more safe and secure. I believe that for applications in many (if not all)
cyber-physical systems it would be very beneficial, because hierarchy and control are
natural ways for people to think about systems. If the software controlling a cyber-physical
system is structured as a hierarchy of controllers, not only could STPA be used to analyze
that structure, but it would provide a direct and simple way for engineers to visually inspect

their program at a level of abstraction above the source code.

I imagine that an STPA-based programming framework would (among other things) be

based on the following:

1. Controllers would be represented in the form of actors at a lower level. Each controller

would run in its own process or thread. If necessary, processes could have different
privileges and even run on separate physical or virtual machines. Where a certain process
runs would be a simple matter of configuration and no code changes would be necessary.

Each controller defines interfaces for receiving feedback messages and interfaces for

receiving control messages. Similar to standard object-oriented programming, controllers
have their internal state and internal methods which can be accessed by the code defined

in the interfaces. Each interface accepts only one specific message type. Message types

have to inherit from control message or feedback message and would be defined

separately. They could possibly be implemented with protocol buffers or a similar language

that enforces type safety.

2. A tool with a graphical user interface that allows software engineers to define the

architecture of the system at the level of controllers. In that user interface, connections

between controllers would be explicitly defined, and the flow of the program would have to

follow these connections. That means for example that controller A could not directly send
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control message M to controller B unless they were explicitly connected. Controller B could
not send feedback message F to controller A unless explicitly specified. The graphical user
interface would have the benefit that the higher-level structure of the program could always
be immediately inspected in a graphical form, making it very easy for anyone with the
requisite knowledge to see and understand the higher-level structure of the program
without needing to inspect many lines of source code or trust the documentation. In a way,
the program structure would become self-documenting.

Rather than simply providing another separate perspective on the code, the graphical
user interface should provide a way to explore the code. Thus it should be possible for
instance to inspect the source code of an interface or a controller simply by clicking on it,
not unlike "zooming in". When debugging, it should be possible to step through the
execution of the code at the architecture level or zoom into one controller if desired. If an

event in the controlled process triggers the sending of feedback or control messages, it

should be possible to visually follow them as they "bubble up" to higher level controllers or
"trickle down" to lower level controllers, where they are converted into outputs that act on
the physical process being controlled.

3. A runtime monitor, not unlike the reference monitor in the Android OS, would ensure that
the rules and connections defined in the graphical user interface are enforced. Additional
rules, such as the maximum frequency of feedback from controller B to controller A could
be defined and enforced as well with limited additional overhead.

I believe that such a framework could dramatically increase an engineer's intuitive

understanding of the system and thus speed up development times, reduce the number of

requirement errors and bugs as well as making debugging much easier. The visual

representation of the program structure and the ability to zoom between different levels

may enable engineers who are not familiar with a system to find their way around the code
much faster.

In a second step, the framework could integrate profiling information, testing results,
error traces and any textual documentation by directly visualizing them in the graphical

user interface. It should not be necessary for the engineers to use many different

programs and views just to understand what their program does. Source code,
architecture, configuration, unit tests, profiling etc. should all be accessible through one

integrated interface because they really belong together. Good software engineers don't

think of their program's source code, architecture, configuration, execution profiles, error

traces, documentation etc. as separate from one another. Instead, they integrate all of
these information sources to a complete mental representation of the program in their

mind. The tool(s) they use for working on their programs should present information in a

way that facilitates the construction of these mental representation and not in a way that
hinders them.
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The framework outlined above is tailored to cyber-physical systems, but with minor
modifications, it should be usable in other kinds of software as well, such as web
applications or large distributed systems.

It seems clear that building such a system would be a major undertaking, but I believe
that it is worth exploring. Software engineers have been historically constrained by a
representation of their programs - text files in folders - and it is time that they are freed
from those constraints. When the first programs were written, getting computers to
understand (i.e. interpret) and execute the programs was the constraining factor, and so it
was logical to choose a format that computers already understood: text files organized in
folders. In today's large and complex software engineering projects, the challenge is no
longer to get computers to run the programs, but for humans to understand them. It is only
logical then that we should choose to represent programs in a form that is closer to the

mental representations that we have of them.
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Chapter 6 Conclusions
This project set out to assess the safety and security of field loadable software

processes in commercial aviation using STPA and to make recommendations for
improvements. To the author's knowledge this is the first comprehensive analysis of field
loadable software practices and regulations, and it is the first complete published example
of STPA applied to security.

Overall, this thesis successfully demonstrated that STPA can be applied to security in
the context of aviation software. It studied field loadable software and the hardware it runs
on, as well as the processes and procedures surrounding it. A high-level description of the
FLS life-cycle and an insightful hierarchical control structure were produced and used to

determine which control actions are potentially unsafe. Based on the list of unsafe control
actions scenarios were found in which security vulnerabilities in field loadable software
could lead to hazardous situations in which human lives could be put in danger. It
demonstrated among other things that there is currently no way to conclusively determine
whether the correct software was installed on a component or not, a weakness that could
be exploited by a technically competent adversary. The industry's response when being
confronted with this weakness was that their security by obscurity made attacks unlikely.
That approach has not been very effective in any industry.

The research showed that simple changes, such as the addition of a hardware-
supported secure hash for software components and minor modifications to the loading
process could be used to control the biggest hazards and eliminate most loss scenarios
found in this thesis.

Even though no information could be obtained directly from airlines and only one

component manufacturer informally provided information for this research, it is evident that

current field loadable software processes are not sufficiently secured against attacks by
well-funded adversaries. Because the security landscape is constantly changing, attacks

that only a well-funded adversary can carry out today could become possible for individual
hackers before long.

This research furthermore showed that the field loadable software processes do not
always conform to current FAA regulation. Even where processes follow FAA regulation,
safety and security are not guaranteed because current FAA regulation does not take
security into account sufficiently. For instance, the STPA analysis showed that the

important feedback loop from pilots and airlines to software suppliers is very important, but
currently it is not covered by any effective regulation. Guidelines for software distribution in

aviation are available, but no secure standard has been adopted by the FAA. For software

development, there are currently no official standards at all in aviation. Clearly, there

remains quite some work to be done to make field loadable software secure.

The STPA analysis presented in this thesis was relatively high level; it concerned itself

with the recommended practices and regulations and did not study any particular supplier
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or airline's practices in detail. Such work is necessary in the future to determine how
serious the weaknesses really are that this analysis found.

The analysis presented in this thesis also did not study the software implementation
itself. It would be an interesting topic for further research to see if and how STPA can be
applied to software directly. As I argued in this thesis, it may not be straightforward to apply
STPA to software in general because not all software has a hierarchical control structure,
but it may be a very interesting and rewarding research project to see whether software
used in cyber-physical systems can be designed according to the principles of STAMP, i.e.
with a hierarchical control structure and clearly defined controllers, control messages and
feedback.
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Appendix

Complete List of Scenarios for Commercial Aviation

Note: We consider software to be unsafe or insecure if it can lead to one of the system
hazards defined earlier. STPA can help to determine whether the requirements prevent
known hazards from occurring, but verifying whether or not a particular implementation of
the software corresponds to these requirements is not in the scope of this analysis.

Field loadable software can be unsafe in different ways:
- The software may cause the component on which it is installed to stop working properly
- The software may cause other components to which it is connected to stop working

The failure of a field loadable component may affect other components physically by
- causing an electrical fault (e.g short-circuit, over-current, etc.)
- overheating, catching fire or exploding.
- cause water, hydraulic fluid or fuel leaks
- etc.

The individual scenarios could naturally be refined to a higher level of detail if desired. We
decided to stop at the point where enough detail is available to devise reasonable security
controls.

MRO mechanic / airline mechanic UCAs

UCA 1.1, 2.1: Mechanic installs software not as specified by type certificate or does
not perform update as specified by service bulletin.

Due to incorrect feedback or incorrect instructions from another controller:
- Mechanic installs software onto field loadable system not as specified by the type
certificate because the mechanic was provided the wrong software to install. This may
occur due to several reasons:

- the attacker hacked the airline's computer and installed his/her own DNS and
certificates

- the attacker carried out a man-in-the middle attack on the connection to the supplier's
server

- the attacker obtained the supplier's web domain and redirected it to his server.
- the attacker sent a phishing e-mail to the airline with instructions to update the FLS

and a link pointing to his server

- Mechanic installs software onto field loadable system not as specified by the type
certificate because the mechanic accidentally installed the wrong software for one of the
following reasons:

- the airline or MRO's management of software parts makes it easy to confuse different
versions of the same software

- the supplier's naming convention makes it easy to confuse software versions
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- Mechanic installs software onto field loadable system not as specified by the type
certificate because the service bulletin was modified by someone to contain instructions to
install different software. This person could be anywhere at or between the supplier and
the mechanic.

- MRO or airline Mechanic installs software onto field loadable system not as specified by
the type certificate because he believes that the correct version is already installed on the
aircraft for one of the following reasons:

- The other mechanics usually perform these installs ( either MRO or airline
respectively).

- The maintenance log was falsified by someone
- There was a mistake in the maintenance log
- The maintenance log is hard to read
- The software installed on the component displayed the correct version, even though it

was not the correct software

Due to process model flaw or algorithm flaw:
- Mechanic installs software onto field loadable system not as specified by the type
certificate because he confused two software versions that he received earlier.

- Mechanic does not update software according to service bulletin because the mechanic
forgot about the service bulletin (and the process depends on his memory)

- Mechanic installs software onto field loadable system not as specified by the type
certificate because the software was modified on the MRO or airline mechanic's computer
in one of the following ways:

- An insider with access modified it
- An attacker hacked the computer to modify the software

- Mechanic intentionally installs software onto field loadable system not as specified by the
type certificate because he was pressured into doing so or because he holds a grudge
against the airline or the MRO.

- The MRO mechanic is instructed to install a modified FLS by the government of the
country in which the MRO is based.

Control action is issued but not effective:
- The mechanic does not properly carry out the install because he forgets one of multiple
steps in the installation process, thus leaving the component in an inconsistent state.

- The mechanic does not properly complete the install because the component provides no
clear feedback about whether the install succeeded / failed

- The mechanic installed the wrong software because the loading device contained
multiple software versions and the mechanic selected the wrong one.

- The mechanic carried out the installation according to the supplier's instructions, but the
installation produces an incorrect result because either the loading device was broken or
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tampered with, or the aircraft component was broken or tampered with.

UCA 2.1, 2.2: Initial software install not performed when component is new

Due to incorrect feedback or incorrect instructions from another controller:
- The mechanic assumed that no install was necessary because he did not get the correct
instructions from the airline management.

Due to process model flaw or algorithm flaw:
- The mechanic forgot to install the software because some parts come with software pre-
installed while others don't, and the mechanic confused the component in question with
another one. This may occur because:

- the mechanic often takes shortcuts to save time instead of following the manual step
by step.

- the mechanic does not have the necessary experience and is not properly
supervised.
- the mechanic was interrupted in the middle of the task and did not complete it

- The mechanic did not install the software because he thought another mechanic would
do it. The supervisor assumed the work was done and noted it in the maintenance log.

Control action is issued but not effective:
- The mechanic tried to install the software, but did not complete it because he thought the
install was successful even when it was not, either because the component did not give
clear enough feedback or because the instructions in the installation manual were unclear.

- The mechanic could not carry out the installation because he did not have the right tools
for the job (e.g. the proper portable loading device)

UCA-2.2, 2.3: Update FLS not provided in accordance with service bulletin or AD

Due to incorrect feedback or incorrect instructions from another controller:
- The mechanic did not update the FLS because the service bulletin was not forwarded by
airline management.

- The mechanic received the service bulletin but did not get the software update or the
correct instructions from the airline because the airline forgot to provide them.

- The mechanic does not install the update because he believes that the software was
already updated. This could happen if it is not straightforward to determine what version of
software is installed on the component when the maintenance log is not clear about it.

Due to process model flaw or algorithm flaw:
- The mechanic decides not to apply the update because he is in a rush and thinks the
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update is not critical because it's just a service bulletin and not an airworthiness directive.

- The mechanic intends to do the update but installs the wrong software because it is
difficult to tell different versions apart (they're all just files with names) and the MRO or
airline is not organized enough to keep track of the different versions.

Control action is issued but not effective:
- N/A

UCA 3.1: MRO or airline mechanic loads terrain database other than supplier's
official one

Due to incorrect or missing feedback or incorrect instructions from another
controller:
- The mechanic installs an unsafe database from a non-official source because the airline
obtained it from a non-official source. This could happen if the attacker knows airline
internals and sends the modified terrain database directly to the right person.

- The mechanic installs an unsafe database because an attacker swapped it with the real
database either at the supplier or somewhere between the supplier and the mechanic.

- The MRO mechanic installs an unsafe terrain database upon request of the government
of the country that the MRO is based in.

Due to process model flaw or algorithm flaw:
- N/A

Control action is issued but not effective:
- The mechanic installs the official database, but the install does not succeed, leaving the
database in the old state or in a non-functioning state.

Airline Management UCAs

UCA 4.1, 5.1: Airline management does not oder either airline mechanics or MRO
mechanics to update software when a service bulletin or AD requires it

Due to incorrect or missing feedback or incorrect instructions from another
controller:
- The airline misreads a line in the maintenance log and believes that the update was
performed even though it wasn't.

Due to process model flaw or algorithm flaw:
- The airline does not order the mechanics or the MRO to update the FLS because only a
service bulletin (and not an AD) was received and the airline management does not want
to pay the cost of updating.

- The airline management believes that it ordered the MRO to perform the FLS update
when it didn't. It believes this because the contract with the MRO usually covers this kind
of maintenance but not in this case.
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- The airline management does not order the airline's mechanics to perform the FLS
update because it erroneously believes that the MRO mechanics already updated the FLS.
It believes this because the service bulletin or AD was received at the time the aircraft was
sent into maintenance, and other aircraft that were sent in later and came back from the
MRO earlier had the update applied.

Control action is issued but not effective:
- The airline orders the MRO to perform the update, but the update is not carried out
because the airline did not provide the software or the manual to perform the update.

- The airline management orders the airline mechanics to perform the update, but the
update is not completed because there is not enough personnel available and software
updates are considered lower priority.

Pilot UCAs

UCA 6.1: Pilot does not perform pre-flight check of EGPWS when installed software
does is not conform with type certificate

Due to incorrect or missing feedback or incorrect instructions from another
controller:
- The pilot does not perform the pre-flight check of EGPWS because the airline's
procedures do not require it.

Due to process model flaw or algorithm flaw:
- The pilot thinks the pre-flight check for the EGPWS was already performed because he
was distracted during the process and didn't perform each check step-by-step.

- The pilot does not perform the pre-flight check of EGPWS because he/she thinks that this
only needs to be done for the first flight of the day.

Control action is issued but not effective:
- The pilot performs the pre-flight check of the EGPWS, but does not notice that malicious
software is installed because the software announces the same version number as the
supplier's official version and the pilot has no other way of checking.

UCA 7.1, 7.2Pilot does not initiate TO/GA or initiates it too late when aircraft is about
to hit terrain

Due to incorrect feedback or incorrect instructions from another controller:
- The pilot does not pull up because the EGPWS system is switched off and no alert
sounds
- The pilot does not pull up because a TCAS alert is issued at the same time.

Due to process model flaw or algorithm flaw:
- The pilot does not pull up because he believes that the alert is just a nuisance alert
because he is used to landing at airports that are not in the terrain database.
- The pilot does not pull up because he thinks he knows where he is and doesn't think the
terrain is close.
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Control action is issued but not effective:
- The pilot initiates TO/GA, but it is not effective because another system prevents the
control action (due to high angle of attack etc.)
- The pilot initiates TO/GA, but the aircraft is too slow and cannot produce enough lift.
Rather than risking a stall, the pilot continues descent.
- The pilot pulls up too late because he is distracted (maybe due to a malfunction) when
the terrain alert sounds.

EGPWS UCAs

UCA 7.2, 7.3: EGPWS does not provide timely terrain alert when aircraft is about to
hit terrain or ground structure

Due to incorrect feedback or incorrect instructions from another controller:
- The EGPWS does not sound an alert because the radar altimeter data is incorrect or
missing due to malfunction or manipulation.

- The EGPWS does not sound an alert because the airspeed data is incorrect or the
position is incorrect which could occur due to GPS sensor failure or due to spoofing or
jamming of the GPS signal.

- The EGPWS does not sound an alert because someone (maybe even the pilot or co-
pilot) turned EGWPS off. This could happen if the aircraft frequently lands at an airport that
is not in the database.

Due to process model flaw or algorithm flaw:
- The EGPWS does not sound an alert because the terrain database is incorrect
(mountain/hill/building missing or at wrong location) or outdated (new building)

- The EGPWS does not sound an alert because an adversary intentionally loaded the
wrong map

- The EGPWS does not sound an alert because an adversary modified the FLS software
to suppress alerts in certain conditions.

Control action is issued but not effective:

- The EGPWS device issues an alert, but the pilot does not hear or see it because the alert
doesn't sound due to the pilot's headset failing.

- The EGPWS device issues an alert, but the pilot does not hear or see it because there is
too much noise.

- The EGPWS device issues an alert, but the pilot does not hear or see it because he is
focused on dealing with other warnings.

- The EGPWS device issues an alert, but the pilot does not hear or see it because the
cable to the speakers and the warning light is disconnected.
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- The EGPWS device issues an alert and the pilot notices it but takes no action because
he intends to crash the plane.

- The EGPWS device issues an alert but the pilot cannot take action because he is
incapacitated.

Supplier UCAs

UCA 10.1: Supplier delivers unsafe or insecure software

Due to incorrect feedback or incorrect instructions from another controller:

- The supplier delivers unsafe or insecure software because the FAA certified it, which
could happen if tests are not extensive enough or certification criteria are not stringent
enough. It could also happen if the software tested is not exactly the same version as the
one that was shipped.

Due to process model flaw or algorithm flaw:

- The supplier delivers unsafe or insecure software because the wrong version of the
software was published by accident. This could occur if the publication process depends
on only one employee or if there is no proper way of identifying software versions.

- The supplier delivers unsafe or insecure software because the wrong version of the
software was published intentionally by an attacker/malicious insider who modified the
software before publication.

- The supplier delivers unsafe or insecure software because severity of known hazard was
downplayed and considered non-critical. This could happen because fixing issue and re-
certifying software would be costly & time consuming.

- The supplier delivers unsafe or insecure software because an insider/attacker inserted
malicious code into the code base.

- The supplier delivers unsafe or insecure software because some tests were skipped due
to lack of time or money or because the testing setup did not work as intended.

Control action is issued but not effective:
- The supplier publishes safe and secure software, but the software is modified after being
published by the supplier. This could happen on the server or on the way to the airline or
MRO, or on the airline or MRO's computers themselves.

- The supplier publishes safe and secure software, but the airline or MRO mechanic
installed the wrong version/software by accident

UCA 11.1: Supplier delivers update when update is unsafe or insecure
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Software update is different from initial version insofar that the process leading to it is
different, thus there can be additional scenarios. All the scenarios for initial software
version should also be considered here.

Due to incorrect feedback or incorrect instructions from another controller:
- N/A

Due to process model flaw or algorithm flaw:
- The supplier ships an unsafe or insecure update because the bug fix/ update introduced
new hazards for one of the following reasons:

- the code change was not properly reviewed before publishing
- the effect of change on interacting components was not considered
- none or insufficient tests were added for the new code
- the fix violated a system design assumption which was not properly documented

- The supplier ships an unsafe or insecure update because the update did not fix the
underlying problem but only patched one instance of the bug.

Control action is issued but not effective:
- The supplier issued a safe and secure update, but an attacker tricked the airline into
downloading a modified version the software from their own website. They could do this by
sending a forged letter or e-mail to the airline which instructs them to download the
software from the attacker's website.

UCA 11.2, 11.3: Supplier ships update too late or not at all when update is critical

Due to incorrect feedback or incorrect instructions from another controller:
- The supplier ships an update too late or not at all because the supplier is not aware of
hazards in original software. This could happen if the software is not identified as causal factor
in accidents or because the supplier does not get necessary feedback/reports from pilots and
mechanics in the first place. The software may not be detected as the cause because the hazard
arises only in rare conditions / for rare combinations of variables.

- The supplier decides not to ship an update for a known issue because they are not legally required
to do so as long as the FAA does not issue airworthiness directive. The FAA may not issue an
airworthiness directive if the hazard is not recognized as serious because the exact effects are hard
to understand.

Due to process model flaw or algorithm flaw:
- The supplier ships an update too late because the update depends on an engineer that is
unreachable ( left company, sick, on vacation etc.). This could occur if the software is not
documented sufficiently well for other engineers to understand it quickly enough.

- The supplier ships an update too late because of a lack of personnel

- The supplier does not ship an update because it is too costly and the company is in
financial trouble.
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Control action is issued but not effective:
- The supplier issues an update, but the update is not installed by the airline or the MRO
because a corresponding service bulletin is not issued, or the service bulletin is issued but
does not reach all the airlines.

- The supplier issues an update, but the airline or MRO mechanic mistakes unfixed version
with fixed version and do not notice their mistake soon enough.

UCA 8.1, 8.2: Supplier issues service bulletin too late or not at all when FLS is
unsafe or insecure

Due to incorrect feedback or incorrect instructions from another controller:
- N/A

Due to process model flaw or algorithm flaw:
- The supplier issues a service bulletin too late or not at all because the internal processes
do not ensure that a service bulletin is issued whenever an update or new instructions are
available.

Control action is issued but not effective:

- The service bulletin is issued, but it is not received by all airlines because letters are lost
in the mail, or an e-mail server did not deliver the e-mail.

- The service bulletin is issued and received by the airline, but the airline does not act on it
because the service bulletin does not set a deadline.
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FAA UCAs

UCA 14.1, 15.1: FAA provides a type certificate for unsafe FLS or FLS software or
update

Due to incorrect feedback or incorrect instructions from another controller:
- A type certificate is provided for unsafe software because the software tested on aircraft
is not the exact software certified/delivered. This could happen if the software is not
tracked appropriately with versioning.

Due to process model flaw or algorithm flaw:
- A type certificate is provided for unsafe software because someone hid a flaw on purpose
(could be an employee of the supplier or an FAA official)

- A type certificate is provided for unsafe software because FAA employees are under
pressure not to deny too many type certificates

- A type certificate is provided for unsafe software because the designated representative
feels pressure to sign off on certificate because he/she is afraid of losing the job.

- A type certificate is provided for unsafe software because tests/checks are not thorough
enough because the supplier has good track record with the FAA.

- A type certificate is provided for unsafe software because tests and inspections are
insufficient to discover a hazardous flaw if the flaw only shows up in rare situations ( like
the one in BA flight 38)

- A type certificate is provided for unsafe software because the certificate lists a software
version different from the one that was intended be certified due to a mix-up.

- A type certificate is provided for unsafe software because configurations that were not
tested were certified based on their similarity with tested configurations. In this case, a
subtle difference could be overlooked.

Control action is issued but not effective:
- NA

UCA 15.2, 15.3: FAA provides certification for a critical update too late or not at all

Due to incorrect feedback or incorrect instructions from another controller:
- FAA certifies a critical update too late or not at all because the request for certification
gets lost in the mail (or someone's inbox).

- FAA certifies a critical update too late or not at all because the supplier did not submit all
required documentation in the right format

Due to process model flaw or algorithm flaw:
- FAA certifies a critical update too late or not at all because the FAA does not have
enough inspectors to process all the certification requests in time
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- FAA certifies a critical update too late or not at all because the application gets stuck on
someone's desk at the FAA and nobody else takes over the task.

- FAA certifies a critical update too late or not at all because the application is not treated
with the necessary urgency. This could happen by accident if there is no formal way of
prioritizing important applications

Control action is issued but not effective:
- The certification is issued but it gets lost in the mail (or someone's inbox) and nobody
notices for several days or weeks.

UCA 16.1, 16.2: FAA issues airworthiness directive too late or not at all for
hazardous FLS

Due to incorrect feedback or incorrect instructions from another controller:
- The airworthiness directive is issued too late or not at all because no incidents are
reported to the FAA despite hazard. This could occur for one of the following reasons:

- because hazard only occurs in rare circumstances
- because no evidence of software issues can be found after the fact
- because reporting is too onerous for mechanics or pilots
- because the airline or MRO prefer to report directly to the supplier
- because supplier doesn't report hazard to FAA
- because mechanics or pilots do not consider the issues serious enough to warrant
FAA report

- The airworthiness directive is issued too late or not at all because reported incidents
never make it to the FAA due to a flaw in the system. Nobody notices the flaw, because
there is no follow-up for reported incidents.

- The airworthiness directive is issued too late or not at all because reported incidents do
not contain all necessary information to pinpoint the problem source.

Due to process model flaw or algorithm flaw:
- An airworthiness directive is issued too late or not at all because reported incidents are
considered pilot errors
- An airworthiness directive is issued too late or not at all because reported incidents do
not get dealt with in efficient manner, for example if the FAA cannot deal with the large
number of reports due to bureaucratic overhead.
- An airworthiness directive is issued too late or not at all because discovered hazards are
not considered serious enough to warrant an AD. This could occur if the supplier assures
the FAA that they will deal with the problem themselves or if the FAA trusts the supplier's
assurances that the hazard is not serious.

Control action is issued but not effective:
- FAA issues an airworthiness directive, but it is not effective because it was not noticed by
all owners/pilots of the concerned aircraft.
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Complete List of Scenarios for General Aviation

Repair Station UCAs

UCA 1.1: Repair station installs software not as specified by type certificate or does
not perform update as required by service bulletin.

Due to incorrect feedback or incorrect instructions from another controller:
- Mechanic installs software onto field loadable system not as specified by the type
certificate because the mechanic was tricked into downloading the software from an
attacker's website. This may occur due to several reasons:

- the attacker hacked the mechanic's computer and poisoned the DNS and certificates
- the attacker carried out a man-in-the middle attack
- the attacker obtained the supplier's web domain and redirected it to his server.
- the attacker sent a phishing e-mail to the mechanic with a link pointing to his server

- Mechanic installs software onto field loadable system not as specified by the type
certificate because the mechanic accidentally downloaded the wrong software for one of
the following reasons:

- the supplier's website Ul made it easy to confuse software versions
- the supplier's naming convention makes it easy to confuse software versions

- Mechanic installs software onto field loadable system not as specified by the type
certificate because the service bulletin sent to the mechanic was modified on the way with
instructions to install different software.

- Mechanic installs software onto field loadable system not as specified by the type
certificate because he believes that the correct version is already installed on the aircraft
for one of the following reasons:

- The maintenance log was falsified
- There was a mistake in the maintenance log
- The mechanic recalled erroneously from memory and didn't check the maintenance

log
- The software installed on the component displayed the correct version, even though it

was not the correct software

Due to process model flaw or algorithm flaw:
- Mechanic installs software onto field loadable system not as specified by the type
certificate because he confused two software versions that he downloaded earlier.

- Mechanic does not update software according to service bulletin because the mechanic
forgot about the service bulletin (and the process depends on memory)

- Mechanic installs software onto field loadable system not as specified by the type
certificate because the software was modified on the repair station's computer in one of
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the following ways:
- An insider with access modified it
- An attacker hacked the computer to modify the software

- Mechanic intentionally installs software onto field loadable system not as specified by the
type certificate because he was pressured into doing so or because he holds a grudge
against the pilot, aircraft owner or the repair station owner.

Control action is issued but not effective:
- The mechanic does not properly carry out the install because he forgets one of multiple
steps in the installation process, thus leaving the component in an inconsistent state.

- The mechanic does not properly complete the install because the component provides no
clear feedback about whether the install succeeded / failed

- The mechanic installed the wrong software because the loading device contained
multiple software versions and the mechanic selected the wrong one.

- The mechanic installed the right software, but he installed it onto the wrong component
because the components are in similar locations and share the same screen

- The mechanic carried out the installation according to the supplier's instructions, but the
installation produces an incorrect result because either the loading device was broken or
tampered with, or the aircraft component was broken or tampered with.

UCA 1.2: Initial software install not performed when component is new

Due to incorrect feedback or incorrect instructions from another controller:
- The mechanic assumed that no install was necessary because he did not get the correct
instructions from the supplier and the component seemed to be working.

Due to process model flaw or algorithm flaw:
- The mechanic forgot to install the software because some parts come with software pre-
installed while others don't, and the mechanic confused the component in question with
another one. This may occur because:

- the mechanic often takes shortcuts to save time instead of following the manual step
by step.

- the mechanic does not have the necessary experience
- the mechanic was interrupted in the middle of the task and did not complete it

- The mechanic decided to skip installation/update because he was in a rush

- The mechanic did not install the software because he thought another mechanic would
do it.

Control action is issued but not effective:
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- The mechanic tried to install the software, but did not complete it because he thought the
install was successful even when it was not, either because the component did not give
clear enough feedback or because the instructions in the installation manual were unclear.

- The mechanic could not carry out the installation because he did not have the right tools
for the job (e.g. the proper portable loading device)

UCA-2.1, 2.2: Update FLS not provided in accordance with service bulletin or AD

Due to incorrect feedback or incorrect instructions from another controller:
- The mechanic did not update the FLS because the service bulletin got lost in the mail
and he never received it.

- The mechanic received the service bulletin but can not get the software update or the
correct instructions because his computer is not working or the Internet connection is not
working or the supplier's server is off-line.

- The mechanic does not install the update because he believes that the software was
already updated. This could happen if it is not straightforward to determine what version of
software is installed on the component when the maintenance log is not clear about it.

Due to process model flaw or algorithm flaw:
- The mechanic decides not apply the update because he is in a rush and thinks the
update is not critical because it's just a service bulletin and not an airworthiness directive.

- The mechanic decides not apply the update because he is in a rush and assumes that
the pilot/owner will not find out anyway since it's difficult to determine the installed version.

- The mechanic intends to do the update but installs the wrong software because it is
difficult to tell different versions apart (they're all just files with names) and the repair
station is not organized enough to keep track of the different versions.

Control action is issued but not effective:
- The mechanic cannot update the software because the pilot/owner never brought the
aircraft in for maintenance or brought it in too late. This could happen if the pilot/owner
didn't know about the service bulletin in the first place because they did not get the
information from the supplier or the repair station could not reach them (maybe their
contact details were no longer valid)

Pilotlowner UCAs

UCA 3.1: Pilot/owner loads terrain database other than supplier's official one

Due to incorrect or missing feedback or incorrect instructions from another
controller:
- The pilot/owner downloads a modified database from a non-official source because it
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looks like the real database and it is the first search result that comes up.

- The pilot/owner downloads a modified database from a non-official source because a
phishing e-mail that looked like it came from the supplier had instructions to do so.

Due to process model flaw or algorithm flaw:
- N/A

Control action is issued but not effective:
- The pilot/owner installs the official database, but the install does not succeed, leaving the
device in a non-functioning state.

UCA 3.2: Pilotiowner loads terrain database update too late or not at all

Due to incorrect or missing feedback or incorrect instructions from another
controller:
- The pilot/owner does not load the update because he/she does not know about.

Due to process model flaw or algorithm flaw:
- The pilot/owner does not update the database because he/she thinks that the mechanic
(or someone else) already did it.

- The pilot/owner does not update the database because he/she does not consider it
important.

- The pilot/owner does not update the database because he/she forgets about it and is not
reminded.

Control action is issued but not effective:
- The pilot/owner attempted to update the database but the update did not succeed. The
pilot/owner did not check to make sure that the update succeeded.

UCA 4.2, 4.3: Pilot does not initiate TO/GA or initiates it too late when aircraft is
about to hit terrain

Due to incorrect feedback or incorrect instructions from another controller:
- The pilot does not pull up because the EGPWS system is switched off and no alert
sounds
- The pilot does not pull up because a TCAS alert is issued at the same time.

Due to process model flaw or algorithm flaw:
- The pilot does not pull up because he believes that the alert is just a nuisance alert
because he is used to landing at airports that are not in the terrain database.
- The pilot does not pull up because he thinks he knows where he is and doesn't think the
terrain is close.

Control action is issued but not effective:
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- The pilot initiates TO/GA, but it is not effective because another system prevents the
control action (due to high angle of attack etc.)
- The pilot initiates TO/GA, but the aircraft is too slow and cannot produce enough lift.
Rather than risking a stall, the pilot continues descent.
- The pilot pulls up too late because he is distracted (maybe due to a malfunction) when
the terrain alert sounds.

EGPWS UCAs

UCA 5.1, 5.2: EGPWS does not provide timely terrain alert when aircraft is about to
hit terrain or ground structure

Due to incorrect feedback or incorrect instructions from another controller:
- The EGPWS does not sound an alert because the radar altimeter data is incorrect or
missing due to malfunction or manipulation.

- The EGPWS does not sound an alert because the airspeed data is incorrect or the
position is incorrect which could occur due to GPS sensor failure or due to spoofing or
jamming of the GPS signal.

- The EGPWS does not sound an alert because someone (maybe even the pilot or co-
pilot) turned EGWPS off. This could happen if the aircraft frequently lands at an airport that
is not in the database.

Due to process model flaw or algorithm flaw:
- The EGPWS does not sound an alert because the terrain database is incorrect
(mountain/hill/building missing or at wrong location) or outdated (new building)

- The EGPWS does not sound an alert because an adversary intentionally loaded the
wrong map

- The EGPWS does not sound an alert because an adversary modified the FLS software
to suppress alerts in certain conditions.

Control action is issued but not effective:

- The EGPWS device issues an alert, but the pilot does not hear or see it because the alert
doesn't sound due to the pilot's headset failing.

- The EGPWS device issues an alert, but the pilot does not hear or see it because there is
too much noise.

- The EGPWS device issues an alert, but the pilot does not hear or see it because he is
focused on dealing with other warnings.

- The EGPWS device issues an alert, but the pilot does not hear or see it because the
cable to the speakers and the warning light is disconnected.
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- The EGPWS device issues an alert and the pilot notices it but takes no action because
he intends to crash the plane.
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UCA 6.1: Supplier delivers unsafe or insecure software

Due to incorrect feedback or incorrect instructions from another controller:

- The supplier delivers unsafe or insecure software because the FAA certified it, which
could happen if tests are not extensive enough or certification criteria are not stringent
enough. It could also happen if the software tested is not exactly the same version as the
one that was shipped.

Due to process model flaw or algorithm flaw:

- The supplier delivers unsafe or insecure software because the wrong version of the
software was published by accident. This could occur if the publication process depends
on only one employee or if there is no proper way of identifying software versions.

- The supplier delivers unsafe or insecure software because the wrong version of the
software was published intentionally by an attacker/malicious insider who modified the
software before publication.

- The supplier delivers unsafe or insecure software because severity of known hazard was
downplayed and considered non-critical. This could happen because fixing issue and re-
certifying software would be costly & time consuming.

- The supplier delivers unsafe or insecure software because an insider/attacker inserted
malicious code into the code base.

- The supplier delivers unsafe or insecure software because some tests were skipped due
to lack of time or money or because the testing setup did not work as intended.

Control action is issued but not effective:
- The supplier publishes safe and secure software, but the software is modified after being
published by the supplier. This could happen on the server or on the way to the repair
station, or at the repair station itself.

- The supplier publishes safe and secure software, but the repair station installed the
wrong version/software by accident

UCA 11.1: Supplier delivers update when update is unsafe or insecure

Software update is different from initial version insofar that the process leading to it is
different, thus there can be additional scenarios. All the scenarios for initial software
version should also be considered here.

Due to incorrect feedback or incorrect instructions from another controller:
- N/A

Due to process model flaw or algorithm flaw:
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- The supplier ships an unsafe or insecure update because the bug fix/ update introduced
new hazards for one of the following reasons:

- the code change was not properly reviewed before publishing
- the effect of change on interacting components was not considered
- none or insufficient tests were added for the new code
- the fix violated a system design assumption which was not properly documented

- The supplier ships an unsafe or insecure update because the update did not fix the
underlying problem but only patched one instance of the bug.

Control action is issued but not effective:
- The supplier issued a safe and secure update, but an attacker tricked the repair station
into downloading a modified version the software from their own website. They could do
this by sending a forged letter or e-mail to the repair station which instructs them to
download the software from the attacker's website.

UCA 7.1, 7.2: Supplier ships update too late or not at all when update is critical

Due to incorrect feedback or incorrect instructions from another controller:
- The supplier ships an update too late or not at all because the supplier is not aware of
hazards in original software. This could happen if the software is not identified as causal
factor in accidents or because the supplier does not get necessary feedback/reports from
pilots and mechanics in the first place. The software may not be detected as the cause
because the hazard arises only in rare conditions / for rare combinations of variables.

- The supplier decides not to ship an update for a known issue because they are not
legally required to do so as long as the FAA does not issue airworthiness directive. The
FAA may not issue an airworthiness directive if the hazard is not recognized as serious
because the exact effects are hard to understand.

Due to process model flaw or algorithm flaw:
- The supplier ships an update too late because the update depends on an engineer that is
unreachable ( left company, sick, on vacation etc.). This could occur if the software is not
documented sufficiently well for other engineers to understand it quickly enough.

- The supplier ships an update too late because of a lack of personnel

- The supplier ships an update too late because he has no incentive (financial, legal, etc.)
to provide update in timely manner

- The supplier does not ship an update because it is too costly and the company is in
financial trouble.

Control action is issued but not effective:
- The supplier issues an update, but the update is not installed by repair station because a
corresponding service bulletin is not issued, or the service bulletin is issued but does not
reach the clients.
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- The supplier issues an update, but the repair stations mistake unfixed version with fixed
version and do not notice their mistake soon enough.

UCA 8.1, 8.2: Supplier issues service bulletin too late or not at all when FLS is
unsafe or insecure

Due to incorrect feedback or incorrect instructions from another controller:
- N/A

Due to process model flaw or algorithm flaw:
- The supplier issues a service bulletin too late or not at all because the internal processes
do not ensure that a service bulletin is issued whenever an update or new instructions are
available.

Control action is issued but not effective:

- The service bulletin is issued, but it is not received by all repair stations because letters
are lost in the mail, or an e-mail server did not deliver the e-mail.

- The service bulletin is issued and received by the repair station, but the repair station
does not act on it because the service bulletin does not set a deadline.
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UCA 9.1, 10.1: FAA provides a type certificate for unsafe FLS or FLS software or
update

Due to incorrect feedback or incorrect instructions from another controller:
- A type certificate is provided for unsafe software because the software tested on aircraft

is not the exact software certified/delivered. This could happen if the software is not

tracked appropriately with versioning.

Due to process model flaw or algorithm flaw:
- A type certificate is provided for unsafe software because someone hid a flaw on purpose
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(could be an employee of the supplier or an FAA official)

- A type certificate is provided for unsafe software because FAA employees are under
pressure not to deny too many type certificates

- A type certificate is provided for unsafe software because the designated representative
feels pressure to sign off on certificate because he/she is afraid of losing the job.

- A type certificate is provided for unsafe software because tests/checks are not thorough
enough because the supplier has good track record with the FAA.

- A type certificate is provided for unsafe software because tests and inspections are
insufficient to discover a hazardous flaw if the flaw only shows up in rare situations ( like
the one in BA flight 38)

- A type certificate is provided for unsafe software because the certificate lists a software
version different from the one that was intended be certified due to a mix-up.

- A type certificate is provided for unsafe software because configurations that were not
tested were certified based on their similarity with tested configurations. In this case, a
subtle difference could be overlooked.

Control action is issued but not effective:
- NA

UCA 10.2, 10.3: FAA provides certification for a critical update too late or not at all

Due to incorrect feedback or incorrect instructions from another controller:
- FAA certifies a critical update too late or not at all because the request for certification
gets lost in the mail (or someone's inbox).

- FAA certifies a critical update too late or not at all because the supplier did not submit all
required documentation in the right format

Due to process model flaw or algorithm flaw:
- FAA certifies a critical update too late or not at all because the FAA does not have
enough inspectors to process all the certification requests in time

- FAA certifies a critical update too late or not at all because the application gets stuck on
someone's desk at the FAA and nobody else takes over the task.

- FAA certifies a critical update too late or not at all because the application is not treated
with the necessary urgency. This could happen by accident if there is no formal way of
prioritizing important applications

Control action is issued but not effective:
- The certification is issued but it gets lost in the mail (or someone's inbox) and nobody
notices for several days or weeks.
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UCA 11.1, 11.2: FAA issues airworthiness directive too late or not at all for
hazardous FLS

Due to incorrect feedback or incorrect instructions from another controller:
- The airworthiness directive is issued too late or not at all because no incidents are
reported to the FAA despite hazard. This could occur for one of the following reasons:

- because hazard only occurs in rare circumstances
- because no evidence of software issues can be found after the fact
- because reporting is too onerous for repair stations or owners and pilots
- because repair stations prefer to report directly to the supplier
- because supplier doesn't report hazard to FAA
- because mechanics or pilots do not consider the issues serious enough to warrant
FAA report

- The airworthiness directive is issued too late or not at all because reported incidents
never make it to the FAA due to a flaw in the system. Nobody notices the flaw, because
there is no follow-up for reported incidents.

- The airworthiness directive is issued too late or not at all because reported incidents do
not contain all necessary information to pinpoint the problem source.

Due to process model flaw or algorithm flaw:
- An airworthiness directive is issued too late or not at all because reported incidents are
considered pilot errors
- An airworthiness directive is issued too late or not at all because reported incidents do
not get dealt with in efficient manner, for example if the FAA cannot deal with the large
number of reports due to bureaucratic overhead.
- An airworthiness directive is issued too late or not at all because discovered hazards are
not considered serious enough to warrant an AD. This could occur if the supplier assures
the FAA that they will deal with the problem themselves or if the FAA trusts the supplier's
assurances that the hazard is not serious.

Control action is issued but not effective:
- FAA issues an airworthiness directive, but it is not effective because it was not noticed by
all owners/pilots of the concerned aircraft.
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List of unsafe control actions for General Aviation FLS
Controller Control action Providing causes hazard Not providing causes hazard Too soon/ too late causes hazard

(1.1) Install software not as (1.2) Software initial install not
specified by type certificate - H3, performed when component is new -

Repair station initial install of FLS H4 H4
(2.2) Update FLS not provided in

(2.1) Update FLS not as specified by accordance with AD or service
Update FLS AD / service bulletin - H3, H4 bulletin - H3

(3.1) Load terrain DB other than (3.2) Not loading terrain database with
Pilot Update terrain DB official one - H2 current obstacles - H2

(4.1) low fuel or conflicting traffic -.
pull up + TOGA H1 (4.2) EGWPS real terrain alert - H2 (4.3) EGWPS real terrain alert - H2

(5.1) Aircraft is about to hit terrain or
EGPWS sound warning ground structure - H2 (5.2) Warn too late of terrain - H2

(6.1) Software is delivered that is
Supplier Deliver software unsafe or insecure - H3, H4

(7.2) Update is not delivered when
(7.1) Update is delivered that is current version of FLS is unsafe or

Deliver update unsafe or insecure - H3 insecure - H3
(8.1) Service bulletin is not issued (8.2) Service bulletin is issued too late
when current FLS is unsafe or when current FLS is unsafe or

Issue service bulletin insecure - H3, H4 insecure - H3, H4

(9.1) Provide type certificate when
FLS software is unsafe or insecure

FAA Provide initial type certificate - H3, H4

Provide type certificate for update

(10.1) Provide type certificate when
FLS update is unsafe or insecure -
H3, H4

Issue airworthiness directive
Table 8: Unsafe control actions for General Aviation

(10.2) Type certificate for update is
not provided when current FLS is
hazardous and unsafe or insecure -
H3, H4
(11.1) Airworthiness directive is not
issued when current FLS is unsafe or
insecure - H3

(10.3) Certificate for update is provided
too late when current FLS is unsafe or
insecure - H3
(11.2) Airworthiness directive is issued
too late when current FLS is unsafe or
insecure -+ H3




