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Least Squares Shadowing Sensitivity Analysis of a Modified
Kuramoto-Sivashinsky Equation

Patrick J. Blonigana,, Qiqi Wanga

aDepartment of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge,
MA 02139, United States

Abstract

Computational methods for sensitivity analysis are invaluable tools for scientists and engineers investigating

a wide range of physical phenomena. However, many of these methods fail when applied to chaotic systems,

such as the Kuramoto-Sivashinsky (K-S) equation, which models a number of different chaotic systems found

in nature. The following paper discusses the application of a new sensitivity analysis method developed by

the authors to a modified K-S equation. We find that least squares shadowing sensitivity analysis computes

accurate gradients for solutions corresponding to a wide range of system parameters.

Keywords: Sensitivity Analysis, Kuramoto-Sivashinsky Equation

1. Introduction

Sensitivity analysis is of great importance to scientists and engineers. It is used to compute sensitivity

derivatives of key quantities of interest to parameters that influence a system which is governed by some

ordinary differential equation (ODE) or partial differential equation (PDE). These sensitivity derivatives

can be used for design optimization, inverse problems, data assimilation, and uncertainty quantification.

Sensitivity analysis for chaotic dynamical systems is important because of the prevalence of chaos in many

scientific and engineering fields. A relatively simple PDE that can be chaotic, the Kuramoto-Sivashinsky

(K-S) equation, (1), is a great illustration of how widespread chaos is in nature, as it has been found to

model a wide range of physical phenomena.

∂u

∂t
= −u∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
(1)

Kuramoto derived the equation for angular-phase turbulence for a system of reaction-diffusion equations

modeling the Belouzov-Zabotinskii reaction in three spatial dimensions [1, 2]. Sivashinsky also derived the
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equation to model the evolution of instabilities in a distributed plane flame front [3, 4]. In addition the K-S

equation has also been shown to be a model of Poiseuille flow of a film layer on an inclined plane [5].

In the study of periodic and chaotic systems, long time averaged quantities, such as mean temperature

and mean aerodynamic forces of turbulent fluid flows, are of interest. However, many sensitivity analysis

methods fail when applied to long time averaged quantities in chaotic dynamical systems. The sensitivity

gradient predicted by methods including the adjoint method are observed to diverge as simulation time is

increased [6].

A recently developed method, the least squares shadowing (LSS) method, can compute accurate gradients

for ergodic chaotic systems [7, 8]. The LSS method finds a perturbed trajectory (or solution) that does not

diverge exponentially from some trajectory in phase space. This non-diverging trajectory, called a “shadow

trajectory”, has its existence guaranteed by the shadowing lemma [9] for a large number of chaotic systems

and can be used to compute sensitivities.

This paper discusses the application of the LSS method to a one-dimensional modified K-S equation:

∂u

∂t
= −(u+ c)

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
(2)

x ∈ [0, L], t ∈ [0,∞)

u(0, t) = u(L, t) = 0

∂u

∂x

∣∣∣∣
x=0

=
∂u

∂x

∣∣∣∣
x=L

= 0

u(x, 0) = u0(x)

Homogenenous Dirichlet and Neumann boundary conditions are used to make the system ergodic. The

parameter c is added to demonstrate LSS. Sensitivity of the quantity of interests 〈ū〉 and
〈
ū2
〉

to c will be

investigated, where:

〈ū〉 ≡ lim
T→∞

1

T

∫ T

0

ū dt, ū ≡ 1

L

∫ L

0

u dx, ū2 ≡ 1

L

∫ L

0

u2 dx

We have chosen L = 128 to ensure the solution is chaotic [10].

The remainder of this paper is organized as follows: first, section 2 discusses the numerical simulation

used to compute solutions of the modified K-S equation. Next, the reasons for the modifications to the K-S

equation are discussed in more detail in section 3. Thirdly, a brief summary of the LSS method will be given
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in section 4, followed by a presentation and a discussion of the gradients computed using LSS in section 5.

Section 6 offers some concluding remarks and a discussion of future work.

2. Numerical Simulation

The modified K-S equation was discretized with a 2nd order finite difference scheme. We number the

nodes i = 0, 1, 2, ..., n, n+ 1, where i = 0 and i = n+ 1 are the boundary nodes and i = 1, 2, ..., n denote the

interior nodes. Define xi = i∆x, where ∆x = L/(n+ 1) is the spacing between each node, and ui = u(xi).

The terms of the modified K-S equation were approximated as follows on the interior nodes:

∂u

∂x

∣∣∣∣
i

≈ ui+1 − ui−1

2∆x
, i = 1, 2, ..., n

u
∂u

∂x

∣∣∣∣
i

=
1

2

∂u2

∂x

∣∣∣∣
xi

≈ u2
i+1 − u2

i−1

4∆x
, i = 1, 2, ..., n

∂2u

∂x2

∣∣∣∣
i

≈ ui+1 − 2ui + ui−1

∆x2
, i = 1, 2, ..., n

∂4u

∂x4

∣∣∣∣
i

≈ ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

∆x4
, i = 2, 3, ..., n− 1

To enforce the homogeneous Dirichlet boundary conditions we set u0 = un+1 = 0. To enforce the

homogeneous Neumann boundary conditions, we make use of ghost nodes, setting u−1 = u1 and un+2 = un.

This ensures that the central difference approximation of ∂u
∂x is zero at nodes 0 and n, which correspond to

x = 0 and x = L, respectively. Therefore:

∂u

∂x

∣∣∣∣
1

≈ u2

2∆x
,

∂u

∂x

∣∣∣∣
n

≈ −un−1

2∆x

u
∂u

∂x

∣∣∣∣
1

≈ u2
2

4∆x
, u

∂u

∂x

∣∣∣∣
n

≈ −u
2
n−1

4∆x

∂2u

∂x2

∣∣∣∣
1

≈ u2 − 2u1

∆x2
,

∂2u

∂x2

∣∣∣∣
n

≈ un−1 − 2un
∆x2

∂4u

∂x4

∣∣∣∣
1

≈ 7u1 − 4u2 + u3

∆x4
,

∂4u

∂x4

∣∣∣∣
n

≈ 7un − 4un−1 + un−2

∆x4

∂4u

∂x4

∣∣∣∣
2

≈ −4u1 + 6u2 − 4u3 + u4

∆x4
,

∂4u

∂x4

∣∣∣∣
n−1

≈ −4un + 6un−1 − 4un−2 + un−3

∆x4

The coarsest mesh we used to solve the modified K-S equation is a uniform mesh with 127 interior nodes,
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Figure 1: Two different objective functions 〈J〉 versus c. Dots represent each realization, lines represent
the average of 10 realizations. Different colors correspond to different spatial discretizations, with red for
n = 127, blue for n = 255, green for n = 511, and maroon for n = 700, where n is the number of nodes.
Each realization was run for 1000 time units before averaging was begun. Averages were taken over 2000
time unit intervals.
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0 0
1/3 0 1/3
1 0 1/2 1/2
1 0 3/4 -1/4 1/2

0 3/4 -1/4 1/2

0 0
1/3 1/3 0
1 0 1 0
1 0 3/4 1/4 0

0 3/4 -1/4 1/2

Table 1: Butcher Tableau for the Diagonally Implicit Runge-Kutta (DIRK) scheme (left) and the Explicit
Runge-Kutta (ERK) scheme (right) used by IMEXRK34S[2R]Lα. The scheme was designed to maximize
the accuracy of the explicit portion of the solver [12]. In the case of this paper, the explicit portion is the
convective terms of (2), −(u+ c)∂u∂x .

as in Brummitt and Sprott [11]. From figure 1, we can see that while this mesh is accurate for 0 ≤ c ≤ 1.2,

where the mean values of 〈ū〉 never vary more than 5%. However. The approximation is poor for larger

magnitude values of c and for computing
〈
ū2
〉
. A mesh with n = 511 interior nodes and ∆x = 0.25 is used

for these computations, as this grid resolution appears to offer sufficient accuracy in figure 1.

Time integration was mainly conducted with a 3rd order accurate implicit-explicit Runge-Kutta time

integration scheme, IMEXRK34S[2R]Lα [12], with the Butcher tableau shown in table 1. The 2nd and 4th

order derivatives in equation (2) were integrated with the Diagonally Implicit Runge-Kutta (DIRK) scheme,

and the convective terms, −(u+ c)∂u∂x , were integrated with the Explicit Runge-Kutta (ERK) scheme. For

the results presented in this paper, a time step of ∆t = 0.1 was used unless otherwise stated.

Some of the ensemble average computations (see section 3) were conducted using MATLAB’s ODE45

hybrid 4th/5th order Runge-Kutta scheme and a time step size of ∆t = 0.2 to ensure stability. Solutions to

the modified K-S equation used for the work presented in this paper range from 100 to 4000 time units.

Finally, unless otherwise stated, the initial condition u0(x) was formed by randomly selecting numbers

at each spatial node from a uniform distribution between u = −0.5 and u = 0.5.

3. The Modified Kuramoto-Sivashinsky Equation

3.1. Boundary Conditions

For LSS to compute accurate gradients, the system being analyzed must be ergodic; the long time

behavior of the system is independent of initial conditions. The K-S equation with periodic boundary

conditions is not ergodic, and to show this we consider the spatial average of equation (2):

1

L

∫ L

0

(
∂u

∂t

)
dx =

1

L

∫ L

0

(
−(u+ c)

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4

)
dx

Taking the time derivative outside of the integral, using the notation ū = 1
L

∫ L
0
u dx, and multiplying

both sides of the equation by L, we obtain:
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L
∂ū

∂t
= −1

2
u2
∣∣L
0
− c u|L0 −

∂u

∂x

∣∣∣∣L
0

− ∂3u

∂x3

∣∣∣∣L
0

(3)

For periodic boundary conditions, u and all of its derivatives are equal at x = 0 and x = L for all time.

Therefore equation (3) becomes:

∂ū

∂t
= 0

This means that ū is always equal to the average of the initial condition u0(x). Therefore, our choice of the

initial condition dictates the long time behavior of our quantity of interest ū and the system is not ergodic.

On the other hand if homogeneous Dirichlet and Neumann boundary conditions are used, ergodic behavior

can shown from numerical solutions. Ergodicity can be observed in the behavior of the ensemble averaged

time averaged solution, defined as

〈̃u〉 ≡ 1

K

K∑
k=1

〈u〉

where 〈u〉 is the time average of u(x, t). The ensemble average is conducted over K realizations, each

starting from a different initial condition, comprised of the random noise described in section 2 shifted to

some non-zero mean. Figure 2 shows that 〈̃u〉 converges to a single function for initial conditions with

different means. The initial condition also contained random noise like that described in section 2. The

random noise component of the initial condition is comprised of many different functions, which means that

the convergence shown in figure 2 strongly implies that the system is ergodic. Note that similar convergence

of the solutions was observed at a number of different values of c, suggesting that the modified K-S equation

is ergodic over a wide range of values of c.

Finally, note that the initial condition u0(x) = 0 results in a trivial solution u(x, t) = 0. However,

this trivial solution is unstable; any small perturbation to it will lead to a non-trivial, chaotic solution

[10]. One can think of the trivial solution to the modified K-S equation as an unstable fixed point, like

(x, y, z) = (0, 0, 0) in the Lorenz System.

3.2. Additional Linear Convection Parameter c

To see the effect of the parameter c, we again consider ensemble averaged time averaged solutions 〈̃u〉.

Figure 3 shows that as c is increased, 〈̃u〉 is decreased at all values of x other than the boundaries, where

the Dirichlet boundary conditions are imposed.

This decrease in 〈̃u〉 occurs because increasing c leads to increased linear convection in the positive x

6
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Figure 2: The ensemble averaged time averaged solution, 〈̃u〉, for c = 0 for initial conditions with five
different means ū0. Both solutions were run for T0 time units before the averaging was started. The
averaging interval was 100 time units long and 4000 realizations were used for both ensemble averages.
All five initial conditions were formed by randomly selecting numbers at each grid point from a uniform
distribution between u = −0.5 and u = 0.5 and then changing the mean.
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Figure 3: The ensemble averaged, time averaged solution, 〈̃u〉 for different values of c. The averaging interval
was 100 time units long and 4000 realizations were used for both ensemble averages.
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direction, transporting negative u from one side of the domain to the other and transporting positive u out

of the domain.

This trend can be seen in figure 1, which shows how time and space averaged u, 〈ū〉, varies with c. From

c = 0 to c ≈ 1.2, we see the behavior shown in figure 3 and 〈ū〉 decreases linearly with c. Note that because

the the boundary conditions are symmetric, 〈ū〉 as a function of c is anti-symmetric. Decreasing c from

c = 0 results in an linear increase in 〈ū〉, until c ≈ −1.2.

For c > 1.2 (or c < −1.2) we see a change in the slope of 〈ū〉. Another change occurs around c = 1.8.

These changes in the trend of 〈ū〉 are a result of changes in the dynamics of the modified K-S equation.

Example of solutions u(x, t) in these regimes, 0 ≤ c ≤ 1.2, 1.2 ≤ c ≤ 1.8, and c > 1.8 are shown in figure 4.

In the first regime, 0 ≤ c ≤ 1.2, the “light turbulence dominated regime”, we see the chaotic spatio-

temporal structures referred to in many past studies of the K-S. In the left-most plot of figure 4 we see that

some of the structures between roughly x = 64 and x = 128 are convecting towards x = 128, due to the

linear convection term.

As c is increased, convection in the positive x-direction is increased. This can be seen visually from the

tilt or slope of the spatio-temporal structures in all three x− t diagrams in figure 4. The smaller the slope

of the structure, the faster the structure is being convected.

In the second regime, 1.2 ≤ c ≤ 1.8, the “convection dominated regime”, All spatio-temporal structures

are convecting towards x = 128, as seen in the center plot of figure 4. Additionally, a region of u = 0 now

exists near x = 0. As x increases, the spatio-temporal structures grow, until x ≈ 30 for c = 1.4 (figure 4).

The size of this region grows as c is increased.

In the final regime, c > 1.8, the “steady regime”, the chaotic structures are convected out of the domain,

as in the right-most plot in figure 4. As c is increased, the structures are convected out of the spatial domain

faster. The trivial solution has changed from an unstable fixed point to a stable fixed point, and the solution

becomes u(x, t) = 0 after some time. This is different from solutions in the first two regimes, both of which

are on chaotic attractors, as indicated by ergodicity and presence of spatio-temporal chaos.

4. The Least Squares Shadowing Method

Say we are interested in the sensitivity of our long-time averaged quantity 〈ū〉 to the parameter c:

d〈ū〉
dc

=
d

dc

(
lim
T→∞

1

T

∫ T

0

ū dt

)

9



Figure 4: From left to right: x vs. t plots for u(x, t) for c = 0.8 (light turbulence dominated regime),
c = 1.4 (convection dominated regime), and c = 2.0 (steady regime). All three histories were computed with

∆x = 0.25. The initial condition for all three histories was u0(x) = e
−(x−64)2

512 .
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For non-chaotic solutions of the K-S equation solved from the initial value problem, we can exchange the

derivative and the time limit:

d〈ū〉
dc

= lim
T→∞

1

T

∫ T

0

∂ū

∂u

∂u

∂c
dt (4)

Where

∂u

∂c
= lim
ε→0

u(t; c+ ε)− u(t; c)

ε
(5)

We can solve for the tangent solution, v ≡ ∂u
∂c , with the linearization of equation (2), also called the

tangent equation. However, if u(t; c) is chaotic, then equations (4) and (5) do not hold and the tangent

solution, v. diverges exponentially as the simulation time T is increased [6, 7].

For a steady or periodic solution, a slight change ε in c results in a slightly different solution u(t; c+ ε)

for all time and the tangent solution, v, can be computed accurately. However, the positive Lyapunov

exponent(s) present on strange attractors ensure that the solutions u(t; c+ε) and u(t; c) will be very different

after some time, as illustrated in figure 5. We see that if the perturbed solution, or phase space trajectory,

has the same initial condition as the unperturbed trajectory, the two trajectories diverge exponentially. This

exponential divergence of the two trajectories causes the tangent solution, v, to diverge, resulting in the

issues with traditional sensitivity analysis mentioned in the introduction.

However, the assumption of ergodicity means that it is not necessary to compare a perturbed and an

unperturbed trajectory with the same initial condition if the quantities of interest are statistics of the

system such as long time averages. Therefore, an initial condition can be chosen such that the perturbed

and unperturbed trajectories do not diverge, resulting in the blue trajectory in figure 5. The existence of

this trajectory, called a “shadow trajectory”, follows from the shadowing lemma [9]:

For any δ > 0 there exists ε > 0, such that for every “ε-pseudo-solution” uε that satisfies

‖duε/dt−R(uε)‖ < ε, 0 ≤ t ≤ T , there exists a true solution u and a time transformation τ(t),

such that ‖u(τ(t))− uε(t)‖ < δ, |1− dτ/dt| < δ and du/dτ −R(u) = 0, 0 ≤ τ ≤ T .

Where the norm ‖·‖ refers to distance in phase space. For the K-S equation, the operator R is comprised

of the spatial derivative operators on the right hand side of equation (2).

The time transformation alluded to in the shadowing lemma is required to deal with the zero (neutrally

stable) Lyapunov exponent on the strange attractor. The need for this transformation is clarified in figure

11



Figure 5: Phase space trajectory of a chaotic dynamical system. The unstable manifold, in red, is the
space of all Lyapunov covariant vectors corresponding to positive exponents. The stable manifold, in green,
corresponds to the space of all covariant vectors associated with negative exponents. A perturbation to the
system (in red) has components in both manifolds, and the unstable component causes the perturbed tra-
jectory (pink) to diverge exponentially from the unperturbed trajectory (in black). LSS chooses a perturbed
trajectory with a different initial condition (in blue) that does not diverge from the unperturbed trajectory.

6. The time transformation, referred to as “time dilation” in this paper and other LSS literature, is required

to keep a phase space trajectory and its shadow trajectory close (in phase space) for infinite time.

If we use two solutions that shadow one another in equation (5), 4 can be used to compute accurate

sensitivities [13]. v ≡ ∂u
∂c , called the “shadowing direction” can be computed by solving the following

optimization problem with the tangent equation as a constraint:

min
v,η

1

2T

∫ T

0

v2 + α2η2dt,

s.t.
dv

dt
=
∂R
∂u

v +
∂R
∂c

+ ηR(u; c) (6)

0 < t < T

where η = dτ/dt − 1 is the time dilation term, which corresponds to the time transformation from the

shadowing lemma and α2 is a weighting parameter for the optimization problem. More details on the

implementation of LSS can be found in [8].
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Figure 6: TOP: Original and shadow phase space trajectories without any time transformation (dτ/dt = 1).
BOTTOM: Original and shadow phase space trajectories with a time transformation dτ/dt = 1 + η that
minimizes the distance between the two trajectories in phase space for all time.
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Figure 7: TOP: x vs. t plot for u(x, t) for c = 0.1. BOTTOM: x vs. τ plot for the corresponding shadow
trajectory us(x, τ) with c = 0.7. This shadow trajectory was computed using the algorithm outlined in [14].

5. Results

5.1. Shadowing for the Modified Kuramoto-Sivashinsky Equation

The concept of a shadow trajectory in phase space is easy to visualize for low dimensional dynamical

systems such as the three degree of freedom Lorenz system. This is not the case for high dimensional

systems, like our simulation of the modified K-S equation, which has between 127 and 511 dimensions. To

understand what shadowing entails for a high dimensional ODE or a PDE, consider figure 7. We see that

the shadow trajectory us(x, τ) has a lower average value than u(x, t) from the coloring of the contours.

Additionally, we see that us(x, τ) has spatio-temporal structures that has very similar to u(x, t). This is

because the spatio-temporal structures of us(x, τ) shadow those in u(x, t). Also, note that the time scale of

us(x, τ) is indistinguishable from u(x, t), indicating that there is very little time dilation.
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5.2. Least Squares Shadowing Sensitivity Analysis

As discussed in section 4, we can use shadow trajectories to compute sensitivities of long-time averaged

quantities to system parameters. Figure 8 shows this for 〈ū〉 versus c. The gradients computed using 100

and 1000 time unit intervals in the light turbulence dominated region (0 ≤ c ≤ 1.2) are a good match for

〈J〉 =
〈
ū2
〉
, but slightly over-predict the magnitude of the gradient for 〈J〉 = 〈ū〉. The insensitivity of 〈ū〉

and
〈
ū2
〉

to c in the steady region c ≥ 1.8 is also computed by the LSS method.

However, LSS computes inaccurate gradients in the convection dominated regime (1.2 < c ≤ 1.8) for

both objective functions considered. Possible reasons for this, and slight error in the sensitivity of 〈ū〉 are

discussed in the next section.

5.3. Sources of error

One source of error is the difference between the infinite time shadowing direction and its approximation

by LSS. Our numerical shadowing direction vnum(x, t) is just a finite time approximation of the infinitely

long shadowing direction v∞(x, t). It has been proven that the errors of this approximation are the greatest

at the beginning (t = 0) and end (t = T ) of the numerical shadowing direction [13]. Additionally, these

errors decay exponentially in time. The t = 0 error decays forward in time at the rate of the smallest

negative Lyapunov exponent. The t = T error decays backward in time at the rate of the smallest positive

Lyapunov exponent. Therefore, vnum(x, t) most accurately approximates v∞(x, t) in the middle of the time

interval it is computed on [13].

This property of LSS suggests that the attractor associated with the convection dominated region has

some Lyapunov exponents with magnitudes smaller than those in the light turbulence dominated regime.

This is shown to be the case in figure 9. The low magnitude Lyapunov exponents cause the error in v(x, t)

for c values in the convection dominated regime to decay very slowly as t increases from t = 0. This slower

convergence can be seen in figure 10.

Additionally, figure 10 shows that the slower time scale oscillations associated with the shadowing di-

rection v(x, t) are greater in magnitude in the convection dominated region than those present in the light

turbulence region. These longer time-scales require the use of a longer time interval to compute accurate

gradients, as a low frequency periodic function would require a longer time interval to compute an accurate

average. The longer time scales observed in v(x, t) in the convection dominated regime arise because of the

smaller magnitude Lyapunov exponents, whose reciprocals are related to the time scales of v(x, t).

Overall, the convection dominated regime has a smaller magnitude non-zero Lyapunov exponent than the

smallest non-zero Lyapunov exponent in the light turbulence dominated regime. This can contribute to the

15
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Figure 8: (a) d 〈ū〉 /dc versus c and (b) d
〈
ū2
〉
/dc. Each simulation was run for T0 = 1000 time units

before the LSS method was applied. Black dots indicate gradients computed with a 100 time unit intervals,
the red circles indicate a 1000 time unit interval and the blue diamonds indicate a 4000 unit time interval
respectively. The black lines are slopes of linear or quadratic regressions from the data in figure 1. The three
σ error intervals, where σ is the standard error of the slope, are indicated by black dotted lines. u(x, t) was
solved for with n = 511 nodes, but LSS was conducted using n = 127 nodes.
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the convection dominated regime have two values very close to zero, as opposed to just one. One of these
corresponds to the neutrally stable exponent λ = 0, the other is just a very small magnitude exponent. The
exponents were computed using the method described by Benettin et al. [15], with s = 100 and k = 20000.
Note that a time step size of ∆t = 0.05 was used.
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Figure 10: Spatially averaged shadowing direction v̄ versus t for c = 0 and c = 1.5. Each simulation was run
for T0 = 1000 time units before the LSS method was applied. While the mean shadowing direction for c = 0
converges to a quasi-steady state almost instantly, it takes until around t = 300 for the c = 1.5 shadowing
direction to do so. Finally, note the much larger magnitude oscillations and time scales associated with
c = 1.5.
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Figure 11: Sawtooth map. The map for s = 0 is indicated by the solid lines, the map for s = 0.1 is indicated
by the doted lines. Dashed lines indicated the limits of phase space on the xk and xk+1 axes.

fact that the sensitivity computed over the same time interval is less accurate in the convection dominated

regime.

However, even when a larger time interval is used, the gradients in the convection dominated regime

appear to converge to the wrong value, as shown in figure 8. Therefore, small magnitude Lyapunov exponents

are not the only source of error. To explore the other source of error present, we consider a different dynamical

system, the sawtooth map:

xk+1 = F (xk; s) =

 2xk + s sin 2πxk, xk ∈ [0, 0.5]

2xk − 1 + s sin 2πxk, xk ∈ (0.5, 1.0]
(7)

For a visual representation of equation (7), refer to figure 11. The quantity of interest we consider for the

sawtooth map is long time averaged x4:

〈
x4
〉

=
1

n

n∑
k=1

x4
k (8)

In figure 12, we see that the gradients computed via LSS converge as n is increased from 1000 to 10000,

but they do not converge to the proper value, indicated by the slope of a 2nd order polynomial curve fit

through the data in figure 12 (a). This error is reminiscent of that observed for the K-S equation in the

convection dominated regime.

To find the source of this error, we consider the stationary distribution of the sawtooth map. The

stationary distribution, ρ(x; s), is a distribution in phase space, or x ∈ [0, 1] for the sawtooth map. The

value of ρ(x; s) corresponds to how often a trajectory {x1, x2, ..., xn} passes through x, for a given value

of s. It can be shown that time averaged quantities can be written as averages in phase space using the

18



−0.06−0.04−0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
s

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

〈 x
4
〉

(a) Quantity of Interest

−0.06−0.04−0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12
s

−1.5

−1.0

−0.5

0.0

0.5

1.0

d
〈 x

4
〉 /d

s

(b) Gradients

Figure 12: (a)
〈
x4
〉

realizations for difference n = 15 length trajectories. The solid line is a 2nd order

polynomial curve fit is. (b) d
〈
x4
〉
/ds realizations for n = 13 and n = 14 length trajectories in black and

red, respectively. The solid line is the first derivatives of the curve fit in (a).
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Figure 13: Typical empirical stationary distribution for the sawtooth map with s = 0. The distribution was
formed using a n = 1× 106 length sequence of xk’s.

stationary distribution [16], for instance:

〈
x4
〉

=
1

n

n∑
k=1

x4
k =

∫ 1

0

x4ρ(x; s)dx (9)

From equation (9), we can see that variations in
〈
x4
〉

with s can be expressed as variations of ρ(x) with s.

Therefore, sensitivities of
〈
x4
〉

can be expressed in terms of sensitivities of the distribution [16]:

d
〈
x4
〉

ds
= lim

∆s→0

(∫ 1

0

x4 (ρ(x; s+ ∆s)− ρ(x; s))

∆s
dx

)
=

∫ 1

0

x4 ∂ρ

∂s
dx (10)

We compute ρs(x) empirically with the following algorithm:

1. Compute a very long trajectory {x1, x2, ..., xn}. n = 1× 106 is sufficient for the sawtooth map.

2. Divide phase space into equally sized intervals. 40 were used for the results presented in this paper.

3. Compute the frequency that {x1, x2, ..., xn} falls in each interval and normalize it with n to form a

histogram.

For the case s = 0, figure 13 shows that the stationary distribution is approximately uniform (ρ(x) = 1).

From figure 14 a), we see that the distribution changes as s is increased. Now, when we compute the s = 0

shadow trajectory of the s = 0.1 trajectory shown in figure 14 a), we expect to see a uniform distribution,

as in figure 13. However, this is not the case.

From figure 14 b), we see the stationary distribution ρ(x) of the shadow trajectory is not uniform at all.

Therefore, the expression for the derivative in equation (10) is incorrect, as observed in figure 12. In other
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Figure 14: Typical empirical stationary distribution for the sawtooth map with s = 0.1 and the stationary
distribution for the corresponding shadow trajectory with s = 0.0. Both distributions were formed using a
n = 1× 106 length sequence of xk’s.
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words, a shadow trajectory with s = s1 of some reference trajectory with s = s0 does not necessarily have

the same long time averaged quantities as a typical trajectory with s = s1.

Obtaining different long time averaged quantities from solutions with the same values of s (or c for

the K-S equation) contradicts the assumption of ergodicity. It can be shown that LSS will compute correct

gradients if the long time averaged quantities are the same for all initial conditions [13]. However, in practice

long time averaged quantities are only the same for almost all initial conditions. For example, the long time

averaged quantities of the K-S equation are all zero for the initial condition u(x, 0) = 0 when c = 0.5, which

is different from the values in figure 1. Also, if we consider a trajectory of the sawtooth map starting at

x = 1.0 will stay at x = 1.0 for all iterations, resulting in
〈
x4
〉

= 1, regardless of the value of s, in contrast

to the trend shown in figure 12. Both the K-S equation and the sawtooth map are not strongly ergodic.

That is, the same long time averaged quantities are obtained for almost all, not all initial conditions, so

computation of the correct gradient is not guaranteed.

It is important to emphasize that LSS has been used to compute very accurate gradients for a number

of smaller systems, including the Lorenz system [8], and that it computes fairly accurate gradients for the

K-S equation when |c| ≤ 1.2 and |c| ≥ 1.7. Therefore, it seems that this breakdown in LSS occurs in largely

varying degrees. Further work needs to be done to determine what specific properties of the sawtooth map

cause this issue to occur.

6. Conclusion

In conclusion, the LSS method computes accurate gradients for a wide range of system parameter values

for a modified K-S equation. In particular, it was found that LSS worked very well in the light turbulence

dominated regime, especially for the quantity of interest
〈
ū2
〉
. However, the method slightly over-predicted

the magnitude of gradients of the quantity 〈ū〉 in the light turbulence regime and falsely predicted all

sensitivities in the convection dominated regime. This breakdown in the method is also observed for smaller

systems, such as the sawtooth map. It appears that while LSS works very well for some systems, including

the Lorenz system and the K-S equation for certain values of c, it does not work very well or at all for other

systems.

Future work needs to be done to determine what properties of the sawtooth map and others like it cause

LSS to break down. The lessons learned from working with the sawtooth map can potentially be applied to

making LSS more robust and learning what classes of PDEs and larger systems LSS is best suited for.
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