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FRACTAL WEYL LAWS FOR ASYMPTOTICALLY
HYPERBOLIC MANIFOLDS

Kiril Datchev and Semyon Dyatlov

Abstract. For asymptotically hyperbolic manifolds with hyperbolic trapped sets
we prove a fractal upper bound on the number of resonances near the essential
spectrum, with power determined by the dimension of the trapped set. This covers
the case of general convex cocompact quotients (including the case of connected
trapped sets) where our result implies a bound on the number of zeros of the Sel-
berg zeta function in disks of arbitrary size along the imaginary axis. Although no
sharp fractal lower bounds are known, the case of quasifuchsian groups, included
here, is most likely to provide them.

1 Introduction

Let M = Γ\H
n, n ≥ 2, be a convex cocompact quotient of hyperbolic space, i.e. a

conformally compact manifold of constant negative curvature. Let δΓ ∈ [0, n − 1)
be the Hausdorff dimension of its limit set, which by Patterson and Sullivan theory
equals the abscissa of convergence of its Poincaré series [Pat76,Sul79]. Let ZΓ(s) be
the Selberg zeta function:

ZΓ(s) = exp

⎛
⎝−

∑
γ∈P

∞∑
m=1

1
m

e−sml(γ)

det(Id − Pγ)

⎞
⎠ ,

where P is the set of primitive closed geodesics on M , l(γ) is the length of γ, and
Pγ is the Poincaré one-return map of γ in T ∗M . The sums converge absolutely for
Re s > δΓ (so ZΓ is nonvanishing there), and the function ZΓ extends holomorphi-
cally to C \ (−N0 ∪ ((n− 1)/2 − N)) [Fri86,BO99,PP01]. Let mΓ(s) be the order of
vanishing of ZΓ at s.

Theorem 1. For any R > 0 there exists C > 0 such that if t ∈ R, then∑
|s−it|<R

mΓ(s) ≤ C(1 + |t|)δΓ . (1.1)

This was proved by Guillopé et al. [GLZ04] in the case when Γ is Schottky. In
this paper we consider general convex cocompact quotients (see Figure 1 for exam-
ples), and, as we explain below, also give a generalization to the case of nonconstant
curvature.
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Figure 1: Let Γ0 be a cocompact Fuchsian group. Then Γ0\H
3 is convex cocompact, its

limit set ΛΓ0 is a circle and δΓ0 = 1. For Γθ a quasifuchsian bending of Γ0, Γθ\H
3 is convex

cocompact, but its limit set ΛΓθ
is a quasicircle and δΓθ

> 1. Theorems 1 and 2 apply, but
Γθ\H

3 is not Schottky, ΛΓθ
is connected, and the trapped set is of pure fractal dimension.

See Appendix A

Theorem 1 follows from Theorem 2 below which holds in a general geometric
setting. The novelty of our approach lies in combining recent results of Vasy [Vas]
on effective meromorphic continuation with the technology of [SZ07] for resonance
counting. (For a direct presentation of Vasy’s construction in the explicit setting of
the hyperbolic cylinder, see Figure 2 and Appendix B.) A particular challenge comes
from constructing Lyapunov/escape functions compatible with both approaches. We
also simplify the counting argument on h-size scales by replacing the complicated sec-
ond microlocalization of [SZ07] by suitably adapted functional calculus. The authors
of [SZ07] also considered the use of functional calculus in their treatment of h-size
neighborhoods of the energy surface, but chose a fully microlocal approach.

To state the main theorem, let (M, g) be an asymptotically hyperbolic manifold;
i.e. M is the interior of a compact manifold with boundary M and g is a metric on
M such that

g =
dx̃2 + g1

x̃2
(1.2)
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Figure 2: A schematic presentation of the dynamical complexity for the hyperbolic cylinder
M = (−1, 1)r×S

1
ỹ. Here ι(K) denotes the trapped set, which connects to infinity through the

incoming and outgoing tails ι(Γ±). The vertical lines ∂M even correspond to the two funnel
ends {r = ±1}; the horizontal variable is r and the vertical variable is the compactification
ζ/〈ζ〉 of the momentum ζ dual to r. The lighter shaded regions are the components Σ± of
the energy surface, with Σ+ the bigger region and Σ− the union of two small ones. The
darker shaded regions are the sets where the complex absorbing operator Q is elliptic. See
Appendix B for more details

near ∂M , where x̃ is a defining function for ∂M and g1 a 2-cotensor with g1|∂M

a metric. Suppose g1 is even in the sense of being smooth in x̃2 (see also [Gui05a,
Definition 1.2]).

Let Δg be the positive Laplacian on (M, g). Its resolvent, (Δg − s(n− 1 − s))−1,
is meromorphic L2(M) → L2(M) for Re s > n−1

2 and the essential spectrum is the
line Re s = n−1

2 . As an operator from L2
comp to L2

loc it extends meromorphically to C,
with finite rank poles called resonances, as shown by Mazzeo and Melrose [MM87],
Guillarmou [Gui05a] for asymptotically hyperbolic manifolds, Guillopé and Zwor-
ski [GZ95a] when curvature near infinity is constant, and Vasy [Vas] for asymptoti-
cally hyperbolic manifolds with g1 even.

When M = Γ\H
n, Bunke and Olbrich [BO99] and Patterson and Perry [PP01,

Theorems 1.5, 1.6] show that zeros of ZΓ and scattering poles coincide on C\ (−N0 ∪
(n−1

2 −N)). Guillopé and Zworski [GZ97] and Borthwick and Perry [BP02, Theorem
1.1] show that scattering poles and resonances coincide off a discrete subset of R.
Below, we bound the density of resonances near the essential spectrum. Theorem
1 follows from the correspondence between resonances and zeros of ZΓ (the dis-
crete set where the correspondence fails, which has been further studied in e.g.
[GZ03,Gui05b], is a subset of R and hence irrelevant here).

We assume further that the geodesic flow on M is hyperbolic on its trapped set in
the following sense of Anosov. (In fact, it is sufficient to assume hyperbolicity in the
weaker sense of [Sjö90, Section 5] and [SZ07, Section 7]. The latter includes the case
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of normally hyperbolic trapped sets, see for example [WZ11].) Let p0 ∈ C∞(T ∗M)
be the (shifted) geodesic Hamiltonian:

p0(ρ) = g−1(ρ, ρ) − 1,

where g−1 is the dual metric to g. Let Hp0 be the Hamilton vector field of p0 and
exp(tHp0) its flow. Define the trapped set and its intersection with the energy surface
p−1
0 (0) by

K̃ = {ρ ∈ T ∗M \ 0 | {exp(tHp0)ρ | t ∈ R} is bounded} , K = K̃ ∩ p−1
0 (0).

Note that the homogeneity of p0 in the fibers implies that K̃ is conic in the fibers,
and that (1.2) implies that K is compact. Our assumption is that for any ρ ∈ K, the
tangent space to p−1

0 (1) at ρ splits into flow, unstable, and stable subspaces [KH95,
Definition 17.4.1]:

(1) Tρp
−1
0 (1) = RHp0 ⊕ E+

ρ ⊕ E−
ρ , dimE±

ρ = n− 1,
(2) d exp(tHp0)E±

ρ = E±
exp(tHp0 )ρ for all t ∈ R,

(3) there exists λ > 0 such that ‖d exp(tHp0)v‖ ≤ Ce−λ|t|‖v‖ for all v ∈ E∓
ρ , ±t ≥ 0.

Here we consider the differential d of exp(tHp0) : T ∗M → T ∗M as a map
TρT

∗M → Texp(tHp0 )ρT
∗M .

Recall a bounded subset B of an N -dimensional manifold has upper Minkowski
dimension

inf{d | ∃C > 0,∀ε ∈ (0, 1],Vol(Bε) ≤ CεN−d}, (1.3)

where Bε is the ε-neighborhood of B. The dimension is pure if the infimum is
attained.

We state our main theorem for the semiclassical, nonnegative Laplacian with
spectral parameter E = h2s(n− 1 − s) − 1, and define the multiplicity of a pole at
E ∈ C by

mh(E) = rank

⎡
⎣

∮

E

(h2Δg − 1 − E′)−1dE′ : L2
comp(M) → L2

loc(M)

⎤
⎦ .

Theorem 2 (Main theorem). Let (M, g) be asymptotically hyperbolic in the
sense of (1.2), and suppose g1 is even and the geodesic flow is hyperbolic on K.
Let 2ν0 + 1 be the upper Minkowski dimension of K. For any ν > ν0, c0 > 0 there
exist c1, h0 > 0 such that

∑
|E|<c0h

mh(E) ≤ c1h
−ν , (1.4)

for h ∈ (0, h0]. If K is of pure dimension, we may take ν = ν0.
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Our assumptions hold forM convex cocompact, but they only concern the asymp-
totic structure of g at infinity, and the dynamics of the geodesic flow at K. The
latter assumption holds when M has (possibly variable) negative curvature [Kli82,
Theorem 3.9.1].

When M is convex cocompact, we have dimK = 2δΓ + 1, and the Minkow-
ski dimension is pure and equals the Hausdorff dimension ([Sul79, Section 3], see
also [Nic89, Section 8.1], [BJ97, Corollary 1.5]). Theorem 1 follows from Theorem 2
and the fact that resonances of the Laplacian and zeros of the Selberg zeta function
agree with multiplicities in the domains we study.

Theorem 2 is to be compared with the Weyl law for eigenvalues of a compact
manifold:∑

|E|<a

mh(E) = (2πh)−n Vol
(
p−1
0 [−a, a]) + O(h−n+1), a ∈ (0, 1), (1.5)

where n = dimM , and with the corresponding bound when one considers smaller
domains ∑

|E|<c0h

mh(E) ≤ c1h
−n+1, (1.6)

see for example [SZ07, (1.1)]. The notation in (1.5) and (1.6) is as in (1.4) but the
manifold is compact, so mh(E) �= 0 only for real E and gives the multiplicity of the
eigenvalue at E.

If Γ is cocompact Fuchsian, as in Figure 1, the Laplacian on Γ\H
3 is unitarily

equivalent to
⊕

j∈N0
D2

r + λj sech2 r + 1, where λj ≥ 0 are the eigenvalues of Γ\H
2.

By [GZ95b, Appendix], the scattering poles of Γ\H
3 are sj,k =

√
1/4 − λj +1/2− k

where j ∈ N, k ∈ N0, and the square root has values in (−1/2, 0]∪ iR. The Weyl law
for Γ\H

2 implies that in this case (1.1) and (1.4) can be improved to asymptotics:
∑

|s−it|<R

mΓ(s) = C|t|δΓ(1 + o(1)),
∑

|E|<c0h

mh(E) = c1h
−ν(1 + o(1)), δΓ = ν = 1.

The first polynomial upper bounds on the resonance counting function are due
to Melrose [Mel83], and the first bounds involving geometric data (the dimension of
the trapped set) are due to Sjöstrand [Sjö90]. Sjöstrand’s result was proved for con-
vex cocompact surfaces by Zworski [Zwo99] (with an improvement by Naud [Nau])
and for analytic scattering manifolds by Wunsch and Zworski [WZ00]. Guillopé et al.
[GLZ04] proved Theorem 2 for convex cocompact Schottky groups, including general
convex cocompact surfaces. Sjöstrand and Zworski [SZ07] obtained the first result
allowing C∞ perturbations, and our analysis of the trapped set partially follows
theirs, with modifications needed due to the asymptotically hyperbolic infinity. As
in [GLZ04] and [SZ07], we count resonances in O(h) size regions, rather than in the
larger regions of [Sjö90]. Most recently, Nonnenmacher et al. [NSZ11,NSZ] stud-
ied general topologically one-dimensional hyperbolic flows and proved the analog of
Theorem 2 for scattering by several convex obstacles.
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Much less is known about lower bounds. In [GS87], Gérard and Sjöstrand studied
semiclassical problems with K a single periodic orbit and proved that resonances lie
asymptotically on a lattice, implying in particular sharp upper and lower bounds
with ν = 0. Similar results hold for spherically symmetric problems, as studied
by Sá Barreto and Zworski [SZ97], and (under a stronger hyperbolicity condition)
for perturbations of them, as studied by the second author [Dya12]. Most recently,
Weyl asymptotics for resonances in strips have been obtained under more restrictive
dynamical assumptions in work in preparation by Faure and Tsuji [FT] and the
second author [Dya]. Nonnenmacher and Zworski [NZ07] proved asymptotics with
fractal ν for toy models of open quantum systems, and Lu et al. [LSZ03] give numer-
ical evidence supporting an asymptotic in the case of obstacle scattering. Jakobson
and Naud [JN10] proved logarithmic lower bounds with exponent related to δΓ for
convex cocompact surfaces, and in the arithmetic case their bounds are fractal, but
the power is different from the one for the upper bound.

For a broader introduction to the subject of the distribution of resonances for
systems with hyperbolic classical dynamics, we refer the reader to the recent review
paper of Nonnenmacher [Non11], which describes many of these and other results. It
also includes a discussion of the theoretical and experimental physics literature on
the subject, which supports the optimality of our upper bound (although without
rigorous proofs).

An interesting open problem is to prove the analog of Theorem 1 or 2 for mani-
folds with cusps; whenM = Γ\H

n this means Γ has parabolic elements. If cusps have
mixed rank the problem is harder; Guillarmou and Mazzeo [GM12] show that the
resolvent is meromorphic in C but continuation of the zeta function is not known.
If n = 2 all cusps have full rank, and the main difficulty comes from the fact that
K extends into the cusp and is not compact.

Outline of the proof of Theorem 2 (See Section 3 for a review of semiclassi-
cal notation and terminology). We begin with Vasy’s construction [Vas,Vas12] of a
Fredholm semiclassical pseudodifferential operator P (z) − iQ, on a compact mani-
fold X, with M diffeomorphic to an open subset of X, and such that the resonances
of the semiclassical Laplacian on M are a subset of the poles of (P (z) − iQ)−1; here
1+E = h2(n−1)2/4+(1+z)2. The operator Q is supported away from M ⊂ X, and
P (z) is a differential operator such that P (z)|M is Δg conjugated and weighted (see
(4.1)). We review this construction in Section 4.1 and summarize the main results in
Lemma 2.1; see Figure 2 for the global dynamics of the corresponding Hamiltonian
system. We will show that for any C0 > 0 there is h0 > 0 such that (P (z) − iQ)−1

has O(h−ν) many poles in {| Re z| ≤ C0h, | Im z| ≤ C0h} for h ∈ (0, h0].
To do this we introduce the conjugated operator

Pt(z) = e−tFTs(P (z) − iQ)T−1
s etF ,

where t > 0 is a large parameter (independent of h) and Ts, F are pseudodifferential
operators on X, with F in an exotic calculus. We will show that this operator is
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invertible up to a remainder of finite rank O(h−ν), and then conclude using Jensen’s
formula (Section 2). This follows from the estimate

‖u‖H
1/2
�

(X) ≤ Ch−1‖(Pt(z) − ithA)u‖H
−1/2
�

(X), (1.7)

where A = AR +AE , with AR of rank O(h−ν) and ‖AE‖H
1/2
�

→H
−1/2
�

= O(h̃), where

0 < h̃ � 1 depends on t but not h. This, (1.7), is the main estimate of the paper
(see (2.2)).

To prove (1.7), we begin with the Taylor expansion

Pt(z) = Ts(P (z) − iQ)T−1
s + t[Ts(P (z) − iQ)T−1

s , F ] + Ot(hh̃), (1.8)

(this is (7.5)). We then use a microlocal partition of unity (Lemma 7.3) to divide the
phase space T ∗

X into regions where the principal symbols of the various terms are
elliptic. We construct Ts, F , and A such that these regions cover T ∗

X, after which we
prove (1.7) using a positive commutator argument. In fact, because Pt(z) − ithA =
P (z) − iQ+ O(h log(1/h)), it suffices to check that the intersection {〈ξ〉−2p = 0} ∩
{〈ξ〉−2q = 0} of the characteristic sets of P (0) and Q is covered.

More specifically, Ts is an elliptic pseudodifferential operator whose order s is
large enough that the principal symbol of h−1 ImTs(P (z) − iQ)T−1

s is elliptic near
the intersection of {〈ξ〉−2p = 0} with the fiber infinity of T ∗

X. We include a neigh-
borhood of the radial points of P (z) (i.e. the fixed points of its symbol’s Hamiltonian
vector field) and this (Section 4.2) is where our analysis near the spatial infinity of
M is different from that of [Vas,Vas12]. The ellipticity of the principal symbol of
h−1 ImTs(P (z) − iQ)T−1

s (with a favorable sign) is proved in Lemma 4.6, and it is
used in the positive commutator argument in Lemma 7.5.

The operator F has the form

F = F̂ +M log(1/h)F0,

whereM > 0 and F0, F̂ are quantizations of escape functions, that is functions mono-
tonic along bicharacteristic flowlines of P (0) in certain regions of {〈ξ〉−2p = 0}. For
F0 this monotonicity holds outside of a fixed neighborhood of the radial points and
of the trapped set ι(K), (here ι : T ∗M → T

∗
X is the slightly modified inclusion

map defined in (4.6); note that no function can be monotonic along bicharacteristic
flowlines at the radial points or at ι(K)) giving ellipticity of the principal symbol of
h−1 Im[Ts(P (z)−iQ)T−1

s , F0] in that region. For F̂ this monotonicity holds at points
in a fixed neighborhood of ι(K) which lie at least ∼ (h/h̃)1/2 away from ι(K) (recall
h̃ is small but independent of h).1 We need the monotonicity up to a neighborhood
of ι(K) which is as small as possible so that the correction term A, needed for the
global estimate (1.7), can be microsupported in a small enough set that A is of rank

1 We need h̃ because if a symbol’s derivatives grow like h−1/2, then its quantization does not have
an asymptotic expansion in powers of h. As we show in Section 5.1, including h̃ gives an expansion
in powers of h̃.
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O(h−ν) plus a small remainder. The escape function for F̂ is taken directly from
[SZ07], and it is here that we use the assumption that the geodesic flow is hyperbolic
on K. The escape functions are constructed in Lemmas 4.7 and 7.1.

The operator A has the form

A = χ((h/h̃)P̂ )Ã, (1.9)

where P̂ is an elliptic self-adjoint operator whose principal symbol agrees with that
of P (0) near ι(K), χ ∈ C∞

0 (R) is 1 near 0, and Ã is microsupported in a neighbor-
hood of size O(h/h̃)1/2 of ι(K). The operator Ã is pseudodifferential in the exotic
class of Section 5.1, but χ((h/h̃)P̂ ) is not even pseudolocal: it propagates semiclas-
sical singularities along bicharacteristics of P̂ (which near the microsupport of Ã
are the same as bicharacteristics of P (0)). This type of operator is treated in [SZ07]
using a second microlocal pseudodifferential calculus. In Section 5.2 we use a more
basic approach based on the Fourier inversion formula,

χ((h̃/h)P̂ ) =
1
2π

∫
χ̂(t)eit(h/h̃)P̂dt,

and functional calculus to prove only the few microlocal properties of χ((h̃/h)P̂ )
we need. We use them in the positive commutator argument in Lemma 7.8, and we
show that A = AR +AE , with rankAR = O(h−ν) and ‖AE‖ = O(h̃), in Lemma 6.1
and Section 7.4.

Structure of the paper

• In Section 2 we state the main properties of the extended manifold X and the
modified Laplacian P (z) − iQ from [Vas,Vas12] in Lemma 2.1 and then use Jen-
sen’s formula to reduce the proof of Theorem 2 to the main lemma, Lemma 2.2.

• In Section 3 we review the notation used in the paper and properties of semiclas-
sical pseudodifferential and Fourier integral operators.

• In Section 4.1 we review the construction of X and P (z) − iQ and the proof of
Lemma 2.1. In Section 4.2 we introduce the conjugation by Ts and prove estimates
near the radial points, and then define the escape function f0 used to separate
the analysis near infinity from the analysis near the trapped set.

• In Section 5.1 we review the part of the exotic Ψ1/2 calculus of [SZ07] needed here.
In Section 5.2 we study microlocal properties of operators of the form χ((h/h̃)P̂ )
as in (1.9).

• In Section 6 we prove that operators of the form of A in (1.9) can be written
A = AR +AE , with ‖AE‖L2→L2 = O(h̃) and rankAR = Oh̃(h−ν).

• In Section 7 we prove Lemma 2.2. In Section 7.1 we use the results of Sects. 3–
5 to prove positive commutator estimates for the modified conjugated operator
Pt(z) − ithA. In Sects. 7.2 and 7.3 we use these to prove semiclassical resolvent
estimates, and in Section 7.4 we apply the results of Section 6 to the operator A
from (1.9).
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• In Appendix A we construct the quasifuchsian group in Figure 1.
• In Appendix B we give a direct presentation of Vasy’s construction from Sec-

tion 4.1, and of the escape functions from Lemmas 4.7 and 7.1, when M is the
hyperbolic cylinder.

For the convenience of the reader interested in our approach to second microlocal-
ization but not in the analysis near infinity, Section 5.2 is independent of Section 4
(as are Sections 5.1 and 6).

2 Proof of Theorem 2

We start by reviewing in Lemma 2.1 Vasy’s recent description [Vas12] of the scatter-
ing resolvent and resonances on an asymptotically hyperbolic even space (M, g); this
allows us to replace the Laplacian on M by a Fredholm pseudodifferential operator
P (z) − iQ on a compact manifold X, adapted to proving semiclassical estimates.
See Section 4.1 for details.

Lemma 2.1. Assume that (M, g) is asymptotically hyperbolic and even. Then there
exist a compact manifold X without boundary, an order 2 semiclassical differen-
tial operator P (z) depending holomorphically on z, and an order 2 semiclassical
pseudodifferential operator Q depending holomorphically on z such that for h small
enough,

(1) for Im z > −C0h and s > C0, the family of operators

P (z) − iQ : {u ∈ H
s+1/2
�

(X) | P (0)u ∈ H
s−1/2
�

(X)} → H
s−1/2
�

(X)

is Fredholm of index zero, and a preimage of a smooth function under this
operator is again smooth. Here the domain is equipped with the norm ‖u‖ =
‖u‖H

s+1/2
�

+ ‖P (0)u‖H
s−1/2
�

. The inverse

(P (z) − iQ)−1 : Hs−1/2
�

(X) → H
s+1/2
�

(X)

is meromorphic in z ∈ {Im z > −C0h} with poles of finite rank;
(2) the set of poles of (P (z) − iQ)−1 in {Im z > −C0h} contains (including multi-

plicities) the set of poles of the continuation of

(h2(Δg − (n− 1)2/4) − (z + 1)2)−1 : L2
comp(M) → L2

loc(M)

from {Im z > 0} to {Im z > −C0h}.

To prove Theorem 2 we will apply Lemma 2.1 (and Lemma 2.2 below) with C0

a large constant multiple of c0. Throughout the paper we will work in the domain
{| Re z| ≤ C0h, Im z ≥ −C0h}. In the main lemma, we define a modified, conju-
gated operator P̃t(z), and prove semiclassical estimates for it. See Section 3.1 for the
semiclassical notation.
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Lemma 2.2 (Main lemma). Assume that (M, g) and ν satisfy the assumptions of
Theorem 2. Let X,P (z), Q,C0 be as in Lemma 2.1, and let Ts ∈ Ψs(X) be any
(semiclassically) elliptic operator. We introduce a parameter h̃ > 0; the estimates
below hold for h̃ small enough and h small enough depending on h̃, and the constants
in these estimates are independent of h̃, h, and z in the specified range, except for
C(h̃) below.

Then there exist t > 0 and compactly microlocalized polynomially bounded oper-
ators A,F depexnding on h̃, with e±tF − 1 polynomially bounded and compactly
microlocalized and

(1) the modified conjugated operator

P̃t(z) = e−tFTs(P (z) − iQ)T−1
s etF − ithA (2.1)

satisfies the estimate

| Re z| ≤ C0h, | Im z| ≤ C0h, u ∈ C∞(X) =⇒ ‖u‖H
1/2
�

≤ Ch−1‖P̃t(z)u‖H
−1/2
�

; (2.2)

(2) if h̃, ε are small enough and h is small enough depending on h̃, ε, then we have
the improved estimate in the upper half-plane:

| Re z| ≤ C0h, C0h ≤ Im z ≤ ε, u ∈ C∞(X) =⇒ ‖u‖H
1/2
�

≤ C

Im z
‖P̃t(z)u‖H

−1/2
�

; (2.3)

(3) we can write A = AR +AE , where AR, AE are compactly microlocalized and for
some constant C(h̃) independent of h,

‖AR‖H
1/2
�

→H
−1/2
�

= O(1), ‖AE‖H
1/2
�

→H
−1/2
�

= O(h̃), rankAR ≤ C(h̃)h−ν .

The conjugations by Ts and F modify P (z)−iQ to make it semiclassically elliptic
away from the trapped set, without disturbing the poles of the resolvent. The param-
eter t is a coupling constant for the positive commutator term t[Ts(P (z)−iQ)T−1

s , F ]
(see (1.8) above and see Section 7.1 below for details), taken to be large enough that
it overcomes the error term arising from the unfavorable sign of Im z. The correc-
tion term −ithA (which makes P̃t(z) invertible) is compactly microlocalized in a
small enough neighborhood of the trapped set in the energy surface that it can be
approximated by an operator of rank O(h−ν); it does affect the poles of the resol-
vent, but as we will see below it can remove no more than O(h−ν) of them in the
set {| Re z| < C0h/2, | Im z| < C0h/2}.

Proof of Theorem 2 assuming Lemmas 2.1 and 2.2. We follow [SZ07, Section 6.1].
Fix s > C0. For Im z ≥ −C0h, the operators

Pt(z) = e−tFTs(P (z) − iQ)T−1
s etF
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and P̃t(z) are Fredholm of index zero
{
u ∈ H

1/2
�

| P (0)u ∈ H
−1/2
�

}
→ H

−1/2
�

.

For Pt(z), this follows immediately from Lemma 2.1 as etF −1 is compactly micro-
localized and thus etF preserves Sobolev spaces, while T−1

s maps H−1/2
�

→ H
s−1/2
�

and H
s+1/2
�

→ H
1/2
�

. (Note however that the norm of etF grows as h → 0.) For
P̃t(z), we additionally use that A is compactly microlocalized and thus a compact
perturbation of Pt(z).

Let ε > 0 be a small constant and consider the rectangle

R0 = {Re z ∈ [−C0h,C0h], Im z ∈ [−C0h, ε]}.
It follows from parts 1 and 2 of Lemma 2.2 that P̃t(z)−1 has no poles in R0 and
satisfies

z ∈ R0 =⇒ ‖P̃t(z)−1‖H
−1/2
�

→H
1/2
�

≤ C

max(h, Im z)
.

We now use the decomposition A = AR + AE from Lemma 2.2(3). Since ‖AE‖ =
O(h̃), for h̃ small enough ‖(−ithAE)P̃t(z)−1‖H

−1/2
�

→H
−1/2
�

≤ 1/2 and we get

z ∈ R0 =⇒ ‖(Pt(z) − ithAR)−1‖H
−1/2
�

→H
1/2
�

≤ C

max(h, Im z)
. (2.4)

Now,

(Pt(z) − ithAR)−1Pt(z) = 1 + ith(Pt(z) − ithAR)−1AR =: 1 +K(z), z ∈ R0.

Therefore, the poles of Pt(z)−1 (and hence of (P (z)−iQ)−1) are contained, including
multiplicities, in the zeros of

k(z) = det(1 +K(z));

indeed, see [Sjö, Proposition 5.16] for a general statement and see [Zwo12, Sec-
tion D.1] for a discussion of the theory of Grushin problems which is used there.

By Lemma 2.2(3), K(z) has norm O(1) and rank O(h−ν). Therefore,

|k(z)| ≤ eCh−ν

, z ∈ R0. (2.5)

Since ‖ithAR‖ = O(h), we have ‖K(z0)‖ ≤ 1/2 for z0 = iC1h with C1 > 0 large
enough, so

|k(z0)| ≥ e−Ch−ν

. (2.6)

Define rectangles R2 ⊂ R1 ⊂ R0 by

R1 = {Re z ∈ (−C0h,C0h), Im z ∈ (−C0h, 4C1h)},
R2 = {Re z ∈ (−C0h/2, C0h/2), Im z ∈ (−C0h/2, 2C1h)}.
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Then the estimate (2.5) holds in R1, while z0 ∈ R2. By the Riemann mapping theo-
rem, there exists a unique conformal map w(z) from R1 onto the ball B1 = {|w| < 1}
with w(z0) = 0 and w′(z0) ∈ R

+. We then see that w(R2) ⊂ B2 = {|w| < 1 − δ} for
some δ > 0 independent of h (as h−1R1 and h−1R2 do not depend on h). One can
now apply Jensen’s formula (see for example [Tit39, Section 3.61, Equation (2)]) to
the function k1(w) = k(z(w)) on B1: if n(r) is the number of zeros of k1 in {|w| < r},
then

1−δ/2∫

0

n(r)
r

dr =
1
2π

2π∫

0

log |k1((1 − δ/2)eiθ)| dθ − log |k1(0)| ≤ 2Ch−ν .

Therefore,

n(1 − δ) ≤ 2
δ

1−δ/2∫

1−δ

n(r)
r

dr = O(h−ν).

This estimates the number of zeroes of k1(w) in B2, thus the number of zeroes of
k(z) in R2, and thus the number of resonances in R2, as needed. ��

3 Semiclassical Preliminaries

3.1 Notation and pseudodifferential operators. In this section, we review
certain notions of semiclassical analysis; for a comprehensive introduction to this
area, the reader is referred to [Zwo12] or [DS99]. We will use the notation of [Vas12,
Section 2], with some minor changes. Consider a (possibly noncompact) manifold
X without boundary. Following [Mel94], the symbols we consider will be defined on
the fiber-radial compactification T

∗
X of the cotangent bundle; its boundary, called

the fiber infinity, is associated with the spherical bundle S∗X and its interior is
associated with T ∗X. Denote by (x, ξ) a typical element of T ∗

X; here x ∈ X and
ξ is in the radial compactification of T ∗

xX. We fix a smooth inner product on the
fibers of T ∗X; if | · | is the norm on the fibers generated by this inner product, let

〈ξ〉 = (1 + |ξ|2)1/2.

Then 〈ξ〉−1 is a boundary defining function on T ∗
X. (The smooth structure of T ∗

X
is independent of the choice of the inner product.)

Let k ∈ R. A smooth function a(x, ξ) on T ∗X is called a classical symbol of order
k, if 〈ξ〉−ka extends to a smooth function on T ∗

X. We denote by Sk
cl(X) the algebra

of all classical symbols. If a also depends on the semiclassical parameter h > 0, it is
called a classical semiclassical symbol of order k, if there exists a sequence of func-
tions aj(x, ξ) ∈ Sk−j

cl (X), j = 0, 1, . . ., such that a ∼ ∑
j h

jaj in the following sense:
for each J , the function h−J〈ξ〉J−k(a−∑

j<J h
jaj) extends to a smooth function on

T
∗
X × [0, h0), for h0 > 0 small enough. In this case, a0 is called the (semiclassical)
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principal part of a: it captures a to leading order in both h and 〈ξ〉−1. The semiclas-
sical symbol a is classical if and only if ã = 〈ξ〉−ka extends to a smooth function on
T

∗
X× [0, h0), and for each differential operator ∂j of order j on T ∗

X, the restriction
of ∂j ã to S∗X is a polynomial of degree no more than j in h.

For real-valued a ∈ Sk
cl(X), we denote by Ha the Hamiltonian vector field gen-

erated by a with respect to the standard symplectic form on T ∗X. Then 〈ξ〉1−kHa

can be extended to a smooth vector field on T
∗
X and this extension preserves the

fiber infinity S∗X.
The class Sk

�,cl(X) of classical semiclassical symbols is closed under the stan-
dard operations of semiclassical symbol calculus (multiplication, adjoint, change of
coordinates); therefore, one can consider the algebra Ψk(X) of semiclassical pseudo-
differential operators with symbols in Sk

�,cl(X). (See [Zwo12, Chapters 4, 9, and 14]
for more information.) We do not use the Ψk

cl(X) notation, as we will only operate
with classical operators until Section 5.1, where a different class will be introduced.
We require that all elements of Ψk be properly supported operators, so that they act
C∞(X) → C∞(X) and C∞

0 (X) → C∞
0 (X); in particular, we can multiply two such

operators. If Hs
�
(X) denotes the semiclassical Sobolev space of order s (recall that

when X is compact, one choice of norm is ‖u‖Hs
�
(X) = ‖(1+h2ΔX)s/2u‖L2(X), where

ΔX is the Laplacian on X), then each A ∈ Ψk is bounded Hs
�,comp(X) → Hs−k

�,comp(X)
uniformly in h. Here Hs

�,comp consists of compactly supported distributions lying in
Hs

�
; in this article, we will mostly work on compact manifolds, where this space is

the same as Hs
�
.

For A ∈ Ψk, the principal part σ(A) of the symbol of A is independent of the
quantization procedure. We call σ(A) the principal symbol of A, and σ(A) = 0 if and
only if A ∈ hΨk−1. We remark that σ(A) is the restriction of the standard semiclas-
sical principal symbol on the larger standard semiclassical algebra. The principal
symbol enjoys the multiplicativity property σ(AB) = σ(A)σ(B) and the commuta-
tor identity σ(h−1[A,B]) = −i{σ(A), σ(B)}, where {·, ·} is the Poisson bracket.

We define the (closed) semiclassical wavefront set WF�(A) ⊂ T
∗
X as follows:

if a is the full symbol of A in some quantization, then (x0, ξ0) �∈ WF�(A) if and
only if there exists a neighborhood U of (x0, ξ0, h = 0) in T

∗
X × [0, h0) such that

for each N , h−N 〈ξ〉Na is smooth in U . Since the operations of semiclassical symbol
calculus are defined locally modulo O(h∞〈ξ〉−∞), this definition does not depend
on the choice of quantization, and we also have WF�(AB) ⊂ WF�(A) ∩ WF�(B)
and WF�(A∗) = WF�(A). We say that A = B microlocally in some set V ⊂ T

∗
X if

WF�(A−B)∩V = ∅. If WF�(A) is a compact subset of T ∗X, and in particular does
not intersect the fiber infinity S∗X, then we call A compactly microlocalized. Denote
by Ψcomp(X) the class of all compactly microlocalized pseudodifferential operators;
these operators lie in Ψk(X) for all k. Note that for a noncompact X, compactly
microlocalized operators need not have compactly supported Schwartz kernels.

The wavefront set of A ∈ Ψk is empty if and only if A ∈ hNΨ−N for all N . In
this case, we write A = O(h∞)Ψ−∞ . This property can also be stated as follows: A is
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properly supported, smoothing, and each C∞ seminorm of its Schwartz kernel is
O(h∞). With this restatement, B = O(h∞)Ψ−∞ makes sense even for B : E ′(X2) →
C∞(X1) with X1 �= X2.

We now explain our use of the O(·) notation. For an operator A, we write

A = OZ(f)X→Y , (3.1)

where X ,Y are Hilbert spaces, Z is some list of parameters, and f is an expression
depending on h and perhaps some other parameters, if the X → Y operator norm
of A is bounded by Cf , where C depends on Z. Instead of X → Y, we may put
some class of operators; for example, A = OZ(f)Ψk means that for any fixed value
of Z, the operator f−1A lies in Ψk. This is stronger than estimating some norms of
the full symbol of A, as the classes Ψk are not preserved under multiplication by
functions of h that are not polynomials.

One can also define wavefront sets for operators that are not pseudodifferential.
Let X1 and X2 be two manifolds. A properly supported operator B : C∞(X2) →
D′(X1) is called polynomially bounded, if for each χj ∈ C∞

0 (Xj) and each s, there
exists N such that χ1Bχ2 is O(h−N ) as an operator Hs

�
→ H−N

�
and HN

�
→ Hs

�
.

A product of such B with an operator that is O(h∞)Ψ−∞ will also be O(h∞)Ψ−∞ .
For a polynomially bounded B : D′(X2) → C∞

0 (X1), its wavefront set WF�(B) ⊂
T

∗
X1 × T

∗
X2 is defined as follows: a point (x1, ξ1, x2, ξ2) does not lie in WF�(B),

if there exist neighborhoods Uj of (xj , ξj) in T ∗
Xj such that for each Aj ∈ Ψkj (Xj)

with WF�(Aj) ⊂ Uj , we have A1BA2 = O(h∞)Ψ−∞ .
If X1 = X2 = X, then we call a polynomially bounded operator B pseudolocal

if its wavefront set is a subset of the diagonal; in this case we consider WF�(B) as
a subset of T ∗

X. Pseudolocality is equivalent to saying that for any Aj ∈ Ψkj (X)
with WF�(A1) ∩ WF�(A2) = ∅, we have A1BA2 = O(h∞)Ψ−∞ . The operators in Ψk

are pseudolocal and the definition of their wavefront set given here agrees with the
one given earlier; however, the definition in this paragraph can also be applied to
operators with exotic symbols of Section 5.1.

A polynomially bounded operator B is called compactly microlocalized, if its
wavefront set is a compact subset of T ∗X1 × T ∗X2, and in particular does not
intersect the fiber infinities S∗X1 × T

∗
X2 and T

∗
X1 × S∗X2. In this case, if Aj ∈

Ψcomp(Xj) are equal to the identity microlocally near the projections of WF�(B)
onto T ∗

Xj , then B = A1BA2 + O(h∞)Ψ−∞ . Every compactly microlocalized oper-
ator B is smoothing; we say that B = O(hr) for some r, if for each χj ∈ C∞

0 (Xj),
there exist s, s′ such that

‖χ1Bχ2‖Hs
�
→Hs′

�

= O(hr). (3.2)

In fact, if B is compactly microlocalized and B = O(hr), then (3.2) holds for all
s, s′.

Finally, we say that A ∈ Ψk(X) is elliptic (as an element of Ψk) on some set
V ⊂ T

∗
X, if 〈ξ〉−kσ(A) does not vanish on V . If A is elliptic on the wavefront
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set of some B ∈ Ψk′
(X), then we can find an operator W ∈ Ψk′−k(X) such that

B = WA+ O(h∞)Ψ−∞ . This implies the following elliptic estimate, formulated here
for the case of a compact X:

‖Bu‖
Hs+k−k′

�
(X)

≤ C‖Au‖Hs
�
(X) + O(h∞)‖u‖H−N

�
(X), (3.3)

for all s,N and each u ∈ D′(X) such that Au ∈ Hs
�
.

Still assuming X compact, the non-sharp G̊arding inequality says that if A ∈
Ψk(X), Ψ1 ∈ Ψ0(X), 〈ξ〉−k Reσ(A) > 0 on WF�(Ψ1), then

Re〈AΨ1u,Ψ1u〉 ≥ C−1‖Ψ1u‖H
k/2
�

(X) − O(h∞)‖u‖H−N
�

(X). (3.4)

See Lemma 5.3 for a proof of the corresponding statement in the Ψcomp
1/2 calculus;

the same proof works here. Of course if A is symmetric, we may drop Re from (3.4).
With X still compact, the sharp G̊arding inequality (see e.g. [Zwo12, Theo-

rem 9.11])says that if instead A ∈ Ψk(X), Ψ1 ∈ Ψ0(X), 〈ξ〉−k Reσ(A) ≥ 0 near
WF�(Ψ1), then

Re〈AΨ1u,Ψ1u〉 ≥ −Ch‖Ψ1u‖H
(k−1)/2
�

(X) − O(h∞)‖u‖H−N
�

(X). (3.5)

3.2 Quantization of canonical transformations. In this section, we discuss
local quantization of symplectic transformations. The resulting semiclassical Fourier
integral operators will be needed to approximate the operator A from Lemma 2.2
by finite rank operators; see Lemma 2.2(3) and Section 6.1.

The theory described below can be found in [Ale08], [GS90, Chapter 6], [GS,
Chapter 8], [Ngo.06, Section 2.3], or [Zwo12, Chapters 10–11]. For the closely related
microlocal setting, see [Hör94, Chapter 25] or [GS94, Chapters 10–11]. We follow in
part [Dya12, Section 2.3]. Note that we will only need the relatively simple, local
part of the theory of Fourier integral operators, as we quantize canonical transfor-
mations locally and we do not use geometric invariance of the principal symbol. For
a more complete discussion, see for example [DG, Section 3].

Let X1, X2 be two manifolds of same dimension, Uj ⊂ T ∗Xj two bounded open
sets, and κ : U1 → U2 a symplectomorphism. First, assume that

• xj are systems of coordinates on the projections πj(Uj) of Uj onto Xj ;
• (xj , ξj) are the corresponding coordinates on Uj ;
• there exists a generating function S(x1, ξ2) ∈ C∞(US) for some open US ⊂ R

2n

such that in coordinates (x1, ξ1, x2, ξ2), the graph of κ is given by

x2 = ∂ξ2S(x1, ξ2), ξ1 = ∂x1S(x1, ξ2).

Such coordinate systems and generating functions exist locally near every point
in the graph of κ, see for example the paragraph before the final remark of [GS94,
Chapter 9]. (The authors of [GS94] consider the homogeneous case, but this does
not make a difference here except possibly at the points of the zero section of T ∗X2.
At these points, a different parametrization is possible and all the results below still
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hold, but we do not present this parametrization since the canonical transformations
we use can be chosen to avoid the zero section.) An operator B : C∞(X2) → C∞

0 (X1)
of the form

(Bf)(x1) = (2πh)−n

∫

R2n

ei(S(x1,ξ2)−x2·ξ2)/hb(x1, ξ2, x2;h)f(x2) dx2dξ2, (3.6)

where b ∈ C∞
0 (US × π2(U2)) is a classical symbol in h (namely, it is a smooth func-

tion of h ≥ 0 up to h = 0), is called a local Fourier integral operator associated to
κ. Such an operator is polynomially bounded and compactly microlocalized, in the
sense of Section 3.1.

In general, we call B : C∞(X2) → C∞(X1) a (compactly microlocalized) Fourier
integral operator associated to κ, if it can be represented as a finite sum of expres-
sions of the form (3.6) with various choices of local coordinate systems (and thus
various generating functions) plus an O(h∞)Ψ−∞ remainder. Note that we use the
convention that B acts C∞(X2) → C∞(X1), which is opposite to the more standard
convention that B acts C∞(X1) → C∞(X2); in the latter convention, we would say
that B quantizes κ

−1.
Here are some properties of (compactly microlocalized) Fourier integral opera-

tors:

(1) if B is a Fourier integral operator associated to κ, then WF�(B) is a compact
subset of the graph of κ;

(2) if B is associated to κ, then the adjoint B∗ is associated to κ
−1;

(3) if X1 = X2 = X, and κ is the identity map on some open bounded U ⊂ T ∗X,
then B is associated to κ if and only if B ∈ Ψcomp(X) and WF�(B) ⊂ U ;

(4) if B is associated to κ and B′ is associated to κ
′, then BB′ is associated to

κ
′ ◦ κ;

(5) if B is associated to κ, then it has norm O(1) in the sense of Section 3.1. This
property follows from the previous three, as B∗B ∈ Ψcomp(X2).

(6) (Egorov’s theorem) If Aj ∈ Ψkj (Xj) and σ(A1) = σ(A2) ◦ κ near the projection
of WF�(B) onto T ∗X1, then A1B = BA2 + O(h). Here O(h) is understood in
the sense of (3.2), as both sides of the equation are compactly microlocalized.

If Kj ⊂ Uj are compact sets such that κ(K1) = K2, then we say that a pair of
operators

B : C∞(X2) → C∞(X1), B′ : C∞(X1) → C∞(X2)

quantizes κ near K1 × K2, if B,B′ are compactly microlocalized Fourier integral
operators associated to κ,κ−1, respectively, and

BB′ = 1, B′B = 1

microlocally near K1 and K2, respectively.
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Such a pair (B,B′) can be found for any given κ, if we shrink Uj sufficiently, as
given by the following construction of [Zwo12, Chapter 11]. First of all, we pass to
local coordinates to assume that Xj = R

n. Next, by [Zwo12, Theorem 11.4] (putting
κ = κ

−1, κ̃t = κ
−1
t , qt = −zt), we can construct a smooth family of symplectomor-

phisms κt, t ∈ [0, 1] on T ∗
R

n such that

• κt is equal to the identity outside of some fixed compact set;
• κ0 = 1T ∗Rn and κ1 extends κ;
• there exists a family of real-valued functions zt ∈ C∞

0 (T ∗
R

n) such that for each
t ∈ [0, 1] and Hzt

the Hamiltonian vector field of zt,

(∂tκt) ◦ κ
−1
t = Hzt

. (3.7)

In other words, κ is a deformation of the identity along the Hamiltonian flow of
the time-dependent function zt.

Let Zt be the Weyl quantization of zt; this is a self-adjoint operator on L2(Rn).
Consider the family of unitary operators Bt on L2(Rn) solving the equation [Zwo12,
Theorem 10.1]

hDtBt = BtZt, B0 = 1. (3.8)

By [Zwo12, Theorem 10.3] (and using the composition property (4) above to pass
from small t to t = 1) we see that, if Ψj ∈ Ψcomp(Xj) with WF�(Ψj) ⊂ Uj and
Ψj = 1 microlocally near Kj , then (B,B′) = (Ψ1B1Ψ2,Ψ2B

−1
1 Ψ1) quantizes κ near

K1 ×K2.
The difference between (3.8) and [Zwo12, (10.2.1)] is explained by the fact that

we quantize a transformation T ∗X1 → T ∗X2 as an operator C∞(X2) → C∞(X1),
while [Zwo12] quantizes it as an operator C∞(X1) → C∞(X2); in the latter conven-
tion, U(t) = B∗

t and P (t) = −Zt.

4 Asymptotically Hyperbolic Manifolds

4.1 Review of the construction of [Vas12]. Throughout this section,
| Re z| ≤ C0h and Im z ≥ −C0h. Our notation will differ in several places from
the one used in [Vas12]. In particular, we use (x, ξ) to denote coordinates on the
whole T ∗X, (x̃, ỹ) for the product coordinates near the conformal boundary of M , ξ̃
for the momentum corresponding to μ = x̃2, and η̃ for the momentum corresponding
to ỹ.

Let (M, g) be an even asymptotically hyperbolic manifold; we consider δ0 > 0
and a boundary defining function x̃ on M such that {x̃ < δ20} � [0, δ20) × ∂M and
the metric g has the form (1.2) for some metric g1 depending smoothly on x̃2. Con-
sider the space M even, which is topologically M , but with smooth structure at the
boundary changed so that

μ = x̃2
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is a boundary defining function. Now, we consider the modified Laplacian

P1(z) = μ− 1
2
− n+1

4 e
i(z+1)φ

h (h2(Δg − (n− 1)2/4) − (z + 1)2)e
−i(z+1)φ

h μ− 1
2
+ n+1

4 . (4.1)

Here φ is a smooth real-valued function on M such that

eφ = μ1/2(1 + μ)−1/4 on {0 < μ < δ0}.
The function φ satisfies additional assumptions given in the proof of Lemma 4.3. This
lemma, needed for the proof of the improved estimate in the upper half-plane (2.3),
is the only place where the factor (1 + μ)−1/4 is needed; the rest of the analysis
would work if simply eφ = μ1/2 on all of M .

As computed in [Vas12, (3.5)], P1(z) has coefficients smooth up to the boundary
of M even. For δ0 > 0 small enough, this operator continues smoothly to

X−δ0 = {μ > −δ0},
by which we mean M even ∪ {|μ| < δ0}, where {|μ| < δ0} is the double space of
{0 ≤ μ < δ0}. (See [Vas12, Section 3.1] for more details.)

Lemma 4.1. There exists a manifold X without boundary and a family of operators
P (z) so that:

(1) P (z) ∈ Ψ2(X) depends holomorphically on z and p = σ(P (0)) is real valued;
(2) X−δ0 embeds into X and μ continues to X so that X−δ0 = {μ > −δ0};
(3) the restriction of P (z) to X−δ0 is equal to P1(z);
(4) the characteristic set {〈ξ〉−2p = 0} is the disjoint union of two closed sets Σ+

and Σ−, with Σ± = {〈ξ〉−2p = 0} ∩ {±ξ̃ > 0} near {μ = 0} ∩ S∗X;
(5) Σ+ ∩ S∗X ⊂ {μ ≤ 0} and Σ− ⊂ {μ ≤ 0};
(6) P (z)−P (0) = (hL+a0 +a1h)z+a2z

2, with the vector field L and the functions
a0, a1, a2 independent of z and h.

Proof. The fact that the characteristic set of p on X−δ0 is the disjoint union of two
sets Σ′

+ and Σ′−, with Σ′± satisfying (4) and (5), is proven in [Vas12, Section 3.4],
with Σ± denoted by Σ�,± there. The manifold X is taken to be the double space of
X−δ0 ; the extension of P1(z) and Σ′± to X−δ0 is constructed in [Vas12, Section 3.5].
The formula (6) follows from (4.1). ��

Consider the product coordinates (μ, ỹ) near {μ = 0}, the corresponding
momenta (ξ̃, η̃), and define

L± = {μ = 0, ξ̃ = ±∞, η̃ = 0} ⊂ Σ± ∩ S∗X; (4.2)

they can be viewed as images of the conical sets {μ = 0, ±ξ̃ > 0, η̃ = 0} in S∗M .

Lemma 4.2. The ‘event horizon’ {μ = 0} has the following properties:

(1) L± consists of fixed points for 〈ξ〉−1Hp (also called radial points), with L+ a
source and L− a sink;
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(2) Σ+ ∩ S∗X ∩ {μ = 0} = L+ and Σ− ∩ {μ = 0} = L−;
(3) for δ > 0 small enough, ±〈ξ〉−1Hpμ < 0 on Σ± ∩ {−δ ≤ μ ≤ 0} \ L±.

From this Lemma it follows that bicharacteristics of Hp can cross {μ = 0} only
from {μ > 0} to {μ < 0} and never in the other direction, hence the name ‘event
horizon’ as in the theory of black holes [Vas].

Proof. (1) This is proved in [Vas12, Section 3.4]; see (4.11) below for a quantifi-
cation of the source/sink property.

(2) Near {μ = 0}, we have [Vas12, (3.23)]

p = 4μξ̃2 − 4(1 + O(μ))ξ̃ − 1 + O(μ) + g−1
1 (η̃, η̃). (4.3)

Here O(μ) denotes a smooth function of μ vanishing at μ = 0. Take ξ̌ = 〈ξ〉−1ξ̃,
η̌ = 〈ξ〉−1η̃; then at {μ = 0},

〈ξ〉−2p = −4〈ξ〉−1ξ̌ − 〈ξ〉−2 + g−1
1 (η̌, η̌).

This shows that Σ± ∩ {μ = 0} ∩ S∗X = L±; to see that Σ− ∩ {μ = 0} ⊂ S∗X,
we can use that Σ± ∩ {μ = 0} ⊂ {±(ξ̃ + 1/2) > 0}, as shown in the discussion
following [Vas12, (3.27)], together with (4.3).

(3) Take ξ̌, η̌ as in part (2); using (4.3), we get

〈ξ〉−1Hpμ = −4〈ξ〉−1(1 + O(μ)) + 8μξ̌. (4.4)

On Σ+, as in part (2), ξ̃ > −1/2 and thus ξ̌ ≥ −〈ξ〉−1/2; therefore, for μ ≤ 0,

〈ξ〉−1Hpμ ≤ −4〈ξ〉−1(1 + O(μ)) − 4μ〈ξ〉−1.

This is negative for small μ unless 〈ξ〉−1 = 0; in the latter case, 〈ξ〉−1Hpμ = 8μξ̌
and ξ̌ > 0, μ < 0 since we are on Σ+ ∩ S∗X \L+. On Σ− \ S∗M we use (4.3) to
eliminate the last term from (4.4), getting

〈ξ〉−1Hpμ = 2〈ξ〉−1(2 + ξ̃−1)(1 + O(μ)) − 2g−1
1 (η̌, η̌)ξ̌−1

≥ 2〈ξ〉−1(2 + ξ̃−1)(1 + O(μ)).

Since ξ̃ < −1/2 on Σ−, and since ξ̃ must attain a maximum there, this expres-
sion is positive for small μ. Finally, on Σ− ∩S∗M \L− we have 〈ξ〉−1Hpμ = 8μξ̌
and μ < 0, ξ̌ < 0. ��
We also need to compute the sign of the imaginary part of P (z) when z moves

away from the real line. We will use this to obtain improved estimates (2.3) in the
physical half-plane.

Lemma 4.3. The operator ∂zP (z) lies in Ψ1(X) and for an appropriate choice of
the function φ from (4.1) and δ > 0 small enough, we have

∓ Re(〈ξ〉−1σ(∂zP (0))) > 0 near Σ± ∩ {μ ≥ −δ}. (4.5)
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Proof. It follows from part (6) of Lemma 4.1 that ∂zP (z) ∈ Ψ1(X). Moreover, the
principal symbol of ∂zP (z) is equal to the derivative in z of the principal symbol of
P (z).

For δ small enough, we can use [Vas12, (3.6)] to write the principal symbol of
P (z) in {|μ| ≤ δ} as

4μξ̃2 − 4(1 + O(μ))(1 + z)ξ̃ − (1 + z)2(1 + O(μ)) + g−1
1 (η̃, η̃).

Therefore, the principal symbol of ∂zP (z) at z = 0 is

−4(1 + O(μ))ξ̃ − 2 + O(μ).

Since Σ± ∩ {|μ| ≤ δ} ⊂ {±(ξ̃ + 1/2) > 0}, we obtain (4.5) for |μ| ≤ δ.
It remains to consider the region {μ > δ}. Choose the function φ so that |dφ|g−1 <

1, this is possible by the discussion following [Vas12, (3.13)]. By [Vas12, (3.11)], we
have

σ(∂zP (0)) = −2μ−1((ξ, dφ)g−1 + 1 − |dφ|2g−1).

Since (ξ − dφ, ξ − dφ)g−1 = 1 on Σ+, this becomes

−μ−1
(|ξ|2g−1 + 1 − |dφ|2g−1

)
< 0. ��

To relate p to the principal symbol p0 of h2Δg − 1, consider the map ι : T ∗M →
T

∗
X given by

ι(x, ξ) = (x, ξ + dφ(x)), x ∈ M, ξ ∈ T ∗
xM ; (4.6)

then

p(ι(x, ξ)) = μ(x)−1p0(x, ξ). (4.7)

In particular, the images of flow lines of Hp0 on p−1
0 (0) under ι are reparametrized

flow lines of Hp on p−1(0); the reparametrization factor is bounded as long as we
are away from {μ ≤ 0}.

To state our next lemma, which collects some global properties of the flow of Hp,
we need the following notions of sets trapped in one time direction on T ∗M :

Γ̃± ={ρ∈T ∗M \ 0 | {exp(tHp0)ρ | ∓t≥0} is bounded} , Γ± =Γ̃± ∩ p−1
0 (0). (4.8)

The sets Γ̃+ and Γ̃− are respectively the forward and backward trapped sets, and
K̃ = Γ̃+ ∩ Γ̃−, K = Γ+ ∩ Γ−.

Lemma 4.4. If δ > 0 is small enough and γ(t) is a flow line of 〈ξ〉−1Hp on {〈ξ〉−2p =
0} with γ(0) ∈ {μ > −δ}, then:

(1) if γ(0) ∈ Σ+ \ (L+ ∪ ι(Γ−)), then there exists T > 0 such that γ(T ) ∈ {μ ≤ −δ};
(2) if γ(0) ∈ Σ+, then either γ(−T ) ∈ ι(Γ+) for T > 0 large enough or γ(t) converges

to L+ as t → −∞;
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(3) if γ(0) ∈ Σ− \ L−, then there exists T > 0 such that γ(−T ) ∈ {μ ≤ −δ};
(4) if γ(0) ∈ Σ−, then γ(t) converges to L− as t → +∞.

See Figure 2 in the introduction for a picture of the global dynamics of the flow.

Proof. We demonstrate (1); the other statements are proved similarly. By [Vas12,
Lemma 3.2], there exists T0 ≥ 0 such that γ(T0) ∈ {|μ| ≥ δ}. If μ(γ(T0)) ≤ −δ, then
we are done; assume that μ(γ(T0)) ≥ δ. By [Vas12, (3.30)] and Lemma 4.2(3), the
set Vδ = Σ+ ∩ {μ ≥ δ} is convex in the following sense: if γ̃(t) is any flow line of
〈ξ〉−1Hp with γ̃(t1), γ̃(t2) ∈ Vδ for some t1 < t2, then the whole segment γ̃([t1, t2])
lies in Vδ. This leaves only two cases: either γ([T0,∞)) ⊂ Vδ or there exists T1 > T0

such that γ([T1,∞))∩Vδ = ∅. By (4.7), the first case would mean that γ(0) ∈ ι(Γ−);
the second case implies by [Vas12, Lemma 3.2] that γ(T ) ∈ {μ = −δ} for some
T > 0. ��

Now, we take δ small enough so that Lemmas 4.2, 4.3, and 4.4 hold and any
operator Q such that:

• Q ∈ Ψ2(X) with Schwartz kernel supported in {μ < −ε} for some ε > 0;
• q = σ(Q) is real-valued and ±q ≥ 0 near Σ±;
• Q is elliptic on {〈ξ〉−2p = 0} ∩ {μ ≤ −δ}.

Such a Q satisfies the conditions of [Vas12, Section 3.5], except for the self-ad-
jointness condition; Lemma 2.1 then follows from [Vas12, Theorem 4.3] and [Vas12,
proof of Theorem 5.1]. (In [Vas12], Q was required to be self-adjoint; however as
remarked in [Vas, Section 2.2], this condition can be relaxed. Strictly speaking we
are citing [Vas, Theorem 2.11, Theorem 4.3]). We will impose more conditions on Q
in Section 7.

4.2 Conjugation and escape function. We first study P (z) near the radial
points L± defined in (4.2). The functions μ, ỹ, ρ̃ = |ξ̃|−1, η̂ = ρ̃η̃ form a coordinate
system on T

∗
X near L±; in these coordinates, L± is given by {μ = ρ̃ = η̂ = 0},

and [Vas12, (3.23) and (3.28)]

|ξ̃|−2p = 4μ∓ 4(1 + O(μ))ρ̃− (1 + O(μ))ρ̃2 + g−1
1 (η̂, η̂);

|ξ̃|−1Hp = ±4(2μ∂μ + ρ̃∂ρ̃ + η̂∂η̂) − 4ρ̃∂μ + O(η̂)∂ỹ + O(μ2 + ρ̃2 + |η̂|2).
(4.9)

Define the function

ρ1 = μ2 + ρ̃2 + g−1
1 (η̂, η̂) (4.10)

near L±; extend it to the whole T ∗
X so that ρ1 > 0 outside of L+ ∪ L−. The func-

tion ρ1 has properties similar to the function ρ̃2 + ρ0 used in the proof of [Vas12,
Proposition 4.6]; we will use it to define neighborhoods of L±.
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Lemma 4.5. For δ > 0 small enough,

±〈ξ〉−1Hpρ1 ≥ δρ1 on Σ± ∩ {ρ1 ≤ 5δ}; (4.11)
{〈ξ〉−2p = 0} ∩ S∗X ∩ {μ ≥ −δ} ⊂ {ρ1 < 5δ}. (4.12)

Proof. We compute ±|ξ̃|−1Hpρ1 ≥ 4ρ1 − O(ρ3/2
1 ); (4.11) follows. To show (4.12),

take a point in Σ± ∩ S∗X ∩ {μ ≥ −δ}; by (4.7), we have μ ≤ 0. By Lemma 4.2(2),
for δ small enough our point lies in the domain of the coordinate system (μ, ỹ, ρ̃, η̂).
By (4.9), and using S∗X = {ρ̃ = 0}, we get

g−1
1 (η̂, η̂) = −4μ ≤ 4δ;

it remains to recall the definition of ρ1. ��
We now take the density on X introduced in [Vas12, Section 3.1] (in fact, any

density would work). If B is any continuous operator C∞(X) → D′(X) and B∗ is
its adjoint, then define

ImB =
1
2i

(B −B∗);

for each u ∈ C∞(X),

Im(Bu, u) = ((ImB)u, u).

Instead of using the radial points estimate [Vas12, Proposition 4.5], we will con-
jugate P (z) by an elliptic operator of order s to make the imaginary part of the
subprincipal symbol have the correct sign:

Lemma 4.6. Assume that | Re z| ≤ C0h, | Im z| ≤ C0h, s > C0 is fixed, and Ts ∈
Ψs(X) is any elliptic operator, as in Lemma 2.2. Then for δ > 0 small enough,

∓σ(h−1 Im(TsP (z)T−1
s )) ≥ δ〈ξ〉 on Σ± ∩ {ρ1 ≤ 5δ}.

Note that, since σ(TsP (z)T−1
s ) = p is real-valued, Im(TsP (z)T−1

s ) ∈ hΨ1.

Proof. We consider P (z) as a function of z̃ = h−1z. It suffices to show that

±〈ξ〉−1σ(h−1 Im(TsP (z)T−1
s ))|L± < 0.

Consider the coordinates μ, ỹ, ρ̃ = |ξ̃|−1, η̂ = ρ̃η̃ near L±. By [Vas12, (3.10)],

|ξ̃|−1σ(h−1 ImP (z))|L± = ∓4 Im z̃.

Furthermore, by part (6) of Lemma 4.1 we have P (z) − P (0) ∈ hΨ1, and hence
Ts(P (z)−P (0))T−1

s − (P (z)−P (0)) ∈ h2Ψ0, from which we conclude that it suffices
to prove that

|ξ̃|−1σ(h−1(TsP (0)T−1
s − P (0)))|L± = ∓4is. (4.13)
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Near L±, we can write σ(Ts) = ρ̃−sea, with a smooth on T ∗
X. Then

|ξ̃|−1σ(h−1(TsP (0)T−1
s − P (0))) = ρ̃σ(h−1[Ts, P (0)]T−1

s )
= iρ̃s+1e−aHp(ρ̃−sea) = −isHpρ̃+ iρ̃Hpa.

The first term on the right-hand side gives (4.13) by (4.9), while the second one
vanishes at L± since |ξ̃|−1Hp = 0 there. ��

Now, we construct an escape function for the region (Σ+ ∪ Σ−) ∩ {μ ≥ −δ} \
(UK ∪{ρ1 < 5δ}), where UK is a neighborhood of ι(K) in T ∗X. This is based partly
on [DV12, Lemma 4.3] (see also [GS87, Appendix], [VZ00, Section 4]).

Lemma 4.7. For δ > 0 small enough and any sufficiently small neighborhood UK of
ι(K), there exists a smooth nonnegative function f0 on T

∗
X such that:

(1) f0 is supported in {μ > −2δ} and away from S∗X;
(2) Hpf0 ≥ 0 near (Σ+ ∩ {μ ≥ −δ}) ∪ UK , and Hpf0 ≤ 0 near Σ− ∩ {μ ≥ −δ};
(3) ±Hpf0 > 0 on V± = Σ± ∩ {μ ≥ −δ} \ (UK ∪ {ρ1 < 5δ});
(4) Hpf0 = 0 near UK ∩ ι(K̃).

In fact, the function f0 we construct in the proof is identically 1 near UK ∩ ι(K̃).

Proof. Note that V+ and V− are compact and disjoint, and by (4.12) neither inter-
sects S∗X. We will first construct a function f̃0 ∈ C∞(T ∗

X), with the following
properties:

(1) f̃0 ≤ −2 near (Σ+ ∪ Σ−) ∩ S∗X ∩ {μ ≥ −δ};
(2) near Σ± ∩ {μ ≥ −δ}, ±Hpf̃0 ≥ 0;
(3) ±Hpf̃0 > 0, f̃0 ≥ −1/2 on V±;
(4) Hpf̃0 = 0 near ι(K̃).

Before constructing this function we show how we use it to construct f0. In sev-
eral places we will shrink UK , keeping UK ∩ Σ+ fixed: note that this procedure does
not affect f̃0.

Take α ∈ C∞(R) nondecreasing with α(t) = t + 1 near t ≥ −1/2 and suppα ⊂
(−2,∞). (See Figure 3). Take χ ∈ C∞(T ∗

X; [0, 1]) supported in {μ > −2δ} and
away from S∗X, and with χ = 1 near (Σ+ ∪ Σ−) ∩ {μ ≥ −δ} ∩ {f̃0 > −2}. This is
possible by property (1) of f̃0. Then put

f0(x, ξ) = χ(x, ξ)α(f̃0(x, ξ)).

Property (1) of f0 follows from the support condition on χ. Note that thanks to the
choice of the set where χ = 1 together with α(t) = 0 near t ≤ −2, we have

Hpf0(x, ξ) = α′(f̃0(x, ξ))Hpf̃0 near (Σ+ ∪ Σ−) ∩ {μ ≥ −δ}. (4.14)

Hence (if necessary shrinking UK while keeping UK ∩ Σ+ fixed) property (2) of f0

follows from property (2) of f̃0 together with the fact that α is nondecreasing. Prop-
erties (3) and (4) of f0 follow from properties (3) and (4) of f̃0 together with (4.14)
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Figure 3: We precompose f̃0 with α to obtain a function which is 0 near L+ and 1 near K̃
and smooth in between. We use a multiple of φ in the definition of f̃0 to guarantee that
f̃0 ≤ −2 near Σ+ ∪ Σ− ∩ S∗X so that α ◦ f̃0 vanishes there

and with the fact that α(t) = t+ 1 near t ≥ −1/2, again if necessary shrinking UK

while keeping UK ∩ Σ+ fixed.
We will take f̃0 of the form

f̃0 =
N∑

k=1

fk + Cφ(ρ1).

Here φ ∈ C∞(R; (−∞, 0]) is nondecreasing, supported in (−∞, 5δ], and φ′ = 1 on
(−∞, (5−ε)δ], where ε > 0 is small enough that (Σ+∪Σ−)∩S∗X∩{μ ≥ −δ} ⊂ {ρ1 <
(5−ε)δ} (see (4.12)). Each fk, specified below, is supported near the bicharacteristic
through (xk, ξk), a suitably chosen point in V+ ∪ V−. Now if C is sufficiently large
(depending on

∑
fk) we will have property (1) of f̃0. It suffices now to construct

the fk so that properties (2), (3) and (4) of f̃0 hold, and indeed since ±Hpφ(ρ1) ≥ 0
on Σ± by (4.11) and suppφ(ρ1) ∩ (V+ ∪ V− ∪ UK) = ∅ it is enough to check these
properties for

∑
fk (to prove property (2) we will also increase C further).

To determine the (xk, ξk) we first fix an open neighborhood ŨK of ι(K) with
ŨK ⊂ UK , and associate to each (x, ξ) ∈ V + the following escape times:

T 0
(x,ξ) = inf{t ∈ R : ρ1(γ(t)) ≥ 4δ and γ(t) �∈ ŨK},
T 1

(x,ξ) = sup{t ∈ R : μ(γ(t)) ≥ −3δ/2 and γ(t) �∈ ŨK}.

Here γ(t) is the bicharacteristic flowline through (x, ξ). For (x, ξ) ∈ V − we put

T 0
(x,ξ) = inf{t ∈ R : μ(γ(t)) ≥ −3δ/2}, T 1

(x,ξ) = inf{t ∈ R : ρ1(γ(t)) ≥ 4δ}.

Note that for every (x, ξ) ∈ V− ∪ V+ we have −∞ < T 0
(x,ξ) < 0 < T 1

(x,ξ) < ∞ thanks
to the description of the large time behavior of trajectories in Σ± given by Lemma
4.4 (we use the fact that all trajectories in ι(Γ±) tend to ι(K) as t → ∓∞, see for
example [GS87, Proposition A.2]).
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Next, let S(x,ξ) be a hypersurface through (x, ξ) which is transversal to Hp near
(x, ξ). Then if U(x,ξ) is a sufficiently small neighborhood of (x, ξ), the set

V(x,ξ) =
{
γ(x′,ξ′)(t) : (x′, ξ′) ∈ U(x,ξ) ∩ S(x,ξ), t ∈ (T 0

(x,ξ) − 1, T 1
(x,ξ) + 1)

}
,

where γ(x′,ξ′)(t) is the bicharacteristic flowout of (x′, ξ′), is diffeomorphic to (S(x,ξ) ∩
U(x,ξ)) × (T 0

(x,ξ) − 1, T 1
(x,ξ) + 1), and this diffeomorphism defines product coordinates

on V(x,ξ). If necessary, shrink U(x,ξ) so that

V(x,ξ) ∩ {t ∈ [T 0
(x,ξ) − 1, T 0

(x,ξ)] ∪ [T 1
(x,ξ), T

1
(x,ξ) + 1]} ⊂ UK

∪ {ρ1 < (5 − ε)δ} ∪ {μ < −δ}. (4.15)

Take ϕ(x,ξ) ∈ C∞
0 (S(x,ξ) ∩ U(x,ξ); [0, 1]) identically 1 near (x, ξ), also considered as a

function on V(x,ξ) via the product coordinates, and let V ′
(x,ξ) ⊂ V(x,ξ) be the product

of (T0, T1) with an open subset of S(x,ξ) ∩ U(x,ξ) on which ϕ(x,ξ) = 1. Using the
compactness of V+ ∪ V−, take (x1, ξ1), . . . , (xN , ξN ) with

V+ ∪ V− ⊂
N⋃

k=1

V ′
(xk,ξk).

For each k ∈ {1, . . . , N} put fk = f(xk,ξk), where

f(x,ξ) = χ(x,ξ)(t)ϕ(x,ξ), Hpf(x,ξ) = χ′
(x,ξ)(t)ϕ(x,ξ),

and where χ(x,ξ) ∈ C∞
0 ((T 0

(x,ξ) − 1, T 1
(x,ξ) + 1)). Note that V(x,ξ) ∩ ι(K̃) = ∅ for all

(x, ξ) ∈ V+ ∪ V−, and so each fk vanishes near ι(K̃), and in particular we have
property (4) of f̃0.

We further impose that ±χ′
(x,ξ) > 0 (accordingly as (x, ξ) ∈ V±) and χ(x,ξ) ≥

−(2N)−1 on [T 0
(x,ξ), T

1
(x,ξ)]. This condition gives property (3) of f̃0 since V± ∩V(x,ξ) ⊂

{t ∈ [T 0
(x,ξ), T

1
(x,ξ)]} and ±Hpf(x,ξ) > 0 on V ′

(x,ξ). If γ(t) (the bicharacteristic through

(x, ξ)) tends to ι(K̃) as t → ±∞, then we further require that χ′
(x,ξ)(t) ≥ 0 for ±t ≥

0. (See Figure 4. Note that γ(t) cannot tend to ι(K̃) both as t → +∞ and t → −∞,
as in this case γ(t) ⊂ ι(K̃).) This is sufficient to imply property (2) of f̃0 since now
(4.15) implies that Σ± ∩{μ ≥ −δ}∩ {ρ1 ≥ (5− ε)δ}∩V(x,ξ) ⊂ {±χ′

(x,ξ)(t) ≥ 0}, and
since the Cφ(ρ1) term takes care of the set {ρ1 ≤ (5 − ε)δ} ∩ Σ±. ��

5 Exotic Classes of Operators

5.1 Ψ1/2 calculus. In this subsection we review the pseudodifferential calculus
of operators with symbols in the exotic class S1/2 depending on two semiclassical
parameters h, h̃, studied in [SZ07, Section 3.3] and [WZ11, Section 3]. The escape
function in Section 7.1 will provide positivity up to distance (h/h̃)1/2 to the trapped
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Figure 4: A graph of χ(x,ξ)(t) in the cases when the bicharacteristic through (x, ξ) tends to
ι(K̃) as t → −∞ (top) and as t → +∞ (bottom) (other cases are similar and simpler). Here
t is time along a bicharacteristic flowline. In each case χ′ ≥ 0 near the trapped set. In the
first case χ′ > 0 until the bicharacteristic enters the elliptic set of Q, and in the second case
χ′ > 0 starting when the bichracteristic leaves a small neighborhood of the radial set and
continuing until it enters a small neighborhood of the trapped set

set, and the operator A from Lemma 2.2 will be supported O((h/h̃)1/2) close to the
trapped set; we will study both using this exotic class.

We always assume h̃ is small but independent of h, and h is small depending on h̃.
The reason for the second semiclassical parameter h̃ and the corresponding symbol
class S1/2 is the following: since our escape function is only regular on the scale h1/2

it belongs to a calculus with no asymptotic decomposition in powers of h, and some
of the remainder terms in the positive commutator estimate in Section 7 will be
of order h, the same magnitude as the positive term coming from the commutator.
However, if we use symbols in S1/2 (which are regular on the larger scale (h/h̃)1/2

instead of just h1/2), then we have an asymptotic decomposition in powers of h̃ for
the corresponding calculus and the remainder terms will be O(hh̃), and hence small
in comparison with the h sized positive term for h̃ small enough.

Remark. An alternative approach would use instead the mildly exotic class Sρ,
with ρ < 1/2; its elements are regular on the scale hρ. The semiclassical calculus in
this class has a decomposition in powers of h, which would simplify the arguments
below, eliminating the need for h̃. However, in this case the rank of the operator AR

from Lemma 2.2 would grow as h−2νρ−(n−1)(1−2ρ), which is the number of cylinders
on the energy surface of size 1 in the direction of the Hamiltonian flow and size
h1/2 in all other directions that are needed to cover an O(hρ) neighborhood of the
trapped set (see Section 6). This is a weaker estimate than the O(h−ν) that we prove.
By taking ρ very close to 1/2, one could get any power of h−1 bigger than ν, but
not h−ν ; this makes a difference if the trapped set is of pure Minkowski dimension,
which is the case in the most interesting examples (see the introduction).
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We proceed to the construction of the Ψ1/2 calculus. We will only need com-
pactly microlocalized operators, thus we restrict ourselves to symbols that are O(h∞)
outside of a compact set. For a manifold X, we define the class Scomp

1/2 (X) as follows:

a function a(x, ξ;h, h̃) smooth in (x, ξ) ∈ T ∗X lies in this class if and only if:

• there exists a compact set V ⊂ T ∗X such that each (x, ξ)-derivative of a is
O(h∞〈ξ〉−∞) outside of V , uniformly in ξ and locally uniformly in x;

• for each multiindex α, there exists a constant Cα such that near V ,

|∂α
x,ξa| ≤ Cα(h/h̃)−|α|/2. (5.1)

As in Section 3.1, we require only local uniformity in x. This is in contrast with [SZ07]
and [WZ11], but their results still hold if we only require our estimates to be locally
uniform in x.

We begin with operators on R
n. For a ∈ Scomp

1/2 (Rn), let Oph(a) be its Weyl
quantization:

Oph(a)u(x) = (2πh)−n

∫
e

i

h
(x−y)·ξa

(
x+ y

2
, ξ

)
χ̌(x− y)u(y) dξdy, u ∈ C∞(Rn).

(5.2)

Here χ̌ ∈ C∞
0 (Rn) is some fixed function equal to 1 near the origin. We use the

χ̌(x− y) cutoff, which is absent in the standard definition of the Weyl quantization,
to make Oph(a) properly supported. It is also needed for the integral to converge,
as a can grow arbitrarily fast as x → ∞. The factor χ̌(x − y) only changes the
operator Oph(a) by a smoothing term of order O(h∞) because of the pseudolocality
of Oph(a), see for example [WZ11, Lemma 3.4]. (We will need to use more standard
symbol classes (6.6) and the standard definition (6.7) of Weyl quantization in a
limited way in Section 6.3.) Here are the basic properties of quantization of exotic
symbols on R

n (see [SZ07, Section 3.3] or [WZ11, Section 3.2]):

Lemma 5.1 (Properties of the S1/2 calculus on R
n
).

1. For a ∈ Scomp
1/2 (Rn), Oph(a) is compactly microlocalized, pseudolocal, and has

norm O(1), in the sense of Section 3.1. If supp a ⊂ K for some compact set
K ⊂ T ∗

R
n independent of h, h̃, then WF�(Oph(a)) ⊂ K.

2. For a ∈ Scomp
1/2 (Rn),Oph(a)∗ = Oph(ā).

3. For a, b ∈ Scomp
1/2 (Rn), there exists a symbol a#b ∈ Scomp

1/2 (Rn) such that

Oph(a) Oph(b) = Oph(a#b) + O(h∞)Ψ−∞ .

(The O(h∞)Ψ−∞ error comes from the χ̌(x−y) cutoff.) The same holds when one
of a, b lies in Scomp

1/2 (Rn) and the other in the class Sk
cl(R

n) defined in Section 3.1,

with a#b still in Scomp
1/2 (Rn).
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4. If a, b ∈ Scomp
1/2 (Rn), then

a#b = ab+ O(h̃)Scomp
1/2 (Rn).

5. If one of a, b lies in Scomp
1/2 (Rn) and the other in Sk

cl(R
n), then

a#b = ab+ O(h1/2h̃1/2)Scomp
1/2 (Rn),

a#b− b#a = −ih{a, b} + O(h3/2h̃3/2)Scomp
1/2 (Rn).

6. Assume that f : U1 → U2 is a diffeomorphism, U1, U2 ⊂ R
n, and take χ ∈

C∞
0 (U1). Then for each a ∈ Scomp

1/2 (Rn),

(f−1)∗χOph(a)χf∗ = Oph(af ) + O(h∞)Ψ−∞ , af ∈ Scomp
1/2 (Rn),

af (x, ξ) = χ(f−1(x))2a(f−1(x), tf ′(x)ξ) + O(h1/2h̃1/2)Scomp
1/2

.

This fact depends on using the Weyl quantization; the proof can be found
in [WZ11, Lemma 3.3]. (See also the proof of Lemma 5.5 below.)

Lemma 5.1(4) and (5) follow from the following asymptotic expansion [SZ07,
Lemma 3.6]:

(a#b)(x, ξ) ∼
∑
j≥0

hj

j!(2i)j
(∂ξ · ∂y − ∂η · ∂x)ja(x, ξ)b(y, η)| y=x

η=ξ
. (5.3)

The expansion (5.3) holds in the following sense: for every N , each S1/2 seminorm
of the difference of the left-hand side and the sum of the terms with j < N on the
right-hand side is bounded by a certain S1/2 seminorm of the j = N term of the
sum, taken without restricting to y = x, η = ξ (see [SZ07, (3.12)]). If both a, b are in
S1/2, then the jth term of the asymptotic sum is O(h̃j) and (5.3) is an expansion in
powers of h̃, not h. However, if one of a, b lies in the class Sk

cl, then the jth term of
the sum is O(hj/2h̃j/2) and we get an expansion in powers of h and better remain-
ders for the product and commutator formulas. The improved remainder estimate
for the commutator a#b− b#a in part 5 of Lemma 5.1 is due to the fact (specific to
the Weyl quantization) that the j = 2 term in (5.3) is the same for a#b and b#a;
therefore, the remainder comes from the j = 3 term.

We can now construct the Ψ1/2 calculus on a manifold, similarly to [WZ11,
Section 3.3]. More specifically, we will define the class Ψcomp

1/2 (X) of compactly mi-
crolocalized operators with symbols in Scomp

1/2 (X). Let X be a manifold and A be a

properly supported operator on X depending on h, h̃, which is compactly microlo-
calized and pseudolocal in the sense of Section 3.1. We say that A lies in Ψcomp

1/2 (X),
if for each coordinate system f : Uf → Vf , with Uf ⊂ X, Vf ⊂ R

n, and each
χ ∈ C∞

0 (Uf ), there exists af,χ ∈ Scomp
1/2 (Uf ) ∩ C∞

0 (T ∗Uf ) such that

(f−1)∗χAχf∗ = Oph((f−1)∗af,χ) + O(h∞)Ψ−∞ .
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Here (f−1)∗af,χ ∈ Scomp
1/2 (Rn) ∩ C∞

0 (T ∗Vf ) denotes the pullback of af,χ under the
map T ∗Vf → T ∗Uf induced by f−1. It can be seen from Lemma 5.1 that there exists
a symbol af ∈ C∞(T ∗Uf ) such that for each χ, af,χ = χ2af + O(h1/2h̃1/2)Scomp

1/2 (X)

and moreover, the symbols af given by different coordinate charts agree modulo
O(h1/2h̃1/2)Scomp

1/2
. This makes it possible to define the principal symbol map

σ̃ : Ψcomp
1/2 (X) → Scomp

1/2 (X)/(h1/2h̃1/2Scomp
1/2 (X)). (5.4)

We will sometimes consider operators of the form f(h, h̃)A, where f is some
function and A ∈ Ψcomp

1/2 (X). We put σ̃(fA) = fσ̃(A); it is defined modulo

O(f(h, h̃)h1/2h̃1/2)Scomp
1/2 (X). For instance, the symbol of an element of h1/2h̃1/2Ψcomp

1/2

(X) is defined modulo O(hh̃)Scomp
1/2 (X).

The symbol map has a non-canonical right inverse Oph : Scomp
1/2 (X) → Ψcomp

1/2 (X),
defined as follows: consider a locally finite covering of X by the domains Uj of
some coordinate charts fj : Uj → Vj ⊂ R

n, a partition of unity χj ∈ C∞
0 (Uj)

on X, and some functions χ′
j ∈ C∞

0 (Vj) equal to 1 near fj(suppχj). Then for
a ∈ Scomp

1/2 (X) ∩ C∞
0 (T ∗X), we put

Oph(a) =
∑

j

f∗
j χ

′
j Oph((f−1

j )∗(χja))χ′
j(f

−1
j )∗; (5.5)

here (f−1
j )∗(χja) ∈ Scomp

1/2 (Rn)∩C∞
0 (T ∗Vj) is quantized by (5.2). We have Oph(a) ∈

Ψcomp
1/2 (X) and σ̃(Oph(a)) = a+ O(h1/2h̃1/2)Scomp

1/2 (X).
Using the properties of the S1/2 calculus on R

n listed above, we get

Lemma 5.2 (Properties of the Ψ1/2 calculus on manifolds).
Let X be a manifold. Then:

1. Each operator in Ψcomp
1/2 (X) is compactly microlocalized, pseudolocal, and has

norm O(1) in the sense of Section 3.1. If supp a ⊂ K for some compact set
K ⊂ T ∗X independent of h, h̃, then WF�(Oph(a)) ⊂ K.

2. The class Ψcomp(X) of compactly microlocalized classical operators from Sec-
tion 3.1 is contained in Ψcomp

1/2 (X), with a correspondence between the symbol
maps.

3. For A ∈ Ψcomp
1/2 (X), σ̃(A) = O(h1/2h̃1/2)Scomp

1/2
if and only if A ∈ (h1/2h̃1/2)

Ψcomp
1/2 (X).

4. If A ∈ Ψcomp
1/2 (X), then its adjoint A∗ (with respect to some given density) also

lies in Ψcomp
1/2 (X) and

σ̃(A∗) = σ̃(A) + O(h1/2h̃1/2)Scomp
1/2

.

5. If A,B ∈ Ψcomp
1/2 (X), then AB ∈ Ψcomp

1/2 (X) and

σ̃(AB) = σ̃(A)σ̃(B) + O(h̃)Scomp
1/2

.
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6. If A ∈ Ψk(X) and B ∈ Ψcomp
1/2 (X), then AB,BA ∈ Ψcomp

1/2 (X), and

σ̃(AB) = σ(A)σ̃(B) + O(h1/2h̃1/2)Scomp
1/2

= σ̃(BA). (5.6)

Moreover [A,B] ∈ h1/2h̃1/2Ψcomp
1/2 (X), and we have

σ̃([A,B]) = −ih{σ(A), σ̃(B)} + O(hh̃)Scomp
1/2

. (5.7)

7. If A ∈ Ψk(X), B ∈ Ψcomp
1/2 (X), and {σ(A), σ̃(B)} = O(1)Scomp

1/2
(instead of

O((h̃/h)1/2) known a priori), then [A,B] ∈ hΨcomp
1/2 (X).

Note that in Lemma 5.2(1), we use the notion of wavefront set of a pseudolo-
cal operator from Section 3.1, which gives a set independent of h. In particular, if
a ∈ Scomp

1/2 (X) is supported in an O((h/h̃)1/2) neighborhood of some compact set K,
then WF�(Oph(a)) ⊂ K.

We also have the following version of the non-sharp G̊arding inequality:

Lemma 5.3. Assume thatX is a compact manifold, A ∈ Ψcomp
1/2 (X), Ψ1 ∈ Ψcomp(X),

and Re σ̃(A) > 0 near WF�(Ψ1). Then there exists a constant C such that for each
u ∈ L2(X),

Re〈AΨ1u,Ψ1u〉 ≥ C−1‖Ψ1u‖2
L2(X) − O(h∞)‖u‖2

L2(X).

Proof. For C > 0 large enough, we can write

Re σ̃(A) = C−1 + |b|2 + O(h1/2h̃1/2)Scomp
1/2

near WF�(Ψ1)

for some b ∈ Scomp
1/2 (X). Take B = Oph(b) ∈ Ψcomp

1/2 ; then

ReA = C−1 +B∗B + O(h̃)Ψcomp
1/2

microlocally near WF�(Ψ1).

Therefore,

Re〈AΨ1u,Ψ1u〉 = C−1‖Ψ1u‖2
L2 + ‖BΨ1u‖2

L2 + O(h̃)‖Ψ1u‖2
L2 + O(h∞)‖u‖2

L2 .

The second term on the right-hand side is nonnegative; it remains to take h̃ small
enough so that the third term is absorbed by the first one. ��

We will additionally need to work with symbols all of whose derivatives grow
according to (5.1), but the symbols themselves grow like log(1/h); those are the
growth conditions satisfied by the logarithmically flattened escape function from
Lemma 7.1. We need to know that certain properties of the Ψ1/2 calculus still hold
in this setting:

Lemma 5.4. Assume that a ∈ C∞
0 (T ∗X) satisfies

a = O(log(1/h)); ∂α
x,ξa = O((h/h̃)−|α|/2), |α| > 0. (5.8)

In particular, a ∈ log(1/h)Scomp
1/2 (X). Let A = Oph(a) ∈ log(1/h)Ψcomp

1/2 (X) be

defined by (5.5). Then:
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1. The symbol σ̃(A) from (5.4) is defined modulo O(h1/2h̃1/2)Scomp
1/2

(without the

log(1/h) factor), and σ̃(A) = a+ O(h1/2h̃1/2)Scomp
1/2

.

2. If B = Oph(b) for some b satisfying (5.8), then [A,B] = O(h̃)Ψcomp
1/2

.

3. If B ∈ Ψk(X), then [A,B] ∈ h1/2h̃1/2Ψcomp
1/2 (X) and (5.7) holds.

Proof. The remainder estimates of the asymptotic decompositions for the S1/2(Rn)
calculus in (5.3) and [WZ11, Lemma 3.3] depend on bounds on derivatives of the
symbols involved, but not on the size of the symbols themselves. Therefore, the
remainders in parts 4–6 of Lemma 5.1 are the same for symbols satisfying (5.8) as for
Scomp

1/2 . Note also that the class of symbols satisfying (5.8) is invariant under changes
of variables and multiplication by symbols in Sk

cl(X) (though not by Scomp
1/2 (X)). All

the statements above can now be verified in a straightforward fashion. ��
Finally, we establish the following analog of Egorov’s Theorem, needed in Sec-

tion 6.1. A direct argument involving (3.6) and the method of stationary phase would
give an O(h̃) error; the slightly more delicate argument below yields an O(h1/2h̃1/2)
error for the Weyl quantization, giving a natural generalization (and a different
proof) of [WZ11, Lemma 3.3].

Lemma 5.5. Let X1, X2 be two manifolds of the same dimension, κ a symplec-
tomorphism mapping an open subset of T ∗X1 onto an open subset of T ∗X2, and
B : C∞(X2) → C∞(X1) a compactly microlocalized semiclassical Fourier integral
operator associated to κ, in the sense of Section 3.2. Assume that Aj ∈ Ψcomp

1/2 (Xj)
are such that

σ̃(A1) = σ̃(A2) ◦ κ + O(h1/2h̃1/2)Scomp
1/2

near the projection of WF�(B) onto T ∗X1. Then

A1B = BA2 + O(h1/2h̃1/2);

here O(h1/2h̃1/2) is understood in the sense of (3.2), as both sides of the eqnarray
are compactly microlocalized.

Proof. Using a microlocal partition of unity, we may assume that A1 is microlocal-
ized in a small neighborhood of some (x1, ξ1) ∈ T ∗X1 and A2 is microlocalized in
a small neighborhood of κ(x1, ξ1). We can then let X1 = X2 = R

n and quantize κ

near WF�(A1)×WF�(A2) by the unitary operators (B1, B
−1
1 ) constructed at the end

of Section 3.2, multiplied by certain pseudodifferential cutoffs. We will use the fami-
lies of symplectomorphisms κt, Fourier integral operators Bt, and pseudodifferential
operators Zt from this construction.

Using the composition property (4) of Fourier integral operators in Section 3.2,
we see that C1 = BB−1

1 and C2 = B−1
1 B lie in Ψcomp and by the standard Egorov

property (6) in Section 3.2, σ(C1) = σ(C2) ◦ κ. We then need to prove that

A1C1 = B1(C2A2)B−1
1 + O(h1/2h̃1/2), (5.9)
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where we know that

σ̃(A1C1) = σ̃(C2A2) ◦ κ + O(h1/2h̃1/2)Scomp
1/2

. (5.10)

Let A(t) = Oph(a(t)), where

a(t) = σ̃(A1C1) ◦ κ
−1
t (5.11)

and Oph is defined by (5.2). Then A(0) = A1C1 + O(h∞)Ψ−∞ ; by (5.10), A(1) =
C2A2 + O(h1/2h̃1/2)Ψcomp

1/2
, and (5.9) reduces to

B1A(1)B−1
1 = A(0) + O(h1/2h̃1/2). (5.12)

Using (3.8), we get

hDt(BtA(t)B−1
t ) = Bt([Zt, A(t)] + hDtA(t))B−1

t . (5.13)

Now, by part 5 of Lemma 5.1 (which is where we need the Weyl quantization),

[Zt, A(t)] + hDtA(t) =
h

i
Oph({zt, a(t)} + ∂ta(t)) + O(h3/2h̃3/2);

by (5.11), we get {zt, a(t)}+∂ta(t) = ∂t(a(t)◦κt)◦κ
−1
t = 0 and thus the right-hand

side of (5.13) is O(h3/2h̃3/2). Integrating in t from 0 to 1, we get (5.12). ��
5.2 Second microlocalization. In this subsection, we study certain operators
microlocalized O(h/h̃) close to the energy surface p−1(0). (See Section 5.1 for why
one needs the second semiclassical parameter h̃; as always in this paper, we assume
that h̃ is small and h is small enough depending on h̃.) We need the operator A
from Lemma 2.2 to be localized O(h/h̃) close to the energy surface to be able to
approximate it by an operator of rank O(h−ν). Without this additional localization,
the rank of AR from Lemma 2.2, and thus the number of resonances, would be
estimated by O(h−ν−1); however, this estimate would be valid in an o(1) spectral
window (with the imaginary part of the resonances still bounded by C0h) instead of
the O(h) one that we study.

Since h/h̃ � h1/2, operators microlocalized O(h/h̃) close to the energy surface
will not be pseudodifferential even in the exotic classes studied in Section 5.1. In fact,
they will not even be pseudolocal; their wavefront set will include transport along
the Hamiltonian flow of p on the energy surface. This presents a difficulty with
constructing a calculus of such operators; however, as shown in [SZ07, Section 5],
one can still quantize symbols which are regular on the scale h/h̃ in the direction
transversal to the energy surface, on the scale 1 in the direction of the Hamiltonian
flow of p, and on the scale (h/h̃)1/2 in all other directions.

The second microlocal calculus of [SZ07] is rather involved and we do not use it
here, proceeding instead as follows. Let p̂ be a real-valued symbol with

p̂ = p near the trapped set K,
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and which is elliptic near fiber infinity. We quantize p̂ to a self-adjoint operator P̂
(on the compact manifold X introduced in Section 4.1), and use an operator of the
form χ((h̃/h)P̂ ), where χ ∈ C∞

0 ; this operator is microlocalized O(h̃/h) close to
the surface p̂−1(0). In this subsection, we use spectral theory to get estimates on
the resulting operator in an abstract setting; we will apply these to our problem in
Section 6.1 and Lemma 7.8.

Throughout this subsection, X is a compact manifold without boundary and
with a prescribed volume form, and P̂ ∈ Ψk(X), k > 0, is a symmetric pseudodif-
ferential operator. Let p̂ be the principal symbol of P̂ (not to be confused with the
notation for 〈ξ〉−2p used in [Vas12]). Assume that p̂ is elliptic near the fiber infinity;
namely, the characteristic set {〈ξ〉−kp̂ = 0} does not intersect S∗X (and thus can be
written p̂−1(0)). Then P̂ is self-adjoint on L2(X) with domain Hk

�
(X) and compact

resolvent (see for example [Tay96, Section 7.10]).
For any bounded Borel measurable function χ on R, define χ((h̃/h)P̂ ) by spectral

theory (see for example [Tay96, Chapter 8]). This operator is bounded on Hs
�
(X) for

each s, uniformly in h, h̃. Indeed, this is true for s = 0 by spectral theory, for s ∈ kZ

by commuting with i + P̂ , which is an isomorphism Hs+k
�

→ Hs
�

for all s, and for
general s by interpolation. Note also that the Hs

�
(X) operator norm of χ((h̃/h)P̂ )

depends only on s, P̂ , and sup |χ|. In particular, the unitary operator eit(h̃/h)P̂ is
bounded on each Hs

�
uniformly in t.

We first show that for χ Schwartz, the operator χ((h̃/h)P̂ ) is microlocalized on
p̂−1(0):

Lemma 5.6. Let χ ∈ S (R). Then χ((h̃/h)P̂ ) is a compactly microlocalized operator
of norm O(1), in the sense of Section 3.1, and

WF�(χ((h̃/h)P̂ )) ⊂ p̂−1(0) × p̂−1(0).

Proof. It suffices to show that if Ψ1 ∈ Ψl(X) satisfies WF�(Ψ1) ∩ p̂−1(0) = ∅, then

χ((h̃/h)P̂ )Ψ1 = O(h∞)Ψ−∞ , Ψ1χ((h̃/h)P̂ ) = O(h∞)Ψ−∞ .

We prove the first statement. Take a large positive integer N . Since P̂ is elliptic
near WF�(Ψ1), there exists Ψ2 ∈ Ψl−kN (X) such that Ψ1 = P̂NΨ2 + O(h∞)Ψ−∞ .
We then have

χ((h̃/h)P̂ )Ψ1 = hN h̃−NχN ((h̃/h)P̂ )Ψ2 + O(h∞)Ψ−∞ .

Here χN (λ) = λNχ(λ) is Schwartz. The first term on the right-hand side is
O(hN−1)Hs

�
→Hs+kN−l

�

for all s, for h small enough depending on h̃ (for example,

for h < e−1/h̃); it remains to let N go to infinity. ��

To establish further properties of χ((h̃/h)P̂ ), we use the following
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Lemma 5.7. Let χ ∈ S (R), and B : C∞(X) → C∞(X) be a polynomially bounded
operator in the sense of Section 3.1. Then for each s, s′ and each integer N ≥ 0,

χ((h̃/h)P̂ )B =
∑

0≤j<N

(h̃/h)j

j!
(adj

P̂
B)χ(j)((h̃/h)P̂ )

+O((h̃/h)N‖ adN
P̂
B‖Hs

�
→Hs′

�

)Hs
�
→Hs′

�

. (5.14)

Here χ(j) denotes j-th derivative of χ and adP̂ A = [P̂ , A] for any A. The constant

in O(·) depends on χ,N, s, s′, P̂ , but not on B, h, h̃.

Proof. By the Fourier inversion formula,

χ((h̃/h)P̂ ) =
1
2π

∫
χ̂(t)eit(h̃/h)P̂ dt. (5.15)

Here χ̂ ∈ S (R) is the Fourier transform of χ. Now, for each j,

∂j
t (e

it(h̃/h)P̂Be−it(h̃/h)P̂ ) = (ih̃/h)jeit(h̃/h)P̂ (adj

P̂
B)e−it(h̃/h)P̂ ;

since e±it(h̃/h)P̂ is bounded uniformly in t on each Hs
�
(X), we have by Taylor’s for-

mula
∥∥∥∥eit(h̃/h)P̂Be−it(h̃/h)P̂ −

∑
0≤j<N

(ith̃/h)j

j!
adj

P̂
B

∥∥∥∥
Hs

�
→Hs′

�

≤ C|th̃/h|N‖ adN
P̂
B‖Hs

�
→Hs′

�

.

It remains to multiply the operator in the left-hand side by eit(h̃/h)P̂ on the right
and substitute into (5.15). ��

The operator χ((h̃/h)P̂ ) is not h-pseudodifferential. As mentioned in the begin-
ning of the subsection, we expect it to have nonlocal contributions corresponding to
transport along the Hamiltonian flow for all times. To see this, recall (5.15) and the
fact that eit(h̃/h)P̂ is a Fourier integral operator associated to the Hamiltonian flow of
p̂ at time th̃ (see also [SZ07, Section 5.4]). However, the nonlocal part of χ((h̃/h)P̂ )
decays rapidly with respect to h̃, and commuting with certain pseudodifferential
operators produces a power of h̃:

Lemma 5.8. Let χ ∈ S (R). Then:

(1) if Ψ1,Ψ2 ∈ Ψ0(X) have WF�(Ψ1) ∩ WF�(Ψ2) = ∅, then

Ψ1χ((h̃/h)P̂ )Ψ2 = O(h̃∞);

(2) if Ψ1 ∈ Ψ0(X), or both Ψ1 ∈ Ψcomp
1/2 (X) and Hp̂σ̃(Ψ1) = O(1)Scomp

1/2
, then

[χ((h̃/h)P̂ ),Ψ1] = O(h̃).
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In both cases, the O(·) is understood in the sense of (3.2), as the left-hand sides
are compactly microlocalized by Lemma 5.6.

Proof. (1) We apply Lemma 5.7 with B = Ψ2. Since adN
P̂

Ψ2 = O(hN )ΨN(k−1) , we
have for each N and each s,

Ψ1χ((h̃/h)P̂ )Ψ2 =
∑

0≤j<N

(h̃/h)j

j!
Ψ1(adj

P̂
Ψ2)χ(j)((h̃/h)P̂ )

+O(h̃N )Hs
�
→H

s+N(1−k)
�

;

each term in the sum is O(h∞)Ψ−∞ as Ψ1(adj

P̂
Ψ2) = O(h∞)Ψ−∞ . It remains

to let N → ∞.
(2) We have [P̂ ,Ψ1] = O(h)L2→L2 (see part 7 of Lemma 5.2 for the second case); it

remains to apply Lemma 5.7 with B = Ψ1 and N = 1. ��
Finally, we establish a version of Egorov’s theorem, needed in Section 6.1.

Lemma 5.9. Let X1, X2 be two compact manifolds of the same dimension, κ be
a symplectomorphism mapping an open subset of T ∗X1 onto an open subset of
T ∗X2, and B : C∞(X2) → C∞(X1) be a compactly microlocalized semiclassical
Fourier integral operator associated to κ, in the sense of Section 3.2. Assume that
P̂j ∈ Ψkj (Xj), kj > 0, are symmetric operators elliptic near S∗Xj and

σ(P̂1) = σ(P̂2) ◦ κ

near the projection of WF�(B) onto T ∗X1. Then for each χ ∈ S (R),

χ((h̃/h)P̂1)B = Bχ((h̃/h)P̂2) + O(h̃),

with O(h̃) understood in the sense of (3.2).

Proof. As in the proof of Lemma 5.7, we use the Fourier inversion formula:

χ((h̃/h)P̂1)B −Bχ((h̃/h)P̂2) =
1
2π

∫
χ̂(t)(eit(h̃/h)P̂1B −Beit(h̃/h)P̂2) dt.

It is then enough to prove that

eit(h̃/h)P̂1B −Beit(h̃/h)P̂2 = O(th̃)L2→L2 .

Multiply the left-hand side by e−it(h̃/h)P̂2 on the right and differentiate in t: we get

i(h̃/h)eit(h̃/h)P̂1(P̂1B −BP̂2)e−it(h̃/h)P̂2 ;

this expression is O(h̃)L2→L2 uniformly in t by the standard Egorov property (6) in
Section 3.2, as P̂1B −BP̂2 = O(h). It remains to integrate in t. ��
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6 Approximation by Finite Rank Operators

In this section, we prove the following analog of [SZ07, Proposition 5.10]:

Lemma 6.1. LetX be a compact manifold, P̂ ∈ Ψk(X), k > 0, a symmetric operator
with principal symbol p̂ = σ(P̂ ) elliptic outside of a compact set, and Ã ∈ Ψcomp

1/2 (X)

is such that p̂ has no critical points on p̂−1(0) ∩ WF�(Ã). Assume moreover that
σ̃(Ã) = ã + O(h1/2h̃1/2)Scomp

1/2
, where ã ∈ C∞

0 (T ∗X) ∩ Scomp
1/2 (X) and there exists a

constant ν ≥ 0 such that for each R > 0, there exists C > 0 such that

Volp̂−1(0) {exp(tHp̂)(x, ξ) | |t| ≤ R,

(x, ξ) ∈ (supp ã ∩ p̂−1(0)) +Bp̂−1(0)(R(h/h̃)1/2)
}

≤ C(h/h̃)n−1−ν . (6.1)

Here Volp̂−1(0) denotes the volume with respect to the Liouville measure on p̂−1(0)
and V +Bp̂−1(0)(r) denotes the set of points in p̂−1(0) lying distance at most r away
from V ⊂ p̂−1(0) (with respect to some fixed smooth metric). Finally, let χ ∈ C∞

0 (R)
and define

A = χ((h̃/h)P̂ )Ã.

Then we can write A = AR +AE , where AR, AE : C∞(X) → C∞(X) are compactly
microlocalized and for some constant C(h̃) independent of h,

AR = O(1), AE = O(h̃), rankAR ≤ C(h̃)h−ν .

Here O(·) is understood in the sense of (3.2).

Lemma 6.1 is the main component needed to approximate the operator A from
Lemma 2.2 by a finite rank operator. In our case, the volume estimate (6.1) is a direct
consequence of the definition of the upper Minkowski dimension of the trapped set
(1.3) and the fact that the symbol ã will be supported O((h/h̃)1/2) close to the
trapped set. See Section 7.4 for details.

To prove Lemma 6.1, we will first, in Section 6.1, conjugate the operator A locally
by a semiclassical Fourier integral operator to make p̂ = ξ1 thus trivializing the ‘sec-
ond microlocalized’ factor χ((h̃/h)P̂ ) of A. To simplify the discussion, we drop the
second microlocalized factor in this paragraph and explain how to approximate Ã
rather than A. For that, cover supp ã by balls of size ∼ (h/h̃)1/2 (the analog of this
step is carried out in Section 6.2); then to each such ball, associate an operator of
rank O(1) which is a function of a quantum harmonic oscillator, shifted to be cen-
tered in that ball (see Section 6.3). The sum Ψ̃Π of these operators will be elliptic
near WF�(Ã), thus we can approximate Ã by a multiple of Ψ̃Π (see Sections 6.3,
6.4). However, the rank of Ψ̃Π is bounded by a constant times the number of balls
of size (h/h̃)1/2 that are needed to cover supp ã; this number can be estimated by
the volume in (6.1).



GAFA FRACTAL WEYL LAWS FOR ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 1181

We generally follow the proof of [SZ07, Proposition 5.10] (see also
[Zwo12, Section 6.4] for an application of some of the ideas used in a simpler setting),
with the following two differences. First of all, we treat the operators microlocalized
O(h/h̃) near the energy surface as in Section 5.2, rather than using [SZ07, Section 5].
Secondly, we prove in detail (see Lemma 6.2) that the operator Ψ̃Π lies in Ψcomp

1/2 .
This is not trivial because, even though the operator associated to each ball lies in
Ψcomp

1/2 , we sum ∼ (h̃/h)n−1−ν many such operators; this step is skipped in [SZ07].
One of the anonymous referees of this paper has suggested an alternative

approach to this lemma. If one arranges that A is a positive operator, and shows
that the trace of A is bounded by Ch−n(h/h̃)n−ν , or more generally by C(h̃)h−ν ,
then A can have no more than C(h̃)h̃−1h−ν many eigenvalues greater than h̃, and
the decomposition follows. If A were pseudodifferential, its trace could be computed
by integrating its full symbol as in [DS99, Theorem 9.4]. The factor χ((h̃/h)P̂ ) pre-
vents one from applying this approach directly, but this difficulty could likely be
overcome using the methods of Section 5.2.

We prove Lemma 6.1 over the course of the following four subsections:

6.1 Reduction to a model problem. We reduce the general case to the fol-
lowing model case:

X = XM = S
1
x1

× R
n−1
x′ , P̂ = hDx1 .

The manifold XM is not compact, so, strictly speaking, the statement of Lemma 6.1
does not apply. However, the only place where we use the compactness of X in the
proof is the application of Lemma 5.9 in this subsection; since hDx1 is self-adjoint on
L2(XM ) and the associated unitary operator eit(h̃/h)hDx1 is a shift in the x1 variable
and thus bounded on each Hs

�
(XM ) uniformly in t, the proof of this lemma still

goes through. The operator χ(h̃Dx1) is a Fourier series multiplier in the x1 vari-
able; therefore, it is properly supported and polynomially bounded in the sense of
Section 3.1; moreover, the product of this operator with a compactly microlocalized
operator will also be compactly microlocalized.

We now construct finitely many operators Ψj ∈ Ψcomp(X) such that

(1)
∑

j Ψj = 1 microlocally near p̂−1(0) ∩ WF�(Ã);
(2) for each j, there exists a symplectomorphism κj from a neighborhood of

WF�(Ψj) onto some open subset of T ∗XM such that p̂ = ξ1 ◦ κj on the domain
of κj ;

(3) for each j, there exist compactly microlocalized semiclassical Fourier integral
operators

Bj : C∞(XM ) → C∞(X), B′
j : C∞(X) → C∞(XM ),

associated to κj and κ
−1
j , respectively, such that BjB

′
j = 1 microlocally near

WF�(Ψj).
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Indeed, by the Darboux theorem (see for example [Zwo12, Theorem 12.1]) each
(x, ξ) ∈ p̂−1(0) ∩ WF�(Ã) has a neighborhood U(x,ξ) ⊂ T ∗X with a symplectomor-
phism κ : U(x,ξ) → T ∗XM such that p̂ = ξ1 ◦ κ(x,ξ) on U(x,ξ). Using the method
described at the end of Section 3.2, we can find compactly microlocalized semiclas-
sical Fourier integral operators B(x,ξ) : C∞(XM ) → C∞(X), B′

(x,ξ) : C∞(X) →
C∞(XM ) quantizing κ near the closure of V(x,ξ) ×κ(x,ξ)(V(x,ξ)), where V(x,ξ) ⊂ U(x,ξ)

is some neighborhood of (x, ξ). It remains to choose Ψj as a microlocal partition of
unity subordinate to an open cover of p̂−1(0) by finitely many of the sets V(x,ξ).

By Lemma 5.9 (see the remark about non-compactness of XM in the beginning
of this subsection), we have

B′
jχ((h̃/h)P̂ ) = χ(h̃Dx1)B

′
j + O(h̃);

here O(h̃) is understood in the sense of (3.2), as both sides of the equation are com-
pactly microlocalized. Next, let χj ∈ C∞

0 (T ∗X) be supported inside the domain of
κj , but χj = 1 near the projection of WF�(B′

j) onto T ∗X, and let Ãj ∈ Ψcomp
1/2 (XM )

satisfy

σ̃(Ãj) = ãj + O(h1/2h̃1/2), ãj = (χj ã) ◦ κ
−1
j ;

here ãj is extended by zero outside of the image of κj . By Lemma 5.5,

B′
jÃ = ÃjB

′
j + O(h1/2h̃1/2);

moreover, ãj satisfies the volume bound (6.1), with ξ1 taking the place of p̂. By
Lemmas 5.6 and 5.8(1),

A =
∑

j

Ψjχ((h̃/h)P̂ )Ã+ O(h̃∞) =
∑

j

ΨjBjB
′
jχ((h̃/h)P̂ )Ã+ O(h̃∞)

=
∑

j

ΨjBjχ(h̃Dx1)ÃjB
′
j + O(h̃).

It now suffices to establish the decomposition for each of the operators χ(h̃Dx1)Ãj

(bearing in mind that Bj , B
′
j have norm O(1)—see property (5) in Section 3.2).

Therefore, we henceforth assume that X = XM and P̂ = hDx1 .

6.2 Covering by cylinders. We now cover supp ã ∩ p̂−1(0) by cylinders.
We write (x, ξ) ∈ T ∗XM as (x1, x

′, ξ1, ξ′), where x1 ∈ S
1, ξ1 ∈ R, and x′, ξ′ ∈

R
n−1. The energy surface is p̂−1(0) = {ξ1 = 0}. The Hamiltonian flow of p̂ is 2π-

periodic; thus, for given (x, ξ) and R ≥ π, the set {exp(tHp̂(x, ξ)) | |t| ≤ R} is equal
to the circle in the direction of the x1 variable passing through (x, ξ). If V ⊂ T ∗XM ,
define

Π(V ) = {(x′, ξ′) | ∃x1 : (x1, x
′, 0, ξ′) ∈ V } ⊂ R

2(n−1). (6.2)

The definition (6.2) is useful for handling the second microlocalization in Section 6.4.
In fact, covering Π(V ) by (h/h̃)1/2 sized balls is morally the same as covering V ∩
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p̂−1([−h/h̃, h/h̃]) (which is where the operator A is microlocalized) by cylinders of
size h/h̃ in the direction transversal to p̂−1(0), of size 1 in the direction of the Ham-
iltonian flow of p̂, and of size (h/h̃)1/2 in all other directions; to each such cylinder
will correspond an operator of rank O(1), which is essentially the product of a C∞

0

function of h̃Dx1 and spectral projector associated to a shifted harmonic oscillator.
This subsection and Section 6.3 will handle the (x′, ξ′) directions, constructing the
covering by balls and the corresponding finite rank operators.

The volume estimate (6.1) with R = π implies (the choice of 1/2 is convenient
later)

Volx′,ξ′

(
Π(supp ã) +B

(
0,

1
2
(h/h̃)1/2

))
≤ C(h/h̃)n−1−ν ;

here B(ρ, r) denotes the closed Euclidean ball of radius r centered at ρ. Follow-
ing [Sjö90, Lemma 3.3], take a maximal set of points

(x′
l, ξ

′
l) ∈ Π(supp ã), 1 ≤ l ≤ M(h, h̃),

such that the distance between any two distinct points in this set is > (h/h̃)1/2.
Then

M(h,h̃)⊔
l=1

B
(
(x′

l, ξ
′
l),

1
2
(h/h̃)1/2

)
⊂ Π(supp ã) +B

(
0,

1
2
(h/h̃)1/2

)
;

therefore, comparing the volumes of the two sides, we get

M(h, h̃) ≤ C(h/h̃)−ν . (6.3)

However, we also know by maximality that

Π(supp ã) ⊂
M(h,h̃)⋃

l=1

B
(
(x′

l, ξ
′
l), (h/h̃)

1/2
)
. (6.4)

6.3 The finite rank operator. To each ball in the covering, we associate a
finite rank operator constructed using a function of a shifted quantum harmonic
oscillator. The sum of these operators will generate the finite rank term in the
decomposition. As noted in the beginning of this section, since the number of balls
in the covering grows polynomially in h, we need to take care when summing up the
corresponding operators.

Consider the following shifted harmonic oscillators on R
n−1 (here x′

l,i, ξ
′
l,i are the

ith coordinates of x′
l, ξ

′
l respectively)

P̃l =
n−1∑
i=1

(
hDx′

i
− ξ′

l,i)
2 + (x′

i − x′
l,i

)2
.

Let χ̃ ∈ C∞
0 (−2, 2) be nonnegative and equal to 1 on (−1, 1) and put

Ψ̃l = χ̃((h̃/h)P̃l).
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Lemma 6.2. Take χb ∈ C∞
0 (Rn−1) equal to 1 near the projection of Π(supp ã) onto

the base space R
n−1
x′ . Then the sum

Ψ̃Π =
M(h,h̃)∑

l=1

χb(x′)Ψ̃lχb(x′)

lies in Ψcomp
1/2 (Rn−1) (the cutoff χb is needed because the operators Ψ̃l are not properly

supported), and its symbol s̃Π = σ̃(Ψ̃Π) satisfies

|s̃Π| ≥ 1 − O(h̃)

on Π(supp ã). Moreover, if we consider Ψ̃Π as an operator on L2(Rn−1), then

rank Ψ̃Π ≤ Ch̃ν+1−nh−ν . (6.5)

For (6.5), we use (6.3) and the fact that the rank of each Ψ̃l is bounded by
Ch̃1−n. The latter fact follows from Weyl’s law for the eigenvalues for the harmonic
oscillator (see for example [Zwo12, Theorem 6.3]) and the fact that χ̃ is compactly
supported.

Since functions of the quantum harmonic oscillator are not properly supported
operators, and to facilitate the rescaling argument in the proof of Lemma 6.3, we
use a variation of the Ψcomp

1/2 (Rn−1) calculus. Define the operator classes Ŝ and Ŝ1/2

on T ∗
R

n−1 as follows:

a(x′, ξ′;h, h̃) ∈ Ŝ ⇐⇒ ∀α∀N sup
(x′,ξ′)∈T ∗Rn−1

|∂α
x′,ξ′a| ≤ CαN 〈(x′, ξ′)〉−N ;

a(x′, ξ′;h, h̃) ∈ Ŝ1/2 ⇐⇒ ∀α∀N sup
(x′,ξ′)∈T ∗Rn−1

|∂α
x′,ξ′a| ≤ CαN (h/h̃)−|α|/2〈(x′, ξ′)〉−N .

(6.6)

Clearly Ŝ ⊂ Ŝ1/2. The difference between Ŝ1/2 and the class Scomp
1/2 from Section 5.1 is

that we do not require compact essential support, imposing instead uniform bounds
on the derivatives of the symbol as (x′, ξ′) → ∞. However, Scomp

1/2 (Rn−1) �⊂ Ŝ1/2, as

the former does not require uniform bounds as x′ → ∞. For a ∈ Ŝ1/2, we define its
Weyl quantization Ôph(a) as

Ôph(a)u(x′) = (2πh)1−n

∫
e

i

h
(x′−y′)·ξ′

a
(x′ + y′

2
, ξ′

)
u(y′), , dξ′dy′. (6.7)

The difference from (5.2) is the lack of the cutoff χ̌(x − y); because of this, the
operator Ôph(a) need not be properly supported. However, this operator acts on
the space of Schwartz functions on R

n−1, as well as on L2(Rn−1), therefore one can
still compose two such operators. The resulting calculus has the properties listed in
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Lemma 5.1, parts 2–5, with the improvement that Ôph(a)Ôph(b) = Ôph(a#b) with-
out the O(h∞) remainder; in fact, Ŝ1/2 lies in the class S̃1/2(T ∗

R
n−1) from [WZ11,

(3.5)].
The proof of Lemma 6.2 is based on the following precise estimates on the full

symbol of a function of the harmonic oscillator:

Lemma 6.3. Put

P0(h) = −h2Δ2
x′ + |x′|2,

an unbounded operator on L2(Rn−1), and let χ ∈ C∞
0 (R). Then:

1. χ(P0(h)) = Ôph(aχ), where aχ(x′, ξ′;h) ∈ Ŝ and

aχ(x′, ξ′;h) = χ(|x′|2 + |ξ′|2) + O(h)Ŝ ,

aχ = O(h∞)Ŝ outside of any neighborhood of {(x′, ξ′) | |x′|2 + |ξ′|2
∈ suppχ}. (6.8)

2. χ((h̃/h)P0(h)) = Ôph(aχ((h̃/h)·)), where aχ((h̃/h)·)(x
′, ξ′;h) ∈ Ŝ1/2 and

aχ((h̃/h)·) = χ((h̃/h)(|x′|2 + |ξ′|2)) + O(h̃)Ŝ1/2
.

If T > 0 satisfies suppχ ⊂ (−T, T ) and r =
√|x′|2 + |ξ′|2, then for each α,N ,

|∂α
x′,ξ′aχ((h̃/h)·)(x

′, ξ′)| ≤ CαN (h/h̃)−|α|/2(h/r2)N if r ≥ (Th/h̃)1/2.

The proof of Lemma 6.3 is given at the end of this subsection. Using part 2 of
it together with conjugating by an exponential and performing a shift to reduce to
the case (x′

l, ξ
′
l) = 0, we see that Ψ̃l = Ôph(šl), where

šl(x′, ξ′;h, h̃) = aχ̃((h̃/h)·)(x
′ − x′

l, ξ
′ − ξ′

l;h)

lies in Ŝ1/2 uniformly in l. Moreover, putting T = 2 in part 2 of Lemma 6.3 and
recalling that supp χ̃ ⊂ (−2, 2), we get

šl(x′, ξ′) = χ̃((h̃/h)(|x′ − x′
l|2 + |ξ′ − ξ′

l|2)) + O(h̃)Ŝ1/2
, (6.9)

šl = O (
(h/(|x′ − x′

l|2 + |ξ′ − ξ′
l|2))∞)

Ŝ1/2
outside of B((x′

l, ξ
′
l), 2(h/h̃)1/2).

(6.10)

Proof of Lemma 6.2. The idea is to use the improved bound on the full symbol (6.10)
together with information on how many of the points (x′

l, ξ
′
l) can lie close to some

fixed point. Fix (x′
0, ξ

′
0) ∈ T ∗

R
n−1 and consider the dyadic partition

{1, . . . ,M(h, h̃)} =
⊔
j≥0

Lj ,

L0 = {l | (x′
l, ξ

′
l) ∈ B((x′

0, ξ
′
0), 2(h/h̃)1/2)},

Lj = {l | (x′
l, ξ

′
l) ∈ B((x′

0, ξ
′
0), 2

j+1(h/h̃)1/2) \B((x′
0, ξ

′
0), 2

j(h/h̃)1/2)}, j ≥ 1.
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By the triangle inequality,
⋃

l∈Lj

B
(
(x′

l, ξ
′
l),

1
2
(h/h̃)1/2

)
⊂ B((x′

0, ξ
′
0), 2

j+2(h/h̃)1/2).

Moreover, since the pairwise distance between the points (x′
l, ξ

′
l) is > (h/h̃)1/2 by the

construction in Section 6.2, the union on the left-hand side is disjoint. By comparing
the volumes of the two sets, we arrive at the bound

|Lj | ≤ C · 2j(2n−2). (6.11)

Now, we write Ψ̃Π = χbÔph(šΠ)χb, where

šΠ =
∑
j≥0

š
(j)
Π , š

(j)
Π =

∑
l∈Lj

šl.

The symbol š(0)
Π will be the principal part of šΠ at (x′

0, ξ
′
0). The symbols š(j)Π for

j ≥ 1 at (x′
0, ξ

′
0) are nonzero because of tunneling; however, we can estimate their

contribution as O(h̃∞). More precisely, we combine (6.10) with the bound (6.11) on
|Lj | to get

š(j) = O((2−j h̃)∞)Ŝ1/2
at (x′

0, ξ
′
0) for j ≥ 1.

Hence
∑∞

j=1 š
(j) is O(h̃∞)Ŝ1/2

at (x′
0, ξ

′
0). Now, by (6.11), š(0)

Π is the sum of a bounded

number of šl’s and is therefore in Ŝ1/2 at (x′
0, ξ

′
0). Moreover, if (x′

0, ξ
′
0) ∈ Π(supp ã),

then by (6.4) and (6.9), at least one term in the sum for š(0)(x′
0, ξ

′
0) is equal to

1 + O(h̃), and the other terms are nonnegative modulo O(h̃). Therefore, šΠ ∈ Ŝ1/2

and |šΠ| ≥ 1 − O(h̃) near Π(supp ã). Also, šΠ = O(h∞)Ŝ1/2
outside a fixed com-

pact set. Then Ψ̃Π = χbÔph(šΠ)χb lies in Ψcomp
1/2 (Rn−1) and σ̃(Ψ̃Π) = χb(x′)2šΠ +

O(h1/2h̃1/2)Scomp
1/2 (Rn−1); this finishes the proof.

Proof of Lemma 6.3. 1. This follows from standard results on functional calculus
of pseudodifferential operators, see for example [DS99, Chapter 8]. In partic-
ular, the fact that a ∈ Ŝ follows from [DS99, Theorem 8.7], with the order
function m = 1 + |x′|2 + |ξ′|2, while (6.8) follows from the expansion for aχ

preceding [DS99, (8.15)]. The validity of (6.8) in Ŝ is checked as in the proof
of [DS99, Theorem 8.7], by using the composition formula and the fact that
χ(P0(h)) = χk(P0(h))(P0(h) + i)−k, where χk(λ) = (λ+ i)kχ(λ) lies in C∞

0 (R)
and (P0(h) + i)−k has symbol in S(m−k), in the notation of [DS99].

2. We use the unitary rescaling operator (see [Zwo12, Section 6.1.2])

Tβ : L2(Rn−1) → L2(Rn−1), β > 0, (Tβu)(x̃) = β(n−1)/4u(β1/2x̃);

then

χ((h/h̃)P0(h)) = T−1
β χ((h̃β/h)P0(h/β))Tβ .
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Moreover, the operator Tβ changes Weyl quantized symbols as follows:

Ôph(a) = T−1
β Ôph/β(aβ)Tβ , aβ(x̃, ξ̃) = a(β1/2x̃, β1/2ξ̃).

Take β = h/h̃; then

χ((h̃/h)P0(h)) = T−1
β χ(P0(h̃))Tβ = T−1

β Ôph̃(aχ(·, ·; h̃))Tβ = Ôph(aχ((h̃/h)·)),

aχ((h̃/h)·)(x
′, ξ′;h) = aχ((h̃/h)1/2x′, (h̃/h)1/2ξ′; h̃).

It remains to use the estimates on aχ from part 1, with h̃ taking the place of h.

6.4 Approximation. We finally use parametrices to obtain the approximation.
We write Ã = Ã′ + Ã′′, where

Ã′ = Oph(ã′), ã′(x1, x
′, ξ1, ξ′) = χ̃(ξ1)ã(x1, x

′, 0, ξ′),

with χ̃ ∈ C∞
0 (R) as in Section 6.3. Consider the operator Ψ̃Π from Lemma 6.2, take

χ̃′ ∈ C∞
0 (R) equal to 1 near supp χ̃, and put

ΨΠ = χ̃′(hDx1) ⊗ Ψ̃Π ∈ Ψcomp
1/2 (XM ).

The symbol sΠ = σ̃(ΨΠ) satisfies |sΠ| ≥ 1 − O(h̃) on supp(ã′). (Here we use that
|s̃Π| ≥ 1 − O(h̃) on Π(supp ã) from Lemma 6.2, the definition (6.2) of Π, and χ̃′χ̃ =
χ̃.) Put B′ = Oph(ã′/sΠ) ∈ Ψcomp

1/2 (XM ); then

Ã′ = ΨΠB
′ + O(h̃)Ψcomp

1/2 (XM ),

and we have written Ã′ as the sum of a finite rank term and an O(h̃) remain-
der, as needed in the statement of Lemma 6.1. To treat the Ã′′ term, put B′′ =
Oph((ã − ã′)/ξ1) ∈ (h̃/h)1/2Ψcomp

1/2 (XM ) (with the prefactor coming from the fact

that ∂ξ1 ã can grow like (h̃/h)1/2). Then by part 6 of Lemma 5.2,

Ã′′ = (hDx1)B
′′ + O(h̃)Ψcomp

1/2 (XM ).

Therefore (with O(h̃) below in the sense of (3.2))

A = χ(h̃Dx1)Ã = χ(h̃Dx1)ΨΠB
′ + χ(h̃Dx1)(hDx1)B

′′ + O(h̃).

However, χ(h̃Dx1)(hDx1) = χ(h̃Dx1)(h̃Dx1)(h/h̃) = O(h/h̃); therefore,

A = χ(h̃Dx1)ΨΠB
′ + O(h̃).

We now put AR = χ(h̃Dx1)ΨΠB
′. To estimate its rank, we write for h̃ small enough,

χ(h̃Dx1)ΨΠ = χ(h̃Dx1) ⊗ Ψ̃Π, where χ(h̃Dx1) on the right-hand side acts on L2(S1)
and has rank O(h̃−1); therefore, by (6.5),

rankAR ≤ Ch̃ν−nh−ν

and the proof of Lemma 6.1 is finished.
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7 Proof of the Main Lemma

Fix δ > 0 small enough so that all the results of Section 4 apply. We will now
impose an additional condition on Q: namely, that there exists Q0 ∈ Ψ1(X) such
that TsQT

−1
s = ±Q∗

0Q0 microlocally near Σ±. Such a Q can be obtained by first
choosing Q0 and Ts. Note that Q0 will be elliptic on {〈ξ〉−2p = 0} ∩ {μ ≤ −δ}.

7.1 Positive commutator estimates. In Sections 7.1 and 7.2 we assume
| Re z| ≤ C0h, | Im z| ≤ C0h. We relax this assumption in Section 7.3 where we
prove an improved estimate for Im z > 0.

We start with the construction of an escape function near the trapped set. We
recall [SZ07, Lemma 7.6] (where one puts ε = h/h̃):

Lemma 7.1. Suppose the geodesic flow on M is hyperbolic on K in the sense of the
assumption of Theorem 2. Then there exists a neighborhood VK of ι(K) and a fam-
ily of smooth real-valued functions f̂(x, ξ;h, h̃) on VK depending on two parameters
0 < h < h̃, such that for some constant Cf̂ > 1,

f̂ = O(log(1/h)), ∂αHk
p f̂ = O((h̃/h)−|α|/2), |α| + k ≥ 1;

Hpf̂(x, ξ) ≥ C−1

f̂
> 0 for d((x, ξ), ι(K̃)) > Cf̂ (h/h̃)1/2.

Note that we have written O(log(1/h)) where [SZ07] has O(log(h̃/h)). This is equiv-
alent because when h < h̃2 < 1, log(1/h)/2 ≤ log(h̃/h) ≤ log(1/h). For later conve-
nience, we assume that VK is small enough that

V K ⊂ {μ >
√

5δ}, (7.1)

and that the estimate (4.5) holds on V K .
Take a neighborhood UK of K such that UK ⊂ VK , and which is sufficiently

small that Lemma 4.7 applies, and let f0 be the function defined by Lemma 4.7.
Then define

F0 ∈ Ψcomp(X), F ∗
0 = F0, σ(F0) = f0 + O(h).

Here F0 is a standard compactly microlocalized semiclassical pseudodifferential oper-
ator in the sense of Section 3.1. Next take χ̂ ∈ C∞

0 (VK) such that χ̂ = 1 near UK ,
and define

F̂ ∈ log(1/h)Ψcomp
1/2 (X), WF�(F̂ ) ⊂ VK , F̂ ∗ = F̂ , σ̃(F̂ ) = χ̂f̂ + O(h1/2h̃1/2).

Here F̂ is a pseudodifferential operator in the exotic class described in Lemma 5.4.
Let M be a large constant and define the full quantized escape function

F = F̂ +M log(1/h)F0.

Then F = O(log(1/h))Ψcomp
1/2

and its principal symbol is

f = χ̂f̂ +M log(1/h)f0.



GAFA FRACTAL WEYL LAWS FOR ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 1189

Note that

f = O(log(1/h)), ∂αf = O((h/h̃)−|α|/2), |α| > 0.

We then calculate

Hpf = χ̂ ·Hpf̂ + f̂ ·Hpχ̂+M log(1/h)Hpf0; (7.2)

we see by Lemma 7.1 that Hpf = O(log(1/h))Scomp
1/2

and therefore (see Lemma 5.2(7)
and Lemma 5.4(3)) we gain a full power of h when commuting F with P (0):

[P (0), F ] = O(h log(1/h))Ψcomp
1/2

, σ̃([P (0), F ]) = −ihHpf + O(hh̃)Scomp
1/2

. (7.3)

Since ±Hpf0 > 0 near the set V± defined in Lemma 4.7(3), we can fix M large
enough so that for some constant Cf > 0,

±Hpf > C−1
f log(1/h) near V±. (7.4)

We now perform the conjugation. Since F is compactly microlocalized and ‖F‖ =
O(log(1/h)), we see that for any fixed t, the operator etF − 1 is compactly microlo-
calized and polynomially bounded in h. Given the operator Ts from Lemma 4.6 (and
in particular s is large enough depending on Im z), define the conjugated operator

Pt(z) = e−tFTs(P (z) − iQ)T−1
s etF .

Here t > 0 will be chosen in Lemma 7.9 so that the contribution from the conjuga-
tion by etF is greater than that of ImTsP (z)T−1

s ; how large t needs to be depends
on Im z.

Lemma 7.2. We have

Pt(z) = Ts(P (z) − iQ)T−1
s + t[Ts(P (z) − iQ)T−1

s , F ] + Ot(hh̃)Ψcomp
1/2

. (7.5)

Proof. We follow the proof of [SZ07, Proposition 8.2]. We write

Pt(z) = e−t adF (Ts(P (z) − iQ)T−1
s )=Ts(P (z) − iQ)T−1

s − t adF (Ts(P (z) − iQ)T−1
s )

+

t∫

0

(t− t′)e−t′F ad2
F (Ts(P (z) − iQ)T−1

s )et
′F dt′. (7.6)

By the Bony–Chemin Theorem ([BC94]; see [SZ07, Lemma 8.1] for this version),
the conjugation A �→ e−t′FAet

′F is continuous Ψcomp
1/2 → Ψcomp

1/2 . Hence, it remains
to show that

ad2
F (Ts(P (z) − iQ)T−1

s ) = O(hh̃)Ψcomp
1/2

.

Using Lemma 4.1(6) and the fact that |z| ≤ 2C0h (see the remark at the beginning
of the subsection), WF�(F̂ ) ∩ WF�(Q) = ∅, and Lemma 5.4(3),

[Ts(P (z) − iQ)T−1
s , F ] = [P (0), F ] − iM log(1/h)[Q,F0] + O(h3/2h̃1/2)Ψcomp

1/2
.

(7.7)
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The second term on the right-hand side is O(h log(1/h))Ψcomp ; commuting it with
F , we get O(h3/2h̃1/2 log(1/h)). The third term is handled similarly. As for the first
term, by (7.3) the symbol of h−1[P (0), F ] satisfies (5.8); therefore, by Lemma 5.4(2),
[[P (0), F ], F ] ∈ hh̃Ψcomp

1/2 . ��
Combining Lemma 4.1(6), |z| ≤ 2C0h, (7.3), (7.5), and (7.7), we get

Pt(z) = P (0) − iQ+ Ot(h)Ψ1 + Ot(h log(1/h))Ψcomp
1/2

. (7.8)

Since q and f0 are real-valued, Re[Q,F0] = O(h2)Ψcomp ; therefore, using (7.5) and
(7.7),

ImPt(z) = Im(TsP (z)T−1
s ) − Re(TsQT

−1
s ) + t Im[P (0), F ] + Ot(hh̃)Ψcomp

1/2
. (7.9)

We will use a positive commutator argument for Im P̃t(z), with P̃t(z) = Pt(z)− ithA
as in (2.1), to control the norm of u in terms of P̃t(z)u. We first analyze the terms
involving Pt(z), then define A and analyze the −ithA term, and finally put them
all together in Sects. 7.2, 7.3. The right-hand side of (7.9) consists of several com-
ponents in different symbol classes, with positivity of the sum provided by different
components in different regions of T ∗

X. In Lemma 7.4 we construct a microlo-
cal partition of unity corresponding to these regions, and treat each member of
the partition in a separate lemma. The following lemma is useful in dealing with
this partition; the left-hand side of (7.10) is easily summed over different operators
Ψ1, and the right-hand side is adapted to a positive commutator argument.

Lemma 7.3. Let Ψ1 ∈ Ψ0 have real-valued principal symbol and assume that
TsQT

−1
s = ±Q∗

0Q0 near WF�(Ψ1). Then for u ∈ C∞(X),

± Re〈ImPt(z)u,Ψ2
1u〉 ≤ ±〈(Im(TsP (z)T−1

s ))Ψ1u,Ψ1u〉
∓tRe〈i[P (0), F ]Ψ1u,Ψ1u〉 + Ot(hh̃)‖u‖2

L2 . (7.10)

Proof. We first claim that the left-hand side can be replaced by ±〈(ImPt(z))Ψ1u,
Ψ1u〉:

Re〈ImPt(z)u,Ψ2
1u〉 − 〈ImPt(z)Ψ1u,Ψ1u〉 = Ot(h3/2h̃1/2 log(1/h))‖u‖L2 . (7.11)

Indeed, write the left-hand side as Re(Bu, u), where

B = Ψ∗
1((Ψ

∗
1 − Ψ1) ImPt(z) + [Ψ1, ImPt(z)]).

We now use (7.8). The part of B corresponding to P (0) − iQ + Ot(h)Ψ1 lies in
hΨ1 for each t, and, when multiplied by h−1, has imaginary-valued principal sym-
bol; therefore, the corresponding part of Re(Bu, u) is Ot(h2)‖u‖2

L2 . The part of B
corresponding to Ot(h log(1/h))Ψcomp

1/2
is Ot(h3/2h̃1/2 log(1/h))Ψcomp

1/2
by Lemma 5.2(6).

Having established (7.11), we use (7.9):

±〈ImPt(z)Ψ1u,Ψ1u〉 = ±〈Im(TsP (z)T−1
s )Ψ1u,Ψ1u〉

−‖Q0Ψ1u‖2
L2 ± t Im〈[P (0), F ]Ψ1u,Ψ1u〉 + Ot(hh̃)‖u‖2

L2 ;

it remains to note that the second term on the right-hand side is ≤ 0. ��
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We now introduce the microlocal partition of unity mentioned before Lemma 7.3.
The operator ΨE corresponds to the elliptic set of P (z)− iQ, ΨL± correspond to the
neighborhoods of the radial sets L± where Im(TsP (z)T−1

s ) has a favorable sign by
Lemma 4.6, Ψ0± correspond to the transition region, where the escape function f0

from Lemma 4.7 provides positivity, and ΨK handles a neighborhood of the trapped
set.

Lemma 7.4. There exist operators ΨE ,ΨL± ∈ Ψ0(X) and Ψ0±,ΨK ∈ Ψcomp(X)
with real-valued principal symbols, and neighborhoods Σ̃± of Σ± ∩ {μ ≥ −δ}, such
that

(1) WF�(ΨE) is contained in the elliptic set of p− iq;
(2) Ψ2

L+
+Ψ2

0++Ψ2
K = 1 and ΨL− = Ψ0− = 0 microlocally on Σ̃+ and Ψ2

L− +Ψ2
0− = 1

and ΨL+ = Ψ0+ = ΨK = 0 microlocally on Σ̃−;

(3) ΨE is elliptic on the complement of Σ̃+ ∪ Σ̃−;
(4) TsQT

−1
s = ±Q∗

0Q0 microlocally near WF�(ΨL±) ∪ WF�(Ψ0±), and WF�

(TsQT
−1
s ) ∩ WF�(ΨK) = ∅;

(5) ±〈ξ〉−1σ(h−1 Im(TsP (z)T−1
s )) < 0 and ±Hpf0 ≥ 0 near WF�(ΨL±); moreover,

WF�(ΨL±) ∩ UK = WF�(ΨL±) ∩ WF�(F̂ ) = ∅;
(6) ±Hpf ≥ C−1

f log(1/h) > 0 on WF�(Ψ0±);

(7) WF�(ΨL±) and WF�(Ψ0±) do not intersect ι(K̃);
(8) WF�(ΨK) ⊂ UK and Hpf0 ≥ 0 near WF�(ΨK);
(9) ∓ Re(〈ξ〉−1σ(∂zP (0))) > 0 on Σ̃±.

Proof. We will define open coverings

Σ+ ∩ {μ ≥ −δ} ⊂ UL+ ∪ U0+ ∪ UK , Σ− ∩ {μ ≥ −δ} ⊂ UL− ∪ U0−, (7.12)

take partitions of unity subordinate to these open coverings such that

ψ2
L+

+ ψ2
0+ + ψ2

K = 1 near Σ+ ∩ {μ ≥ −δ}, ψ2
L− + ψ2

0− = 1 near Σ− ∩ {μ ≥ −δ},
(7.13)

satisfying the additional support conditions (possible since Σ+ ∩ Σ− = ∅)

(suppψL+ ∪ suppψ0+ ∪ suppψK) ∩ (Σ− ∩ {μ ≥ −δ}) = ∅,
(suppψL− ∪ suppψ0−) ∩ (Σ+ ∩ {μ ≥ −δ}) = ∅, (7.14)

and take open Σ̃± ⊃ Σ± ∩{μ ≥ −δ} such that (7.13) and (7.14) hold with Σ± ∩{μ ≥
−δ} replaced by Σ̃±. The Ψj will be obtained at the end of this proof by quantizing
the ψj and adding correction terms (without changing the semiclassical wavefront
sets) to obtain the eqnarrays in item (2) without remainders. Since p− iq is elliptic
on the complement of Σ̃+ ∪ Σ̃− (as follows from the properties of q listed at the end
of Section 4.1), we can find ΨE ∈ Ψ0(X) such that items (1) and (3) hold.
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The open set UK is the same as the one defined immediately following Lemma 7.1.
Since WF�(ΨK) ⊂ UK , the properties of WF�(ΨK) asserted in items (4) and (8)
follow from (7.1), which implies UK ⊂ {μ > 0} ⊂ T

∗
X \ WF�(TsQT

−1
s ), and from

Lemma 4.7(2).
Let UL± be open sets such that, with ρ1 defined in (4.10),

Σ± ∩ {μ ≥ −δ} ∩ {ρ1 ≤ 5δ} ⊂ UL±, (7.15)

and such that UL± is disjoint from

WF�(TsQT
−1
s ∓Q∗

0Q0) ∪ {±〈ξ〉−1σ(h−1 Im(TsP (z)T−1
s )) ≥ 0} ∪ UK

∪WF�(F̂ ) ∪ {±Hpf0 < 0} ∪ ι(K̃) ∪ {∓ Re(〈ξ〉−1σ(∂zP (0))) ≤ 0}.
To see that such sets exist, note that Σ± ∩ {μ ≥ −δ} ∩ {ρ1 ≤ 5δ} is disjoint from
WF�(TsQT

−1
s ∓Q∗

0Q0) by the condition imposed on Q0 when it was introduced at
the beginning of Section 7, from {±〈ξ〉−1σ(h−1 Im(TsP (z)T−1

s )) ≥ 0} by Lemma 4.6,
from UK ∪ WF�(F̂ ) by (7.1), from {±Hpf0 < 0} by Lemma 4.7(2), from ι(K̃) by
the fact that L± is a source/sink [see (4.11)], and from {∓ Re(〈ξ〉−1σ(∂zP (0))) ≤ 0}
by (4.5). This disjointness condition implies the properties of WF�(ΨL±) asserted
in items (4), (5), and (7).

Let U0± be open sets such that

V± ⊂ U0±, (7.16)

(with notation as in Lemma 4.7(3)) and such that U0± is disjoint from

WF�(TsQT
−1
s ∓Q∗

0Q0) ∪ {±Hpf ≤ C−1
f log(1/h)}

∪ι(K̃) ∪ S∗X ∪ {∓ Re(〈ξ〉−1σ(∂zP (0))) ≤ 0}.
That this is possible is checked as in the construction of UL± above, and by (7.4).
This disjointness condition implies the properties of WF�(Ψ0±) asserted in items (4),
(6), and (7). The condition of disjointess from S∗X ensures that Ψ0± is compactly
microlocalized.

The covering property (7.12) follows from (7.15) and (7.16). Now item (9) follows
from

Σ̃+ ⊂ UL+ ∪ U0+ ∪ UK , Σ̃− ⊂ UL− ∪ U0−,

together with the fact that the closures of the right hand sides of this formula are
disjoint from {∓ Re(〈ξ〉−1σ(∂zP (0))) ≤ 0} by construction.

We now explain in detail the construction of the Ψj , giving item (2). We have

Oph(ψL+)2 + Oph(ψ0+)2 + Oph(ψK)2 = 1 +R+

microlocally on Σ̃+, where R+ ∈ hΨ−1. There exists an operator S+ = 1 + O(h)Ψ−1

such that S2
+(1 +R+) = 1 microlocally on Σ̃+. Then

(S+ Oph(ψL+))2 + (S+ Oph(ψ0+))2 + (S+ Oph(ψK))2 = 1 + O(h2)Ψ−2 ,
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microlocally on Σ̃+. Iterating the process of dividing the right hand side over, and
concluding with a Borel summation, we improve the remainder to O(h∞)Ψ−∞ , while
preserving the property WF�(Ψj) ⊂ suppψj . The operators ΨL− and Ψ0− are con-
structed similarly. ��

We now prove portions of the estimate corresponding to each of the pseudodif-
ferential operators of Lemma 7.4. We start with the radial points, where we use the
conjugation by Ts:

Lemma 7.5. For some constant Ct and u ∈ C∞(X),

± Re〈ImPt(z)u,Ψ2
L±u〉 ≤ −C−1

t h‖ΨL±u‖2
H

1/2
�

+ Ot(hh̃)‖u‖2
L2 .

Proof. Note that, by Lemma 7.4(5), WF�(F̂ ) ∩ WF�(ΨL±) = ∅. By Lemma 7.3, it
is then enough to estimate

±〈(Im(TsP (z)T−1
s ))ΨL±u,ΨL±u〉 ∓ tM log(1/h) Re〈i[P (0), F0]ΨL±u,ΨL±u〉.

We now use Lemma 7.4(5) again. By the non-sharp G̊arding inequality (3.4), the
first term is ≤ −C−1

t h‖ΨL±u‖2
H

1/2
�

+ O(h∞)‖u‖2
L2 . Also, the principal symbol of

∓h−1i[P (0), F0] is equal to ∓Hpf0 ≤ 0 near WF�(ΨL±); then the second term is
≤ O(h2 log(1/h))‖u‖2

L2 by the sharp G̊arding inequality (3.5). ��
Next, we deal with the transition region:

Lemma 7.6. For some constant Ct and u ∈ C∞(X),

± Re〈ImPt(z)u,Ψ2
0±u〉 ≤ −C−1

t h log(1/h)‖Ψ0±u‖2
L2 + Ot(hh̃)‖u‖2

L2 .

Proof. By Lemma 7.3, it is enough to estimate

±〈(Im(TsP (z)T−1
s ))Ψ0±u,Ψ0±u〉 ∓ tRe〈i[P (0), F ]Ψ0±u,Ψ0±u〉.

Since Im(TsP (z)T−1
s ) ∈ hΨ1 and Ψ0± is compactly microlocalized, the first term is

O(h)‖Ψ0±u‖2
L2 . Therefore, it is enough to show that

∓ Re〈i[P (0), F ]Ψ0±u,Ψ0±u〉 ≤ −C−1h log(1/h)‖Ψ0±u‖2
L2 + O(h∞)‖u‖L2 ;

by (7.3) and Lemma 7.4(6), this follows by Lemma 5.3 applied to (h log(1/h))−1i
[P (0), F ]. ��

To deal with the ΨK term, we have to modify our operator, adding a term −ithÃ,
which provides positivity in an O((h/h̃)1/2) size neighborhood of the trapped set.
Note that the resulting operator is not yet P̃t(z); the final operator A that we use will
also have a second microlocalization factor, introduced below. Let Cf̂ be the constant
from Lemma 7.1. Let χ1 ∈ C∞(R) be a nonnegative function such that χ1(λ)+λ = 1
for λ ≤ C−1

f̂
/2 and suppχ1 ⊂ (−∞, C−1

f̂
). Then the function χ1(Hpf̂), defined on
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VK , is supported O((h/h̃)1/2) close to ι(K̃). Moreover, χ1(Hpf̂) > 0 in the region
where Hpf̂ is not positive and

χ1(Hpf̂) +Hpf̂ ≥ C−1

f̂
/2 > 0 on VK . (7.17)

Take a real-valued χ̃ ∈ C∞
0 (UK) equal to 1 near WF�(ΨK). Then the function

ã = χ1(Hpf̂)χ̃ (7.18)

is in C∞
0 (UK) and thus can be extended to T ∗

X. It follows from Lemma 7.1 that ã
lies in the exotic class Scomp

1/2 from Section 5.1:

∂α
x,ξH

k
p ã = O((h/h̃)−|α|/2). (7.19)

Let Ã ∈ Ψcomp
1/2 be any self-adjoint quantization of ã; note that WF�(Ã) ⊂ UK . In

fact, WF�(Ã) ⊂ supp χ̃ ∩ ι(K̃), because by Lemma 7.1, for a fixed (x, ξ) �∈ ι(K̃)
and h/h̃ small enough, we have Hpf̂(x, ξ) ≥ C−1

f̂
and thus χ1(Hpf̂(x, ξ)) = 0. In

particular, recalling Lemma 4.7(4), we have

WF�(Ã) ∩ supp(Hpf0) = ∅. (7.20)

Lemma 7.7. For t large enough, some constant Ct and u ∈ C∞(X),

Re〈Im(Pt(z) − ithÃ)u,Ψ2
Ku〉 ≤ −C−1

t h‖ΨKu‖2
L2 + Ot(hh̃)‖u‖2

L2 .

Proof. By Lemma 7.3, and using that [Ã,ΨK ] = O(h1/2h̃1/2)Ψcomp
1/2

by Lemma 5.2(6),
we see that it suffices to estimate

〈(Im(TsP (z)T−1
s ))ΨKu,ΨKu〉 −Mt log(1/h) Re〈i[P (0), F0]ΨKu,ΨKu〉

−tRe〈i[P (0), F̂ ]ΨKu,ΨKu〉 − th〈ÃΨKu,ΨKu〉.

Since Im(TsP (z)T−1
s ) ∈ hΨ1 and ΨK is compactly microlocalized, the first

term can be estimated by C1h‖ΨKu‖2
L2 , where C1 is independent of t. Since

σ(h−1i[P (0), F0]) = Hpf0 ≥ 0 near WF�(ΨK) by Lemma 7.4(8), the second term is
≤ Ot(h2 log(1/h))‖u‖2

L2 by sharp G̊arding inequality (3.5). Therefore, it suffices to
pick t large enough and prove that for some constant C2 independent of t, we have

− Re((i[P (0), F̂ ] + hÃ)ΨKu,ΨKu) ≤ −C−1
2 h‖ΨKu‖2

L2 + O(h∞)‖u‖2
L2 . (7.21)

Near WF�(ΨK) ⊂ UK , χ̂ = 1 and Hp(χ̂f̂) = Hpf̂ = O(1)Scomp
1/2

; therefore, by

Lemma 5.4(3), i[P (0), F̂ ] + hÃ ∈ hΨcomp
1/2 and, when multiplied by h−1, its prin-

cipal symbol is Hpf̂ + χ1(Hpf̂) + O(h̃); by (7.17) this symbol is positive and it
remains to apply Lemma 5.3. ��
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We will now fix t and forget the dependence of the remainders on it.
It is finally time to use second microlocalization and construct the operator A.

Let P̂ ∈ Ψ2 be any self-adjoint operator elliptic near the fiber infinity S∗X and
whose principal symbol p̂ is equal to p in UK . Take a function χ ∈ C∞

0 (R) equal to
1 near 0 and put

A = χ((h̃/h)P̂ )Ã, P̃t(z) = Pt(z) − ithA. (7.22)

We use the ellipticity of P̃t(z) away from the energy surface to estimate the difference
A− Ã:

Lemma 7.8. For u ∈ C∞(X), and any N

‖ Re(A− Ã)u‖L2 ≤ O(h̃/h)‖P̃t(z)u‖H−N
�

+ O(h̃)‖u‖L2 .

Proof. Since both Ã and χ((h̃/h)P̂ ) are self-adjoint, we get

Re(A− Ã) =
1
2
[Ã, χ((h̃/h)P̂ )] − (1 − χ((h̃/h)P̂ ))Ã.

Now, by (7.19) and Lemma 5.8(2), [Ã, χ((h̃/h)P̂ )] = O(h̃), so we can drop the com-
mutator term. Write χ(λ) − 1 = λψ(λ), where ψ is a bounded function. By the
functional calculus,

−(1 − χ((h̃/h)P̂ ))Ã = ψ((h̃/h)P̂ )(h̃/h)P̂ Ã;

since ψ((h̃/h)P̂ ) is bounded on L2 uniformly in h, h̃, it is enough to prove that

‖P̂ Ãu‖L2 ≤ O(1)‖P̃t(z)u‖H−N
�

+ O(h)‖u‖L2 .

Since [P̂ , Ã] = O(h) by (7.19) and Lemma 5.2(7), this reduces to

‖ÃP̂ u‖L2 ≤ O(1)‖P̃t(z)u‖H−N
�

+ O(h)‖u‖L2 .

Now, P̂ = Ts(P (0)−iQ)T−1
s +O(h) microlocally in UK ; therefore, it suffices to show

that

‖ÃTs(P (0) − iQ)T−1
s u‖L2 ≤ O(1)‖P̃t(z)u‖H−N

�

+ O(h)‖u‖L2 .

The latter estimate follows from (7.5), Pt(z) = P̃t(z)+O(h), (7.7), and the fact that
[P (0) − iQ, F ] = O(h) microlocally near WF�(Ã); indeed, Q = 0 and [P (0), F̂ ] =
O(h) microlocally on UK ⊃ WF�(Ã), and [P (0), F0] = O(h2) microlocally near
WF�(Ã) by (7.20). ��

We can now combine the previous two lemmas to prove

Lemma 7.9. For t large enough, some constant Ct, and u ∈ C∞(X),

Re〈Im P̃t(z)u,Ψ2
Ku〉 ≤ −C−1

t h‖ΨKu‖2
L2 + Ot(hh̃)‖u‖2

L2 + Ot(h̃)‖P̃t(z)u‖H−N
�

‖u‖L2 .

Proof. The left-hand side is

Re〈Im(Pt(z) − ithÃ)u,Ψ2
Ku〉 − thRe〈Re(A− Ã)u,Ψ2

Ku〉;
the first term is estimated by Lemma 7.7 and the second term is estimated by
Lemma 7.8. ��
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7.2 Proof of Lemma 2.2(1). First, let Ψ1 ∈ {ΨL± ,Ψ0±}. Then

2Ψ∗
1(ReA) = [Ψ∗

1, χ((h̃/h)P̂ )]Ã+ χ((h̃/h)P̂ )Ψ∗
1Ã+ Ψ∗

1Ãχ((h̃/h)P̂ ).

This operator is O(h̃), as the commutator above is O(h̃) by Lemma 5.8(2) and
Ψ∗

1Ã = O(h∞) by Lemma 7.4(7). Hence Lemmas 7.5 and 7.6 are valid for P̃t(z) in
place of Pt(z). Now, put

Z = Ψ2
L+

+ Ψ2
0+ + Ψ2

K − Ψ2
L− − Ψ2

0−; (7.23)

then Z = ±1 microlocally on Σ̃± by Lemma 7.4(2). For u ∈ C∞(X), we have

Im〈P̃t(z)u, Zu〉 = 〈Im P̃t(z)u, Zu〉 +
1
2i

〈u, ([P̃t(z), Z] + (Z − Z∗)P̃t(z))u〉.

However, by (7.8), Lemma 5.2(6), and the fact that the principal symbol of Z is
real,

[Pt(z), Z] + (Z − Z∗)Pt(z) = O(h)Ψ1 + O(h3/2h̃1/2 log(1/h))Ψcomp
1/2

,

and it is microlocalized outside of Σ̃+ ∪ Σ̃−, that is, on the elliptic set of ΨE . Also,
[A,Z] + (Z −Z∗)A = O(h̃)L2→L2 by Lemma 5.8(2). Therefore, by Lemmas 7.5, 7.6,
and 7.9, for t large enough, we have

Im〈P̃t(z)u, Zu〉 = 〈Im P̃t(z)u, Zu〉 + O(h)‖ΨEu‖2
H

1/2
�

+ O(hh̃)‖u‖2
L2

≤ −C−1h(‖ΨL+u‖2
H

1/2
�

+ ‖Ψ0+u‖2
H

1/2
�

+ ‖ΨKu‖2
H

1/2
�

+‖ΨL−u‖2
H

1/2
�

+ ‖Ψ0−u‖2
H

1/2
�

)

+O(hh̃)‖u‖2
L2 + O(h)‖ΨEu‖2

H
1/2
�

+ O(h̃)‖P̃t(z)u‖H−N
�

‖u‖L2 .

(7.24)

Combining this with Lemma 7.4(3), we get

‖u‖2
H

1/2
�

≤ O(1)‖ΨEu‖2
H

1/2
�

+ O(h̃)‖u‖2
L2 + O(h−1)‖P̃t(z)u‖H

−1/2
�

‖u‖H
1/2
�

and therefore for h̃ small enough,

‖u‖H
1/2
�

≤ O(1)‖ΨEu‖H
1/2
�

+ O(h−1)‖P̃t(z)u‖H
−1/2
�

. (7.25)

Finally, by Lemma 7.4(1) and the elliptic estimate (3.3),

‖ΨEu‖H
1/2
�

≤ O(1)‖(P (0) − iQ)u‖H
−1/2
�

+ O(h∞)‖u‖H
1/2
�

;

combining this with (7.8) and using P̃t(z) = Pt(z) + O(h), we get

‖ΨEu‖H
1/2
�

≤ O(1)‖P̃t(z)u‖H
−1/2
�

+ O(h log(1/h))‖u‖H
1/2
�

; (7.26)

substituting this into (7.25) and removing the O(h log(1/h)) error, we obtain (2.2).
��
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7.3 Proof of Lemma 2.2(2). We follow the proof of part (1), but with an addi-
tional positive term coming from Im z > 0. Let Z be as in (7.23); applying (7.24) to
Re z instead of z and dropping the negative terms on the right hand side, we get

Im〈P̃t(Re z)u, Zu〉≤O(hh̃)‖u‖2
L2 +O(h)‖ΨEu‖2

H
1/2
�

+ O(h̃)‖P̃t(Re z)u‖H
−1/2
�

‖u‖L2 .

(7.27)

Now, by Lemma 4.1(6)

P (z) − P (Re z) = O(| Im z|)Ψ1 ,

and so

Ts(P (z) − P (Re z))T−1
s = i Im z ∂zP (0) + O(| Im z|2 + h| Im z|)Ψ1 . (7.28)

The conjugation by etF maps Ψ1 to Ψ1 + Ψcomp
1/2 continuously, by the Bony–Chemin

theorem (see the proof of Lemma 7.2). Moreover, we have by Lemma 5.4(3)

[F, ∂zP (0)] = O(h1/2h̃1/2| Im z|)Ψcomp
1/2

. (7.29)

Using P̃t(z) − P̃t(Re z) = Pt(z) − Pt(Re z), the expansion (7.6), (7.28), (7.29) and
proceeding as in the proof of Lemma 7.2, we get

P̃t(z) − P̃t(Re z) = i Im z ∂zP (0) + O(| Im z|2 + h1/2h̃1/2| Im z|)Ψ1+Ψcomp
1/2

.

Therefore, by (7.27) and since Im z ≥ C0h

Im〈P̃t(z)u, Zu〉 ≤ Im zRe〈∂zP (0)u, Zu〉 + O(h)‖ΨEu‖2
H

1/2
�

+O(h̃)‖P̃t(z)u‖H
−1/2
�

‖u‖L2 + O(| Im z|2 + h̃| Im z|)‖u‖2
H

1/2
�

.

Now Lemma 7.4(3) and Lemma 7.4 (9) imply that ΨE is elliptic on {Re(〈ξ〉−1σ
(Z∗∂zP (0))) ≥ 0}, so by the non-sharp G̊arding inequality (3.4) we get

Re〈∂zP (0)u, Zu〉 ≤ −C−1‖u‖2
H

1/2
�

+ C‖ΨEu‖2
H

1/2
�

.

Thererefore, since C0h ≤ Im z ≤ ε,

‖u‖2
H

1/2
�

≤ C(‖ΨEu‖2
H

1/2
�

+ (Im z)−1‖P̃t(z)u‖H
−1/2
�

‖u‖H
1/2
�

) + O(h̃+ | Im z|)‖u‖2
H

1/2
�

.

Combining this with (7.26) and the fact that h̃ and Im z are small, we get (2.3). ��
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7.4 Proof of Lemma 2.2(3). By Lemma 6.1 and (7.22), it suffices to show
that

VR = {exp(tHp̂)(x, ξ) | |t| ≤ R, (x, ξ) ∈ (supp ã ∩ p̂−1(0)) +Bp̂−1(0)(R(h/h̃)1/2)}

has, as a subset of p̂−1(0), 2n− 1 dimensional volume O((h/h̃)n−1−ν). Here 2ν + 1
is bigger than the upper Minkowski dimension of K, or equal to it in the case of
a trapped set of pure dimension. By the definition (7.18) of ã and the fact that
suppχ1 ⊂ (−∞, C−1

f̂
) together with Lemma 7.1, we see that supp ã ⊂ ι(K̃) +

B(Cf̂ (h/h̃))1/2, so that

VR ⊂ {exp(tHp̂)(x, ξ) | |t| ≤ R, (x, ξ) ∈ p̂−1(0) ∩ (ι(K̃) +B((R+ Cf̂ )(h/h̃)1/2))}.

However, note that ι(K̃) is invariant under exp(tHp̂); therefore, there exists a con-
stant R′ depending on R such that

VR ⊂ p̂−1(0) ∩ (ι(K̃) +B(R′(h/h̃)1/2)).

By (4.7) and since p0 + 1 is a homogeneous polynomial of degree 2 in the fibers, K̃
is diffeomorphic to the product of K = K̃ ∩ p−1(0) and an interval; therefore, for
some R′′,

VR ⊂ ι(K) +Bp̂−1(0)(R
′′(h/h̃)1/2).

By the definition (1.3), the volume of an ε-neighborhood of ι(K) is O(ε2(n−1−ν));
thus

Volp̂−1(0)(VR) ≤ C(h/h̃)n−1−ν . ��
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Appendix A: Quasifuchsian Convex Cocompact Groups

In this Appendix we describe in more detail the construction of the groups used in the exam-
ples in Figure 1. Recall that a finitely generated discrete group of Möbius transformations
of the Riemann sphere C ∪ {∞} is Fuchsian if it keeps invariant some disk or half-plane.
Let Γ0 be the Fuchsian group generated by {A1,B1,A2,B2}, where all the transformations
preserve the unit disk, and A1 maps the exterior of the disk C1 onto the interior of the disk
C3, B1 maps the exterior of C2 onto the interior of C4, and so on (see Figure 5). If Γ0 acts
on the unit disk model of H

2, then Γ0\H
2 is a compact surface of genus 2 (see e.g. [Kat92,

Section 4.3, Example C]).
If Γ0 instead acts on H

3 by Möbius transformations on the sphere at infinity (A1 extends
to an isometry of H

3 by mapping the half space whose boundary at infinity is the exte-
rior of C1 to the half space whose boundary at infinity is the interior of C3, and so
on) then Γ0\H

3 is isometric to R × Γ0\H
2 with metric dr2 + (cosh2 r)dS, where dS is

the metric on Γ0\H
2, and Γ0\H

3 is convex cocompact with limit set the unit circle, and
δΓ0 = 1.
Let Γθ = 〈MθA1M

−1
θ ,MθB1M

−1
θ ,A2,B2〉, where Mθ is the rotation of the Riemann sphere

C∪{∞} by angle θ which fixes {i,−i} and moves R to the left (so that MθA1M
−1
θ maps the

exterior of C1,θ onto the interior of C3,θ, and so on). This is a quasifuchsian bending of Γ0 in
the sense of [Mas88, Section VIII.E.3]. When θ �= 0 the group is no longer Fuchsian because
e.g TrMθA1M

−1
θ A2 �∈ R, and hence Γθ is not a group of isometries of H

2. Nonetheless,
it is still a group of isometries of H

3 and, for |θ| �= 0 small enough, Γθ\H
3 is still convex

cocompact and diffeomorphic to R × Γ0\H
2, but the metric is no longer a warped product

and the limit set ΛΓθ
is now a quasicircle with dimension δΓθ

∈ (1, 2) [Bow79,Sul84,BJ97].
In Figure 1 we plot ΛΓθ

for θ = 0.5, using Mathematica code based on that of [Gee09,
Appendix].

Figure 5: (Quasifuchsian bending.) The circles C1, . . . , C8 are orthogonal to the unit circle
and enclose a regular hyperbolic octagon of area 4π. The circles C1,θ, . . . C4,θ are the images
of C1, . . . , C4 under Mθ
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Appendix B: The Hyperbolic Cylinder

In this Appendix we consider the hyperbolic cylinder M = (−1, 1)r × S
1
ỹ with metric

g =
dr2

(1 − r2)2
+

dỹ2

1 − r2
.

We explain how this asymptotically hyperbolic manifold fits into the general framework
of [Vas12] and why Figure 2 represents the phase space picture for the modified operator.
Theorems 1 and 2 will apply with ν = δΓ = 0: note that M � 〈z �→ e2πz〉\H

2, where we use
the upper half plane model of H

2. In this case the resonances are actually known to lie on a
lattice [GZ95b, Appendix]. More generally, when as in this case the trapped set consists of
a single hyperbolic orbit, the resonances are asymptotic to a lattice [GS87].
First, note that we can bring the metric to the form (1.2) near {r = ±1} by taking

x̃ = 2

√
1 ∓ r

1 ± r
, g =

dx̃2

x̃2
+

(
1 +

x̃2

4

)2
dỹ2

x̃2
.

Then a boundary defining function of M even is given by

μ = 1 − r2.

(Strictly speaking, for the calculations in Section 4 and [Vas12] to go through without
changes, we need μ = x̃2 near the conformal boundary; however, our μ makes the formulas
simpler and as μ = x̃2(1 + O(x̃2)), the analysis is the same.) The Laplacian on M is

Δg = (1 − r2)2D2
r + ir(1 − r2)Dr + (1 − r2)D2

ỹ.

To simplify the formula for the modified Laplacian (4.1), we put eφ = μ1/2. We have

P (z) = μ−5/4μi(z+1)/(2h)(h2(Δg − 1/4) − (z + 1)2)μ−i(z+1)/(2h)μ1/4

= μ(hDr)2 + 2(z + 1)r(hDr) +D2
ỹ − (z + 1)2 + O(h)Ψ1 .

This operator extends to X = Rr×S
1
ỹ (in the rest of the paper, and in [Vas12], X is compact,

but we will not need this here). Note that for μ > 0 it is elliptic (Laplacian-like) but for
μ < 0 it is hyperbolic (d’Alembertian-like). Take coordinates (r, ỹ, ζ, η̃) on T ∗X, with ζ dual
to r and η̃ dual to ỹ. We use the momentum ζ instead of the momentum ξ̃ = −ζ/(2r), dual
to μ, to avoid a coordinate singularity at r = 0. The principal symbol of P (0) is

p = μζ2 + 2rζ + η̃2 − 1, (B.1)

and the Hamiltonian flow is

Hp = 2(μζ + r)∂r + 2ζ(rζ − 1)∂ζ + 2η̃∂ỹ. (B.2)

Our phase space T
∗
X is as in Section 3.1 and is a ball bundle on X, and we denote a typical

point by (x, ξ). We now study the characteristic set {〈ξ〉−2p = 0} and the rescaled Hamilto-
nian flow 〈ξ〉−1Hp, beginning with the behavior near fiber infinity (the prefactors 〈ξ〉−2 and
〈ξ〉−1 make the symbol and flow extend smoothly to fiber infinity, S∗X = ∂T

∗
X). We use

the coordinates ζ̌ = 〈ξ〉−1ζ, η̌ = 〈ξ〉−1η̃ on the fibers in T
∗
X; then (ζ̌, η̌) lies on the circle of

radius 〈ξ〉−1|ξ| and

〈ξ〉−2p = μζ̌2 + 2r〈ξ〉−1ζ̌ + η̌2 − 〈ξ〉−2.
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Figure 6: Global dynamics of the Hamiltonian flow on the fiber infinity

On S∗X, we have 〈ξ〉−1 = 0 and thus the characteristic set is given by

{〈ξ〉−2p = 0} ∩ S∗X = {μζ̌2 + η̌2 = 0}.
For μ > 0, this equation has no solutions, which corresponds to the characteristic set not
touching fiber infinity. For μ ≤ 0, we have

{〈ξ〉−2p = 0} ∩ S∗X = Σ′
+ ∪ Σ′

−,

Σ′
± = {μ ≤ 0, 〈ξ〉−1 = 0, ζ̌ = ∓ sgn r/

√
1 − μ, η̌2 = −μ/(1 − μ)},

because ζ̌2 + η̌2 = 1 on S∗X. In particular, we have

L± = Σ′
± ∩ {μ = 0} = {μ = 0, 〈ξ〉−1 = 0, ζ̌ = ∓ sgn r, η̌ = 0}.

On {ζ̌ �= 0} ⊃ Σ′
+ ∪ Σ′

−, we can pass to the system of coordinates

(r, ỹ, ρ̃ = |ζ|−1, η̂ = ρ̃η̃).

Near Σ′
± we have ζ = ∓ sgn rρ̃−1 and thus, using ∂ζ = ± sgn rρ̃(ρ̃∂ρ̃ + η̂∂η̂),

ρ̃Hp = ∓2 sgn r((μ∓ |r|ρ̃)∂r − (r ± ρ̃ sgn r)(ρ̃∂ρ̃ + η̂∂η̂)) + 2η̂∂ỹ. (B.3)

Since μ = ρ̃ = η̂ = 0 on L±, we see that L± consists of fixed points for ρ̃Hp. We also get

ρ̃Hpμ|Σ′
± = ±4|r|μ.

Therefore, the flow lines on Σ′
+ ∩ {μ < 0} go to μ = −∞ in the forward direction and to

L+ in the backward direction, while the flow lines on Σ′
− ∩ {μ < 0} go to μ = −∞ in the

backward direction and to L− in the forward direction. This is displayed in Figure 6.
We can also use (B.3) study the dynamics of the flow of Hp on T

∗
M , not just on S∗M , near

L±. Omitting the ỹ variable as the flow does not depend on it, we find that

ρ̃Hp

⎛
⎝
μ
ρ̃
η̂

⎞
⎠ =

⎛
⎝

±4 −4 0
0 ±2 0
0 0 ±2

⎞
⎠

⎛
⎝
μ
ρ̃
η̂

⎞
⎠ + O(μ2 + ρ̃2 + η̂2).
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Figure 7: The characteristic set in the radial compactified fiber for various values of r. The
dashed line is {ζ = r}, separating Σ+ from Σ−

We see that L+ is a source and L− is a sink. In fact, the eigenvectors of the linearized flow
at L± are ∂μ with eigenvalue ±4, 2∂μ ± ∂ρ̃ with eigenvalue ±2, and ∂η̂ with eigenvalue ±2.
The behavior of the linearized system is pictured on Figure 2 (the horizontal coordinate is
r, and the vertical coordinate ζ̃ = ζ/〈ζ〉 is a compactification of ζ).
We now study the semiclassical behavior, that is, dynamics in the interior T ∗X of T

∗
X.

First of all, we fix r and study the set of solutions in (ζ, η̃) to the characteristic equation

μζ2 + 2rζ + η̃2 − 1 = μ(ζ + r/μ)2 + η̃2 − (1 + r2/μ) = 0.

This is an ellipse when μ > 0, a parabola when μ = 0, and a hyperbola when μ < 0.
Therefore, in T ∗X the characteristic set has one connected component for μ ≥ 0 and two
components for μ < 0; on the other hand, in T

∗
X it has one connected component for μ > 0

and two components for μ ≤ 0, the additional connected component for μ = 0 being exactly
L−, and the intersections of the connected components with S∗X being exactly Σ′

±. We
then see, as in Figure 7, that the characteristic set {〈ξ〉−2p = 0} ⊂ T

∗
X can be split into

two components Σ+ and Σ− (the latter consisting of two pieces, corresponding to ±r ≥ 1),
so that Σ′

± = Σ± ∩ S∗X and Σ− ⊂ {μ ≤ 0}. More precisely, we note that near {μ = 0}, the
characteristic set does not intersect the surface

{ξ̃ = −1/2} = {ζ = r} ⊂ T
∗
X,

where ξ̃ = −ζ/(2r) is the dual variable to μ. Therefore, for ε small enough, we can define
Σ± in {|μ| < ε} as

Σ± ∩ {|μ| < ε} = {±(ξ̃ + 1/2) > 0} ∩ {〈ξ〉−2p = 0} = {∓r(ζ − r) > 0} ∩ {〈ξ〉−2p = 0}.
With that definition, Σ− ⊂ {−ε < μ ≤ 0} for some ε > 0; hence, we can extend Σ± to
{μ > −ε} by requiring that Σ− ∩ {μ ≥ ε} = ∅ and Σ+ ∩ {μ ≥ ε} = {〈ξ〉−2p = 0} ∩ {μ ≥ ε}.
It remains to study the Hamiltonian flow in T ∗X. If μ = 0, we have Hpμ = −4r2 < 0; there-
fore, the flow lines on Σ+ \ L+ = {〈ξ〉−2p = 0} \ S∗X only cross {μ = 0} in the direction
of decreasing μ. Together with the behavior of the linearized flow near L± studied before,
this gives the behavior of the flow near {μ = 0}, as in Lemma 4.2. It remains to analyze
the behavior of the flow in {μ > 0}. This can be related to the geodesic flow on the original
manifold; we then see that the trapped set corresponds to two trapped trajectories

ι(K) = {r = ζ = 0, |η̃| = 1}
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while the incoming/outgoing tails (in the sense of (4.8)) are given by

ι(Γ+) = {ζ = 0, |η̃| = 1},
ι(Γ−) = {ζ = −2r/μ, |η̃| = 1}.

Note that ι(Γ+) continues smoothly across {μ = 0} and ι(Γ−) converges backwards to L+.
All components of Figure 2 are now in place. The horizontal direction corresponds to r (with
r increasing as we move to the right), with two vertical lines marking ∂M even = {r = ±1},
the conformal boundary. The vertical direction corresponds to a compactification of the
momentum ζ; the corresponding coordinate ζ̃ = ζ/〈ζ〉 is well-defined away from {〈ξ〉−1 =
ζ̌ = 0} on T

∗
X, and thus on the whole characteristic set. The top and bottom edges of the

picture then correspond to {±ζ̌ > 0, 〈ξ〉−1 = 0} ⊂ S∗X.
The explicit formulas (B.1) and (B.2) for p and Hp allow us to define the escape functions f0
and f̂ , constructed in the general case in Lemmas 4.7 and 7.1, more directly and explicitly
here. We begin with f̂ , where we will use the fact that no conditions are imposed outside of
a small neighborhood of ι(K̃). Observe first that

ι(K̃) = {r = ζ = 0},
so we will be interested in estimates valid for r and ζ sufficiently small. Following [WZ11,
Section 4.2], [SZ07, Section 7], [Sjö90, Section 5], let

ϕ+ = ζ2, ϕ− = (μζ + 2r)2,

be functions measuring the distance squared to ι(Γ+) and ι(Γ−) respectively. We then have

Hpϕ+ = 4ζ2(rζ − 1) = −4ϕ+(1 + O(r2 + ζ2)),
Hpϕ− = 4(μζ + 2r)2(1 − rζ) = 4ϕ−(1 + O(r2 + ζ2)).

(Near ι(K̃) such estimates can be deduced from the hyperbolicity of ι(K̃) but in this example
we can compute the derivatives directly). Consequently

Hp(ϕ− − ϕ+) = 4(ϕ− + ϕ+) + O(r4 + ζ4). (B.4)

Hence, near ι(K̃), Hp(ϕ− −ϕ+) ≥ (ϕ− +ϕ+)/C, which is a nonnegative function vanishing
precisely on ι(K̃). To obtain a lower bound of 1/C off a neighborhood of size (h/h̃)1/2 of
ι(K̃), as asserted in Lemma 7.1, we take the following ‘logarithmic flattening’ of ϕ− − ϕ+:

f̂ = log((h/h̃) + ϕ−) − log((h/h̃) + ϕ+).

Then, for r and ζ sufficiently small,

Hpf̂ = 4
ϕ−(1 + O(r2 + ζ2))

(h/h̃) + ϕ−
+ 4

ϕ+(1 + O(r2 + ζ2))
(h/h̃) + ϕ+

≥ 2
ϕ−

(h/h̃) + ϕ−
+ 2

ϕ+

(h/h̃) + ϕ+

,

and this is uniformly bounded from below off of a neighborhood of size (h/h̃)1/2 of ι(K̃).
The upper bounds on derivatives in Lemma 7.1 follow from similar arguments.
To construct f0 we begin with a near-global escape function based on ϕ− − ϕ+:

f00 = rζ +
1
2
r2.
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This function is strictly increasing along flowlines everywhere in T ∗X ∩ {|μ| ≤ 1} \ ι(K̃):

Hpf00 = 2ζ2 + 2μζr + 2r2 ≥ ζ2 + r2.

To obtain f0 we precompose and multiply by a smooth cutoff as in Lemma 4.7.
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Hörmander, Bull. Soc. Math. France 122:1 (1994), 77–118.

[BP02] D. Borthwick and P. Perry, Scattering poles for asymptotically hyperbolic
manifolds, Trans. Amer. Math. Soc. 354:3 (2002), 1215–1231.

[Bow79] R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Etudes Sci. Publ.
Math. 50 (1979), 11–25.

[BO99] U. Bunke and M. Olbrich, Group cohomology and the singularities of the Sel-
berg zeta function associated to a Kleinian group, Ann. of Math. (2) 149:2 (1999),
627–689.

[DV12] K. Datchev and A. Vasy, Propagation through trapped sets and semiclassical
resolvent estimates, Ann. Inst. Fourier (Grenoble) 62:6 (2012), 2347–2377.

[DS99] M. Dimassi and J. Sjöstrand, Spectral asymptotics in the semi-classical limit,
London Mathematical Society Lecture Note Series, 268, Cambridge University
Press (1999).

[Dya12] S. Dyatlov, Asymptotic distribution of quasi-normal modes for Kerr–de Sitter
black holes, Ann. Henri Poincaré, 13:5 (2012), 1101–1156.
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