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Abstract

This thesis presents a method for determining the moment-optimized shape y(x) for
arched structures under unpredictable loading scenarios. A frame geometry optimization
derivation is presented that demonstrates the relationship between certain unpredicted
loads and an equivalent guaranteed loading condition that is more easily solvable through
standard equilibrium analysis. The relationship is then broadened to generate the
geometric form for arches experiencing randomly applied point loads over continuous
intervals. The conclusions from the frame derivation and subsequent applications are
summarized in a generalizable conjecture regarding stochastic loading, which states that
the moment-optimized arch geometry yi (x), when subjected to a random point load P
with a likelihood of occurrence determined by a probability density function f(x), is
equal to the zero-moment solution y2 (x) for an arch subjected to a distributed load u(x)
when f(x) = u(x). The conjecture is further reinforced by form-finding models
programmed to minimize maximum moments under stochastic loading using structural
analysis software. Conceding an extensive range of applicability, this relationship is a
direct asset when considering the design of structures subjected to projectile impacts, the
location of which are oftentimes unpredictable. As such, an in-progress military shelter
development project is examined as a case study to demonstrate the practicality of the
theorem.
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1. Stochastic Loading: An Introduction

The rationale behind examining a load case with a random probability of occurrence stems in part

from considering the design goals of defensive military shelters, as the impact location of

projectile loads oftentimes cannot be precisely predicted. The term stochastic, originating from

the Greek stokhastikos, meaning 'aim at, guess,' is defined as "randomly determined; having a

random probability distribution or pattern that may be analyzed statistically but may not be

predicted precisely" (Merriam-Webster). The term stochastic load will refer to such load

scenarios in the following chapters.

1.1 Simplifying Assumptions

Soldiers in current operating environments are often subjected to direct and indirect fire even

when inside the defensive perimeter of their basecamp. The impact loading scenarios that

occupied shelters could encounter inside operational basecamps are infinite. Indirect fire could

originate from any surrounding location within a radius of relevant weapon capabilities. Even if a

structural design considers only a standardized magnitude of pressure for the design blast, the

location and orientation of the resulting forces would be unpredictable. Applying several

simplifications to this loading scenario allows for an exploration of the structural behavior of

defensive shelters and other structures exposed to similar randomly positioned loading conditions.

Table 1.1 Assumptions used.

Geometric stiffness The following derivations seek to determine optimized geometries independent of
material properties. As such, only geometric stinfless will be considered.

Arched Structures Many military shelters are arches, or can be modeled as such. Our analyses
therefore will consider two-hinged symmetric arches.

Impacts will be considered as single point load acting in the direction of gravity.
Point Load This approximation is suitablefor certain impact loads (Alves, 2005).

Large Magnitude The magnitude ofthe point load is large enough relative to the self-weight of the
arch that the self-weight may be neglected.

Stochastic No. 1 The point load may occur at any location along the length ofthe arch, or at

specified intervalsfor certain examples.

The odds ofindirectfire hitting the exact location more than once are small.
Stochastic No. 2 Therefore, the modeled load will occur at one location only.

The likelihood ofthe load's location is eitherfully random along the specified
Stochastic No. 3 interval or defined by a probability densityfunction.
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1.2 Key Terms and Notation

The following terminology will be referenced extensively throughout the following derivations.

o Stochastic Load - a load which can be applied along a pre-defined length L from a to b

while the precise point of application is unknown and has a fully random probability of

occurrence along L

o Probability Density Function - a function f (x) = P, [a 1 b] that describes the

likelihood of occurrence at x for a stochastic load over the support from a to b

o Weighted Stochastic Load - a stochastic load which has a variable probability of

occurrence along L defined by a probability density function Pr [a 1 b]

o Stochastic Reactions - an expression that represents likelihood of occurrence of the true

reactions, determined through static equilibrium of a weighted stochastic load section cut

6 Diagram display - throughout this thesis the following notation will be used to depict

various stochastic loading scenarios:

Lower limit for stochastic load Upper limit for stochastic load

Probability density function
(not included if fully random) a b

SP,[a I b]

a

L

Figure 1.1

The above figure shows that a given point load P will occur somewhere between points a and b,

with the probability of the location of that occurrence governed by a specified probability density

function Pr [a < I ! b].

10
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1.3 Literature Review

Structural optimization merges mechanics, calculus, and programing techniques to achieve more

efficient designs for structures. The field originated as early as 1670 when Robert Hooke first

studied the mathematical properties of the catenary curve, the equation for which was later

derived by Gottfried Leibniz, Christian Huygens, and Johann Bernoulli in 1691 (Lockwood,

1961). Identifying the relationship between the change in slope and the arc length of the curve

gave rise to a mathematical process from which funicular geometries subjected to various

distributed loads can be found.

This thesis combines the derivation techniques for optimizing bending moments with

probabilistic design. Alejandro Diaz and Martin Bendsoe used probabilistic design and

optimization to consider truss configurations under multiple load configurations applied

individually (Diaz 1992). They considered sum of the weighted average of the structural

responses for each individual loading condition. Constraining parameters such as the overall

structure dimensions, this collection of possible responses was optimized for volume of used

material using mathematical programming techniques. The approximated solutions were then

used to choose similar, more traditional truss configurations. This technique of considering the

weighted average of the possible applied loads will be cited later in this thesis when discussing

stochastic loads with varying probabilities of occurrence. While various authors have studied

structural topology optimization through the lens of probabilistic design, my research into the

relevant literature indicates that no one has presented a definitive relationship between geometries

optimized for certain stochastic load cases and associated guaranteed loading conditions. As such,

this thesis will address that topic.

11
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2. Frame Geometry Optimization

2.1 Introduction and Methodology

The unpredictable nature of stochastic loads necessitates the identification of an equivalent

guaranteed loading condition where the structural response of a model may be approximated

through standard equilibrium analysis. Assuming that the positions x throughout a length L of the

structure where the stochastic load could conceivably be applied are continuous, this equivalent

loading condition must take the form of some unidentified distributed load u(x) applied along

length L. To identify the relationship between the stochastic load and the equivalent loading

condition, we first consider the following simplified frame example. A frame with pinned

supports and dimensions as shown below has an equal probability of experiencing either load

configuration A or B, but will never experience both simultaneously. The generalized moment

distributions for the possible loading scenarios are indicated.

Load Configuration A

3D 

D 

D

D12

0 D14 D /2 3D/4 p

Load Configuration B

5D/8

D12

0 3D/4

Figure 2.1.

The sum of all possible bending moments that the frame experiences can readily be found

through applying the principle of superposition and combining the moment envelopes of both

loading scenarios, as shown on the left in Figure 2.2.

13
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Sum of Possible Moments

D /2

0 D/ D12 3D/4 D

Minimized Possible Moments

D /2

0 D14 D12 3D /4 D

Figure 2.2.

The area of the moment envelope for the frame on the left expresses the bending moments that

the frame could experience when subjected to the sum of all possible loads. Keeping all

parameters of the frame geometry constant except for the depicted angle 6, a new frame defined

by Oideal can be found that minimizes the moment envelope area when load configurations A and

B are superimposed. This minimized aggregate moment value equals zero for the frame example

on the right, as well as for any scenario in which a zero-moment structure geometry exists when

all possible load configurations are superimposed, which is always the case for simply-connected

networks, including arch-like structures. We will return to this observation later in the derivation.

However, our problem description states that load configurations A and B will never occur

simultaneously. We therefore seek to determine if the altered frame geometry as defined by Oideal

is also the optimal shape for the individual load configurations when each load case has an equal

probability of occurrence. Because the bending moment at any specific position M(x) along the

frame for an individual load configuration was not necessarily optimized by modifying the frame

geometry, we begin the initial derivation by expressing the sum of all possible moments as a

function of the frame geometry and optimizing for the summed moment distribution. The result

will demonstrate that the frame defined by Oideal above is also moment-optimized for the

summed individual load configurations A or B when applied separately. This theoretical

framework will then be applied to arched structures; specifically, to demonstrate that the moment-

optimized shape y(x) for an arch subjected to a simple stochastic loading condition, meaning a

fully random application of a point load P, is equal to the ideal arch shape when a horizontally-

projected uniform distributed load is applied.

14
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2.2 Moment Equation Assembly

Consider the same frame example subjected to load configuration A. While the height of the

center member of the frame is held constant at D/2, the horizontal position of nodes A and B are

determined by the variable b. Due to the indeterminacy of the frame, the magnitude of the

horizontal reactions will be considered constant. This constant value is set to - for this
3

derivation as it is within a range a reasonable possible horizontal reaction values. In future studies

beyond the material presented in this thesis, the reaction value that minimizes strain energy

should be used. To sum all possible experienced moments, the equations for the moments

m 1 5 (x) throughout the frame must first be identified using the variable b as a parameter.

Load Configuration A

3D/8

b
mn4(x) <-

b

Dr2)I i(x) /

x

3 3

5P D14 D /2 3D/ 3P

8 8

Figure 2.3.

The variable x defines the distance from the left support along the surface of the frame. Using the

method of sections and summing the moments at sectioned intervals of distance x from the left

support, the following equations are produced for 0 b 3D

8

Z X = 0

(xP 5Yb D\D
m, (x)- X b-D for O<x< b2 +_D

D2 (8 3 4
b2+4_)

m2 (x)= -(x-b)- for 0<x< - b
8 3 8

15
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The equations m3 (x) and m 4 (x) are equivalent but must each be integrated over different

intervals when summing the moment envelopes, as the moment value changes from negative to

positive. The projection of the equations m, (x) onto the frame surface are shown in figure 2.4

below.

((11(D + 4x) 17)\ 23b 13x)
m3 (x) = m4 (x) = PDn 48I D 16 8 8k48(8b- 5D) 16/

M5x= P 1- x for
3 8 D 2

b2 +4:

3D
for -- b<x<(D-2b)

8

D2
O<x< b2+-4

Moment Envelope Projection onto Frame Surface
for Load Configuration A

x

D'

x

3D
-- b
8

I D
2

ib 4 D

+ R4I

D - 2b

I I

Mi(X)'

M2 (x)--

Figure 2.4.

To find the total area of the moment envelope for load configuration A, each equation m"(x)

must be integrated over its respective interval. The absolute values of each area A, (b) can then

be summed into one overall expression defining the moment envelope in terms of the variable b.

P(15b - 8D) 4+m1 (x) dx = 96 42 + D2

3D b

A2 (b) = m2 (x) dx =
-P(2880b 2 - 2464bD + 519D 2 )

3072

16
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To determine the integration interval for equations m3 (x) and m 4 (x), the position xO at which

the moment switches signs must first be identified:

M3,4(xo) = 0 xo =
-552b 2 + 549bD - 133D 2

312b - 173D

X0A3b =3 m3(x) dx =
8

D -2b

A 4 (b) =f m4 (x) dx=

A(b) = b
2

+

-P(240b - 109D)(6912b 2 - 484ObD + 545D2 )
3072(312b - 173D)

P(9b - 8D)(146016b 2 - 221052bD + 81120D 2 )
97344(312b - 173D)

P(8D - 9b)
ms(x) dx = 96 4b2 +D 2

The absolute values of these areas A 1 -5 (b) are summed to produce one equation Atotai(b). The

moment envelope for load configuration B must also be considered. Symmetry allows for the sum

of the moments from load configuration A to simply be doubled to produce A totai(b).

n

Atotail(b) = 2 |An(b)I

Solving for the exact solution for Atotai(b) by hand would require lengthy, arduous calculations.

The equation however was mathematically programmed to produce the plot below (Wolfram).

Atwtal(b)

D
8

D D 3D D

g .)

FigureI2.. Atotai(b) = 2IA(b)I

b

17
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The complex polynomial expresses the summed moments experienced from both loads as a

function of b. A totat(b) is positive over the interval of physically possible b values from 0 to ,
8'

as expected.

2.3 Deriving the Exact Solution for b

abSetting the partial derivative of the expression A totaL (b) equal to zero and solving for b will

produce the value for b at which the frame experiences a minimum for potential moments. To aid

in simplifying this calculation, the partial derivatives of each A, (b) are first determined, then

summed and equated to zero.

a P(120b 2 - 32bD + 15D 2)
ab 96V4b 2 +D 2

a 15bP 77DP
-A2(b)= -- + 96ab 8 96

a P(-8087040b 3 + 11394072b 2 D - 5176506bD 2 + 745015D 3 )
ab 24(312b - 173D) 2

- P(9b - 8D)(22464b 2 - 25704bD + 7081D 2 )
ab = 24(312b - 173D) 2

a -P(72b 2 - 32bD + 9D 2 )
Ab 9 = 96V4b2 + D 2

5

-Atotail(b) = 2 IA,(b) = 0

a 24b2 -8bD+ 3D 2  15b 77D a
ab 124b2 + D2 8 96 24(312b-173D)2

where a = -7884864b 3 + 10983024b 2 D - 4907124bD 2 + 688367D 3

a
-Atotai(b) = 0 reduces to:

12 V4b 2 + D 2 
- 56070144b 4 -80870400b

3D+44974656b
2 D2 -13s18912bD

3 +2154888D
4

12265344b3-17714736b2D+833205bD2-1 (5058001D3)

18
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The approximate solutions to this fourth degree polynomial are as follows:

b, ~ 0.378498D

b2 ~ 0.552009D

b3 ~ 0.552650D

b4-~ 0.556483D

Referencing Figure 2.5, the solutions b3 - 4 identify the locations of asymptotes of the expression

Atotai (b) are also outside the range of physically possible values for b. Our solution therefore

is bl.

3D
b ~ 0.378498D ~ -

8
ANS.

3D
The exact value of b is approximately three-thousandths away from the distance - at which the

8

point loads from load configurations A or B are applied. This is due to the chosen constant value

for the horizontal reaction, which will mildly influence the moments experienced at the frame's

fixed joints and, therefore, the optimal geometry.

Optimal Shape for Load Configurations A or B

3DD

0 D14  D /2 3D/ 4  D

Figure 2.6.
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We now seek to determine the optimal shape for the frame when both loads are applied

simultaneously and compare with this derived solution.

2.4 Optimal Frame Geometry for the Superimposed Load Case

Having derived an optimal value for b by minimizing the sum of the absolute values of all

possible moment envelopes, we now seek to determine the optimal value for b considering load

configurations A and B are applied together. Because we already know the moment equations

m, (x) along the length of the frame for the individual load configurations, we will simply

evaluate the equations at their maximum locations and use the principle of superposition.

b2 D2) 5b D)
mi( b2 + -P\8 3/

M2 (D- b) =- -- 3 - 2b) - -P

M (0) = P 'D3b

Because we know that an optimal geometry will experience zero bending moments, we sum the

individual maximum moments from each frame element and from each load case, set that value

equal to zero by using the principle of superposition, and solve for b.

5b D 5 (3D D D 3b
-- - -- 2b1- -+---= 0

8 3 8 '8 / 3 3 8

3b D 15D

2 3 64

109D 3D
b = ~ 0.3784D ~ --

288 8

ANS.

We see that the optimal position of the nodes for the zero-moment frame geometry align with the

3D 5Dsuperimposed load's lines of action, which were at x = - for load A and x = - for load B.
8 a

Once again, the slight difference in b values is due to the chosen horizontal reaction value. This

20
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3D
moment-optimized value of b = - that defines the frame geometry for the superimposed load

8

case where all moments equal zero is the same value as for the possible load configurations

applied individually, as shown in Figure 2.7 below.

Optimal Shape for Load Configurations A or B Optimal Shape for Superimposed Loads

3%/
3D

b=

D122

0 "/4 D/2  3D/ 4  D 0 "/4 "/2 3D/4 D

Figure 2.7.

This result suggests that the moment-optimized shape for a structure with a certain set of equally

possible loading conditions will be equal to the zero-moment shape when all loads are

simultaneously applied. We will refer back to this observation when constructing a general

theorem. The result also emphasizes a highly useful application of the principle of superposition

by demonstrating that for a set of possible load configurations, where one load from the set is

fully randomly applied, the optimal geometry may be found by summing the moment

distributions from each possible load configuration and equating the summation to the moment

distribution when all loads are applied at once, as discussed in Section 2.1. Recognizing that the

optimal shape when all loads are simultaneously applied will experience zero moment, the

relationship may be mathematically expressed as follows:

N

MN = 0 for optimal geometry

where N = individual load configuration
MN = moment envelope for configuration N

As was demonstrated in the preceding derivations, the application of Equation 2.1 is much less

computationally arduous than summing the absolute values for all possible moment distributions.

This specific application of superposition will therefore be used to assess the theoretical

21
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generalization of the frame derivation to arched structures subjected to a fully random application

of a point load P along the length of the arch.

22
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3. The Simple Stochastic Load Case

3.1 Generalization

We now return to the question of the optimal arch shape y(x) subjected to a simple stochastic

loading condition, meaning a fully random application of a point load P, and apply the

relationships identified from the previous frame example. Consider the following arch of

unknown shape subjected to the stochastic point load P and defined by the assumptions

established in Table 1.1.

P

D/2 H

RA RB

Figure 3.1.

We seek to determine the optimized shape y(x) for the arch such that all possible bending

moments are minimized. Recall that the optimal frame geometry for two possible loading

scenarios with an equal probability of occurrence is equal to the ideal geometry when both

possible loads are superimposed. Expanding on this relationship by introducing three possible

YD

load cases where the points of application are all at equally horizontally-segmented distances,

the below ideal frame geometry derived from the superposition of these loads could be und.2

f'gre 2

24
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Load Configurations A, B and C Superimposed Loads

+ +
o 0 3D/ D 0 / ' 30I D 0 D/4 0 4 D 0 D/4 0/, 3D/4 0

''4 112 D/4 D/2 '4'

If instead we considered a set of four possible load cases where the points of application were

again equally horizontally-segmented distances D, we could again derive the optimal frame shape

through the relationship established in Chapter 2. This optimal frame would have five individual

frame elements and would begin to appear funicular in shape. The arch in Figure 3.1 is subjected

to a single point load P with a fully random probability of occurrence at any location along its

surface. Because we know that the moment-optimized shape for a structure with a certain set of

equally possible loading conditions will be equal to the zero-moment shape when all loads are

simultaneously applied, the simple stochastic load case is the theoretical equivalent of an infinite

number of possible point loads where the points of application are equally horizontally-

segmented distances of infinitesimal length dx. The superimposed load case could therefore be

found by integrating the stochastic load P over the range of possible load locations.

P dx = PD uniform distributed load
0

Therefore, the optimum shape for an arch y(x) subjected to a simple stochastic load is equal to

the ideal solution y (x) for an arch under a horizontally projected uniform distributed load.

PD

Y(X f

D/2 H

RI RERA

Figure 3.3. Superimposed simple stochastic load case.

25



Daniel Brownfield

The funicular solution for an ideal arch subjected to a horizontally projected uniform distributed

load is shown below. This equation is derived in Appendix A.

y(x)= 4xf (D x)
D 2 (x

We will now consider the superposition load case, which is the horizontal distributed load, in

greater detail in preparation for generalizing to a variable stochastic load case.

3.2 Equivalent Load Construction using Superposition

Similar to the derivation in section 2.4, we now sum all possible maximum bending moments and

equate the summation to zero, as the optimal shape for the superimposed load case will

experience zero bending moment. We first need an expression Mmax for each individual random

application of the stochastic load. We know that the maximum moment for an optimized arch

subjected to a point load will occur at the location of the point load. Therefore, the moment M(x)

will refer to the maximum moment at x, which is also the position of the point load. For the arch

in Figure 3.1, moment equilibrium requires that the left vertical reaction equal (D-x) P and the
D

right reaction equal x P. We now consider an arch segment of length dx at horizontal distance xD

from node A. The horizontal reaction H at nodes A and B will be used as scaling factors once the

equation of the arch has been determined. The vertical reactions are equivalent to the vertical

components of the arch's internal forces acting directly to the left and right of the stochastic

load's point of application. Therefore, we examine the forces occurring at a length - from x.
2

P
x
- P
DM(x + dx)

22

M(x - -1 dx)

H dx

(D-x) p
D

x - dx x x+ dx

Figure 3.4.

26
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The magnitude of the horizontal component of the arch's internal forces is equivalent to the

horizontal reaction H at the supports and remains constant throughout the arch. Applying static

equilibrium produces the following equation:

M -0

-M (x + - dx) + ( ) Pdx - Hdy - P - + M x - dx) = 0
2 D 2) 2

Rearranging terms to isolate the moment function and dividing all components by dx gives:

1 1
M(x + - dx) - M(x- 2 dx) D - x dy P

dx D) dx 2

Recognizing the terms on the left as an approximation of the definition of a derivative as given by

f (x+a)-f~x W_____
lima-+o a = f' (x), the right side of the equation may be equated to dM . Integrating

this expression with respect to x produces a function of the distribution of maximum moments.

Mmax(x) = D-xP - H d_ )dxf ((D ) dx 2

Px Px2

Mmax(X) - -- Hy(x)

Because this expression both varies as a function of x and is always the maximum value for the

individual load P applied at x, the equation represents a moment envelope of maximum moments

for every possible load scenario. Using the principle of superposition, we then equate this value to

zero to determine the optimum shape y(x).

Px Px 2

---- Hy(x)
2 2D

Px
y(x) = (D - x)

2HPD

(D\ 
PD

y2 - 8f

4xf
=> y (x) = D2 (Dx)

27 ANS.
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This process is equivalent to optimizing the arch shape under a horizontally distributed uniform

projected load. We now seek to determine whether this relationship applies to stochastic loading

scenarios where the likelihood of the load's occurrence is not fully random but instead varies

across a certain length.

4. The Variable Stochastic Load Case

In section 3.1 we proved that the optimal shape y(x) for a fully random stochastic load P is equal

to the zero-moment solution for an arch subjected to a horizontally uniform distributed load. We

now seek to generalize this equality for stochastic loading conditions where the location of the

load P is not fully random but instead governed by a probability density function f (x). Consider

again the theoretical expansion of the initial frame derivation, where the moment-optimized shape

for a structure with a certain set of equally possible loading conditions will be equal to the zero-

moment shape when all loads are simultaneously applied. For a variable stochastic load case, the

set of possible loading scenarios are given a weighted possibility of occurrence. The following

derivation assumes that the moment-optimized shape for such a variable stochastic loading

scenario will be equal to the zero-moment geometry under the superimposed set of loads when

the magnitudes of the superimposed loads are weighted averages of their corresponding

individual load's likelihood of occurrence. The frequent use of weighted averages for analyzing

the probabilities of load occurrence in structural topology optimization combined with the

relationship derived in the initial frame example justify this assumption. This assumption is

further corroborated with the programmed moment-minimizing software models discussed in

Chapter 6. A simple frame example depicts the assumption below, where the likelihood of

occurrence for load configuration A is twice that of load configuration B.
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Load Configuration A
(2x more likely to occur than B)

P,

0 D| D 2 3D| D

Load Configuration B

*1-

Weighted Superimposed Load

2P

P

D/4 D/2 3D|-, D 0 D D 3D|4
4 2 '4 D

Figure 4.1.

I
4.1 The Probability Density Function

A probability density function must be positive over the predetermined length of interest L from a

to b, as well as have an area equal in magnitude to that length L. To define the likelihood of the

location of the load P, we choose a probability density function that is symmetric over length L as

well as continuously differentiable such that a comparison analogous to the equality found in the

previous derivation may be evaluated. Consider the below probability density function f(x),

where D represents the distance over the support from a to b. Integrating over the support yields:

x=D -2D 3 3D 2

=>f f(x)dx= 2 + D

-6x 2  6x
f(x)= +-

Area under curve = D

D
x
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Figure 4.2.



The area under the curve D is analogous to the probability of occurrence of a load P at some

distance x from 0 to D. Assuming that the stochastic load must occur, the area D represents a

complete chance of occurrence somewhere along the surface of the arch. Note that this area could

have been any value; the specific probability density function f(x) was chosen in part to simplify

calculations and to clarify the relationship between the stochastic loads and the superimposed

loads.

4.2 Equivalent Load Construction using Superposition

We seek to construct the equivalent uniform load for the variable stochastic load case using

superposition and the relationship defined from the initial frame derivation in Section 3.2. As

defined above, the probability density function f(x) states that a load P is more likely to occur

towards the center of a given structure. Consider the following arch of unknown shape y(x)

subjected to the variable stochastic point load P.

P

Pr[a :!E 1 b] = (x) y(x) =?
-6xz 6x

y f(x) = LT+2

H - -- -------------------- - ---------------------- - --
D1 2 H

RAR

Figure 4.3
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Once again we seek to determine the optimized shape y(x) for the arch such that the bending

moment M(x) is minimized. Whereas previously the variable x determined the location of the

load P, that distance now characterizes the probability of occurrence of P at x by defining it as

the integral of the probability density function f(x) from 0 to x. The stochastic reactions

resulting from this substitution would therefore not be the true reactions but instead represent the

probability that RA = D for example, will occur given the likelihood that P occurs is

governed by f(x). Applying static equilibrium, these stochastic reactions are determined:

~MB O D RA(Dffx Dd-)*P=O x) d
XP X

MB = 0 > D *RA - D - f (x) dx P = 0 => RA = ofWd P
fo D

F =0 => RB = P - RA = RB f(x) dx

Once again, the horizontal reaction H at nodes A and B will be used as a scaling factor for y(x).

We again consider an arch segment of length dx at horizontal distance x from node A and

examine the forces occurring at a lengths - from x. The previously determined stochastic
2

reactions are equivalent to the vertical components of the arch's internal forces acting on the

faces of the arch segment.

P
Pf (x) dx

M(x + dx)

2

Mx - dx)H

(D - fx f(x) dx
D

x - dx x x +{ dx

Figure 4.4.

Applying static equilibrium produces the following equations:
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M 1 = 0
x+ dx

-M (x + dx)
(D - ff(x) dx dx

+ D Pdx - Hdy - P 2
+ M x

Rearranging terms to isolate the moment function and dividing all components by dx gives:

M(x + dx) - M(x - dx)

dx

(D - f f(Wdx) 

We again equate the left side of the above equation to d 9 and recall that the maximum bending
dx

moment Mmax will occur at the location x of the stochastic load, and that it represents a moment

envelope of maximum moment values for all possible loads, allowing M(x) = 0.

Integrating dx and equating that expression M(x) to zero produces the following equations:

dM(x)

dx

(D - f f(x)dx dy P
- P -H ---

D dx 2
=0

(* -2x 3 3x2

ff(x) dx =D2 +D

2 X)

-SPD

32f

16fx
=> y (x) = SD 4 (x3 - 2Dx 2 + D3 )

ANS.

This equation represents the moment-optimized arch shape for which the weighted stochastic

P

A

/6t

2 dx = 0

dy P
H-
dx 2

p/ _4 X3P-x* x
y(x)=D- +

y D f2

/

1/
1/

/

/
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loads are superimposed and is graphed below. As expected, the arch appears semi-linear close to

the supports where the load concentration is relatively low.

Figure 4.5.

The funicular solution for an ideal arch subjected to a non-uniform distributed load u(x) where

u(x) is equal to the probability density function f(x) is shown below. This equation is derived

in Appendix B and is equal to the optimal arch shape for the stochastic load described above.

16fx
y(x)= D4 (x3 - 2Dx 2 + D3 )

We now summarize the derivation presented in Section 3.2 and its associated applications into a

generalized conjecture for stochastic loading.
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5. Stochastic Loading for Arches

The initial frame derivation in section 3.1 demonstrated that the moment-optimized structural

topology when subjected to a certain set of equally possible loading configurations must be

identical to the zero-moment solution when all possible loads are superimposed. From this

derivation the optimal form for an arch subjected to a fully random application of a point load

was found to equal the ideal arch shape for a horizontally projected uniform distributed load.

Further extensions then equated the probability density function governing the likelihood of

occurrence of a load to a weighted superposition of all possible loads for the optimal geometry. In

each of the above cases, the likelihood of occurrence directly describes the nature of the

superimposed load case: uniformly distributed for a fully random point load, weighted average

for point loads at fixed locations with dissimilar probabilities of occurrence, and non-uniformly

distributed for varying likelihoods of occurrence over an interval. Generalizing the results of

these derivations, a conjecture for stochastic loading may be stated as follows: the equation

y1 (x)for an arch, having been optimized to experience a minimum summation of the absolute

value of all possible bending moment envelopes while subjected to a stochastic point load P, the

point of application xfor which being determined by a probability density function f (x) over the

support from a to b, is equal to the zero-moment solution Y2 (x)for an arch subjected to a

distributed load u(x) on the interval from a to b when f (x) = u(x). For discontinuous intervals,

where the probability of occurrence for a stochastic load is zero, the equivalent superimposed

load would also be zero; the optimal shape on that interval would be linear. Therefore, the

generalized conjecture above also includes frame geometries and arch-frame topology

combinations. A general visual representation of the theorem is depicted below.

p
i(X) floi1-1i1iifoli disTrib Ifed load

I'for f(x) u(x) A

A Y(X) e 8
4- --+ i --+ 4--~

DI - I

RA RR RA RI?

Figure 5.1. Stochastic Loading for Arches Conjecture.
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Two corollaries of the conjecture are included below.

1. The magnitude of the stochastic point load P or of u(x) at any given x will not affect the

resulting shape y(x) of the arch.

2. Doubly-integrating the probability density function for a stochastic point load P will produce

the optimal shape: ff f(x) = y(x).

We now seek to further explore the above relationships using numerical methods by

programming various stochastic loading scenarios into structural analysis software models and

comparing the resulting arch typologies.
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6. Geometrical Form-Finding

*
6.1 General Model Construction

Rhino 3D CAD software aided by the Grasshopper plugin was used to construct the arch models.

The objective is to test the mathematical relationships previously defined using numerical

methods by programming the various loading scenarios into Rhino 3D CAD software models and

comparing the resulting arch typologies. The primary model is an arch-like frame segmented into

20 equidistant nodes along its length and containing the possibility for a unit point load to be

applied at every node. A line of best fit applied to five points of heights h" and measured at five

equidistant intervals between the pinned supports defines the shape y(x) of the arch, making the

heights h-_5 the primary variables. The large number of equally spaced nodes causes the many

point loads to replicate a distributed load if all applied at once, or allows for point loads to be

applied individually and sporadically in any chosen combination of nodes from one to twenty.

Unit point load
applied at any combination

of nodes 1 through 20

Z 4

h2

*

Number sliders for height variables h,

i 137 0

h_4 O .13

h 6900

x_ _ _ _ A Vy

-' I

Figure 6.1. Visual for model definition.
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When a certain load combination is applied, the Grasshopper program analyzes the structure for

the geometry defined by the heights h, and outputs the maximum bending moment. The program

then loops back and incrementally changes the parameter h, using a global, evolutionary

approximation algorithm, comparing the new maximum bending moment value with the previous

value and adopting the new geometry if the bending moment has decreased. Iterating this process

through thousands of combinations of ha, the program terminates when a minimum possible

bending moment has been found; the resulting geometry is the optimal arch for the given set of

randomly chosen load combinations when considering the maximum bending moment

experienced. This procedure is different from the frame derivation in section 3.2 in that it only

considers the possible maximum bending moments, as opposed to the possible moment

envelopes. The following results therefore serve as an extension to the stochastic loading

conjecture previously stated. Additionally, optimizing for maximum bending moments aids in

the design of structures with certain experienced moment and deflection criteria, as will be

discussed in the case study.

6.2 The Simple Stochastic Load Case

First we seek to validate the results of the original derivation for a fully random point load.

Twenty identical arches as described above are programmed into the Grasshopper file, each with

a unit point load located at a different node, but each governed by the same five height

parameters h1- 5 . The program analyzes and compares the maximum bending moment in each

possible load case independently, outputs a minimum value for the maximum moments of all

twenty arches, and adjusts h,. Every arch model responds to the geometry adjustments

regardless of which model produced the smallest maximum bending moment for that iteration.

The final shape of the arch is then compared to a model where all twenty nodes experience unit

point loads simultaneously to approximate a uniform distributed load. The final shapes of both

trials are shown below.
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0 1 1 06.D73

0 tizi h.2 0 b 21t
h r 0 30 Figure 6.2. 1 -1173

Left arch: stochastic load - 1
h 1 0 r. (.41 '-Right arch: "uniform" load 0 5.900

113 113

The final moment-minimized shapes for both loading scenarios are essentially identical, as

predicted by the theorem. The h 1 _5 parameters for the arches do not arrive at the same numerical

values due to the different responses of each structure's internal forces, but the final solutions

y(x) still converge to the same shape. The solution y(x) is not a true parabola as the distance

between nodes are equal segments of the arch length, not equidistant in the horizontal direction.

However, the resulting shapes being equal confirms that the moment-optimized shape for a

random point load is equal to that of a uniform distributed load as predicted by the theorem.

6.3 The Variable Stochastic Load Case

We now seek to validate the results from the derivation for a random point load whose probability

of occurrence is governed by a probability density function f(x). We choose a probability

density function that describes a stochastic load condition where the likelihood of occurrence for

a point load on the right half of an arch is double that of the left side of the arch, but constant

across each respective half Refer to the diagram below:
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W=f(x) 2 /3, 0 < x < D1 2

DH

4/3 D/2 < x < D

y~x)

H - + ---------------------------------------------------- + - -
D12 H

RA RB

Figure 6.3. Probability density function.

Using a similar form-finding operation as before, a model with all point loads applied to each

node simultaneously is compared to that of the randomly applied point loads.

The magnitudes of the point loads on the right half of the arches from both models are double that

of the left side loads. The stochastically loaded arch considers an increased magnitude for a given

point load as equivalent to an increased likelihood of occurrence at for the load at the associated

node, similar to the reasoning in the derivation. The results are depicted below.
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7' 0 1:' 4

0. 1T..

'I~ 017 Left arch: stochastic load
Right arch: nonuniforim dist. load

0

114

I

Figure 6.4. Demonstration of equivalence for the optimal arch shapes
subjected to a variable stochastic load and non-uniform load.

As expected, the optimal arch shape for both scenarios are almost identical. Because a different

probability density function f(x) was used in the derivation in Chapter 4 than for this model,

with the same results, we can safely assume that the conjecture holds true for any probability

density function; that is, the moment-optimized arch shape for a distributed load u(x) or for a

point load randomly applied according to a probability density function f(x) will be equal when

u(x) = f(x).

6.4 Varying the Interval

I
40

I



Daniel Brownfield

We now seek to determine if the above relationships hold true when also applied to load scenarios

where the stochastic load can be applied only over a certain interval a to b instead of over the

entire surface of the arched structure. The zero-moment solution for a structure over an interval

where no load is applied is linear. Therefore, for the solution y(x) for an arch shape over which a

distributed load is only partially applied, we can reasonably expect a linear shape combined with

a funicular shape for the sections where loads do not exist and where the arch is loaded,

respectively.

Figure 6.5 below shows the results from the form-finding program when both the simple

stochastic load and uniform distributed load are applied over an interval a to b at the center of the

arch.

Left arch: stochastic load
Right arch: "uniform" load-;d i O ''

O2

C 0e~ae oIm 1 0

Figure 6.5

Once again, we observe the similarity between the two solutions. The arch appears relatively

linear from nodes 1 - 7 and 14 - 20 where no loads are applied, as expected. From this

observation we can reasonably assume that varying the interval over which a stochastic load can

be applied will still produce an optimized shape as long as the equivalent distributed load is also

applied over the same interval. We will now apply these discovered relationships to a case study

where stochastic theory is relevant: the design of military defensive shelters.
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7. Overhead Threat Protection System Case Study

The Natick Soldier Research Development and Engineering Center (NSRDEC), in collaboration

with Compotech Inc. and Technical Products Inc. (TPI), is currently developing an easily

deployable military shelter to defend against ballistic weaponries and other basecamp threats

regularly encountered in operating zones. Termed the Overhead Threat Protection (OTP) System,

the structure is an expeditionary framed system that is to be rapidly assembled by a small team of

soldiers within hours of establishing an operational basecamp (OTP Fact Sheet, 2014). While

several basic protective elements such as sandbags and Hesco barriers are oftentimes emplaced

by early troop arrivals, these systems generally only provide protection from enemy attacks in a

horizontal plane, leaving areas directly overhead unprotected. This case study briefly summarizes

the current OTP System features and assess whether a modified geometry as determined through

application of discussed stochastic theorem increases the performance of the system. A 3D

rendering the full model erected overtop of a standard military air-beam tent is depicted below.

/-7_

~ /7

Figure 7.1.
(TPI Task Report, Dec. 2014)
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7.1 Project Overview

The most recent OTP model features an aluminum frame adjoined to roughly resemble a semi-

circle. The aluminum beams are all approximately 52" in length with a 4" deep flange-shaped

cross-section and support rectangular ballistic panels, which serve as the primary defensive

barrier to blasts and shrapnel. Tubular aluminum struts extend 5' outward at each connection to

support the pre-detonation layer. The aluminum struts and pre-detonation layer are not included

when considering the load path of the blast, as their sole purpose is to ensure the ballistic round

detonates at the outer layer. A simplified cross-section of the frame design is shown below.

Figure 7.2.

The OTP model design allows for the frame to be

erected overtop of existing, smaller military tent-like

shelters. Therefore, the dimensions of these tent

shelters largely drives the overall geometry of the

frame. Any modifications to the geometry must respect

this constraint. Additionally, the geometry of the

ballistic panels is governed by the maximum weight

that a person can reasonably hoist manually. Ideally, a

new frame geometry would minimize changes to the

ballistic panels.

Figure 7.3.
Ballistic Panel Geometry

(TPI Task Report, Dec. 2014)

-V
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7.2 Defining the Geometry

We arrive at a new frame geometry by applying the theorem for stochastic loading along with the

Rhino 3D models discussed in Chapter 5. We use the assumptions stated in Table 1; most

importantly, that a large point load P will be randomly applied at any location on the structure.

The stochastic loading theorem states that the optimal shape for this scenario is equal to that of a

uniform distributed load. Segmenting the Rhino model arch into nine equal lengths of

approximately the same beam length as the existing OTP model, we apply a distributed load and

determine the ideal shape.

h3 h0
h

1

h22 hsh.

14 ft.

base = 28 ft

Figure 7.4. Optimum shape for segmented frame.

This optimal shape was then slightly adjusted in accordance with the project-specific restraints

such as minimum ceiling height and base span. The below final frame cross-section was chosen

as it minimized major changes to the individual framing elements; the beam lengths, number of

beams and ballistic panels, and associated pre-detonation layer remained unchanged.

F i r 72 3 5t

376*I

64 64 5

Figure 7.5. Geometry definition as programmed into Abaqus.
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7.3 Modeling the Frame

Abaqus CAE preprocessing software was used to construct the new model and apply the design

blast load. The frame members were discretized using beam elements and the ballistic panels

were modeled using shell elements. These configurations were identical to previous models, with

the only modification being the relative angles of each framing element. The ballistic panels

attach to the frame using pinned connections at the four corners of each panel. The attachment

scheme is depicted in Figure 6.6.

Location of
pinned
connections

General contact
along panel
border

Figure 7.6. (TPI Task Report, Dec. 2014)

The aluminum frame was modeled using an elastic material model that includes the damage and

mass damping factor. The panels were modeled using a linear stress-strain relationship that does

not account for damage or plasticity, as their design assumes a stiffness large enough to transfer

all applied loads to the frame. A 3D rendering of the new model in Abaqus is shown in Figure 6.7

below.

Figure 7.7. Abaqus model for redefined geometry.
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The blast load was applied using a blast pressure function from the U.S. Army Corps of

Engineers Conventional Weapons Effects Calculations (CONWEP) software synced to the

Abaqus model. For a certain blast location and distance from target, the function outputs the

appropriate design pressure wave (TM 5-855-1). This pressure wave was used for all previous

models and therefore left unchanged when considering the new geometry. The simulated charge

was located top dead center of the structure at a standoff of 5 feet as shown below.

Location of blast
impact

Figure 7.8.

The figure above depicts the charge location and stress distribution for a front view of the new

model. The stress distribution as seen from above is illustrated below.

Figre 7

4-44,
~~7-1

Figure 7.9. Stress distribution for charge location at 5' standoff.
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7.4 Results

The deflection of the new model was compared to that of the original framing system. A vertical

deflection over time curve is shown below that illustrates the structural response of the system to

the pressure wave.

Miast R esponse Directy Inder llast (Center Frame)

o 0

['.1 'I

Tine(se)

Figure 7.10. Deflection of the optimized frame.

The figure below contrasts the deflection curve with the original model, whose deflection curve is

plotted in gray. The magnitude of the maximum downward deflection was approximately two-

thirds of the original model deflection. Also, the period of vibration was significantly longer,

which contributed to a smaller overall deflection for the new model.

0.05

0

Blast Response D irectly Under Blast (Center Frame)

C Ne

-0 05

-0.1

-0.15 
Original

-0.2

-0.25

-0.3

0.9 1.1 1. 1.5 1.7 1.9

Time (sec)

w Frame

Frame

Figure 7.11. Frame performance comparison.

These results suggest that by optimizing for a stochastic load case, a higher performing geometry

can be found, even when keeping the material properties and quantities constant. To continue to

optimize this model, the self-weight and member dimensions should also be parametrized.
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8. Conclusion

The contents of this thesis presented a method for determining the moment-optimized

shape y(x) for arched structures under unpredictable loading scenarios. The frame

derivation, arch derivations, and Rhino 3D models all demonstrated the relationship between

certain unpredicted loads and an equivalent guaranteed loading condition. The

relationship was summarized by stating that the arch solution y(x) when optimized to

experience a minimum summation of the absolute value of all possible bending moment

envelopes when subjected to a random point load with a likelihood of occurrence

determined by a probability density function f(x) is equal to the zero-moment solution

for an arch subjected to a distributed load u(x) when f(x) = u(x).

8.1 Applicability

The application to military defensive shelters has already been discussed in the preceding

chapters. However, the above-stated relationship could also prove valuable in the design

of structures subjected to distributed loading conditions that are also stochastic in nature,

such as wind or precipitation effects where the likelihood of required structural resistance

varies throughout the structure.

8.2 Future Work

This thesis considered only the stochastic point load, and various probability density functions

that could accompany the point load. However, the derivation of the funicular shape for a

stochastic distributed load with a variable probability occurrence is a reasonable next step for

developing the theorem further. This would increase the complexity of the derivation and

possibly allow for a broader range of applicability. Also, the preceding derivations considered

scenarios where the loads must occurring independently. An interesting expansion of the theorem

would be to observe the changes in the optimal geometry if, for example, a point load P would

occur at two randomly selected locations over the length of the arch.

Additionally, incorporating the conjecture into blast design by using a more inclusive description

of a blast pressure wave instead of a point load would prove highly valuable for future research

into defensive military shelters and other robust structures.
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Appendix A.

Arch derivation for uniform distributed load.

Consider the symmetric two-hinged arch below subjected to the horizontally uniform distributed
load w.

W

H -- + ------------------- -------------------- +- -

11 * D

section cut

RA RB

W

F

H -- + .

%A wD
2A

Figure A.1

We consider a section of length x and apply moment equilibrium at the section cut.

wx 2
Mcut = 0 -M(x) + RA * x - H * y(x) 2

2

Ideal arch experiences zero bending moments => M(x) = 0

-H * y(x) =
wx 2

2 - RA *x

y ()= f

D 2 w
f= 8H

-> y(x) = (2H }* (x D)

=2H 2

-xw
-> y(x) = D2w) (x -D)

2 8f ))

()4xf(Dx
=> (x =D2 D-x

ANS.
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Appendix B.

Arch derivation for non-uniform distributed load u (x).

Consider the arch of unknown shape y(x) subjected to the symmetric non-uniform distributed

load u(x) shown below.

U(x) = +6 26

D/2 H

RA

Figure B.1

Because the area under u(x) from 0 to D is equal to D, symmetry requires that RA RB =D 2-

Keeping the horizontal reaction H as a parameter, we use the method of sections.

-6x
2 6x 

F

:x-x

RA =

Figure B.2

Moment equilibrium at the section cut provides the following equation,

Dx( x
--M(x) - y(x) H + 2 (x - ) u(x) dx=

2 ( fo ) =
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where the centroid Y of the distributed load u(x) is given by:

- f x * u(x)dx
x X

fo' u(x )d x

-3x 2 + 4xD

-4x + 6D

As the ideal arch experiences no bending moment, we set M(x) = 0, substitute in Y, and solve.

Dx
-y(x)H+

-3x 2 + 4xD\

-4x + 6D )

y(x) H

y(D= f

-2x 3

SD2

Dx x 3  x4

2 D 2 D2

5D
2

32f

W~ x)16fx( 3
==> y () = 5D4 (3 - 2Dx 2 + D 3 )

This is the equation y(x) for an ideal arch subjected to the non-uniform distributed load u(x).

The arch appears semi-linear close to the supports where the load concentration is low, as shown

in Figure C.3.

y(x)
(0.5D,o.5D)

(0, 0)(D, 0)

1 6fx
y (x) = 5f (x 3- 2Dx 2 + D3 )5D4

Figure B.3
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