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Abstract

With ever-increasing pollution and scarcity of resources, structural optimization,
the science of finding the optimal structural arrangements under equilibrium con-
straints, is becoming an increasing necessity in engineering practice. However, de-
signers are hesitant to adopt a method that is by nature a limit state and thus po-
tentially unreliable. This thesis embeds a level of safety, namely redundancy, within
the structural optimization process. Redundancy is the ability to remove a certain
number of elements from the structure without losing stability. The thesis translates
this constraint into a linear mathematical optimization problem. Then, a topology
optimization algorithm is developed that identifies the least volume structure with the
ability to remove any element(s) while maintaining stability under the initial loading.

Besides the developed algorithm, this thesis shows the relation between the in-
ternal forces of redundant structures and their substructures, and in fact shows that
it can be expressed linearly when only 1 level of redundancy is provided, and poly-
nomial for higher levels. The algorithm is eventually implemented and extensively
analyzed for a series of configurations, showing that redundant optimal shapes have
considerably less volume than twice that of the pure volumetric optimal, and hence
effectively combine safety with material efficiency. Overall, this thesis constitutes the
early stage of a novel structural optimization algorithm that is unique to its volumetric
optimization objectives.

Thesis Supervisor: Dr. Corentin Fivet
Title: Lecturer of Civil and Environmental Engineering

Thesis Supervisor: John Ochsendorf
Title: Class of 1942 Professor of Civil and Environmental Engineering & Architecture
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Chapter 1

Introduction

This thesis introduces the concept of Volumetric Redundancy Optimization for

two dimensional structural networks and particularly truss structures. The work pre-

sented here develops a computational algorithm that minimizes the material used

in a truss structure for given loads while maintaining a form of structural safety,

namely redundancy - the addition of structural components against fatigue or un-

foreseeable loads. Redundancy Optimization falls under the broad field of Structural

Optimization, the science behind more lightweight and efficient structures. Through

a combination of traditional structural mechanics, mathematics and optimization,

the proposed algorithm has a wide spectrum of applications, ranging from minimiz-

ing the material of a truss bridge, to optimizing the shape of a hook. This thesis

is structured as follows: In Chapter 1 a brief motivation of structural optimization

and particularly redundancy optimization is provided. This Chapter concludes with

the problem statement and potential applications of the algorithm. Chapter 2 covers

a key part of the diverse literature review behind this multidisciplinary topic, and

Chapter 3 explains the methodology and mathematics behind the redundancy opti-

mization algorithm. In addition, Chapter 3 deducts the 1 s' order redundancy solution

as a linear program. The thesis then resumes with a generalization of the algorithm

for higher order redundancies in Chapter 4, and presents a wide range of analysis and

key takeaways from the results in Chapter 5. Finally, Chapter 6 concludes with a

summary of the key findings and contributions of this work, along future work and

17



potential improvements in the suggested approach.

1.1 Motivation for Structural Optimization

The rising cost and energy intensiveness of structural materials makes it impera-

tive for researchers and engineers to invent novel building methods that are performed

in a more economical, sustainable and environmental manner. According to the U.S.

Energy Information Administration (EIA), the building sector consumes nearly half

of all energy in the US (Fig. 1-1). Furthermore, the building sector accounts for

nearly half of the U.S. CO 2 emissions, while the transportation sector comes second

with about a third of the total emissions of CO 2 (Fig. 1-2).

Buildings 47.6% Buildings 44.6%
ou 025S MM COe

Industry 24.4'
Industry 21.1%

Transportation 28.1% Transportation 34.3%
I eili, MMt M e,

U.S. Energy Consumption by Sector U.S. CO 2 Emissions by Sector

Figure 1-1: The building sector is re- Figure 1-2: Buildings are the largest
sponsible for nearly half US energy use source of CO 2 emissions in U.S.

Therefore, given the global climate crisis, scarceness of resources and the financial

challenges our society is facing, the need for more sustainable structures cannot be

put aside. For this reason, we have to develop a deeper understanding of the under-

lying connection between form and forces, in order to design buildings that are both

structurally feasible and material-efficient.

Indeed, finding ways to minimize the amount of material used, and hence the

cost of a building, has been a topic of active research for more than a century. The

first one to study the relationship between topological shapes and forces is Maxwell

(Maxwell, 1869). In early 2 0 th century, Michell developed a method to find optimal

geometrical shapes of framing truss structures that minimizes material and self-weight

18
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(Michell, 1904). Since then we know that when the geometry of a structure is wisely

designed, the material properties do not particularly matter. In other words, any

cheap material could be used as a structural basis, given that the geometry of the

design was developed in such a topologically optimal way. Since the 16th century,

masons have empirically developed methods of compression-only arches that make

structures lighter and more stable. Nevertheless, until today a robust answer to

structural optimality is not always analytically known. This is a hot topic in Building

Technology, Structural Engineering and Optimization Research, as there is a large

margin for improvements on the efficiency, constructibility and costs of building.

Even though structural optimization is a very prolific academic topic, it is still

fairly primitive and foreign to the greater construction industry (with a few companies

- exceptions). Several reasons is the case are: the very intricate designs structural

optimization often proposes (Schafer et al., 2005), the fairly conservative atmosphere

among structural engineering firms, and the lack of reliability and structural safety

among optimized solutions. That is, since structural optimization minimizes the ma-

terial used, it is by definition a limit state, meaning that it reaches the material to its

limits. Hence, any additional safety net is removed for the sake of material efficiency

and even tiny fluctuations on the load cases or partial damage in the structure can

unexpectedly propagate to the building's global failure (Fig.1-3). Thus, even if struc-

tural optimization is a reality, practically very little construction firms would take

the risk in implementing such solutions on a commercial scale. There is a clear need

to embed safety of a building and additional rigidity within the optimization process

itself. Structural redundancy, the use of additional members and/or materials in con-

struction to provide additional layers of safety, has long been regarded as a desirable

property to ensure the safety of structural systems. Building codes usually get away

with structural redundancy by adding rough factors of safety and the addition of ma-

terial in a structure to account for unforeseeable uncertainties and fatigue. However,

this can sometimes have the opposite effect, as the addition of material in certain

locations can increase the stress certain critical elements take, and eventually induce

failure or buckling. The majority of optimization procedures primarily deal with

19



F1igiirC 1-3: Discret e lcient vault nodel - an element's failure results in tihe- vault s
global collapse (R ippmann et al.. 2013)

iaterial/labor cost naninzation 1ndl(er first (rler equiliblrilm costranlts. without

further studying post buckling or partial failure of the structural systeni (Okasha et

al.. 2009). Hence. t lie need to incorporate redundancv and addit ional safet y measures

in struct ural optimization is evident. It is worth mentioning that as of now there is

neither a uniform theory of structural redundancy nor any widely agreed definitions

(Schafer et al.. 2005). Hence, instead of proceeding with a very sophisticated and

specific redundancy definition, we use a simple constraint that can provide the higher

levels of safety pure structural optimization lacks.

1.2 Problem Statement

This thesis examines a special case of st ructural redundancy. inspired by the Ala/h-

cmratical Bridqc in Queen's college. University of Cambridge (Caston. 2012). as a par-

tial solution to safer structural optimization. We decile to simply define redudancy,

as the ability to remove any elements of the truss system while maintaining stability

struct ure under the same external loads. Embedding this constraint inside structural

optimization would result in not just lightweight, but also very safe structures. while

providing us with a bet ter understanding of how to wisely allocate redundancy inside

20



a structure. Hence, the problem this thesis tackles is:

What is the least volume truss network, such that any n elements
(1.1)

can be removed, while the structure remains stable?

This problem is formulated mathematically using topology optimization and is

solved analytically under a material plasticity assumption. The solution is provided

both for n = 1 and n > 2 elements, however computationally the solutions that are

presented are only for n = 1 and n = 2 or first and second order redundancy as

defined in the next Chapter.

1.3 Feasibility - Applications

Most recent reliability-based optimization research embeds robustness i.e. uncer-

tainty in the applied loads when optimizing a structure to account for additional

safety. Very little research is done in redundancy optimization compared to robust-

ness. Even though accounting for robustness allows a design that can withstand

several uncertain loading scenarios, a redundant structure is the more tangible coun-

terpart, where even if some of it fails, the rest of the structure remains stable. This

is something a robust design does not guarantee. What is more, several need for

solving such a problem are provided below.

1.3.1 Bridge Design & Maintenance

The majority of US bridge failures has been accounted due to a defect of a critical

element and due to poor maintenance. According to US infrastructure news in 2015

(Faturechi et al., 2015):

"The crossings are kept standing by engineering design, not supported with brute

strength or redundant protections like their more modern counterparts. Bridge regula-

tors call the more risky spans "fracture critical," meaning that if a single, vital com-
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ponent of the bridge is compromised, it can crumple. Thousands of bridges around

the U.S. may be a mistake away from collapse, even if the global spans are deemed

structurally sound".

Developing an algorithm that can set a bridge design to be as lightweight as

possible, while neutralizing the criticality of all of its structural components, can

create bridges that are very strong and fracture resistant.

What is more, maintaining conventional bridges usually costs millions of dollars in

material and delays, as typically the whole bridge needs to be supported and then step

by step renovated. Implementing a redundant optimization algorithm would allow

each structural component of a new structure to be replaced immediately, without

any additional major external support or having to block traffic for extended periods

of time. Hence, bridges could benefit a lot from such a structural solution.

1.3.2 Transmission Towers

Transmission towers are a typical example of structural optimization. In fact,

the current shape of large steel transmission towers around the world is a result of

volume optimization (An et al., 2010) (Fig.1-4). Nevertheless, when a component

of the tower fails, the whole structure fails, inducing huge indirect costs from power

surges. Hence building a tower that can withstand its design loads while a set of

elements have failed, would allow enough time for its appropriate maintenance.

1.3.3 Target Structures - Government Buildings

Many buildings including government buildings can frequently be targets of terror-

ists groups. Hence, they need to be constructed in a very robust and redundant way

to ensure the safety of their tenants. A high level of redundancy on the optimization

would allow the engineers to design structures that are still the most efficient possible

while having a very large degree of redundancy. For example if the structure was

designed for 1 0 0 th degree redundancy, i.e. more than any 100 structural components

could be removed while the structure still stands, then it would make it extremely
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(a) Front view b) Side view c) 45* view

Figure 1-4: An optimized transmission tower for wind and

al., 2010).

gravity loadings (An et

hard for any terror group to target a particular part of the structure and induce global

damage.

1.4 Summary

Redundancy accounting structural optimization, is a fairly immature topic. Pro-

viding an answer in (1.1) could shed some light in the unexplored field of redundant

structures, while providing some insight on the relationship between forces inside a

damaged substructure and the resulting shape. In Section 5 several visualizations

are shown that showcase these relations. Next, Chapters 3 and 4, the mathematical

backbone of this thesis, follow.
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Chapter 2

Literature Review

In this section, the concepts of Topology Optimization and Redundancy/Robust-

ness are encountered. A brief introduction and literature review of each topic/theory

is provided followed by an expository on Plastic Layout Optimization and the GRAND

framework, which constitute a major part of the computational work developed in

this thesis.

2.1 Topology Optimization

Topology Optimization is a mathematical approach that implements the use of

finite element methods. to optimize a material layout within a given design space,

boundary and loading conditions. In this particular practice, topology optimization

generates an initial mesh/density - a ground structure - with all possible connec-

tions among the structure and iteratively removes elements/reduces the density until

it minimizes the objective function (usually compliance or volume), subject to the

desired constraints.

The generic formulation of the topology optimization problem for compliance min-

imization of statically loaded structures proposed by Sigmund (Sigmund, 2001) takes
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the form

mii c(I) = UTKU
t

s.t. KU(t) = F (2.1)

M I < d

/ > 0. ui RN,t E R"

where t = dlay(U) the vector of displacements for each node. K the stiffness matrix

of the system, F the external applied force vector and M. d some upper limit factors

for the voluie vector I of each truss in the system.

Figure 2-1: Matlab output of generic TopOpt (Sigmund, 2001) code for an 80 x 20

FE grid with 1 2 of the volume as a maximum attained volume constraint.

It is worth noting at this point that Sigmund's algorithm. like the majority of

topology opt imization ones, begins with a Finit e Element Check board where every

element is initially existent to its maximum volume t'. Then, given fixities. loads

and boundary conditions, each volume element is minimized subject to the given

constraints. This ground structure is initialized using a filtering technique to ensure

existence of solutions and to create a refined starting mesh (Signumd et al., 1998).

Sigmund admits that this filter has not yet been proven to ensure existence of solutions

and that it is rather empirically found through several practical design solutions

(Sigmund. 2001) . Most importantly, the current filter does not necessarily guarantee

mcsh-indepcdency and this is currently one of the greatest, drawbacks of ground

structures. Nevertheless. experience has shown that the current filter is sufficiently

independent for traditional topology optinization problems.

This (heck board is the corresponding Ground Structure in continum space
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The positive side of Sigmund's paper is that his 99 Matlab code is very straight-

forward and customizable for multiple loading cases, different conditions and fixities.

However, for the objective of this research, TopOpt is not applicable given that truss

systems cannot be simply modeled as finite element blocks. Instead, a discrete topol-

ogy optimization with nodes and branches would be more useful.

Freund gives several equivalent convex, semidefinite and second order conic formu-

lations of this problem on which the basic assumptions align with a ground structure

of not finite blocks but rather points and connections (Freund, 2004).

Freund's convex formulation takes the following topology optimization form

mnin _2
ft E 0

2 tk Ek JR

s.t. Etk>oakf = -F

Mt <d (2.2)

t > 0

f cR m  ,tR

The truss design problem is to choose the values of the volumes t = (ti, ... , tm) on the

bars so that the optimal solution (the objective function represents the compliance

of the truss) is minimized, subject to the constraints on t: Mt < d and t > 0, where

the constraint Mt is simply a volumetric scaling constraint. ak are the rows of the

connectivity - geometry matrix of the truss system. Hence each column has exactly

two nonzero entries. This problem can be solved analytically, yet computationally it

is fairly costly for large refined Ground Structures (GS).

2.1.1 Plastic Layout Optimization

Zegard and Paulino (Zegard et al., 2014) converted Freund's optimization formu-

lation to a linear optimization problem by adding a plasticity assumption, i.e. no

explicit compatibility or stress-strain relations are assumed. Instead, each internal

axial force has to lie within a range of critical tensile and compressive forces. This

particular formulation is quite elegant and the computational power and breadth of
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its solutions are worth the cost of the additional plasticity assumption. The plasticity

volumetric optimization formulation is given by

min V = ITa
a

s.t. ATf = F (2.3)

-acai ; fi < OcTai, Vi = 1, 2...Ne,

where 1 the truss lengths vector, a the truss cross section vector, A the nodal equilib-

rium matrix of size N, x Ne, f the internal force vector, F the external applied forces,

and 9c, OT the stress limits in compression and tension respectively. In the geometry

matrix A, each row represents one node and each column one element. In optimiza-

tion theory, it is well known that the optimum is reached when the constraints are

active, i.e. the equality holds. Thus, the intuitive solution would be to reduce the

cross section of each member if fi < o-Tai or if fi > -acaj, since the stress constraint

must be active for all variables at the optimum. Hence, following Hemp's suggestion

(Hemp, 1973) of introducing slack variables in the stress constraints, converts the

inequalities into equalities:
(TO

fi + 2 -ST = OrTai (2.4a)
UC

- f + 2-s+ = cca , (2.4b)

where all the variables can be written in terms of the slack variables:

s+ s-
ai = + i (2.5a)

UT OC

ni = s+ - s_, (2.5b)

where ni the internal force vector. These manipulations convert the problem to a

linear programming problem with s+, s- variables:

min V =IT S+ + S_
S+,S- \ OT OC

s.t. AT(s+ - s-) = F (2.6)

Si' si > 0
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Note that for each element i only one of si and s- is nonzero. If element i is in tension

then st > 0, and if in compression then s- > 0. Defining the stress limit ratio as

K = T the final linear formulation of the plastic topology optimization problem (Sokol

et al., 2012) (Tyas et al., 2010) is:

min V= IT s++s-

s.t. AT(s+ - s-) = F (2.7)

sis- > 0

This formulation is selected as one of the currently most appropriate ways to model

the particular redundancy problem. The ground structure approach developed in

accordance to this formulation (Zegard et al., 2014) has significantly more distinct

assumptions compared to traditional topology optimization (Sigmund, 2001), such

as:

" Bars with section areas instead of finite elements with given volume

" Accurately counts the number of trusses used

" Accounts for co-linear trusses and removes them accordingly

" Can avoid occurrence of singular topologies, one of the TopOpt's most significant

drawbacks (Sokol et al., 2012)

Hence, the Plastic Layout Optimization is inherited for the development of the

redundant optimization formulation. Zegard's Plastic Layout Formulation proves to

be computationally efficient and it is the only discrete linear topology optimization.

In addition, a Matlab script has been developed by Zegard and Paulino (Zegard et

al., 2014), GRAND, that allows for the linear plastic topology optimization of any 2D

or 3D structure. More on the computational aspect of this algorithm are encountered

in Section 2.3. On the next section, the notions of Redundancy and Robustness are

introduced, and their relation to topology optimization.
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2.2 Structural Redundancy & Robustness

Now that the basic notions of topology optimization have been established, a brief

introduction on robustness and redundancy concepts is presented. Both redundancy

and robustness fall under the general umbrella of reliability engineering. Reliability

engineering deals with the estimation, prevention and management of high levels of

"lifetime" engineering uncertainty and risks of failure from over-stressing/overloading

or fatigue.

Definition 1. Robustness is the ability of a structure to withstand multiple unforeseen

loading cases that it has not been primarily designed for.

In simple words, it is the ability of the structure to withstand several load cases

with given uncertainty of occurrence. On the other hand, redundancy is a similar

notion but does not account for uncertain loadings. Instead, Redundancy provides a

more general safety net as defined by Kanno et al (Kanno, 2011):

Definition 2. Redundancy of a structure is defined as the extent of degradation the

structure can suffer without losing some specified elements of its functionality.

Kanno et al, provide a survey of redundancy concepts with their respective defi-

nitions.

2.2.1 Indeterminacy as a measure of Structural Redundancy

The most classical measure of structural redundancy is the degree of static in-

determinacy, as it implies the existence of alternative loads paths. The degree of

indeterminacy is defined by

s = N - rankH, (2.8)

where N the number of internal forces, H E RdxN the geometry matrix (as defined

in the Plastic Layout Formulation) and d the number of degrees of freedom of dis-

placements. Even though alternative load paths seem like a promising approach to

redundancy, given that a failure of an element would not limit all pathways of a load

to the fixities, Frangopol et al (Frangopol et al., 1987) and Pandey et al (Pandey et
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al., 1997) noted that this can actually be a deceiving metric, inaccurately evaluating

the true performance of a structural system. Instead Frangopol (Frangopol et al.,

1987) defined the strength factor

lintact(29
- = (2.9)

lintact -~ Idamaged'

where lintact the ultimate strength of the intact structure and 'damaged the ultimate

strength of the damaged structure. They asserted the the strength factor r performed

better as a factor of redundancy in a structural system compared to indeterminacy.

Such a factor was naturally extended to a probabilistic uncertainty counterpart by

Okasha and Frangopol (Okasha et al., 2009) as:

P(D) - P(C) (2.10)
P(C)

where P(C) the probability of global collapse and P(D) the probability of a struc-

tural element failure. This ratio then defines a residual strength index that has been

used as a measure of redundancy.

Schafer et al (Schafer et al., 2005) implemented their own engineering demand pa-

rameter (EDP) based on eigenvalue buckling analysis:

(KI - AcrKg(P))# = 0, (2.11)

where K, the elastic stiffness and Kg the geometric stiffness. Kg is a function of the

internal forces that develop due to P. The buckling load is AcrP where Ac, is a scalar

multiplied by the reference load and # is the mode shape of the buckling load. The

elastic buckling load multiplier A, is considered an attractive metric by Schafer since

it is a single scalar metric and it is related formally to stability but also gives a sense

of buckling constraints. Schafer then tests outs several frame examples and through

single element removal measures how Ac, varies and checks whether this accurately

measures redundancy of the reduced structure (Fig.2-2).

Safari et al (Safari, 2012) and Guilani et al (Guilani et al., 2014) present the
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Figure 2-2: Measuring stability degradation

(Schafer et al., 2005).
and redundancy in damaged structures

redundancy allocation problem (RAP). RAP involves the simultaneous selection of

components and a system-level design configuration that can collectively meet, all

design constraints in order to optimize some objective functions, such as system cost

and/or reliability. Through a multi-objective optimization (Safari, 2012) or Genetic

Algorithms (Guilani et al., 2014) and stochastic functions they provide case-specific

measures of the optimal allocation of redundancy in a structure. Surprisingly as of

now there has still not been a universally accepted redundancy definition (Ghista,

1966) (Zhou, 2014). Instead, researchers develop highly sophisticated metrics that

can hardly be generalized and used in every single case. The most general common

ground behind redundancy is that it has to do with the allocation of additional-

redundant material in order to withstand unexpected degradation. Hence, for the

remaining of this thesis, a broader simplified metric of redundancy is introduced:

Definition 3. n'h order redundancy of a structure is the ability to remove any n E N

elements of the structure while maintaining stability.

This simple and widely applicable redundancy metric is in accordance with most,

if not all, much more complicated uncertainty-accounting metrics.
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2.2.2 Robustness and Topology Optimization

Besides the theoretical nature of universally accepted robustness and redundancy

terms, researchers have actively attempted to find ways to account for such notions

when designing the shape of a structure. Ghista (Ghista, 1966) recognizes that topol-

ogy optimization alone reaches the structure to a limit state removing any robustness

in the structure. Most researchers (Save et al., 1989) (Ben-tal et al., 1997) (Frangopol

et al., 1987) primarily focus on optimizing a structure not just for a single load case,

but under uncertainty, they add stochastic load cases and optimize for them. For

instance Ben-Tal and Nemirovski (Ben-tal et al., 1997) designed a Semidefinite pro-

gram that optimizes the rigidity of a truss system with respect to both given loading

scenarios and small probabilistic occasional loads. The key contribution from this

research is that they designed an innovative robustness constraint. The robustness

constraint stems from the ability of the designer/engineer to embed a small finite set

of loads she/he is especially interested in (the primary loads), into a more massive

set that contains additionally occasional loads of perhaps much smaller magnitude

(secondary loads), and optimizes for the truss t E T which minimizes the worst-case

compliance cM(t) taken with respect to the extended set M of loading scenarios. The

researchers picked an ellipsoid for the set M centered at the origin (in order to get a

tractable solution):

M = QW = {Qele E Rq, eTe < l} (2.12)

where Q given n x q "scale" matrix and Wq is the unit Euclidean ball in Rq. The

corresponding robust optimization problem then takes the form: find t E T which

minimizes the compliance

cM(t) = max max[2(Qe) T X _ XTA(t)x]. (2.13)
eTe<1 xERn

where x the vector of nodal displacements and t the bar volume vector. The solution

of this semidefinite program gives very interesting two and three dimensional results

(Fig. 2-3).
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Robust topology optimization has also been considered from a volumetric per-

spective. Mohr et al (Mohr et al., 2012) perforuied robust topology optimizat io

with regard to the volume of a truss for multiple load cases given continuous proba-

bility distributions (Fig. 2-4).
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Figure 2-4: (a) Volumetric Optimal (b),(c) Equivalent robust optimal solutions (Mohr

et al., 2012)

Interestingly enough, redundancy in topology optimization has been uinimally

researched. possibly given the difficulty to embed globally accepted redun(lanv con-

s raints in the optimization formulation and acquire a tractable problem. Neverthe-

less, we will show in this thesis that combining definition 3 and the computational

tools of Plastic Layout Optimization presented in Section 2.3. can result in a well-

defined Redundancy Topology Optimization problemi.
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2.3 GRAND Topology Optimization

Zegard and Paulino (Zegard et al., 2014) developed a Matlab code that performs

volumetric topology optimization for arbitrary grid structures. The code implements

the plasticity assumption and plastic layout optimization as discussed in Section 2.1.1

to convert the topology optimization into a linear program. The algorithm works as

follows:

" Input initial Ground Structure and level of connectivity

" Get loads, fixities, nodes and bars - from base mesh and construct the connec-

tivity matrix of the Ground Structure

" Solve linear optimization for LT f subject to stability constraint AT = F

" Acquire optimal force vector and through fully stressed assumption obtain mem-

ber thicknesses

" Draw the optimal structure

Zegard generates discrete Ground Structures in a highly efficient way by inputting

the level of connectivity of a ground structure i.e. to what extent each node is

connected with each other, and also by removing any co-linear trusses. Figure 2-5

shows how the base mesh and the levels of connectivity work.
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(a) (b)

(c) (d)

(a) (1)

Figure 2-5: Ground Structure connectivity level generation: (a) Base mesh. (b) Level

1 connectivity. (c) Level 2. (d) Level 3. (e) Level 4. (f) Level 5. (Zegard et al., 2014)

GRAND is one of the fastest discrete Topology Optimization algorithis that

allows the optimization of complicated initial Ground Structures (Figure 2-6). and is

the backbone of the Redundant Topology Optimization algorithm developed in this

thesis.

2.4 Summary

This section provided a brief overview of the theories that are nilestone of this

thesis, namely: Discrete and Coitinuous Ground Structure Topology Optimization,

Robustness & Redundancy as well as the GRAND computational franework in Mat-

hib. Combining techniques between these fields and inspired by a new straightforward

redundancy definition (3), the following sections explain the novel Redundancy Op-

timization Algorithm.
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Figure 2-6: Optimal hook structure overlaid on initial Ground Structure (Zegard et

al., 2014)
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Chapter 3

Mathematical Formulation &

Implementation of First Order

Redundancy

In the aforementioned literature review, a variety of different structural volumet-

ric or strain energy optimizations were covered. In addition, several optimizations

have been performed that take robustness into account, either from a stochastic load-

ing perspective (where the loading vectors have uncertainty functions embedded in

them), or multiple loading conditions under probabilistic distributions. The work

within this thesis is from the perspective of element redundancy, and the ability to

identify structures that are volumetrically optimal, and yet allow the simultaneous

removal of any element(s) and stability. In this chapter, the mathematical formula-

tion for a general structural redundancy problem is provided, and further solved and

modeled for a single element removal (1" order redundancy). Both continuous and

integer redundancy optimizations are encountered in order to compare and contrast

the structural efficiency and performance of each algorithm. The Chapter concludes

with some state of the art remarks and key ideas.
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3.1 Methodology - Plastic Layout

The following development of the structural redundancy problem draws from the

plasticity assumption (Zegard et al., 2014) described in Chapter 2 and the Ground

Structure approach (Hagishita et al., 2009). Sacrificing elasticity in the particular case

is worth it, given the large simplification that incurs by deriving a linear program.

In fact, plastic design makes even more sense when dealing with redundancy, since

both deal with ultimate limit states. Indeed, safety through redundancy is a matter

of stability under extreme conditions and hence it is not matter of seviceability. The

plastic volumetric optimization formulation in (2.7) with the additional redundancy

constraints can be used to generate the initial ground structure to perform the desired

optimization. The first step in solving the problem, is to mathematically interpret

the redundancy constraint of equilibrium for any substructure generated by removing

one element.

Before proceeding with the formulation, the following definition is provided, to

clarify the process to follow.

Definition 4. Redundancy of degree i implies that the number of any elements that

can be removed from the system is i, while maintaining stability in the rest of the

structure.

Definition 5. In an initial ground structure even though full connectivity is initially

assumed, meaning that all nodes of the initial structure are connected with each

other, a collinearity check is always performed, removing trusses that are collinear

and accounting for only one element (Fig. 3-1).

Definition 6. The number of nodes and elements of the ground structure are N,, Ne

respectively. Ek, tk, lk, ak, fk and uk the Young's modulus, volume, length, cross sec-

tional area, internal force and displacement of element k respectively.

In this section, the level 1 redundancy constraint is formulated mathematically

in order to be compatible with the plastic layout optimization. For simplicity, the

constraint of traditional topology optimization is revisited and then adjusted for the

plastic formulation.
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Figure 3-1: Fully connected 2 x 2 square ground structure.

The 2D equilibrium equation for a system of trusses is

Af = F, (3.1)

where A the N, x N, node equilibrium matrix, excluding fixitics' and F the N, x 1

external loads vector. For the redundancy constraint, at least one additional degree

of indeterminacy is required. From Freund (Freund, 2004), the internal force fk is

given as a function of the displacements.

fk =- tkA Tu <-> f
k

where

122it2
E2

(3.2)-B-1A Tu,

IetNe
EN,

Rearranging equation (3.2) by multiplying with B on both sides results in

Bf +ATu = 0

'In this thesis we always assume that there are enough fixities for stability
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Combining equations (3.1),(3.3)

F = Af = -AB-1ATu = Ku, (3.4)

where K the stiffness matrix.

Now to express equilibrium for any substructure of the truss system with one

element removed is equivalent to set any of the columns of matrix A to be zero. The

matrix equation (3.1) of the reduced structure will have solutions fi. To generate

general reduced matrices the following removal matrix is defined.

Definition 7. Let the N, x Ne removal matrix Ri, defined as

( 1
1

0

1 )

where there is a 0 only in the ith entry of the diagonal and everywhere outside the

diagonal.

Equilibrium at the reduced substructure without element i can then be written as

ARjfj = F (3.5)

From (3.4), the stiffness of the full structure was derived to be K = AB-AT. In a

similar manner, any substructure with element i removed has a stiffness

Ki = ARjB-RjA T
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3.2 Redundancy-accounting Formulation

This section develops the final linear formulation of the 1"t order redundancy prob-

lem. Since, this development is not straightforward, most of the remaining Chapter

is dedicated to the development of the Redundancy-accounting formulation. To con-

struct the optimization, three new key theorems are proved, and combined together

they make the problem tractable. The first theorem that is developed, identifies the

relationship between the internal forces of the redundant structure with the internal

forces of its reduced counterpart. In fact we show that for l order redundancy, that

relation is linear. In the second theorem, we show that the system of equilibrium in

the reduced substructures always has a solution if and only if the original structure

is indeterminate. In simple words, this means that when formulating the redundancy

optimization problem, the number of redundant constraints is always less than the

number of unknown internal force vectors. Next, this section provides a third essential

theorem, which shows that the ideal objective function of the 1s' order redundancy

optimization is the load path of the substructure when the most critical element of the

original structure is missing. The most critical element is defined as the element with

the highest internal force that passes through it. After showing these three important

results in detail, we present the linear 1s' order redundancy optimization algorithm.

With the redundancy constraint derived to be Kiui = F Vi E [1, ... Ne]], the

traditional strain energy topology optimization formulation (Sigmund, 2001) takes

the form

min c(t) = UTKU = IF Tu

s.t. KU(t) = F

Ki(t)ui = F (3.7)

Mt < d

t > 0, u E RNt E Rm,

Although this formulation has multiple constraints that need to be calculated for

all reduced substructures, the objective function is vague in the sense that optimizing
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the strain energy of the initial structure does not guarantee global optimality. To

put this in context, the strain energy of the structure could be minimized and yet

removing one element could result in a huge change of the strain energy. A better

objective function would aim to minimize the strain energy of all substructures.

The multiple drawbacks of this formulation drive the introduction of plasticity.

In the plastic layout optimization formulation, only equation (3.5) is required. An

additional constraint in the plastic case, is that the internal forces of the members in

the reduced structures should lie within the limit stresses:

- c-Cai < fired UTai. (3.8)

By introducing slack variables for the structure and substructures, the optimization

has the potential to be converted to a linear program. Let us define slack variable

vectors st, s- that turn inequalities (3.8) to

fired + 2 C- = UTai, (3.9a)
O*C

fired + 2 7 se = o-ai, (3.9b)

where o the current stress of each element. Now there is a clear relationship between

s,re and s- and is given by

0~C
s = s; + (fi fire) (3.10a)2o(-

s+,, =s + (fI - ft) (3.10b)Ths wh L te2 (red

Thus, with L the m x 1 element lengths vector, the plastic layout linear program
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accounting for specific redundancy constraints is

min V = I" +S+TS( S+ + -
O' T ac )

s.t. AT(s+ - s-) = F (3.11)

RiAT(srd - sTd) = F
(+e - d

S , si- > 0

It is worth noting that in this formulation, Sred cannot be one of the objective variables

since they are a function of s+, s- from (3.10).

The current issue, is that internal forces of the reduced structure fired and of

the original structure fi are related, and the optimization cannot account for the

redundancy constraint unless the equation is expressed solely in terms of f. In other

words, for a constraint to be accounted in an optimization, it has to be a direct

function of the objective variables, something that is not evident in this case. Hence,

in order to compute the optimization accurately, a closed form function is required

that relates the internal forces of the original structure and those of the substructure

with element i reduced.

3.2.1 Structure-Substructure Internal Force Relation

Below the analytical equation is provided that relates the internal forces of the

original structure with fi, the forces of the reduced structure.

From equation (3.5), the internal force vector of the reduced structure is given by

the equation

ARifi = F.

At the same time, by equilibrium of the initial structure, Af = F. Combining the

above equations,

Af = ARifi = F # A(f - Rifi) = 0 e f - Rifi ker A (3.12)

In other words, f - Rifi has to be within the kernel of A. With this information
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in mind, we can now proceed to find the relationship between fi and f. Before

proceeding, the following useful lemma regarding linear independence of full rank

matrices is presented:

Lemma 1. Let c1 , c 2 , .., cm, the columns of the force equilibrium matrix A. For the

original truss system to be in equilibrium, n x m matrix A 2 should have rank n < m.

If n = m then the structure is determinate and any substructure will directly be

unstable. For n < m, by definition of nullity and rank, there exists V= , such

that

AV = 0 <-> Kici + --- + mcm =0. (3.13)

The proof of this lemma is trivial and can be found in any introductory Linear

Algebra Textbook. The author recommends G. Strang's Linear Algebra textbook

(Strang, 2006). With the above Lemma in mind, we can expand the internal force
a, - 1

vectors and find their relative relationship. Let f = : and fi = the

\am/ \Xm/
original and substructure internal force vectors respectively. The expression A(f -

Rifi) = 0 is then written as

cl(a,- X1) + c2(a2 - X2) + -+ciai + + cm(am - xm) = 0. (3.14)

If ai = 0, then f = fi and the solution is trivial. For ai f 0, multiplying (3.14) by L

gives

-'(al - xi)ci + + rici + + - (am - xm)cm = 0. (3.15)
ai ai

From equations (3.13),(3.15) there - some ij (i # j), such that

-(a - xj) = rj. (3.16)
ai

2 For the sake of simplicity. the fixities and two-dimensional simplification of the nodes are
neglected, as we assume enough fixities are provided to guarantee stability.
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Solving (3.16) in terms of x, gives

xj = a3 - a Kj, (3.17)

and since this holds V j, the relationship for fi is given by

a- i ( e _

fi =f - f - _-_ = IM - - *T f. (3.18)
Ki ei v ei v

We just showed that there is a linear relationship between the internal forces of any

redundant structure and any stable substructure, no matter the material properties

of the system. This novel equation can be restated in a theorem form as follows:

Theorem 1. Let a truss network - with n nodes and m branches, in equilibrium

with the external n x 1 force vector F and the respective internal m x 1 force vector f.

If removing any member i from the system under the identical loading conditions and

the truss system remains in equilibrium under internal force vector fi, then the rela-

tionship between the internal forces of the reduced structure and the actual structure,

is given by:

i = I- - , (3.19)
ei v

where Im the m x m identity matrix, e-i the i h m x 1 basis vector, and V' any nonzero

basis of ker A.

It is worth restating the assumptions that this theorem holds:

" First and foremost, the linear relationship holds if and only if the substructure

is stable

" The theorem corresponds to internal forces of truss systems only i.e. no self-

weight of the bar members is considered and loads are strictly applied on the

nodes

" The above theorem does not require any plasticity assumptions - it is also

material invariant
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For level 1 redundant structure, the above theorem showed that the internal forces

of the original structure and any substructure are linearly related. Hence, all equi-

librium constraints can be expressed as a linear function of the known internal force

vector variablef. This allows us to keep considering the optimization as a linear pro-

gram. Now that the relationship between the internal forces of the substructure and

structure has been defined, the refined redundancy optimization constraint can be

expressed as a function of the known variable f only.

3.2.2 Refined Redundancy Optimization

Since the redundancy constraint can now be expressed in terms of f only, and

it has to hold for each element i, the final constraint is the set of all substructure

equilibrium equations for all i and translates to

ARi(Im

ARj(Im

Tl1)

- ve)

-) V

F

F

(3.20)

So, the new plastic layout optimization formulation takes the form:
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min V=LTa
a

AR(Im - F

s.t. f (3.21)

ARi(Im,-,, ) F

-- caj _ f< A U-ra, Vi =1, 2...Ne,

where a the cross-sectional area vector. Clearly this is an overdetermined optimization

problem, as there are m unknowns and m x n equations. To prove the existence of

solutions, we need to show that at most m equations are linearly independent, and

hence the system remains indeterminate.

Linear Independence of Constraints

To tackle the issue of an over-determined system, we need to show some form

of linear dependence among the constraints. The proposed approach is a typical

application of the matrix rank theorem. In general, for any matrix P with x rows

and y columns:

row rank(P) < x, (3.22a)

column rank(P) < y, (3.22b)

row rank(P) = column rank(P). (3.22c)

By definition of matrix A, m > n. The n x m matrix ARi(Im - i) has rank at

most n. By stacking all n matrices, the mn x m matrix (3.20) is constructed. This

matrix can have at most rank m by the rank theorem. Since each of its elements

ARi(Im - V) have ranks at most n and this holds for all the rows of matrix (3.20),

the whole matrix can have rank at most n. Thus the system of equations remains
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indeterminate.

In other words, we showed that at most n equations of the constraints can be

linearly independent. Thus, the system has a unique 3 solution. This is an essen-

tial result towards the formulation of the optimization and we restate it below as a

theorem:

Theorem 2. Let m matrix equations of the form ARi(Im - .)f = F. Then at

most m equations are linearly independent.

For simplicity on the notation, the linearly independent elements of matrix (3.20)

will from now on be referred as as

ARi(Im -

linearly independent rows of =JL ARi(Im - ), (3.23)

ARi(Im - v)i

where the operator JL symbolizes the linear independent rows of the matrix.

With the constraints of the 1 s order redundancy optimization finalized, the next

step to convert it to a linear program is to add non-negativity constraints to the

variables.

Nonnegativity of Objective Variables

Besides the linearity of the objective function and the constraints, in a linear pro-

gram non-negativity of the objective variables is required. To achieve that, the trick

lies in the binary nature of stressed trusses. A member is either in tension or com-

pression. Hence the nonnegative slack tension/compression variables are introduced

(Zegard et al., 2014). Let f+ the nonzero m x 1 vector of internal forces that are

purely in tension. That is for any element that is in tension f+ has their value while

it has 0 for any non-stressed or compressed elements. Similarly let f- the nonzero

3 Uniqueness of the optimal solution will be shown later.
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m x 1 vector that includes all internal forces in compression, while having zero en-

tries for tensed or non-stressed elements. Hence f - f+ - f-. Replacing the internal

force vector f with the introduced nonzero slack objective variables, all mathematical

requirements for a linear program are satisfied. Nevertheless, mathematical accuracy

does not imply correctness of the solution. In the next subsection, we identify the

correct objective function to achieve the optimal solution of the redundancy problem.

3.2.3 Optimal Objective Function

In traditional plasticity layout optimization, the optimization is performed with

respect to the area, i.e. the algorithm minimizes the cross-sectional area of elements

until the constraints are all active. In other words, plasticity optimization requires

all elements to be fully stressed (active constraints). This is the case, because if a

member was not fully stressed, more material could be removed till it becomes fully

stressed. This is a typical requirement for pure volumetric optimization which does

not hold in the case of redundancy. The area vector is expressed as

a = (('tension ('compression) ( tension compression- (3.24)

Without loss of generality let ('tension = ('compression = 1. Then a = f4 . Hence, in the

plastic layout optimization, minimizing for area is equivalent to optimizing for the in-

ternal forces. However, in the case of redundancy optimization, this would be a faulty

assumption. By definition of redundancy, removing one element results in a substruc-

ture that yet has the capacity to maintain the original applied load. If the original

structure had been fully stressed, then clearly the substructure would not be able to

accommodate for the original load. This means that the fully stressed assumption for

all elements of a cannot be used in any redundancy accounting optimization. What

is more, from the previous section, it is clear that keeping the objective function as

the load path 11' - f optimizes only the initial force structure i.e. finding non-optimal

4This equality is clearly in magnitude and not units.
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solutions as soon as an element of the primary system is removed. The correct ob-

jective function should include the vector that optimizes for the load path created by

the largest possible forces felt on each element. Below, we show mathematically this

result.

Define the m x m matrix that contains all substructure internal force vectors

(3.25)fm

From (3.25) we need to create a vector out of the absolute maximum value of each

row of the matrix. In addition, we would require to keep f as isolated from the

maximum function as possible, in order to maintain the linearity of this problem.

Mathematically, the desired vector S is given by

S = max(Pij) Vi E 1, ... , m.
j

Deriving S is not

is also equivalent

straightforward since f is

to

deeply embedded in P. Note that (3.25)

P = K1f Kif

where C'i the ith basis and Ki

section 3.2.1 to be

Kmf )
gTf

~K1 f

e- Kif

e2 K, f

such that fi = K f. This m

el KIf ... - T Kmf

e2Kif ... -- Kmf

elKif .-- eKm f

(3.27)

x m matrix was derived in

K=Im - V _.
r V - V

Combining (3.26) with (3.27), each row j of vector S equals

Sj = max j'Kif
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Placing (3.28) in (3.29) we get

e f = e(Im - v, e-,)f = e f - .(_ = e ej V . (3.30)

So for j = 1 we have

fS f.
Si = max(f - -Lef) = fi - vi max- = fi + vi min(--'). (3.31)

vi Vi i Vi

The value L is a ratio of the internal force of element i over a constant. Minimizing

the negative of this value is equivalent to say that we require to find the most critical

element in the truss system (with the largest. internal force). Note that since elff

is invariant of i we can take it out of the maximum being treated as a constant.

Performing this for each row, we get the desired vector S to be

fi + v1 mini (-f)

f2 + V2 min (-)f.
S - m - f + min(--)V. (3.32)

frn + vm mini(-)

With S determined, the updated load path objective function then takes the form

min g(f) = min L T _ S = minL T (f + min(--i)ir) =
f f f 2 Vi

= min(L Tf + min (--L)LTi6) = min(L Tf - LT) = (3.33)f C[1,...m] Vi fi Vi

= min L T (Im - )f = minL T Kif = min L T f,.
f,i e f,i f'i

The result is very intriguing, as we just proved that instead of taking the maximum

value of each row of matrix P, by the nature of the matrices, we only need to identify

one column vector fi for which (-L) is minimized. This means that minimizing the

load path of a redundant structure is equivalent to minimizing the load path of the

most crucial substructure, that is acquired by removing the highest stressed element

of the original structure. To restate this important result as a theorem:
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Theorem 3. The objective function of the problem is equivalent to

min g(f) = min LTfi, (3.34)

where fi the internal force vector of the structure, when element i is removed.

3.2.4 Level 1 Redundancy Linear Formulation

A final adjustment that can be performed to maintain the optimization linear

and simpler, is to place the two slack variables f+, f- in one 2m x 1 variable vector

f (n). Then the objective function is converted to

LTfi = (L T L T) ( 0 f (3.35)
(0 Ki)

where Ki the matrix coefficient such that fi = Kif. Likewise, the constraints become

JL ARi(Im - i )f = ARiKi -ARiKi f = F. (3.36)

Hence, the level 1 redundancy linear program has the final form:

min LT K LT Kif
f,i

s.t. JL (ARiKi -ARiKi)f = F (3.37)

f;> 0 V i E [1, 2..m]

This is a typical linear optimization problem with equality constraints, and can

be directly solved with either simplex method or an interior point algorithm.

To summarize, in this section, we proved the following key findings. First, we showed

that the internal forces of a "damaged"/reduced substructure are related with those of

the original one. In addition we showed that to optimize the volume of the redundant

structure, it is sufficient to find the least load path of the most critical substructure.

Combining these theorems, we were able to formulate the volumetric redundancy
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optimization as a linear program.

3.3 Computational Implementation

As mentioned in the previous chapter, the foundations of the computational so-

lutions were drawn from the GRAND framework. Specifically the mesh generation

and the geometry matrix construction use Zegard's GRAND code in Matlab (Ze-

gard et al., 2014). The main motivation behind this choice is that Zegard's ground

structure generation development accounts for co-linear trusses (up to a user-defined

sensitivity) and also allows the control of the level of connectivity i.e. how many

neighbors of neighbors are connected to each other. Hence, Zegard's and Paulino's

impactful work prove to be an ideal foundation for the developed algorithms. Fol-

lowing the Ground Structure development, the algorithm needs to complete several

computationally heavy processes in order to derive the optimal redundant solution,

such as calculating the nullspace of the connectivity matrix, storing the set of Ki's,

and iterating over the redundant elements to find the optimal ones.

In this section, a few key parts of the code are provided, as well as an expository

of the optimization algorithm and the visualization of the results.

3.3.1 Preliminaries

GRAND (Zegard et al., 2014) can input any collection of nodes, connectivity

levels and geometries, and constructs the geometry matrix A, calculates the m x 1

elements length vector L as well as the external force vector F. Then through linear

programming, it minimizes the load path LTf, under the equilibrium constraint Af

F. To solve the optimal problem linearly, Zegard implements the trick of doubling the

size of f under virtual tension and compression elements with non negative entries.

All the following described calculations were performed in Matlab. The redundancy

optimization algorithm requires to calculate a nonzero elements vector V' that belongs

to the nullspace of A. Since A needs to have full rank to be solvable, the nullspace

will be nonzero and will hence always have basis with nonzero elements. To guarantee
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that the used vector V has no zero entries, the sum of all basis vectors of the nullspace

is taken, as the magnitude of the vector's entries are invariant of the result.

With V defined, all Ki matrices can be calculated. After the coefficients of the

equations of ARiKif = F have been stored, only the linearly independent ones need

to be kept. To do so, a custom function removes all independent rows of these matrices

while saving the indices of the remaining rows to find the corresponding entries of F.

The resulting coefficients and respective external force entries are then used in the

linear optimization.

With the above preliminary calculations completed, the linear optimization pro-

cedure can be initiated.

3.3.2 Linear Programming

After the preliminary calculation, the redundancy optimization can take place. In

subsection 3.2.3 it was shown that the redundancy objective function is equivalent

to minimizing the load paths of the most crucial substructure. However, the most

crucial substructure is not known and the only element removals that have direct

impact on the optimum are the ones that exist in the volumetric optimal. Hence, the

algorithmic implementation of redundancy optimization is as follows:

" Find the volumetric optimal through traditional topology optimization and save

the indices of the nonzero force elements

" Loop through these elements and run the optimization of their reduced sub-

structures with the total force vector as the objective variable - Matlab's linprog

command was used for this step

" Save the maximum force of each entry as the optimal force and update the

optimal force vector

When the loop terminates, the optimal area is calculated as described in the next

section. The complete code with the loop of optimizations can be found in Appendix

B.
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3.3.3 Drawing the solution

Since the fully stressed assumption does not hold for the redundancy optimiza-

tion, after finding each fi we cannot simply say A = -f. Instead, the way the

thickness is calculated, is by assuming that the maximum thickness of each element

of fi is acquired when that element is fully stressed. That way we can calculate

A = maximum of each row offi, Vi. After A is calculated it can be drawn.
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P.4

Figure 3-2: A 4 x 3 orthogonal cantilever type ground struc-

ture with five candidate fixities and one point load on the

right

Figure

nation

3-3: Optimal level 1 redundant least volume combi-
- as expected it resembles a Michell truss

Figure 3-2 shows an initial user constructed 3 x 4 box grid with fixities on the

left side and a point load on the right. The initial ground structure connects all

intersection points of this grid with all other points up to a level 6 connectivity.

Figure 3-3 is the level 1 redundant optimal volume structure. The thickness of each
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line represents the element's cross-sectional area. Given a length of 10 units on each

side of the ground structure and a unit load applied, the least volume cantilever for

the particular grid is 43 cubic units, which is below the double of the volumetric

optimal for the same grid (25 cu). More visualizations and comparison of the volume

savings of the redundant structures are provided in Chapter 5.

3.4 Discussion

This section provides brief qualitative explanations and extensions on certain top-

ics that were previously described mainly from a mathematical viewpoint. In addi-

tion, alternative optimization approaches such as integer optimization are encountered

along discussions on their performance and potential recommendations to make the

implemented algorithms more efficient.

3.4.1 A Closer Look in the Structure-Substructure Relation

One of the most crucial relations derived in this thesis is the closed form linear

relationship between the internal forces of a redundant structure, and the forces of

any of its substructures. First of all, it is not intuitive that there is even a relationship

between the internal forces of the two structures given all the potential redistributions

of forces, and secondly it is remarkable that for one element the relationship is in fact

linear. This relationship holds if and only if the substructure we are dealing with

is stable (not just in equilibrium). In addition, we are assuming the truss system

receives loads only on its nodes and the elements have no self-weight. The structure-

substructure relationship in invariant of the material's system and it holds for both

plastic and elastic structures.

On the next Chapter a proof for the i level redundancy structure substructure rela-

tionship is provided, where it shows that the degree of the relationship is equal to

the level of the desired redundancy. To recite relationship (4.3) here, if f the internal

force vector of the original network and fi the internal force vector of the reduced
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network (clearly the it" entry of fi is zero), then the relationship is given by

(Im - -_) f. (3.38)
ej v

It is mentioned that any arbitrary iJ can be used in this relationship, meaning any

nonzero element vector of the nullspace. The reason we demand nonzero elements is

because we impose the restriction of reducing any element i and hence divide by the

ith entry of V. The careful reader might notice that if a nonzero V is used, then any

a7 could also be used, for any a : 0. This is because if AV' = 0 4 A(aV) = 0. It is

straightforward to show that for any vi = ac' for arbitrary nonzero a, the coefficient

Ki remains unique. Mathematically,

- Zdei V
Ki = Im -- = im -= Im - --. (3.39)

ei v 1  ae v ei v

Hence the choice of V is invariant of the result. Yet, a more general question that can

rise, is how does the coefficient Ki particularly look?

A matrix look on Ki

Here we show Ki in matrix form, in an attempt to better demonstrate how the

forces of structure and substructure are related.

a,
al

Let the original m x 1 internal force vector f = a2 and any nonzero vector

am

V1

V2
v= of the nullspace of n x m geometry matrix A. Then the linear coefficient

Vm
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Ki for which fi = Kif can be written

0 .. - , .. v ---0 0 .. -I .. g 0

--- 2 - 10-.. 2 ... 0

Ki =Im
Vi 0 ...- Vi --- 0 -.. 0-- 1---.0

(3.40)

and putting this together gives the form of the linear coefficient to be

1 0 - ... 0 ...Vi

12 .. . 0
Vi

Ki 0 (3.41)

-" 1
vi

Vi

So the internal force f, of the pth element when element i is removed from the

structure is given by equation

f i = f, - -P f , (3.42)
vi

where f, the internal force of the pth element of the original structure. Hence, based

on what signs - and fi are, the reduced structure internal force change.
Vi

3.4.2 Expository on the Objective Function

The selection of the appropriate objective function on the linear program is of

critical importance. There are two major flaws why the traditional load path function

LTf would have not worked.

e The load path function is appropriate for volume minimization only under the
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fully stressed assumption

* The initial load f would optimize only the part of the structure that is fully

stressed without any removals

The second point is key to the solution. If the optimization would attempt to minimize

the internal forces of the original structure, then this would not be too different from

traditional volumetric optimization. This is the case because the initial structure has

several layers of determinate structures, and hence only one of them might be stressed.

Hence, to achieve a total minimization of the worst case load paths, the appropriate

objective function as mentioned in Section 3.2.3 is minf,i LTfi. This result shows that

optimizing for the worst case load path is equivalent to optimizing for the maximum

potential force of each element under all substructures. This result is crucial in the

progress of the solution, as it manages to linearly extract the unknown variable vector

f from the maximum potential load paths of the substructures. In simple words,

this allows us to run a traditional topology optimization and identify the critical

elements. Removing these elements one by one and maintaining the largest forces for

each element for every optimization outputs the desired vector we are minimizing for.

The proof in 3.2.3 significantly simplifies the optimization process.

3.4.3 Uniqueness of Solution

Problem 3.37 can be directly solved using either simplex or floating point algo-

rithms. Am intriguing next question one can ask, is whether the solution is unique

and under what conditions. This is a broad Linear Programming concern and the

answer is highly dependent on the ground structure's topology, the A geometry ma-

trix and the overall symmetry of the structure. There are several algorithms that can

be applied in a case by case basis to test uniqueness, and the author recommends

relevant literature (Appa, 2002), (Rozvany, 2011). The simplest check that can be

applied on specific examples, follows the steps below:

* Perform the optimization and acquire the optimal load path, say Vmin.
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" Add the equation ILT K -LTKif = Vmin as a new constraint and solve

simultaneously the problems min e-Tf and max-eif for all elements i. The

additional constraint implies that we are searching a different optimal solution

(same function value). But the new function to maximize/minimize, namely

fi, means that we are looking for an optimal solution with maximal/minimal fi
value.

" Check whether the optimal minimum and maximum f are equal to each other

V i. If that is the case, then the solution is unique and there is no other configu-

ration that is optimal. Alternatively, there can be other optimal configurations

- material distributions.

The issue of multiple solutions/configurations in topology optimization has been a

fairly unexplored field. Kutylowski has shown that for certain families of normal and

uniform grid ground structures, the density topology optimization can generate non-

unique optimal values that in general belong to the same shape of families and with

similar densities (Kutylowski, 2002). However, little is known for nonuniform grids

(not to mention additional constraints such as redundancy) in this promising niche

field of research. Rozvany provides a set of conjectures regarding the uniqueness

of solutions based on the symmetry of a truss structure (Rozvany, 2011). More

specifically, Rozvany provides two important conjectures regarding uniqueness and

symmetry of optimal solutions.

Conjecture 1. In a topology optimization problem with feasible continuous solutions

there exists either one or an infinite number of optimal designs with the same least

volume.

Conjecture 2. For a symmetric topology optimization problem with feasible contin-

uous solutions, at least one optimal design and the internal forces in it are symmetric.

Both of the above conjectures have been shown for several examples, however

there has not been a general mathematical proof yet. We believe that uniqueness

is a more frequent phenomenon in the redundancy topology optimization compared
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to traditional topology optimization, given the additional limitations imposed in the

structural freedom and the increased lack of symmetry. In any case, configuration

uniqueness for both redundancy and traditional topology optimization need to be

researched further from a theoretical topology group perspective, in order to provide

more general statements.

3.4.4 Controlling the Number of Elements with Integer Pro-

gramming

After experimentation with the optimization algorithm, one can easily notice that

the more refined that initial mesh grid, the linear redundancy optimization attempts

to reduce the criticality of all trusses by adding several thinner ones. Hence the

number of elements and varying thicknesses dramatically increases after an increased

enough density, setting the process impractical and uneconomical. Thus after a point,

it might prove more insightful to either optimize for the number of elements used, or

maintain a restriction on the potential options the area of each element can take. A

partial solution in that issue can be given by integer programming.

Mixed Integer Linear Programming

Mixed Integer Linear Programs (MILP) allow some of the objective variables

to be integer by relaxing the constraints. In MILP the user is able to restrict the

solution to binary or multiple variables. This would set the actual manufacturing of

a truss system much more practical, requiring only a set of three or four different

cross sections. In the specific case of redundancy the optimization would take the

following form:

min LT K LT Kif
f,i

s.t. JL (ARiKi - ARiKi)f < F (3.43)

f > 0 V i e [1, 2..m], f E Z

The only drawback is that some elements might be overestimated and the design
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load limit is relaxed as the above constraint shows. Nevertheless, given the desired

applicability, refinement and allowable design space, the integer programming for-

mulation could potentially be a more desirable solution. The way one could control

the number of elements used in the optimization through linear programming, is by

controlling the range of allowed solutions. For instance, if we have two allowable sets

from which the objective variable can draw from, say [0, 1, 2,3,4, ... ] and [0, 2, 4,6,8...],

then the optimal solution from the second set would contain far less elements than the

solution from the first set. This is because the distance between the cross-sectional

area of accepted elements is larger and hence less elements can take multiple values.

In general, increasing the distance between accepted element values decreases the

number of elements in the MILP solutions (and at the same time it decreases the

material efficiency of the shapes).

The computational implementation is more expensive than continuous linear op-

timization, given that the constraint is relaxed and the code has to iterate further in

order to approximate the integer solution. To put the solutions in more perspective,

Figure 3-4 shows the linear integer program the for a 4 x 3 box grid of the same

dimensions as the optimal redundant structure in Figure 3-3. The topology of the

structure is dramatically different and the structure only uses 5 different cross section

for all of its elements.

The total volume of the structure is 55 cubic units, which is almost 30% more

material than the continuous redundant optimal. Thus one can accommodate less

variability of the used elements by sacrificing additional material. In any case, with

a well formulated continuous linear program, integer programming is a direct and

feasible extension of the problem, providing alternative solutions.

3.4.5 Algorithm Performance

The algorithm has not yet reached optimal performance yet and there are several

steps that could potentially be added to make it more efficient and less computa-

tionally expensive. In principle, the Ground Structure approach is by default highly

memory consuming. For instance saving the sparse geometry matrix of a 50 x 50
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Figure 3-4: Integer optimal level 1 redundant structure with 7 elements of 5 different
cross sections

orthogonal ground structure with Level 6 connectivity takes about 8.6GB of memory.

Calculating the nullspace of such a matrix using the default Matlab null() function

is very time consuming. Then in, different Ki matrices that span from A need to

be stored during the loop of optimization. In fact, the linear optimization process is

the fastest computational part of the code. To accelarate the speed of the matrix,

custom made functions for calculating the nullspace of sparse matrices have been

implemented that save considerable time, however for larger than 10 x 10 orthogo-

nal grids, the required memory exceeds standard PC RAM memory. In the future,

we hope to implement more sophisticated storing techniques to make the code more

efficient and user-friendly.

3.4.6 Chapter Summary

In this Chapter the level 1 redundancy optimization - i.e. the least volume struc-

ture, for which any element can be removed while maintaining equilibrium - was de-

veloped as a linear program. The general algorithm for any initial Ground Structure

has been fully developed for any input geometry, including normal grids or nonlin-
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ear highly customizable geometries. There are several advantages that make level 1

redundancy optimization distinct and much more efficient compared to higher lever

redundancies. One major reason is the fact that the substructure internal forces are

linearly related with the original structure's forces. In addition, the different set of

elements that can be removed are at most m, while there are factorially more com-

binations in the case of higher redundancy. In the next section, we show how the

nonlinear problems of higher redundancy are formulated and solved.
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Chapter 4

Higher Order Redundancy Topology

Optimization

Following the results and formulation of the redundancy optimization for 1 ele-

ment, we can provide a generalization of this formulation for i > 2 elements. In other

words, we can formulate the problem of finding the least volume redundant structure,

for which any i number of elements can be removed, with the remaining structure still

stable. To achieve this formulation, and proceed with computational results, the key

is again to identify the relationship of the internal forces of any substructure with i

number of elements removed, and the internal forces of the original full structure. As

we prove in this section, the relationship between structure and substructure internal

forces are not linear anymore for i > 2 elements, but instead they have a degree equal

to the number of elements that are removed. First, we show this relationship, and

then we formulate the general i > 2 level redundancy optimization. We show that

such Equality Constraint Nonlinear Problems (ECNP) are directly solvable using La-

grange Multipliers. Finally the case of 2 elements is shown in closed form and taking

advantage of symmetry, some insight in their solutions is provided.
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4.1 General i > 2 level redundant substructure -

structure relationship

In order to express the optimization problem in terms of the original internal force

variables, a relationship between reduced structure and original structure internal

forces needs to be established.

4.1.1 Maximum Number of Element Removals

First of all, a question of interest, is whether we can determine the number of

elements that can be removed, given the number of nodes and connectivities. Since the

reduction matrix, as defined in the previous Chapter, simply reduces some columns

of the geometry matrix A to zero, the largest reduction of columns we can perform

is up to the point where rank m = rank n. Thus, a broad upper limit for the set of

elements that can be directly established is that at most rank m - rank n elements

can be removed, in a structure for which it has full rank (stability requirement). This

number is also known as Maxwell number(Maxwell, 1869), and it is directly related

to the geometry matrix i.e the number of nodes and topology of the structure.

A major constraint in the problem formulation, is that we allow the removal of

any i number of elements - not specific ones. Thus, neglecting symmetry, the number

of potential substructures that need to be checked for a structure with m elements

and i removals is

mCi = n! (4.1)
z!(m -- 0)!,

For instance, the second order redundancy optimization would require "'C2 stable

substructures. Hence the number of substructures that have to be checked for stability

increases geometrically. The relationship between substructure and structure internal

forces also becomes more complex and nonlinear. The reduction matrix in the general
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case is defined as

i zeros on the diagonal

0

Rel,el2..,el =
0

There are 9 = 'Ci such m x m matrices, and that creates 9 different equations of the

form

ARe1i,e 2 ..,ejfeii,e 2 ..,eij = F Veli, e12 .., eli C 9 (4.2)

4.1.2 Substructure Expression

On this section, the generalization of theorem 1 from Section 3.2.1 relating the

internal forces of a full structure and the forces of the 2 ; i < (rank m - rank n)

reduced substructure is provided. In particular, we show that the relationship between

the original force vector f and the reduced structure force vector feli,el 2 ,...eli , has

i elements removed

the same degree as i, the number of removed elements.

Theorem 4. Let truss network E with n nodes and m branches, in equilibrium with

the external n x 1 force vector F and the respective internal m x 1 force vector

f. If by removing i > 2 ell, el2 .. , eli trusses from the system under the identical

loading conditions, the truss system maintains in equilibrium under internal loading

fellel2...eii, then the relationship between the internal forces of the reduced structure

and the actual structure, is given by:

fe=1,e12..,ei = f -- 171 (-,) f V, (4.3)
r=1 elr

where e'etr the el'h m x 1 basis vector, and V any nonzero basis of ker A.
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Proof. The following procedure closely follows the derivation in Section 3.2.1. From
KI

Lemma 1, El = such that AV' = 0 4 Kici + + Kmcm = 0, where ci

the columns of geometry matrix A. Let f and fel1 ei2 ...e1 = the

\am/ (1;)/
original and Zth order substructure internal force vectors respectively. The expression

A(f -Reii,e 2,...elifeli,e 2 ,...eij) = 0 is derived directly by Equation (4.2) and equilibrium

of the original structure. This is equivalent to

c1(a,- X) + c2(a2 - x2) + - - - + ceraer + -+ cm(am - xm) = 0 (4.4)

If any of the ar = 0 then the problem is equivalent to the reduced ' - Ith order

substructure problem Without loss of generality, we can assume no al's are zero.

For ac, # 0 Vr = 1, ..i, multiplying (4.4) by 1J_1 - givesriel

aei a
=..Kep-Cel,++, += (am-x

r=1--P-1,P 1 i a ,, 1
)cm = 0 (4.5)

From equations (3.13),(4.5) there 3 some Kj (j $ eli, e1 2 , ... eli), such that

flKr
-- (a - xj) = Kj.

r=1 ar

(4.6)

Solving (4.6) in terms of xj gives

, = a. Hi ael, K,

r=1 Kel,
(4.7)

and since this holds V j (besides the removed elements) the relationship for the reduced
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structure's internal forces is

feii,ei 2 ,.... ei - f7J aee rj f 1J6r~ ) 1:1 (4.8)
r= 1 r=1 e Gv

From Equation (4.8), one can see that the relationship between fei,ei,...eij and f

is an ith degree vector polynomial.

4.2 Higher Order Formulation

With the higher order structure substructure relationship formulated, we can now

proceed to formulate the optimization problem, which closely resembles the case of

first degree removal but it is not linear. Note that the non-negativity trick used in

the first order removal is not necessary, since the optimization is nonlinear in the first

place. Hence there is no need for the virtual structure doubling method implemented

in Subsection 3.2.2. Let J the set of the (m) permutations of the ground structure's

elements. The general ith order optimization takes the form

min |LT (f-H, ( 16g))ifi JL e -)

s. t. IL ARe1 1 eli.(f -l H=, ( er f )) F V i EJ
r el r6

(4.9)

Note that in this case, the JL operator finds the linearly independent rows of all

possible 'Ci matrices of the form Rej,.. el, which directly shows the magnitude of

such a process.

4.2.1 Analytical Solution

Even though the preliminaries of setting up such an optimization problem are very

time consuming (identifying linearly independent rows from 'Ci n x m matrices, ith

degree polynomial), the particular nonlinear optimization problem falls under the

family of Nonlinear Equality Constrained Problems (NECP), which if continuously
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differentiable, can be directly solved using Lagrange Multipliers. More on NECPs and

Lagrange multipliers can be found in any graduate nonlinear programming textbook.

The author recommends Bertseka's Nonlinear Programming book (Bertsekas, 2005).

The order of redundancy and consequently the order of the nonlinear optimization

problem, is actually irrelevant to the solution method as long as i > 2. For this

reason, the derivation is provided below for i = 2, and similarly it can be extended

for any i > 2.

4.3 The case of 2 elements

The case of 2 elements is particularly special, because under symmetrical ground

structures and loadings, it can be considered as a natural extension of the first order

redundancy optimization, as seen later in the section. The relationship between the

internal forces of the structure by removing two elements, say i, j, is given by (4.3):

fT e-w f
f -v. (4.10)

The complete formulation for the i = 2 problem is provided by (4.9) and resolved

below:

min LT(f - - 7)
f~i ~ e V -; . 6)(4 .1 1 )

s.t. JL ARei..ei (f - ( ) = F V i, j e 1, ... m

This remains an NECP, and it can be directly solved in close form with Lagrange

Multipliers. Assuming that the objective function and the constraint are respectively

objective function = L fj (4.12)

h(f) = ARijfij - F Vi, j E 1, ..m, (4.13)
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the general form of Lagrange system for this problem would take the following form

VfL(f, A) = Vf(L T) + V AT(ARijfij - F) = 0 (4.14a)

V,\L(f, A) = h(f) = 0, (4.14b)

where the n x 1 vector A is the unknown Lagrange coefficient. Since the mathematical

solution involves matrix derivatives, some important matrix derivation theorems are

required. Before proceeding with the extensive calculation of the Lagrange Method,

it is worth looking into the derivative dimensions as a frame of reference. In general,

the following theorem holds regarding matrix derivatives:

Theorem 5. Let continuous infinite differentiable mapping f : R xn -+ RP x. The

dimension of the derivative map of f with respect to matrix x of size (m x n) is

d: R"" mx -Rpqx"m" (4.15)
dx

The proof of this theorem is omitted due to its irrelevance on a Civil Engineering

graduate thesis. A detailed proof can be found in several graduate nonlinear algebra

textbooks. A recommended one is by Kagiwada et al(Kagiwada et al., 1988).

The load path objective function has dimensions (1 x 1) (scalar value), while the

internal force vector has dimensions (m x 1), so by theorem 5, the derivative of L with

respect to f will have dimensions (1 x m). This is a good reference point throughout

the calculations that are to follow.

What is more, the following matrix derivatives are useful

dg(Y) _ dg(y) dy(Y) (4.16a)
di dy di

d_ = A. (4.16b)
di

_ =. A T(A + AT). (4.16c)
di

Plugging equation (4.10) in L Tfij and in (4.13), we can solve the system of equa-
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tions (4.14a) & (4.14b) in terms of f

VfL (f, A) = Vf [L T(f -- _ )f T-
BTej 3 v V e e

d(LT f) dfT e1ef LT + d(AT ARjf) dfT ef
df df -T ef T df df

AT ARij _

1eJi _

LT-
LT- _,L _Vq -esTv

-f ( + )j + 'ARij

Now this can be solved in terms of f with A as a parameter. Reordering (4.17)

gives

LTY V+ ATARU Z6 fT(- 7 jf + -')
-rT - - - - j j+ EV esi V

- LT + AT ARij <

fT( ei +e) = V e(e V LT + AT ARij).
LTV+ ATARijv

(4.18)

Equation (4.14b) is directly equivalent to the stability constraint. Hence the system

of equations that needs to be solved in order to deduct the optimal f is

{fT(j + e jeT) = . -(LT ATARij)
(4.19)

ARj(f - -j ) = F

4.3.1 Second Order System Solution Attempt

To solve system (4.19), note that the second equation only has f as an unknown.

Hence, some elements of f are solved and then plugged in the first equation to find

A. Using the same notation as in Proof 4.1.2 for the columns of A, the elements of V'

and f, we have

ARij(f- _. j7
VT e v

0J) = cifi + + cmfm - fiJ (CiKi + + CmKm).
Ki nj
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Note that the left hand side of the above equation is equal to F, but also the original

equation Af = F holds. In addition V was defined so that AV' = 0. Hence the above

equation can be written as

Cifi + - + Cmf/m - - (cin+ - + CMKM) = F
f~fKi K

( Crfr - F)- cif, - c3f, - K (E crKr - cini - cjtj) = 0
r=1 3 r=1

ff-f
(Af -F -cif, - cyfj) - (A - Cini - Cjnj) = 0

Ci f, - c3fj + f (ci + c.i K) = 0 4

ci fi - ci tf + c3 ff f = 0

ci fi(1 - ) + c f(1 - L) = 0. (4.21)

From a first look, there are n equations and 2 unknowns, the ith and jth entries of

the original force vector f. However, looking in the geometry matrix A, note that

each column represents one element, and hence, there are only two nonzero entries

in each column. That means that there are exactly two equations for ci and two

equations for c1 . These entries can share at most one rowl and hence there are either

four or three equations. For the system not to be overdetermined, the elements that

can be removed have to have at least two or one linearly dependent equation, in the

cases of four or three distinct equations respectively. The equation is then solvable

(determinate or indeterminate) for the ith and jth entries of f, and the first equation

of system (4.19) can solve for the rest of the elements of f.

'Since in the geometry matrix each row represents a node, if both rows where the same then
both columns would be equal and correspond to the same element.
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4.3.2 Symmetry of second order redundancy

Even though the solutions of the above problem can be very computationally

expensive due to the number of cases that the algorithm requires to check for stability,

for specific initial ground structures, second order redundancy, can be acquired by

implementing symmetry on the first level redundant optimas. Specifically, the authors

provide and justify the following conjecture

Conjecture 3. If the ground structure is symmetric in terms of the axis that is

defined by the total loading (hence also under symmetric loading), then an optimal

second order redundant is the mirror projection of a first order redundant assymmetric

optimal with respect to the axis of symmetry.

This conjecture has mainly risen from the fact that on symmetric ground struc-

tures under symmetric loading, half of the first order redundant optimal structure

has the required second degree redundancy. That is adding the symmetric element

to the symmetric side missing the particular one from the other half of the first order

redundant structure is the least volume addition to transform from first to second

degree redundancy. For instance, Figure 4-1 is a symmetric 4 x 4 ground structure

for a simply supported beam with a loading in the axis of symmetry. Figure 4-2

depicts the first order redundant optimal.
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___________ _______________ I _______________ _______________

Figure 4-1: A 4 x 4 simply supported beam type

ground structure with two fixities and one point

load on the axis of symmetry

Figure 4-2: Optimal level 1 redundant least volume

simply supported beam - each side implements an

optimal mechanism of achieving redundancy

One can notice that on each side of Figure 4-2, the algorithm has optimized the

structure to allow the removal of each one element. By mirroring the structure with

respect to the axis of symmetry, we obtain a structure that exactly any two elements

can be removed and the structure would still be stable (Fig. 4-3). This is the best

way to reach second order redundancy from the first order redundant structure.

In this simple mirroring way we can acquire second order redundant, possibly
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Figure 4-3: The second order re(ltindant optuinal as a result of mirroring the first

order struct ure

optinal, if not optimal structures without using almost no additional comipuit ational

cost from the linear approach. This holds for all synmmetric GS with syninetriC

loading. Even though this might seem like a method that can be extended for higher

order cases, it actunally cannot be generalized for higher orders of redundancy, partly

due t.o tie nonlinear relationship of the substructures of higher degrees of reduidaicv.

This is explained furtlher in the next section.

4.4 Relative Reduction Relations of Optimal Redun-

dant Structures

On(e quest ion that might arise from the previous section is whether one can achieve

and K'^ level of redundancy by optimizing the (I - 1)"' redundant structure for an

addit ional redundancy level. However, for t his to be the case, there would have to exist

a general linear relationship between the i'l and (i - 1)" redundant substructures.

In this section, we show that this unfortunately is not the case. This is shown for a

second to first order order of redunldancv and can easily be extended to higher orders

by induction.
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4.4.1 Relation between Second and First Order Redundancy

To identify the relation between the first and second order redundant structures,

we need to express the relation between the internal forces of their substructures.

Theoretically, if these forces were to be linear, then we could virtually achieve any

order of redundancy with linear programming.

Let fi, fj and fij the internal force vectors of the reduced substructures when

element i, j and both i, j are removed respectively. The question is to identify the

relationship between these three. First from the previous section we showed that

fi =Kif where Ki =Im - E. This equation can be rewritten as

fT g-_
fi = f -

VT V
irT

f - fi=

T (f- (4.22)
V ej

Rewriting fi3 and plugging in (4.4.1) for i and j gives

f-- = f - - V
IrUTe s-T ive-

fi, = f f-- _ (f - fi)
-I

~ V V.ff)ff' (4.23)
fij f - _'T (f - fi) (f - fi) (.)

Hence, the relation between the internal forces of the structure with elements i,j

removed can be given with respect to the internal forces of the reduced structures

with i and j elements removed respectively and the original structure's forces, by the

above equation. Notice that this equation is symmetric for i and j confirming that

fij = fji, and is nonlinear with respect to fi and fj due to the second term. This

relation confirms that second order redundancy cannot be achieved by performing

the same linear programming on the first order redundant structure.

Now by induction it is easy to generalize this equation for ith order redundancy
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directly to first order reduced elements. Specifically if feli,...eij the internal force vector

of the ith level reduced substructure, and fel, the internal force vector of the first order

substructure with r element removed, then the relationship between these vectors is

given by

1_4
feli,...eli = f - - 1 V (f - feli)... -T(f - feli_ 1 )(f - feij). (4.24)

4.5 Discussion

This chapter extended the algorithm used to identify first order optimal redundant

structures to higher orders. We showed that with the current approach the compu-

tational cost of higher orders of redundancy increases geometrically and hence the

proposed approach is likely not the optimal path to the higher redundancy problem.

In this section, we discuss further the current optimization and recommend poten-

tial extensions that could provide a faster solution to the higher order optimization

problem.

4.5.1 State of the Art - Pure Topology Optimization

Since the relation between a higher order substructure and the original structure

is polynomial with a degree same as the order of the substructure, there is little

one can do to improve the approach with a Ground Structure. Especially given the

fact that with the Ground Structure approach, the algorithm builds the geometry

matrix for every single connection - something extremely computationally costly.

This is particularly useful if the user input has a limited allowable design space,

such as forbidden zones. Refined Ground Structures perform both Topology and

Geometry Optimization simultaneously. In the case where the user only requires a

more abstract optimal value, topology and geometry optimization could be decoupled.

If a theorem could show that the total volumetric optimization is equivalent to a series

of consecutive topology and geometry optimizations, then the process could be much

more computationally efficient.
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In this scenario, the user would input the number of allowable nodes and fixities,

and in response the algorithm could first identify the acceptable connections. Af-

ter the connectivities are finalized, a geometry optimization would occur by moving

around the nodes in the design space. Even though this approach significantly re-

duces the computational cost of calculating the geometry matrix and the kernel of an

entire Ground Structure, little is known in the literature of Topology Optimization,

whether a series of consecutive topology and geometry optimizations result in the

global optimal.

4.5.2 On Symmetry beyond Second Order Redundancy

In Section 4.3.2, a conjecture for a second order redundancy in symmetric Ground

Structures under symmetric loading was provided. This approach is likely to be

extended for larger number of elements in a similar manner. That is on symmetric

GS, each element is either a part of 1 or more individual stable substructures. Hence,

in such structures we require to add not just elements but layers of substructures

that are able to take the loads in case of failure of one element. That means that in

several cases, we do not desire to use one main element for several substructures, as

its removal would neutralize all dependent substructures. Figure 4-4 shows a 4 x 4

transmission tower GS with rightward wind loading and vertical gravity loading. Each

element is used by only one substructure, in this optimal redundant configuration. To

increase a level of redundancy, the symmetric loadings are required. However, since

the loading is not symmetric, two projections of the redundant dominant side need

to be taken (Figure 4-5). This two-way symmetry then increases redundancy not just

to second but third degree, as we indirectly added another two levels of substructures

that successfully transfer the loads.
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Figoure 4-4: A 4 x 4 transmnissioni tower with level 1
reduldallcy

Figure 4-5: Optimal level 3 redundant least volume

transmission tower resulting from symnmetry

Hence, in specific cases of structures with several axes of symmetry, the redundant

optinial can be extenided to higher even orders (twice the number of axes of smvinmetry)

of redundancy.

4.5.3 Integer optimization

As discussed ii the previous Chapter, after a refined enough Ground Structure.

the optiilizat ion algorithmi would likely add multiple elements of smaller cross see-

84



tional area with different values. This sets the solution uneconomical especially for

higher orders of redundancy. Thus the higher level redundancy optimization can be

formulated as an integer program by relaxing the stability constraint. This results

in a very computationally expensive process, however it allows the user to limit the

allowable cross sectional areas to limited numbers. The integer program takes the

following form

m in |L T (f- - 1  (Tir
fs Ji e Ir

s.t. IL AReIi,..eIj (f - Hli=l (' )) < F V iG~J.
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Chapter 5

Analysis of Results

In this Chapter, several visual results and examples of the optimal redundant

structures under different loadings and Ground Structures are showcased. The Chap-

ter focuses on presenting the breadth of applications and solutions of Redundant

Optimal Structures but also highlights some interesting insights about how the den-

sities of different Ground Structures perform compared with each other as well as the

purely volunetrically optimal solution. The Chapter is structured in terms of Ground

Structure linearity. First, the analysis is performed on normal orthogonal grid exam-

ples, specifically a Cantilever beam, a Simply Supported Beam and a transmission

tower example. Then some nonlinear examples are used that implement Talischi's

Polymesher (Talischi et al., 2012) non-regular mesh generator, inspired by Voronoi

diagrams. The Chapter concludes with a discussion on the infinity of redundant so-

lutions and some comparisons of the redundant optimal with the pure volumetric

optimal.

5.1 Orthogonal Grid Examples

Using the GRAND (Zegard et al., 2014) platform and plastic layout optimization

with the refined constraints, several shapes with free form boundary conditions that

are redundant have been tested. Due to the fact, that the redundancy results require

knowledge of the kernel of the geometry matrix and every connectivity matrix of
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each potential substructure needs to be stored., the algorithm is computationally

expensive. That is, the more refined the initial grid, the more time the algorithm

takes to compute, but yet the more geometry independent the result is. However,

when the grid is refined to the extent of including more than two orders of magnitude

blocks, then the computational time increases polynomially resulting to the range

of a day to compute the optimal results. Hence the maximum orthogonal Ground

Structures that have been tested do not have more than 100 fixed nodes (and their

corresponding fixities).

In the GRAND script, the user has the freedom to vary the number of subdivisions

of the Ground Structure in the x and y directions, as well as the length of each

direction. The redundancy optimization algorithm maintains this freedom.

5.1.1 Cantilever Beam

A cantilever beam is defined as a fixed horizontal beam with a vertical unit load

applied on its edge. Its truss approximation is a structure with at least two fixities

on the vertical direction and a certain span on the horizontal direction. Figure 5-1

shows an example of a truss cantilever ground structure with horizontal length of 20

units and vertical of 5 units, while it is discretized in 10 blocks horizontally and 5

blocks vertically. This results in 6 fixities on the vertical direction (blue triangles),

and one point load (shown in red) in the middle of the cantilever edge.

Figure 5-1: Initial cantilever 10 x 5 grid GS with horizontal and vertical lengths 20

and 5 respectively

The user is able to vary all these values, and in the analysis we cover both the way

the volume changes as the refinement changes, but also the ratio of span to width
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with volume under the identical discretization. When the redundancy algorithm is

used, a huge variety of shapes and formations are acquired, based on the refinement

and the span to width ratio of the cantilever. Figures 5-2 and 5-3 are an example of a

very short span to width ratio Ground Structure and redundant Optimal respectively,

while Figures 5-4 and 5-5 show an example of a span to width ratio under the identical

discretization. One can easily note that even though the discretization is exactly the

- -I- -
- ~

lip

Figure 5-2: 6 x 6 Ground Structure

with Span to Width ratio of

Figure 5-3: 1"t order Red. Optimal for

a 1 S-W ratio and 6 x 6 density2

same (6 x 6) for both cases, the shape is highly different. Increasing the span would

result in larger load paths and additionally more elements, but at the same time a very

short span with very large width would not allow the structure to reach a value close to

the optimal as it would be hindered by the limited spanning. However, in redundancy

optimization, the algorithm benefits a short span structure volumetrically, as that

would mean more direct load paths and less elements.

However, comparing span to width ratio with volume does not make so much

sense, given the fact that we are essentially comparing different ground structures. A
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Figure 5-4: 6 x 6 Ground Structure Figure 5-5: 1" order Red. Optimal for
with Span to Width ratio of 2 a 2 S-W ratio and 6 x 6 density

more interesting comparison is that of the density of the grid for an identical ground

structure with respect to volumetric performance.

Cantilever Ground Structure Design Space

For any Ground Structure Sigmund (Sigmund, 2001) has shown that the higher the

mesh density of the optimization, the more geometrically independent the optimiza-

tion is, and hence the closer it is to the optimal value. In the traditional volume-only

Ground Structure approach, the mesh density is very close to the optimal for a 10 x 10

grid. Figure 5-6 shows the design space of a 10 x 10 length Cantilever, under different

discretizations from a 1 x 1 to a 10 x 10 grid.

From the above figure, one can see that in general the design space tends to

slope downwards as the refinement increases. For both small horizontal and vertical

refinements, the solutions are far from the optimal as the do not allow for sufficient

spanning. Especially on the horizontal grid refinement, not allowing multiple nodes

to span sufficiently distorts the cantilever shape. Another interesting point on the

Optimal Redundant Design Space is that the reason that a lot of noise appears on

the volume of the grids has to do with the symmetry of the Ground Structure. When

the vertical refinement is an odd number, it means that the Ground Structure is

not symmetric and there is no middle point for the load to be applied on. Hence,

the redundant optimal for an asymmetric structure is slightly above the symmetric
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Figure 5-6: Ground Structure Design Space for a square cantilever

optimal, resulting in the wavy behavior of the design space.

Even though Figure 5-6 defends the assumption that more refinement implies less

volume, from a practical perspective, due to the nature of redundancy optimization,

increasing the refinement would result in hundreds of tiny elements that would be

very costly to actually produce. Figure 5-7 shows the volume of an optimal structure

with square grid refinement with respect to the number of elements, for the pure

redundancy optimization. Combining these two figures, the user is able to compare

and contrast the extent of volume savings to individual element production. This

problem could also be formulated as a bi-objective optimization problem towards

minimizing volume as well as number of elements or number of different elements

types. This could be promising future work in the field.
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Volumetric Optimal vs. Element#

44

4

4J

NumDer of Ekments

Figure 5-7: Number of elements of redundant optimal square cantilever for different
grid refinements versus volume

5.1.2 Simply Supported Beam

Another common example that is presented is the orthogonal grid with two point

fixities on the corners and a point load applied in the middle of the section. Figure 5-8

shows an example of a simply supported beam ground structure with horizontal length

of 20 units and vertical of 5 units, while it is discretized in 10 blocks horizontally and

5 blocks vertically.

Figure 5-8: 10 x 5 grid GS with horizontal and vertical lengths 20 and 5 respectively

Again, length and mesh refinement in both directions are variable, and the results

vary significantly for identical shapes and different refinements, and vice versa (Fig.

5-10 & 5-12)

From Figures 5-9 and 5-11 one can see that even though the initial refinement and
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Figure 5-9: 6 x 6 midspan loaded beam

GS with S-W ratio of 1

-4-

Figure 5-11: SSB 6 x 6 Ground Structure

with Span to Width ratio of 2

load location is exactly the same, the optimal redundant trusses vary significantly.

SSB Ground Structure Design Space

Like in the Cantilever case, varying the mesh grid density of the Simply Supported

Beam Ground Structure density for identical load - fixities location and dimensions,

gives the design space of optimal redundant solutions as a function of the volume.

Figure 5-13 shows the design space of a 10 x 10 length Cantilever, under different

discretizations from a 1 x 1 to a 8 x 8 grid.

In the case of the Simply Supported beam, one can see that after the design space

is refined further on the horizontal direction for larger than 2, the volume fluctuates
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Figure 5-10: SSB Redundant Optimal for

a I span to width ratio and 6 x 6 density

Figure 5-12: SSB Redundant Optimal for
a 2 S-W ratio and 6 x 6 density
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Figure 5-13: Design Space for a Simply Supported Beam

around the sime value. This is the case because in a Simply Supported Beam, two

layers of stable optimal structures (which would give the desired level of redundancy)

are acquired early on in the refinement (for a horizontal density > 2) and hence further

refinements relieves material from heavy elements adding more elements but without

a significant effect. This fluctuation is a typical example of symmetric structures

with infinite solutions, i.e. there is a family of solutions with infinitely different

shapes (but approximately similar as one can see from Fig. 5-13) but with the same

volume. This example raises the problem of nodal redundancy i.e. the removal of

entire nodes. One can easily notice from Figure 5-13, that even though the refinement

of elements increases, certain nodes remain critical in the structure. Nodal removal

is equivalent to failure of several elements and usually has a much more significant

damage compared to element removal. This is another aspect of redundancy that is

not covered in this thesis.
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5.1.3 Free Standing Cantilever with Self-Weight

A very applicable example that is worthy of attention is a transmission tower

design. A transmission tower is a cantilever truss that receives discretized lateral

wind loads throughout its height and has the self-weight applied downwards on the

top middle of the structure. For the Ground Structure, we assume that the point

load is always applied in the top middle of the orthogonal grid, and its magnitude

equals the height of the grid itself. The horizontal loads are applied on the middle of

the orthogonal grid and to resemble a uniform distribution, they are taken to be unit

loads and face from left to right of the grid. Figure 5-14 shows an example of a free

standing cantilever ground structure with horizontal length of 20 units and vertical

of 10 units, while it is discretized in 6 blocks horizontally and 6 blocks vertically.

As expected, varying the height and width of the tower under the same discretiza-

tion affects the redundant optimal shape.(Fig. 5-16 & 5-18)

Transmission Tower Ground Structure Design Space

As before, part of the design space of optimal redundant solutions can be given

by varying the horizontal and vertical grid refinement. Figure 5-6 shows the design

space of a 10 x 20 length Transmission Tower, under different discretizations from a

1 x 1 to a 8 x 8 grid.

Figure 5-19 highlights a very interesting result. The vertical grid refinement in-

duces a much more drastic change than the horizontal grid. In fact the horizontal grid

refinement seems to have very little effect towards the volumetric optimal. On the

contrary, the vertical refinement allows more points to discretize the distributed loads

and send them through smaller capacity elements directly to the base base fixities

with the optimal load path. In the horizontal direction, most loads tend to accu-

mulate in the two corners hence intermediate fixities have no significant effect. This

structure is one of the cases where the number of elements increases drastically the

closer we get to the redundant volumetric optimal. Thus, transmission towers might

be a promising case study to combine with integer programming, finding a Pareto
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Figure 5-14: 10 x 10 grid GS for a Transmission Tower with height 30 and width 10
respectively

front between total volume and number of different cross sectional elements.

5.1.4 Bridge Structure

The bridge in a truss form can be considered as a spanning structure that has

to transfer a, point load (could make an assumption for more) to the two fixities on

the sides. Figure 5-20 shows an example of a 10 x 20 Bridge Ground Structure with

allowable width 20 and height 10.

We vary the height and width of the bridge under the same discretization, and
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Figure 5-15: 6 x 6 transmission tower GS
with Height-Width ratio of 2

Figure 5-17: SSB 6 x 6 Ground Structure

with Span to Width ratio of 2

Figure 5-16: Trans. Tower Red. Optimal

for a - H-W ratio and 6 x 6 density

Figure 5-18: Transmission Tower Opti-

mal for a 2 S-W ratio and 6 x 6 density

the redundant, optimal changes accordingly (Fig. 5-16 & 5-18).

Bridge Ground Structure Design Space

The volume varies by allowing the bridge density to change. However this change

is quite nonuniform. Figure 5-25 shows the design space of a 20 x 10 length bridge,

under different discretizations from a 1 x 1 to a 8 x 8 grid.

From Figure 5-25, one can see that increasing the horizontal grid refinement of the

Bridge GS to anything larger than 3, drol)s the volume down to approximately the

same value (with the exception of a few outliers). This is the case because a refined

enough horizontal direction, allows for several light horizontal bridge substructures

to carry the niddle load to the fixities. The shape of different topologies with almost

identical volumes is another example of families of shapes with an optimal behavior.
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Figure 5-19: Design Space for a Transmission Tower

5.2 Free-form Ground Structures

In the previous section, several examples of linear orthogonal grids along their

respective design spaces were sampled. Nevertheless, the developed algorithm can

input any possible mesh with any number of discretized loads and fixities. The most

convenient way to showcase its power, is to implement the Polymesher generator, a

code developed in Matlab by Talischi et al (Talischi et al., 2012) that allows the corn-

putationally rapid generation of polyhonal grids from virtually any initial structure.

Below, two examples of irregular Ground Structures are shown, one for the regular

Mitchel Cantilever with circular base, and one for

5.2.1 Michell Cantilever

A Michell Cantilever (Michell, 1904) with a circular base is created by limiting the

spanning space of the space to be a semicircle. Note that by nature of the Polymesher

algorithm the only controllable refinement is the number of equal-area polygons the
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Figure 5-20: 10 x 20 grid GS for a Bridge with height 10 and width 20 respectively

Figure 5-21: 6 x 6 Bridge Ground Struc- Figure 5-22: Redundant Optimal Bridge

ture with Width-Height ratio of 2 for a 2 W-H ratio and 6 x 6 density

space can be divided in, hence a three dimensional space is not applicable. Figure 5-

26 is a 20-polygon Michell Ground Structure with two fixities. Note that the number

and location of fixities can change (more fixitics equally distributed around the circle

is an option).

Figure 5-27 is the redundant optimal solution of the Michell Ground Structure in

Figure 5-26. The redundant optimal interestingly resembles overlaid typical Michell

trusses acting together.

Below some additional examples of Michell Cantilever with different number of

area refinements. Refining number of areas and changing the number of fixities can

result in significantly different and more efficient shapes. For instance, Figure 5-28

uses less than 30% of the material as in Fig 5-27 as well as less elements, due to the

fact that more fixities allow additional more efficient load paths.

The extension of fixities and polygon separation can be taken further (Fig. 5-

29), till the semicircle is continuously covered by fixities and the equal area polygons
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I
Figure 5-23: 6 x 6 Bridge Ground Figure 5-24: Bridge Redundant Optimal for a 1
Structure with W-H ratio of 1 W-H ratio and 6 x 6 density

approximate points. The only limiting factor for such nonlinear GS is the compu-

tational time and memory, as it becomes even more costly compared to orthogonal

grids. Nevertheless, a more efficient algorithm is definitely feasible given the early

stage of development of the redundancy optimization algorithm.
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Figure 5-25: Mesh Grid Refinement Design Space for a Bridge

I
5.2.2 Serpentine Beam

Another interesting nonlinear example is the Serpentine beam. The Serpentine

beam is like a curved cantilever and is also obtained by implementing Voronoi segre-

gation by Polymesher. Similarly to Zegard's volumetric optimal Serpentine (Zegard

et al., 2014), the result remains a curved Michell-like structure as shown in Figure

5-30.

Again, this shape can be further refined to achieve additional material efficiency

with the cost of additional elements and more computational cost. Several other

examples of nonlinear Ground Structures are taken from Taschini's Polymesher (Tal-

ischi et al., 2012) source code and their redundant optimal shapes are presented in

Appendix A.
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Figure 5-26: A Michell Ground Structure with 20 equal polygons and 2 fixities

5.3 Discussion

In the previous sections, the optimal redunda~nt value and shape was identified for

several initial configurations of GS, mesh refinements and dimensions. In this section.,

these values are introduced again and discussed from the point of performance with

respect to the pure volunetric optimal, but also with each other in the sense of infinite

solutions.

5.3.1 Comparison to Pure Volumetric Optimization

For first order redundancy optimization, a convenient rule of thumb on the per-

formance of a structure for a particular refinement is its relative performance with

the identical Ground Structure of the pure volume optimal. That is, if the volumet-

ric optimal has an optimal volume, say V, then the first order redundant optimal

should be less than 2V to be meaningful1 . The same principle can be theoretically

applied in higher orders of redundancy, i.e. if the 5th order redundant structure is

greater than 5V, five layers of the volumetric optimal would provide the desired level

of redundancy (even if structural depth of the system would likely be undesirable).

'This is the case since if the first order redundant optimal is heavier, the user could theoretically
achieve equivalent redundancy by having two duplicate layers of the pure volumetric optimal
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Figure 5-27: The Michell-like redundant optimal solution for the given GS

Below, for each case, some comparisons are made for the redundant optimal of

certain configurations and grid refinements compared to the volumetric optimal, both

in ternis of volume as well as number of elements.

10 x 10 Square Orthogonal Cantilever GS

Grid Refinement Pure Volumetric 1" order Redun- Material Savings

(Ver. x Hor.) Optimal (a) dancy Opt. (b) (2a-b

2 x 2 25.0 -30

4 x 2 25.0 - -13.4

2 x 4 25.0 46.4 7.2

4 x 4 25.0 44.4 11.2

4 x 6 24.49 43.9 10.4

6 x 6 24.52 38.9 20.7

DOC 23.9 ~30 37.2

Table 5.1: Volumetric Comparison of square cantilever with Redundant Optimal

Table 5.1 shows how the volume of the redundant optimal solution compares to the

pure vohunetric optimal. One cal see that as the refinement increases, the change

is munch miore drastic on the redundant optimal than the volumie-only optimal.
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Figure 5-28: Redundant Michell truss for 4 fixities and 24 p)olygons

addition, as the refihlemelit icreases tlhe saving (i the imaterial from t he redhimdat

optimal is more and more evident. In fact, already when a 6 x 6 refinement is achieved.

there is about 24.3%( savings on the material of the redundant optimal compared to

doubling the volume of the single-volume optimal to reach the same redundancy.

This mimber increases as the grid refinenment increases. The volunietric optimal

asvynptotically reaches a volume slightly less than 24 while the highest coipu-ltational

refinement, achieved from the redundant optimization 2 reach a value of about 30.

This means that the redundant optimizat ion can achieve mat erial savings of more

than 37(% for the Cantilever Structure.

Below two similar tables are provided for a bridge design and a transmission tower

along the percentage savings of each refinement.

2 Improving the cornputational cost further would allow for higher order refinements and hence
even more efhciency
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Figure 5-29: Redundant Michell truss for 4 fixities and 24 polygons

10 x 5 Orthogonal Bridge GS

Grid Refinement Pure Volumetric I"t order Redun- Material Savings

(Ver. x Hor.) Optimal (a) dancy Opt. (b) (2a)%

2 x 2 15.0 27.5 8.3

4 x 2 15.0 26.4 12

2 x 4 14.2 26.1 8.1

4 x 4 14.16 25.28 11.1

4 x 6 13.42 24.1 10.2

6 x 6 13.33 21.4 19.7

00 12 ~ 20 16.7

Table 5.2: Volumetric Comparison of Bridge Structure with Redundant Optimal

Bridge savings from the redundant optimal can reach up to 20% less material

compared to double the volumetric optimal, as shown in Table 5.2. From Table 5.3

one can see that the Transmission Tower savings can be vary significant fluctuating

at about 40% of twice the volmnetric optimal - a very considerable material savings

to set this kind of optimization very applicable in the case of Transmission Tower
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Figure 5-30: Redundant Optimal Serpentine beam for 4 fixities and 20 polygons

design.

5 x 10 Orthogonal Transmission Tower GS

Grid Refinement Pure Volumetric 1" order Redun- Material Savings

(Ver. x Hor.) Optimal (a) dancy Opt. (b) (2 )%

2 x 2 35.0 45.0 42.8

4 x 2 34.5 43.9 36.4

2 x 4 34.8 44.5 36.1

4 x 4 32.4 43.8 32.4

4 x 6 32.1 43 33

6 x 6 31.7 42.4 33.1

00 30 ~40 33.3

Table 5.3: Volumetric Comparison of Transmission Tower with Redundant Optimal

5.3.2 Infinite Solutions

Several times in the above sections (5-13,5-25), the redundant volumetric opti-

mal seemed to fluctuate around certain families of shapes. Even for a fixed grid and
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geometry of a GS, there are cases where the volume stays the same as well as the

topology, but some elements interchangeably and continuously exchange magnitude

of cross sectional areas setting them as simultaneous optimals. These optimal values

are sometimes similar to what was discussed in Section 3.4.3 and infinite solutions.

Rozvany studied this phenomenon of uniqueness, for pure volumetric optimization

as discussed in 3.4.3, and this same phenomenon is encountered in redundant opti-

mization. In fact, since redundant optimization is adding more elements compared

to its purely volumetric counterpart, the effect of equivalent optimal values might be

even more frequent. This effect can appear in two ways: either through an identical

topology and continuous redistribution of material among the common elements, or

through changes in topology that result in the same effect.

To showcase this phenomenon, we present some equivalent solutions for a square

cantilever under an identical 4 x 4 refinement.

Figure 5-31: 4 x 4 cantilever optimal with 35 volume and 2 " order redundancy

Figure 5-31 is the first design one gets from the redundant algorithm. To the

reader's surprise, this structure topologically has a second order redundancy, allowing

the removal of any two elements 3 . This algorithm can switch the cross sectional areas

3This is only topologically true because by definition the removal of any one element would result
in a fully stressed structure
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of the elements resulting in equivalent total vohune and different element sizes. Since

this can be performed continuously, one dimension of infinity is obtained from this

variation. More interestingly, the second dimension of multiple solutions is acquired

by constraining the spanning of some elements and inducing the same algorithm. Note

that by prohibiting the spanning of one critical element of the optimal cantilever in

Fig. 5-31, results in optimal configurations of exactly the same volume (35) and

different topologies, as shown in Figures 5-32 and 5-33. Even though these shapes

topologically have only one level of redundancy, they have exactly the same overall

material as the first cantilever in FIg. 5-31.

Figure 5-32: 4 x 4 cantilever redundant optimal with 35 volume and single order
optimality

The multitude of solutions might be attributed to the biaxial symmetry of the

Ground Structure and the applied load. Studying the relationship between Ground

Structure topologies and symmetries with uniqueness of solutions is a very promis-

ing field with no research performed whatsoever in the case of redundant optimal

structures.
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Figure 5-33: Alternative 4 x 4 cantilever redundant optimal also with 35 volume
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Chapter 6

Conclusion

In this Chapter, a brief summary of the key contributions of this thesis is presented

as well as the potential impact of the developed algorithm. Finally the chapter

concludes with future research and potential extensions of this algorithm. Some

concluding remarks restate why redundancy optimization is a vital field in the future

of buildings.

6.1 Summary of Contributions

This thesis developed a volumetric topology optimization algorithm under redun-

dancy constraints. Specifically, the algorithm produced the minimum volume struc-

ture that remains stable even after any element has been removed. This algorithm

could potentially alleviate practicing engineer's concerns on the structural integrity

of optimized structures, by embedding redundancy within the optimization.

In addition to the proposed algorithm, several original results were shown in this

thesis with both practical and theoretical impact. First of all, the general closed

form equation was shown between a redundant structure and any stable substructure

missing i elements. This formula gives us a better understanding of the relationship

between damaged stable structures and their original counterparts, allowing us to

practically understand when redundancy works effectively. What is more, this result

shows the nature of load paths and why partial failure sometimes propagates globally.
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The algorithmi was implemented in lat lab not just for continuous linear programi-

ming, but also for mixed integer progranmming. This way, we were able to compare

the total volume of a truss with the number of eleient s in the system. Several appli-

cations of this algorithmn were tested with different loadings and boundary conditions.

We gathered these cases and plotted the design spaces of several optinial redundant

structures with respect to their refinement. Plotting the design space allowed us to

see families of optimal shapes but also how tie optimal volume changes as the re-

finement of a ground structure changes. Finally, another key contribution provide(d

in this 1 hesis was showing t hat the 1 M order redundant optimal shapes have volume

that is less than twice the volume of the pure volumetric optinial structure (Figure

6-1). This means thal redumdant ptimal shapes can effectively combine safety with

material efficiency.

Figure 6-1: Redundant Michell (right,) with 20% less niaterial than twice the volume
of the pure volunetric Michell truss (left).

6.2 Potential Impact

The developed algorithm allows us to genierate a wide variety of shapes under

different boundary conditions and Ground Structure refinements. However, from a

practical perspective. the question that needs to be answered is whether the proposed

structures can be built, and how feasible costly is their constructability. There is no
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binarv answer to this question. Certain designs are actually very easy to construct

and switching to the redundant optimal might take minimal effort and through opti-

mization they can even save material conpared to the conventional solution (Figure

6-2 vs. Figure 6-3).

A

U

L A bL A L

Figure 6-2: A conventional cantilever

truss design for a nidspan point load

Figure 6-3: Solution output with 2""

order redundancy + 45% less material

On the other hand, there can be outputs of the algorithm (especially for very large

mesh refinement) that might not be very constructible (Figure 6-4). Nevertheless,

the shape of the redundant optimal can drive the designer's inspiration of where the

forces desire to go and how the alternative load patlis work. This way, designers can

incorporate these crucial notions in their designs early on.

6.3 Future Work - Alternative Approaches

There are several natural extensions this algorithm can take, but before proceed-

ing to these, it should be noted that this is a primitive version of the computational

procedure, and hence the computation is yet inefficient (given its large processing

time). The immediate next steps for this project would be to optimize the code for
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Figure 6-4: Algorithm output for 6 x 6 refined transmission tower

its computational time by inplenenting Matlab storage structuresi and exploiting

symmetry of the initial structures, to compute all the desired connectivity matrices

faster. After polishing the code and making it more user-friendly, this code could

be bundled as a software tool or an add-on, where the user could control the level

of redundancy. the boundary conditions and the applied loads, in order to visualize

the corresponding optimal solution. Zegard recently extended the GRAND script in

3 dimensions (Zegard et al., 2015), setting the benchmark for the natural extension

of redundancy optimization very feasible (given that GRAND3 uses the same equa-

tions as GRAND). Following the 3D generalization of the redundant optimization,

additional in depth work can be performed in Mixed-Integer Progranuning, allowing

more viable solutions. Figure 5-13 raised the issue of nodal redundancy. Even though

the member redundancy of the optimal simply supported beam was satisfactory. the

nodal redundancy was minimal, meaning that the removal of just one node could re-

sult in global failure, even if we were able to remove 2 or 3 elements. Accounting for

'This process has already occurred for a large part of the current code

114



nodal redundancy is a generalization of element redundancy since removing a node

implies the removal of all respective spanning elements. The first steps in developing

a nodal redundancy optimization algorithm would closely follow the steps of element

redundancy. For instance, starting off with a n x n node removal matrix Rj and

multiplying it with A would give us the equilibrium equation of the substructure

missing node j. Similarly, finding the relationship between the internal forces of the

node-missing substructure and those of the original structure would allow us to pro-

ceed with the formulation of the problem. Extending this thesis' methodology could

potentially provide a solution for the nodal redundancy problem and subsequently

for the combined element & node redundancy problem.

Finally, even though redundancy is a good metric for additional safety, the future

of structural optimization should account for both redundancy and robustness simul-

taneously. Hence, the general algorithm should be able to handle sets of load cases

with given uncertainties instead of a single load case. All these steps are excellent

paths for future development of the algorithm.

6.4 Concluding Remarks

Structural optimization has emerged from the need for more sustainable and

energy-efficient structures. However, without reliability embedded inside the opti-

mization process, it is unlikely for practitioners to inherit such practices. This the-

sis provides a safer approach to volumetric topology optimization. Through a novel

mathematical algorithm we can optimize designs for ultimate material efficiency while

adding layers of safety through member redundancy. This thesis covers the first al-

gorithm that tackles least volume non-probabilistic redundant truss systems and it

paves the beginning of promising answers on the broad research field of Redundant

Topology Optimization.
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Appendix A

Algorithm Shape Outputs

In this Appendix, several shapes are presented for different ground structures and

different refinements, to showcase the breadth and variety of redundant shapes that

exist for each boundary condition.

A. 1 Cantilever

A.2 Bridge

A.3 Simply Supported Beam

A.4 Transmission Tower
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2x2

3x4

5x4

4x6

3x2

1 x4

6x4

6x6

Figure A-1: Optimal redundant cantilever shapes w.r.t mesh refinenient
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4x3

4x64x5

6x4 6x6

Figure A-2: Optimal redundant bridge shapes w.r.t mesh refinement
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2x1
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6x4

2x4

4x4

6x6

Figlure A-3: Optimal redundant, bridge shapes w.r.t mesh refinement
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2x2

4x3_

4x5

Figure A-4: Optimal redundant transmission towers w.r.t mesh refinement
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Figure A-5: Simply supported bean with height 30, width 20 & refinenit 6 x 6
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A.5 Free Form Examples

A.5.1 L-shape Beam

>

Figure A-6: Lshape p)olvgoni mesh for

22 polygons

-Th

ii'

I
Figure A-7: Optimal L-sliape for 22

polygon density

Figure A-8:
26 polygons

Lshape polygon mesh for Figure A-9: Optimal L-shape for 26

polygon density
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A.5.2 Ring

~-.-.-- / I>
/ "N

K
~ \\

x -~ ~

4. 4.

Figure A-10: Lshape base mesh for 20
polygons

Figure A-11: Optimal L-shape for 20
polygon density

T

K,

/

11

4. 4.

Figure A-12: L-shape base mesh for 26

polygons

Figure A-13: Optimal L-shape for 26
polygon density

0

A.5.3 Redundant Wrench
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-7-71

Figure A-14: Wrench base mesh with 20 polygons

Figure A-15: Optimal Wrench for 20 polygon density

129



A.5.4 Serpentine

~' ~ K ~i. -K

I ->

Figure A-16: Base serpentine mesh for

20 polygons

-------

Figure A-18: Base serpentine mesh for

24 polygons

Figure A-17: Optimal serpentine for
20 polygon density.

I

Figure A-19: Optimal serpentine for
24 polygon density
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A.5.5 Redundant Hook

Figure A-20: Hook base mesh with 20 polygons

Figure A-21: Optimal Hook for 20 polygon density

Other examples that were tested from Paulino's Polyniesher(Talisci et, al., 2012)

environment and not presented in this thesis are: Flower Domain, Suspension Do-

main, Michell Domain and Triangular Domains. Note these domains can still be

tested by the redundant optinization algorithm attached in Appendix B
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Appendix B

Matlab Code

This appendix has attached the code for the redundancy topology optimization.

Note that for the sake of keeping this section brief, we have not attached the Ground

Structure generation and all parts of GRAND's code that were not modified or mini-

mally modified. In addition, we did not attach the linear integer programming file as

the only thing that changes from the first file is the command linprog and the relax-

ing of the constraint (from equality to inequality). The reader is encouraged to look

into the code themselves and try some examples of their own. In this Appendix, the

code for orthogonal domain generation is attached, the Level 1 Redundancy Code,

the meta code that loops through the optimizations for the Design Space creation,

and the higher level redundancy file along its objective function file.

B.1 Orthogonal Structural Domains

morekeywords

1 function [NODE,ELEM,SUPP,LOAD] StructDorain(NxNyLxLyProblemID)

2 "1, t sisiicuret ik

3 [X,YJ meshgrid(linspace (O,Lx,Nx+1),Iinspaee(O,Ly,Ny+1));

4 NODE [reshape(X,numel(X),1) reshape(Y,nurnel(Y) ,1)1;

5 k 0; ELEM cell(Nx*Ny,1);

6 j 1:Ny, aor i 1:Nx

7 k k+1:

8 ni ( i -1)*(Ny+1)+j; n2 i *(Ny+1)+j;

9 ELEM{k} [nl n2 n2+1 n1+1];

10 e,

11

12 if (nargin 4 1[ isempty(ProblemID)), ProblemiD 1; an'
13 switch ProblemlD
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14 case { -- c :L v r , cHn > si ,1} tCi lh c C ttr ii 1

15 f- '1pporItc anld adI itai

16 SUPP [(1:Ny+I)' ones(Ny+12)];

17 LOAD [Nxs(Ny+1)+round((Ny+1)/2) 0 -1;

18 case { \lMH . \Ih ,imbh- ,2} A (ii. ru-tion \

19 SUPP [Nx'-(Ny+1)+1 NaN 1;
20 (1:Ny+1)' ones(Ny+1,1) nan(Ny+1,1)j;

21 LOAD [Ny+i 0 0.51;

22 case {H ri:; , 1r i: ,3} %Bridge with midspin 1 ii I

23 (C gi b11 g . riaIez c 'I Ir l i hii1lt II o

24 SUPP [ 1 1 1;

25 Nx*(Ny+1)+l 1 11;

26 LOAD [(Ny+1)*round(Nx/2)+1 0 -11;

27 case { ,>i .C ,4} % Sim pl Sippiril liii ii

28 SUPP 1 1 1;

29 Nx*(Ny+1)+1 1 11;

30 LOAD [(Ny+1)*(rouiid(Nx/2)+1) 0 -11;

31 case { Tn , t rn, 5} %'c Transsiron Towrc iontrucliol

32 SiPP [(1:Ny+1:Nx*Ny+Nx+1)' ones(Nx+1,1) ones(Nx+I,1)1;

33 LOAD [((Ny+1)*roiind(Nx/2)+2:(Ny+1)*( roiin(Nx/2)+))

34 (2:Ny+1)' nan(Ny,1); (Ny+1)*(rouind(Nx/2)+I) 0 Nx];

35 otherwise % ThI ra r c aii ai 1(-t owt anS )Ihvi loada

36 SUPP [I; LOAD [1;
37 disp( NF C) i itr immi n n a - w ih :INd0 Il )

38 -n

B.2 1st Order Redundancy Code

morekeywords

1 %Level I Hidiii)anc

2 \ MESH GENEBATION I()ADS I('

3 kappa 1.0; ColTol 0.999999:

4 Cutoff 0.002; Ng 50;

5

6 a 35: A i put iithir horiz tial me eh ri fiii menm I r nm er .

7 '1 of upulvgoiis inl iiesh generation

8 b 20;A Input vertical me h rl efinem ni Notie lhim on' oCfhc _

9 %x optiios should only b tiiiconimented

10 ) " PTION L: POLYMESREr MESH G.ENERATION-

11 addpath( - sPo-Nlyese-Iur

12 [NODEELEMSUPPLOADI PolyMesher (@HookDomain, a,b);

13 Lvi 5; RestrictDomaiii 16)RestrictHook

14 rmnpath( . lvCrX r

15

16 - PTION 2: sTH (-r'u i,li )HTHGl()NA], NI411 (MH ENERATI )ON

17 [NODE, ELEM, SUPP,LOADI StructDomain ( a , b,20 ,30 , lint I i I v e r )

18 A n ]Iiv '' tC h d cf i I),,I -;t e , u 't I c tmd in 1 re 1 vcm tin u o h frI

19 LvI 6; RestrictDomain [ ;

20 Nx,Ny,Lx,Ly

21

22 3'- :TN : IAC EXTEINAILY (ENEHATEt) NIESi

23 load MeshHook

24 Lvi 4; RestrictDomaini cuRestrictHook

25

26 load MeshSerpentine

27 Lvi 5; RestrictDomain :RestrictSerpentine

28
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29 load MeshMichell

30 Lvl 6; RestrictDomain KRestrictMichell

31

32 load MeshFlower

33 Lvl 4; RestrictDomain RestrictFlower

34

35 load MeshLshape

36 Lvl 6; RestrictDornain ARestrictLShape

37

38 PlotPolyMesh (NODE,ELEM,SUPP,LOAD);

39 [BARSI GenerateGS (NODEELEM, Lvl ,RestrictDomain ColTol);

40 Nii size (NODE, 1);

41 Ne length (ELEM)

42 Nb size (BARS,1)

43 IBC] GetSupports (SUPP)

44 [BTL) GetMatrixBT(NODE,BARS,BC,Nn,Nb);

45 [F] GetVectorF(LOAD,BC,Nn);

46 B BT; % tiNmIIr at

47 fprintf( M-sh: Elsin > c I. 1 WB I L< %. d

48 Ne,Nn,Nb, Lvl);

49 BTBT I BT -BT 1;

50 LL [L; kappa*Lj;

51 clear BT L

52

53 V nu111I ( f uIll (BT)); fi ii th i kI n I t t h, I m ix

54

55 V li cols (V) find Ine ar-I in de pcendc t couI ins:

56 Vi sur(V,2); sum t h columns to g ara11111 that- 1n1f 111,

57 K ,itrics ai zer,

58

59 whos( \ )

60 whos ( 1TI'M )

61

62 Const zeros(size(BT,1) ,Nb,Nb): % initialize 3D arrav of ARiK

63 later zeros (Nb,Nb,Nb); . 3D arras of IiKi

64 TA

65 r 1; % numI-bcr of dIsir-dl vl'tm nt t, h" r lm o d .I..

66 ftr Lv I Rld idanuv ' ktep lhi I

67 remov nchoosek (1:1:Nb, r );

68 Si repmat(eye(Nb),11 I size(remov,1));

69 t- i 1: size (remov,1) 14Crta h W. 11 1

70 > IId s Iitnt 3D 1 111C11

71 fo j 1: size (cremov,2)

72 Si ( remov (i ,j ),remov ( i , j), i) 0;

73

74

75

76

77 ei sys(Nb);

78 h i 1:Nb fiV I itn th1 31l ,tcravN

79 later (: ,: , i) (ei -(1/Vi( , 1))*Vi*ei (:, i )

80 Const (1 ,: , l) BTsSi (: ,: , i )*(ci -(1/Vi( ,1 )) Vi* ei (: , i )

81

82

83 Const2 reshape_ ( Const)

84 Fcat repmat(F,[Nb 11);

85 [ Const3 , idx ] licols (Const2' ,l 10);

86 Const4 Const3 ';

87 Fcat2 Fcat ( idx ,:)

88 MConst [Const4 -Const4 d; 1tp 1i at n mix

89
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90 [Sin volin , exitflagin linprog (LL,[] [I ,BTBTF, zeros (2*Nb, 1));

91 "slv [,III -v 111111trI'l ,ptim 1 iz7 t io l rob1m

92 Sin (reshapc( Sin , n mcl( Sin) /2 2));

93 Aopt Sin(: 1) + kappa*Sin (: 2);

94

95 [row, col find (Sin ele -5); 4 r r t

96 finarca zcros(Nb, size (row 1)) iii tii lizt fini ! ti-

97 looping row (1: ceil (cni /2)) '

98 % It tt t] Iitic t I l ;i ]IIs hv It I dil t(, vi mllrn

99 itt el looping

100

101 diagKi [later(: : el) zcr s(sizc(later .1)); ....

102 zvros ( size ( later 1)) later(: : el )1;

103 tic , [S, vol , exitflag linprog (abs(LL'*( diagKi )) ,[] ,[[

104 sparse ( full (MConst)) sparse) full (Fcat2 )) ,...

105 zero s(2*Nb,1)); 1 idmidanti optimizatiot;

106

107 S reshape (S,numel(S) / 2,2); intcerna fire

108 A S(:,1) + S: .2): 1 r thtpod itI riat I r

109 finarca (: , ei) A;

110

111

112 totai I ax asl)( finarea), [ 2);

113 %pik li h ;;xin mnt ' rl 1 o I ch oincit I i ,\ ,r N a;-

114 finvol L'*totalidooon oat path

115

116 PlotGroundStructiireBW(NODEBARS, total , Cutoff ,Ng)

117 PIotBoundary (ELEMNODE) ni .1 t I, I lt irn

B.3 Design Space Exploration

This section contains the design space creation of the I" order redundancy opti-

mization in order to allocate the memory better, since no plotting is required (only

the final volume of each redundant optimal structure). Two files are included below,

RedundantVolume.m and MetaDS.m:

morekeywords

1 function [ finvol [ Red undantVolume(ah ,bh)

2

3 ", -i oriing -iach ort h g al m n i volluni
4 kappa 1.0; ColTol 0.999999;

5 Cutoff 0.002; Ng 50;

6

7 sto zeros(ahbh); ' tn il il hit r

8

9 [NODEELEMSUPPLOAD[ S tructDomain (ah bh,10,5 r )

10 Lvi 6; RestrictDomain [1;

11

12 [BARS[ GenerateGS (NODEELEM, Lvl ,RestrictDomain ,ColTol)

13 Nn size (NODE, 1);

14 Ne length(ELEM);

15 Nb size (BARS, 1)

16 [BC] GetSupports (SUPP)

17 [BTL[ GetMatrixBT(NODEBARSBCNn,Nb);
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IF] GetVectorF (LOAD, BC,Nn);

B BT;

BTBT [ BT -BT I

LL [L; kappa*L I
clear BT L

V null( full (BT));

V licols (V); 4ind

Vi sui(V,2);

Iie rs inoiljnii en.1 uml

er; I I I l sic,,i I lmI i s t, r mt) '(

remoV nchoosek(1:1:Nb,r); s i I 1 H. ...c -kI (.N[,,

Si struct ( )

I \NI at I a I 11

i 1: size (remov 1)

b ones (Nb, 1);

rc remov(i)

b(re) 0;

a diag(b);

a sparse (a)

Si setfield (Si, streat

c eit r i;

SiNames fieldnames ( Si

tow nor n hmbcr )) a);

I , num2str( i) ), a)

e eye (Nb)

names {}
'ci i:Nb

niamesf, i ,+1} strcat ( S ,111112str( i )):

i 1:Nb

SL.(names{i})

SC.(names{i}) [1;

for loopIndex 1:Nb

dummy-lat ( ei -(1/Vi( looplndex ,1))*Vi*ei (:, looplridex ) );

SL.(names{loopIndex}) sparse(dummylat);

vi eye(Nb);

f looplindex 1:Nb

get Si Si .(SiNames{ loopIndex});

dummy _ con BT*getSi *(ei -(1/Vi( loopInclex , 1)) .

Vi*ei (: , loop ndcex ) ');

SC. ( niames{looplidex}) sparse (dummy _ con);

conNames fieldnames (SC);

Fcat repmat(F,[Nb 11);

conNames fieldnames (SC) ;

Const2 SC. ( conNames { 1});

los size (Const2 );

S spalloc ( los (1)*Nb, los (2) los (2)* los (1));

i 1: los (1): los (1) *Nb

i f i 1

j 1;
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79 j roon (i los (1)) + 1;

80 i

81 Const2 SC. ( conNames{ j })

82 S( i : i+los (1) -1, :) Const2

83 ini

84

85 filename strcat ( ti $ ,

86 num 2str ( ah) , num 2str (bh ) av ) :i.atri i-

87 save ( filename . S
88 %0

89 S load) l0:s n );' i Hi' im,0 f

90 7

91 Fcat repmat (F, [Nb 1)

92 transpS S':
93 size ( transpS .2)

94 for i 1:10000: size (transpS .2)

95 if size (transpS 2) > (i+9999)

96 rel fol) ( transpS ( ,i i +9999));

97 else

98 re I fi] I I transpS ( , i in I ));

99

100 [transpConst ,idxj licols (rel 1e 10):

101 i f i 1

102 MtranspConst [ transpConst :

103 Minx [idxj:

104 else

105 MtranspConst [ MtranspConst trianspConst

106 Minx [Minx( i -1)+idx);

107 'no

108 clear rel transpConst idix

109 iio

110

111 [transpConstAll , d A IiI idxAII ] icIs (MtranspConst c -10);

112 1 Minx( idxAll )

113 ConstAll transpConstAll

114 Fcat2 Fcat(b,:);

115 FinalConst [ConstAll -ConstAlli;

116 '

117 [Sin volin , exitflagin linprog(LL,[] , ,BTBT,F, zeros(2*Nb,1));

118 Sin (reshape ( Sin . numel ( Sin ) 2 .2));

119 Aopt Sin (: 1) + kappa*Sin (: .2);

120 [row', col J find ( Sin ole -5);

121 finarea zeros (Nb, size (row ,1));

122 looping row(1: ceil ( ni, /2))':

123 : el looping

124 lati full (SL.(conNames cl}));

125 diagKi [ lat i zeros ( size (lat i ,1));...

126 zeros ( size ( lat - i ,1)) lat i

127 tic , [S,vol, exitflagJ linprog(abs(LL'*( diagKi)),[j,[J....

128 sparse ( fill ) FinalConst )) ,sparse ( fill (Fcat2)) , zeros (2*Nb, 1));

129 -re<11111ndaliy &v 1pstimiz/at l i for i c 1h : t iCl "J( 111s1

130 S reshape(S,numel(S) '2,2);

131 A S(: ,1) + 5): .2):

132 finarea (: el) A;

133

134 ',

135 total max( abs ( finarea), [J , 2)

136 finvol L'* total ;

137 clear NODE ELEM SUPP LOAD BARS Nn Ne Nb BC BT L F Si SL SC names S;

138 en
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inaxah

maxbh

sto z

allr

10; M Maximn Hrizoltilal Grid bIfi ,mo

10; Maxi nour V rti GId Refinlclm A lL

ros ( raxah ,naxbh);

1 :maxah

b1h 1: 1 : axbh

fiivol RedundantVolume (albh)

sto (ah bh) finvol;

filename strcat ( >, 111n u112str(ah) 

nnm2str (bh));

sav e ( filename ,i )

siirf( st )
t itlIe ( I o m i n ir te to (t, 1e w )1 ,11, 1

xlabel( i iz.,ut a,.i Gid i i ilin cw ) A x axis tabe

yia b l( r ijca (rid Pcfi m i nc ) v axis lal

zIabel ( Str ii t r a Vir Ic )

ii casc of Io a ditg ti Ima x II

t 1 load ( I t i by I .1 a: );

t2 load ( tta12by2.m

t 3 load( t ti3y3.m t )

t4 load ( total by4.r 1 );

t5 load( rta bv . a )

t6 load( total6bvf;.im );

t7 load (I oal7bv7 imo);

t8 load( tI -1, ' - ,

tI ti . total;

t2 t2. total:

t3 t3 .total;

t4 t4 .total;

t5 t5.total;

t6 t6. total;

t7 t7. total;

t8 t8.total:

% l t x itme t vs l If[

n(1) numel( find ( t1 1 c-5));

n(2) 1inel I find (t 2 1 -5))

n(3) nIImiel( find (t3 1 v -5));

n(4) nomel( find (t4 le --5));

n (5) numel( find ( 5 1 -5));

n(6) nuinel( find (t6 1c-5));

n(7) numnel find (t7 ie 5));

n(8) nurnel( find (t8 i c -5))

y diag(sto (1:ah,1:b));

f i g i r ( 1)

p Io t ( n~y , i w d h ,2)

title ( Vol olmcric Optiuial v

xlabel( Nuibor o Elmentr ) %A

ylabel( Opim a, ] \; V mt i , ") ;k

x---axiI

X1i jai 1"

139

metaDS.n

11



B.4 Higher Order Redundancy Code

In this section the nonlinear redundancy optimization is shown. The main file

implements fmincon in Matlab to solve the nonlinear equality constraint problem and

the secondary file includes the objective function along the corresponding gradient.

HigherRedundancy.m

morekeywords

I 11ihW liindnc

2 kappa 1.0; ColTol 0.999999;

3 Cutoff 0.002; Ng 50;

4 global Si Vi F reroov B L first;

5 d i: gt i I. vaii bII 0 0 in s bj eti funeIion fil(

6 [NODEELEM,SUPP,LOAD StructDomain (2,2,10,10 , oWiaihI )

7 Lvi 6: RestrictDomain [I;

8 PIot PolyMesh (NODE,ELEM. SUPP,LOAD)

9 [BARS] GenerateGS (NODEELEM, Lvl , RestrictDomain , ColTol

10 Nn ize (NODE,1);

11 Ne lIngt h (ELEM);

12 Nb size (BARS, 1);

13 [BC] GetSupports (SUPP)

14 [BTLJ GetMat rixBT(NODE,BARS,BC,Nn,Nb);

15 [F1 GetVectorF (LOAD.BC.Nn);

16 B BT;

17 BTBT [BT -BT]:

18 LL [L: kappa*Lj;

19 clear BT L

20 V nuII ( fu I(BT));

21 V licoi s (V); 2 f:i it, li -l : W';ns n s m

22 Vi sum(V,2);

23 Const zeros (size (BT.1) ,NbNb);

24 later zeros (Nb,Nb,Nb);

25 W

26 r 2; 
2

sinlu- (f d--ired el1cmiti l ,o r lovej ( Lvl 2 rdniiidan v,

27 remov ochoosek ( 1: 1: Nb, r ):

28 Si repmat(eye(Nb) [1 1 size (remov 1)]);

29 oc i 1: size (remnov,1)

30 f j 1: size (remov 2)

31 Si (remov ( i , j ),remov ( i j) i) 0;

32 110

33

34 [Sin ,volin , exXitf lagi .

35 linprog(LL,[,[] ,BTBT,F,zeros(2*Nb,1));

36 " lWg : ii i pi.-o rogrami~ t, -ieo ti fv .ri1 i 1

37 Sin ( reshape ( Sin , numel ( Sin ) 2 .2));

38 Aopt Sin(: 1) + kappa*Sin (: ,2):

39 [row . coil find ( Sin -le -5);

40 finarea zeros (Nb, size (row 1));

41 ,<22

42 1o. first row'

43 xO ones(Nb,1);

44 options optinoptions( . -:. n.: . 11)

45 [S,fval exitflag] fmincon( objfivec ,xO,[ ,[] ,[] ,[} , - ,inf ..

46 Ueqconstraint options);

47 A abs(S);

48 finarca (:, first) A:

49 00
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50 it'

51 total iax( abs ( finarea [ , 2);

52 finvol L'* total;

53 PlotGroundStructure (NODEBARS, total , Cutoff ,Ng)

54 PlotBoundary (ELEM.NODE) i pr > i

Objective function objfivec.m

morekeywords

I function [fon] objfivec (var) > , ,,,r n f I

2 't/ I l b I. - tiv uno t i<>n ior th ithc itt r irio bi ot

3 Y var th int rr 1r 1,rt %ariable

4 global Si Vi remov L first; b a l

5 .Si ,L, v , remov

6 Si getGlobalSi;

7 L gctGlobalL ;

8 v getGlobalVi

9 remov getGlobalremov

10 c eye (size (Si ,1));

11 /M obJct i%, fi ntIon

12 fun - abs(L'*( var - 1/(e(: ,remov( first 1)) '*Via.

13 c( , remov( first 2)) '*Vi)*(c(:, remov(first ,1)) *.

14 var*e (,remov( first ,2)) '*var ) Vi));

15 % gi atirnt

16 gradf L' - L'*Vi*var ' ((: ,remov(first ,1)) .

17 e (: , remov( first 2)) '+e (: remov( first 2)) c ( , rem

18 , 1
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