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Abstract

In this thesis, the convergence properties of errors are examined in a class of adaptive sys-
tems that corresponds to adaptive control of linear time-invariant plants with state variables
accessible. The existence of a sticking region is demonstrated in the error space where the
state errors move with a finite velocity independent of their magnitude. It is shown that
these properties are also exhibited by adaptive systems with closed-loop reference mod-
els, which have been demonstrated to exhibit improved transient performance, as well as
those that include an integral control in the inner-loop. Simulation and numerical stud-
ies are included to illustrate the size of this sticking region and its dependence on various
system parameters. With the existence of sticking regions shown for inner-loop adaptive
controllers, the impact on outer-loop control is demonstrated for systems that implement
inner-loop adaptation.
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Chapter 1

Introduction

The stability of adaptive systems corresponding to the control of linear time-invariant plants
has been well documented in the literature, with the tracking error converging to zero for
any reference input [10]. If in addition, conditions of persistence of excitation are met,
these adaptive systems can be shown to be uniformly asymptotically stable (u.a.s.) as well.
Recently, in [8], it was shown that for low order plants, these adaptive systems cannot be
shown to be exponentially stable, and are at best u.a.s. The main contribution of this thesis
is the extension of this result to general linear time-invariant plants. Two classes of adaptive
systems are considered both of which are shown to be u.a.s. and not exponentially stable,
and are described in Chapters 2 and 3. The most important implication of the property
of u.a.s. is the existence of a sticking region in the underlying error-state space where the
trajectories move very slowly. This corresponds to places where the overall adaptive system
is least robust. As a result, a precise characterization of this sticking region is important
and is the main contribution of Chapter 2. Simulation and numerical results are included to
complement the theoretical derivations.

In proving the existence of sticking regions, we show that the system will not only
exhibit slow convergence of the state errors when traversing through the sticking region,
but that the plant states will remain constrained in a well defined region during this time.
This means that certain plant states are inaccessible during sticking which may have major
implications for outer-loop controllers that implement inner-loop adaptation. This forms

the scope of Chapter 3 which deals with analyzing the impact of inner-loop sticking regions

13



on outer-loop control. A complete example of an aircraft autopilot system for altitude

control is included to illustrate the significance of sticking regions in a practical application.
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Chapter 2

Analysis of Sticking Regions

In this chapter, two different types of adaptive controllers are considered. The first corre-
sponds to the use of closed-loop reference models [5], [6], [13] (denoted as CRM-adaptive
systems), and the second corresponds to the use of integral control for command track-
ing [9] (denoted as IC-adaptive systems). For both controllers, an analysis is presented
that proves the existence of sticking regions for a general n'* order linear time-invariant
plant, whose states are accessible. Later in the chapter, simulation results are provided to

complement the theoretical derivations.

th

Consider the n'" order time-invariant plant differential equation is given by

x(t) = Ax(t) +bu(t). 2.1

By implementing adaptation, this plant may be controlled with a tracking error converging
to zero when there are uncertainties in the system (A, b) [10]. However, in this chapter, it
is assumed that the input vector b is constant and known such that all the uncertainty lies
in the matrix A, which is constant. With this assumption, the complexity of the analysis is
reduced. The case where there are additional uncertainties in b is only briefly discussed at
the end of this chapter using insights gained throughout the analysis. Simulations are also

included for the case where b is unknown, however, it is not the main focus of the chapter.
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2.1 Problem Statement

We consider two classes of adaptive systems to demonstrate the region of slow conver- -
gence, the first of which is the CRM-adaptive system and second is the IC-adaptive system.
For both systems, only the single input case is considered. In this section, we present the
underlying adaptive systems and state the overall problem with regard to sticking regions.
Throughout the analysis, it is assumed that the underlying reference input is bounded and

smooth.

2.1.1 The CRM-Adaptive System
The n'" order time-invariant plant differential equation is given by
x(t) = Ax(t) +bu(r) (2.2)

where A is a constant » X n unknown matrix and b is a known vector of size n. A state

variable feedback controller is defined by
u(t) = O(t)x(t) +q*r() (2.3)
where ©(7) is the time varying adaptive parameter updated as
(1) = —bT Pe(t)x" (1). (2.4
Here e(1) = x(t) — x,,(¢) and x,(7) is the output of a reference model defined by
Xm (1) = Amxm(t) + byr(t) + Le(t) (2.5)

where A,, is Hurwitz, b, = ¢*b, ¢* is a known scalar and L is a constant n x n feedback ma-
trix which introduces a closed-loop in the reference model. If L = 0, then (2.5) represents

the open-loop reference model, denoted as the ORM adaptive system. With the standard
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matching condition [10]

A+DbO* = A, Q@

satisfied, the error differential equation is defined by
é(t) = [Am — L]e(t) +bO(1)x(r) 2.7

where ©(1) = O(r) — ©*. If [A,, — L] is Hurwitz, then a symmetric positive definite P exists

that solves the well known Lyapunov equation
[An—L] P+ P[An—L] = —Qo (2.8)

where Qg is a symmetric positive definite matrix. It is well known that the error model in

(2.7) and (2.4) can be shown to be globally stable at the origin and that [10]

lim e() = 0. (2.9)

[—¥oo

The goal in this analysis is to characterize regions in the [e, ®] space where the speed of

convergence is slow, i.e. identify the sticking region.

2.1.2 The IC-Adaptive System

The n;f‘ order time-invariant plant differential equation is given by

Xp(t) = Apxp(t) +bpu(t) (2.10)

where A, is a constant n, X n, unknown matrix and b, is a known vector of size n,. The

goal is to design a control input «(¢) such that the system output

¥(t) = Cpxp(t) (2.11)

17



tracks a time-varying reference signal r(¢), where C,, is known and constant. An integral

state ey is proposed as

ey(t) = /Ot[y(‘c) —r(1)]dT. (2.12)

Augmenting (2.10) with the integrated output tracking error yields the n'* order extended

plant differential equation given by
x(t) = Ax(t) +bu(t) + byr(t) (2.13)

- T . _
where x = ey, x,,]", n=n,+ 1 and

b= b = . (2.14)
Onpxl Ap bp Onpxl

A state variable feedback controller is defined by
u(t) = 0(t)x(t) (2.15)

where ©(r) is updated as
O(1) = —bT Pe(t)x" (1). (2.16)

Here e(t) is defined as in Section 2.1.1 and x,,(t) is the output of a n'" reference model

defined by
Am(t) =Amxm(t)+bmr(t) +‘Le(t) .17

where again, A,, is Hurwitz and L is a constant n x n feedback matrix. The matching
condition and error differential equation are given as in (2.6) and (2.7) respectively, and the
existence of a positive definite P that solves (2.8) is also guaranteed for a Hurwitz [A,, — L].
Using the same arguments as in the CRM-adaptive system, here too we can show that
lim; . (1) = 0. With this it can be shown that the control goal of interest may be reached
[9]. The objective of this analysis is to characterize sticking regions in this [C-adaptive

system, given by (2.13) through (2.17), in addition to those in the CRM-adaptive system.
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2.1.3 Slow Convergence Analysis

From (2.4) and (2.16), it can be seen that the time varying adaptive gain ©(t) is updated
through the plant and reference model states only. This creates the premise for charac-
terizing sticking regions as the update law has no dependence on the adaptive gain O(t)
itself.

Our approach will be as follows: Determine a region S in the e space, N in the X space
and R in the x,, space. Here x is simply a deviation of the plant state from a fictitious
trajectory as will be later defined. We continue our approach by showing that there are
some initial conditions for which é(t) will remain in S, X(¢) in N and x,,(¢) in R, over a

certain interval, with ||@(t) || remaining finite. The combined set
- { [0, % x,] € R } ®cS, €N, x, € R} (2.18)
is defined to be the sticking region. In the following section, we demonstrate the existence

of this sticking region.

2.2 Analysis of the Sticking Region

In order to establish the sticking region, we need to guarantee the existence of a finite ©,

such that
16()]| < © V 1 € [f1.12] 2.19)
and a ¢, such that
t ty > 06° (2.20)
2—1 =2 o 2.

where 68* is a lower bound defined as

18(2) — ©(11)| > 56" 2.21)

The above implies that the parameter error moves slowly for all # € [r,2;]. In order to satisfy

(2.19), we examine (2.4) and (2.16) and conditions under which x(¢) remains small. This
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is addressed in Section 2.2.1 which follows. A similar procedure is adopted to characterize
Xm(t) in Section 2.2.2. With these characterizations, the sticking region .# as defined in

(2.18), is analyzed in Section 2.2.3.

2.2.1 Characterization of x(7)

Using the matching condition in (2.6) and feedback controllers from (2.3) and (2.15), the
plant differential equations for the CRM and IC-adaptive systems in (2.2) and (2.13), re-

spectively, may be written similarly as

(1) = [Am +bO)]x(1) + br (1) (222)

with b,, = ¢*b for CRM-adaptive system and defined as (2.14) for the IC-adaptive system.
We consider an arbitrary point @9, and a fictitious trajectory £(¢) and the deviation x(r) of

x(r) from £(¢). That is, we define

O(t) = Oy + 60(1) (2.23)
£(t) = — [Am+56g] "' byr(t) (2.24)
x(t) = x(t) — £(1). (2.25)

Using equations (2.22) through (2.25), a differential equation for the state x(#) may be

expressed as

X(1) = [Am +bO)]X(r) + bSO(1)%(r) — £(2). ‘ (2.26)
If A(8(t)) = [An +bO(f)] and w(r) = b8O(1)£(t) — £(¢), then the following lincar time-
variant plant differential equation is obtained:

(1) = A(O)E(1) +w(r). (2:27)

The following energy function of x(¢) will be used to examine the propensity of x(¢) towards
0:
Vi(t) =T (1)YE(2) >0 V X(1) #0 (2.28)

20



where Y is a symmetric positive definite matrix. Additionally the sets are defined:

S: {@)GR"‘ [AT(®)Y +YA(®)+1] <0 N

18- 00l < b~} (2.29)
M :{.’fe R" { 172 > 4;32} (2.30)
N: {55 cR" | Tyi< 4/1,,,0,‘,(1/);32} @231)
where
B > [1(Am+Db80) by || (JIYb|| '~ %r* +[|¥[7). (2.32)

Here |r(t)| < r* Vi,

Ht)] <ry Vtand a is a positive constant chosen as 0 < a < 1.
Throughout this analysis, Ayin(B) and A, (B) will be used to denote the smallest and
largesf eigenvalues, respectively, of a matrix B.

It should be noted that M is an unbounded region in R” outside a bounded sphere, while

N is a bounded ellipsoid. S is a set in R” whose existence is yet to be demonstrated.

Lemma 1. From the definition of M and N in (2.30) and (2.31) respectively, it follows that

N¢C M.

Proof. From the definition of N, it is known that
Amax(IF> > T YE > 42 (Y)B? V T ENC (2.33)
or simply
IX]> > 4B% V¥ ¥ e N (2.34)

The bounds in (2.33) and (2.34) are well defined as Y is a symmetric positive definite

matrix. From the definition of M, equation (2.34) implies that N° C M. O

With the above definitions and properties, we demonstrate the propensity for x(¢) to

remain in N in the following theorem.



Theorem 2. If (i) (:)(t) €S V t € t1,nn] where ty > 1y, and (ii) X(t1) €N, then

X)) eNV t€n,n).

Proof. The time derivative of V() in (2.28) is
Vi(t) =7 [AT(O())Y +YA(O(r)) ] ¥+ 2w (1) YR (2.35)
From condition (i) in Theorem 2, equation (2.35) leads to the inequality
Vi(t) < —xXTx42w! (1)YX (2.36)
fort € [t1,12]. Equation (2.36) may be rewritten as

Vi) < — (3 yw(r))" (F—Yw(r)) +[|Yw(e)|* (2.37)
From condition (i) in Theorem 2 and the definition of S, it follows that

- 1
160@)] < TTbl@ V ten,nl. (2.38)

From this, an upper bound on ||Yw(?)|| is determined for 7 € [t;,1,]:

IYw(©)[| < 1¥b[|[|56()[[[|(An +bOg) byl +
”Y””(Am+b®O)~1bm”r; (2‘39)
< [[(Am +©0) by (YD)~ + [|¥ || })

<B.

From (2.37), (2.39) and the definition of M, it follows that for ¢ € [t1,25], Vi(¢) < O if
X(t) € M and condition (i) in Theorem 2 holds. From Lemma 1, this in turn implies that if

conditions (i) and (ii) in Theorem 2 hold, then x(¢) e N V 1 € [t},12]. O

22



2.2.2 Characterization of x,,()

The update laws in (2.4) and (2.16) are also affected by the reference model and thus it
is important to characterize x,(t). The reference models for the CRM and IC-adaptive

controllers may be written as

Xm(t) = [Am — L] xn (1) +2(2) (2.40)

where z(t) = b,,r(¢) + Lx(¢). Similar to the approach used to characterize x(t), the follow-

ing energy function of x,,(z) will be used:

Vi, (1) = xD (YW xp(t) >0 ¥V xp(2) #0 (2.41)
where
[An—L]"W +W[A—L] = -1 (2.42)

Since [Am — L] is Hurwitz, W is a symmetric positive definite matrix. Finally, sets Q and

R are defined:

Q :{xm ER | |xm|® > 4A2} (2.43)
R: {x € R” ( X Wi < 47Lm,,x(W)A2} (2.44)
where
A > |[W([Ibmllr* + || L]|x*) (2.45)
and : »
A'max(Y)> 2 —1 ’
=2 + [(A +bOg) " by, || r*. (2.46)
B(320) "+ A +b60) bl

Lemma 3. From the definition of Q and R in (2.43) and (2.44) respectively, it follows that

R C Q.
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Proof. From the definition of R, it is known that

AmaxW|xml|? = xI W > e (WA ¥ x,, € RE (2.47)
or simply

| xm||> > 4A% ¥ x,, € RE. (2.48)

The bounds in (2.47) and (2.48) are well defined as W is a symmetric positive definite

matrix. From the definition of Q, equation (2.47) implies that R C Q. ]

As in the characterization of x(t), we use the above definitions and properties to demon-

strate the propensity for x,,(¢) to remain in R in the following theorem.

Theorem 4. If (i) x(t) e N V t € [t;,12] and (ii) xu(t1) € R, then

xm(t) ER VY t€[t,n)]

Proof. The time derivative of Vy (¢) in (2.41) is

Ve, (1) = —xT xp + 227 (1) Wy, (2.49)
which may also be expressed as
Vi () = — (xm - WZ(I)) (xm - WZ(’)) +[[We(r) Hz (2.50)
From condition (i) in Theorem 4 and the definition of N it follows that

1

-~ lmax(Y)>

<2 Yt €, bl (2.51)

1701 <26 (7200 .0

The bound in (2.51) is well defined as Y is a symmetric positive definite matrix. From the

24



inequality in (2.51) and the definition of X in (2.25), it follows that
()] <x* V 1€ [ty,12]- (2.52)
From this, an upper bound on ||Wz(¢)|| is determined for t € [t;,1]:

(Wz()|| < [[WI[[Ibmr(t) + Lx(1)|]
< W (w7 + ILIIx*) (2.53)

<A

From (2.50), (2.53) and the definition of Q, it follows that for ¢ € [t1,1], Vi, (¢) < 0 if
X (1) € Q. From Lemma 3, this in turn implies that if conditions (i) and (i1) in Theorem 4

hold, then x,,(t) € R V t € [11,1]. |

2.2.3 Maximum Rate of Convergence During Sticking

Theorems 2 and 4 create the basis for analyzing sticking in the adaptive systems. That is,
we determine conditions under which the parameter error 6(t) has a bounded derivative,

over a certain time interval. This is presented in the following theorem.

Theorem 5. Let

1
2 Z‘max(W) 2
* T 3 *2 ; * ) . 4
= Ib PH(r +2x A<_—/L,,,-,,(W)) ) (2.54)
If (i) é(r) €S V t €[ty,n] where
n=min{t|0()eS, OF+8) ¢SV >0,1>n}, (2.55)

(ii) x(1;) € N and (iii) x,(t)) € R, then

. ||@(t2)—(:)(t1)||.

2.56
o (2.56)

Proof. From Theorem 2 and conditions (i) and (ii) of Theorem 5, it follows that x(z) €

25



N V ¢ € [t1,12]. From Theorem 4, this in turn implies that if condition (iii) of Theorem 5

also holds, then x,,(t) € R V 1 € [11,1].

From the definition of N and R it follows that

3=

X Amar(Y) 2.57
ol <2p(74) v el @57
and ]
Afmax (W) 2 758
o) <28 Z200) v s € ) @s8)

From the inequality in (2.57) and the definition of X in (2.25), it follows that

x| <x* V 1 €ty,0]. (2.59)
An upper bound on 6(() for ¢ € [t;,12] can now be determined as

1O = || = BT P(x(t) = xm(t))x" (1)

< BT P @I+ b (O 15T (011

1
Anae(W)\ 2
< b7l [ 72 220t p [ Amax(W)
<[P (" +ex A(x,,,m(m) )
e

This proves Theorem 5. 0l

Theorem 5 is the main result of this chapter. It establishes a lower bound on the duration
of the time interval [¢,1,] that is dependent on the maximum speed of convergence @} and
the size of set S. The term “sticking region” was first used in [8] to describe a set in state
space where the state rate remained bounded for a minimum time. This implies that the
combined set .% in (2.18) is the sticking region with sticking occurring over the interval
[t1,22] during which ©() € S, %(¢) € N and x,,(t) € R.

The conditions under which the lower bound of # in (2.56) may be made arbitrarily
large are investigated next. In order to determine these conditions, we first argue that S as

defined above exists.
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2.2.4 Existence of Set S

To establish the existence of S, we first choose the symmetric matrix ¥ defined in (2.28).

For this purpose we define

Ao = A+ b0y (2.60)

where it is assumed that @y is such that Ag is Hurwitz. A symmetric and positive definite

matrix ¥ may therefore be defined by
ATY +7Ag = —1. (2.61)
We now define Y using ¥ in (2.61) and a positive constant y> as
Y =(1+7)7. (2.62)

The motivation for this selection of ¥ will become clear in the following theorem that

proves the existence of S:

Theorem 6. Let

Ag = Ap + b6y (2.63)

be Hurwitz. Then S exists and may be defined as

S: {@eR” _ 50" gé-@ogse*} (2.64)
where
60" =[06%, 66" ... 56" (2.65)
with
. 7 1 }
0<60" < mm{ , ) (2.66)
2"||Yb”max n||Yb||«
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Proof. Let

S {é e R"

[AT(®)Y +YA®)+1] < o}

S {6k | 60| < 7] .

It is easy to note that

SeS;NSs.

We first show the existence of S¢. Since A(@) can be written as
A(®) =Ag+bsO
and Ag is Hurwitz, we use (2.61) and (2.62) to rewrite (2.67) as
S): {® e R"| C(80) < 0}

where

C(80) = [c;(80)] = 60"bY +YbSO — 1.

By considering diagonal dominance, it is known that C (6@) < 0if[2]
ci(60) <0 V i

and

1cii(80)] > Y |ci;(80)] V .
J#i

(2.67)

(2.68)

(2.69)

(2.70)

2.71)

(2.72)

(2.73)

(2.74)

We will show that S in (2.71) exists by demonstrating that the elements of C (5(:)) in (2.72)

satisfy (2.73) and (2.74). By defining

¢t = 2”Yb“mdx”66“max
> (|80 BTY +Yb5O)|rar

(2.75)



it is known that

ci(6O®) < =P Vi (2.76)
and
(n=1)c* > Y |cij(60)| V i. 2.77)
J#i

By utilizing inequalities (2.76) and (2.77), conditions (2.73) and (2.74) become

ci(80) < — P <0V i (2.78)
and
lcii(60)] > (n—1)c*
Pt . 2.79
> Y |cij(8©)] V i
J#i
Both conditions (2.78) and (2.79) may be satisfied if
< f (2.80)
n
or equivalently
P 2.81)

2n(|Y B[ max

Thus, set Sy is defined in o) space where (2.81) is satisfied. We now consider the existence

of S». Since

1©— @[ < 7[5O max, (2.82)

the set S» is well defined if

1160 max < (2.83)

n||Yb||*
The definition of S in (2.64) describes an admissible set such that the conditions for set Sy

and S7 in (2.81) and (2.83) respectively, are satisfied for all O €S. O

The existence of set S has now been shown under the condition that Ao mn (2.63) 1s
Hurwitz. Each Oy that satisfies this condition describes a certain set S. It will become clear

from the simulation results that the selection of @y greatly effects sticking if E)(tl) = 0y.
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2.3 Simulation Study

We carry out simulations in this section to describe the sticking region .%°. A second order

plant and reference model are chosen as in (2.2) and (2.5) with

0 1 0
A= b= (2.84)
L—4 4 1
0 1 0 0
Ap = by,=b L= . (2.85)
-1 -2 0 0

An adaptive controller as in (2.3) and (2.4) was simulated where P in (2.4) was solved
using (2.8) with Q¢ = I. A constant reference input was chosen with r(¢t) = 1. In order to
define a set S, we use Theorem 6 which requires Ag in (2.63) to be Hurwitz. By setting

@) = [—24, —24], the following eigenvalues of Ag are obtained:
M(Ag)=—1  A(Ay) = -25. (2.86)

With Ay known, we can define ¥ and Y using (2.61) and (2.62) with y = 1. We use (2.32)

and (2.45) to set B and A, respectively, as small as possible with

B=004 A=171. (2.87)

S is then defined in (2.64) with §6* = 6.25 set as large as possible in (2.66) with o = 1.
Following the definitions in (2.31) and (2.44), the sets N and R are defined. The sticking
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region . is then given by (2.18) with

- T T T
~ , 6.25 ~ 24 6.25
S:{OeR”| — <O+ <
L6’25 24 6.25
_ 5 | o |2:04 0.04] _
NH<x eR | x x<0.013
0.04 0.04
> 7115 05
R:{xy e R x, X < 19.90 3.
05 0.5
We choose the initial conditions at t; = 0 as
O)=0p x1)=0  xu(t1) =—A'bpur(t). (2.88)

That is, the system trajectory begins in .¥ and the conditions of Theorem 5 are satisfied.
From (2.54), we compute ®, to be 3.87. Finally, using (2.56), we compute the lower bound

on t, using the values of @ and 60" as

h>161. (2.89)

In order to validate this analytical prediction, a numerical simulation of the CRM-adaptive
system specified by (2.84), (2.85) and (2.88) was carried out, the results of which are
shown in Figures 2-1 to 2-3. It can be seen from these figures that ¥(t) € N, O(¢) € S
and [|©(r)]| < O V 1 € [0,290]. This confirms (2.89).

The lower bound of #, > 1.61 from (2.89) may mislead the reader into thinking that the
sticking may occur only for a short period of time. This is not true; it should be noted that
the selection of @ above was done arbitrarily, insuring only that Ag was Hurwitz. Suppose

that g is chosen such that the eigenvalues of Ay are set as follows:

M(Ag)=—-1  A(Ag) = —k with k> 1. (2.90)

Repeating the same procedure as above for the Ag as in (2.90), N and S as well as the lower
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Figure 2-1: X(7) trajectory in N with #; = 0 and 7, = 290
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Figure 2-2: (:)(t) trajectory in S with #; = 0 and #; = 290

s o PRI S e AU
i &
o N 38 :
_________ / ;
: /
>>>>>> 28
= a0 s = 2
T / L
v 15
o 15
""""" 1
-20
to / s 08 2
-
-25 s =Y
200 a0 500 830 1000 o 208 400 600 86 1000 ° 200 400 500 200 1000
Ting (s) Time (&) Time (s}

Figure 2-3: x(t), X (1), ©(¢) and H@(t)” versus time

bound on 7, can be calculated. These are shown in Figure 2-4, which clearly illustrates

that as initial condition increases in magnitude, the time that the trajectories spend in the

sticking region grows as well. Here the effects of sticking become predominant in the

CRM-adaptive system as @} may be made arbitrarily small by increasing k. This is due to

a decreasing size of N about x = 0 and increasing size of S when k is increased.
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Figure 2-4: Set N in x space, set S and the lower bound of , for varying k. Arrows denote
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In Section 2.4 which follows, we extend the observation in Figure 2-4 to general n'”
order systems. However, let us first consider some additional simulations. In (2.85) we
let L = 0 such that no closed-loop reference model was defined. In [5], [6], it has been
demonstrated that adaptive systems with closed-loop reference models exhibit improved
transient performance. We therefore suspect that introducing the error state feedback may
improve the transient performance during sticking. The simulation as presented in (2.84)
though (2.88) is repeated for the case when L = I«>. The results are shown in Figures
2-5 through 2-7. It can be seen from these figures that %(z) € N, ©(r) € S and H(:)(t)ﬂ <
® V1 € [0,2300]. We observe that the new feedback L has reduced ®7 which has made

the system more susceptible to sticking.
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Figure 2-5: X(t) trajectory in N when L = I,»» with #; =0 and #; = 2300
Finally, let us consider the case for when the conditions of persistent excitation are sat-

isfied. Once again, we repeat the simulation as presented in (2.84) though (2.88), but define

r(t) = sin(27r /200) such that persistent excitation is achieved. The results are shown in
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Figure 2-7: x(t), X (1), ©(t) and ||(§(t) || versus time when L = >

Figures 2-8 through 2-10. Here the response is only plotted until shortly after the system
leaves the sticking region and X,,(¢) = x,,(¢) — £(¢). It can be seen from these figures that
x(r) € N and O(t)eSVre [0,560]. Thus persistent excitation does not make the system

less susceptible to sticking.
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Figure 2-8: x(t) trajectory in N for persistent excitation with 7; = 0 and #; = 560
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Figure 2-10: x(t), xm(t), O() and H(:j(t) || versus time for persistent excitation
2.4 Numerical Analysis

In this section, we address the lower bound on #;, from Theorem 5, and its dependence on
initial conditions for general n'" order CRM and IC-adaptive systems. In order to do this,

it is assumed that (A, b) is expressed in control canonical form such that

0 0
: I :
A= b= . (2.91)
0
a1 a2 - anj | 1_

This is possible for the CRM-adaptive plant defined in (2.2) since up to this point, no
constraints have been placed on the system (A, b). However, the IC-adaptive plant is
defined according to the augmentation in (2.14). It is clear that if C, = [1 0 --- 0] in (2.11)

and (A,, b,) is represented in control canonical form in (2.10), then (A, b) in (2.14) is
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similar to (2.91) with a; = 0. This is the case considered in this section.
By representing both the CRM and IC-adaptive systems in control canonical form, we

are able to closely compare the numerical results that follow in the next section.

2.4.1 Numerical Results

For a system that is initialized in the sticking region with (5([1) = ®y, we have from Theo-

rem 5 and 6 that _ B
O(tr) — *
th—t > o) *6(”)” > 56* . (2.92)

®d ®d

For any given adaptive system, it is clear form (2.45) and (2.54) that if x* (defined in (2.46))
decreases, then ® in (2.92) will decrease provided A is always set to the lower bound in

(2.45). Additionally, by considering (2.66), §6* may be increased if the upper bound

¥y 1
00,,,, = min , (2.93)
e {Z"HYmeux n|{Yb||@ }

increases. Therefore, in order to determine the conditions under which the lower bound
on t; in (2.92) may be made arbitrarily large, only the quantities x* and 66,;,, need to be
analyzed. This will be the approach used in the remainder of this section.

In these numerical results, it is assumed that the reference input is constant such that

r* =1and r; = 0. In order to define a set S, we choose @ in (2.63) such that

Ai(Ag)=—1 for i=1..n-1
) (2.94)
An(Ao) = —k with k> 1.

We now define ¥ and Y using (2.61) and (2.62) with y = 1. B is then defined as the
lower bound 1n (2.32) with o = 1 and o = 0.3, respectively, for the CRM and IC-adaptive
systems. By setting A to the lower bound in (2.45), we show how x* and 60;; .. vary with
k in Figure 2-11 for the CRM-adaptive system and Figure 2-12 for the IC-adaptive system.
In these figures, results for system orders from two to six are shown.

It is clear from these graphs that the lower bound of #; in (2.92) may be made arbitrarily

large for the CRM and IC-adaptive systems. However, the lower bound grows more rapidly
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Figure 2-11: x* and 86, for versus kK with n =2 — 6 in the CRM-adaptive system

104 10"

Figure 2-12: x* and 68;;,,, for versus k with n =2 — 6 in the IC-adaptive system

for the CRM-adaptive system. Additionally, it can be seen that x* approaches a non-zero
value as k increases for the IC-adaptive system, while x* approaches zero for the CRM-
adaptive system. This means that ®) may be made arbitrarily small by increasing k for the

CRM-adaptive system, but not for the IC-adaptive system.

2.4.2 Simulation Results

To illustrate sticking and the significance of Figures 2-11 and 2-12, simulations were car-

ried out for a CRM and IC-adaptive system defined in Section 2.1.1 and 2.1.2, respectively,
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by

0 1 0 0

A=lo o 1 b= |0 (2.95)
0 —4 —4 1
(0 1 o0

An=10 0 1| L=]|0s0] (2.96)
-1 -3 -3 _

with by, = b for CRM-adaptive system and defined in (2.14) for the IC-adaptive system. For
the CRM-adaptive system, an adaptive controller as in (2.3) and (2.4) was simulated where
P in (2.4) was solved using (2.8) with Qp = I. For the IC-adaptive system, an adaptive
controller as in (2.15) and (2.16) was simulated with the same P. A constant reference

input was chosen with r(¢) = 1 and the system was initialized at /{ = 0 as
x(t)=0  xn(n)=0 (1) =60,60,60) 2.97)

For each simulation, the initial conditions in (2.97) were used for increasingly negative

values of 50 while recording the settling time 7 defined as

JM < 8} (2.98)

7= min {’ EOE

where z(t) = [x(¢), xu(2), (:)(t)]T, z* = lim_,02(f) and € = 0.05. By making 6y more
negative in (2.97), the system was initialized further and further into a sticking region
(This corresponds similarly to increasing & in (2.94)). The results of the settling time T
are included in Figure 2-13. Here a decreasing convergence rate for the CRM-adaptive
system is observed as 50 is made more negative. On the other hand, the IC-adaptive system
demonstrates a constant learning rate. Figure 2-13 also includes the settling time T for the
exponentially stable system (denoted by ‘EXP-system’) when ©(¢) = 0 V r. Here x(h) #
0 such that |[z(7;)|| # 0. This additional plot is only included to create a perspective of

the convergence rate of the ORM and IC adaptive systems against a roughly equivalent
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exponentiaily stable system.
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Figure 2-13: Settling time 7 for various initial conditions of the CRM and IC-adaptive
systems

2.4.3 Additional Insight to Sticking in the IC-Adaptive System

The results in Sections 2.3 and 2.4 thus far demonstrate that the IC-adaptive system 1is
less susceptible to sticking when compared to the CRM-adaptive system. Consider again
Section 2.1.2: An alternate comparison can be drawn between the two adaptive systems

when we note that (2.15) may be written as
u(t) = [@5(1) .. Ou(t)]x,(1) + O (¢) /0 [Co (1) — r(1)]d (2.99)
where ©(1) = [0 (1), ©2(1) .. ©,(¢)]. Let ©,(z) = [@2(r) ... ©4()] and
rp(t) =q* ©,(t) /0 t [Cpxp(T) — r(T))d7. (2.100)
Then (2.99) takes the familiar form
u(t) = O ()xp(1) +4°rp(0): @.101)

With this in mind, we compare the IC-adaptive plant differential equation (2.10) and con-

‘troller (2.101), directly to (2.2) and (2.3) of the CRM-adaptive system. If the order of these
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two plants were the same and (A, b) in (2.2) was equal to (A,, b,) from (2.10), then we
expect a very similar result could be drawn from Theorem 2 where the plant states were
characterized. This would be the case, but r,(¢) in (2.100) contains a time varying parame-
ter ©1(¢) and an integrated error state ey/(f) = fot [Cpxp(T) — r(7)]d7. Unlike the reference
input r(¢) in (2.3), r,(t) introduces an additional degree of freedom that reduces the effects
of sticking. It can be seen form (2.29) through (2.32) that the definition of the sticking

region .’ is largely dependent on the reference input bounds r* and 7.

2.5 Sticking Analysis with (A, Ab) unknown

Thus far in this chapter, we have proved the existence of sticking region in the CRM and
IC-adaptive systems for the case when only A in (2.2) and (2.13) was unknown. Consider

th

now the »n'" order time-invariant plant differential equation is given by

x(t) = Ax(t) + Abu(t). (2.102)

In this section, we consider the CRM-adaptive system for the case when (A, Ab) is un-
known. Here it is assumed that the vector b is known while A is an unknown constant
with a known sign. Once again, only the single input case is considered and it is assumed
that the underlying reference input is bounded and smooth. From the numerical analysis in
Section 2.4.1, we show that the IC-adaptive system is less susceptible to sticking compared
to the CRM-adaptive system. This result could be more intuitively understood from the
additional insight provided in Section 2.4.3. Using the same intuitive approach, the effect -

due to the additional unknown parameter on sticking will be investigated.

In this section we first present the underlying adaptive system when (A, Ab) is un-
known. The effect of the additional unknown parameter on sticking is then discussed.

Finally, simulations are included to verify the result.
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2.5.1 The CRM-Adaptive System with (A, Ab) Unknown

The n*" order time-invariant plant differential equation is given by

x(t) = Ax(t) + Abu(t) (2.103)

where A is a constant n X # unknown matrix, b is a known vector of size n and A is an

unknown scalar with a known sign. A state variable feedback controller is defined by
u(t) = Oa(r)x(t) +Op(1)r(t) (2.104)
where O4(t) and Op(t) are time varying adaptive parameter updated as

O (1) = —sign(A)bT Pe(t)x” (¢)

. (2.105)
Op(r) = —sign(A)bT Pe(t)r(r)
Here e(t) = x(t) — xm(t) and x,,(¢) is the output of a reference model defined by
Em(t) = AmXm(t) +bpr(t) + Le(?) (2.106)

where A,, is Hurwitz and L is a constant n X n feedback matrix which introduces a closed-

loop in the reference model. With the standard matching conditions [10]

A+Ab®, =A,
(2.107)
Ab®% =b,,
satisfied, the error differential equation is defined by
é(1) = [Am — L]e(t) + AbO®, (1)x() + AbOp(1)r(t) (2.108)
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where 0, (1) = O4(t) — O} and Op(1) = Op(t) — ®}. If [A,, — L] is Hurwitz, then a sym-

metric positive definite P exists that solves the well known Lyapunov equation
[Aw—L] P+P[An—L] =09 (2.109)

where Qp is a symmetric positive definite matrix. It is well known that the error model in
(2.108) and (2.105) can be shown to be globally stable at the origin and that [10]

lim e(t) = 0. (2.110)

f—oo

2.5.2 Insight to Sticking in the CRM-Adaptive System with (A, Ab)

Unknown

Using the same approach as presented in Section 2.4.3, we note that the controller in (2.104)

may be expressed as

u(t) = Oa(t)x(t) +q*rp(r) 2.11D

where

ra(t) =q* ' Op(t)r(r). (2.112)

With this in mind, we compare the CRM-adaptive plant and controller with (A, Ab) un-
known in (2.103) and (2.104), directly to (2.2) and (2.3) of the CRM-adaptive system with
only (A) unknown. If (A, Ab) in (2.103) was equal to (A, b) form (2.2), then we expect
a very similar result could be drawn from Theorem 2 where the plant states were charac-
terized. Once again, this would be the case but () in (2.112) contains a time varying
parameter ®p(r), which unlike the reference input r(¢) in (2.3), introduces an additional

degree of freedom that reduces the effects of sticking.

This is a similar result to Section 2.4.3. In order to demonstrate these effects, simulation

results are included in the following section.
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2.5.3 Simulation Results

Rather than completing an entire sticking analysis for the CRM-adaptive system with
(A, Ab) unknown, we complete a convergence analysis as done in Section 2.4.2. Sim-
ulations were carried out for the CRM-adaptive system with (A) and (A, Ab) unknown
as defined in Sections 2.1.1 and 2.5.1, respectively. The plant and reference models are

defined by

0 1 0 0

A=lo o 1 b= |0 2.113)
0 4 4 1
(0 1 0

An=10 0 1| bu=b L=[03x3]. 2.114)
-1 -3 -3

For the CRM-adaptive system with (A) unknown, an adaptive controller as in (2.3) and
(2.4) was simulated where P in (2.4) was solved using (2.8) with Qg = I. For the CRM-
adaptive system with (A, Ab) unknown, an adaptive controller as in (2.104) and (2.105)
was simulated with the same P and A = 1. A constant reference input was chosen with

r(t) = 1 and the system was initialized at t; = 0 as

(1) =0 xu(t)=0  O(1)=0a(t)=[60,00,00] Op(t)=0. (2115

For each simulation, the initial conditions in (2.115) were used for increasingly negative

values of 50 while recording the settling time 7" defined as in (2.98) where

2(1) = [x(t), xm(2), O@)]T CRM with only (A) unknown 2116
2(t) = [x(t), xm(?), Oa(r), Op(1))T CRM with (4, Ab) unknown, o

7* = lim; . 2(¢) and € = 0.05. By making 8o more negative in (2.97), the system was
initialized further and further into a sticking region. The results of the settling time 7 are

included in Figure 2-14. As before, a decreasing convergence rate for the CRM-adaptive
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system with only (A) unknown is observed as 50 is made more negative. On the other
hand, the CRM-adaptive system with (A, Ab) unknown demonstrates a constant learning
rate similarly to the IC-adaptive system in Figure 2-13. This corresponds to the discussion

form Section 2.5.2.

20006 200
(A) unknown (A, A b) unknown
1500 150
1000 100
500 | 56
0 o
10 20 30 40 10 20 30 40

Figure 2-14: Settling time T for various initial conditions of the CRM-adaptive systems
with (A) and (A, Ab) unknown

2.6 Summary

In this chapter, we have focused on slow convergence properties of errors in a class of
adaptive systems that corresponds to adaptive control of linear time-invariant plants with
state variables accessible. We prove the existence of a sticking region in the error space
where the state errors move with a finite velocity independent of their magnitude. These
properties are exhibited by ORM, CRM and IC-adaptive systems. Simulation and numer-
ical studies are included to illustrate the size of this sticking region and its dependence on

various system parameters.



Chapter 3

Sticking in Outer-Loop Control

Chapter 2 presents an analytic approach for characterizing sticking regions in adaptive
systems. In this chapter, the impact of sticking is investigated for outer-loop controllers
that include inner-loop adaptation. An analysis is presented that identifies the existence of
a sticking region in the inner-loop and its impact on command following in the outer-loop.

In the design of outer-loop controllers, it is often assumed that the inner-loop states are
readily available. The inner control loop is then responsible for tracking command signals
generated by the outer-loop. This separates the outer and inner-loop design problems which
is advantageous since well-established design methods exist separately [12]. However, if
inner-loop adaptation is implemented to account for any uncertainties in the plant model,
then it is possible, as argued in Chapter 2, that the overall inner-loop adaptive system can
exhibit sticking, and as a result, the outer-loop performance in terms of command tracking
can be compromised.

In order to demonstrate these sticking effects in outer-loop control, we focus on a com-
bined inner and outer-loop problem in a flight control application. Here, adaptation is
implemented in the inner-loop for control of an aircraft’s angle of attack and pitch rate
dynamics with uncertainties. This forms the inner-loop dynamics of the system. The outer-
loop dynamics consists of the pitch angle and altitude of the aircraft, and is assumed to be
known. Two adaptive control solutions are implemented that ensure the aircraft altitude
tracks the desired altitude. While the controllers are very similar, they exhibit different

behaviors during sticking. Through simulations it is shown that one of these controllers is
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not able to access the inner-loop states necessary for effective altitude command tracking
during sticking. Thus the importance of accounting for sticking regions in adaptive control

1s demonstrated.

3.1 Problem Statement

We consider the general outer-loop control problem when the inner-loop dynamics are un-
known. Model reference adaptive control may be implemented to account for the uncertain-
ties in the inner-loop. However, following this approach, the system becomes susceptible
to inner-loop sticking as presented in Chapter 2. In this section, we present the under-
lying outer-loop control problem when there are uncertainties in the inner-loop dynamics
and propose a control design. With this, the overall problem with regard to the impact of

inner-loop sticking on outer-loop control is stated.

3.1.1 The Outer-Loop Control Problem with Unknown Inner-Loop

Dynamics

th

Consider the n),

order differential equation that describes the unknown inner-loop dynam-
ics given by

Xp(t) = Apxp(t) +bpu(t) (3.1

where Aj, 1s a constant unknown n, X n, matrix and b, is a known vector of size n,.
Additionally we have the known outer-loop dynamics given by the n;,h order differential
equation
Xg(t) = Agxg(t) + Boxp(1)
(1) = Coxy(0).

It is assumed that the open-loop plant, as shown in Figure 3-1, is controllable with acces-

(3.2)

sible states x, () and x4(f). Let y,, ,(¢) be a desired command state which is known and

specified. The objective is to design a closed-loop controller u(¢) such that the system is
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2, (t) | Eglt) = Agieg(t) + Byap(h)
yglt) = Cyy(t)

UU:' 3 4i'p(” = Ap-‘l‘p(t} -+ b‘,u(f') — '!jg("}

Figure 3-1: Open-loop plant with inner and outer-loop dynamics

stable and the outer-loop state y,(t) approaches the desired trajectory yg, .(f), that is

}L%Vg(f) = Yeemd (t) (3'3)

In this chapter, the control problem is solved by first designing an open-loop reference
model (ORM) where the unknown parameters of the system are estimated. Here the ORM
is designed such that it represents the output desired in the plant at every time (i.e. achieves

tracking of the trajectory y,

Som

,(£)). Since the dynamics of the reference model may vary
from the actual plant, error states are defined. A control architecture similar to that in [14] is
then implemented, where additional error state feedback loops are introduced to the ORM,
thus forming a closed-loop reference model (CRM). By considering the error dynamics
between the actual system and the CRM, an adaptive controller u(¢) may be designed to
achieve the control objective in (3.3).

The complete control design of u(7) will follow in Section 3.3. In order to present the

main idea of this chapter, the following proposition is useful, which is

Proposition 7. If the uncertainties of the inner-loop dynamics in (3.1) are such that the

matching conditions

Ap +bp®; - Ap)" al’ld bp - bp,n (3'4)

are satisfied for some ©;, where Apy and by, are known, then there exists an adaptive

controller of the form

a(t) = (105, (1) + £,(1) (35)
where ©,(t) and f,(t) are time varying functions with the properties ®,(t), O,(1), f,(1),
Fp(t) € L such that the system response satisfies xp(t) xg(t) € Ze and the control objec-
tive in (3.3) is realized.

In Proposition 7, the role of the parameters (A, by, ) is similar to that of the reference
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model discussed in Chapter 2. We will return to the definition of (A, b,,) in Section

3.3.

3.1.2 Impact of Inner-Loop Sticking on Outer-Loop Control

Proposition 7 implies that an adaptive controller exists such that the control objective in
(3.3) is satisfied. However, by comparing the form of (3.5) to (2.3), we realize the inner-
loop may be susceptible to sticking. Thus we begin our approach by completing a stick-
ing analysis as done in Theorem 2 under Proposition 7: Show that there are some initial
conditions for which X,(¢) will remain in a set N while @p(t) traverses in a set S over
a certain time interval [ty, 72]. From (3.2), we see that if x,(¢) is subject to the constraint
Xp(t) €NVt € |11, 2] during sticking, then the ability for y,(r) to converge quickly towards
Ye.ma(t) may be prohibited during this time interval.

This is problematic since we have shown in Chapter 2 that sticking may occur for
extended periods of time. In this chapter, we are only concerned about the definition of sets
S and N. Therefore, in this chapter “sticking” will refer to the time interval [t;,#,] during

which ©(z) € S and X(r) € N.

3.2 Analyis of Sticking in OQuter-Loop Control

In this section, we complete a sticking analysis as done in Theorems 2 and 6 for the inner-
loop of the system as given in (3.1). This is completed using the control solution from
Proposition 7 (to be proved in Section 3.3 which addresses the design of an autopilot system
for altitude tracking). With this sticking analysis, the impact on outer-loop control will be

investigated.

3.2.1 Inner-Loop Sticking

Suppose that the matching condition is satisfied for a suitably chosen (Ap, by,) and that

a control input as in (3.5) exists. We can then express the plant differential equation in (3.1)
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as

ip(t) = [Apm+ 0,0, ()] x,p (1) + by f(0) (3.6)

where @p(t) = ©,(7) — 0}, Following the same approach as presented in Section 2.2.1, we
consider an arbitrary point ® 9, and a fictitious trajectory £,(¢) and the deviation x,(t) of

xp(t) from £,(¢). That is, we define

©,(t) = ©p+ 809,(1) (3.7)
£5(6) = —[Apm+1,0p0] b, f, (1) (39)
Xp(t) = x,(1) —Xp(1). (3.9)

Using equations (3.6) through (3.9), a differential equation for the state X,(r) may be ex-

pressed as

Xp() = Ap(Op(1)Tp (1) + W (2) (3.10)

where A,(0,(t)) = [Apm +bp®,(1)] and w,(t) = b,80,(t)%,(r) — £,(t). We notice that
(3.10) is identical to (2.27), thus we may use Theorems 2 and 6 as given in Chapter 2. For
convenience, these theorems are included in Table 3.1 with the newly defined variables.
We note that the only major difference is that the reference input from Chapter 2, has been

replaced by the bounded and smooth time varying function f,,(¢) that is yet to be defined.

3.2.2 QOuter-Loop Sticking

The impact of inner-loop sticking on outer-loop control will be demonstrated in Section

3.3. It will be shown that there exists transfer function G(s) such that

Xg(8) = Xgopm (5) = G(s)ex(s). (3.11)

Here e,(t) is an error state of the system measured from the CRM and x,,,, (s) is the outer-
loop state of the ORM. Precise definitions will follow in Section 3.3. At this stage, it is
only important to note that as per the ORM design, Xg,,,, (¢) represents the output desired

in the outer-loop of the plant.
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Table 3.1: Definitions for the inner-loop sticking analysis

Definition ?ﬂv?;ﬁ:f,i ¥ | Description / Notes
0,(1) = 0,0+ 80, (1) 223
() = —[Apm +b,0p0] wlbl,,f,,(r) 2.24 Fictitious trajectory
Xp(t) = xp(1) —%,(2) 225 Deviation of x,(t) from £,(z)
ApO = Apm +1b,0,0 263 /; l,;o must be Hurwitz for Theorem 6 to ap-
ATV + YA 0= —1 261
Y=(1+7)Y 2.62 Here 7° is an arbitrary positive constant
Define f* such that | f,(1)| < f* V¢
Define f} such that | f,(1)| < f3 V¢

—1
l(SHprz“Fal}(f_‘i’_"hy”j;j)b”@p()) bpll - x 232 Here0<a <1
S: {9” € ij ATOpY +YA©,) + 2.29 Here A(©,(1)) = [Apm +b,0,(1)]
1] <0 N 118, Oy < [[Yb]|-* |
N: {f,, eR™ | Y%, < 41,,,0‘()');32} 231

Theorems

Theorem 2. If (i) é,,(t) €8 V t € [ty,0] where 13 > 11, and (ii) 3,(1)) € N, then

Xp()eNV ren,n].

Theorem 6. Let
Apo = Apm +b,0Op0

be Hurwitz. Then S exists and may be defined as

s: {6, cRr

50}, <8, -0,0< 60}

where
5@); = [56;, 56;,‘ 69p]

with

0< 86" <mi { ' 1 }
min , .
? 2nl?”prHma.wc ’lp”pr”a
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Through Proposition 7, we may use the inner-loop sticking analysis as presented in
Table 3.1. If sticking imposes the constraint X,(1) € NV ¢z € [t;, 1] such that |le.(¢)| >
OV teT where T C [t), 2], then x,(r) will converge slowly to xg,,,,(¢). From (3.11),
this is clear since ideally we require e,(#) = 0 V t. Of course, G(s) must be more closely
examined to make this conclusion as will be done in the simulation study at the end of this

chapter.

From the design of the adaptive controller in Proposition 7, we know that v,(¢) will
approach y,_(t) eventually. However, we do not know how quickly y,(¢) will approach

S

Yema(?)- The above approach will help us qualify this convergence rate in the outer-loop.

A more intuitive understanding may be gained if (3.2) is considered in isolation: It is
a well know result that stability and controllability can not be guaranteed for on open-loop
unstable system, such as perhaps (3.2), if the input is constrained [7]. Sticking constrains
the “input” x,(¢) for a finite duration of time, therefore, the system might not behave like
a controllable or stable system during this finite time. It is only once the system leaves the

sticking region that the designed stability, controllability and tracking is observed.

3.3 Outer-Loop Altitude Control with Inner-Loop Adap-

tation

In this section, we demonstrate the impact of inner-loop sticking on outer-loop control
~ with a practical application of altitude control for an aircraft. Here, adaptation is imple-
mented in the inner-loop for control of an aircraft’s angle of attack a(¢) and pitch rate
q(t) dynamics with uncertainties. This is called the short period dynamics of the aircraft
and forms the inner-loop dynamics of the plant which is represented by (3.1), therefore
xp(t) = [a(t), g(1)]".

The outer-loop dynamics consist of the pitch angle 6(z) and altitude A(z) of the aircraft
which is represented by (3.2) such that x,(¢) = [8(¢), h(¢)]T. The control system’s objec-

tive is to track a desired altitude command signal A.,,;(¢), therefore the objective in (3.3)
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becomes

lim A(t) = hepma(t). (3.12)

[—ro0

The controller u(t) will be as defined in Proposition 7, thus we know that the state x, ()
may be susceptible to sticking from Theorems 2 and 6 in Table 3.1 which will impact the
outer-loop control as discussed in Section 3.2.

This section is presented as follows: First the underlying control problem with model
uncertainties is formulated from which an ORM is designed. By implementing a closed-
loop structure as done in [14], a CRM is defined from the ORM. With this control structure,
two adaptive controllers are designed which prove Proposition 7. Finally, the simulations

are included to demonstrate the impact of inner-loop sticking on outer-loop control.

3.3.1 Control Problem Formulation

Before a controller can be designed, it is required to model the aircraft for the necessary
longitudinal dynamics. In this section, these dynamics will be decoupled to form the inner
and outer-loop dynamics which will form the model as described in (3.1) and (3.2), respec-
tively. The numerical values that define this model will also be included for the simulation
that follows at the end of this chapter. Finally, the model uncertainties as represented by

(3.4) will be discussed for the aircraft.

Longitudinal and Guidance Dynamics

The longitudinal dynamics of an aircraft describes the forward, vertical and pitching motion
of the vehicle. By linearizing the dynamics about a trim condition, the following model

which describes the longitudinal flight dynamics is obtained: [9] [14]:

_Vr- [ Xy Xa 0 —gcosypy X;,_ —VT“ [ X5, cos00 X, ]
o & Zo  pyf -8 0| | |-Xgsinay e 5,
th
= | My Mgy M, 0 0 + Ms, Ms, l:é}]
0 0 1 0 0 0 0 0
i h | [sinyy  —Vocosp 0 Vocosyo O | | /] | 0 0 |
(3.13)
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Here it is assumed that the thrust line is aligned with the forward axis of the aircraft.
The states are given by the forward velocity V7 (), the angle of attack o(¢), the pitch rate
q(t), the pitch angle 6(¢) and altitude (). Figure 3-2 shows some of these states and their

relation to the flight path angle y(¢) = 6(¢) — a.(¢). Additionally, V; is the trimmed airspeed,

Horizon

Figure 3-2: Longitudinal flight angle relations [9]

oy is the trimmed angle of attack, ¥ = 6p — Qp is the trimmed flight path angle and 6y is
the trimmed pitch angle. Finally, §,(¢) and &.(¢) denote the thrust and elevator inputs,
respectively, relative to the trim condition. The matrix components of (3.13) represent

constant stability and control derivatives of the aircraft forces and moments.

For some flight vehicles, a strong decoupling follows from a modal analysis of (3.13)
between the velocity dynamics and remaining longitudinal dynamics [9] as is the case

considered in this chapter. The decoupled velocity dynamics are then given by
VT(I) :XVvT(t) +X31hCOS(X()8,h(l‘). (3.14)

For simplicity, we assume &(¢) is controlled such that Vr(r) = V. Furthermore, we as-
sume a trim condition such that the —%‘)—1’9 term in (3.13) is negligible. Thus, the short
period dynamics of the aircraft are extracted as

. Zy Z Zs,
oy | H—V0 o T

= Se. (3.15)
q M, Mq q Mﬁe
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Let x,(t) = [a(t), q(t)]T and u(t) = 8,(t), then (3.15) may be written as

£p(t) = Apx,(t) +byu(t) (3.16)

which forms the inner-loop dynamics of the control problem as given in (3.1). The remain-

ing dynamics are given by

0 0 ol |6 0 1| |
. + . 3.17)
h| |Vocosy Of |A —Vocosy Of | g

Let x,(t) = [0(t), h(r)]”, then from (3.17) we obtain

Xg (1) = Agxg(1) + Bexp (1)

h(t) = Coxg(1)

(3.18)

where C, = [0, 1] which forms the outer-loop dynamics given in (3.2). The simulations in
this chapter will be carried out on an aircraft with a flight condition of Mach 0.3, 5,000 ft
altitude, trim angle-of-attack of oy = 5°. The stability and control derivatives with trim
conditions are included in Table 3.2 [9]. This fully defines the unknown inner-loop dynam-

ics and known outer-loop dynamics in (3.16) and (3.18), respectively.

Representation of Uncertainties and the Matching Condition

An adaptive controller will be designed to account for any uncertainties of the stability and
control derivatives in the inner-loop model given by (3.16). We assume the uncertainties

are represented by the matching conditions

Ap +bp®;‘, =Apm and b, =bp,. 3.19)

where A, and b, are known, thus satisfying (3.4) in Proposition 7. Following the def-
inition of (A,, b)) in (3.15), we see that if Vj is much greater in magnitude than Zy, Z,
and Zs,, then only control derivative Mg must be known. This is true since for some un-

certainties in Zy, Z,; and Z;,, the matching condition can be approximately satisfied. The
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uncertainties and estimation of parameters are included in Table 3.2. With this we define

(Apm, bpm) as the estimate of (A,, b,) such that

Zam 14 Zm Zom
A i Yo d bp,=|" 3.20
pm — an pm = . (3.20)
M am qu Mﬁe

In designing the ORM, (A, bpm) Will be used to describe the reference model inner-loop

dynamics.

Table 3.2: Stability and control derivatives with uncertainties

Inner-loop (A,, b,) and outer-loop

(Ag, By) model parameters in (3.15) and | Estimated parameters Uncertainty
317

Zg = —1.0527 (1/5) Zom=—1.5 < 50%
Z,=0(1/s) Zum=0(1/s) Known
Zs, = —0.0343 (1/s) Zs,m=0(1/s) 100%
My = —2.3294 (1/5%) Mgm = —6 (1/5%) < 200%
M, = —1.0334 (1/5?) My = =2 (1/5%) < 100%
Ms, = —1.1684 (1/s%) Ms,,, =M, (1/5%) Known
Vo = 329.13 (ft/s) Vom = Vo Known
Yo =0 Yom = Yo Known

3.3.2 Open-Loop Reference Model Design

An ORM must designed to represent the output desired in the plant at every time, from
which a CRM can be defined by implementing a closed-loop architecture similar to that in
[14]. With this control structure, the adaptive controllers may be designed. In the ORM, an
inner-loop is designed around the estimated short period dynamics, which will implement
integral action for command tracking of the signal o, ,(t) with the angle of attack. A
forward-loop controller will be responsible for generating this command signal in a way

such that the ORM represents a desired output. Finally, these dynamics will be combined

55



with the outer-loop dynamics to form the ORM. The ORM block diagram is shown in

Figure 3-3, of which each component will be designed in this section.

Open-Loop Reference Model

Hemalt) ‘Tym(t}

Figure 3-3: Open-loop reference model block diagram

Reference Model Inner and Outer-loop Dynamics with Integral Action for Angle of

Attack Tracking

We define the reference model inner-loop dynamics as

Zpm(t) = ApmXpm(t) + Bpmtim(t) {321)

where (A, bpm) is defined in (3.20) and follows the matching condition in (3.19). The

states Xpm (1) = [04n(t), qm(1)]T represent the reference model angle of attack and pitch rate.

The reference model outer-loop dynamics are given by

hin(t) = Coxgm(t)

(3.22)

where the states Xgy(f) = [O(t), hn(t)]" represent the reference model pitch angle and
altitude and C, = [0, 1]. Also, A, and B, are as defined in (3.17) and (3.18). In order to

introduce command tracking, the additional integral error state is defined by

é_vlm(t) = Cpxpm(t) - a’"cmd(t) (3.23)
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where C,, = [1, 0] such that Cpxpm(t) = @, (t). As done in Section (2.1.2), an augmented

system is created in order to include the state ey, (7) as follows:

éy 0 G, | le 0 —1
yimi I e U+ O, (1). (3.24)

Xpm On px1 Apm Xpm b pm 0y px 1

Since state variables ey (), x,T,,,,(t)]T are accessible, we introduce feedback with

tm(t) = —Kleym(t), x,fm(’«)]r (3:25)
to obtain
éyr 0 C 0 eyin —1
vim | ( p | K) i | O, (1), (3.26)
Xpm 0, px1 A pm bpm Xpm 0, px1
We may represent (3.26) more compactly as
Em(1) = Apmxm (1) + b0y, (1) (3.27)

where x,,(1) = [eyim(2), xpm(t)T]T. The feedback K may be chosen with LOR or by other
means such that A,, is Hurwitz. In the next section, we design a forward-loop controller to

generate the command signal ¢, ,(t).

Forward-Loop Controller Design

We must now design a forward-loop controller which will specify the command signal
O, (1) in (3.27). In order to dot this, we consider a known guidance method for altitude
control in an aircraft. Many guidance algorithms specify acceleration command signals for
the inner-loop to track. This is a natural selection since limitations of the vehicle may éasily
be related to acceleration limits (maximum g-forces) [4]. Additionally, the acceleration of
a vehicle is usually a state that may be derived from the inner-loop, thus command signal

tracking techniques may be implemented directly. We begin with a guidance method that
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follows a pure pursuit based approach adapted from [1}], [3], [11]:

2

V_
A, ()= —kgz‘-;- sinf () with kg, > 0. (3.28)

Here a reference point is created on a precomputed desired altitude trajectory h,4(t) that
lies at a distance L; froward of the aircraft. Based on the aircraft’s current flight path angle

and velocity, an acceleration command A;

Lemd

(¢) is specified that will advance the vehicle

towards the reference point. Figure 3-4 more clearly illustrates the method. It should be

Reference point

Desired trajectory henqg(t) /

Horizon
Figure 3-4: Pursuit based guidance algorithm {3]

noted that the convention is to measure the vertical acceleration positive in the downward
direction, while the altitude is measured positive in the upward direction. At this point we

note that the vertical acceleration is not an available inner-loop state. Therefore we use

A1) = —h(t) = —Vycos Y0 (8 (1) —a(t)) = Vpcosy0(a(t) —q(t))

(3.29)
= cos o (Zaa(t) +Zgq(t) + Zs u(t))
From the parameters in Table 3.2, we approximate this relation with
A1) = Zgou(t) (3.30)
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which implies that A, (1) = ZgOmq(t). With this and k, = —2Z4 > 0 in (3.28), the
guidance method becomes

2
Aema(t) = 2%)- sinn(t). (3.3D)
1

By assuming ¥(t) and 71 (¢) remain small and L; >> |hepa(f) — h(t)], the guidance method

in (3.31) is linearized as

2
acmd(t) = L_l [prp (t) + F:exg (t) =+ E‘mdhcmd(t)] (332)
where
Fp = [de, 0} Eq = [—V(jz, —'Z%:] Fepa = ["Z%k] ) (3.33)

thus forming the forward-loop controller. Of course, for the ORM we implement the same

methodology, but computed from the reference model states such that

2
1) = - [F,,x,,,,, (1) + Foxgm(t) + chdhc,,,d(_t)] (3.34)

which forms the reference model forward-loop controller.

Completing the ORM Design

The reference dynamics from (3.22) and (3.27) are combined with the forward-loop con-

troller in (3.34) to produce the ORM given by

%tn _ Am+ [O(rz[,+l)>< 1s bme] bmFg Xm 4 by Fema h-cmd(t)~ (3.35)
Xgm [Ongxlv Bg] Ag Xgm Ongxl

Once again, the reference model parameters are given in Table 3.2. We let K = -1, 0, 0]

and L; = 12,000 ft such that the ORM in (3.35) is stable. The pole-zero map and step

B ()
Fema (S)

ORM represents a desired output. This defines the ORM response xg,,, (s) in (3.11).

response of the transfer function is shown in Figure 3-5 which confirms that the
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Figure 3-5: Open-loop reference model pole-zero map and step response

3.3.3 Adaptive Control Design

Section 3.3.2 describes the design procedure of the ORM. In this section, additional error
state feedback loops will be introduced to the ORM to form the CRM. With this closed-loop
architecture, we can introduce adaptive control through the design of the elevator input u(z)

in (3.16) and prove Proposition 7.

Error Dynamics and the Closed-Loop Reference Model

The inner-loop dynamics are given by (3.16). As done in Section 3.3.2, an additional
integral error state is defined in order to introduce command tracking of the command

signal o.,4(t) with the angle of attack given by

eu(1) = Cpxp(t) — Oema(?) (3.36)

where C), and O.nq(t) were previously defined in (3.23) and (3.32), respectively. Again, an

augmented system is created in order to include the state e, as follows:

éyr 0o c ey 0 -1
= i Y + u—+ Oemd- (3.37)
.X"p On,,x] Ap Xp bp Onpxl



We represent (3.37) as
%(t) = Ax(t) +bu(t) + by Oepma(?) (3.38)

where x(t) = [ey(t), x5, (1)]". The inner-loop error is defined through the inner-loop dy-

namics in (3.38) and the reference model inner-loop dynamics in (3.27) with

x(1) = x(t) — (1) (3.39)

The outer-loop error is defined through the outer-loop dynamics in (3.18) and the reference

model outer-loop dynamics in (3.22) with

eo(t) = xg(t) — Xgm(1). (3.40)

From (3.39), (3.40) and the ORM in (3.35), we select the CRM as

Xom . Am+ [0(ﬂp+l)>< t» buFp| bmFy | | Xm
Xom [Onx1, Bg) Ag | [Xem
¢ 34D
by Fema Ly bmF:g €x
hema +
Onx1 [Ongxl, By L, €g

By introducing the error-state feedback in (3.41), we create a CRM as described in Sec-
tion 2.1.1 which has been shown to provide improved transient properties over classical
reference models [5][6]. Additionally, the feedback matrices [Ongxl, Bg|, by F, allow us
to decouple the error dynamics of e,(r) and ey () and achieve the desired control objective

with stability as will be shown in the next section. This method was introduced by [14].

From (3.38), (3.39) and (3.41), the inner-loop error dynamics are given by

6x(t) = Ax(t) — Antm(t) + Du(t) -+ Do (Cema () — m, (1)) — Luex(r) — bFeeg(t) .
— AX(1) = Apgt(1) -+ bu(t) + b [0, Fylen(t) — Liex(r). o

However, through the matching condition in (3.19) and the definitions of A and A, in (3.37)
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and (3.26), respectively, we have

A - 0 Cp _ 0 0] xnp . 0 K' + 0 K
Onp %1 Apm Onp x1 bp®; bpm bpm
0 0 Oix (3.43)
= A K— 1 xn,
b, Onpx1 D@3

= An—b][[0, 03] - K].

Substituting (3.43) in (3.42) gives
éx(t) = [Am — Le + b0, Fpllex(t) +b(u(r) — [[0, ©7] — K]x(1)). (3.44)
From (3.18), (3.40) and (3.41) the outer-loop error dynamics are given by
é4(t) = [Ag — Lg] e (1) (3.45)

The control architecture with error state feedback loops is shown in Figure 3-6.

Closed-Loop Reference Model

Eg{t.]

Bewa(t) | (1)

Figure 3-6: Control architecture with error state feedback loops
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Adaptive Control of u(t)

The objective of the adaptive system is to design the control input u(¢) such that

lime,(t) =0
e (3.46)
rlg?"e\(),(r) =0.

This will allow the autopilot to achieve the desired output of the ORM. This can be ac-
complished in two methods, both of which are outlined in the theorems to follow. Here
the control design in Theorem 8 corresponds to the IC-adaptive controller as done in [14].
On the other hand, Theorem 9 implements a controller with one less adaptive parameter
compared to the control design in Theorem 8. This is done by using the fact that b in (3.38)

is known, which results in a less complex controller.

Theorem 8. Let
u(t) = 0,(t)x,(t) + Oy (t)ey(t)

‘ 3.47)
= [©y(t), Op(1)]x(r)
where ©p(t) and ©y(t) are updated as
[0,1(2), ©,(t)] = —b" Prex(t)x" (). (3.48)
If (i) Ly is chosen such that [Am — Ly +by,[0, Fp]] is Hurwitz and Py is defined by
[Am - Lx + bm [07 Fp]] TPx + Px»[Am - Lx + l)m [07 Fp]] = _Qx (349)

where Q, is symmetric positive definite and (ii) Lg is chosen such that A ¢ Lg] is Hurwitz,

then the system is globally stable and lim;_,.e,(t) = 0 and lim;_,. e4(t) = 0.

Proof. With the adaptive control law in (3.47), the error dynamics in (3.44) becomes

éx (’) = [Am —Ly+by, [O, Fp]] ey (t) + b@)(t)x(t) (3.50)
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where

6(1) = [(1). ©,(1)] - [[0, ©}) K. (3.51)

We define the radially unbounded Lyapunov function candidate
V(t) = el (1) Pyeg (1) + el (t)Pres(t) + Tr[O7 (1)O(r)]. (3.52)
Here P, is the solution to the Lyapunov equation
[Ag L] "R+ Py [Ag—Le] = -0 (3.53)

where Q, is symmetric positive definite. It follows that P, and P, are positive definite
from condition (i) and (ii) of Theorem 8. From (3.45), (3.48), (3.53) and condition (i) of

Theorem 8, the time derivative of V(¢) is given by

V(1) = el (1) Peey(t) + el (1)Peéy(t) + 2Tr[§T (1)0(1)]
— e (1) Qe (1) + el (1)Qrerlt) + 267 () PDB()x(1) ~ 2Tr[x(r)el (1) PbO(1)]
= —eg (1) Qges(t) — €] (1) Quex(r).
(3.54)

Since V(t) > 0 and V(z) < 0, it implies that V(¢) is a Lyapunov function. Since V(1) <
V(0) < oo, we have V(1) € £ which implies e,(t), eq(t), O(r) € L. With hema(t) € Lo
and (3.41) stable, we have x,,(1), Xgm(t) € £ which implies that x(¢), x,(t) € 2. From
(3.50) and (3.45) we now have é,(1), é,(t) € Z.

Furthermore, [y V(7).d7 = V(r) — V(0) and since V() is non-increasing and positive
definite, we have V(0) — V(1) < V(0). Therefore, — [ V(t).dt < V(0) or equivalently
f(; ——e?Qgeg —el'Qver.dt < V(0). This implies e, (), eqo(t) € £, therefore, from Bar-

balat’s Lemma we have lim;_,., e(¢) = 0 and lim; ;. €,(1) = 0. O

Theorem 9. Let
u(t) = (1 )xp(r) — Kx(1)

= [10, ©,(1)] - K]x(r)

3.55)
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where ©p(t) is updated as

0,(t) = —bTPxex(t)xZ;(t). (3.56)

If (i) Ly is chosen such that [Am — Ly +bp[0, Fp]] is Hurwitz and Py is defined by
T
[Am - Lx + bm [Oa Fp]] Px + Px [Am - Lx + bm {Oa Fp” = "Qx (357)

where Q. is symmetric positive definite and (ii) Lg is chosen such that [Ag — Lg] is Hurwitz,

then the system is globally stable and lim;_;.e,(t) = 0 and lim; e e4(t) = 0.

Proof. With the adaptive control law in (3.55), the error dynamics in (3.44) becomes

éx(t) = [Am — Le+ b0, Fpl]ex(r) +b([]0, ©,(r)] — K]x(t) — [[0, ©}] — K]x(1))
= [Am — Ly +b,[0, Fyllex(t) +b®,(1)x,(r)

(3.58)
where
B,(1) =0,(1) - 0. (3.59)
We define the radially unbounded Lyapunov function candidate
V(t) = el (t)Poeg(t) + el (1) Prex(r) + Tr[OF (10, (1)) (3.60)
Here P, is the solution to the Lyapunov equation
[Ag = Le] Py + P[4~ Lg) = —0y (3.61)

where Q, is symmetric positive definite. It follows that P, and P, are positive definite
from condition (i) and (ii) of Theorem 8. From (3.45), (3.56), (3.61) and condition (i) of

Theorem 9, the time derivative of V() is given by

V(¢) = el (1)Peex(t) + &} (1) Prex(t) + el (1)Peéx(t) + 2Tr[62(’)(:)17(1)]
= —eg(t)Qgeg(t) —el (1)Q.ex(t) + 2eT (t)Rrbép(t)xp (1) — 2T"[xp(t)e,x7-(t)beép(t)]

= —el (1) Qgeq (1) — el (1) Quex(r).-
(3.62)
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Since V(t) > 0 and V() <0, it implies that V(¢) is a Lyapunov function. Since V(1) <
V(0) < oo, we have V() € £ which implies e(z), e,(t), O(r) € L. With hepg(t) € L
and (3.41) stable, we have x,,(t), xgm(t) € £ which implies that x(¢), x,(¢) € Z. From
(3.50) and (3.45) we now have ¢é,(), é,(1) € Z.

Furthermore, [y V(t).dt = V() — V(0) and since V(r) is non-increasing and positive
definite, we have V(0) — V(z) < V(0). Therefore, — f(;V(’L').dT < V(0) or equivalently
fot —egTQgeg —el'Qe,.dt < V(0). This implies e,(t), eq(t) € 2, therefore, from Bar-

balat’s Lemma we have lim; e e,(2) = 0 and lim; . e4(¢) = 0. O

With Theorems 8 and 9, two adaptive controllers have been designed that both insure

stability and the control objective in (3.12) are achieved.

Proof of Proposition 7

Through Theorems 8 and 9, we have proved Proposition 7 since the matching condition

(3.4) is satisfied and both adaptive controllers in (3.47) and (3.55) take the form of

u(t) =0, (t)xp(t) + f,(1) (3.63)

as given in (3.5) where ©,(1), ©,(1), fp(1), fp(t) € Lo Here f,(t) = Oy(t)ey(t) in
(3.47) of Theorem 8 and f,(t) = Kx(¢) in (3.55) of Theorem 9. Therefore, we may use
the sticking analysis as presented in Table 3.1. Simulations are included in the following

section in order to demonstrate the impact of inner-loop sticking on outer-loop control.

3.3.4 Simulation Study with Sticking Analysis

We carry out a simulation study in this section to demonstrate the impact sticking as pre-
sented in Section 3.2. Two adaptive controllers are simulated: The first corresponds to

Theorem 8 (Controller 1) and the second corresponds to Theorem 9 (Controller 2).
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Defining the Adaptive System and Control Objective

The plant model is given by (3.38) and (3.18) with the stability and control derivatives from
Section 3.3.1. For both controllers, the CRM is chosen as in (3.41). The parameters of the
CRM are as previously specified in Section 3.3.2 and the error state feedback matrices are

chosen with
50 1 0
L,= L .
05 01

(3.64)

')

With these parameters and feedbacks, all the necessary stability criterion from Theorems 8
and 9 are satisfied. Controller I follows the design in (3.47) through (3.49) form Theorem

8. Controller 2 follows the design in (3.55) through (3.57) form Theorem 9.

The Lyapunov equation in (3.49) for Controller I was solved with solved with Q, = I.
Controller 2 uses the same Lyapunov equation solution in (3.57). We specify the altitude

command signal in (3.12) with

0 0<1r<50

hema(t) = (3.65)

100 t>50

The control objective is to track the command signal £,,,,4(¢) as given in (3.12).

Application of the Sticking Analysis

For both Controller 1 and Controller 2, we have proven Proposition 7, thus we may use
the sticking analysis as presented in Table 3.1. In order to investigate the impact of this
inner-loop sticking on outer-loop control, we must define G(s) as given in (3.11). Let us
define

o An+0 , buFp] buFy| | x by F, :
orm | _ m [ (np+1)x1s Pm p] mig ORM + ncmd hcm(l(t) (3.66)

Xeorm [O"g x1. B g] A.s’ Xgorm O'Ig x1
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which represents the ORM from (3.35) and therefore the desired output of the plant. From
(3.41), (3.45) and (3.66) we obtain

Xm —x()RM Ay + [O(np+l Yx1y bme] bmF:c bmF;,' Xm — Xorm L,
xg"l _'tgomw = [OﬂgXI ’ BS] Ag LS Xem — Xgorm + [O",gx 1 Bg] e~"(1) .
ég Otrgx(trp+—l+ng) Ag - Lz €g Ongx(nl,+])

From (3.40), we note that xg(#) — Xgo (1) = Xem(t) — Xgopy (1) + €4(2), thus the transfer

function G(s)

Xg(8) = Xgpmy () = G(5)ex(s) (3.68)

may be obtained from (3.67). Let

ey (t) eyrm(t) eyr(t) — eyim(t)
)= |a@) | — | o) | = exa(t) (3.69)
q(t) gm(t) exq(1)
and
xg(1) = Xgopy (1) = o) — Xgopy (1) = xgﬂ(t) _ngRMB(t) . (3.70)
h(z) xf»’h(t) — Xgomh(l)

The Bode plots of ex(s) to X () — Xg,,, () are shown in Figure 3-7. We know that x,,,,, (f)
represents the desired outer-loop output of the plant. If inner-loop sticking imposes the
constraint X,(t) € N V7 € [t1, 1] such that ||e,(r)|| > 0V 1 € T, then x4(z) will converge
slowly to the desired output represented by the ORM. This is true since xg(#) — Xg py () is
sensitive to e,(¢) as shown in Figure 3-5. Simulation results are included in the following

section to demonstrate this impact of sticking.

Simulation Results

With the adaptive control systems defined, we can now complete the simulations. We

choose the initial conditions at t; = 0 with

x(t1) =xm(t1) =0 Xo(t1) = Xem(t1) = 0. (3.71)
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Figure 3-7: Bode plots for the transfer functions from ex(s) to xo(s5) — Xgpn (5)

For both adaptive controllers in (3.47) and (3.55), we initialize the parameter ®,(r) att; =0
with

©,(11) = k||@}|[1, 1] (3.72)

where @p(t) = ©p(f) — O}, and k is an arbitrary constant. For Controller 1 we also initialize
the parameter ®y1(t) at f; = 0 which minimizes é(tl) defined in (3.51), thus the parameters
of both controllers are initialized with equivalent uncertainty.

At this point, each adaptive control system is fully defined and all the initial conditions
are given. We now consider the sticking analysis as presented in Section 3.2. It should be
noted that the variables © o, Apo, a,7, B.86;, f* and f; as well as the sets S and N to be
used in the remainder of this section, are as defined in Table 3.1. Additionally, Theorems 2
and 6 also refer to that provided in Table 3.1.

If @, = (:)p(tl), then the initialization in (3.72) establishes a Hurwitz Apo for k> 1

such that a sticking region may be defined for both Controller 1 and Controller 2 following
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Theorem 6. The first set of simulations are completed for k£ = 1 when the effects due to
sticking are negligible. The altitude response h(t), command signal A,,,;(¢) and elevator
input u(z) are shown against time in Figure 3-8. It is clear that there is no significant

difference between Controller 1 and Controller 2 when the effects of sticking are negligible.

200 T T 200 T
Controtler 1 Controller 2

150 150
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= =
& 100 R £ o} o S
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Figure 3-8: Altitude reponse #(t), command signal h,,;(¢) and elevator input u(t) versus
time fork =1

Consider now the same set of results shown in Figure 3-9 when k = 10: This time we
notice a large difference between the response of Controller 1 and Controller 2. To explain

why Controller 2 does not converge quickly to the desired output, we complete a sticking

analysis for the case when k = 10. Let

O =0,(r1) = 10]@} ] [1, 1] = [32.49, 32.49] (3.73)

and y=1, then A po 18 Hurwitz and S is defined in Theorem 6 with 59; =2.50 as

— <O,+

T T T
S {@ el 120 <5 3240 250 }
17 2.50 49| ~ [250] |
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Figure 3-9: Altitude reponse A(t), command signal 4,,,4(t) and elevator input u(z) versus

time for k = 10

From the simulation we may define f* and f for each controller and select 8 as small as

possible with o = 0.5. This is given by

Controller 1 : fp(t) = Oy(t)ey(t) — f*=3.87

Controller 2 : fp(t) = Kx(t)

— ff=4.57

We then have set N defined for each controller with

2

Controller I : N {55 ER" | X

Controller 2 : N {? € R?

0.022T
0.026

_2.026

0.022

2.026 0.022

fa=
fi=0.181 — P =0.0339.

0.022 0‘026J

0248 — B =0.0338

x <0.0092

}

x< 0.0093}.

Figure 3-10 includes the time response of the parameters [@,;(t), ©,(r)] for Controller

1 and ©,(t) for Controller 2. This figure also illustrates how the error parameters e) p(t)

traverse through S, where it can be seen that (:)p(t) € SVt € [0, 700] for both controllers.

Therefore, since X,(¢1) = x,(t1) = 0, the conditions of Theorem 2 are satisfied. It follows
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that x,,(r) € NV ¢ € [0, 700] for both systems as also shown in Figure 3-10.
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Figure 3-10: Inner-loop sticking in Controller 1 and Controller 2 for t € [0, 700] with
k=10

To explain why Controller 2 does not converge quickly to the desired output, consider
the trajectory of X, (t) = xpm(t) — £,(¢) superimposed over N on the time interval ¢ €
[0, 700] as shown in Figure 3-11, where X,(t) = [a(¢), §(t)] and Xp () = [Hn(t), gm(t)].
Here we see that x, (1) is unable to track xp,(¢) for Controller 2 due to the imposed con-
straint X, () € NV ¢ € [0, 700] caused by the inner-loop sticking. This is in contrast Con-
troller 1 where x,(t) is able to effectively track x,,(t) inside N. For Controller 2 this
implies that 3 7 C [0, 700] such that ||e,(¢)|| > 0V ¢t € T. From the discussion in Section
3.2.2 and the Bode plots of G(s) in Figure 3-7, we see that the inner-loop sticking will
cause slow convergence in the outer-loop for Controller 2. Only once Controller 2 eventu-

ally leaves the sticking region, can the desired output be achieved as shown in Figure 3-12.

72



08 T ™ T Ser— T T T
Controller 1 Controller 2
" \‘ R ——=-N
04 & 4 it
If 1 Tomn (2) ¢ Ty (1)
|
02 [ M 0.2
Lo
£ o |1 I S0
1
LA
02 (- 02
o
04 l‘ ! 04
\ ,',
06 o~ 06 . -
08 04 D2 o 02 04 08 06 04 02 04 06
[
0.2 = T T T T 0.2 T T T
Controtiar 1 a() Controller 2 a(t)
ol - il T N O
e ] ---N | i e i S (G oo (ESEEN | L
Py iy r" “\ : y T 1 i
A 3 H . 1 . .
. Jﬁ/*_‘h.#___‘ a4 0 | { -"'1‘“——4—"""5‘*——-4"—.‘*"-11’—{"'—-;'
- 3o L v ¢ I
_________________________ 3 -’,A‘..L_"_.___.‘___l'____" alfes]
- =4 ¢y T T
01 01 e p¥ X S
. i
02 d . 02 - .
0 100 200 300 40 500 600 700 0 00 200 300 400 500 800 700
Time (s) Time (s)

Figure 3-11: X, (t) superimposed over N for Controller I and Controller 2 for t € [0, 700]
with k = 10
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Figure 3-12: Altitude reponse h(t), command signal /1.,,4(r) and elevator input u(z) of
Controller 2 versus time for k = 10 and ¢ € [0, 4000|

3.4 Summary

In this chapter, we have focused on the impact of inner-loop sticking on outer-loop control.
Following Chapter 2, an analysis is presented that identifies the existence a sticking region

in the inner-loop and its impact on command following in the outer-loop. A practical
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application of adaptive control is presented with a combined inner and outer-loop problem
for an aircraft autopilot system. Simulations are included for the autopilot system with a

sticking analysis to demonstrate the impact of inner-loop sticking on outer-loop control.
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Chapter 4

Concluding Remarks

In Chapter 2, the convergence properties of errors are examined in a class of adaptive sys-
tems that corresponds to adaptive control of linear time-invariant plants with state variables
accessible. The existence of a sticking region is demonstrated in the error space where the
state errors move with a finite velocity independent of their magnitude. These properties
are exhibited by ORM, CRM and IC-adaptive systems.

Through simulation and numerical studies, it is shown that a system may traverse
through the sticking region for an extended period of time, which reduces the rate at which
the system reaches the control objective. Although a sticking region is defined for the
ORM, CRM and IC-adaptive systems, it is shown that each system is effected differently
by sticking. The analysis in Chapter 2 allows us to investigate the susceptibility of each
system to sticking effects. It is shown that the IC-adaptive system demonstrates a faster
transient performance during sticking compared to the ORM and CRM-adaptive systems
with A unknown. When additional uncertainty is present in the ORM and CRM-adaptive
systems such that (A, Ab) is unknown, then an improved transient performance during
sticking is demonstrated.

In Chapter 3, the impact of sticking is investigated for outer-loop controllers that imple-
ment inner-loop adaptation. An analysis is presented that identifies the existence a stick-
ing region in the inner-loop and its impact on command following in the outer-loop. To
demonstrate these sticking effects in outer-loop control, we focus on a combined inner and

outer-loop problem in a flight control application. Two adaptive controllers are designed,
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for which stability was proved similarly. However, despite the similarities, the controllers
exhibit different transient behaviors during sticking which has major implications on outer-
loop tracking.

In this thesis, it is shown that the convergence properties of errors in adaptive systems
may be characterized by the existence of sticking regions. It is demonstrated that these
sticking regions may greatly impact the transient performance of an adaptive system. We
therefore learn that it is important to consider the susceptibility of an adaptive system to

sticking.
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