Predicting Corrosion on Protected Buried Steel Natural Gas Distribution Pipelines

By
Lillian Ruth Meyer
B.S., Civil Engineering, Rice University, 2012

Submitted to the MIT Sloan School of Management and the Department of Civil Engineering in partial fulfillment of the requirements for the degrees of
Master of Business Administration
and
Master of Science in Civil Engineering
in conjunction with the Leaders for Global Operations Program at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2016

© 2016 Lillian Ruth Meyer. All rights reserved.
The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature redacted

Author...
MIT Sloan School of Management and Department of Civil & Environmental Engineering
May 6, 2016

Certified by..
Georgia Perakis, Thesis Supervisor
Williams F. Pound Professor of Management, MIT Sloan School of Management

Certified by..
Herbert H. Einstein, Thesis Supervisor
Professor, Department of Civil and Environmental Engineering

Approved by..
Maura Herson
Director, MBA Program, MIT Sloan School of Management

Approved by..
Heidi Nepf
Donald and Martha Harleman Professor of Civil and Environmental Engineering
Chair, Graduate Program Committee
Predicting Corrosion on Protected Buried Steel Natural Gas Distribution Pipelines

By

Lillian Ruth Meyer

Submitted to the Department of Civil Engineering and the MIT Sloan School of Management on May 6, 2016, in partial fulfillment of the requirements for the degrees of Master of Science in Civil Engineering and Master of Business Administration

Abstract

PG&E uses cathodic protection, which connects the pipeline to sacrificial anodes that corrode instead of the pipeline, to prevent corrosion on its buried steel natural gas pipelines. However, corrosion leaks still occur. This thesis focuses on whether corrosion leaks can be predicted on steel distribution natural gas pipeline that is cathodically protected. By proactively understanding where leaks are most likely to occur rather than examining past leak performance, PG&E can better optimize its resources to reduce the risk of corrosion on its pipeline.

We introduced logistic regression to model whether or not a corrosion leak will occur in a cathodic protection area, a one to ten mile length of pipe that uses the same corrosion control equipment. Two different types of data were available: data that are relatively static and data that are relatively dynamic with respect to time. We built two different sets of logistic regression models to examine two questions: (1) if data from one area can be used to predict where corrosion leaks will occur in another area; and (2) if data from one year can be used to predict where corrosion leaks will occur during the following year. The models for both questions use cross-validation to test the influence on model accuracy of the in-sample and out-of-sample data sets.

The first model addresses the first question by using pipe characteristic and soil data with a mean average percentage error ranging from 35% to 96%. The significant factors in a given cathodic protection area (CPA) that consistently drive the model include: length of steel main pipe; percent of steel main pipe designated as low pressure; the average moist bulk density of the soil; the variation of soil pH; average clay content in the soil; variation of clay content in the soil; and the average saturated hydraulic conductivity of the soil. The second model addresses the second question by using the previous year’s routine maintenance and weather data with a mean average percentage error ranging from 40% to 81%. The significant factors in a given CPA that consistently drive the model include: the length of steel main pipe and average temperature.
Acknowledgements

This project would not exist without the support of Pacific Gas and Electric Company. I thank Preston Ford, Sumeet Singh, and Mallik Angalakudati for providing guidance and advice that enabled this project’s success.

Additionally, I thank my thesis advisors, Professor Herbert Einstein and Professor Georgia Perakis. Your insights and recommendations have been extraordinarily valuable. This thesis is greatly improved because of your involvement.

Thanks to the LGO office for their guidance. I would also like to acknowledge my LGO classmates. I leave MIT and LGO a better person because of you all.

Finally, many thanks to my family for your constant love and support. Without you, I could not have achieved so much.
Table of Contents

Abstract ... 3
Acknowledgements.. 5
Table of Contents... 7
Chapter 1: Introduction .. 10
 1.1 Problem Statement... 10
 1.2 Hypothesis and Project Motivation ... 11
 1.3 Main Contributions.. 12
 1.4 Thesis Overview ... 12
Chapter 2: Problem Background and Literature Review .. 14
 2.1 Corrosion ... 14
 2.2 Pipeline Industry Standard Corrosion Control Methods .. 16
 2.3 Estimates of Corrosion Rates ... 19
 2.4 Statistical Methods to Estimate Corrosion Rates ... 21
 2.5 Evaluating Cathodic Protection on Buried Steel Pipelines 21
Chapter 3: Hypothesis, Modeling Approach, and Data .. 24
 3.1 Questions and a Hypothesis ... 24
 3.2 The Dependent Variable ... 25
 3.3 Modeling Approach .. 25
 3.4 Data .. 29
 3.5 Metrics for Measuring Model Performance ... 39
 3.5 Summary ... 42
Chapter 4: Results .. 43
 4.1 Significant Static Independent Variables .. 43
 4.2 Significant Dynamic Independent Variables .. 49
 4.3 Comparing the Two Models ... 52
 4.4 Summary ... 54
Chapter 5: Conclusions .. 56
 5.1 Summary of Results .. 56
 5.2 Recommendations for Future Work .. 57
Appendix.. 59
A Bibliography .. 59
B Commonly Used Abbreviations .. 61

List of Figures

Figure 1: Basic corrosion cell .. 15
Figure 2: Steel pipe with cathodic protection .. 17
Figure 3: Galvanic cathodic protection (reproduced from Uhlig's Corrosion Handbook) 17
Figure 4: Impressed current cathodic protection (reproduced from Uhlig's Corrosion
Handbook) .. 18
Figure 5: Schematic of modeling process – regression models 26
Figure 6: Schematic of regression models .. 27
Figure 7: Schematic of modeling process – data .. 30
Figure 8: Minimum versus maximum daily temperatures ... 34
Figure 9: Hierarchy of USDA web soil survey area designations 36
Figure 10: Properties within a soil map unit ... 37
Figure 11: Soil properties ... 38
Figure 12: Schematic of modeling process – cross-validation runs 40
Figure 13: Example ROC curve ... 41
Figure 14: Histogram of pressure type in for each cross-validation in-sample data set ... 46
Figure 15: Histogram of pressure type in for each cross-validation in-sample data set ... 47
Figure 16: Histograms of current density within CPAs for each cross-validation in-sample data set ... 51
Figure 17: ROC curves for the static model .. 52
Figure 18: ROC curves for the dynamic model .. 53
List of Tables

Table 1: Various corrosion cells .. 15
Table 2: Duration of corrosion on 2-inch diameter steel pipe ... 20
Table 3: ECDA data elements (reproduced from ANSI/NACE SP 0502-2010) ... 22
Table 4: Performance of dynamic data using various models ... 29
Table 5: Pipe diameter ranges considered ... 36
Table 6: Significant factors for static model ... 44
Table 7: Significant factors for dynamic model ... 50
Table 8: Fit of data to logistic regressions ... 53
Table 9: Error measurements ... 54
Chapter 1: Introduction

1.1 Problem Statement

Corrosion and its consequences are pervasive problems for natural gas and water utilities, and other transmission pipelines throughout the United States. Two recent high profile failures due to corrosion in water pipelines have highlighted the potentially disastrous consequences of corrosion. The first example is the corrosion of the lead water distribution pipes in Flint, Michigan due to the lack of corrosion controls causing lead contamination in the water. After switching to drawing water from the Flint River as a cost-saving measure, no corrosion control plan was put in place to prevent the more corrosive water from damaging the water pipeline. The second example is the leak in an 8-inch thick concrete water pipeline in Santa Clara County in August 2015. A crack in the mortar on the outside of the pipe allowed water to seep in and corrode the steel and concrete of the pipe walls. It cost $1.2 million to repair the pipe and the estimated cost of inspecting and repairing the nearby pipe is at least $6.8 million [2]. These two instances highlight how costly corrosion failures can be when infrastructure is not properly protected and monitored.

Natural gas provides about 25% of the United States’ energy [3]. Three different types of pipeline systems carry natural gas from production wells to the final point of use such as homes and businesses. First, gathering pipelines carry natural gas from production wells. Second, transmission pipelines carry natural gas over thousands of miles across the country, closer to the communities that will use this product. Third, distribution pipelines carry natural gas into communities and bring it to its point-of-use. Distribution mains are the larger pipes that carry the natural gas through cities and neighborhoods while services carry the natural gas from the main directly into homes and businesses [4].

Corrosion is a naturally occurring process in which a material degrades. About 35% of leaks repaired on distribution main natural gas pipe in the United States are due to corrosion [5]. These corrosion leaks occur despite 89% of all steel gas distribution main being reported as cathodically protected. Cathodic protection is the industry standard method of controlling corrosion on steel pipelines. Essentially, another metal (called a sacrificial anode) is linked to the pipeline system. This metal corrodes instead of the valuable steel pipeline asset.
Pacific Gas and Electric Company (PG&E) has one of the largest natural gas networks in the United States. The utility serves over 15 million people in Northern and Central California and has 4.3 million gas accounts. It has approximately 48,000 miles of gas pipeline. 6,700 miles are high pressure transmission pipelines and 42,000 miles of distribution pipelines. 21,000 miles of the distribution pipe is steel and susceptible to corrosion [6]. This thesis focuses on a subset of those 21,000 miles of steel distribution pipe.

Similar to the rest of the industry, despite the application of cathodic protection, corrosion leaks still occur on PG&E’s system. PG&E has increased its focus on finding and identifying corrosion leaks in its distribution system. However, with a gas pipeline network as large as PG&E’s, this task becomes complicated. Ideally, the areas most at-risk from corrosion (both in terms of probability of corrosion and consequences of corrosion) are identified and monitored before areas with less corrosion risk.

PG&E reviews historical leak data to identify the areas with the highest number of corrosion leaks. These areas are investigated to find the root causes for the corrosion leaks. However, the cause of a leak is not identified until the leak is repaired. Hence, when PG&E investigates root causes of leaks, the conditions that initially caused the leaks may have already been corrected. Is there a method that considers future performance of corrosion controls and the pipeline system to identify areas most at risk from corrosion rather than considering past performance of the pipeline system?

1.2 Hypothesis and Project Motivation

This thesis investigates if statistical regressions can predict where corrosion leaks are most likely to occur on PG&E’s distribution network and identifies factors related to the nature of the pipe, the corrosion control, or the environment that may affect corrosion of cathodically protected steel pipe. By identifying the factors that most significantly affect the likelihood of corrosion, PG&E could work proactively to improve its corrosion controls and prevent corrosion from occurring on its distribution pipe. Furthermore, PG&E could identify parts of its system that are most at risk from corrosion and better optimize its resources to monitor and improve those parts in order to decrease the risk from corrosion.
1.3 Main Contributions

We introduced two predictive models built using logistic regressions to answer the questions: 1) can we predict where corrosion is most likely to occur in an area using data from another area and 2) can we predict where corrosion is most likely to occur in a given year using another data from the previous year. Two types of data were available: data that remained relatively the same over time (static data) and data that changed over time (dynamic data). We created two predictive models since, if we created one single model using both the static and dynamic data, that model would not be truly out-of-sample. We would have used the same data to build the model as to test the model’s predictive ability.

The predictive model that answers the first question is referred to as the static model while the predictive model that answers the second question is referred to as the dynamic model. The mean average percentage errors for the static model ranges from 35\% to 96\%. The mean average percentage errors for the dynamic model ranges from 40\% to 81\%.

1.4 Thesis Overview

Chapter 2 presents the project background including descriptions of corrosion and industry standard corrosion control practices. Additionally, Chapter 2 reviews current literature about corrosion rates on steel with various levels of cathodic protection and statistical methods used to estimate corrosion rates. Finally, it discusses a current industry standard practice, the External Corrosion Direct Assessment, for examining where corrosion is occurring and to what extent. As will be discussed in Chapter 2, while corrosion rates and the External Corrosion Direct Assessment provide ways to measure corrosion, both require excavating the pipe. The steel pipe needs to be excavated in order to validate the corrosion rates and to perform the External Corrosion Direct Assessment. Excavating the steel pipe is a costly and disruptive process according to the population density of the neighborhood of interest. Using corrosion leaks as a measure of performance for the corrosion controls on the system removes the need for excavation but is a retroactive measure of performance.

This thesis develops two different methods to predict if corrosion leaks are likely to occur in a given area of steel pipe. Using predictive models allows PG&E to identify the areas most at risk
from corrosion and target those areas with additional resources in order to proactively reduce the risk.

Chapter 3 identifies the questions that are answered by the predictive models. Given the available data: can we predict (1) where corrosion is most likely to occur in an area using data from another area and (2) where corrosion is most likely to occur in a given year using data from the previous year. Chapter 3 also discusses in further detail why corrosion leaks (and specifically corrosion leaks repaired) are the best measurement of corrosion occurrence in a given area. We examine several different regression models (linear, quasi-Poisson, logistic, and random forest). Since logistic regression has the lowest error when predicting corrosion, it is the regression used to build the predictive models. Two predictive models were built because the available data contained both data that changed over time (dynamic data) and data that remained relatively static over time (static data). Section 3.4 describes this data in further detail. We also identify metrics for measuring performance of the models.

Chapter 4 describes the results for both the static and dynamic models. First, the significant independent variables for each of the static and dynamic models are discussed. Additionally, we compare the performance of the static and dynamic models against each other. The dynamic model both fits the data better and more accurately predicts if corrosion leaks will occur.

Chapter 5 presents the conclusions drawn from the predictive models and provides recommendations for future work. Commonly used abbreviations are defined in Appendix B.
Chapter 2: Problem Background and Literature Review

This literature review first discusses the corrosion process. Next, it explains current corrosion control methods and the history of these methods. Then, it describes different corrosion rates of steel and the expected time before corrosion causes leaks on the pipeline system. Additionally, it discusses various statistical methods used to estimate the initiation and growth of corrosion. Finally, it discusses the industry standard practice of external corrosion direct assessments on steel pipe, a current method of identifying how corrosion affects the integrity of the pipeline system.

2.1 Corrosion

[7] and [8] detail the theory behind corrosion. Corrosion is a process during which a material degrades. For metal, corrosion occurs naturally over time as the metal transitions from a high-energy state after its extraction from the earth to a lower-energy (and more stable) state. Two electrochemical reactions describe corrosion: an anodic (or oxidation) reaction or a cathodic (or reduction) reaction. Equation 1 is the typical anodic reaction while Equations 2a and 2b are the cathodic reactions that occur in oxygen or water, respectively. Essentially, the anodic reaction is the “donation” of electrons from one area to another while the cathodic reaction is complementary the “collection” electrons.

\begin{align*}
(1) \quad & \text{Fe} \rightarrow \text{Fe}^{2+} + 2\text{e}^- \quad \text{anodic reaction} \\
(2a) \quad & \text{O}_2 + 2\text{H}_2\text{O} + 4\text{e}^- \rightarrow 4\text{OH}^- \quad \text{oxygen cathodic reaction} \\
(2b) \quad & 2\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{H}_2 + 2\text{OH}^- \quad \text{water cathodic reaction}
\end{align*}

These reactions may occur in the same area of the metal or separate areas of the metal – called a differential corrosion cell. In order for corrosion to occur in a differential corrosion cell, four key components must be present: (1) an anode (where electrons flow from); (2) a cathode (where electrons flow to); (3) an electrolyte through which electrons flow from the anode to the cathode; and (4) a metallic path that conducts electrons back from the cathode to the anode. Figure 1 shows the basic mechanism for a differential corrosion cell.
For buried metallic pipelines, the anodic reaction uses electrons from the metal. These electrons move from the metal to the electrolyte – in this case, moist soil – causing metal loss and deterioration through corrosion. The cathodic reaction between the soil and cathode on the pipe must use the electrons from the soil in order for corrosion to occur. If the cathodic reaction does not occur, the build-up of electrons in the soil will prevent electrons from leaving the metal in the anodic reaction. The electrons used in the cathodic reaction then return along the metallic pipeline from the cathode to the anode to maintain neutrality in the cell [7].

Table 1: Various corrosion cells

<table>
<thead>
<tr>
<th>Corrosion cell</th>
<th>Cathode</th>
<th>Anode</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential aeration corrosion cell</td>
<td>Pipe more exposed to oxygen</td>
<td>Pipe less exposed to oxygen</td>
<td>Pipe under a paved road</td>
</tr>
<tr>
<td>Galvanic corrosion</td>
<td>Metals lower in the galvanic series</td>
<td>Metals higher in the galvanic series</td>
<td>Two dissimilar metals installed near each other</td>
</tr>
<tr>
<td>Mill scale corrosion</td>
<td>Mill scale pipe (steel pipe with an iron oxide coating)</td>
<td>Standard pipe</td>
<td>Mill scale and standard pipe installed near each other</td>
</tr>
<tr>
<td>Corrosion between new and old pipe</td>
<td>Old pipe</td>
<td>New pipe</td>
<td>New steel pipe installed near older steel pipe</td>
</tr>
<tr>
<td>Corrosion between dissimilar soils</td>
<td>Pipe in one type of soil</td>
<td>A different portion of the pipe in another type of soil</td>
<td>Similar to dissimilar metals; steel pipe in the more acidic or higher moisture soils corrodes while steel pipe in the less acidic or lower moisture soil is protected</td>
</tr>
</tbody>
</table>
There are several types of corrosion cells that can trigger the flow of electrons. Table 1 presents various corrosion cells and brief descriptions of the process [7].

2.2 Pipeline Industry Standard Corrosion Control Methods

There are two primary methods of controlling corrosion on steel pipelines: coatings and cathodic protection. Used together, coatings and cathodic protection can effectively prevent corrosion from occurring. The Pipeline and Hazardous Materials Safety Administration (PHMSA) – the federal regulatory agency for natural gas pipelines – requires that all pipelines installed after July 31, 1971 have coatings and cathodic protection [9].

Coatings

Coatings act as insulation and prevent the anodic and cathodic reactions (i.e. the electrons from moving between the pipe and soil). The application of coatings during pipe installation started in the 1930s and became more prevalent by the 1940s. By the 1950s, most pipes were installed with coatings [10]. In the industry, coal tar and asphalt enamel were used as early coating materials before the 1960s. In the 1960s through 1980s, polyethylene tape and fusion bonded epoxies were developed and used as coating materials [10]. It is practically infeasible to have a pipe perfectly protected by coatings since holes and nicks in coatings occur during and after construction. The industry has focused on improvements in application and installation techniques to minimize these imperfections in coatings [10]. Properly and effectively applied coatings can protect 99% of the pipe from corrosion [7].

Cathodic protection

Cathodic protection prevents the pipeline from corroding by turning it into the cathode of the electrochemical cell, either by using galvanic anodes or impressed current. The entire pipe undergoes the cathodic reaction instead of the anodic reaction. Effectively, cathodic protection enables all exposed metal pipe to “collect” current rather than generate current. By collecting current, the pipe becomes the cathode shown in Figure 2 [7]. There are two types of cathodic protection commonly used: galvanic cathodic protection and impressed current cathodic protection.
Galvanic cathodic protection uses the galvanic series and the theory describing the galvanic corrosion cell to drive current to the pipe. A galvanic corrosion cell occurs when two dissimilar metals exist in the same area. When two dissimilar metals are located together and can exchange electrons, the more negative metal (the anode) donates its electrons to the more positive metal (the cathode). Galvanic cathodic protection connects a more negative metal (typically, magnesium or zinc) to the pipeline in order that it donates its electrons to the more positive metal (typically, steel). Therefore, the anode corrodes instead of the more valuable steel pipe asset. Figure 3 presents a galvanic cathodic protection system preventing corrosion on a steel pipeline asset. The effectiveness of galvanic cathodic protection is limited by distance and its current output. Thus, it is mostly used where a limited current output is needed to protect the steel pipe. Galvanic cathodic protection works best in soils with low electrical resistivity [7].

Impressed current cathodic protection uses an outside power source (typically, a rectifier) to drive current to the pipeline. Rectifiers convert alternating current to direct current and drive this direct current to the pipeline. Figure 4 presents an impressed current cathodic protection system.
Impressed current cathodic protection can provide more current output than galvanic cathodic protection. Unlike galvanic cathodic protection, the amount of current output that protects the pipe can be adjusted and controlled using a rectifier [7].

Figure 4: Impressed current cathodic protection (reproduced from Uhlig's Corrosion Handbook)

When used with properly applied coatings, cathodic protection prevents corrosion from occurring. The performance of cathodic protection depends heavily on the quality of the coatings. For example, a 10-mile length of 36-inch diameter uncoated steel pipe needs 500 amperes of current while only 5.8×10^{-5} amperes of current is needed if the same pipe is perfectly coated. A pipe that has coating in better condition needs less current to protect it than a pipe that has coating in poor condition [7].

Monitoring Corrosion

Two primary measurements are used to monitor the adequacy of cathodic protection and estimate if corrosion is occurring: current and voltage measurements.
Current measurements monitor the required current output in amperes from rectifiers necessary to protect the pipe from corrosion. If the measured current output needed to protect the pipe increases, the measured output increase can indicate the condition of the coatings or other issues occurring in the system [7]. Uhlig’s Corrosion Handbook presents typical current requirements of 4.5 to 16.0 milliamperes per square meter of pipe when cathodically protecting bare steel in neutral soil. Steel pipe with coatings will require a smaller amount of current. In more corrosion-prone soil (well-aerated, highly acidic, with more sulfate-reducing bacteria, or higher temperature), this current requirement can increase up to 450 milliamperes per square meter of pipe [11]. A deviation in the measured current output from what is normally required can indicate an issue with the rectifier or that the rectifier is protecting more than just the pipe (e.g. a bicycle resting against a steel riser attached to the pipe).

Voltage measurements between the pipe and the soil (referred to as pipe-to-soil readings or P/S readings) are also used to indicate if cathodic protection is adequate. This measurement checks that the soil (and other objects) around the pipe is more negative than the pipe so that the pipe is protected from local corrosion. There are three primary pipe-to-soil reading criteria used in industry: (1) a pipe-to-soil reading equal to or more negative than -850 millivolts while cathodic protection is applied; (2) a pipe-to-soil reading equal to or more negative than -850 millivolts immediately after turning off rectifiers (interrupting the current flow for the pipe); or (3) a polarization of 100 millivolts between the native potential of the steel pipe and the pipe-to-soil reading just after turning off rectifiers (interrupting the current sources) [7].

Both the current and voltage measurements are useful to identify if the protective current is being diverted from the cathodically protected pipe. When this occurs, the pipe may become inadequately protected and corrosion can occur.

2.3 Estimates of Corrosion Rates

Various corrosion rates have been specified to estimate how fast corrosion occurs on buried metals. The American National Standards Institute (ANSI) / National Association of Corrosion Engineers (NACE) Standard Practice 0502-2010 Pipeline External Corrosion Direct Assessment (ECDA) Methodology recommends using a pitting rate of at least 0.4 millimeters per year for bare and unprotected buried steel. A corrosion pit is an area of the pipe where corrosion has
started to occur. The pitting rate estimates how fast the pit grows. If the cathodic protection has been applied on the pipeline for a significant period of time, then the pitting rate may decrease 24% to 0.31 millimeters per year [12].

Barbalet et al. investigated the residual corrosion rate on buried steel pipe protected with coatings and cathodic protection. They estimated residual corrosion rates ranging between 0.01 to 0.07 millimeters per year [13].

Table 2 summarizes the ECDA and Barbalet et al. corrosion rates. Additionally, it provides an estimate of how long a 2-inch diameter steel pipe will corrode at those rates before for a leak occurs. A standard 2-inch diameter steel pipe has a wall thickness of approximately 0.154 inches (or 3.9 millimeters). When corrosion occurs, the wall thickness of the pipe decreases until corrosion is either stopped by effective corrosion controls or until the wall thickness decreases completely. This duration ranges from 10 years for no protection to 560 years if the pipe is sufficiently protected using cathodic protection. If the pipe is insufficiently protected, then assuming corrosion occurs at a constant rate, it will take 50 years for the pipe to develop a leak after corrosion starts. Note that corrosion does not start immediately once the pipe is unprotected or insufficiently protected. If corrosion does start immediately, then pipe that became insufficiently protected in 1966 will develop corrosion leaks in 2016 per these rates.

Table 2: Duration of corrosion on 2-inch diameter steel pipe

<table>
<thead>
<tr>
<th>Level of Protection</th>
<th>Corrosion Rate (millimeters per year)</th>
<th>Duration of Corrosion (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No protection</td>
<td>0.4</td>
<td>10</td>
</tr>
<tr>
<td>Insufficient protection</td>
<td>0.08</td>
<td>50</td>
</tr>
<tr>
<td>Sufficient protection</td>
<td>0.007</td>
<td>560</td>
</tr>
</tbody>
</table>

The Caltrans Highway Design Manual estimates the years to perforation of steel culverts that have 1.32-millimeter thick walls based on the minimum soil resistivity, R, and the soil pH. Perforation refers to a hole developing in the wall of the culvert due to corrosion. This estimate is presented in Equations 3a and 3b. In general, the corrosion occurs faster as soil resistivity and soil pH decrease [14].
Years = 1.47 \(R^{0.41} \) for soil pH > 7.3

Years = 13.79 [\(\log_{10} R - \log_{10} (2160 - 2490 \log_{10} \text{pH}) \)] for soil pH ≤ 7.3

2.4 Statistical Methods to Estimate Corrosion Rates

Valor et al. describe stochastic models that describe corrosion pit initiation and growth. As mentioned previously, a corrosion pit is an area of the pipe where corrosion is occurring. Pit initiation is when the corrosion pit starts. Pit growth is the rate at which the area corrodes. Pit initiation is typically modeled as nonhomogeneous Poisson process because a corrosion pit on an unprotected pipe may start randomly. The time to the start of a corrosion pit (the pit initiation time) typically follows a Weibull distribution (an extreme value distribution). Pit growth is modeled using a non-homogeneous Markov model [15].

Caley et al. use Monte Carlo simulations to estimate the pitting rate and the average maximum pit depth in various soils with various coating types. Their results indicate that the corrosion rates described in the previous section are conservative for cathodically protected steel pipes with coatings. The three extreme value distributions fit both the pitting rate and the average maximum pit depth. The authors note that the corrosion rate varies most over a short period of exposure time. The corrosion rate remains relatively constant after the pipe has been corroding for a longer time [16].

2.5 Evaluating Cathodic Protection on Buried Steel Pipelines

[12] details the standard practice for performing external corrosion direct assessments (ECDA). The purpose of an ECDA is to provide a structured process in order to assess the consequence of external corrosion on a pipeline system. This process consists of four steps: 1) a pre-assessment, 2) an indirect assessment, 3) a direct inspection, and 4) a post-assessment.

The pre-assessment determines the practicality of an ECDA by collecting and reviewing data relating to pipe, construction, environmental, corrosion control and operational factors. The data involved in the pre-assessment step of the ECDA informed the data collection process for this thesis. Table 3 presents the data used in the pre-assessment step of the ECDA. Items in bold indicate data elements that were used in this thesis. Soil types and characteristics includes
chloride ion content, moisture content, oxygen content, permeability, pH, stray currents, temperature, acidity, microbiological activity, redox potential, resistivity, soil texture, drainage characteristics, sulfate and sulfite ion concentrations, total hardness, and seasonal soil moisture changes. We considered soil pH and soil texture directly and moisture content directly. Additionally, we considered hydraulic conductivity instead of permeability, which are proportional to each other.

Table 3: ECDA data elements (reproduced from ANSI/NACE SP 0502-2010)

<table>
<thead>
<tr>
<th>Pipe-related</th>
<th>Construction-related</th>
<th>Environment-related</th>
<th>Corrosion control-related</th>
<th>Operation-related</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material and grade</td>
<td>Year installed</td>
<td>Soil types / characteristics</td>
<td>CP system type</td>
<td>Pipe operating temperature</td>
</tr>
<tr>
<td>Diameter</td>
<td>Route changes / modifications</td>
<td>Drainage</td>
<td>Stray current sources</td>
<td>Operating stress levels and fluctuations</td>
</tr>
<tr>
<td>Wall thickness</td>
<td>Route maps / aerial photos</td>
<td>Topography</td>
<td>Test point locations</td>
<td>Monitoring programs</td>
</tr>
<tr>
<td>Year manufactured</td>
<td>Construction practices</td>
<td>Land use</td>
<td>CP evaluation criteria</td>
<td>Pipe inspection reports</td>
</tr>
<tr>
<td>Seam type</td>
<td>Locations of valves, clamps, supports, etc.</td>
<td>Frozen ground</td>
<td>CP maintenance history</td>
<td>Repair history / records</td>
</tr>
<tr>
<td>Bare pipe</td>
<td>Casing locations and construction practices</td>
<td></td>
<td>Years without CP applied</td>
<td>Leak history</td>
</tr>
<tr>
<td></td>
<td>Locations of bends</td>
<td>Coating type</td>
<td>Frequency of third-party damage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth of cover</td>
<td>Coating condition</td>
<td>Data from previous surveys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Underwater sections and river crossings</td>
<td></td>
<td>Current requirement</td>
<td>Hydrostatic testing dates / pressures</td>
</tr>
<tr>
<td></td>
<td>Locations of river weights and anchors</td>
<td>CP survey data / history</td>
<td>Other prior integrity information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proximity to other pipelines, structures, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The indirect inspection is an aboveground survey that collects physical evidence in order to estimate the degree of corrosion activity and coating damage to the pipe. The direct examination uses the information from the pre-assessment and indirect inspection to identify locations to physically excavate the pipe and examine visually. The post-assessment evaluates the ECDA process and determines the schedule for re-assessments [12].

Corrosion rates describe how quickly we expect corrosion to cause a leak once corrosion starts. However, the rates are meaningless when trying to evaluate the effectiveness of corrosion controls on a pipeline system without uncovering the pipes and measuring the rate. This process can be costly and disruptive. The ECDA process identifies areas where corrosion may be occurring. However, the ECDA process is localized and does not unite all the elements of corrosion and corrosion control in such a way that they can be evaluated across the entire distribution system. The statistical models discussed in the next chapter can be used to describe underlying trends throughout the entire system where corrosion is occurring without needing to physically examine the pipe.
Chapter 3: Hypothesis, Modeling Approach, and Data

None of the methods described in the previous literature review chapter provide economical ways to study the underlying causes of insufficient cathodic protection and corrosion leaks on a natural gas distribution pipeline system. While the statistical modeling of pit growth and pit initiation help examine the process of corrosion, it requires expensive and potentially disruptive excavations to validate on a steel distribution pipeline in the field. Additionally, the External Corrosion Direct Assessment (ECDA) also refers to past performance of the pipeline system rather than considering future performance when identifying areas for further study of corrosion and its effects on the pipeline integrity. This chapter again addresses why a model to predict the occurrence of corrosion on a distribution system is important and presents a modeling approach and the data available to do so.

3.1 Questions and a Hypothesis

Ensuring that a distribution gas system as large as PG&E’s is sufficiently protected using cathodic protection requires a tremendous amount of resources. As the utilities industry in general notes an increasing issue with corrosion, two questions arise: 1) can insufficient performance of cathodic protection be predicted and 2) can significant factors contributing to this insufficient cathodic protection be identified? Using predictive models to understand where insufficient cathodic protection is resulting in corrosion leaks and what factors are causing insufficient cathodic protection can help inform additional proactive maintenance procedures above industry standards and help PG&E to optimize its resources so that it can reduce risk in the most corrosion-prone areas.

Insufficient performance of cathodic protection can be predicted and significant factors contributing to this insufficient cathodic protection can be identified. Specifically, we can use available operational, pipe, and environmental data to predict: (1) where corrosion is most likely to occur in an area using data from another area and (2) where corrosion is most likely to occur in a given year using data from the previous year. The rest of this chapter describes the dependent variable and the modeling approach. Additionally, the available data and hypotheses about how the available data influence the performance of cathodic protection are presented.
3.2 The Dependent Variable

This study uses the number of corrosion leaks repaired within a given area as the dependent variable instead of a more direct measure of insufficient cathodic protection for three reasons. First, the exact moment that cathodic protection performs insufficiently is ambiguous. Second, it is economically infeasible to identify when the corrosion process actually begins since the evidence of corrosion is not evident at the ground surface until a leak develops. Third, it is not possible to know with confidence what causes a leak until the pipe is uncovered and examined. This examination does not occur until the pipe is uncovered for repair. It is this leaks repaired metric that is reported in the PHMSA Annual Report [5]. Hence, the number of leaks repaired due to corrosion measures the occurrence of corrosion. The dependent variable for the models presented in this thesis is the number of leaks repaired due to corrosion.

For the rest of this thesis, insufficient performance of cathodic protection, corrosion leaks repaired, and corrosion occurrence are used interchangeably. The author recognizes that this mingles different issues but due to the three reasons discussed above, corrosion leaks repaired is the best available inference of insufficient cathodic protection and, therefore, corrosion occurrence.

3.3 Modeling Approach

Figure 5 is a schematic describing the modeling process. The top row, in orange, shows the four different regressions that were considered using the available data: simple linear regression, quasi-Poisson regression, logistic regression, and random forest regression. Each regression type is described briefly below. The linear, quasi-Poisson, and random forest regressions predict the number of corrosion leaks that occur in a given CPA in a year; the logistic regression predicts whether or not at least one corrosion leak will occur in a given CPA in a year. The second row in Figure 5 lists the two data groups (static and dynamic) and the data that each group considers. Although not indicated in Figure 5 for simplicity, the data groups are the same for each of the regression models. In order to examine the effect of the in-sample data on the model results, we used cross-validation. The bottom row indicates this cross-validation process. For the static data, the areas of interest were subdivided into four groups by geographical area. Three groups were used as the in-sample data to build the model in one cross-validation run while the fourth
was used as the out-of-sample data to test the predictive ability of the model. For the dynamic data, the data were divided into two groups. The data from Group 1 in Year X was used as the in-sample data to build the model in one cross-validation run and the data from Group 2 in Year X+1 were used as the out-of-sample data to test the predictive ability of the model. This section focuses on the selection process of the regression models in the top row. Figure 6 presents a schematic of the regression models, summarizing the output of each regression.

Figure 5: Schematic of modeling process – regression models

Linear regression. Linear regression is the simplest regression to explain the relationship between the dependent and independent variables. We considered linear regression due to its simplicity and the intuitiveness when interpreting results. The dependent variable considered for the linear regression models is the number of corrosion leaks in a given CPA per year. However, linear regression assumes constant variance and normal error [17]. Linear regression is also not the best model to predict the number of corrosion leaks within a CPA because it can predict a
negative number of leaks occurring, which is impossible. A CPA cannot physically have fewer than zero corrosion leaks occurring within a year.

Figure 6: Schematic of regression models

Quasi-Poisson regression. Quasi-Poisson regression is a generalized linear model that considers count data (integer values and bounded by zero). Again, the dependent variable considered is the number of corrosion leaks in a given CPA per year. Quasi-Poisson regression designates the error as quasi-Poisson and uses the log link function. Generalized linear models have linear predictors. A linear predictor is the sum of the product of the independent variables and their coefficients. The link function describes the relationship between the dependent variable and its linear predictor. For a Poisson regression, the link function is the log function. Therefore, the coefficients of the significant independent variables are in logs and the predicted number of leaks must be antilogged before we compare the predicted number with the actual number of leaks. We used quasi-Poisson instead of Poisson errors because Poisson regression resulted in residual deviance values much greater than the residual degrees of freedom. This difference indicates overdispersion. Overdispersion means that it is likely that one of the independent variables that is not significant actually is significant or that the number of corrosion leaks occurring in a CPA do not follow a Poisson distribution. When overdispersion occurs, the residual deviance is much
larger than the residual degrees of freedom. Quasi-likelihood is one method of correcting for overdispersion by using a different variance function for the errors [17].

Logistic regression. Logistic regression is also a generalized linear model that proportion data (bounded by zero and one). The dependent variable is whether or not a corrosion leak will occur in a given CPA per year. If a corrosion leak occurs in a CPA, the proportion is one. If a corrosion leak does not occur in a CPA, the proportion is zero. Logistic regression represents error as a binomial distribution and uses a logit link function [17].

Random forest regression. Tree models are useful for examining many independent variables and are useful because they present the interactions between independent variables intuitively [17]. Tree models present a set of binary (yes or no) rules in order to predict the dependent variable. A random forest uses a sample of the independent variables to build a tree, which it resamples and repeats to build a forest, or multiple trees. The predicted number of corrosion leaks within the CPA for the regression output is an average of the predicted number of corrosion leaks within the CPA from all the trees within the forest [18]. The dependent variable for the random forest regression is the same as the dependent variable for the linear and quasi-Poisson regressions: the number of corrosion leaks in a given CPA per year.

The performances of the prediction models were measured using the weighted average prediction error. The mean average percentage error (MAPE) is described by the following equation:

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\text{actual} - \text{predicted}}{\text{actual}} \right|$$

Each model was run twice using each of the static and dynamic data sets. The data were partitioned into in-sample and out-of-sample data sets. The in-sample data set was used to build regression model. Then, the out-of-sample data set was used to test the effectiveness of the model in predicting if a leak will occur in a given CPA or not. In order to examine the effect on the performance of the prediction model of the data included in the in-sample data set, a simple cross-validation method was used. Four different sets partitions of in-sample and out-of-sample data were created. The models were built using a combination of three sets of data and tested on
the fourth set of data. We repeated this process four times for each model (referred to as a significant run). We divided the data based on geographical areas containing the study CPAs.

Table 4 presents means and ranges for mean average percentage error for each of the four regressions performed. The logistic regressions for each data set perform best since they have the lowest error rates. It is not surprising that the logistic regression performs best since the dependent variable is the simplest: there are only two options. For the other three regressions, multiple options exist for the response variable increasing the potential variability in the predictions.

It is expected that the linear regression does not perform best since it yields negative predicted values, which is physically impossible since zero bounds number of leaks that can occur. Substituting zero values for any negative predicted values yields an average of the mean average percentage errors of 1.35 for the static data set and yields an average of the mean average percentage errors of 1.94 for the dynamic data set. Although substituting the negative predicted values with zero values leads to smaller error values for both data sets, the change is small and the logistic regression still performs best.

Table 4: Performance of dynamic data using various models

<table>
<thead>
<tr>
<th>Model</th>
<th>Dependent Variable</th>
<th>Mean Average Percentage Error – Static Data</th>
<th>Mean Average Percentage Error – Dynamic Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>What number of corrosion leaks will occur in a CPA next year</td>
<td>1.35</td>
<td>1.94</td>
</tr>
<tr>
<td>Quasi-Poisson</td>
<td>What number of leaks will occur next year</td>
<td>1.43</td>
<td>11.54</td>
</tr>
<tr>
<td>Logistic</td>
<td>What number of corrosion leaks will occur in a CPA next year</td>
<td>0.71</td>
<td>0.58</td>
</tr>
<tr>
<td>Random</td>
<td>What number of corrosion leaks will occur in a CPA next year</td>
<td>1.50</td>
<td>2.04</td>
</tr>
<tr>
<td>Forest</td>
<td>What number of corrosion leaks will occur in a CPA next year</td>
<td>0.82 – 2.52</td>
<td>1.14 – 2.92</td>
</tr>
</tbody>
</table>

3.4 Data

Two types of data are available: data that change over time and data that do not change over time. Hence, two models were developed in order to examine both sets of data. The data that
change over time are referred to as dynamic data while the data that do not change over time are referred to as the static data. Figure 7 again presents the schematic of the modeling process, highlighting the second row in orange. This section focuses on the data presented in that second row. The model built using the data that change over time is referred to as the dynamic model while the model built using the data that do not change over time is referred to as the static model. The following classifies and describes the dynamic and static data used in the dynamic and static models. Initial hypotheses regarding how each data type influences the occurrence of corrosion leaks are presented.

![Figure 7: Schematic of modeling process – data](image)

Measuring external corrosion – leaks, the dependent variable (used in both models)

As mentioned previously, for the purpose of this research, an occurrence of external corrosion is defined as a leak caused by corrosion. Therefore, the number of corrosion incidences is inferred
from the number of leaks due to corrosion. The cause of a leak can only be confirmed upon repair, when the pipe is excavated. Thus, the corrosion leaks used are not the leaks that occurred but rather the leaks that have been repaired. We have assumed that the time between leak occurrence and repair is negligible. Only leaks repaired on the steel body of pipe (both mains and services) were used.

For the dynamic model, we considered corrosion leaks repaired on both distribution main pipe (the pipe that transports the gas through communities and neighborhoods) and services (the pipe that transports the gas directly into houses and businesses from the main). However, for the static model, we only considered corrosion leaks repaired on distribution main. This difference is because the pipe characteristic data (such as year installed and pipe diameter) that were considered in the static model was only available for distribution main pipe. Therefore, we do not have accurate characteristics of the service pipe characteristics to truly predict the number of leaks on services as well. The dynamic model, conversely, includes pipe-to-soil read points that are frequently located at the end of services. Pipe-to-soil reads are routine maintenance readings measuring the voltage difference between the pipe and the soil (discussed more fully further in this section). The dynamic model captures information about services that the static model does not. As such, only the dynamic model considers corrosion leaks repaired on services in addition to main.

Additionally, for the dynamic model we used the actual number of corrosion leaks repaired in a year as the dependent variable. For the static model, we considered the mean of the number of corrosion leaks repaired in a CPA over 5 years, which is the length of a leak survey cycle.

Amount of pipe – length of steel main pipe within a CPA (used in both models)

We assume that CPAs that protect a longer length of steel main pipe may generally have a higher corrosion occurrence than CPAs that do not. As mentioned in the literature review, the protective current from either the rectifier or the galvanic anode can be drawn away from the pipe. This can occur from the simple action of a child leaving her bicycle against a meter can draw away the protective impressed current that the rectifier drives to the pipeline, reducing the cathodic protection levels. This issue is indicated in the pipe-to-soil reads (discussed further in
this section). The longer a CPA is, the more complicated it is to find that bicycle in order to return to normal levels of protection.

The length of steel main protected is from 2015 when the data were downloaded.

Amount of pipe – number of steel services within a CPA (used in dynamic model)

Services are the low-pressure pipes that carry gas from the distribution main into houses and other buildings. Similarly to length of steel main pipe, we assume that CPAs that protect more steel services may generally have a higher corrosion occurrence than CPAs that have fewer steel services.

Age of steel pipe – average age (used in dynamic model)

The age of the steel main pipe in a CPA was calculated as an average age weighted by the length of steel mains installed during a given year in the CPA. Since cathodic protection systems and coatings are typically applied when the pipe is installed, the average age of the pipe can serve as a proxy for the age of the cathodic protection systems and pipe coatings. We assume that CPA with a higher average age may have a higher corrosion occurrence since the cathodic protection systems and coatings are older.

Age of steel pipe – percent of steel main pipe installed in a given decade (used in static model)

The age of pipe in a CPA was represented as a percentage of steel main pipes installed in a given decade ranging from pre-1920s, 1920s, 1930s, through each decade until the present. This division of the data is based on the reporting of pipe by age in the PHMSA Annual Report. As mentioned previously, the age of the pipe indicates the likely condition of the pipe, cathodic protection systems, and coatings. We assume CPAs with higher percentages of the pipe installed before 1950s may have a higher corrosion occurrence than CPAs with higher percentages of the pipe installed after the 1950s [10].

Maintenance data – number of rectifiers and current density (used in dynamic model)

Rectifiers convert alternating current to direct current. The direct current is then pushed to the pipe to protect it from corrosion. As described in the literature review, there are two types of cathodic protection: impressed current and galvanic. If a CPA has no rectifiers, it is implied that
it is protected galvanically. Typically, galvanic systems are installed on shorter sections of steel pipe in areas less aggressive corrosive environments [7]. Therefore, we assume areas with more rectifiers may be more at risk from corrosion than areas without any rectifiers.

Perhaps of more importance is the current density, or the amperes of current that the rectifiers output per square outside surface area of pipe. We considered the current density outputted by the rectifiers by summing the current output at the end of the year over all rectifiers in a CPA and dividing it by the total surface area of the steel pipe within the CPA. We assume that areas with higher current density may have lower corrosion occurrence.

Maintenance data – number of monitoring points, average and minimum values, and variation (used in dynamic model)

CPAs are monitored routinely through pipe-to-soil reads. Pipe-to-soil monitoring reads measure the voltage difference between the pipe and soil to show that the pipe is adequately cathodically protected. We considered three different properties of the monitoring points: (1) how many of these pipe-to-soil read points existed in a given CPA, (2) what is the average pipe-to-soil read in a CPA, and (3) what is the variation of these pipe-to-soil reads within a single CPA. First, the number of monitoring points indicates how frequently the CPA is being monitored over the length of the pipe in the CPA. We assume that CPAs containing more pipe-to-soil monitoring points may have lower corrosion occurrence. Second, as mentioned in the literature review, pipe-to-soil reads give the potential between the soil and the steel pipe. A read more positive (closer to zero) than -850 millivolts is considered “down”, which means that cathodic protection levels are inadequate for the CPA (and indicates that a child’s bike or some other contact is occurring, drawing protective current away from the pipe). We assume CPAs with more positive, or less negative, average pipe-to-soil reads may have higher corrosion occurrence. Third, we considered variation in the pipe-to-soil reads by creating an index of those reads that is a ratio of the least negative pipe-to-soil read to the most negative pipe-to-soil read in a given year. We assume that CPAs with smaller pipe-to-soil read indices may have higher corrosion occurrence due to greater variation of pipe-to-soil reads within the CPA.
Weather data (used in dynamic model)

Environmental characteristics are shown to affect the occurrence of corrosion. However, in general, soil properties evolve slowly over time and, therefore, are not tested and collected from year to year. Hence, we used weather data from seven different National Oceanic and Atmospheric Administration weather stations across the two divisions of interest to infer the environmental characteristics. Each CPA was assigned to the weather station nearest it [19].

Uhlig's Corrosion Handbook discusses corrosion in various climates. For arid climates, corrosion rates are assumed to be low. In tropical and temperate climates, corrosion rates may be higher due to the more acidic soil (the effect of soil acidity and soil pH will be discussed further when we discuss soil properties) [11].

![Figure 8: Minimum versus maximum daily temperatures](image)
Temperature. We considered both the average daily temperature and temperature index, which is the ratio of the minimum and maximum daily temperatures and measures temperature variation. Figure 8 presents a scatter plot of the minimum versus maximum daily temperature. The scatter plot does not indicate a correlation. However, a simple linear regression of the maximum daily temperature as a function of the minimum daily temperature yields an R^2 value greater than 0.5, indicating a correlation. Hence, a ratio of the maximum and minimum daily temperatures was used instead of each factor individually.

We assume that areas with the higher average daily temperatures may have a higher corrosion occurrence. The more the temperature index decreases, the higher the corrosion occurrence because of temperature variation.

Total annual precipitation. Precipitation indicates how much water is available for the soil. The presence of water in the soil increases the likelihood that corrosion will occur. Therefore, we assume a CPA with more precipitation may have higher corrosion occurrence.

Diameter of pipe (used in static model)

Wall thickness of the pipe depends on the diameter of the pipe. The thicker the pipe wall is, the more material there is that needs to corrode before a leak can occur. Hence, it is assumed that CPAs with higher percentages of pipe with larger diameters may have lower corrosion occurrence.

The model separates the pipe diameter into percentages of the steel pipe with diameters in ranges presented in Table 5. For example, for each CPA, there is an independent variable that is the percentage of steel pipe with pipe diameter equal to or greater than one inch to less than two inches. These ranges are the same as those reported in the PHMSA Annual Report [5].

Pressure designation of pipe (used in static model)

Pipe with higher pressure is more likely to have a thicker wall than pipe designated as low pressure. The thicker the pipe wall is, the more material needs to corrode for a leak occurs. Therefore, we assume that CPAs that contain more high pressure pipe may lower corrosion occurrence. The model looks at pipe designated as low pressure, semi-high pressure, and high pressure.
Table 5: Pipe diameter ranges considered

<table>
<thead>
<tr>
<th>Diameter (inches) greater than and including</th>
<th>Diameter (inches) less than</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>--</td>
</tr>
</tbody>
</table>

Soil properties (used in static model)

The soil data is from the US Department of Agriculture’s (USDA) web soil survey. Figure 9 shows the USDA’s classification scheme of areas by size in the web soil survey, from largest to smallest. The USDA identified soil map units across an area. Each map unit has a similar soil profile characterized by similar soil properties. For each CPA, the soil map unit with the largest overlap of the CPA was assumed to be the predominant soil profile for that CPA, assuming at least 90% of that CPA was in the soil survey area. Each soil map unit varies both horizontally (over an area of land) and vertically (over depth), as indicated in Figure 10. We applied an average weighted by vertical thickness of the soil properties over depth, typically ranging from 0 to 60 inches. Over each soil map unit, the USDA may have identified multiple soil components. We assumed that each component occurs equally within the soil map unit and averaged soil properties of the components equally in their soil map unit. Typically, the soil properties varied little within a soil map unit (even if multiple components existed) [20].

Figure 9: Hierarchy of USDA web soil survey area designations
Ranges from Properties change over depth

Figure 10: Properties within a soil map unit

Each of the four soil properties discussed here was given with a range of values (from low to high). Figure 11 presents scatterplots for soil pH, clay content, moist bulk density, and saturated hydraulic conductivity of the soil. Note the generally increasing trends that indicate correlation between the maximum and minimum values for each of the four properties. Typically, the maximum and minimum values in a range are not correlated. However, the USDA designates the ranges such that soil components of a given minimum value correspond to a specific maximum value. For example, areas with minimum clay contents of 40% consistently have maximum clay contents of 27%. These standardized ranges cause correlation between the maximum and minimum soil property values. We considered the average value and the variation of these properties. For all of these four soil properties, we assume that CPAs with soil properties that vary more may have higher corrosion occurrence. The following discusses our hypotheses as to how the average soil pH, clay content, moist bulk density, and saturated hydraulic conductivity values of the soil affect the occurrence of corrosion leaks.

Soil pH. Chemically, chlorides, sulfates, and pH can affect corrosion. Of these, the USDA soil data only has consistent results in the study areas for pH. Both Peabody and Uhlig hypothesize that the severity of corrosion increases as soil pH decreases. For soil pH less than 7, as pH decreases, the corrosion rate is believed to increase [7], [11]. Therefore, we assume that the corrosion occurrence may increase as the soil pH decreases.
Clay content of the soil. The clay content of the soil is represented as the percent of clay that the soil contains. We assume that areas with higher clay content may have higher corrosion occurrence \cite{11}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{soil_properties.png}
\caption{Soil properties}
\end{figure}

Moist bulk density of the soil. Per the USDA, moist bulk density of the soil shows how much pore space water and roots can potentially use. As the moist bulk density increases, the less pore space is available for water and roots. Typically, soils with moist bulk density values greater than 1.4 grams per cubic centimeter can restrict water storage and retention \cite{20}. The less water a soil has, the drier it is. In dry soils, corrosion is not very significant \cite{11}. Therefore, we
assume that as the moist bulk density of the soil decreases (the less water it can potentially store), the corrosion occurrence may decrease.

Saturated hydraulic conductivity. The saturated hydraulic conductivity measures how easily water can flow through soil [20]. This measurement is important as the more easily water can flow through soil, the less likely the occurrence of corrosion is. Less conductive soils can retain water longer and increase the occurrence of corrosion [11]. Therefore, as the saturated hydraulic conductivity decreases, we assume that the corrosion occurrence may increase.

Soil resistivity (not included)

The average soil resistivity measurements within a CPA were not used for these analyses despite frequently being referenced when discussing corrosion rates and the design of cathodic protection systems. Soil resistivity, typically in ohm-meters or ohm-centimeters, measures how easily the soil conducts current. As discussed in the literature review, typically, corrosion occurrence increases as soil resistivity decreases [14]. However, this relationship only holds if cathodic protection is inadequate [11]. Nevertheless, soil resistivity does affect the design of the cathodic protection systems (such as the type and number of anodes) and affects how neighboring current-generating sources such as a different cathodically protected pipeline will affect the cathodic protection performance. While these data ideally would have been included in building the models, it was not readily available in an easy to use format.

3.5 Metrics for Measuring Model Performance

Two different types of metrics are considered for measuring the models’ performances based on the results of the cross-validation runs, as indicated in Figure 12. The first set of metrics measure the predictive ability of the models, or how accurately the models can predict if a leak will occur or not in a given CPA. The second set of metrics measure how well the models fit the in-sample data used to build the models. This section describes both sets of metrics.
Measuring performance of predictive ability

MAPE. As mentioned earlier, the mean average percentage error (MAPE) is the average difference between the predicted and actual values weighted by the number of predictions [21]. A lower MAPE indicates a better model.

Specificity. Specificity is the percent of predicted “yeses” that are true. For these models, it is the percent of CPAs that are predicted to have at least one corrosion leak occur that actually had a corrosion leak occur that year [22]. A higher specificity indicates a better model.

Sensitivity. Sensitivity is the percent of predicted “nos” that are true. For these models, it is the percent of CPAs that are predicted to have no corrosion leaks occur that actually had no corrosion leaks that year [22]. A higher sensitivity indicates a better model.
Area under the ROC plots. The receiver-operating characteristic (ROC) plots present the sensitivity and specificity pair for each decision threshold for a binary decision independent variable. Figure 13 presents an example ROC plot. A model can predict with perfect sensitivity if the ROC plot passes through the upper left quadrant of the plot. The closer the ROC plot is to the left vertical axis and the top horizontal axis, the better predictive ability the model has. A model that has no predictive ability, or does not perform better than guessing, will fall along the 45 degree diagonal from the bottom left corner of the graph to the top right corner of the graph, indicated by the gray dashed line in Figure 13. The area under the ROC plot indicates the shape of this plot. The closer the area under the ROC plot is to one, the better the predictive ability of the model [23].

Figure 13: Example ROC curve

Measuring goodness of fit

Residual deviance. The residual deviance measures the amount of unexplained variation in the model [17]. A lower residual deviance indicates a better model.

AIC. Akaike’s information criterion (AIC) penalizes models for using extra parameters [17]. A lower AIC indicates a better model.
3.5 Summary

We first described why corrosion leaks repaired is used as the measurement of corrosion occurring in the dependent variable. The cause of a leak is not known until the pipe is excavated and repaired. We know that corrosion is occurring because of insufficient cathodic protection but we do not know what is causing this insufficient protection. We examined the predictive ability of linear, quasi-Poisson, logistic, and random forest regressions. Since logistic regressions have the smallest error when predicting if a corrosion leak will occur in a CPA or not, we developed our models using logistic regressions. Two types of data were used: data that are relatively static over time and data that change over time. Therefore, we developed two different models using each type of data. The following next chapter analyzes the models using the data described in this chapter. The hypotheses about the data and the corrosion occurrence are further examined. Additionally, the metrics discussed for measuring the models’ performances are also discussed in the following chapter.
Chapter 4: Results

This chapter discusses the results of the logistic regression models built using both the static and dynamic data. We examine the significant independent variables to 5% significance for the various cross-validation runs for the static and dynamic data to see if they match the hypotheses presented in Section 3.3 and investigate any unusual behavior. We then compare the static and dynamic logistic regressions with each other, discussing which set of data generally fits the logistic regressions better and which set of data has better predictive ability.

4.1 Significant Static Independent Variables

The data and results presented here answer the question if corrosion can be predicted in one area using a model built from another area’s performance. Four different USDA defined areas were used for the static data set. For each cross-validation run, three of the USDA areas were combined in the in-sample data set and the fourth was used as the out-of-sample data set to test the predictive ability of the logistic regression built using the in-sample data set. Table 6 presents the significant independent variables found in each of the cross-validation runs using the static data and describes some characteristics of the log odds ratios estimated in the various logistic regressions. The coefficient in logistic regressions is the log odds ratio, or the log of the odds ratio. The odds ratio is the proportion of the number of successes to the number of failures [17]. Table 6 presents the minimum and the maximum of the log odds ratio, the average value of the log odds ratio, and the standard deviation of the log odds ratio. The minimum and maximum values indicate whether the sign of the log odds ratio is consistently negative or positive in each of the cross-validation runs. The standard deviation of the log odds ratio indicates how much variation there is between the log odds ratios for the same independent variable in different cross-validation runs.

The models considered independent variables that are significant to a 5% confidence interval. Due to the variation of significant independent variables from run to run, the model appears sensitive to the in-sample data. Especially since the data are from urban areas in close proximity, this variation of significant independent variables suggest that a model developed using only data from urban areas might not accurately represent or predict corrosion leaks for data from rural areas.
Table 6: Significant factors for static model

<table>
<thead>
<tr>
<th>Significant Independent Variables</th>
<th>Number of Significant Runs</th>
<th>Minimum of Log Odds Ratio</th>
<th>Maximum of Log Odds Ratio</th>
<th>Average of Log Odds Ratio</th>
<th>Standard Deviation of Log Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main pipe length</td>
<td>4</td>
<td>1.10E-01</td>
<td>1.68E-01</td>
<td>1.31E-01</td>
<td>2.63E-02</td>
</tr>
<tr>
<td>Average moist bulk density</td>
<td>3</td>
<td>-5.40E+00</td>
<td>-2.35E+00</td>
<td>-4.09E+00</td>
<td>1.57E+00</td>
</tr>
<tr>
<td>Percent of pipe that is low pressure</td>
<td>3</td>
<td>2.42E+00</td>
<td>2.73E+01</td>
<td>1.09E+01</td>
<td>1.42E+01</td>
</tr>
<tr>
<td>pH index</td>
<td>3</td>
<td>4.62E+00</td>
<td>6.47E+00</td>
<td>5.32E+00</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>Average clay content</td>
<td>2</td>
<td>-5.37E-02</td>
<td>-4.70E-02</td>
<td>-5.03E-02</td>
<td>4.70E-03</td>
</tr>
<tr>
<td>Average saturated hydraulic conductivity</td>
<td>2</td>
<td>2.66E-02</td>
<td>2.83E-02</td>
<td>2.75E-02</td>
<td>1.17E-03</td>
</tr>
<tr>
<td>Clay content index</td>
<td>2</td>
<td>1.67E+00</td>
<td>3.54E+00</td>
<td>2.60E+00</td>
<td>1.32E+00</td>
</tr>
<tr>
<td>Average pH</td>
<td>1</td>
<td>6.66E-01</td>
<td>6.66E-01</td>
<td>6.66E-01</td>
<td>-- *</td>
</tr>
<tr>
<td>Moist bulk density index</td>
<td>1</td>
<td>1.22E+01</td>
<td>1.22E+01</td>
<td>1.22E+01</td>
<td>-- *</td>
</tr>
<tr>
<td>Percent of pipe installed in the 1930s</td>
<td>1</td>
<td>3.70E+00</td>
<td>3.70E+00</td>
<td>3.70E+00</td>
<td>-- *</td>
</tr>
<tr>
<td>Percent of pipe installed in the 1960s</td>
<td>1</td>
<td>-7.28E-01</td>
<td>-7.28E-01</td>
<td>-7.28E-01</td>
<td>-- *</td>
</tr>
<tr>
<td>Percent of pipe installed in the 1990s</td>
<td>1</td>
<td>-2.64E+00</td>
<td>-2.64E+00</td>
<td>-2.64E+00</td>
<td>-- *</td>
</tr>
<tr>
<td>Percent of pipe with diameter between 4 and 6 inches</td>
<td>1</td>
<td>-1.53E+00</td>
<td>-1.53E+00</td>
<td>-1.53E+00</td>
<td>-- *</td>
</tr>
<tr>
<td>Saturated hydraulic conductivity index</td>
<td>1</td>
<td>1.78E+00</td>
<td>1.78E+00</td>
<td>1.78E+00</td>
<td>-- *</td>
</tr>
</tbody>
</table>

* Note: -- indicates that a standard deviation cannot be calculated since independent variable is only significant in one cross-validation run.
The length of steel main pipe is consistently significant in all four runs. The log odds ratios are positive and are consistent with our hypothesis that as the length of the steel main pipe increases in a CPA, the likelihood of corrosion occurrence increases. It is not surprising that the length of steel main pipe in the CPA is consistently significant since it may be an indication of the complexity of the CPA.

The average moist bulk density is significant in three of the cross-validation runs and the moist bulk density index is significant in the fourth cross-validation run. The log odds ratios for the average moist bulk density are consistently positive, which supports our hypothesis. The moist bulk density index has a positive log odds ratio indicating that as variation in moist bulk density values increase within the CPA, the likelihood of corrosion occurrence also increases. This is consistent with our hypothesis presented in Section 3.3.

The percent of main pipe designated as low pressure is significant in three out of the four cross-validation runs. The log odds ratios are consistently positive but vary from 2.4 to 27.3. 27.3 is an outlier; it is an order of magnitude greater than the log odds ratios for the other instances that the percentage of low pressure pipe is significant. Furthermore, it is at least an order of magnitude greater than the log odds ratios of the other independent variables. Figure 14 presents the distribution of the percentage of steel main pipe in a CPA that is designated at each pressure in each of the in-sample data sets. The horizontal axis gives the percentage of pipe that is designated as low pressure, semi-high pressure, or high pressure within a CPA. The vertical axis gives the number of CPAs that have a similar percentage of pipes with the same pressure type. For example, most of the CPAs have no pipe designated as low or semi-high pressure as indicated by the high count of CPAs at the left side of the graphs. The histograms indicate similar distribution for each cross-validation set with the low percentages of low pressure and semi-high pressure pipe.

Figure 15 presents the scatter plots of the leak occurrence within a given CPA versus the percentage of pipe by each pressure designation. The horizontal axis gives the percentage of pipe that is designated as low pressure, semi-high pressure, or high pressure within a CPA. The vertical axis indicates if a corrosion leak has occurred in the CPA (0 if no corrosion leaks occurred and 1 if at least one corrosion leak occurred). Again, the scatter plots are similar for each cross-validation run. The only difference is that Run 2 does not have any CPAs with a high
percentage of low pressure pipe that have zero leak occurrence (i.e. the bottom right corner of the low-pressure pipe graph in Run 2 is empty whereas all other runs have a couple of points indicating no corrosion leaks occurred for those predominantly low pressure pipe CPAs). This difference might account for the high log odds ratio in Run 2. These positive log odds ratios are consistent with our prediction that the more low pressure pipe (a proxy for wall thickness) is contained in a CPA, the higher the likelihood of corrosion occurrence.

Figure 14: Histogram of pressure type in for each cross-validation in-sample data set

The pH index is significant in three out of the four cross-validation runs and the average pH is significant in the fourth of the cross-validation runs. The log odds ratios for the pH index are positive. The positive log odds ratios for the pH index indicate that if a CPA has more variation
in soil pH values, the more likely corrosion is to occur. This is consistent with the hypothesis proposed in Section 3.3. The log odds ratio for the average pH is positive in Run 3. This positive log odds ratio is inconsistent with the hypothesis proposed in Section 3.3 that states that the more acidic the soil pH is, the more likely corrosion is to occur.

The average clay content is significant in two out of the four cross-validation runs. The clay content index is significant in the other two cross-validation runs. The log odds ratios for the average clay content are negative, which indicates that the amount of clay content and the corrosion occurrence are inversely related and contradict the hypothesis presented in Section 3.3. The log odds ratios for the clay content index are positive and consistent with our hypothesis that the more variation in clay content, the more likely that corrosion is to occur.

Figure 15: Histogram of pressure type in for each cross-validation in-sample data set
The average saturated hydraulic conductivity is only significant in two of the four cross-validation runs while the saturated hydraulic conductivity index is significant in one of the four cross-validation runs. The log odds ratios for the average saturated hydraulic conductivity are positive indicating that a higher saturated hydraulic conductivity means more corrosion. This contradicts our hypothesis that lower saturated hydraulic conductivity indicates higher corrosion occurrence. The log odds ratio for the saturated hydraulic conductivity is positive indicating that more variation in the saturated hydraulic conductivity within the CPA increases the likelihood of corrosion occurrence.

The percent of pipe installed in the 1930s, the percent of pipe installed in the 1960s, and the percent of pipe installed in the 1990s are each significant in one of the four cross-validation runs. The log odds ratio for the 1930s pipe is positive, which indicates that more pipe installed in the 1930s increases the occurrence of corrosion. The log odds ratios for the 1960s and 1990s pipe are negative. This is consistent with Kiefner and Trench’s observations, mentioned in the literature review, that corrosion occurrence is higher for pipe installed in decades before the 1960s that had poorer corrosion practices during construction [10].

The percent of pipe that is between 4 and 6 inch diameter is significant in one out of the three cross-validation runs. Its log odds ratio is negative. The negative log odds ratio is consistent with our hypothesis that pipe with larger diameters have a decreased likelihood of corrosion occurrence.

We are surprised that the percent of steel main pipe installed in the various decades is not more frequently considered significant since the installation decade not only indicates common corrosion practices but also the age of the pipe and its corrosion control systems. One expects that pipe installed in the same decade are installed with similar installation practices (e.g. coatings, pipe manufacturing practices). Perhaps since pipe installed in similar decades have similar installation methods, other factors such as the neighborhood, the size of the pipe, or the pressure designation represent the installation practices.

Each of the soil properties consistently influences the likelihood of corrosion occurrence. However, it is inconsistent between each cross-validation run if the average value of the soil property or the variation of the soil property within the CPA is what influences the corrosion
occurrence. For the moist bulk density and saturated hydraulic conductivity, the average value has a greater influence. For the soil pH, variation has a greater influence on corrosion occurrence. Further investigation is recommended to see if expanding the data set causes more consistency in whether the average value of the soil property or the variation of the soil property has a greater influence on corrosion occurrence. Additionally, the soil pH, clay content, and average hydraulic conductivity values have log odds ratios that do not support the hypotheses discussed in Section 3.3.

4.2 Significant Dynamic Independent Variables

The data and results presented in this section answer the question if data from one year can be used to predict where corrosion is most likely to occur in the next year. The dynamic model uses data from Area A in Year X to predict the number of corrosion leaks that will occur in Area B during Year X+1. Data from two urban areas were used for the logistic regression models. Table 7 presents the significant independent variables found in each of the cross-validation runs for the dynamic data set and describes some characteristics of the coefficient estimate in the model. Unlike the static data, no independent variable is significant for all of the in-sample data sets used to build the logistic regression model, indicating variation in the data set. Since this data set only presented information from urban areas, it is unclear if the model would apply well to data from suburban and rural areas.

The length of the steel main pipe within a CPA is significant in three of the four cross-validation runs. The one cross-validation run in which the length of the steel main pipe within the CPA is not significant, the number of steel services within a CPA is significant. Both the length of the steel main pipe and the number of steel services have positive log odds coefficients, indicating that the more steel there is within a CPA, the more likely corrosion leaks will occur. This matches our hypotheses regarding corrosion occurrence and amount of steel contained within a CPA in Section 3.3 and is consistent with the results of the static model.
Table 7: Significant factors for dynamic model

<table>
<thead>
<tr>
<th>Significant Independent Variables</th>
<th>Number of Significant Runs</th>
<th>Minimum of Log Odds Ratio</th>
<th>Maximum of Log Odds Ratio</th>
<th>Average of Log Odds Ratio</th>
<th>Standard Deviation of Log Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main pipe length</td>
<td>3</td>
<td>2.31E-05</td>
<td>5.80E-05</td>
<td>3.66E-05</td>
<td>1.88E-05</td>
</tr>
<tr>
<td>Average temperature</td>
<td>2</td>
<td>1.99E-01</td>
<td>2.08E-01</td>
<td>2.03E-01</td>
<td>6.58E-03</td>
</tr>
<tr>
<td>Average age</td>
<td>1</td>
<td>6.76E-02</td>
<td>6.76E-02</td>
<td>6.76E-02</td>
<td>-- *</td>
</tr>
<tr>
<td>Average P/S read</td>
<td>1</td>
<td>2.84E-03</td>
<td>2.84E-03</td>
<td>2.84E-03</td>
<td>-- *</td>
</tr>
<tr>
<td>Number of services</td>
<td>1</td>
<td>4.71E-03</td>
<td>4.71E-03</td>
<td>4.71E-03</td>
<td>-- *</td>
</tr>
</tbody>
</table>

* Note: -- indicates that a standard deviation cannot be calculated since independent variable is only significant in one cross-validation run.

The average daily temperature is significant in two of the four cross-validation runs. The estimates of its coefficients are consistently positive and do not vary much (as indicated by the standard deviation). The model suggests that the likelihood of corrosion occurrence increases with temperature, as hypothesized in Section 3.3.

The average pipe-to-soil read is significant in one of the four cross-validation runs. The positive log odds ratio for Run 1 is inconsistent with our hypothesis that the least negative pipe-to-soil reads will indicate higher corrosion occurrence (since the values of the pipe-to-soil reads are negative).

The average age of the steel main pipe in the system is considered significant in only one of the cross-validation runs. The log odds ratio of the average age of the steel main pipe is positive, supporting our hypothesis that as the average age of the pipe increases, the likelihood of corrosion occurrence increases.

It is interesting that current density is not considered significant by the logistic regression models since one would expect that current density, like average age, would be an indication for the condition of the pipe and its corrosion controls. Figure 16 presents histograms of the current density within each CPA for each of the cross-validation runs. The horizontal axis gives the
current density output by the rectifiers within each CPA in milliamperes per square foot. The vertical axis is the number of CPAs that have similar current density measurements. The histograms for each run indicate that about 40 CPAs have current density near zero (indicating CPAs protected using galvanic cathodic protection rather than impressed current cathodic protection). It would be interesting to see how expanding the service area investigated so that it includes more CPAs that are protected using impressed current and rectifiers influences the significance of current density.

Figure 16: Histograms of current density within CPAs for each cross-validation in-sample data set
4.3 Comparing the Two Models

To compare the models built using the static data against the dynamic data, we examined both how the in-sample data performed (how well does the in-sample data fit the logistic regression) and how the out-of-sample data performed (how well does the logistic regression predict corrosion leaks using the out-of-sample data). We evaluated the fit of the logistic regressions using the residual deviance and Akaike’s information criterion (AIC). The residual deviance measures the amount of unexplained variation in the model while the AIC penalizes models for using extra parameters. For both the residual deviance and AIC, smaller values indicate that one model fits the data better than another [17]. Table 8 presents information regarding the fit of the data in the various cross-validation runs to the corresponding logistic regressions. The residual deviance and the AIC are generally larger for the static model than the dynamic model.

![Figure 17: ROC curves for the static model](image-url)
Table 8: Fit of data to logistic regressions

<table>
<thead>
<tr>
<th>Data</th>
<th>Run</th>
<th>Residual Deviance</th>
<th>Residual Degrees of Freedom</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static 1</td>
<td>572.6</td>
<td>446</td>
<td>586.6</td>
<td></td>
</tr>
<tr>
<td>Static 2</td>
<td>220.2</td>
<td>193</td>
<td>234.2</td>
<td></td>
</tr>
<tr>
<td>Static 3</td>
<td>620.2</td>
<td>482</td>
<td>638.2</td>
<td></td>
</tr>
<tr>
<td>Static 4</td>
<td>493.1</td>
<td>388</td>
<td>507.1</td>
<td></td>
</tr>
<tr>
<td>Dynamic 1</td>
<td>167.48</td>
<td>140</td>
<td>173.5</td>
<td></td>
</tr>
<tr>
<td>Dynamic 2</td>
<td>61.446</td>
<td>60</td>
<td>65.4</td>
<td></td>
</tr>
<tr>
<td>Dynamic 3</td>
<td>179.65</td>
<td>150</td>
<td>187.7</td>
<td></td>
</tr>
<tr>
<td>Dynamic 4</td>
<td>59.731</td>
<td>61</td>
<td>65.7</td>
<td></td>
</tr>
</tbody>
</table>

Figure 18: ROC curves for the dynamic model
Table 9: Error measurements

<table>
<thead>
<tr>
<th>Data</th>
<th>Run</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Mean Average Percentage Error</th>
<th>Area Under the ROC Curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>1</td>
<td>0.95</td>
<td>0.23</td>
<td>0.35</td>
<td>0.80</td>
</tr>
<tr>
<td>Static</td>
<td>2</td>
<td>0.90</td>
<td>0.22</td>
<td>0.66</td>
<td>0.59</td>
</tr>
<tr>
<td>Static</td>
<td>3</td>
<td>0.43</td>
<td>0.87</td>
<td>0.86</td>
<td>0.69</td>
</tr>
<tr>
<td>Static</td>
<td>4</td>
<td>0.25</td>
<td>0.83</td>
<td>0.96</td>
<td>0.52</td>
</tr>
<tr>
<td>Dynamic</td>
<td>1</td>
<td>0.84</td>
<td>0.47</td>
<td>0.40</td>
<td>0.76</td>
</tr>
<tr>
<td>Dynamic</td>
<td>2</td>
<td>0.81</td>
<td>0.56</td>
<td>0.68</td>
<td>0.70</td>
</tr>
<tr>
<td>Dynamic</td>
<td>3</td>
<td>0.98</td>
<td>0.26</td>
<td>0.44</td>
<td>0.76</td>
</tr>
<tr>
<td>Dynamic</td>
<td>4</td>
<td>0.76</td>
<td>0.56</td>
<td>0.81</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Figure 17 and Figure 18 present the ROC curves for each of the cross-validation runs for the static and dynamic models, respectively. A model that has perfect predictive ability passes through the upper left hand corner (where the true positive rate is 1.0). Note that the ROC curves for the dynamic data tend to be closer to the upper left hand corner than the ROC curves for the static data, indicating that the dynamic model has better predictive ability than the static model. Table 9 presents the error measurements for the various cross-validation runs for both the static and dynamic data. These error measurements provide measures that allow us to compare the predictive ability of the models using the dynamic data to the models using the static data. The error for the predictive ability of the logistic regression models was measured using the sensitivity (the percent of predicted "yeses" that are true), the specificity (the percent of predicted "nos" that are true), the mean average percentage error, and the area under the ROC curve. For a model that can predict perfectly, sensitivity, specificity, and area under the ROC curve are equal to one and the mean average percentage error is equal to zero. Therefore, the higher the sensitivity, specificity, and area under the ROC curve, and the lower the mean average percentage error, the more accurate the predictions from the logistic regression models are.

4.4 Summary

The dynamic data generally have a lower mean average percentage error than the static data. Additionally, the dynamic data generally have a higher area under the ROC curve. Both results
indicate that the dynamic models are better at predicting if a leak will occur than the static models.

Since the soil data are consistently significant in the static models but are neither specific to the CPAs nor recently obtained, it is possible that using new soil property measurements specific to the CPAs of interest will yield better predictive ability. The sensitivity for the dynamic data are generally higher than the sensitivity for the static data indicating that the dynamic data are better for predicting when corrosion leaks are more likely to occur. Conversely, the specificity for the static data is better than that of the dynamic data. However, for both the dynamic and static data, the sensitivity tends to be higher than the specificity. This means that both models tend to be better at predicting where leaks will occur rather than where leaks will not occur.
Chapter 5: Conclusions

5.1 Summary of Results

The occurrence of structural failures due to corrosion is increasing throughout the country as infrastructure installed a half-century or more ago continues to age. There is increased attention towards evaluating current corrosion control practices and identifying and repairing leaks due to corrosion on natural gas pipe. Part of this effort involves identifying areas at greater risk from corrosion in order to better optimize resources and appropriately monitor these areas. Most common methods for identifying at risk areas involve retroactively examining pipe that have large concentration of leaks due to corrosion. This thesis investigates if at corrosion-prone areas can be identified using various operational, environmental, and historical factors.

We found that logistic regressions that model if a corrosion leak will occur in a given CPA result in more accurate predictions than linear, quasi-Poisson, and random forest regressions. We examined two different types of data available: data that changed each year (the dynamic data) and data that did not change each year (the static data). The logistic regression models built with the dynamic data generally predicted corrosion leaks better than the logistic regression models built with the static data.

The length of steel main pipe within a CPA, the percentage of steel main pipe designated as low pressure, the average moist bulk density, the average clay content, the average saturated hydraulic conductivity, and the variation in soil pH were typically significant for the logistic regressions using the static data. The average soil pH, average moist bulk density, and the average saturated hydraulic conductivity did not influence corrosion occurrence as we expected. The length of steel main pipe within a CPA and the average temperature were typically significant for the logistic regressions for the dynamic data. The current density outputted by the rectifiers did not influence corrosion occurrence as we expected.

The residual deviance and AIC have generally smaller values for the dynamic data than the static data, indicating that the dynamic data fit a logistic regression better than the static data. Additionally, the dynamic model predicts if corrosion will occur more accurately than the static model. The mean average percentage error is generally lower for the dynamic model than the
static model and the area under the ROC curve is generally greater for the dynamic model than the static model. For both the static and the dynamic models, the sensitivity tends to be higher than the specificity indicating that the models are better at predicting where corrosion is more likely to occur than where it is more likely to not occur.

5.2 Recommendations for Future Work

Recommendations for future work are as follows:

- The models developed in this thesis only looked at data in a small part of PG&E’s network (16.8% of the steel distribution main pipe for the static models and 9.6% for the dynamic models) that is located in predominantly urban areas. Future work can be done to incorporate data from across PG&E’s entire gas distribution network (including both urban, suburban, and rural areas). Of particular interest is if greater variation in soil data or local maintenance practices would provide information on some areas having higher leak occurrence than others within PG&E.

- Similarly, this model only considers the steel pipe in PG&E’s system (about half of PG&E’s distribution network) and only accounts for leaks due to corrosion. Future work can update model to predict all leak threats as identified by PHMSA for both steel and plastic pipe. PG&E can use the results from more inclusive predictive models to proactively manage leaks.

- These models should be updated by using more current and site-specific soil data and weather data. Specifically, we recommend using soil resistivity data within the CPAs of interest. Additionally, since weather data from only 7 NOAA weather stations were used (with an average 284 miles of steel distribution pipe between each weather station), it would be interesting to see if more granularity in the weather data influences the results of the predictive models.

- Finally, we recommend that PG&E consider updating the models to include the effects of stray current corrosion due to neighboring pipe’s cathodic protection systems and the rail systems. Stray current is current that originates outside of the pipeline’s cathodic protection system. Examples of stray current sources include another pipeline’s
impressed current cathodic protection system or from the direct current powering a nearby rail transit system. The interference of these additional current sources can cause corrosion on the pipeline [7]. Including stray current in the models may provide further guidance as to why some areas are more prone to corrosion than other areas.
Appendix

A Bibliography

B Commonly Used Abbreviations

AIC: Akaike’s information criterion

CPA: cathodic protection area

ECDA: external corrosion direct assessment

MAPE: mean average percentage error

P/S read: pipe-to-soil read

PHMSA: Pipeline and Hazardous Materials Safety Administration

ROC: receiver-operating characteristic

USDA: United States Department of Agriculture