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Introduction

In this report, we analyze the behavior of the hitting time of diffusion processes modeled
by chemical Langevin equations [1].

System Model and Problem Formulation

We consider chemical Langevin equations, which take the form of stochastic differential
equations given by

Ẋ = f(X, k(t)) + σ(X, k(t))Γ, (1)

where X ∈ Rn denote the state variables, k(t) ∈ R is a bounded input and Γ is a
d−dimensional white noise process.

Due to the definition of the chemical Langevin equations, we have that the drift func-
tion f(X,u(t)) is a polynomial functions of the state variables and the diffusion matrix
σ(X,u(t)) consists of square-root functions of the state variables. Thus, the equation (1)
will have a unique, well-defined solution until a stopping time defined by the state X(t)
reaching zero.

In the following section, we consider the time for the state variables X(t) to reach a
lower bound and analyze how this hitting time changes with the initial condition X(0).
Specifically, we define the function r : Rn → R such that

r(x) =
n∑

i=1

1

x2i
,

and consider the minimum first hit time for the process X(t) to reach a lower bound defined
by r(X(t)) = a where a > 0, over a range of inputs k(t). We show that the minimum first
hit time for the process X(t) starting within a given set of initial conditions r(X(0)) = p
increases as p decreases.
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Hitting time behavior

In order to analyze the hitting time of a boundary, we first define the sets

Bp =

{
x ∈ Rn

≥0

∣∣∣∣r(x) = p

}
,

U = {u(t) ∈ R|u(t) = k(t+ α) for all α > 0}.

Figure 1 shows an illustration of the set Bp for n = 2.

We define the hitting time for the process X(t) to reach the set A, starting within the
set I with the given input u(t) as

τI(A, u(t)) = inf{t > 0 such that X(t) ∈ A given X(0) ∈ I and u(t) ∈ U}.

Then, the first time for the process X(t) to reach a lower bound defined by r(X(t)) = a
where a > 0, starting within the set of initial conditions where r(X(0)) = r1 is given by
τBr1

(Ba, u(t)).

We consider minu(t)∈U τBr1
(Ba, u(t)) where 0 < r1 < a. Since X(t) is a markov diffusion

process with continuous sample paths, we have that

τBr1
(Ba, u(t)) ≥ τBr1

(Br0 , u(t)) + τBr0
(Ba, u(t+ τBr1

(Br0 , u(t)))),

where r1 < r0 < a. Then, taking the minimum time over the set of inputs U , we have that

min
u(t)∈U

τBr1
(Ba, u(t)) ≥ min

u(t)∈U
τBr1

(Br0 , u(t)) + min
u(t)∈U

τBr0
(Ba, u(t)),

≥ min
u(t)∈U

τBr0
(Ba, u(t))

Thus, we have that the minimum time for the process X(t) to reach a lower bound is
higher for the set of initial conditions with lower r(X(0)), where r(X(0)) decreases as the
magnitude of the elements of X(0) increases.
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Figure 1: Plot of the sets Bp for p = 1, 10, 1000.
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