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ABSTRACT

A new analytical method is proposed for the study of flow through
highly-loaded turbomachine stages. The technique is used in the present
study in order to: (i) analyze the three-dimensional induced effects of
the viscous blade wakes in an isolated rotor; and (ii) to study the
effects of the passage of distorted flow through an axial compressor rotor
or stator. In Part I (GT&PDL Report Number 141), it is found, in contrast
with the more familiar situation behind aircraft wings, that the induced
effects of the vorticity in the (viscous) wakes are important in practical
axial turbomachinery; for example, the flow angles through highly-loaded
rotors are modified to a significant extent by such wake effects. The
induced disturbances grow in strength within a certain distance downstream
of the blade row before beginning to decay inversely with such axial distance.
In agreement with earlier predictions, pressure disturbances and vorticity
disturbances cannot be decoupled in swirling flow. Similarly, in part II
(GT&PDL Report Number 151), it is found that major differences arise on
comparing two-dimensional with three-dimensional analyses, both for rectilinear
and for annular configurations. Further, only the last of these three-
dimensional analyses can adequately describe the true flow phenomena in
highly-loaded turbomachines. This is because such a description properly
includes both centrifugal effects together with two important distinct types
of vorticity: the trailing vorticity and the vorticity associated with any
stagnation pressure gradients present. Such an analysis predicts, a strongly
persisting downstream pressure field which in many cases increases before
again beginning to decay inversely with the axial distance downstream, both
for free-vortex stators and rotors. By contrast, three-dimensional wheel
flow analysis predicts indefinitely persisting downstream disturbances.
Further, a purely two-dimensional theory indicates for a stator, the downstream
static pressure to be uniform, while even a three-dimensional rectilinear
cascade theory would predict only an exponentially decaying pressure field.
The amplitude of the above persistent downstream disturbances decreases for
free-vortex downstream flow as the number of significant circumferential
harmonics of the inlet distortion increases. These analytical results agree
well with available experimental data recently obtained in annular cascades.



3

ACKNOWLEDGEMENTS

It has been very fortunate and a great privilege for the author to

have had the opportunity to carry out the research described in this thesis

under Professor James E. McCune, the Chairman of the author's Doctoral

Committee, and Professor Sir William R. Hawthorne, Master of Churchill

College, Cambridge University, whose stimulating questions have helped the

author to further understand flows in turbomachinery. Hardly any paragraph

in this thesis can the author claim to be entirely his; any valuable idea

in this thesis is a result of the constant discussion with them and their

critical comments. In addition, their advice, their constant encouragement

and personal warmth have made the author's association with them over the

past two years a very special and memorable one.

Further he would also like to express his sincere gratitude to:

Professor Sir William R. Hawthorne for making arrangements for the

author to be at Cambridge University on three occasions, and for making it

possible for the author to have fruitful and useful discussions on distorted

inlet flows with Mr. N. A. Mitchell of Cambridge University.

Professor James E. McCune, among other things, for editing the major

portion of the thesis with patience and meticulosity.

Professor Jack L. Kerrebrock for his thoughtful and critical comments

and for the valuable discussions with him.

Professor E. M. Greitzer for making available the experimental data

on distorted flow through annular cascades, and for the elucidating dis-

cussions on flow through turbomachines.

Professor M. Finston for the useful discussions.

Professor T. H. Dupree for being on the author's Doctoral Committee.



4

Gayle Ivey for her constant availability and help when needed.

Holly Rathbun for accepting the tedious task of typing this thesis.

Mr. W. K. Cheng for permitting me to use the subroutines he developed

for generating Bessel Functions of high orders.

Throughout his Doctoral Study, the author is supported by a Research

Assistanship made available through the Gas Turbine and Plasma Dynamics

Laboratory which, besides providing competent scientific and technical

education, has an internationally cosmopolitan atmosphere. Undoubtedly,

in the course of pursuing scientific and technical knowledge, students

from many lands, besides interacting academically, have also interacted

culturally; this in itself is an invaluable education.

Finally, the author dedicates this thesis to his beloved Father and

his late beloved Mother who, in spite of their illiteracy, insisted on

his acquiring a higher education.



5

TABLE OF CONTENTS

PAGE

ABSTRACT

ACKNOWLEDGEMENTS

OVERALL SUMMARY

INTRODUCTION

PART I - VORTICITY MODELLING OF BLADE WAKES IN TURBOMACHINERY
(GT&PDL REPORT NUMtER 141)

CHAPTER 1 SURVEY OF PREVIOUS WORKS: OUTLINE OF THE PRESENT
STUDY

1.1 Previous Works

1.2 Present Study

CHAPTER 2 THE BASIC EQUATIONS GOVERNING INCOMPRESSIBLE FLUID FLOW

2.1 Forms of Equations of Motion

2.2 Irrotational Flow

2.3 Beltrami Flow

2.4 Flow with a Gradientin Stagnation Pressure

2.5 General Case of Steady Rotational Motion

CHAPTER 3 VISCOUS BLADE WAKES IN INCOMPRESSIBLE FLOW

3.1 Analytical Formulation

3.2 Determination of the Three-Dimensional
Perturbed Flow

3.3 Matching at the Blade Row

3.4 Downstream Development of the Vorticity Field

3.5 Induction of Downstream Static Pressure
Perturbation by the Blade Wakes

CHAPTER 4 BASIC AEROTHERMODYNAMIC EQUATIONS, RELATIONS, AND THEIR
TRANSFORMATIONS

4.1 Introduction 61



6

TABLE OF CONTENTS (CONTINUED)

CHAPTER 5

4.2 Forms of Equation of Motion

4.3 Irrotational Flow

4.4 Beltrami Flow

4.5 Homentropic Rotational Flow with a Rothalpy
or Stagnation Enthalpy Gradient

4.6 General Case of Steady, Homentropic, Rotational
Flow

4.7 Transformation of Steady Flows

4.8 Yih's Transformation

4.9 The Clebsch-Hawthorne Formulation for Reduced

Flow

4.10 Reduced Flow in Rotating Coordinates

VISCOUS BLADE-WAKES IN COMPRESSIBLE FLOW

5.1 Analytical Formulation

5.2 The Radial Equilibrium Flow

5.3 Determination of the Actual Circumferential-
Averaged Flow

5.3A The Upstream Mean-Flow Correction

5.3B The Downstream Mean-Flow Correction

5.3C Matching of the Upstream Flow and the

Downstream Flow at the Actuator Disc

5.4 The Three-Dimensional Blade-to-Blade Flow

5.4A The Upstream Three-Dimensional Perturbations

5.4B The Downstream Three-Dimensional Perturbations

5.4C Matching of the Flow Field at the Blade Row

5.5 The Downstream Vorticity Field

PAGE

61

67

69

70

71

72

76

78

82

84

84

96

97

99

101

105

110

113

115

119

124



7

TABLE OF CONTENTS (CONTINUED)

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

APPENDICES

FIGURES

REFERENCES

PART II -

CHAPTER 1

CHAPTER 2

CHAPTER 3

5.6 Induction of the Downstream Perturbation Static
Pressure by the Blade Wakes

BEHAVIOR OF BLADE WAKES

NUMERICAL EXAMPLES FOR AN ISOLATED TRANSONIC ROTOR

CONCLUSIONS: PART I

SUGGESTIONS FOR FUTURE WORK

ASYMMETRIC INLET FLOWS THROUGH AXIAL COMPRESSORS
(GT&PDL REPORT NUMBER 151)

SOURCES OF INLET DISTORTION AND ITS CONSEQUENCES

ANALYTICAL DESCRIPTION OF DISTORTED FLOW THROUGH
TURBOMACHINES

2.1 The Clebsch-Hawthorne Formulation

2.2 Two-Dimensional Theory

2.3 Three-Dimensional Rectilinear Cascade Theory

ASYMMETRIC FLOW THROUGH ANNULAR CASCADES

3.1 Description of the Flow Field

3.2 Determination of the Three-Dimensional
Perturbed Flow

3.3

3.4

3.5

3.6

Matching at the Blade Row

Development of the Vortex Filaments in
the Flow Field

The Downstream Static Pressure Field

Downstream Behavior of the Rotational
Disturbances and the Analytical Behavior of
The Integral Z np(z)

PAGE

127

132

138

142

144

146

168

184

1

2

9

9

13

22

34

34

39

42

50

54

55



8

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

APPENDICES

FIGURES

REFERENCES

TABLE OF CONTENTS (CONTINUED)

3.7 Asymmetric Disturbances in Multiple Blade
Rows

QUASI-STEADY AERODYNAMIC LOAD ON THE ROTOR IN
ASYMMETRIC FLOW

4.1 Introduction

4.2 The Shed'Vorticity

4.3 The Trailing Shed Vorticity

NUMERICAL EXAMPLES ON DISTORTED FLOW THROUGH A
BLADE ROW

5.1 Introduction

5.2 An Isolated Stator

5.3 An Isolated Rotor

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

6.1 Introduction

6.2 An Isolated Vane Row

CONCLUSIONS: PART II

SUGGESTIONS FOR FUTURE WORK

PAGE

57

63

63

63

69

71

71

71

75

77

77

77

83'

86

88

90

130



9

OVERALL SUMMARY

An analytical technique, based in part on the Clebsch-Hawthorne for-

mulation, is proposed for use in the predictions of the nature of steady

flows through axial turbomachines. Essentially, the method describes the

internal aerodynamics of the flow in such machines in terms of any vor-

ticity field present or, as in the case of non-homentropic flow, the

reduced vorticity field. .The usefulness and simplicity of this approach

emerges especially clearly in the particular case of three-dimensional

flows, although two-dimensional flows can be similarly analyzed. The

basic formulation is exact, but realistic simplifying assumptions are

made to keep the problem tractable as well as practical. For example,

three-dimensional aspects of the flow resulting from the finite number of

blades or inlet maldistribution are treated as perturbations about the

mean streamlines derived exactly from the available (non-linear) axisym-

metric throughflow-treatments.

In Part I, the proposed method is used to analyze the three-dimen-

sional induced effects of the viscous wakes flowing downstream from the

blades on an isolated rotor (or stator) producing free-vortex mean down-

stream flows encased in an infinite cylindrical annulus. This swirling

downstream flow field is then pictured as being threaded with vortex fil-

aments representing the blade-wakes. Because the vorticity field can be

related to the variation of the thermodynamical properties of the fluid,

the presence of such viscous wakes necessarily implies a variation of en-

tropy from streamline to streamline, or, in the incompressible limit, a

corresponding variation of stagnation pressure. Linearization of the

analysis is achieved by expanding about an axisymmetric throughflow;
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free-vortex mean flow is assumed in the example in Part I. In contrast

to external aerodynamics about wings, the blade wakes so described modify

the flow angles through highly-loaded rotors significantly. This is in

agreement with earlier predictions that pressure disturbances, vorticity

disturbances, and entropy disturbances cannot be decoupled in compressi-

ble swirling flows.

In Part II, this technique is further applied to analyze the passage

of distorted flow through an axial compressor rotor or stator. In this

portion of the work, the actuator-disc limit is taken; this concept is

introduced in order to suppress the individual identity of the blades.

Thus the description of the flow can be taken as steady in absolute co-

ordinates. The flow field is again pictured as being threaded with vor-

tex filaments; in this case the vorticity is either introduced far up-

stream or can be considered to spring from the solid surfaces of the

blades represented by the disc. The resulting linearized analysis yields

an overall description of the blade row performance in the presence of

inlet flow distortions. It is found that major differences arise on

comparing two-dimensional with three-dimensional analyses, both for rec-

tilinear and for annular configurations. In fact, only the last analysis

can adequately describe the flow phenomena in highly-loaded turbomachines

because it includes the centrifugal effects together with two important

distinct types of vorticity. One of these is the trailing vorticity

associated with any spanwise variation of blade loading which may result;

the other is associated directly with the' inlet distortion. The latter

vorticity develops a streamwise component as it swirls downstream, be-

coming superimposed on any shed circulation already present. This
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produces important three-dimensional effects for practical loading. The

result again demonstrates that pressure disturbances and vorticity dis-

turbances are not separable in swirling flow. The results are compared

successfully not only with earlier three-dimensional analyses but also

with recent experimental data.
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INTRODUCTION

Axial-flow compressors are the principal type of compressor used in

aircraft gas-turbine power plants, primarily because of their unique

match with many of the basic requirements of aircraft power-plants. For

example, such requirements include high efficiency, high-air-flow rate

per unit frontal area and high pressure ratio per stage. In addition, an

aircraft engine must be as compact as possible. Engineers in this field

attempt to design compressors which meet as many of these basic require-

ments as possible. In the process, the designer hopes to use a scheme

which is accurate enough so that the cost and time involved in the devel-

opment of the device can be minimized. In any case, the design of an

axial-flow compressor ultimately requires the most accurate available

calculation of the flow through such compressor blade-rows.

Flow through the blading of an axial-compressor is extremely complex,

beginning with the fact that it is inherently three-dimensional in nature.

Moreover, not only does the flow have gradients in the axial,- radial and

circumferential directions, it is time dependent as well. In addition,

viscous effects must be taken into consideration in practical compressor

studies. Thus, the complete governing equations of fluid flow through

turbomachines have not yet been solved. In particular, strictly numeri-

cal efforts to represent the flow through the flow passages formed by the

blades, the hub, and the casing (especially in the full three-dimensional

case) are still in a rapidly developing stage. One thus sees that the

fluid mechanical problem in axial compressors continues to present an

extremely challenging problem in the field of applied fluid mechanics,
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both theoretically and experimentally.

In an effort to provide an increasingly effective basis for designing

and understanding axial compressors, research in this field has been quite

extensive. Even so, there remains a formidable gap between the informa-

tion predictable on purely theoretical grounds and that required for the

actual production of an efficient, practical machine of this type. In an

attempt to close this gap,. various empirical techniques have been devised

that combine comparatively simplified theories with available experimental

data. Even the use of these empirical techniques, however, often requires

a considerable investment of time and effort. Often, for developmental

purposes, whole series of costly tests requiring continued trial and error

become necessary. Consequently, there remains strong motivation for the

search for increasingly efficient and accurate ways of predicting the

fluid behavior within a "turbomachine"*. In the process continued exper-

imental studies are crucial in establishing improved understanding of the

fluid behavior within a turbomachine.

As a comparison, workers studying the air flow past an isolated wing

are often faced with a somewhat easier task compared with those involved

in the analysis of internal flows of the type just described. Even though

the primary problem of both can be described in terms of the determination

of the velocity arising at an arbitrary point on an airfoil surface by the

overall flow fields (pressure, vorticity, ... ) associated with all other

confining surfaces present, the geometrical complexity in turbomachines is

frequently more difficult. Further, unlike incoming flow over an isolated

* In the following, "turbomachine" will be used to refer to the axial

type, unless stated otherwise.
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wing, the flow in many regions of a turbomachine is necessarily swirling

in nature. As already mentioned, an important consequence is that the

behavior of the working fluid can be modified considerably. Furthermore,

the actual flow through a rotor is always unsteady with respect to uni-

form flow in a stator, and vice versa. That is, for example, circumfer-

ential variations (for instance, those brought about by rotor blade wakes),

even though time-independent with respect to the rotor, will inevitably

give rise to unsteady flow in the preceding and succeeding stators.

Because of the arrangement of blade rows, a stator or a rotor almost al-

ways encounters a stream of wakes which have left their generating sur-

faces only a short distance ahead. An analogous situation is not usually

the case for an isolated aircraft wing flying through the free air. In

addition to the above complexities, inlet distortions involving varia-

tions in both the stagnation pressure and stagnation temperature arise;

frequently the phenomena of rotating stall and surge occur as well in

axial compressors under certain operating conditions.

The drive towards a compact and light weight design of an engine for

aircraft application has resulted in an increase of stage pressure ratio

and high mass flow rate per unit frontal area. This certainly requires

that each element of the turbomachine be operating near its aerodynamic

limit. Therefore, the compressor blades must tolerate large relative Mach

numbers so that high mass flow rate and high relative speeds can be

achieved. Investigations on free-vortex rotors have indicated the feasi-

bility of obtaining high efficiency from rotors in which the Mach numbers

at the tips are as high as 1.35, while those near the hub remain subsonic

(transonic rotors). Because the flow is supersonic relative to the rotor
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near the tip, the complexity of the flow has further been increased by

the presence of shock waves (which lead to shock-wave boundary-layer

interaction) in the blade passage. In the transonic regime, the working

fluid has to be considered as compressible. This implies, from a math-

ematical point of view, that the aerodynamic and the thermodynamic equa-

tions which govern the fluid flow are strongly coupled and highly non-

linear. Very often, no known exact non-trivial solution exists and a

linearized perturbation technique is used to obtain solutions.

The work described in Part I deals only with one aspect of the fluid

flow through a blade row encased in an infinite cylindrical annulus;

namely, the three-dimensional behavior of the viscous blade wakes in the

downstream swirling flow and their effect on the performance of the blade

row. It is hoped that this work can in someway aid in the eventual

closing of the "gap" mentioned earlier.

In Part II, an analytical investigation regarding the three-dimen-

sional aspects of asymmetric inlet flows on the performance of turbo-

machines is presented; its results are compared with those of two-dimen-

sional theory and three-dimensional theory neglecting the centrifugal

effects (i.e., distorted flows through rectilinear cascades) to show the

important differences. The theoretical predictions are compared with a

set of available experimental data. The performance of axial compressors

operating under distorted inlet flows has been widely studied because of

the effect of inlet flow distortion on compressor stall, mechanical reli-

ability and efficiency.

The theoretical work is considered entirely from the point of view

of the fluid flow through the blade row. Both the incompressible flow
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and the compressible flow (except for the inlet distortion problem) are

considered but the working fluid is assumed to be inviscid outside the

blading. The equations of motion for the flow of a real fluid in an

axial flow compressor are nonlinear three-dimensioned equations. Accord-

ingly, realistic simplifying assumptions are made so that fruitful and

tractable analysis is possible. For instance, linearizing approximations

are introduced to keep the, mathematical problems tractable. Such proce-

dures are necessarily conditional upon obtaining physically valid flow

descriptions even though the problem may remain very complex. Since sol-

utions of aerothermodynamic equations for the flow with small deviation

from free-vortex motion often provide a useful basis for turbomachine

design (even though compressors have for some time been designed on other

bases), attention is focused here on obtaining solutions for nearly free-

vortex motion. Extension to more general mean flows is feasible and

underway in a separate study.
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PART I

VORTICITY MODELLING OF BLADE WAKES IN TURBOMACHINERY
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CHAPTER 1 - SURVEY OF PREVIOUS WORKS; OUTLINE OF THE

PRESENT STUDY

1.1 Previous Works

Many theoretical investigations of varying degrees of precision have

been made over the past several years regarding the behavior of fluid

flow in axial turbomachinery. The difficulties in obtaining solutions

from the equations of fluid motion which describe the full three-dimen-

sional flow pattern have required most workers in the field to seek a

simpler, less general, but still physically adequate description of the

flow. This search has led to the development of several classes of sim-

plified theories; here they are classified according to the essential

assumptions on which they are based.

One of these is the so-called two-dimensional strip-theory, which

ignores the aerodynamic interference between different radii along the

blading; this implies that the flow field at each radius can be considered

as virtually the same as that through a two-dimensional cascade.

Another useful approach is that of radial equilibrium theory , which

assumes that the radial movement of the fluid particles occurs only on

passage through the blades and not in the spaces between the blade rows.

Experimental investigations have shown that this is frequently not a suf-

ficiently accurate description. Since radial equilibrium theory does not

permit any change of velocity distribution in the immediate neighborhood

of the blades, one is led to alternative analyses.

Among these alternative analyses are those which treat three-dimen-

sional effects on a circumferentially-averaged or axi-symmetric flow

basis . Phsycially, this implies that the blade-row is made up
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essentially of an infinite number of infinitesimally thin blades, the

chordwise loading of which may be given but must be averaged circumfer-

entially. Further "actuator-disc" theories assume that the blade row

can be thought of as having been shrunk axially into a discontinuity, and

the flow deflection achieved in an infinitesimal axial distance. This

assumption of axial symmetry, also implies that the trailing vortex field

is similarly circumferentially uniform and not (as is actually the case)

in the form of discrete wakes. Thus, axially-symmetric "throughflow

theories" provide the incoming stream direction, and its magnitude, over

the blade span. With this information an appropriate blade form may be

designed; in this process it is often assumed that the flow about the

blade at one radius does not interfere with the flow about the blade at

another radius (analogous with strip-theory). Hence, this class of the-

ories not only neglects the circumferential non-uniformities, but also

assumes quasi-two-dimensionality at each radius (in that the relation be-

tween the cascade geometry and aerodynamic parameters such as lift and

turning angles are taken from cascade data and correlation analyses).

The mathematical difficulties involved in the inclusive treatment of

the true three-dimensional effects (including discreteness of the actual

blading and their wakes) has led many researchers to analyze exclusively

some particular aspects of three-dimensional flow effects. These analyses

include the so-called secondary flow theories and various shear-flow

2,3455
theories2 . Some of these studies have been quite successful in

describing and predicting certain three-dimensional flow phenomenon due

to spanwise non-uniformites in incoming stagnation pressure (or axial

2 a3
velocity), spanwse variation of blade loading and finite blade spacing.
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However, most of these theories are based on a rectilinear cascade model

and have not previously been modified for application in an actual an-

nular cascade situation.

The discrepancies observed between the actual flows in axial turbo-

machines and those predicted by the above simplified theoretical models

increase in magnitude with the existing trend toward more compact and

efficient compressors. Consequently, relaxation of some of these simpli-

fying assumptions is necessary, in spite of the resulting increase in

analytical complexity, in order to improve the accuracy of flow predic-

tions.

Wu6 developed a "three-dimensional", inviscid, compressible flow

theory for subsonic and supersonic turbomachines with finite numbers of

blades of finite thickness. His theory is applicable to axial-, radial-,

or mixed-flow turbomachines for both the direct and inverse problems.

However, the computational method of his theory, which consists essen-

tially of an iterative solution for the flows on two intersecting families

of stream surfaces, seems to be relatively demanding in terms of actual

analysis. Furthermore, Wu's approach suffers from considerable difficulty

in making clear the essential physical features of the flow.

The relaxation of the assumption of axial symmetry requires the

replacing of actuator disc model cascades of blades with infinitesimal

spacing by blade rows with finite spacing. The first consequence of

this, of course, is that the flow can no longer be considered as circum-

ferentially uniform and with this fact a marked increase in mathematical

difficulty arises. Physically one expects that the fact the trailing

vorticity is concentrated in the discrete blade wakes would become
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significant for practical as well as for large spanwise variation of

blade loadings. The resulting class of new three-dimensional theories

has adopted a concept of small perturbation about exact (non-linear) axi-

symmetric throughflow theories. One of the earlies theories of this type

(which, however, did not use exact axisymmetric throughflow theories as

the base flow) was that developed by McCune7 ,8 for non-lifting rotors in

the subsonic, transonic, and supersonic regimes. The blades were assumed

to be thin so that only weak disturbances are induced in the oncoming

flow. That theory establishes the validity of applying two-dimensional

strip theory and cascade data to the design of three-dimensional rotors

and stators in the purely subsonic and supersonic regimes; however, for

transonic rotors, McCune's theory indicates that the aerodynamic inter-

ference between different radii is indeed so large that the cascade

theory may no longer be applicable.

Davidson9 derived the velocity potential for rotating lifting-spokes

and attempted to describe the subsonic, transonic and supersonic flows

10through a rotating propeller in a cylindrical duct. Okuroumu and McCune

developed a linearized three-dimensional theory for a lifting transonic

rotor which induces slight turning of the flow and low pressure ratios

using a velocity potential similar to Davidson. In all these cases, the

trailing vorticity emanating from each blade was assumed to be convected

by the unperturbed flow. Again, it was found that this theory for tran-

sonic rotor did not correspond to the cascade theory. This lifting line

theory still retains some elements of the assumption of local two-dimen-

sionality regarding the blade geometry and the lift force at each radius,

due to the use of lifting line concept. Because of this, its use for a
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transonic rotor becomes limited due to the strong three-dimensional

effects already mentioned. In consequence, Okuroumu and McCune 11,1 2

developed a linearized lifting surface theory for a lifting rotor in the

subsonic and transonic regimes by an appropriate chordwise distribution

of lifting lines. Okuroumu's and McCune's theories10,11,12 are limited

to the design problem. To eliminate this limitation, a Prandtl-type of

lifting line theory was de.veloped by McCune and Dharwadkar13 for subsonic

lifting rotors, permitting treatment of both the "design" and "off-design"

problems; it is also shown there that whenever there is a spanwise vari-

ation of loading, solution is obtainable only if the spanwise derivative

of the loading vanishes at the hub and the tip. This is also in agreement

14
with Falcao's result

Namba15 developed a lifting surface theory for axial compressor

blades. The theory treats the design and off-design problems, even in

the transonic regimes. He also emphasized the conclusion that cascade

theory is only questionally applicable in the transonic regime.

The above class of three-dimensional theories only admits treatment

of very weak disturbance of the far upstream flow; consequently, it is

restricted to the case of lightly-loaded rotors, a fact which restricts

their usefulness in practical compressor design.

Quite recently, a relaxation of this limitation has been made.

McCune and Hawthorne16 have developed a "quasi-linear" theory for the

three-dimensional inviscid flow through a highly-loaded turbomachinery

cascade of lifting lines using a rectilinear model; this would correspond

to flow through practical rotors which induce large turning angles and

large pressure ratio. Analysis is limited to the case of incompressible
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flow, and to the case for which the spanwise variation of blade loading

is small. Morton17 extended the analysis for this model to compressible

flow. The resulting trailing vorticity, being concentrated in the dis-

crete blade wakes and the induced disturbances are convected by the mean

flow. Cheng18 further extended their analysis to incompressible flow

through a highly loaded annular cascade which induces a nearly free vor-

tex flow in the mean downstream of the blade row. More recently, Adebayo

and McCune19 have developed a theory which removes the limitation of

small variation in spanwise blade-loading; there the parameter, the inverse

of the blade number, must be small. Recently, Cheng20 has extended his

annular analysis to the case of a transonic rotor.

This latest class of three-dimensional theories removes the restric-

tion of small disturbance in the incoming flow of the earlier theories;

but it is limited to the so-called Beltrami flows in which the trailing

vorticity is in alignment with the mean streamlines. Furthermore, the

flow field is assumed to be inviscid and homentropic throughout, i.e.,

the flow is irrotational except in the discrete blade wakes. Therefore,

it does not include any of the real flow effects, specifically, the cir-

cumferential non-uniformity resulting from the effects of losses at the

blades. These losses are usually a result of viscous interaction between

the working fluid and the solid surfaces in the thin boundary layers over

the blade surfaces; another source of such losses could be due to shock-

wave boundary layer interaction in transonic rotors. Exclusion of such

"boundary-layer" wake effects, which can dominate the three-dimen-

sional effects in turbomachines, in some regimes,may lead to an erroneous

estimate of local flow angles at and near the blades.
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Recently, Kerrebrock21 has examined the general problem of the be-

havior of small disturbances in a strongly swirling compressible flow.

He showed that pressure disturbances can originate from any of a number

of disturbances such as vorticity and entropy disturbances.

1.2 Present Study

In the work described here, an attempt is made to construct an ana-

lytical model to consider the effects of the "boundary-layer" wakes on the

performance of blades in practical turbomachinery. As such, it attempts

to provide a necessary generalization of the works cited above in Ref-

erences 16 to 20. As in an isolated airfoil, in consequence of the action

of viscosity, vortices with axes parallel to the direction of the span are

produced continuously in the boundary layers on both sides of the blades.

At the termination of the boundary layers (close to the trailing egde of

the blade unless large scale separation occurs beforehand), these span-

wise vorticies become free and are carried along by the general motion of

the fluid, forming what will be termed here vortical viscous wakes or,

"blade-wakes". It is well known that in non-steady motion, another class

of spanwise vorticies, related to the rate of change of circulation on the

blade, appears in the wake. Under steady motion, which we will be mainly

concerned with here, this class of spanwise vortices can be neglected;

consequently the vortex strength at the trailing edge must vanish in order

to satisfy the Kutta condition of the continuity of pressure at the trail-

ing edge. By Kelvin's theorm, of course, the net rate of vorticity flux

from boundary layers on either side of the blades into the wake must be

zero (even though blades in turbomachinery which induce flow angles of

practical interest generate thicker boundary layer on the suction side
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than on the pressure side). In the external aerodynamics of an isolated

airfoil, only the spanwise vorticity resulting from the rate of change of

circulation in unsteady motion together with any possible shed circula-

16-20
tion are of importance while those originating from the boundary layers

on the airfoil surfaces are of relatively smallsignificance. Suchca conclu-

sion cannot be carried over into the internal aerodynamics of the axial

turbomachinery; this is in fact one of the consequences of Kerrebrock's

analysis2 1  Indeed, the two may be of equal significance. This is a

result of the fact that the corresponding inertia force field, set up by

the highly swirling flow through turbomachines, can significantly modify

the behavior of such wakes. As already emphasized, such modifications

of wake behavior can bring about a significant change of flow angle at

the blades.

In the analytical model that is to be developed here, the effects of

losses within the blade row are included through the variation of entropy

across the stream surfaces as obtained directly from available data.

Hence, the presence of the blade-wakes makes the flow field downstream

of the blade row non-homentropic. For the range of Reynold numbers

encountered in flow through turbomachines, departure of flow-field from

complete homentropy is small. Consequently, the small disturbance of the

flow introduced by this departure from complete homentropy can again be

described in terms of a linearized perturbation analysis about the axi-

symmetric throughflow (as in References 16 to 20). Furthermore, the

present analysis is confined to the case of blade row which induces a

19free-vortex flow in the mean, although this restriction can be relaxed

It is argued that the formulation can properly neglect the viscous forces
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away from the blades; i.e., it can neglect the resulting diffusion of the

wakes in the downstream flow field.

When compressibility effects are negligible, the viscous interaction

between the working fluid and the blade surfaces may be considered to

result in a loss of stagnation pressure. Consequently, the blade wakes

may be considered to be regions of low stagnation pressure.

In essence, the strategy used in the present formulation involves the

description of the internal aerodynamics of the turbomachines in terms of

an appropriate vorticity field. Once this is done, the resulting flow

will simply take care of itself.

t In many cases Beltrami effects and those discussed in this page 23

are actually competitive in practical machines.
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CHAPTER 2 - THE BASIC EQUATIONS GOVERNING INCOMPRESSIBLE

FLUID FLOW

2.1 Forms of Equations of Motion

The appropriate forms of the equations governing fluid flow are de-

pendent upon the kind of assumptions made in the course of practical anal-

ysis. Three-dimensional flow of a non viscous, incompressible fluid

through a turbomachine is governed by the following set of basic laws of

fluid flow. We start with the case of flow through a blade row rotating

at a constant angular velocity, w, about its own axis. The coordinate

system used is a right-handed cylindrical one, (r,O,z) as shown in Fig.

la; in this system, the axis of a turbomachine coincides with the z-axis.

From the principle of conservation of matter, the equation of continuity

is

(2.1)

where W is the velocity of the fluid relative to the blades.

Newton's second law of motion gives, for a rotating fluid

-W +2 0 vp ,(2.2)

where p is the density of the working fluid, p is the static pressure,

and the operator D/Dt refers to differentiation with respect to time fol-

lowing the relative motion of each fluid particle. We note at this point

that the boundary walls in an axial turbomachine are generally surfaces

of revolution and the relative flow may in many cases be approximated as

being steady. Therefore it is convenient here to use a relative cylindri-

cal coordinate system (r,O,z) with e measured with respect to the rotating
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blade (Fig. lb). By the use of the identity

+ (W- V)W =.V + w __ x(vxW) (2.3)

and the definitions [note also, Eq. (2.6), given below]

-- 2-(9X ~Y) V --\e WT-(24 P P

Eq. (2.2) can be rewritten in the form

~-w+X(VXW)+ 2 W X/ V -V (2.5)

The quantities P and P* are the stagnation pressure and the "rotary stag-
t t

nation pressure", respectively. An alternative form of these dynamical

equations, explicitly involving S2, the vorticity of the absolute motion,

can be obtained as follows.

With the z-axis parallel to w, we have

V + X T W & + )Te , (2.6)

where V is the absolute velocity of the fluid, and e0 a unit vector along

0. Hence,

VX f VXw + VX(Wxx)-

But

vx v) w - ( c,j v),r + w (v-ow 0
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therefore,

- .VXV =Vx +2 . (2.7)

Using Eq. (2.7) in Eq. (2.6) results in an alternative form of the

equation of motion,

6 - .... XL . (2.8)

Upon employing Eq. (2.4) together with the dot product of Eq. (2.8)

with W, we obtain

P) a ~(P) .(2.9)

1t ?P

For an isolated blade row, or if the blade rows are placed far apart

and no trailing vorticies are shed from the preceding blade rows (or in

cases for which such effects can be neglected), the fluid properties at

a particular point relative to the blade can be taken to be essentially

invariant with respect to time. In such situations, Eqs. (2.8) and (2.9)

become

)-6 V ,(2.10)

with

W-V =0. (2.11)

Thus, the quantity (P*/p) of the fluid remains constant along the
st

streamlines within the stated limitations. This invariance of (P*/p)
t
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along relative streamlines implies that the rate of change of actual

stagnation pressure along such streamlines is given by the product of the

angular speed of the blade and the rate of change in angular momentum of

the fluid element along the streamlines. This is of course the well

known Euler turbine equation, applied to incompressible fluids.

For the flow through a stationary blade row w = 0 and W reduces to

V while (P*/p) becomes (P /P). The equation of continuity and motion then

take the more familiar forms

V-V = 0 ,(2.12)

(2.13)
+L P

respectively. We further note that Eq. (2.9) reduces to

3 (1 + V ......) .-... P (2.14)
at P ~ P at P

implying (for the inviscid case discussed here) that the stagnation pres-

sure of the fluid can only be changed along streamlines through an un-

steady process; as already suggested, these can often be taken to be small

in turbomachine practice.

Thus, for steady absolute flow through a stationary blade-row, Eq.

(2.13) becomes simply

V)fL 7_ \ . (2.15)
P 1

while Eq. (2.11) becomes

\ P \ =O, (2.16)
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confirming that the stagnation pressure Pt remains constant along absolute

streamlines for the stator cases.

It is evident from Eqs. (2.10) or (2.15) that the vortex filaments

and streamlines lie on surfaces of constant (P*/p) or P /p). Such sur-
t t

faces, so formed by the interweaving of streamlines, and vortex filaments,

are the familiar Bernoulli surfaces.

Because of the close similarity between the set of Eqs. (2.1), (2.10),

(2.11) and that of Eqs. (2.12), (2.15), (2.16), the following analyses

will turn out to be applicable to the flow governed by both sets.

2.2 Irrotational Flow

When the rotary stagnation pressure is constant throughout, we have

dX - =. 0 (2.17)

In particular, if the flow is one in which the vorticity Q = 0 every-

where, so that the velocity may be written in terms of a velocity poten-

tial 4 as

V~ V (2.18)

Eq. (2.17) is automatically satisfied and the continuity condition (2.12)

simply yields Laplace's equation

V =0. (2.19)

The solution of (2.19) simply describes a classical irrotational flow

field. Frequently the velocity potential satisfying Laplace's equation,

together with an appropriate set of physical boundary conditions, is

sufficient to describe (outside of boundary layers) a uniform flow field
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upstream of an isolated blade row. It would also describe the downstream

flow field if the isolated blade row imparts a radial variation of tan-

gential velocity of the fluid in a downstream z-plane varying similarly

to that of a potential vortex (i.e. inversely with r). This corresponds

to constant blade circulation, which is consistent with Kelvin's circula-

tion theorm.

2.3 Beltrami Flow4,5

If the vorticity in the flow field is not zero but lies along stream-

lines, then Eq. (2.17) would still be satisfied. This corresponds to the

case of so-called Beltrami flow. Such a flow would exist downstream of a

blade row which imparts a radial variation of tangential velocity (swirl)

of the fluid at a downstream z-plane which departs from that of the above

simple potential vortex. In such cases the blade circulation varies along

the span and vorticity is shed 'from the trailing edge to the fluid down-

stream in the direction of the exit velocity, again satisfying Kelvin's

theorem.

Let us dwell on Beltrami flow further as we will need it in analyzing

distorted flow through a blade row in Part II of the present study. The

general solution to Eq. (2.17) is given by

VXY -- 7\W (2.20)

where X is any scalar function of (r,O,z). Since Q is always a solenoidal

vector, and by virtue of Eq. (2.1), the divergence of Eq. (2.20) yield the

restriction

\W.*VN , ((2.21)
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implying that X remains constant along a (relative) streamline. A simple

physical interpretation of X is obtained by integrating Eq. (2.20) over

an open surface S bounded by a stream tube giving

= -dS / wdS

Hence, X gives the circulation about a stream tube through which the fluid

volumetric flow rate is unity.4

By virtue of Eq. (2.1), the velocity vector W is also solenoidal

here; thus it can be expressed as

W4V"(X X , (2.22)

where cv, are scalars. Physically, this means that the intersections of

surfaces of constant ca and are the streamlines. Consequently, integra-

tion of Eq. (2.20) along such streamlines yeilds the general result

)\= (o,8) (2.23)

Because, by definition, 0 is solenoidal, we can also write

Q- VsXV (= V i An) (2.24)

where s, and f are scalar quantities still to be determined. Because of

Eqs. (2.22) and (2.23), s and F also can depend on a and only.

Eq. (2.24) shows that a Beltrami flow can be described by a velocity

vector V of the form

(2.25a)=v#1 +SVP
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or

V V+1:> - FVS (2.25b)

Since SV1 + rvs = V(Fs), the choice of either (2.25a) or (2.25b) is a

simple matter of the differing definitions of and $ll. Application of

the continuity condition gives

V2 -VS-V f-- SV2p (2.26a)

or, alternatively

V2 r-=VSVF+pVzS (2.26b)

Upon the use of appropriate boundary conditions, the corresponding results

obtained from either of these equations, applied to (2.25a) or (2.25b),

yield, as required, an identical determination of V.

2.4 Flow with a Gradient in Stagnation Pressure

In general, the rotary stagnation pressure P* is not constant through-
t

out but varies from streamline to streamline so that the vorticity is non-

zero [recall Eq. (2.10)]. Even for uniform flow upstream of an isolated

blade row, the gradient of stagnation pressure downstream of it is not

zero in practice because of the inherent viscous interaction of the work-

ing fluid at the blade surfaces. A way of analyzing such rotational flow

22,4is by the use of the so-called Clebsch Transformation, which expresses

the velocity vector V as

Vj = (2.27a)
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or

V=VC -- Va- (2.27b)

Here, the p's, a and T are again scalar functions to be determined. The

vorticity Q is given by

VXV Oa- XVT ,(2.28)

guaranteeing once again that the identity V - = 0 is satisfied. In

this case the intersections of the surfaces of constant a and T are the

vortex filaments of Q. Lamb22 showed that there are an infinite number

of ways of selecting the functions a and T. Hawthornehowever, suggested4

that a useful physical meaning could be attached to the Clebsch Transform-

ation by choosing a = (P*/p) so that one of the two surfaces is a
t

Bernoulli surface. Substituting for this choice of a in Eq. (2.28) and

taking advantage of Eq.0 l0), we obtain the result that, for such a

choice,

YQ =(\W -VT)-0- , (2.29)

Here, we have used the fact that the vorticity Q lies on surfaces of con-

stant T [note that Q * VT = 0, according to (2.28)]. Hence, from (2.29),

w.v' I. 
(2.30a)

or

S) ,(2.30b)
as
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where s measures the distance along a particular stream trajectory. Thus,

T .. JSiS , (2.31)

where the integral is taken along a stream trajectory. Eq. (2.31) can be

interpreted as giving a measure of the time taken by surfaces of constant

T to drift through a distance (s-s ); consequently, such surfaces are

termed drift surfaces (after Darwin 23) and T is termed the drift func-

4, 241,25
tion4 . Because the fluid particles are frozen on vortex filaments

in this flow model, any surface of constant T can specify a particular

reference vortex filament after time T, upon appropriate choice of T at

S0'

Upon integrating Eq. (2.28), and substituting the choice a = P*/p,
t

one obtains

V =V+' + 7 ,(2.32a)

~ P

or

zV (2.32b)

These results describe a flow for which the rotary stagnation pressure

varies from streamline to streamline, in contrast to Beltrami case dis-

cussed earlier. The imposition of the continuity condition gives now

v% = -V . - , (2.33a)

F P
or
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V2 .C V .V + TVZi, (2. 33b)
IP P

the solution of which together with an appropriate set of physical bound-

ary conditions, give either of the velocity potentials, % or $ll, and

hence V.

2.5 General Case of Steady Rotational Motion 2 6

Reviewing Sections 2.2 to 2.4, one sees that the velocity vector V

for the general case of a steady rotational flow may be written usefully

in the general form

V V+ + (2.34)

Combining the results of both discussions, we have more generally

-1L iV x VV x A = + .t

=VS xVI +V(4( X T , (2.35)

with

x X 01 "_ 7(a (2.36)
~-P

The vector A can be written either as

AVT_. t+SVF , (2.37a)
P

or

A = v- t - V'S, (2.37b)
P

since the freedom of choice previously discussed still obtains. Both forms
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are useful, particularly for physical interpretation of the final results.

The application of the continuity equation gives, in this more gen-

eral situation,

VN = -V- A = -V- -r - !Vz -VS-VP - S V (2.38a)

or

-. = zVT.VAi XVKl +v pvS*rv2S (2.38b)
1' P

the solution of which, together with suitable boundary conditions, gives

the velocity potential 4. One example of such a flow would be that down-

stream of an isolated blade row where the flow upstream of it has a grad-

ient in stagnation pressure.

Although these equations are exact formulations of the steady, rota-

tional flow of an incompressible, inviscid fluid with specified boundary

conditions, exact solutions of them are problably unattainable on an

analytical basis. Appropriate approximations can be made for practical

situations when attempting to obtain solutions to describe a variety of

flows of engineering interest.
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CHAPTER 3 - VISCOUS BLADE WAKES IN INCOMPRESSIBLE FLOW

3.1 Analytical Formulation

Consider the flow through an isolated rotor, encased in an infinite

cylindrical annulus, using a right-handed cylindrical coordinate system

(r,e,z) in a duct-fixed system (Fig. I.la). For upstream of the rotor

(rotating at an angular velocity w) let the flow be uniform and have a

purely axial velocity, further, let us specify, in the downstream region,

that the rotor has set up a free-vortex mean flow. In this case the fluid

properties at a fixed point can be regarded as steady relative to the

blades; therefore it is convenient to use a relative cylindrical coordinate

system (rG,z) with 0 measured with respect to the rotating blade (Fig.

I.lb). When compressibility effects are negligible, it is appropriate to

regard the viscous interaction process between the working fluid and the

blade surfaces as one leading to a loss in rotary stagnation pressure P*t

(corresponding to a loss in stagnation pressure Pt in a stationary blade-

row) within the thin regions of boundary layer on the blade surfaces.t

Outside this boundary layer, the value of P* is the same as that of thet

far upstream value. Consequently, downstream of the rotor, the wakes are

regions of low rotary stagnation pressure P* and thus P* has a circumfer-t t

tFor a flow through a two-dimensional cascade, it is always true that

there is a defect of stagnation pressure (or relative stagnation pressure

in rotating cascade) within the wakes. However, in annular cascades,

strong radial transport of fluid particle may gain sufficient work (moving

along a streamline) to offset the loss due to the viscous interaction on

the blades thus resulting in an excess of stagnation pressure within the

wakes.
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t

ential variation as shown in Fig. 1.2; in practice, the profile for such

variation would change as one proceeds downstream because of viscous dif-

fustion and mixing of the wakes. Such effects are not considered in the

theory to be developed here, since they do not materially effect the

results in most practical cases.

Further, for the range of Reynolds numbers normally encountered in

flow through turbomachines.under design conditions, the difference in the

values of P* within the wake and outside the wake can be considered to be
t

small in comparison with the incoming dynamic head (1/2 pW 2) unless

boundary layer separation occurs. An experimental illustration of this

type of loss, as a function of Reynolds number, is shown in Fig. 1.3. As

a result, the vorticity introduced by the presence of the wakes is small

and the flow can be separated into a circumferentially averaged irrota-

tional flow of zeroth order, V (or W in the relative frame), and a three-

dimensional rotational perturbation flow, V of order c, where, for example,

0., (3.1)

Hence, the three-dimensional aspects of such a flow can readily be

considered as a perturbation about the circumferentially-averaged mean

flow; the latter, however, can be described as precisely as desired or

appropriate. In approximation Eq. (2.10) becomes

wX 
(3.2)

P

with

tSee footnote on previous page.
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. = i X ,V 7 X VT_ ,(3.3)

where we have omitted here the second part of Eq. (2.35)(the Beltrami

component of vorticity) since we are concerned in this Section with that

part of the vorticity arising only from the gradients in rotary stagna-

tion pressure P* just described. We note that the approximation leading
t

to Eq. (3.2) also results in

j.V Pt =0 ,(3.4)
~P

indicating that P* remains, within this model, constant along a mean
t

streamline of the relative flow. It follows, using Eqs. (2.32a) and (3.3),

that

VVT , (3.5)

where P* is the mean value of the rotary stagnation pressure and is con-
t

stant throughout for the situation under discussion. As mentioned above,

any variation in (P* - P*)/p will be of the order E; consequently, con-
St

sistent with the order of approximation used here, it is justified to

replace the drift function T in Eqs. (3.3) and (3.5) by that of the mean

flow T. That is, the perturbed flow field can be evaluated (in part) by

the use of the approximate drift function T obtained from the mean flow.

Thus, from Eq. (2.31),

S
C .... (3.6)
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For free-vortex downstream flow considered here the mean velocity vector

W behind the rotor is given by

W + -c)z e. (3.7)

where (V r) and V are constant. It is then obvious that we can now write

zz
- = - =(3.8)

or

-do (o -Bar)) (9

40(r, z.o)

where in the first case we have made a specific choice of the "constant"

of integration which corresponds to "beginning T at the rotor plane, z=0.

Because (P* - P*) remains constant on streamlines of the relative
t t

-dmean flow, it can be taken to have an arbitrary dependence on r and o

(but no explicit z-dependence), i.e.,

+ ._ .. 6P -( d (3.10)

P P P / (

where we have defined the developing downstream "swirl angles"

0(4 K --).. (3.11)

along which the mean (relative) streamlines lie. In this expression

K 0 = (I0r)/Vz is used to indicate the relative strength of the mean swirl.

To assist in the determination of the correct analytical form of (6P*/p)VTt
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which will correspond closely to a realistic flow for this case, we first

consider the nature of the downstream vorticity field. We have indicated

in Chapter 1 that vorticies within the boundary layers on the blades have

their axes parallel to the direction of the span [this is true so long as

if the boundary layer is in fact two-dimensional]. However, the

boundary layers on the blade surfaces are in general three-dimensional

(sheared), with varying degrees of flow in the radial direction; this

implies among other things, that (6P*/p) assumes a complex dependence on

radial location. Such shear in turn would give rise to vorticity in the

tangential direction. Hence, at the exit plane of the blade row, there

will in general exist radial vortex filaments as well as tangential vortex

filaments. However, we should not expect axial vortex filaments, as shown

below.

In fact, by taking the drift function T to be given straight for-

wardly by Eq. (3.8), we obtain the vorticity field, Q = , down-

stream of the rotor in the relatively simple form

K -_ (3.12a)

- (3.12b)

X - (3.12c)

P az

Further, at,,the exit plane of the rotor, z=0, the vorticity field reduces to
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~iK~*~*)~ oI(3.13)
Thus, using the drift function T in this form, we can in fact obtain only

radial and tangential vortex filaments at the exit plane of the rotor, as

expected.

For more involved blade geometries, by contrast, the vorticity field

Q downstream of the rotor could be obtained alternatively by using the

drift function T as given in Eq. (3.9). This "more general" result is

Y- (3.14a)

(ve-cr) P

[2Ve(9-Q -Tr *e--oTr)j ~ I M ( ) (3.14b)

At a particular circumferential position (r,0,0) in the exit plane of the

rotor, the vorticity field there would be, correspondingly,
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(3.15)

We thus see that the use of the drift function T according to Eq. (3.9)

can give radial and axial vortex filaments at the exit plane of the rotor

in contrast with the results (3.13). Clearly, this is not the case nor-

mally to be expected in axial turbomachinery. We conclude for our pres-

ent problem that use of the drift function T as given in Eq. (3.8) in des-

cribing the vorticity field introduced by the presence of the blade-wakes

is both appropriate and convenient for most axial turbomachines.

It then follows that Eq. (3.5) becomes simply

= V$ + (3.16)

This implies that, in conventional configurations, gradients in the rotary

stagnation pressure due to the blade wakes can be described in terms of

an appropriate distribution of vortex filaments emerging at planes of

constant axial location.

Obviously, for any practical configuration the ultimate determination

of the three-dimensional perturbed flow requires not only an appropriate

choice of T, but also detailed knowledge of (6P*/p). Within the bladet
*

wakes, there is a defect in (P*/p); outside of the blade wakes, (P*/p)
t t

*Recall that the present discussion is restricted to the incompressible case,

see foot note on Page
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essentially assumes that of the upstream value. In particular, on sur-

faces of constant radius r,

- + V (3.17)

where the superscripts "u" and "d" refer to an upstream station and a

downstream station respectively, while the subscript "w" refers to a

point within a particular blade wake region. Eq. (3.17) indicates that

the difference in the rotary stagnation pressure caused by the viscous

interaction process is precisely the same as that occuring in the relative

stagnation pressure. It is conventional and convenient to measure the

2 uloss in stagnation pressure in units of the incoming dynamic head (1/2 pW2)

since such losses will be dependent on the magnitude of the incoming vel-

ocity.

In the experimental cascade data, such losses are conventionally

measured by the mean stagnation pressure "loss coefficient", w, defined

by

C P.L (3.18)

This quantity is dependent upon the incidence angle, the blade profile

and the inlet Mach number. Its typical variation with incidence angle at

various inlet Mach numbers is shown in Fig. 1.4.27 These curves show,

for low-speed rotors, that the mean loss remains fairly constant over a

reasonably wide range of incidence, rising rapidly when the incidence has

large positive or negative values. At these extreme incidences, the flow

of the air around the blades breaks down in a manner similar to the stalling
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of an isolated airfoil.

To an extent, (6P*/p) is directly related to the negative of
t

[(1/2 W2 )u w] and is.thus obtainable from available experimental cascade

data.27 Actually, however the variation of 6P*/(1/2 pW2)u can be larger
t

than that which the mean stagnation pressure coefficient w would suggest.

Its typical variation is shown in Fig.I.5. Hence, upon using of exper-

imental data, 6P*/p can be totally prescribed. (A more elaborate proced-
t

ure would be the use of boundary layer analysis in the blade passages to

obtain an estimation of viscous losses within the blade row directly.

Such an analysis is not be be attempted here as it is the subject of

extensive research elsewhere.)

Because of the circumferential periodicity inherent in the geometry

of turbomachinery, we can write in general

() (3.19)

where B is the number of blades on the rotor and the real part is implied

in Eq. (3.19). We also note that Eq. (3.19) guarantees that the integral

of vorticity Q from blade to blade is identically zero; this is consistent

with the fact, previously mentioned, that no net vorticity flux is shed

into the wakes in steady flow (a use of Kelvin's theorem). In fact, this

is necessary for the Kutta's condition to be satisfied at the trailing

28
edge of the blade.

Collecting all these results for the downstream flow field, we have

an expression for the downstream perturbation velocity of the form
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(3.20)

For the present case, upstream of the blade row the perturbation

velocity is simply irrotational and is given by

- +(3.21)

Upon application of the continuity condition in Eq. (2.1), we obtain

V-W= , (3.22)

and

(2.23)

Hence, we find the equations for cu and $d are

V 7. U=C (2.24)

and

p (en R) (3.25)

n-i

where we have used K1 = W/%. Eqs. (3.24) and (3.25) are each to be

solved under the boundary conditions at the hub (r=rh) and the tip (r=rT)

that the radial velocities vanish there.
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3.2 Determination of the Three-Dimensional Perturbed Flow

Before proceding to the complete solution of Eqs. (3.24) and (3.25),

we introduce a non-dimensionalizing scheme based on the following char-

acteristic scales: the velocity scale will be that of axial velocity V ,

the length scale will be the tip radius rT, the time scale will be rT /z
-2

and the pressure will be measured in units of 1/2 pVz

Written in dimensionless form, Eqs. (3.24) and (3.25) then become

(3.26)

and

dy d5 d :. - d ,(3.27)

where we have introduced wn as defined by

n -' (3.28)

the wn are related to the stagnation pressure loss coefficient data pre-

viously described. We note that KO/r is the inverse of the local Rossby

number which is a measure of the relative importance of the inertial

force due to the throughflow to that due to the swirling flow at a par-

ticular radius. K is closely related to the inverse of the flow coef-

ficient.

The solutions of Eqs. (3.26) and (3.27) can be written in the form

(real part implied)

Z Apnpjz + ( ,z)Nz) (3.29)

ne epYi
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where H(z) is the Heaviside function defined by

0 24-0

H ..) . (3.30)

Z ; "0

The first double sum in Eq. (3.29), obtainable by the method of sep-

aration of variables, represents the exponentially decaying homogeneous

solution typical of inviscid flow through an annulus. The (normalized)

radial eigenfunction Fnp(r) is a linear combination of the Bessel functions

of the first and second kinds; this quantity is given by

b -(3.31)

where Nnp is the normalizing factor, given by 7,8

y rJ1(5n? -n (3.32)

where we have introduced h (-rh/rT) as the hub-to-tip ratio.

The vanishing of the radial velocities at the shroud and at the hub

is guaranteed by taking the characteristic values of Xnp to be the roots

of

There is a countable infinity of the eigenvalues of Xnp, ordered in

increasing magnitude; this is guaranteed by the Sturm-Lioville Theorem.

In fact, the function Fnp(r) satisfies the ordinary differential equation
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1 Yd Y '?-T 
(.4

with the boundary conditions

dflhp(r) I d \ (3.35)

Thus the set of radial eigenfunctions {rnp(r)} form an orthogonal

set, and by virtue of (3.31),

Fr?(Y)Poiw dr &Pj = K (3.36)

t 0 P tJ

where 6pj is the Kronecker delta.

The particular solution 4xd (r,O,z) of Eq. (3.27), must necessarily

satisfy the boundary conditions of the vanishing of radial velocity at the

shroud and the hub. This requires

= . = (3.37)

The expression for is readily obtained by any of a variety of standard

techniques (see, e.g., Ref. 1).

The fact that the normalized radial eigenfunctions 1np(r) in Eq.

(3.31) have vanishing derivatives at r=h and r=l suggests that the radial

dependence of $ can itself be expressed conveneintly in terms of the

rnp(r). Furthermore, invoking the circumferential periodicity inherent

in the geometry of an axial turbomachinery, the azimuthal dependence of

d must necessarily be of the form exp (in B). Therefore, the particular
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solution c4 is conveniently expressible as the sum of a product of three

functions, each of which has a well-known radial dependence, a 0-dependence

and an axial dependence only. Hence, it is natural (and useful!) to express

it as a double sum of the form

Fri?( (r) e n Z (3.38)

This, in combination with the homogeneous solution, in fact guarantees the

vanishing of the radial velocity at the hub and the shroud. The only

remaining unknown in Eq. (3.38) is the functional form of Znp(z), which

is to be constructed such that it is bounded far downstream. Substitution

of Eq. (3.38) in Eq. (3.37), and application of the hub and tip boundary

conditions allows one to determine the ZnK z) (see Appendix IA) in the

form

The behavior of this integral reveals the behavior of the blade wakes

and the induced perturbations. It will be discussed subsequently; its form

leads to results such as those illustrated in Fig.s 1.9 - 1.12).

3.3 Matching at the Blade Row

Inspection of Eq. (3.29) shows that for each circumferential harmonic

n and radial harmonic p, the remaining unknowns are the summation coef-

ficients Anp. Determination of these quantities follows from appropriate

matching of the upstream flow and downstream flow at the blade row. The

two physical boundary conditions at the blade row required for determin-

ation of these quantities are:
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(i) The mass flux is continuous. For incompressible flow, the

density is constant and since the axial velocity in the free-vortex mean

flow is constant throughout; therefore this condition is satisfied (for

incompressible flow) by

Vzl=.o- VZ I=O"

i.e.,

on eB (3.40)

where z=O refers to a station immediately upstream of the blade row,

and z=0+ refers to one immediately downstream of the blade row.

(ii) The radial velocity can only change as a result of a concen-

trated radial force at the blade row. Generally, in axial turbomachinery

as a result of the fact that the blade surfaces are almost radial, the

exerted radial force can be assumed negligible at the blade row. Conse-

quently, the radial velocity can normally be taken to be the same on

either side of the blade row at z=0:

i.e.,

& I -1(3.41)

ar zzo0' ar zr-o+

We note at this point that Eq. (3.41) may not be exactly true due to

radial flow in the boundary layers; that is, the presence affecting the

boundary layers may result in a change of radial velocity across the blade
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row. This can readily be incorporated into the matching condition, if

such a change is appropriate.

Substituting for the perturbed velocities from Eq. (3.29) in Eqs.

(3.40) and (3.41) yields the following set of algebraic equations:

Anp +A4 = Z4(o)+Cnp (3.42)

U d (3.43)
An? -Anp = ZnP(O) ,(-3

where we have made use of the orthogonality properties of the normalized

radial eigenfunction Fnp(r) and the definition

- r (3.44)

The solution of Eqs. (3.42) and (3.43) gives readily

np Z ng(O) t Zrnp(o) +rn (3.46)

d) -Z=.) o (3.46)

At this point, under the restrictions noted, the perturbed flow field due

to the presence of the blade wakes are completely known both for upstream

and downstream of the rotor. We have:

(i) Upstream of the rotor,



55

I0 s o n p - 4 9 ( 3 . 4 7 )

=O ZZALIlnb e e
t PsI.

(ii) Downstream of the rotor,

Az pi P44* It
d B Z 4~~a(7)4 1n0e (3.48)

"4~V0

Here the primes on the Fnp(r) and Znp(z) denote differentiation with re-

spect to the arguments of each, respectively.

3.4 Downstream Development of the Vorticity Field

The behavior of the blade wakes is closely related to the convection

of the vortex filaments by the downstream flow. For simplicity, we assume

here that the loss in P* is invariant with the radius. Using Eq. (3.19) in
t

Eq. (3.12), we then obtain
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_ C In (3.49b)'1Iinb~ e(.4b

= 0 (3.49c)

[compare, Eqs. (3.13)].

At the exit of the blade row (i.e., at z=O), the vortex filaments

are purely radial. However, as one moves downstream away from the blade,

there develops a tangential component of the vorticity, q, as indicated

by Eq. (3.49b)(as previously discussed, the axial component of vorticity

remains zero). The strength of this tangential vorticity increases with

z. The development of n gives rise to a streamwise component of vorticity

Qs given by

ko tienNo( (3.50)

This "secondary vorticity", which changes as the flow proceeds, will

induce a secondary flow, leading in turn to radial velocity components.

In free vortex mean flow, fluid particles at different radial locations

would traverse through different angular distances in a given time, since

fluid particles are "frozen" on vorticity lines. Therefore a purely

radial vortex filament at the exit of the blade row cannot remain so

oriented as it moves downstream with the fluid particles. It will
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become distorted and stretched by the mean flow and give rise to a tangen-

tial component of vorticity, i.e., "secondary" vorticity. This develop-

ment of secondary vorticity is analogous to that of the case where a vortex

4
filament, initially perpendicular to the velocity, passes round a bend

However, in the present description the free vortex swirl is always pres-

ent in the downstream flow since there are no following blade rows to re-

move the swirl; consequently, one may well expect that the secondary flow

will grow without bound, as indicated by the z-dependence in Eq. (3.50).

The secondary flow will grow in strength for a certain distance downstream

of the blade-row but will eventually decay. At infinity (for downstream),

the secondary flow vanishes. This is understood through the recognition

of the winding-up (Fig. 1.6) of the vortex filaments around the axis as

the flow proceeds. Thus, the induced field of the secondary vorticity

becomes "self-destructive", leading to the expected downstream decay. It

is this behavior of the vortex filaments which dictates the mathematical

behavior of the integral in Eq. (3.39). The mathematical behavior of this

integral is further discussed in Chapter 6.

3.5 Induction of Downstream Static Pressure Perturbation by the Blade

Wakes

For low-speed flow through a blade row which induces a free vortex

flow, the mass flux distribution is almost uniform over the entire an-

nulus since the density of the fluid then is very nearly invariant. Con-

sequently, in the absence of blade wakes, the streamlines would be par-

allel and no static pressure perturbation would arise. (In actuality,

there would be an exponentially decaying potential pressure field, assoc-

iated with the blade thickness; however, this effect is not under
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consideration here.) In the presence of the actual blade wakes, however,

the above situation does not pertain. In addition to the presence of the

usual potential pressure field, which decays exponentially with distance

away from the blades, there is another portion of the pressure field in-

duced by the blade wakes as a result of the swirl in the downstream flow

field. (See Fig. I.9' for example). The latter part of the pressure field

is for practical purposes absent in flow over an isolated airfoil. This

fact is shown in the following.

Consistent with the order of approximation use here, Eq. (2.4) be-

comes

(3.51)

Pz2 Z~

However, in the circumferential mean flow, the rotary stagnation pressure

is given by

+ --- (3.52)
P zz

so that the perturbation in static pressure is

d d-d * O
- - -W. (3.53)

In dimensionless form this perturbation in static pressure is given

by

6Pd2[z( i9 (3.54)
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where we have taken advantage of Eqs. (3.16) and (3.19) in their appro-

priate dimensionless forms.

Substituting for DPd/Dz and D#d/3O in Eq. (3.54), we have

~ z h An4~r eK~n O~ - ki)~yB4t~r B

410 00 in~

The first two double sums, arising from the homogeneous part of the

solution, decay exponentially with distance downstream of the blade row.

However, the last two double sums do not possess this exponentially

decaying behavior; they in fact represent that part of the fluctuating

pressure field induced by the presence of the blade wakes. The extent of

the downstream distance over which this part of the pressure field will

persist is dependent upon the magnitude of (nBK0 ). Its amplitude is

determined by the value of J, defined by

dvy
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This will be discussed further in Chapter 6; there it will be shown that

for large argument (nBK0 z) of the exponential in the integrand, the induced

pressure field will decay inversely with z and with some power of nBK0 '

We note here, however, that in the absence of the downstream swirl, K0

assumes a zero value so that, for that case, the value of J in Eq. (3.56)

becomes identially zero. In such a situation, the blade wakes would not

induce a perssure field, apart from the familiar portion which decays

exponentially. This arises becuase the wake-induced perturbations are

then simply convected by a mean flow without swirl. (This is analogous

to the case for flow over an isolated airfoil as well.) Conversely, the

fact that there is a pressure field associated with the blade wakes in the

presence of the swirl indicates that all perturbations in fluid properties

are not simply convected by the mean flow; if that were so, there could

not be an induced pressure field.

In the sense that the blade wakes, described here by an appropriate

distribution of vortex filaments, induce a pressure field, one can there-

fore conclude that the fluctuating pressure field is coupled to the vor-

ticity field in the presence of an inertial force field caused by the mean

swirl. Consequently, the pressure disturbances and vorticity disturbances

are not separable here as would be so in flow over an isolated airfoil;

21
this result is in agreement with the predictions of Kerrebrock
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CHAPTER 4 - BASIC AEROTHERMODYNAMIC EQUATIONS, RELATIONS,

AND THEIR TRANSFORMATIONS

4.1 Introduction

When the velocity of a fluid in motion becomes comparable with that

of sound, effects due to the compressibility of the fluid may become of

importance. In the fluid mechanics of low speed flow, thermodynamic con-

sideration are not needed as the heat content of the fluid is then so

large compared to the kinetic energy of the flow that the temperature

would remain nearly constant even if the whole kinetic energy were to be

transformed into heat. However, in high speed flow of gases, the kinetic

energy can be comparable with the heat content of the moving fluid, and

therefore variations in temperature and density due to compression or

expansion of the fluid can become important. In this case, at least at

moderately high densities, the motion of the fluid is governed simultan-

eously by the laws of fluid mechanics and thermodynamics. The equation

of continuity is non-linear for a compressible fluid, thereby ruling out

Laplace's equation as the governing equation even if the flow is irrota-

tional. Hence the dynamics of compressible fluids is more complicated,

and, its analysis more difficult, than that of incompressible fluids.

4.2 Forms of Equation of Motion

The three-dimensional flow of an inviscid compressible fluid through

a turbomachine is governed by the following set of basic laws of Aero-

thermodynamics. For the case of a blade row rotating about its own axis

at a constant angular velocity w, and using the right-handed cylindrical

coordinate system (r,e,z) as defined in Fig. I.la, the equation of con-

tinuity is
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+ V-(PW)= 0 (4.1)

where the relative velocity W is related to the absolute velocity V by

equation (2.6).

The equation of motion is

D-2W~ ~-rp (4.2)

where the operator D/Dt, as defined in Eq. (2.3), refers to differentia-

tion with respect to time following the relative motion of a fluid ele-

ment. In cases where the relative flow can be approximated as being

steady, a relative cylindrical coordinate system (r,6,z) with G measured

with respect to the rotating blade (Fig. I.lb) will be used (as in Chapters

2 and 3).

For inviscid fluids in which the diffusion and transfer of heat is

negligible, the first law of thermodynamics (energy equation) may be

written as

De = 1 (4.3)

where e is the specific energy related to the temperation T by

de =cvdT , (4.4)

cv being the specific heat at constant volume.

For any fluid (sufficiently near equilibrium) there exists an appro-

priate equation of state; for the ranges of temperature and pressure
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encountered in flow through turbomachines, the fluid can be considered

essentially as an ideal gas, so that its equation of state is given by

P=dRT , (4.5)

where R is the specific gas constant.

It is often convenient to express the state of the fluid in terms of

the specific entropy s, and either the rothalpy I or stagnation enthalpy

H. The equations governing these quantities are obtained by first using

their thermodynamic definitions:

6d =e + Pd+1#) > (4-6)

JL (4.7)H =h + zv

I=h + w2- r H -Vy.(xi) , (4.8)

where the specific enthalpy h is

h~ e+~*(4.9)
P

Equations (4.6) and (4.9) can be combined to give

__ +TdS (4.10)
Upon +i Es as

Upon using Eqs. (2.3), (4.8), and (4.10), Eq. (4.2) can be rewritten as
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-W( (VXW) + 2 QXW = -VI +TV's, (4.11)

thus giving the dynamical equation in a form conveniently combined with

appropriate thermodynamic quantities.

Equations (2.6) and (2.7) can now be used in (4.11) to obtain an

alternative form of the equation of motion involving the absolute vorticity

W V XAQ =-VI + TVS -(4.12)

The rate of change of entropy along a streamline (away from the

blades) is

)S 0 ,(4.13)
I)t

where we have combined Eqs. (4.3) with the definition (4.6). This result

is expected since the fluid has been assumed to be inviscid and in the

absence of heat transfer between fluid particles, each fluid particle will

pass through only adiabatic and reversible processes (again: away from the

blading)*.

Using Eqs. (4.6), (4.8) in the dot product of Eq. (4.12) with W, and

noting that Ds/Dt = 0 (see footnote) we obtain

*Of course, Eq. (4.13) is not expected to hold on passage through shocks,

nor in boundary layers; it also holds only approximately (at high Reynolds

numbers) in the thin "blade wakes" of concern to us here. However, even

for transonic rotors, (4.13) is adequate for our present purposes, espec-

ially in the downstream flow.
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DI a?(4.14)

where I is the "rothalpy" defined in Eq. (4.8).

In particular, when the flow relative to the blade row can be con-

sidered approximately steady (an example is one with uniform upstream

flow passing through an isolated rotating blade row), the continuity

equation (4.1) becomes

- PWg =0 ,(4.15a)

or

V-W +W.7 Iy ? 0 - (4.15b)

Further, the equation of motion (4.12) becomes

WYe=VI-TVS ' (4.16)

Eq. (4.13) reduces to

V4-VS=O ; (4.17)

while Eq. (4.14) becomes

W.71 = 0 . (4.18)

Note that Eq. (4.18) is the general form of the Euler turbine equation!

Thus, the entropy s and the rothalpy I remain unchanged along a
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relative streamline. We note that in the absolute frame,

-- (xX) -VS U - (4.19)

*rame

For flow through a stationary blade row W = 0. In this case there

is no longer a need to distinguish between relative and absolute coordin-

ates. The equations of continuity and motion then become

3 + V PV =0 (4.20)

- x X -V-+TVS (4.21)
at A

while the entropy conservation equation reduces to

a vss= (4.22)-+ + V-VS =0 (.2

Further, Eq. (4.14) reduces to

aH V.VH lap (4.23)

showing that the stagnation enthalpy of the fluid can only be changed

through an unsteady fluid process.

Finally, for steady absolute flow through a stationary blade row

(e.g. flow through an isolated stator), Eqs. (4.20), (4.21), (4.22) and

(4.23) become

V.(PV) , ((4. 24a)
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or

V- + \.VIn P =0 (4. 24b)

V(.42 ..VH-TVS (4.25)

y-vs =o '(4.26)

and

Y-VR - 0(4.27)

Thus, for steady flow in the absolute frame, the entropy s and the stag-

nation enthalpy H remain constant along flow streamlines.

Once again, we note the similarity between the set of Eqs. (4.15),

(4.16), (4.17), (4.18), with that of Eqs. (4.24), (4.25), (4.26), (4.27).

In consequence, the analyses in Sections 4.3, 4.4, 4.5, and 4.6 is appli-

cable in both cases, given appropriate interpretation.

4.3 Irrotational Flow

When the gradient of both the rothalpy I and the entropy s vanish or

when they are such that the difference betwen VI and TVs vanishes, Eq.

(4.16) becomes, once again,

W x. 0 (4.28)(4.28)
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Further, if the vorticity 0 is zero everywhere [thus satisfying (4.28)

for this special case) then the velocity V may be written in terms of a

velocity potential $,

(4.29)

However, as already mentioned, application of the continuity equation no

longer yields simply Laplace's equation for . In fact, in order to

obtain a governing equation for the velocity potential $, we can begin

by writing the equation of motion (4.2) in the special form

~V~J-c~X+ 2JM4 :- .p-- \.,Vp (4.30)

where, on the rhs of (4.30), we have used the restriction, applicable

here, that p changes along streamlines only as p does, as this process

is essentially isentropic [(4.13)]. From the definition of the local vel-

ocity of sound,

Q 2(4.31)

moreover, we can eliminate the remaining term W - V Znp through the con-

tinuity equation (4.24b). We then obtain,

V.Vj - W*(bvw) (jW =0. (4.32)

(Here we have also noted that W (w x W) E 0.)

Substitution of W in Eq. (4.32), with the help of Eqs. (2.6) and

(4.29) , yields
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.V2C( -C(V4Y -(X)-.(4-*Xi)-V(V4 -OXr)]-&# -[=O, (4.33)

the solution of which, with appropriate boundary conditions, determines

the irrotational flow under discussion, once a - (ap/3p)s is found. In

particular, one can use (4.33) for study of the uniform flow upstream of

a transonic rotor 2029. However, this equation is highly non-linear in P,

in addition to being coupled with the equation(s) determining a. Often

analytic solution is practical only through linearized perturbation

techniques.

4.4 Beltrami Flow4

If all the vortex filaments of the flow field lie along the stream-

lines, Eq. (4.28) is again satisfied identically. This is "Beltrami" flow,

discussed in Section 2.3 for the incompressible case. Here, we write 2 0 ,2 9

v)y = R =A\J =(S(9y . (4.34)

Taking the divergence of Eq. (4.34) yields the restraint

(P=)C()= , (4.35)

where we have made use of the continuity equation (4.15a) and the fact

that the vorticity vector Q is solenoidal. In fact, because of the latter

fact, we can again write (see Section 2.3)

VX Q ( w) =Vsw (4.36)

While, in this case, applying (4.15a), we also have
1 1 ,2 9
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=.. V(X)( . (4.37)

Thus, from Eq. (4.35), we obtain, in analogy with Eq. (2.23),

o(, f( (4.38)

Again, we see that the scalar functions S and r depends on Oct and only;

these quantities retain the physical meaning given in Section 2.3. Eq.

(4.38) demonstrates that the velocity vector can once more be written as

V=V4 +Svr (4.39a)

or

V= V --PV (4.39b)

Substitution of W in Eq. (4.32), using Eqs. (2.6) and (4.39), yeilds

the (downstream) equation for the velocity potential 1 for the compressible,

Beltrami-flow case. This velocity potential $ can be used to describe the

downstream flow of a transonic rotor 2029, in which the blade loading is

of the non-free vortex type, while the upstream flow is uniform.

4.5 Homentropic Rotational Flow with a Rothalpy or Stagnation Enthalpy

Gradient

When the entropy is constant throughout but there is a gradient in

rothalpy or stagnation enthalpy 29, Eq. (4.16) becomes

\Wx11 ZVI; (4.40)

4.
and the Clebsch-Hawthorne Formulation is particularly useful, as
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illustrated in Section 2.4. Upon choosing a - I (or a : H in the case of

steady flow in the absolute frame, as for an isolated stator), we obtain

the results:

V{f , ~ V (4.41a)

or

VP , I (4.41b)

with

T = s. (4.42)

fsoW

Again, as discussed earlier for the case of incompressible flow,

E WX .V IXVT. (4.43)

On substituting for W in Eqs. (4.32), using Eqs. (2.4) and (4.41), we

obtain once more a governing equation for the velocity potential $,

coupled with the appropriate energy relation for this situation.

4.6 General Case of Steady, Homentropic, Rotational Flow.

Collecting the results of Sections 4.4 and 4.6, we write the velocity

vector V for the general case of a steady, homentropic, rotational flow as

v~V+~ +A (4.44)

where the vector A is given by

A=ivr + svr Y (4.45a)

or
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A = -TVI -FrVS , (4.45b)

Thus, the vorticity 0 is

7 =VxV =VXA =X' -+4 =VSXVFr+VWT (4.46)

with

i=V1 (4.47)

A governing equation for # is given again obtained through the use

of Eq. (4.32).

However, as we shall see, when the flow is non-homentropic, direct

application of the Clebsch-Hawthorne Formulation is no longer possible.

4.7 Transformation of Steady Flows

It is well-known that there exist a great many different modes of

4,27,28
steady flow of an ideal fluid which have the same streamline pattern

In the study of steady flows of an ideal fluid, one is therefore interested

in finding possible transformations between flows of the same general type,

possessing similar streamline patterns. In what follows, we restrict our-

selves to the case of steady flows in ideal gases, and in an absolute

frame, unless otherwise stated.

Given an "original" flow, governed by Eqs. (4.24) through (4.27), the

determination of corresponding (transformed) flows with the same stream-

line patterns (for which the pressure remains unchanged) involves the de-

termination of a so-called "reduced" velocity field, V together with a

reduced density field, pR. These can be determined by writing
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(4.48)

and

?n s f 2s (4.49)

and choosing fl, f 2 such that one does not violate continuity and momentum

conservation.

The continuity condition requires

VY. )= =V6h) (Py)]z()V(V)+ P V (z)Va .o

But, by virtue of Eq. (4.24), the above yields simply

V -A-)=o (4.50

On the other hand, the curl of Eq. (4.25) is

VX(VX -VT XVS . (4.51

Alternatively, this can be written (directly from the Euler equations) as

X(. ) -V XVP (4.51

Thus, momentum conservation requires

- ( xVP) 7( - xVP =0)>

V (-- - XVP =0 - (4.52

)

a)

b)

)
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Thus, any choice of f and f2 which simultaneously satisfies conditions

(4.50) and (4.52) will give a steady flow with the same streamline pattern

and equal pressure fields. Of course, there are many choices of fl, f2

here we simply note that a useful form is that given by

.F = =(4.53)

such that

J) () 0

For this particular choice, the continuity condition simply demands,

as we have seen, that the product of f1 and f2 be conserved along stream-

lines. We already know, for this case, that the entropy s, together with

the stagnation properties of fluid particles remain unchanged also along

such streamlines. Hence, the function F can be taken to be any function

of the entropy s or of any of the stagnation properties of the fluid, so

long as the values of density and velocity along each streamline of the

"reduced" flow are increased respectively by a factor of F and F-l/
2

(We recall that F may vary from streamline to streamline.)

The choice of f1 and f2, given in Eq. (4.53), has the following

implications:

2 2
(a) We note first that pRVR = pV . Hence, the force component nor-

mal to the streamline due to the centrifugal action of the flow in any

"reduced" flow is the same as that in the given "original" flow. Dynamic

equilibrium of the flows then requires that this force component be equal

to the normal component of the pressure gradient in each case. Hence, the

pressure field is the same in the two corresponding flows.
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(b) The quantity (p + 1/2 pV 2) [or (y/y-1 p + 1/2 pV2 )] is constant

(and the same) in each flow, implying that there is dynamic equilibrium

of force components along the corresponding streamlines (Bernoulli).

(c) For a calorically perfect cas (i.e., one with constant specific

heats, c and c v), the velocity of sound a is given by

in the original flow, while in the reduced flow it is given by

S-=

(4.54)

(4.55)

where y = c /c for both cases. The Mach numbers in the original flow and

reduced flow, respectively, are given by

?-V2 1(4.56)

and

By LiP r f (4.57)

By virtue of the consequence (a) stated above,

(4.58)

Hence, the Mach numbers remain unchanged by the transformation embodied

in Eqs. (4.53).

(d) Because the pressures are left unchanged by this transformation,

any (pressure) drag and lift force acting on any body in the reduced flow



76

will be the same as those on a corresponding body in the original flow.

(e) Since the velocity of the reduced flow at any point differs

from that of the original flow at the corresponding point by a scalar only,

it follows that if the original flow satisfies the kinematic boundary con-

ditions at certain boundaries the reduced flow does so as well at the cor-

responding boundaries.

In the reduced flow, the continuity equation is

V - 0?W = (4.59a)

or

V.Y R+ YR.VP IT , (4.59b)

while the equation of motion is given by

R' ..... (4.60)

The curl of equation (4.60) gives the reduced flow Helmhotz equation in

the form

\zV V ,(4.61)

where the vorticity 0R of the reduced flow is defined by

P. = V x(4.62)

4.8 Yih's Transformation

We note that if the density pR is a unique function of the pressure

throughout, then the acceleration field, - 1/PR Vp, has a potential. This
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is necessary (but not sufficient) for irrotationality of the reduced flow

[see Eq. (4.61)]. Indeed, if the RHS of Eq. (4.61) vanishes, persistence

of irrotationality of the reduced flow, once established, is indicated. We

have already noted that a major difficulty in dealing with (untransformed)

non-homentropic flow is that the acceleration field 1/pVp for such cases

does not possess a potential. Consequently, the original fluid motion,

even when starting uniformly from rest will not continue to be irrotational.

We note that for a calorically perfect gas,

(4.63)

so that by choosing

(4.64)

we can guarantee that pR be a unique function of the pressure throughout.

We then obtain

S

(4.65)

and, by virtue of Eq. (4.53),

- Ce (4.66)

Finally, we arrive at a transformation between flows, due to Yih3 2, given

here by

, =e V (4.67)
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This implies that for every homentropic flow (VR' R), there corresponds

a non-homentropic flow (V,p), and vice versa.

4.9 The Clebsch-Hawthorne Formulation for Reduced Flow

The momentum equation (4.60) for a reduced flow represented by Eq.

(4.67) may be written as

'RXAPR =VHe-s/

(4.68)

(see Appendix).

For a flow with uniform stagnation pressure field,

\1 X AR R 0 (4.69)

so that either the reduced flow is irrotational or has its vortex filaments

lying in the direction of its streamlines ("reduced" Beltrami flow). An

irrotational reduced flow can be described by

VP v4 , (4.70)

where R is the reduced velocity potential. (It is useful to emphasize,

however, that irrotationality of the reduced flow does not imply irrota-

tionality of the original flow.)

By dotting Eq. (4.60) with R [with its RHS written as -(Dp/DpR s

Vkn pR] and elminating VR - Vkn pR using the continuity equation (4.59b),

we obtain

V'VR-i VP'-(Ya-W) - 0, (4.71)
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where we have used Eq. (4.55). Thus, a governing equation for $R can be

obtained by the substitution of Eqs. (4.70) in (4.71), i.e.,

V24R +4R R )R . (4.72)

This result is, of course, still non-linear, despite the transformation to

the reduced flow. However, it has the great advantage of being treatable

as a homentropic flow in terms of the "reduced" variables.

For a reduced Beltrami flow, we can now write, in analogy with (4.34),

VXYER= 1P pyt=2 (4.73)

Because the vectors 0R and (PRVR) are divergence free, one can write

ILK =VSR)(VE, (4.74)

and

f ny0 )(p(4.75)

so that

(P V -I =0 (4.76)

I- (4.77)

PR AR

Again, by virtue of Eqs. (4.75), (4.77), (4.73) and (4.74), SR and rR are

dependent on aR and R only. Moreover,
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\R =V + vr (4. 78a)

or

R=VR -ILaS. (4.78b)

A governing equation for or $ is then obtained (as previously) by sub-

stitution of Eq. (4.78) in Eq. (4.71).

The appropriate application of the Clebsch-Hawthorne Formulation for

reduced flows with stagnation pressure varying from streamline to stream-

line is now apparent. By choosing

we obtain the results that:

t (4.80a)

or

R7 - ~~RV CP (4.80b)

while

S

s .(4.81)

J VP
As expected, TR is the "drift function" of Darwin and others, in the

"reduced" flow. Finally
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Q Vcsk )(VT (4.82)

Substitution of Eqs. (4.80) in (4.71) yields a governing equation for

Rl or 4R2, in this case including significant vorticity arising 
from the

variation, from streamline to streamline, of the actual flow entropy (or

stagnation pressure).

Collecting the above results, we find that the velocity vector YR of

the general case of a steady, rotational reduced flow is given in a form

by now familiar:

(4.83)

where the vector AR is given by

AR 4C 7 V( R V Sap (4.84a)

or

Ap r VR (4.84b)

Again, the vorticity Q R is

:-QKRVXpR y + -a(4

with
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VP' 41A= V(4.86)

As before, a governing equation for #R is obtained through Eq. (4.71).

The above formulation is exact (for a perfect gas in non-homentropic

flow) but the resulting equations are highly non-linear. They can be

treated analytically only after making appropriate linearizing approxima-

tions. Adopting relatively recently developed techniques 2 6 ,29 for this

purpose, however, we are able to apply such procedures to practical turbo-

machines.

4.10 Reduced Flow in Rotating Coordinates

Up to this point, we have only considered reduced flows which are

steady in the absolute frame. Application of the transformation as defined

by Eqs. (4.65) and (4.66) to a flow steady relative to a rotating frame

yields

V- ?P. =0- (4.87)

as the equation of continuity, and

WP, XRQP-V + -)VeL (4.88)

as the equation of motion. Hence we have used

-V ZWR X R- (4.89)

and

R6S/v (4.90)
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to obtain Eqs. (4.87) and (4.88).

Thus, extension of the Clebsch-Hawthorne Formulation is possible in

its usual form only if the difference between stagnation enthalpy and

rothalpy is a constant or a unique function of the entropy s. The physical

reason for this complication is that in such a flow, changes in streamline

pattern can result from gradients of rothalpy as well as the interaction

of Coriolis and centrifugal forces with an entropy gradient. However, as

we shall see later, for flows with small deviation from mean free-vortex

swirl, extension of the Clebsch formulation is possible in an approximate

way.
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CHAPTER 5 - VISCOUS BLADE-WAKES IN COMPRESSIBLE FLOW

5.1 Analytical Formulation

As before (see Chapter 2), we consider the flow through an isolated

rotor (rotating at an angular velocity W about its own axis) encased in an

infinite cylindrical annulus, again using the right-handed cylindrical co-

ordinate system (r,O,z) illustrated in Fig. I.la. Far upstream of the

rotor, the flow is assumed uniform with purely axial velocity; while down-

stream of the rotor, a free-vortex mean flow is once more specified as our

"reference" flow. For this example, then, the fluid properties at a par-

ticular point can be taken to be steady relative to the (isolated) rotor.

It is then once more convenient to use a relative cylindrical coordinate

system (r,6,z) with e measured with respect to the rotating blade (Fig.

I.lb).

The process of viscous interaction between the working fluid and the

blade surfaces is an irreversible one; thus, there will result in an in-

evitable increase in entropy (following the appropriate fluid particles

along the blading) in accordance with the Second Law of Thermodyanmics. In

this way the effects of viscous losses occurring within the blade row

appear downstream as variation of entropy across the stream surfaces. Thus,

the blade wakes may be regarded as regions of entropy excess. Consequently,

because of real fluid effects, the flow downstream of any blade row is

inherently non-homentropic. Analytically, this feature of the flow intro-

duces significant complexity into the aerothermodynamic equations (as is

already clear from the development given in Chapter 4). Strictly speaking,

analytical modeling of the blade wakes using the concept of entropy is both

conveneint and appropriate. Its use, rather, than that of the concept of
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stagnation pressure (used above in the case of incompressible flow) is

particularly useful for our purposes here because entropy is a thermo-

dynamic property of the fluid and remains invariant in transformation be-

tween various velocity frames.

For typical flow conditions occurring in turbomachines, viscous effects

in the blade passages are generally confined to thin boundary layers on the

blades and the thickness (measured in units of appropriate scale length) is

of the order of the inverse of the square root of Reynolds number. In con-

sequence, the deviation of the downstream flow field from homentropy must

remain small. (To be precise, the change in specific entropy as a result

of viscous interaction within the blade row is small compared to the spe-

cific heat content per unit temperature of the incoming fluid). Hence,

[see Eq. (4.84)] the vorticity will be small; the three-dimensional aspects

of the flow introduced by departure from homentropy can again be considered

as a small perturbation of the flow about the mean axisymmetric through-

flow. In the analysis to follow, the flow is consequently separated into

a circumferentially averaged flow of zeroth order, V (or W in the relative

frame), and a three-dimensional perturbation flow, 2, of order 6, where

-n <i (5.1)

This idea is, as before, exploited in the development of the three-dimen-

sional theory for the compressible flow including blade wakes in axial

turbomachines.

With a rotor of free-vortex design in compressible flow, the axial

velocity far upstream and downstream of the blade row approaches a con-

stant (it is such throughout in the incompressible case). Whereas, for



86

low speed flow through the rotor, the variation of density with radius

(associated, for example, with centrifugal effects) may be considered

negligible so that the mass flux distribution is almost uniform over the

entire annulus. On the other hand, for high speed flow through such

machines, the velocities are sufficiently large so that the compressibility

of the flow has to be fully considered. Hence, across a blade row the

given tangential velocity.distribution forces radial density gradients of

various quantitites, for example the radial velocity, etc.

The resulting shift of streamlines associated with this radial vel-

ocity causes the whole flow to readjust itself in several aspects. This

radial shift of streamlines and the corresponding flow disturbances will

relax axially. Thus, the circumferentially averaged flow will possess

both a radial and an axial dependence which in principle complicates the

analytical determination of the three-dimensional perturbations even with

respect to the mean streamlines of the circumferentially averaged flow.

However, we find that we can take advantage of the fact that this distur-

bance, which occurs near the blade row, is in fact small (even if not neg-

ligible). This occurs in an axial turbomachine because the annular flow

region is bounded by walls which tend toward concentric cylinders thus

leading not only to a small but also a gradual radial shift of

the streamlines as the flow passes through the blade row. As an important

result, we are able to neglect this particular effect in so far as it af-

fects the three-dimensional perturbations to be described in the following.

However, the three-dimensional perturbations so determined are to be super-

imposed on the actual mean flow (not, for example, on a simple radial

equilibrium flow).
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In the approximation just discussed, we can write Eq. (4.84) in the

simplified form

W. x ,R-.V(IeC)tZVCOrcA P (5.2)

where subscript "0" refers to that of the simple radial equilibrium flow

mentioned above. For free-vortex flow, with the tangential velocity

inversely proportionai to the radius (V0 0r = constant = Vz0 z 0), Eq. (5.2)

assumes the even simpler form

&jX3 ~[ncA~e/1 4 I (5.3)

with K V dr/V

The approximation leading to Eq. (5.3) also results in

WeV]0Vl +.LQVuk.)e ,I . (5.4)

and

[ ek' = (5.5)

From (5.4), we note that the quantitiy (I + 1/2w Vz K) e-s/p remains

constant along the streamlines of the approximate relative flow provided

by radial equilibrium theory.

With the above equations taking the present form, we are again able

to apply the Clebsch-Hawthorne formulation for the determination of three-

dimensional perturbations. We can write, quite generally,

Vg=V4>R + CV'a , (5.6a)
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or

(5. 6b)
VR

whence the vorticity 0R is given by

.QR a R = cr )(V' .

Eq. (5.5) suggests that a suitable choice for aR is

SR

i -(i. o -- '

where, here, we have made use of the additional approximation

-S/9" - -- ,

and assumed that part of cYR which is constant can be absorbed in

Eq. (5.6a).

By substituting aR as given in (5.8) in Eq. (5.7) and by using Eq.

(5.3), we obtain

(5.10)

here, we have made use of the fact that 2R lies on surfaces of constant

TR. So, in this approximation

(5.lla)

or

\4 0 ~ )
(5.llb)

(5.7)

(5.8)

(5.9)

-a-
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Thus, the three-dimensional perturbed flow can again be evaluated by

using the "drift function" TR determined by the above radial equilibrium

flow. Integrating Eq. (5.llb) along the relevant streamlines, we obtain

S

'R ds . (5.12)
f U4O

The relative velocity vector W0 downstream of the rotor is given by

d d (5.13)
\40 =(%e 0d -00e + V;,, ei 5-3

d.
while the axial velocity Vz0 is constant, appropriate to free-vortex flow.

Because of Eq. (5.13), we can also write

'i J .. (5.14)
o Uwo

or
9

.- e r) . (5.15)

(r)

As discussed previously (see Chapter 4, pg.65), the entropy remains

constant on streamlines of the relative mean radial equilibrium flow with-

in the present approximation. Here this implies

W. -VS =0 (5.16)

u
[This result also follows from Eq. (5.4) since (1+ 1/2 WV z KO is con-zO0

stant.] As a result the entropy has an arbitrary dependence only on r and

d
(0, [compared to Eqs. (3.10), Chapter 3]:

S. _L (y,) , (5.17)
C? CP



90

where, here, we have defined

d :: ( -Z'4 -O 0 (5.18)

Guided by the analysis in Chapter 3, we choose to use the drift

function TR as given in Eq. (5.14) in describing the (reduced) vorticity

field introduced by the presence in compressible flow, of the blade wakes.

It follows that Eq. (5.6a) becomes

-~ *1 _o 4 .K (5.19)
\4 CP

which, in analogy with the case discussed in Chapter 3, implies that any

gradient in entropy due to the blade wakes can be described in terms of

(reduced) vortex filaments on purely axial planes.

In order to proceed further, we now require the knowlege of entropy

production within the blade row. As in Chapter 3, we obtain this infor-

mation from available data. However, one does not measure entropy directly;

rather, losses within the blade row are quoted in terms of measured stag-

nation pressure defect. Therefore, we need to relate stagnation pressure

loss to the entropy production in which we are interested here. For a

calorically perfect gas (i.e., one with constant specific heats), the en-

tropy change across the blade row (or equivalently the difference between

the entropy of the fluid in the wake and that of the fluid outside of the

wake is given by

As._ 1rU, (5.20)
C I - 1
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where the subscript "t" refers to stagnation property of the fluid.

In the case of a stator, the stagnation temperature is constant

throughout so that T td/Ttu is unity while, for a rotor, the stagnation

quantities should appropriately be replaced by those in the rotating

*
coordinate. Thus, we can simply write,

AS -- (5.21)

*

except in the special case noted.

As previously noted, experimental data regarding viscous losses are

quoted in terms of a mean stagnation pressure loss coefficient w [see

Eq. (3.18)]. Typical examples of such losses are illustrated in Fig. 1.4

for various inlet Mach number as obtained from two-dimensional cascade

data. However, we are interested in applying this compressible three-di-

mensional theory to the case of transonic rotors in which the Mach number

in the tip region is supersonic and that in the hub region is subsonic.

It is then, however, possible that the loss picture in transonic rotors

may be quite different from that of the subsonic blade row
35 ,3 6 . Never-

theless, we will use, in the present study, experimental cascade data in

order to illustrate the three-dimensional effects of the blade wakes even

in transonic annular rotors. Eq. (3.18) for w can be rewritten as

4
_ =T .- __AR (5.22)

d/ u
upon writing the pressure ratio (P P ) ast t

d .. (5.23)

*See footnote on Pg. 39
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we have the result that

-- -Y7I-r1 4J'~ J (5.24)

where we have made use of the definition

U Y
? V.1 M(5.25)

Since w is a small parameter [Eq. (3.1)], in the approximation here,

we can expand Eq. (5.24) in a Taylor series, retaining the first term only.

AS D(+ M )i OcE ) - (5.26)cp Y

Though we have derived a relation for the entropy production and stag-

nation pressure loss coefficient for flow through a stationary blade row,

the corresponding relation for flow through a rotating blade row is simply

obtained by replacing the inlet Mach number M by that of the relative in-

let Mach number.

Because of the near-invariance of entropy along the streamlines of

the mean radial equilibrium flow and the circumferential periodicity in-

herent in the geometry of turbomachinery, we can write to an excellent

approximation

S ((5.27)
C?

We again note that Eq. (5.27) guarantees that the integral of vorticity

from blade-to-blade is identically zero, as required by the fact that no

net amount of vorticity flux is shed into the wakes in steady flow (Kel-

vin's Theorem). Collecting these results for the downstream flow field,
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we have an expression for the downstream reduced perturbation velocity in

the form

o4 (
-i ind

i

Since these three-dimensional perturbations are to be added to the

circumferentially averaged flow we can write Eq. (4.63) as

s/zcP (5.29)

To the order of approximation used here, Eq. (5.29) becomes

+ (5.30)

so that we have

(5.31)

and

S -- + ve (5.32)

Similarly, using Eqs. (4.89) and (4.90), we obtain

so that

W ~(5.34)

(5.28)
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and

-S "% Q r \ -- -- 6 .(5. 35)

In obtaining Eqs. (5.33), (5.34), and (5.35), we have made use of

Eq. (5.31). Hence, in the actual ("original", see Chapter 4) flow field,

the three-dimensional velocity perturbation is given by either Eq. (5.32)

or its equivalent, (5.35). Upon using Eqs. (5.27) and (5.28) in Eqs.

(5.32) and (5.35), we obtain the result for the downstream perturbation

velocity in the form

W --;Yjnr)e + VR
n_4

2 zO 0(5.36)

Upon writing our result in this way, we can now make use of Eq. (4.32)

to obtain a governing equation for the perturbation potential R* Making

the corresponding approximations in the remaining applicable relations,

we obtain the result that

-- W~- =0.- (5.37)

Substitution of W in Eq. (5.37) leads to a governing equation for R
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v4~~~ :(o -k!(i7v+v-~s-v Wodw)

- 2(- -- V- + w( V + - )(5.38)

where L is a vectorial quantity given by

ZR U 0 i~( 59

Upstream of the blade row, the flow is simply irrotational so that

the perturbation velocity is expressible in terms of a velocity potential,

-(5.40)

upon substituting Eq. (5.40) in Eq. (5.37), we obtain the result:

L~,v d (v1v)\ 4A- k (w0. inio

- SnC- e (5.41)

Before proceeding to the solution of Eqs. (5.38) and (5.41) under the

boundary conditions of vanishing radial velocity at the hub (r = rh) and

the tip (r = rt ), we note that because of compressibility effects,

differs from Wu and therefore that there is a small disturbance flow near

the blade row due to the radial shaft of streamlines as mentioned earlier.

In the next two Sections, we determine W using the radial equilibrium

10
theory 10; this is then followed by the determination of the small
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disturbance three-dimensional flow.

5.2 The Radial Equilibrium Flow

The basic assumptions of the radial equilibrium theory ,27 have been

mentioned in Chapter 1, especially that the radial velocity is zero at the

entry and the exit from a blade row. The velocity and the fluid properties

have a radial dependence only. Upon making use of Eqs. (4.7), (4.10) and

the equations of motion in the radial direction, we obtain

. P V- .0o (5.42)

P dr r

It follows from (4.21) that

T =Wo O + ,V90d (rV4 .(5.43)
dr d ci

Upstream of the blade row, the flow is uniform and V 0 is zero so

that Vu is constant. Appropriate to free vortex flow for downstream of
zO

the blade row, the product (rV 0 ), the stagnation enthalpy H and the

d
entropy s are invariant with radius so that V is constant according to

zO

Eq. (5.43). Because the upstream flow is uniform, the density p there is

constant; however, the density distribution changes across the blade row

d
as a result of compressibility effects so that the downstream density p0

d
varies with r. For isentropic flow through a blade row p0 can be shown

to be given by

i--I- r-r-M.
d r_ ..__ _ (5.44)

20 %0

where M u is the upstream axial Mach number. If the entropy increases by
zO
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d

a constant value As across the blade row, then pd would be given by
00

or

Mz __ __-: - ._ e (5.45)

dd

The downstream axial velocity V is determined through the applica-zO

tion of continuity of mass flux across the blade row; i.e.,

or

S d(5.4)
In view of the implicit dependence of p0d on Vzd as given in Eqs. (5.44)

or (5.45), it turns out that Vd can be found most conveniently using an

iterative process.

5.3 Determination of the Actual Circumferential-Averaged Flow

An improved solution for this part of the flow is provided by an

actuator disc approach 2. Since the flow far from the baldes is irrota-

tional (as appropraite to a free-vortex flow) it follows from Kelvin's

Theorem that the mean flow must be irrotational everywhere. Consequently,

there exists a potential function T(r,z) which is sufficient to describe

this correction to 0 i.e., we can write

7 VO j V (5.48)

for both the upstream and downstream flow fields.

As in earlier Sections, a governing equation for this perturbation
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potential may be derived using the continuity equation

V. PV =0 (5.49a)

or

v.V +V.Vin = , (5.49b)
00 -

combined with the equation of motion for the mean flow

y.V-v~~)i~.(5.50)

Eliminating V9np in Eq. (5.50) with the help of Eq. (5.49b), we

obtain

V-V- V'(V17V)O '(5.51)

which is also obtainable from Eq. (5.37) by simply taking w = 0. Thus,

- (V) (5.52)

Eq. (5.52) provides a governing equation for both the upstream and down-

stream potentials for the improved mean flow description.

In what follows, the variables occurring in the analysis will be

made dimensionless in terms of the tip radius rt as the length scale,

far upstream axial velocity V u as the velocity scale, r / as the
zO t zO

time scale, the far upstream density p as the density scale, the far

upstream dynamic pressure (1/2 p V ) as the pressure scale and theupsrea dyami prssue 0  zO

specific heat at constant pressure cp as the entropy scale.

Eq. (5.52) must be solved for the upstream and the downstream
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perturbation potentials under the boundary conditions of vanishing radial

velocity at the hub and the tip; here,

=-O (5.53)

5.3A The Upstream Mean-Flow Correction

Since the upstream flow is purely axial, upon expanding Eq. (5.52)

in cylindrical coordinates we obtain

4I L-MUZ) & , (5.54)

where M u is the far upstream axial Mach number given byzO

u Vz0 (5.55)

The solution for 4u(V,z), readily obtainable by the method of the

separation of variables, can be written in the form,

+u A e 4 (5.56)

The normalized upstream radial eigenfunction R (r), a linear combin-
p

ation of Bessel Function of the first and second kind with order zero

(compare Chapter 3), is given by

x U yq 
(5.57)

4 ' 4 J O t

where
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--- (5.58)

Each RU satisfies the differential equation
p

+_La% _Ml) 12 LI(5.59)

where the Xu are the upstream eigenvalues given for example in Refs. 7 and
p

10. As before, the normalizing factor AN is determined through

N y zJ4Jo4) -z * (5.60)

By taking Xu [from which the eigenvalues X are determined (see Eq.
p p

(5.58))] to be the roots of the equation

0,(f (h- (Y)'. )=0, (5.61a)

or, equivalently,

J3t4 ( )-4.)$) = , (5.61b)

we are able to guarantee the boundary conditions [Eq. (5.53)] of the van-

ishing of the radial velocity at the hub and the tip. We note from Eq.

(5.58) that compressibility effects have increased the eigenvalues X

u2 -1/2l1
by a factor of (1-M )- . Thus, the effect of the finiteness of M 0

is analogous to the Prandtl-Glauert correction for compressible flow about

aerofoils; it has a tendency to crowd the upstream disturbances caused by

the presence of the blades into a region closer to the blade row.



101

We can also write Eq. (5.59) in its self-adjoint form,

Trd I + T(i-MO) r y(r) =0 ' (5.62)
dI dr

from which it is readily seen that the set of eigenfunctions {RU(r)) is
p

orthogonal with respect to the weighting function r. Furthermore, we

note that upon direct integration of Eq. (5.62) over the internal (h,l)

we obtain the result

f Or)dr= . (5.63)

Here we have used

-1 a . (5.64)

The result in Eq. (5.63) has the implication that any arbitrary constant

function is orthogonal to all the normalized radial eigenfunctions Ru(r);
p

consequently, the set T Ru(r)} is not complete unless a constant R (r) =
p 0

(2/12-h 112  is added to it. 1 0

By virtue of the orthonormal properties of the eigenfunctions Ru (r)
p

the eignen values X can be estimated through
p

J .%W (5.65)

5.3B The Downstream Mean Flow Correction.

Downstream of the blade row,

d dA jA (5.66)V. eV. + Vr;e-,
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so that upon expanding Eq. (5.52) in cylindrical coordinates, we obtain

- - -ma =0 (5.67)
Bar + Y 2) aad

where the downstream axial Mach number M d and the absolute tangentialzO

Mach number M are given by

M V (5.68)

and

d

M90 = , (5.69)
OdGo

respectively.

Because of compressibility effects, the Mach numbers downstream of

the disc vary with radius. As for U, the solution for Td (r,z) can be

expressed in the form of an infinite series of products of functions of

each of the independent variables r and z. However, by mere inspection,

we note that the most general solution of Eq. (5.67) is of the form

d
where the X are the downstream axial eigenvalues. The downstream radial

p

eigenfunctions R (r) satisfy the differential equations
p

4Oa (iMdd (5.71)
+ W 2- dr' t 7

and the boundary conditions that
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- _dR_ lRd =O, (5.72)
dT I --. &dr I fi

the latter being required by the vanishing of the radial velocity at the

hub and the tip. Because of the radial dependence of the coefficients in

the differential Eq. (5.67) no solution in terms of known tabulated func-

tions is available. Therefore we resort to various methods of approximate

analysis and numerical techniques for the determination of the radial

d d
eigenfunctions R (r) and their associated eigenvalues X d The useful

p p

methods of approximate analysis are, in this case, usually based on var-

iational principles. Two examples of these methods are the Rayleigh-Ritz

method and the Galerkin Method. We note that in using these techniques

computational effort may be minimized and better accuracy also obtained

if one is able to choose a function which describes the modal shape as

d
closely as possible to that described by the exact R (r).

p

We note that because the- radial dependence of the Mach number Mea

and Md is weak compared to that of 1/r and R (r). The former can be
zO p

considered to be almost constant over the annulus (relative to the latter)

or assume an average annular value. Such an assumption would permit the

solution to be expressed approximately in terms of known tabulated func-

tions33

d Moa (5.73)

where is a linear combination of Bessel functions of the first and

second kind of crder v. In physical terms, the radial dependence of the

Mach numbers simply creates a distortion, the extent of which depends on
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how strong their radial dependence is, to the radial harmonics described

in Eq. (5.73); for weak radial dependence, this distortion is slight and

appropriate solutions are of the form given in Eq. (5.73). A further

simplification results if one uses a mean value (1/r) as the solution

would then be expressible in terms of a linear combination of sine and

cosine. From such an observation, one may conclude that a linear combin-

ation of sinusoidal functions or Bessel functions can give a useful

d
approximate discription of a particular radial mode R (r); these are also

p

possible choices for use in the Galerkin Method or in the Raleigh-Ritz

Method. A brief outline of the Galerkin Method is given in Appendix (I.H)

Eq. (5.71) can also be written in its self-adjoint form

d j + X fr~ _MO. (5.74)

One sees that the set of radial eigenfunctions {R d(r)J is orthogonal over
p

the interval (h,l) with respect to the weighting function q(r) given by

(.)ardr (5.75)

Once again, direct integration of Eq. (5.74) over the interval (h,l)

leads to

(5.76)

where we have used the boundary conditions in (5.72). Hence, any arbitrary

d
constant is orthogonal to all the R (r) with respect to the weighting func-

p

tion in Eq. (5.75). Consequently, as with the {Ru(r)}, a constant must be
p

added to the set {R d(r)} to make it complete.
p
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By making use of the orthogonality of R (r), we obtain from Eq.
p

(5.74) that

C, Yr-(5.77)

9(Tr) R'?(Y) d Y
Because the blade row (W # 0) adds work to the fluid as it passes through,

we must have

(5.78)

so that

7 .(5.79)

Hence, the axial "wavelength" of the downstream disturbance is larger than

that of the upstream one. In other words, the downstream disturbance field

is spread over a larger region than that of the upstream one.

5.3C Matching of the Upstream Flow and the Downstream Flow at the

Actuator Disc

Inspection of Eqs. (5.56) and (5.70) shows that the remaining unknowns
U

are C1, C and the coefficients Ad . Determination of these unknowns fol-
2 np

lows directly from appropriate matching of the upstream and the downstream

flows at the actuator disc located at z = 0:

(a) The mass flux is continuous so that

S,1? = 0, 
(5.80)

where z = 0 and z = 0+ refer to points immediately upstream and downstream
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of the disc respectively. Within the present approximation, Eq. (5.80)

can be shown to be equivalent to

(1-r)1=) a ' (5.81)

(See Appendix I.D)

(b) Since the spanwise force on the blades is to be considered neg-

ligible in the present work, the radial velocity is the same on either

side of the disc, i.e.,

aF = .\ (5.82)
BT I2=0o- -r 7.Or

The use of Eqs. (5.56) and (5.70) in Eqs. (5.81) and (5.82) gives

-MZ 'A'(U- MZ0 )[CZ-LAA d() d I (5.83)
P-. pI

and

(00 (U . (5 .8 4 )

respectively.

As noted earlier, the compressibility effects introduced by the

strong downstream swirl modify the downstream radial eigenfunctions R d(r)
p

as well as the downstream eigenvalues X d; the extent of such modification
P

depends on the strength of the downstream swirl. As a result, mode by

mode matching of the upstream flow and the downstream flow, which can

always be carried out in incompressible flow with uniform inlet conditions,

is not possible here. In the limit of zero downstream swirl, however,
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both the downstream radial eigenfunctions and the axial eigenvalues

revert to those of the upstream ones.

In the determination of these unknowns, use is made of the orthogonal

properties of the radial eigenfunctions to minimize any required computa-

tional work. On multiplying Eq. (5.83) by r and integrating from r = h to

r = 1, we obtain

C7 : -- f (? V6i) F(- dr , (5.85)

where we have used Eq. (5.63) and (5.76). [Note further that

However, from the radial equilibrium theory, mass flux continuity at the

blade row implies that

.i d~d -~d-r=C)(5.86)

so that C2 is identically zero.

We now multiply Eq. (5.83) by rRu(r) and then integrate from r = h to
p

1 so that we obtain, upon using the orthogonality of the normalized eigen-

functions {Ru(r)},
p

ptl.O 1A AUfd( 1A).1( R? (CYt R ) (?d'vdi- ) cT (5.87)

Direct integration of Eq. (5.88) with respect to r leads to

.4 **R o
ZA~~ )Z k 4. C, (5.88)

?p4P~
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where we have chosen C to be the arbitrary constant of integration. Eq.

(5.88) has the implication that the velocity potential (which is unique

up to a constant only) is continuous across the actuator disc. Multipli-

cation of Eq. (5.88) by r and integration of the result from r = h to 1

leads to10

Ci= T (a T ,(5.89a)

where use is made of Eq. (5.63). Alternatively, we could have multiplied

Eq. (5.88) by q(r) and integrated the result over the interval [h,l] to

obtain

with the use of Eq. (5.76). Analogous with the results discussed in Sec-

tions 5.3A and 5.3B the existence of C is a result of the fact that the

radial eigenfunctions, {R (0) and {R (r)}, do not form complete sets.
p p

Further, on multiplying Eq. (5.88) by rRu(r) and integrating from r = h
p

to r = 1 we obtain, by virtue of the orthogonality of the normalized

eigenfunctions {Ru(r)},
p

AU CPO~ a PL f AO d (5.90)

jki

where we have made use of Eq. (5.63).

In essence, to obtain Eqs. (5.87) and (5.90), we have expanded the

d
downstream radial eigenfunction R (r) in terms of the upstream normalized

p

eigenfunctions Ru(r) (discussed in Chapter 3) as a Fourier-Bessel Series15
p

We observe that the resulting modification of the downstream radial
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harmonics has led to a mutual interference among these harmonics and that

they are therefore inseparable a feature which is absent in incompressible

flow with uniform inlet conditions. The matching conditions (a) and (b)

at the actuator disc z = 0 provide a set of linear equations, embodied in

Eqs. (5.87) and (5.90), sufficient for the determination of the sets of

unknowns {Au} and {A d}. This set of equations can also be written in a
p p

matrix form as follows:

[a- ----

where [a .] is a submatrix with elements a i,

6.. is the Kronecker delta defined in Eq. (4.36),
iJ

A.. = )rR (r)R d(r)dr,
h

1 = p (1 -Mz) rR.(r) R (r) dr,

and

C.= 1(Pd d -1) rRu(r) dr,I h 0 zo i

(5.91)

which results from the redistribution of the mass flux as the flow passes

through the actuator disc.

Each suffix i and j runs from 1 to p so that each submatrix is either

a p by 1 matrix (i.e., a column matrix) or a p by p matrix.

The inversion of matrix Eq. (5.91) gives {Au} and {A d, from which C
p p 1

can be determined through Eqs. (5.89a) or (5.89b). With their determina-

tion, the circumferentially averaged flow field is totally known, it is
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given by:

(i) Upstream of the actuator disc,

z1 '4 o(5.92)

Co

VVA ZAi AzPe)

(ii) Downstream of the actuator disc,

00 ddd a4 PW v; 0  WPM~iz4r
(5.93)

5.4 The Three-Dimensional Blade-to-Blade Flow

We can now proceed to determine the three-dimensional perturbations

due to the presence of the blade-wakes by solving Eqs. (5.38) and (5.41);

as in Chapter 3, these three-dimensional perturbations are to be added to

the circumferentially averaged flow determined previously. On expanding

these two equations in cylindrical coordinates, we have:

For Eq. (5.41):

and for Eq. (5.38):

1 2 dY TM g-x d.(

T r B-+ (5.95)
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d d

where we have written R as d , since in the approximation used here,

the perturbation potential in the actual flow and in the reduced flow are

the same. The relative tangential Mach number MOr in Eq. (5.95) is given

by

(5.96)IA4 - CO___

Once more, the boundary condtions are

0

so that the radial velocity vanishes at the hub and the tip.

The partial differential equations in Eqs. (5.94) and (5.95) are of

the form

(5.98)

and the type of PDE (elliptic, parabolic or hyperbolic) to which they

belong depends on the eigenvalues of the matrix

D C)O

o C Zb

0 Z A
As it turns out, if

(i) B2 - AC > 0 the PDE is of the hyperbolic type with two distinct

(5.97)

(ii) B - AC = 0

families of characteristics.

the PDE is of the parabolic type with one real family

of characteristics

'L I+C +-O +qab)z ) 6 ZY1
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(iii) B2 - AC < 0 the PDE is of the elliptic type in which the "char-

acteristics" are conpigate complex

For Eq. (5.94),

u 2I

We note that MU /(l+2 r ) is the Mach number of the upstream undisturbed

fluid relative to the rotor, and it increases with the radius r. It may

happen that, as in the case of a transonic axial fan 810,11,15 this rela-

tive Mach number could vary from subsonic value in the inner annular sec-

tion to supersonic value in the outer annular section. We therefore find

that Eq. (5.94) is of the elliptic type in the inner annular section
2

where MzO (1+ r ) is less than unity while it is of the hyperbolic type
2 22

in the outer annular section [MU (l+w r ) > 1]. Clearly, the change
zO

occurs at the sonic radius r given by

J-S
MT (5.100)

However, for Eq. (5.95)

d2 I
.. AC (Mzo .te -- 1 ,(5.101)

where /Md2 + M2 is the Mach number of the downstream undisturbed fluid

relative to the rotor. Therefore Eq. (5.95) in contrast with (5.99) be-

comes elliptic or hyperbolic according to whether the relative Mach number

v/M d + MNr is less than or greater than unity. But the rotor is adding
zO -Or

work to the fluid as it passes through the blades so that it is highly

unlikely that the actual relative mean Mach number of the downstream
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undisturbed fluid will ever exceed unity, even though that of the up-

stream undisturbed fluid does so over the outer portion of the blades.

5.4A The Upstream Three-Dimensional Perturbations

We can write the solution of Eq. (5.98) in the form of

nr)U e (5.102)

The normalized upstream radial eigenfunction Ru (r) is given bynp

-its
1148

R'Av4 y M (u,\1h r (5.103)

where

i L 9M ) .(5.104)

Each R (r) satisfies the differential equation
np,

++ RYI ( -A= , (5.105)

where the X are the upstream axial eigenvalues. Once again, the normal-
np

izing facotr /N can be found from

( -) - t U.dy (5.106)

The upstream axial eigenvalues X are to be found as required by the
np

boundary conditions in Eq. (5.97), as the roots of the following equations

[see also Eq. (3.33)]:
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J7S n4) - J4 NO Y-. (W?) 5.107)

and

\: 4 (5.108)

[Eq. (5.108) has been obtained by solving the quadratic Eq. (5.104) for

u UA ]. For each value of X obtained from Eq. (5.107), there corresponds
np np

two values of Au ; a choice is made so that a physically valid perturbed
np

flow is realized. If the value of Xnp is such that the argument of the

square root in Eq. (5.108) is positive, the positive sign is chosen so

that all disturbances would die out at large distances upstream from the

blade row. This would give a complex eigenvalue Au , corresponding to
np

a disturbance of the subsonic type wi-h an exponentially osciallatory

9
decay . On the other hand, if the value of X is such that the arguement

np

of the square root is negative, then the negative sign is chosen so that

the upstream propagating disturbances have a finer pitch (the Doppler

8 u
effect) . Thus the eigenvalue A is imaginary and it corresponds to a

np

disturbance of the supersonic type which propagates to the far field with-

out any decay. Since X is at least of the order of nB, the argument of
np

the square root can go negative only if the upstream relative Mach number

at the tip (Mu 2 ) becomes supersonic . Hence, for transonic rotors,

the sonic radius as defined in Eq. (5.104) is within the annulus so that

the upstream disturbance field is composed of the components of supersonic

modes and those of the subsonic modes.
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We further note that if for any particular value of X is such that

it exactly satisfies

. e 'Yc$Lt4 (5.109)

then solution exists only if (n2 B 2W2 Mu //l-M ) is a root of Eq. (5.107).
zO zO

This corresponds to the phenomenon of transonic resonance which has been

investigated in references 8, 10, and 12.

The radial eigenfunctions Ru (r)} forms an orthonormal set, and by
np

making use of this property, one can readily show that

yz I ' , (5.110)

since

1.

dt Y -)6Y 
(5.111)

5.4B The Downstream Three-Dimensional Perturbations

In general, the solution of the non-homogeneous partial differential

equation (5.95) with variable coefficients can be written as

d A n7 (5.112)

The first double sum in the above equation is the exponentially,

oscillatorily decaying homogeneous solution; it is osciallatory because

the axial eigenvalues Xd are invariably complex. As noted earlier, it is
np

highly unlikely that a disturbance of the supersonic type, which propagates

far downstream without any decay, will occur here since the rotor is

working on the fluid passing through it.
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The downstream radial eigenfunctions R (r) satisfys the differential
np

equations

CJ (imba~)R -:Fr J~ (5.113)

which can be rewritten in their self-adjoint form

aTdr--)d (-riM.3jf od. (5.114)

Because of Eq. (5.97), we require,

Rn() -g 0 (5.115)

Thus the inhomogeneous part of the solution, d(r,6,z), must again satisfy

0 (5.116)

so that the net radial velocity vanishes at the hub and the tip.

As a result of compressibility effects and the presence of the down-

stream swirl, the radial dependence of the coefficients in Eqs. (5.113) or

(5.114) is such that its solution in terms of known tabulated functions is

not available. Various methods of approximate analysis and numerical

d
techniques may be used for determining the radial eigenfunctions R d(r)

np
d

and the associated downstream eigenvalues X np. (In general, it is expected

that the eigenvalues X will occur in complex conjugate pairs so that
np

the choice is to be made such that the perturbation potential is bounded

far downstream).
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In the limit of vanishing downstream swirl (i.e. for a lightly-loaded

rotor), the downstream radial harmonics, and eigenvalues become the same

7 10 11
as those of the upstream ones; ' ' in this limit, downstream propagating

disturbances of the supersonic type, can occur if the sonic radius lies

within the annulus.8'1 0'1 5

For blade wakes in incompressible flow, we have managed to obtain an

exact solution to the.corresponding inhomogeneous equation (3.27); how-

ever, for blade wakes in compressible flow, because of the radial depen-

dence of various coefficients in Eq. (5.95), is such that it necessitates

d
some sort of approximation in an attempt to obtain d(r,O,z) to satisfy

the boundary conditions in Eq. (5.116). [One may be tempted to express

d d
the radial dependence of 1 (r,O3,z) in terms of the Rnp (r), as we have

I np

done in the incompressible flow case (see Chapter 3) so that Eq. (5.116)

is satisfied. However, this is not convenient in this situation.]

At this point, we note that for a free-vortex flow, the radial depen-

d2 d
dence of the factors (1-M d) and (M rM /r) is rather weak compared to

that of d(r,e,z). [Typically, for a transonic rotor with a hub-to-tip

ratio of 0.8 with an inlet Mach number of 0.65, a tip Mach number of 1.3,

and a pressure ratio of 1.8, the radial dependence of (1-M ) and M O r
zo zO r

is as shown in Fig. 1.7.] One sees that they are nearly constant over
2

the annulus so that it is quite appropriate to replace (l-Mzo) and (Mz0

M /r) occurring in Eq. (5.95) by their annularly averaged values.
Or

With these approximations in mind, we can therefore define a set of

eigenfunctions {R (r)} which is orthogonal with respect to the weighting
np

function

3) ,.-
YIr)e (5.117)
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while each member of this set also satisfies the differential equation

F 4 -- 7 n?(t-Zo)av + 7bKrj ao

(5.118)

--- ( -) Rn? = 0

which can further be rewritten in its self-adjoint form,

-R ,+Z~(V1~-I nBK-y(M OMer

(5.119)

-- (1Me'r R$ 0,

where the Knp are the corresponding eigenvalues determined by the radial

boundary conditions previously described. The annularly-averaged values

2d
of (1-M 0 )ar and (M OM r /ar are given by

( z-- .. 62 - (5.120)

and

( # )~ -Nz~oor~~..(5.121)

The above approximations [which would be especially good for higher

modes since then the radial dependence of (1 - M ), and (M d Mr/r) is

very weak compared to that of the q (r,O,z)] allow the radial dependence

d I
of d(r,0,z) to be expressed in terms of R (r). Hence, we can write

the solution 4xd (r,e,z) as a double sum:
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d( ,9,- -C nP ro (5.122)
(Y 9 

-) =1 , W :1 C)

Thus Eq. (5.116) is satisfied. It is shown in Appendix I.F that Z np(z)

is of the form &3n (1- r

(5.123)

where

A,-. f)R4&) de , (5.124)

__Kn (v( (5.125)

and

Q,(r) S Vtr) kI wk. AN)~- ) +(5.126)

The analytical behavior of the integral in Eq. (5.123) is closely related

to the true nature of the blade wakes and their induced perturbations.

5.4C Matching of the Flow Field at the Blade Row

For each circumferential harmonic n and radial harmonic p, the

remaining unknowns are A appearing in Eqs. (5.102) and (5.112); their
np

determination follows directly from the matching of the upstream flow,

and the downstream flow at the blade row (in the actuator disc limit) using
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the following physical boundary conditions:

(a) Mass fux continuity across the blade row requires

z.-oVZTZ' 0+= (5.127)

Because of Eq. (5.80), the above equation becomes (in the approximations

here)

VZ1V7. + z I (5.128)

It is shown in Appendix I.G that Eq. (5.128) is equivalent to

d, ?0. T - a 7..a6e1 -.g--

41. (ItL
'coj b) Vd V- Sdz' Me '+ P a - M KKu (5.129)

(b) As before the spanwise force on the blades is to be considered

negligible here, the radial velocity is continuous across the blade row;

i.e.,

-to- Vr + (5.1

Because of Eq. (5.82), Eq. (5.130) becomes

I- ---o- = Ko" (5.1

or

Z-aY 
(5.1

30)

31)

32)
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The use of Eqs. (5.102) with (5.112) in Eqs. (5.129) and (5.132)

results in, for each circumferential harmonic n,

A0 d- 00 d A ~(~C) 513

I . p0 5.33

with

-- d ( 1, (5.134)

and

An ) R (v) +LZin(p) O Cr). (5.135)

We can integrate Eq. (5.135) with respect to r to give

A (r) =A (y) -t jZ t.)0 i .r) , (5.136)

where we have chosen the constant of integration to be zero in order that

the velocity potential be the same on either side of the blade row.

We note that the circumferential harmonics n are separable; i.e.,

we can match each of the downstream circumferential modes to the corres-

ponding upstream one. However, as in the solution for the circumferentially

mean flow, the radial harmonics are not separable here because, as already

emphasized, these radial harmonics have been modified through the presence

of the downtream swirl and compressibility effects. Consequently, mode-

by-mode matching is not possible here. However, in order to minimize
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computational work, we still make use of the orthogonality properties of

the upstream normalized radial eigenfunctions in order to match the flow

field at the blade row. This is equivalent to now expanding the down-

stream eigenfunctions R (r) and R (r) in terms of the upstream radialnp np
Ru 15

eigenfunctions R (r) in the form of Fourier Bessel Seriesnp

On multiplying Eqs. (5.133) and (5.136) by r R (r) and integrating
np

from r = h to r = 1 we obtain, by virtue of the orthogonality of the nor-

malized eigenfunctions {Ru (r)}:
np

u) ~. "P z mo 91 i

dx 4 rQ jy

..- r) 5 () Yr (r)RV3 ()f a. ) A (5.138)

Equations (5.137) and (5.138) show, as before, the mutual interference

among the radial harmonics. As noted earlier, in limit of vanishing

swirl, the downstream radial eigenfunctions and eigenvalues would revert

to the upstream ones so that this mutual interference would disappear, and

the earlier more convenient procedures could be employed.

The above two matching conditions, as expressed in Eqs. (5.137) and

(5.138), give rise to linear equations sufficient for the determination of

the two sets of unknowns, {A }; they can be written as a 2p-by-2p complex
np

matrix equation:



123

where

(5.139)

- 7J' (0 (-M~R~~)njd ,

and

(Although these expressions may appear complicated, actual computation

is direct, standard, and extremely rapid.)

Upon inverting the matrix equations (5.139) to give the {A }, the

annp

three-dimensional flow field is completely determined.

Upstream of the blade row, we have

Vt An. Pt
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040iBv~u .~~ c YeV

while downstream of the blade row we find

V = Vz, + -Z Lse
(Iti )f 0-ck vS r-)'6

rre-.
fl0LL0 Th0p.0

V %0 Sr e S + L t Z (5.141)

Pt nti pai

V1 = VL- Le1 e +Z1zA? R? e

vu r -d
where V zr z, and Vrd are given in Eqs. (5.92) and (5.93).

5.5 The Downstream Vorticity Field

As pointed out below Eq. (5.19), gradients in entropy arising in the

blade wakes can be described in terms of "reduced" vortex filaments on

axial planes. Specifically, the reduced vorticity is given by

- +n)Sn(e) e
SVZ vt

(5.142)

(5.140)
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-i5y , dSn Z o) zing~o (5.143)
VZ ~ l:

0 ,(5.144)

where we recall (Section 5.2) that V = constant and
zO

Note that R remains zero as the flow proceeds downstream; this is

consistent with the approximation used here, since the corresponding

Helmholtz Equation for the reduced flow is simply

-JRV - - = (5.145)

(see also the discussion of the reduced flow transformation in Section 4.7).

However, the above result does not necessarily imply that the actual

vorticity field in the original flow must have components lying only in

such planes. In fact from Eq. (5.32), we find the actual downstream vor-

ticity field to be

r vad IWVZo4  _(o (o k Z ok) Zx~ (5.146)

L 0 vYi. nBn.r ei I

-f .

YV 1"0
~iL~f 5 a
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r Z if *aKoTO) d. (5.148)
Z 2.r L...

Thus, in the real flow axial vorticity components, C, actually grows with

Z (when sn is independent of r, however, C does vanish at the rotor plane).

The full Helmholtz equation for the untransformed flow can be written

VJV -- .VW -VTXVS

r.- W(5.149)

and this provides a means of interpreting (5.146) to (5.148).

The presence of downstream swirl results in the usual radial pressure

gradient, which in turn results in a radial static temperature gradient.

Because of the variation of the entropy field in the blade wakes considered

here [Eq. (5.3)], surfaces of constant static temperature and entropy do

not coincide (i.e., the fluid is non-barotropic). Thus, the RHS of Eq.

(5.149) does not vanish. Correspondingly, Kelvin's theorem does not hold

here, i.e., the fluid motion is not required to maintain irrotationality

in the downstream region! The presence of non-zero C for z > 0 in the

swirling downstream flow is consistent with this observation as well as

with the results of Kerrebrock.2 1

[Alternatively, the presence of a growing can be explained in terms

of the occurring of secondary fluid motion through "bouyancy" effect

(corresponding here to the centrifugal force field), which couples with

density stratification in the working fluid introduced by the entropy

variation brought in by the blade wakes]. The analysis given in Appendix

I.E offers still another way of viewing this result; there it is shown
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in particular, that the resulting axial vorticity component vanishes in

the incompressible limit.

As mentioned above, if sn is a constant, then as in our study of blade

wakes in incompressible flow (Chapter 3), the vortex filaments are purely

radial at the exit of the blade row (i.e., at z = 0). Still, as we have

seen, as one moves downstream away from the blades, both tangential and

axial components of the actual vorticity develop [Eqs. (5.147) and (5.148)].

This in turn effects the development of the streamwise component of vortic-

ity, Q , given in this case (ds n/dr = 0) by

_L - -- (I -- Z ) Z
d 00 In

+ \Prb rV. ZMBKOZ S() C- (5.150)

Such streamwise vorticity, developing progressively, as the flow proceeds,

sets up a "secondary" flow, including in particular radial flow. The flow

field therefore must readjust as the result of continuity requirements.

This provides an example of a three-dimensional effect analogous in many

respects with more familiar types of secondary flow phenomena.

5.6 Induction of the Downstream Perturbation Static Pressure by the Blade

Wakes.

As in the case of blade wakes in incompressible flow, a structural

(downstream) pressure field is induced by the presence of blade wakes

occurring simultaneously with a centrifugal force field.21 Referring to

Eq. (4.8), we have, for a calorically perfect gas,
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CpTt -- rVe,

whence

SCT 0 -- YV9 + 9 , -- QTSVI, (5.151)

in the approximation used here. In Eq. (5.151), 6 denotes the net change

in fluid properties as a result of any disturbance with respect to the

reference flows, V0 . We have already noted that the rothalpy I remains

constant along a relative streamline; because of the uniform inlet con-

ditions assumed for the present case, the rothalpy therefore remains con-

stant throughout. Hence, Eq. (5.151) yeilds

CP STt - u)'r SVD=o (5.152)

But the stagnation temperature Tt is given in this case by

-\- -- V.\/, (5.153)

so that

vT + +zo SV7 +Veo SVe - (5.154)

Thus, Eq. (5.152) and (5.154) leads to

CPST GYSVe -VeosVG -VzsV 1.. (5.155)
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The specific entropy, s, is given by

Y -- 1 (5.156)
C -O

which can be rewritten here in the form

+ ) - (-A) S (5.157)

Combining Eqs. (5.155) and (5.157), we obtain finally

> _Lo-y) ).Y + .. (5.158)

In dimensionless variables (see Section 5. ), the upstream static

pressure perturbation can be expressed as

=Z K -V -ZV\' (5.159)

while the downstream static pressure perturbation, according to (5.158),

can be written

zo

where M u is the upstream reference Mach number, and Td is the ratio of
zO d

downstream to upstream static temperatures. This latter ratio is given

here by

Tdr ={k (izo9 -- \z--. (5.161)

where f du is the pressure ratio across the rotor.

We focus our interest in the following downstream static pressure
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field only. Substitution of 6V d 6V d, and 6s in Eq. (5.161) leads to

dL 0 d
9P z (Tdu7'-VGz / Z7AeA?4(Yr)

pzt

eL 00e j ' 7-- jn*00

(5.162)

The first single sum, arising from the solution to the circumferen-

tially averaged flow, decays exponentially with distance downstream of

the blade row. Similarly, the following two double sums, representing

the homogeneous part of the solution of the circumferentially non-uniform

f low, have an exponentially decaying behavior downstream of the blade row

(combined with some osciallatory behaviro). However, the final two

double sums doe not process this exponentailly decaying nature; they rep-

resent that part of the fluctuating pressure arising from the combined

presence of the blade wakes with the centrifugal effects, as previously

discussed. Its presistence downstream is dependent (among other para-

meters) upon the magnitude of nbK0 d indeed, its amplitude is deter-

mined by the value of an integral quite similar to that in Eq. (3.56) (the

modification s here arises primarily from compressibility effects). Con-

sequently, as with the effects of blade wakes in incompressible flow pre-

viously discussed, the induced pressure field will again decay inversely



131

with z. The specific dependence on (nBK/Vd ) is discussed in Chapter 6.
0 zO

We note further that, as expected, in the limit of zero swirl (i.e., K O

this induced pressure field vanishes identically. Thus, the induction of

a persistent pressure field by downstream swirl can also be seen to reflect

the fact that the perturbations induced by the wakes are not purely con-

vected by the flow [in agreement with Eq. (5.141) , and the predictions in

Reference 21].

In summary, we see that the entropy field produced by the viscous

interaction between the working fluid and the blade surfaces is instrumen-

tal in determining the nature of the downstream vorticity field. In the

presence of a centrifugal force field, this vorticity field in turn in-

duces a static pressure disturbance. In this sense, therefore, the entropy,

vorticity, and pressure disturbances are indeed coupled in swirling flows,

as predicted in Reference 21.
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CHAPTER 6 - BEHAVIOR OF BLADE WAKES

In this chapter we further examine the specific behavior of the blade

wakes, together with the perturbations in fluid properties they induce as

they are carried downstream (to a good approximation) by the mean fluid

motion. We note first that the integrals appearing in the solution

[i.e., Eqs. (3.39) and (5.127)], which describe the axial dependence of

the waked induced velocity potentials, have in their integrals an expon-

ential factor with an imaginary arguement. This factor can be expressed

in the (dimensionless) form exp {- inBz (K /r2 - K )/V } (recall here
0 1 zO

d
that Vz is by definition unity for incompressible flow). Consequently,

the integrand becomes increasingly oscillatory as a function of radius as

dthe factor (nBzK/V dO) increases downstream, and the value of the integral

can be expected to decrease as z increases for fixed values of n, B, and

K /V d Far downstream (i.e., for sufficiently large value of z) the

integrals of this type finally vanish. We therefore conclude that the

perturbations in fluid properties induced by the wakes (with the exception

of those which are purely convected, such as entropy disturbances) also

ultimately vanish at large distances from the blade row. Of course, the

rate at which this takes place is also dependent on the magnitude of the

parameters included in nBK0 /Vz

Physically, this can be explained in terms of the increasing destruc-

tive mutual interference of the wake-induced perturbations at given radii.

Equivalently, one can also interpret this effect in terms of the down-

stream development of the vorticity field described earlier. Specifically,

as the vortex filaments forming the blade wakes are carried downstream,

they are also turned and distorted into a spiral form around the axis;
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this is depicted in Fig. 1.6. As one proceeds downstream the number of

such spirals at a given axial plane increases. At very large distances

from the blade row, the distance between adjacent spirals becomes infini-

tesimally small. In this limit one can scarcely single out any of the

distinct blade wakes even though originally (at the exit plane of the

blade row, z = 0) they are as structured as the arrangement of the blades

in the blade row itself. In other words, the circumferential non-uniform-

ity due to the presence of the discrete blade wakes eventually becomes

smeared out.

In consequence, the related perturbed flow field tends toward cir-

cumferential uniformity at large distances from the blade row. Thus, in

taking account of the presence of the blade wakes as a source of circum-

ferential non-uniformity, we find that the background free-vortex flow

(assumed for simplicity in the present part of this study) acts to destroy

this non-uniformity by twisting or "winding-up" the blade wakes. [From

these considerations, one may well raise doubts as the to usefulness of

a possible Trefftz-plane analysis, analogous with that of classical wing

theory in computing the induced flow field at the blade row, even though

16
this has been carried out successfully in related sutdies1

Up to this point, we have not discussed the integrals in Eqs. (3.39)

and (5.12 ) either on a numerical or analytical basis. Even after numer-

ical evaluation of these integrals, their content is often difficult to

interpret. We therefore attempt to understand certain features of the

downstream flow by considering the asymptotic behavior of the above inte-

grals for large z, or to be more precise, for large values of (nBK z/V d).

Integrals of the type occurring in Eq. (3.39) and (5.123) can be evaluated

asymptotically by the method stationary phase. In this procedure, one
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ordinarily argues that for large (nBK z/Vzd), the dominant contribution

to the integral is from the neighborhood of the stationary points of the

arguement in the exponential; away from such points, the integrand oscil-

lates rapidly and can be expected to make little net contribution to the

final result. However, the arguemnts in the exponentials encountered

here possess no such stationary points. Even so, one can examine the

asymptotic behavior of thQ integrals by a related argument as described

below.

In the interval from r = h to r = 1, the first derivative of

nB/Vd (K2/r - K )} with respect to r is non-zero (in fact, positive)

so that it is a monotonically increasing function of r on that interval.

Therefore, the integrand can be put into a more tractable form by first

transforming to the variable

T fi- -K(6.1)

whence

d -= dT/2K___ (6.2)

Then the integral becomes

iZt FW dt (6.3)
ZnB ),.

where from (6.1), r = r(T)(see below). Here, for blade wakes in incompres-

sible flow,
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Z~' + TL{~yn-kt)

while for blade wakes in compressible flow,

_______ ab ________rd__ (6.5)

Because of its monotonic feature, as already mentioned, it is clear

that the inverse of -nB(K0 /r
2 - K1 ) exists in the interval from r = h to

r = 1 and, therefore, that r = r(T) can be obtained. In particular, on

integrating Eq. (6.3) by parts, we find

, ( i -K.

7e/ K, d (6.6)
zn?( -za r) I- vsr)Z-n,-Kj e~ZnBK* 12 z ~ 3 .Vzo 3

-l
For large z, the first term on the RHS of Eq. (6.6) decays as z ; we

show below that the integral on the right will drop off at least as fast

2
as 1/z2. For that purpose, we note simply that

d F -E FiT f (6.7)

7ZTZn j (Zn
Vior34 \ y3

which is bounded in the interval from r = h to r = 1. Hence

Z. M (6.8)

where M is some positive constant, and, consequently, the integral exists.

2
Further as stated, it can almost decay at least as rapidly as 1/z2. From

the above analysis, we are able to conclude that the "persistent" parts
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of the perturbations induced by the blade wakes should be expected to

decay inversely with z at large distances from the blade row. In partic-

ular, for blade wakes in incompressible free-vortex mean flow,

- (6.9)

far downstream, and for bl-ade wakes in compressible flow,

These results are in agreement with, and help provide interpretation of,

the numerical evaluation of the subject integrals which are in turn used

to obtain the results shown in Figs. I.9 - I.12.

Mathematically, these results are also in correspondence with the

often-used Riemann-Lebesque Theorem, which states that integrals such as

those occurring in Eqs. (3.39) and (5.123) approach zero as z approaches

infinity, provided (cf. Eq. 6.5) the function F(r) (which here is to some

extent related to the radial distribution of the losses) is Riemann-

integral and provided also that the integral converges absolutely. The

requirement of the Riemann-integrability condition requires simply that

the radial distribution of the losses be sufficiently smooth at the exit

plane of the blade row.

To provide a contrasting example, let us consider a simple model in

which the stagnation pressure loss has a spike at some point r = r0 along

the blade span, such that w(r) assumes roughly the character
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U~)(y) CO, S Y-y;; ) , (6.11)

where c0 is some constant. In that case, we would have, in contrast with

the above, a persistent term of the form

(z C 0CL- t) Pr)e i v (6.12)

which does not vanish for any value of z.

Hence, if for any reason, the stagnation pressure loss can be approx-

imated using Eq. (6.ll)(for instance, such an effect might arise as a re-

sult of three-dimensional boundary layer behavior on the blades), then the

perturbation in fluid properties could effectively persist "forever"

downstream of the blade row. There is some recently obtained evidence

that an effect of roughly this type may well occur as a result of shock

35,36,21
boundary layer interaction in transonic fans
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CHAPTER 7 - NUMERICAL EXAMPLES FOR AN ISOLATED TRANSONIC ROTOR

The numerical examples included here are intended only to illustrate

the implications of the inclusion of viscous effects within the blade row

represented here through a variation of entropy across stream surfaces

(e.g., the effects of the presence of blade wakes). For this purpose, we

will take the simplest available model, in which the presence of the blade

wake can be approximately represented by

S = Si (7.1)

where the real part is implied. Of course in a more complete model of

the blade wakes, we would wish to use an analytical representation such

as that given by Eq. (5.27). The value of sl in (7.1) above can be

estimated through Eq. (5.26), together with experimental cascade data of

the type presented in Fig. 1.4. Two extreme values of w (or s1 ) will

be considered here: - (i) The total pressure loss coefficient w is taken

to be 0.025; this would correspond to the value of w when the rotor is

operating under nominally design conditions; (ii) The value of W is taken

to be 0.06, corresponding to a point near stall for a typical rotor. A

brief outline of the numerical computation used is given in Appendix I.I.

We have shown analytically in the preceding chapters that the blade

wakes induce a persistent static pressure field when interacting with a

downstream swirling flow. The actual magnitude of this blade-to-blade

variation of the pressure is illustrated in Fig. 1.9 for the case of a

transonic rotor near "design" conditions (case i above) with a hub-to-tip

ratio of 0.8, a tip Mach number of 1.3, an inlet Mach number of 0.65
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and a pressure ratio of 1.8. The number of blades is taken to be 40.

Each blade is positioned at e = 2r/40 (m-1), where m assumes integer

values from 1 to 40. From the figure, we see that, for distances signif-

icantly away from the blade row, the pressure pattern associated with the

wake-induced disturbances is indeed present, although fairly weak. This

is to be expected: for B = 40 the factor (nBK /Vd) is sufficiently large

so that the integral describing the wake-induced disturbances has a small

value unless z is itself very small. For a particular value of z, the

value of the integral previously discussed increases with decreasing

number of blades. The corresponding strength of the pressure field assoc-

iated with the wake-induced disturbances would therefore increase as the

number of blades is reduced with the total loading on the rotor kept

constant.

The corresponding blade to blade variation of radial velocities is

illustrated in Fig. 1.10. The magnitude of the radial velocity due to the

presence of the blade wakes increases steadily with z for some distance

downstream; at about z = 0.75, it reaches a maximum and then decreases

vanishing ultimately. This behavior of the radial velocity can be inter-

preted in terms of the downstream development of the vorticity field

described in Chapters 5 and 6. Initially, as we have seen, the blade wakes

are carried downstream and a corresponding "secondary" vorticity develops

growing in strength as it proceeds downstream. Ultimately, however, the

winding up of the vortex filaments forming the wakes around the axis dis-

troys the coherence of the induced field and the radial velocity associated

with this secondary vorticity decreases. It is important to note that the

radial velocity predicted by the circumferentially averaged flow solution

(shown by the broken line in Fig. I.11) would decay to a negligible level
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at about z = 0.1. The axial variation of the blade to blade axial vel-

ocity and tangential velocity perturbations for the same case are shown

in Fig. I.11 and Fig. 1.12, respectively. As indicated earlier, the value

of w used for obtaining these figures was chosen to be 0.025; the magni-

tude of the perturbations due to this effect owuld naturally increase in

proportion to the total pressure loss coefficient W.

We have already pointed out that, because of the (initially) cumula-

tive effect of the wakes on the perturbation field, the incidence angle

of the flow at the blade may be modified. This could be of importance

since the knowledge of the distribution of the flow angle is necessary in

the design of the blades.

The magnitude of this effect for blade wakes occurring downstream

of transonic rotors is illustrated in Fig. 1.14 to 1.17, there, the flow

angle deflections through the rotor (as defined in Fig. 1.8) are computed

according to three different theories. In all examples:

Curve 1 is obtained using the simple axisymmetric radial equilibrium

analysis;

Curve 2 is obtained using the circumferentially-averaged flow solution

Curve 3 is obtained using the circumferentially non-uniform (three-

dimensional) flow solution including the effects of the vorticity in the

blade wakes discussed here (Part I).

From these examples, it is clear that the modification in the flow

angle deflection caused by the presence of the vorticity in the wakes is

quite significant. Curve 3 in Fig. 1.13 and Fig. 1.14 is computed using

values of w equal to 0.025 and 0.06 respectively, but otherwise for the

same rotor and operating conditions as those specified for Figs. 1.9 -
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1.12. The higher value of w results in a drastic change in the flow angle

deflection; in this case, the difference in the flow angle deflection

predicted by the present theory and the more conventional axisymmetric

(actuator disc) theory varies from about 6* at the hub to about 4* at the

tip.

The curves shown in Figs. 1.15 and 1.16 are for the corresponding

case of a transonic rotor again with a hub to tip ratio of 0.8, a blade

number of 40, but operating at a pressure ratio of 1.5, a tip Mach number

of 1.1 and an inlet Mach number of 0.5. The modification in the flow

angle deflection is smaller than in the previous case; for instance, the

difference in flwo angle deflection predicted by the present theory and

the actuator disc theory varies from about 1* at the hub to about 0.9'

at the tip with a value of 0.025 for W, as compared to the previous case

of the transonic rotor with a pressure ratio of 0.8, where it varies from

about 2.3* at the hub to about 1.5* at the tip. From these examples we

see, as expected that the extent of the modification in the flow angle

deflection increases not only with the loss coefficient but also with

the loading on the rotor.
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CHAPTER 8 - CONCLUSIONS: PART I

(i) Three-dimensional flow effects induced by the vorticity present

in the viscous blade wakes, though usually of little importance in external

aerodynamics (e.g., flow over an isolated wing) can be significant in the

internal aerodynamics of axial turbomachinery operating at practical load-

ing conditions. For highly-loaded rotors, for example, the presence of

vorticity in such blade wakes modifies the flow angle deflection through

a rotor significantly, even for (optimally) low values of the total pres-

sure loss coefficient. This suggests that in determining or predicting

the distribution of flow angles over the blade span, such effects ought

to be included.

(ii) Blade-to-blade disturbances in the fluid flow induced by blade

wakes interacting with swirling flow generally are not purely convected

by the mean flow even approximately: (exceptions include entropy distur-

bances and the stagnation pressure perturbations). In consequence the

vorticity in such wakes induces a persistent downstream static pressure

pattern not convected along mean streamlines. Although this static pres-

sure field is fairly weak for distances significantly away from typical

blade rows, its downstream persistence, which is a uniquely three-dimen-

sional feature, can make it of importance for a variety of purposes.

(iii) Disturbances predicted by the conventional axisymmetric

actuator disc theory decay exponentially to a negligible level in a short

distance away from the blade row. By contrast, as just mentioned, the

present three-dimensional theory shows the disturbances associated with

the blade wakes do persist for a moderate distance downstream of the blade

row. Eventually, however, these perturbations decay inversely with the
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axial distance, an effect due to the winding up arround the axis of the

vortex filaments present in the blade wakes. This contortion of the wake

system gives rise to a mutually destructive induced field. Correct pre-

diction of these phenomena requires study of nature of the flow associated

with the blade wakes.

(iv) In contrast with the case of non-swirling flows, the vorticity

and pressure fields cannot be separated in incompressible swirling flow.

Similarly, in the case of compressible swirling flows, the vorticity and

pressure fields are further coupled to any entropy disturbances present.

Thus, these various flow types cannot be separated into non-interacting

disturbances as is usually possible for flows over isolated wings and

bodies.
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CHAPTER 9 - SUGGESTIONS FOR FUTURE WORK

In the development of the three-dimensional theory presented here,

we have considered a free-vortex rotor which sheds viscous wakes into

downstream flow field only. Among other resutls, we have found that the

vorticity in these blade wakes induces a flow field which modifies the

flow angle at the blade significantly. The extent of this modification

is dependent upon the losses within the blade row as well as the loading

on the rotor. In the general case, it is virtually unavoidable that such

modifications of the flow angles at the blade row will cause a spanwise

variation of the loading on the blades. This in turn will result in the

shedding of vorticity from the trailing edge of the blades. This trailing

vorticity, usually of the Beltrami type, has not been included in the blade

wakes described here, but has been treated in separate basis elsewhere. '19

It seems appropriate therefore to suggest that a possible next step

in the logical development of the theory would be to treat these two types

of vorticity in the blade wakes at the same time. The presence of trailing

vorticity can be regarded as one of the consequences of the presence of

viscous blade wakes in the actual downstream flow. In general, the

strength of this trailing vorticity must be determined consistently from

an appropriate set of physical boundary conditions at the blade row,

including simultaneously the effects of losses at the blades of the type

discussed in the preceeding chapters.

So far, we have only confined the variation of entropy across stream

surfaces to be a consequence of the viscous interaction between the

working fluid and blade surfaces. However, the general approach now does

not exclude the possibility of including losses due to other mechanisms
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within the blade row. For instance, shock waves, which provide another

loss mechanism occur within the blade passages of transonic rotors; these

shocks also can interact strongly with the boundary layers on the blading.

Thus, the entropy of the working fluid is increased in a variety of ways

on passage though the rotor. Estimation or measurement of these entropy

changes would allow their inclusion in the present theory. In this frame-

work the objective would be to be able to provide an eventual comparison

of theory with experiment, including in a realistic way as many as pos-

sible of the effects important to the understanding, design, and operation

of a practical rotor on ducted fan.
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APPENDIX I.A

The solution of Eq. (3.27) of Part I:

On substituting Eq. (3.38) in Eq. (3.27), we obtain

S00 Y dT '- d p

- o . (A.1)

fl?.

Upon making use of Eq. (3.34), for each circumferential harmonic n, we

have

~jr(d ZhP 7 ' 1-2-i~ (A. 2)

On multiplying Eq. (A.2) by rFnj, and integrating over {h,l} we obtain,

by virtue of the orthogonality of the normalized radial eigenfunction F nj'

7L~ . ~ i~F r (A.3)

On solving Eq. (A.3) by the method of variation of parameters, we obtain

the particular solution of Eq. (3.27) as given in Eq. (3.39).
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APPENDIX I.B

Derivation of Eq. (4.68) of Part I:

By substituting Eq. (4.67) into the LHS of Eq. (4.25), we have,

/c (B.1)

But

CPTt4" tIV

so that

TVS=TtVS -$VeS/C? (B.2)

Thus the RHS of (4.25) becomes

I-TS=CpVT -'TtvS+Wves/c?.

Upon equating Eqs. (B.1) and (B.2), we obtain

cpesR c2 i --5/t -/tVC

Hence

where we have used the relation

for a perfect gas.

(B.3)

(B.4)
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APPENDIX I.C

Derivation of Eqs. (4.87) and (4.88):

By making use of Eqs. (4.67), (4.89) and (4.90) in the continuity

equation (4.15a), we obtain

Because entropy is conserved along the relative streamline, therefore

V.(F9Pa )= 0 1(C.1)

which is Eq. (4.87).

As for the equation of motion (4.16), its LHS becomes, on substitution

W-,-Ic -i-S/vi +e /C p (C.2)

We note that

\ J _V- V. Cx ) (C.3)

S=4T -[ -- \) (C. 4)

Eq. (B.2) can be written in the form of

4 Ve-5(P=cjtVe- c - v'v-/p(C.5)

Making use of Eqs. (C.3) to (C.5) in Eq. (C.2), we obtain

:-VX1 --v()eN5/C) -1) C . (C.6)



149

APPENDIX I.D

Derivation of mass flux continuity condition for circumferential average

flow at the actuator disc:

The continuity of mass flux across the actuator disc requires that in

the immediate neighborhood of Z = 0,

(PV)Z=o- V 2=0-t (D.1)

where 0 refers to a station immediately upstream of the blade row while

0 refers to one immediately downstream of the blade row. To O(E), we can

write Eq. (D.1) as

UVL d~ 2--ol\/.

Using the definition,

o b in-

one obtains

_( UV 1).Z (D. 2)

(D. 3)

S? -
Qt

Thus,

Substituting for 6p/p0 in Eq.

(D. 4)

(D.2), we obtain

--dd Vzu0 , (.5(D. 5)

-r)
Y- V

7.-0- 1- Poll z V~o
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or

(I-M 2) 1O

(dimensionless)

(D .6)-)- 4 C'MIZO -a 7- Ot VZ-O
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APPENDIX I.E

Relationship between the transformed vorticity field and the actual

vorticity field:

For flow steady in absolute frame the stagnation density ft remains

constant along the stream line, so that the continuity equation can be

written as

(E.1)V.\/ +\/-V l-g-- =-0 .

Using the thermodynamic relation

tVS=VN- Pt

in the Euler equations of motion, we have

Vxvxy =-RTVlnt .

To 0(E),

vy=(V9 ) -I~Vnt

The curl of Eq. (E.5) is

+ 0

Sa \zz- - dy 3z

(E.2)

(E.3)

(E. 4)

(E.5)

(E.6a)

(E.6b)

(E.6c)VA
d fae

+
r o a
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The components of Eq. (E.5) are:

v --

The last two equations may be combined to give

giving

Eqs. (E.7a) and (E.7b) give

V.Y, Z Z 'T

The solenoidality of the vorticity vector gives

V7- Y Vz.

and

.k_ .e (Zz r% ri "-,

From Eqs. (E.10a) and (E.12), one obtains

(V i 1 --rz ' (E.13)
Y d RT-- F

(E.7a)

(E.7b)

(E.7c)

(E.8)

(E.9)

(E. 10a)

(E.10b)

(E.11)

(E.12)

.a LO
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Let = f (r) F'(O - K0Z/r 2)Z so that C = 0 at Z = 0 (C can be made non-

zero at Z = 0 by adding a constant). Therefore,

(E.14)

Comparing Eq. (E.14) with (E.13), we identify f(r) to be

dH

Hence,

(E.15)

The tangential vorticity component r is now obtainable from Eq.

(E.10b); it is given by

d-r

For flowwith constant stagnation enthalpy,

pt = I +4 + \. C.

so that

6T YdT T r

and

Tdeilygt

(E.16)

(E. 17a)

(E.17b)

(E. 17c)

From the above, one readily sees that there is indeed an axial vorticity

component which grows with Z whenever there is a swirl; the strength of

the growth is proportional to the strength of the swirl. By allowing

( A 2- .' 5 =i() ' I

z= -dE'9 F
YVvz dT r2
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the specific heat ratio y to approach infinity, the incompressible limit

is obtained. In that limit,

di v cis

i.e., axial vorticity componetn ?C is zero in the incompressible limit.
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APPENDIX I.F

The solution for d (r,8,z):

On substituting Eq. (5.122) in Eq. (5.95), we obtain

'0av c Zp BV 0 av

I (I - M 2') 8 R(iIA-B 7 1r;~t& ie-Q-~i) (F. 1)

with G n(r) given in Eq. (5.126).

On making use of Eq. (5.118), for each circumferential harmonic n,

we have

Q-dL2 Al dd7 T

(F. 2)

Multiplying Eq. (F.2) by ef 1+Ma /r dr R (r) and integrating {h,1},nj

we obtain, by virtue of the orthogonality of the set of eigenfunctions

{R (r)},
nj

d~~

(K0 7
(F. 3)

On solving Eq. (F.3) by the method of variation of parameters, we obtain

the particular solution of Z np(z) as given in Eq. (5.123).

irk 9- a - -k)\40 'Y1.i v\ Gin(r) P-
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APPENDIX I.G

The derivation of mass flux continuity condition at the blade row for the

circumferentially non-uniform flow:

The mass flux, continuity condition demands that the local change in

the mass flux across the plane Z = 0 be given by

m A = (?Vz) =V') -(?V =0o (G.1)

Here, we will use the superscripts "u" and "d" to denote stations

immediately upstream and downstream of the blade row.

The energy equation for the flow relative to the rotor coordinates is

CT-1VZ i ~~jL =.CjT 4. i UL I

d + W. (4- -U3 d (G.2)

The subscript "-co" refers to a station far upstream (i.e., the up-

stream radial equilibrium value). Eq. (G.2) is equivalent to the state-

ment of constancy of rothalpy.

To O(c), we obtain from Eq. (G.2)

T_4 _9 Ve (G.3a)

and

TULWV2 .-- 4 - V7; YVe (G.3b)

The circumferential mean of the above two equations gives

-& '- ZV cz J (G. 4a)
CpTO VeJ___

and
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= -i- \V. - - (G. 4b)

The viscous interaction within the blade row introduces an entropy

jump of the fluid across the blade row. As such, one must not relate the

thermodynamic properties of the fluid downstream to those of the upstream

by means of any thermodyanmic relation which bears any implication of

isentropic process. -

For a calorically perfect gas,

(G.5)

Upon making use of Eqs. (G.4a) and (G.5) in Eq. (G.3a), we obtain to 0(e)

WO W_ V + V'-O V ) (G.6)

Similarly, we can write

f l p V VL-z.Loy.Ve (G.7)

Eq. (G.1) may be rewritten as [to O(s)]

V;- -")+PV- + ? -Vz . z (G.8)

But the mass flux continuity condition for the circumferential averaged

flow is

so that Eq. (G.8) becomes
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d e-c d d U 4 \L = - (G.9)

Because u / -u 1/y-l and d00= d, , we deduce from

Eqs. (G.6) and (G.7) that

L (iVV.dW Ve ed V) C) V W (G.10)

and

. (G.11)

SCP TU (-i)
2

Substituting for d and pu in Eq. (G.9) and noting that a = c T u

d2 d0 
p

a = c T (y-1), we have, in appropriate dimensionless form,

Sd( Md2.)d L Id 4 2 (G.12)MzoI'lgr~e 4Y)AS(- M )V 7 CUTJIi-M -O

From Eqs. (5.36), we have

d S . A d (G.13)V 7v~v L -+---- -Y

If Beltrami component of vorticity were present, it is then necessary to

add (G r) to Eq. (G.13). Substituting for the various components of

velocity in Eq. (G.12), we finally obtain the mass flux continuity condi-

tion at the blade row to be,

MO a. 32-Z 0 vza 'Y' a 37. 2---=03 zo

-( + f (A -C (G.14)
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APPENDIX I.H

Variational method for the determination of characteristic values and

functions:

Mathematically, the problem of solving a boundary value problem for

a differential equation is similar to the minimizing of the integral for

which the given differential equation is the Euler-Lagrange equation in

the calculus of variation. The methods employed for the solution of prob-

lems in the calculus of variations are also the methods for the solution

of the boundary value problems for the differential equations. Examples

of such methods are the Raleigh-Ritz's method and the Galerkin's method.

We shall confine ourselves to the method of B. G. Galerkin since it is

being used for the solution of Eqs. (5.71), (5.113) and (5.118).

Method of B. G. Galerkin6 1

Basically, by the method of B. G. Galerkin, the solution of the

equation

L(u) = 0 -(H.1)

can be sought in the approximate form of

(H.2)

Here, L is the differential operator (which may involve two variables),

the solution of which satisfies a set of homogeneous boundary conditions.

The set of functions {$ .} are chosen to satisfy the given boundary condi-

tions.and the a. are the yet undetermined coefficients. The functions .

are assumed to be linearly independent. In order that u be an exact sol-

ution of Eq. (H.1), it is necessary that
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.. ( ) = ) .(1.3)

Eq. (H.3) together with the fact that L(u) be continuous, ensures

that the expression L(u) is orthogonal to all the functions $P. So if i

runs from 1 to m, then there are m conditions of orthogonality sufficient

for the determination of the coefficients a.; i.e., the system of equations

L(c)*adx = L( aA'j)?,.dx :O, (H.4)

where i runs from 1 to m. The set of equations in (H.4) is sufficent for

the determination of the coefficients a.

In what follows, we outline briefly how the characteristic values

and functions of Eqs. (5.71), (5.113), and (5.118) may be determined.

Seeking the solution of Eq. (5.71) in the form of

(H.5)

where {$ (r)} is a complete set of functions satisfying the boundary con-

ditions in (5.72).

Substituting for Rd and dRd /dr in Eqs. (5.71), we obtain
p p

deP ~ ~ '(i' .I() 2C)'i~~~? ~ (1.6)

But the othogonality of the LHS of Eq. (H.6) to the set of functions

{P (r)} (where i runs from 1 to p) leads to

On integrating the first integral of Eq. (H.7) by parts and noting



161

that

-. 0O (H.8)

we obtain

P

.( - O(j , C(H.9)

where

Y- Y, (H. 10a)

and

j~jdi.)r (H. lob)

It is seen that the system of equations in (H.9) is a homogeneous

system of equations in p unknowns; therfore it has a non-trivial solution

only in the case where the determinant of this system vanishes; i.e.,

Cc. o(- ) 0 . (~l

th 2
Eq. (H.ll) will result in a polynomial of p degree in Xd and

therfore will give p roots of X which are the characteristic values.

d2
For each X , the system of Eqs. (H.9) will have a non-zero solution a

-d
which will give the approximate characteristic function R (r) for that

d2
particular X . We note that these functions are determined up to an

p

arbitrary factor only. Since the system of Eqs. (H.9) is only an approx-

imation to Eq. (5.71), therefore, it is expected that the determined

values of Xd will be approximations to the actual characteristic values.
p
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Similarly, the functions Rd (r) will be approximations to the respective
p
d

characteristic functions R (r). However, they are sufficiently accurate

for all practical purposes.

Written in matrix form, Eq. (H.9) becomes p by p matrix equation:

ji .. I O il(H.12)

where [a .] is a matrix with elements a and the subscripts i and j runs

from 1 to p. The solution then simply involves the determination of the

eigenvalues and the eigenvectors of a p by p matrix given by the following:

(H.13)

or

- (H.14)

The procedure for the solution to Eq. (5.118) is quite similar to that of

Eq. (5.71) but with

and y defined by Eq. (5.125) replacing .

As for Eq. (5.113), we would have the following corresponding matrix

equation:

A '- i (H.15)

where
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+4 d (H.16)

O y Yi .dy' (H.17)
h

However, the matrix equation (H.15) can be reexpanded into the following

equivalent form,

LA o0 I G (Q [C ad(H.19)

so that the corresponding matrix equation for the determination of the

eigenvalues and eigenvectors become

NS B-I Cs (H.20)

A convenient set of functions $ (r) used in the solution of equations

(5.71), (5.113), and (5.118) would be the set of orthogonal functions

{R i(r}} for the solution of a Sturm-Lioville type of equation:

i \ (H.21)

which is a zeroth order Bessel equation.

The boundary conditions to be satisfied are:

d Rol .IR (H.22)
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Then the orthonormal function R Oi(r) would be a linear combination of

zeroth order Bessel function of the first kind and second kind and is

given by

R0 () ~ 'hr (H1.24)
,]Io Y( cu) 0(o LIO

where

(11.25)

0i0

By taking X Oi to be the roots of

Ji(AOg(A,;h) -Yi&N 0)JL(A 01 ) 0 (H.26)

Eq. (H.22) satisfies.

Hence the characteristic function can be approximated by

R01-1 (V-)(H.27)

Here X00 = 0, and R00 = /2/(l-h) are included in the sets of X0(i-1) and

R (i-1)(r) (i=1,2,.. .p) in order for the latter to be a complete set of

orthonormal functions.

However, a much simpler set for {$ (r)} would be given by

_)-(__-___ (H.28)
ih)

Finally, we note that the orthogonality of the eigenfunctions

satisfying Eq. (5.71) and (5.118) may be slightly modified through the use

of Galerkin scheme. However, this modification is usually negligible.
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APPENDIX I.I

A note on numerical computation:

The Bessel functions of high order and their derivatives encountered

here are evaluated using the asymptotic expansions given in Ref. 62. The

computer subroutines used for their numerical evaluation are those

18 34
developed by W. K. Cheng and L. T. Chen

The numerical evaluation of the eigenvalues and eigenvectors of

matricies, and the numerical solution of matrix equations are all done

using the IMSL subroutines.

We note that in the construction of the integral in Eq. (5.127), use

is made of the orthogonality of the functions {R 1. But the function
np

R (r) is determined from Eq. (5.118) using the Galerkin Method. It is
np

approximated by

Such a way of seeking a solution for R (r) may destroy the orthogon-
up

ality of {R (r)}and may therefore not justify out way of constructing
nP

d (r,6,z). However, numerical results indicate that the orthogonality of

{R (r)} is still being maintained through the use of Galerkin's Scheme
np

of solution and the representation in Eq. (I.1). Some of the numerical

values of the integral

are shown in TABLE I. It is seen that the value of the integral is nearly

zero if p=q.

The set of functions used for the solution of Eqs. (5.71) and (5.113)
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is

C2os
too.

Finally, we would like to point out that in matching the upstream

flow to the downstream one it is necessary to expand the radial dependence

of the viscous losses within the blade row as a Fourier Bessel Series.

This would have the implication that the viscous losses must have zero

radial derivative at the hub and the tip. However, in some cases, the

loss function used may not have zero radial derivative at the hub and the

tip as requires, then one can always argue that the function may slightly

be modified there so that its radial derivative-vanishes there while

leaving the function itself unchanged at all other points. Since this canbe

done in an infinite number of ways, consequently it such cases there would

be some uncertianty as to the accuracy of.the numerical results at the

hub and the tip in such cases.
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Values of the integral f e R R dr where p and q each runs from 1 to 10.
h np nq
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FIG. I.la: CYLINDRICAL COORDINATE SYSTEM FOR THE FLOW
THROUGH A BLADE ROW ENCASED IN AN INFINITE
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FIG. 1.3: COMPOSITE PLOT OF LOSS COEFFICIENT AGAINST BLADE-
CHORD REYNOLDS NUMBER IN REGION OF MINIMUM LOSS
FOR TWO-DIMENSIONAL CASCADE BLADE SECTIONS AT LOW
SPEED.
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T=0 T=5

FIG. 1.6: DOWNSTREAM DEVELOPMENT OF A RADIAL VORTEX
FILAMENT SHOWN ON VARIOUS AXIAL PLANES.
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A TIP MACH NUMBER OF 1.3 AND A PRESSURE RATIO OF
1.8.
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Full line - three-dimensional solution with
wakes present.

Broken line - Actuator disc solution.

Inlet Mach number=0.65
Relative tip Mach number=1.3
Pressure ratio=1.8

Wake Model E-=0.025 f COS(BO )
p -
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Full line - three-dimensional solution

with wakes present.
Broken line - actuator disc solution.

Inlet Mach number=0.65
Relative tip Mach number=1.3
Pressure ratio=1.8

Wake Model =0.025f COS(B e)
p [ _

where fl-{I-(i+ -M)Tij
Number of blades B=40
Hub-to-tip ratio=0.8
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Inlet Mach number=0.65
Relative tip Mach number=1.3
Pressure ratio=1.8

Wake Model 2=0.025f COS(B e)
where f=X[i-(i+ )~ ]

Number of blades B=40
Hub-to-tip ratio=0.8
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FIG. 1.13: RADIAL VARIATION OF FLOW DEFLECTION ANGLES.

16k

14

12

10

0

rd

J

I on.

on

I-A
00
0

0

-2

0.8

I

8

4

I I



201

18

16

4
F., 14

12

10

I I I I
0.85 0.9
Normalized radial stations (r/r t)

0.95 1.0

FIG. 1.14: RADIAL VARIATION OF FLOW DEFLECTION ANGLES.
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Number of blades B=40
Inlet Mach number=0.5
Relative tip Mach number=1.1
Pressure ratio=1.5
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Wake Model 2 =0.025f COS(B e )
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Number of blades B=4c
Inlet Mach number=0.5
Relative tip Mach nurber=1.1
Pressure ratio=1.5
Hub-to-tip ratio=0.8

Wake Model - =0.06f COS(Be )
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(2) - Actuator disc solution.
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