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Problem Set 7
Due: April 2

Reading: Notes Ch. 12; Ch. 14

Problem 1.

A simple graph is sevenish when it has no simple cycles of length less than seven. A map is a planar
graph whose faces are all simple cycles (no dongles or bridges). Let M be a sevenish, connected,
map with v > 2 vertices, e edges and f faces.

(a) Prove that
e < (7Tv—14)/5. (@)

Hint: Similar to the proof of Corollary 12.6.3, that e < 3v — 6 in planar graphs.
(b) Show that M has a vertex of degree at most two.

(c) Part (b) can be used to prove that M is 3-colorable by induction on v. The proof is slightly
complicated by the fact that subgraphs of M may not be sevenish, connected, maps. For each of
the following properties, briefly explain why all connected subgraphs of M have the property, or
give an example of a connected subgraph of an M that does not have the property.

map
planar
sevenish

connected
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3-colorable

Problem 2.

Prove that the greatest common divisor of three integers a, b, and c is equal to their smallest
positive linear combination; that is, the smallest positive value of sa + tb + uc, where s, t, and u
are integers.

Problem 3.
Two nonparallel lines in the real plane intersect at a point. Algebraically, this means that the
equations

y=mix+ b
Yy = maz + by
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have a unique solution (z,y), provided m; # my. This statement would be false if we restricted
and y to the integers, since the two lines could cross at a noninteger point:

However, an analogous statement holds if we work over the integers modulo a prime, p. Find a
solution to the congruences

y=miz+by (mod p)
y =mox + by (mod p)

when m; # my (mod p). Express your solution in the form x =7 (mod p) and y =7 (mod p)
where the ?’s denote expressions involving m;, mg, b1, and bs. You may find it helpful to solve the
original equations over the reals first.

Problem 4.
Let Sy = 1¥ +2F + ... 4 (p—1)*, where p is an odd prime and k is a positive multiple of p — 1. Use
Fermat’s theorem to prove that Sy = —1 (mod p).
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Circle your TA/LA: Megumi Tom Richard Eli

Collaboration statement: Circle one of the two choices and provide all pertinent info.

1. I'worked alone and only with course materials.
2. I collaborated on this assignment with:
got help from:!

and referred to:2
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