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Abstract

Microbes are tiny metabolic engines with large-scale effects on industry, the environ-
ment, and human health. Understanding how the micron-scale actions (and interac-
tions) of individual microbes give rise to macro-scale consequences remains a major
challenge in microbial ecology. However, for the most part, studies employ coarse-
grained sampling schemes, which average over the heterogeneous microscopic struc-
ture of microbial communities. This has limited our ability to establish mechanistic
links between dynamics occurring across these disparate spatial scales. However, such
links are critical for (a) making sense of the tremendous extant microbial diversity
on Earth, and (b) predicting how perturbations (e.g., global climate change) may
influence microbial diversity and function.

In this thesis, I characterize the structure and dynamics of wild bacterial pop-
ulations in the ocean at spatial scales of tens of microns. I then employ a simple,
two-strain laboratory model system to link (cooperative) inter-species interactions at
local scales to emergent properties at larger scales, focusing on spatially connected
meta-communities undergoing range expansions into new territory. This work encom-
passes diverse environments (ranging from well-mixed communities in the laboratory
to individual crustaceans) and approaches (including mathematical modeling, high-
throughput sequencing, and traditional microbiological experiments).

Altogether, we find that the microscale environment inhabited by a microbe –
that is, “what the neighborhood is like” and “who lives next to whom” – shapes the
structure and dynamics of wild microbial populations at local scales. Moreover, these
local interactions can drive patterns of biodiversity and function, even at spatial scales
much larger than the length of an individual cell. Thus, our work represents a small
step toward developing mechanistic theories for how microbes shape our planet’s
ecosystems.

Thesis Supervisor: Jeff Gore
Title: Associate Professor, Physics
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Chapter 1

Introduction

1.1 Overview

By definition, microbes are invisible to the naked eye and are typically no more than

a few microns in length. Yet, these miniscule organisms are the metabolic engines

of our planet, collectively exerting tremendous control on processes at much larger

spatial scales. These include (but are not limited to) the production of fermented

foods (cheese or beer, for instance) [187], symbioses and dysbioses in the human

body [30], and biogeochemical cycling in the ocean [89].

The classic mantra of microbial ecology (“Who is there and what are they do-

ing?”) suggests that we ought to be able to predict these emergent properties of

microbial ecosystem function from the properties of the individual building blocks.

Furthermore, with the advent of high-throughput sequencing technologies, it is now

straightforward to characterize the basic building blocks of complex microbial con-

sortia – that is, the diverse mixture of microbial cells, genes, and metabolisms that

are present in a given ecosystem [62]. However, just as the extreme tensile strength

of spider’s silk cannot be explained simply by the mechanical properties of the com-

ponent amino acids [49], simply knowing “who is there and what they’re doing” is not

enough.

Instead, much like spider’s silk, microbial ecosystem function depends on interac-

tions between the building blocks within a hierarchy of nested spatial scales [165, 105].
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Individual microbes aggregate with others to form dense, diverse local communities

(Table 1), where individual cells affect each other through a mixture of short-range

(e.g., contact-mediated) and long-range (e.g., small molecule- mediated) interac-

tions [105, 188]. At higher levels of organization, microbes can traverse a landscape of

local communities, thereby forming a meta-community of local communities that are

coupled by migration between them [113, 80]. Thus, linking the component building

blocks of microbial populations to ecosystem-level properties will require (a) deter-

mining the factors that influence microbial population structure at these intermediate

spatial scales, and (b) probing how emergent phenomena at these (and higher) levels

of spatial organization stem from interactions between the building blocks.

In this chapter, I will summarize what we know about the structure and dynamics

of wild microbial populations at the local community and meta-community scales. I

will then discuss some implications of microbial meta-community structure for ecosys-

tem biodiversity and function. Finally, I will outline the work in this thesis, in which

we first characterize wild bacterial populations from the ocean at local community

scales, and then use simple laboratory systems to probe the implications of coupling

between local communities on meta-community structure and dynamics.

1.2 Microbial meta-communities on patchy landscapes

1.2.1 Local community patches

In the laboratory, microbes are often characterized in monoculture and in the context

of a well-mixed test tube. In such an environment, inter-species interactions cannot

occur, and all cells are evenly distributed throughout the environment. By contrast,

in many natural environments, microbes of diverse taxonomic origins aggregate in

local community “patches”, either attached to surfaces (e.g., a food particle [177]) or

to each other in multicellular flocs (Fig. 1-1). These highly localized community

patches sometimes form because the underlying distribution of nutrients in the en-

vironment is patchy, with localized, nutrient-rich regions that cells can exploit in an
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Environment Structure Community 
length scale Reference(s)

Aquatic Organic particles 1-1,000 µm Kirchman (2010);

Bar-Zeev, et al. (2012) 

Aquatic Live copepods 1,000-2,000 µm Tang, et al. (2010)

Aquatic Pink berries 500 µm-1 cm Wilbanks, et al. (2014)

Terrestrial Soil aggregates 2-2,000 µm
O’Donnell, et al. (2007);


Franklin and Mills (2007);

Raynaud and Nunan (2014)

Terrestrial Leaf surface structures 
(e.g., trichomes) 60-100 µm Esser, et al. (2015)

Animal Colonic crypts 100-500 µm Donaldson, et al. (2015)

Animal Food particles 50-500 µm Walker, et al. (2008);

Van Wey, et al. (2011)

Animal Dental plaques 10-100 µm Welch, et al., (2016)

Valm, et al. (2012)

Industrial Granular activated 
sludge bioreactors 500 µm-1 cm Gonzales-Gil and Holliger 

(2014)

Figure 1-1: Examples of naturally occurring particulate microbial habitats. Besides
the case of nutrient particles in aquatic environments, other types of particle struc-
tures can be found in a variety of other environments as well. These include (but are
not limited to): colonic crypts in the human gut, trichomes and other surface struc-
tures on leaves, granules in activated sludge bioreactors, dental plaque, and many
others [111, 98, 12, 185, 127, 60, 136, 52, 45, 180, 177, 68]. These particles represent
discrete community units that can be individually sampled from the environment.

21



otherwise nutrient-poor landscape. However, even when the environment is nutrient-

rich, many other mechanisms (including inter-species interactions, discussed in more

detail below) can favor the formation of dense cellular clusters.

Interestingly, these local community patches are often on the order of 100 𝜇m in

diameter (Fig. 1-1) [157]. Thus, within these local patches, cell-to-cell distances

are sufficiently short for cells to influence the physiological behaviors of other cells in

the same patch through inter-species interactions. For instance, the biofilm matrix

produced by one community member can restrict access to resources for other cells in

the immediate neighborhood [46, 106]. Longer-range interactions – quorum sensing,

antibiotic-mediated killing, and even electrical signals – can also occur within local

community patches [105, 188, 131]. Together, these interactions between community

members can lead to non-intuitive emergent phenomena at the local community scale

that cannot be predicted by individual members [55, 51].

1.2.2 A meta-community of connected local patches

At higher levels of organization, local community patches are coupled by migration

between them, thus forming a microbial meta-community [113, 80]. Indeed, in a given

environment, there are typically many such patches, with coupling between them as

a result of cellular dispersal from patch to patch (Table 1). In many environments,

dispersal from these local community patches, especially surface-attached (biofilm)

aggregates, is a common occurrence [113]. However, the extent to which dispersal

occurs (and hence, the degree of coupling between local communities) may differ sub-

stantially. In some cases, dispersal occurs through passive mechanisms (e.g., shear

flow in aquatic environments [158] or through the air in terrestrial environments [1]).

In other cases, dispersal is active. For instance, in aquatic environments, some bac-

teria use chemotaxis to swim in a directed manner towards nutrient-rich patches, as

well as other chemical stimuli [158, 159, 152]. Moreover, the mechanisms of dispersal

from biofilms can be complex, involving a multitude of environmental cues, signal

transduction pathways, and quorum sensing (a form of cell density-dependent sig-

naling) [113]. Although many of these mechanisms have been studied in laboratory
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settings, future work should be aimed at characterizing the mechanisms and rates of

dispersal in complex, naturally occurring microbial communities.

1.2.3 A case study: Bacterial communities on marine partic-

ulate organic matter

One of the most well studied examples of local community patches are those formed by

bacteria on organic particles in the marine environment. In oceans, lakes, and other

aquatic environments, organic particles – ranging from decaying crustaceans to fish

fecal pellets to polysaccharide gels – serve as nutrient-rich scaffolds for microbial com-

munities (Fig. 1-1) [11]. Microbes from the surrounding water flock to these particles

and assemble into dense multi-species consortia that consume and recycle particle re-

sources before they sink out of zones of high productivity in the ocean [11, 152]. The

assembly of the local communities on particles is shaped by the interplay between

the cell behavior and ecological interactions. Traits such as swimming speed, chemo-

taxis, and surface attachment control the order of arrival of organisms to a particle,

as well as their residence time [152, 190, 158]. At the same time, ecological interac-

tions such as quorum sensing [70, 86], chemical antagonism [108], and exploitation

of public goods [33] inhibit or facilitate growth. By modulating the abundance of

particle-degrading bacteria and their exposure to particle surfaces, local interactions

on POM can thus control the rates of particle degradation and biomass production,

and consequently, the rates of carbon remineralization in the water column [11, 89].

1.3 Consequences of microbial meta-community struc-

ture for biodiversity and ecosystem function

The complex, spatially structured landscapes that microbes inhabit in nature can have

a profound influence on population structure, dynamics, biodiversity, and function at

larger spatial scales [80, 122]. How local migration affects meta-community population

dynamics is the subject of metapopulation theory, a well-developed body of work in
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the macro-ecological literature. I have summarized a small number of results below.

However, for a comprehensive review of the field, see [80]).

1.3.1 Predicted consequences for biodiversity

Spatially extended populations, like those of a microbial meta-community, are pre-

dicted to support a higher level of biodiversity than a well-mixed, spatially uniform

environment. In principle, this can occur through a variety of mechanisms. One of

the most common examples is that of mutually antagonistic colonizers. In simple

population dynamics models, one species excludes the other in any individual local

community, and the winner can depend on something as simple as the order of ar-

rival. However, these species will co-exist globally within the meta-community, that

is, across many such patches [65]. Thus, the presence of spatially isolated local com-

munities may allow for co-existence between competitors that would exclude each

other in a well-mixed environment.

Dispersal between local communities is also predicted to support biodiversity at

the meta-community scale. For instance, if a species goes extinct in a local community,

it may be “rescued” by migrants from a neighboring community, which can re-seed

the species [104, 80]. To our knowledge, this type of rescue effect has not been

observed in wild microbial populations, but has been observed in some plant and

animal populations [81, 80] and in simple laboratory ecosystems [25, 107].

On evolutionary timescales, spatially structured environments can also allow species

with similar resource preferences to co-exist through life history trade-offs. In one of

the most common of these trade-offs, referred to as a competition-dispersal trade-off,

organisms are either specialized for exploiting local nutrient patches or, alternatively,

for readily dispersing between patches [87, 190]. Thus, spatially structured popula-

tions can support many taxa that may not co-exist otherwise through fitness trade-offs

on local versus global scales.
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1.3.2 Predicted consequences for ecosystem function

Within local community aggregates, microbes in close physical proximity may have

complementary metabolic repertoires that improve their combined functional produc-

tivity (compared to their productivity in isolation). Why certain taxa lose the ability

to perform particular metabolic functions – thereby creating dependencies on other

organisms – remains a key question in microbial evolution. However, in the most

well known cases of metabolic complementarity, populations consume the metabolic

waste products of others, often as electron donor or acceptors in anaerobic environ-

ments [114, 121].

Genomic studies suggest that metabolic complementation plays a crucial role in

natural microbial communities. For example, Zelezniak, et al. showed computation-

ally that there is a general trend for locally co-occurring populations to be enriched in

metabolic complementarities, suggesting that interactions among micro-organisms are

common and likely to emerge from pairing of incomplete or complementary metabolic

pathways [191]. In a separate experimental study in methanogenic communities, Em-

bree, et al. showed that amino acid auxotrophies create interdependencies between

populations that control energy flux and contribute to community robustness [51].

These studies suggest that interactions through metabolic complementarities are com-

mon in nature and can have a large impact on community function.

1.4 Experimental approaches for studying microbial

communities and meta-communities

Despite the importance of meta-community structure for microbial biodiversity and

function, studies of wild microbial populations at local community and meta-community

scales have been limited. Some of these limitations stem merely from historical prece-

dent, while others stem from shortcomings in existing technologies. I have summarized

some of the experimental approaches currently used to study microbial populations

in nature at local community and meta-community scales.
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1.4.1 Characterizing spatially isolated, naturally occurring lo-

cal microbial communities

Individual microbes are small – no more than several microns in length. There-

fore, the local communities that they form are also small (often roughly 100 𝜇m in

length) [60, 157, 21]. However, typical sampling methods target much larger spatial

scales (for instance, a bucket of seawater or a scoop of soil), mostly for convenience.

Sampling at “bucket scales” averages over variability across many local communities,

making it impossible to identify the underlying drivers of local community structure

in wild microbial populations. Nonetheless, some naturally occurring local micro-

bial communities can be sampled individually (Fig. 1-1). Further work should be

aimed at sampling and characterizing such structures with high replication in natural

ecosystems.

In cases where local community aggregates have been sampled individually, several

methods exist that allow us to visualize “who sits next to whom” in these aggregates.

The most well known among these is fluorescence in situ hybridization (FISH), in

which fluorescent probes bind to specific microbial sequences and are visualized via

microscopy. Combining FISH-based techniques with many modes of microscopy, re-

searchers have characterized the microscale spatial structure of microbial communities

in a diverse range of ecosystems, including the oral microbiome [111], the mammalian

intestine [48], in soil [15], and on marine snow [169]. Furthermore, FISH has been

combined with mass spectrometry-based techniques, including nanoscale secondary

ion mass spectrometry (NanoSIMS), to identify the metabolic roles of individual cells

within complex microbial consortia, ranging from those living on symbiont-bearing

coral polyps [183] to mouse intestines [14]. Recently, FISH was used with NanoSIMS

to identify a syntrophic coupling based upon direct electron transfers between ag-

gregates of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine

sediments [114]. Overall, using these techniques, we can characterize the physical

structure of a microbial community at the microscale and with single-cell resolution.
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1.4.2 Microfluidic approaches for studying microbial commu-

nities under defined physicochemical conditions

Biologically inspired microfluidic systems, including soil-on-a-chip [155], gut-on-a-

chip [94, 16], and coral-on-a-chip [148], have been used successfully to study the

microscale structure and dynamics of microbial communities. These systems pro-

vide precise control of the patch microhabitat (e.g., nutrient concentration, tempera-

ture, pH, and fluid flow), thereby producing defined patches for microbes to colonize.

Furthermore, the colonization process can be visualized in real-time by coupling mi-

crofluidic devices with microscopy [155, 94, 16, 148]. For example, a recent study

used a coral-on-a-chip system to visualize the dynamical process by which a coral

polyp is infected by a known coral pathogen (Vibrio coralliilyticus) with a level of

spatiotemporal resolution that could not be achieved in a natural marine ecosys-

tem [148]. Altogether, microfluidic devices are a powerful addition to the microbial

ecology toolbox, but to date, have not been extended to microbial communities as

diverse as those found in nature.

1.4.3 Characterizing dispersal between patches in microbial

populations

Biologically inspired microfluidic devices have also been used to characterize how mi-

crobes from the environment differ in their dispersal characteristics, which influences

their ability to move from patch to patch [154]. This approach has been used to

differentiate marine bacterial populations based upon their dispersal abilities, partic-

ularly rates of chemotaxis towards nutrient-rich substrates [190, 154]. Moreover, by

pairing microfluidic devices with single-cell optical tracking, researchers can quantify

the swimming trajectories of many single cells within a population. For instance, in

one recent example, researchers used a microfluidic device in conjunction with time-

lapse microscopy to track how individual bacteria from a natural marine bacterial

assemblage formed clusters around decaying copepods, fecal pellets, and other nat-

ural marine detritus [152]. Thus, microfluidic devices can be used to characterize
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variation in dispersal, even in complex microbial assemblages.

Linking the physiological characteristics of individual cells to dynamics at the

level of the meta-community is often impossible in wild microbial populations. Thus,

simplified laboratory systems can complement studies of microbial populations in situ

by offering a high level of control over the species present, the growth environment,

and migration parameters.

One commonly used experimental system is based upon a linear stepping-stone

model (also known as the Levins metapopulation model) and simulates short-range

dispersal between discrete, well-mixed subpopulations on a lattice [41, 93, 92, 38].

Briefly, a “meta-population” landscape is simulated on a one-dimensional lattice (one

row of a 96-well culture plate, for example), where each well contains a well-mixed

population of cells growing in identical growth media. After cells are inoculated into

some portion of the wells, migration is simulated by pipetting cells from one well

into another. Although these model systems are highly simplified representations of

the natural environment, they have been used demonstrate possible effects of local

dispersal on biodiversity [41, 93], host-phage co-evolution [92], and spatiotemporal

signals before population collapse [38].

1.5 Goals of this thesis

In this thesis, we have characterized microbial populations within their local commu-

nities and meta-communities (described below), drawing on methods from traditional

microbiology, high-throughput sequencing, statistics, and mathematical modeling.

Note that I performed this work in collaboration with a number of co-authors, each

of whom provided significant insights regarding the ideas and data described in this

thesis.

In Chapter 2, we considered how local microbial communities are struc-

tured on individual, naturally occurring patches, using small crustaceans (C.

finmarchicus copepods) as model nutrient patches. We found that copepod indi-

viduals harbor a common “core” set of bacterial taxa, but also have a significant
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“flexible” component that differs from individual to individual. This structuring of

local communities on individual copepod “patches” is partially controlled by physio-

logical variability across individual hosts, but is also influenced by local inter-taxon

interactions.

Next, in Chapter 3, we explored the underlying community assembly dy-

namics that might give rise to local communities in natural environments.

To this end, we developed a semi-synthetic model system, which allowed us to study

the dynamical process by which bacteria from natural seawater self-assemble into

communities on defined particulate nutrient patches. We found that local interactions

between particle-associated taxa drive rapid, reproducible ecological successions on

these patches.

Finally, in Chapter 4, we asked how cooperative interactions within local

communities influence biodiversity at the level of the meta-community.

Using a simple laboratory ecosystem, we found that, even if cooperative alleles are

weakly favored in an individual local community, they are strongly favored at the front

of an expanding meta-community. This leads the overall prevalence of cooperative

alleles within the meta-community to be substantially higher than what would be

predicted in a well-mixed community without spatial structure.
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Chapter 2

Inter-individual variability in the

copepod microbiome

This work was done in collaboration with Amalia Aruda Almada, who made equal

contributions to the manuscript.

Abstract

Copepods harbor diverse bacterial communities that play important roles in bio-
geochemical transformations in the marine environment. However, the factors that
dictate the structure of copepod-associated bacterial communities have not been char-
acterized, particularly at the level of copepod individuals. Here, we characterized the
bacterial communities associated with nearly two hundred individual copepods from
the species Calanus finmarchicus, an ecologically and biogeochemically important
marine invertebrate in the North Atlantic, and we have examined how physiologi-
cal changes associated with the transition from active growth to diapause may drive
changes in their associated bacterial communities. Our findings demonstrated that
while individual copepods share a common “core” microbiome, most bacterial taxa
were patchily distributed across individual copepods. However, bacterial taxa were
not simply randomly distributed, but instead, formed discrete clusters of taxa whose
members were highly correlated in their distributions across individual copepods. The
members of these clusters were typically strongly associated with common drivers,
ranging from the presence of food in the gut to the abundance of other co-occurring
bacterial clusters. Altogether, our findings reaffirm the hypothesis that copepods
represent selective niches for bacterial communities and provide further insight into
the potential factors that drive the composition of these communities.
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2.1 Introduction

Calanoid copepods are major players in the marine ecosystem, serving both as lynch-

pins of aquatic food webs [172] and vehicles of vertical carbon transport [172, 90].

However, copepods also exert a more indirect influence, each acting as a selective,

nutrient-rich habitat for tens of thousands of bacteria [153, 117, 163], which them-

selves initiate major chemical transformations [164, 145, 17, 173, 18]. While no more

than a few millimeters in length, copepods are the most abundant metazoans in the

ocean [179]. Thus, the bacterial communities that inhabit copepods, distinct from

those “free-living” in ambient seawater [117, 43], likely exert a fundamental control

on biogeochemical transformations in the marine environment. Nonetheless, what

controls the composition of copepod-associated bacterial communities, including host

physiology, remains poorly understood.

Living copepods present a dynamic habitat whose properties may depend strongly

on host physiology [163]. When copepods feed, they amass food particles in their guts,

thus presenting a nutrient-rich (albeit anoxic) environment compared to the surround-

ing seawater [161, 164]. Moreover, as copepods feed and defecate, they release nutri-

ents into their surroundings, which bacteria can then exploit [119, 163]. Accordingly,

bacteria are not uniformly distributed over the copepod surface, but instead, are of-

ten concentrated at the gut, mouth, and anus [26, 117]. The frequency with which

copepods molt can also affect their associated bacterial communities by modulating

the rate of community turnover [163]. Additionally, as copepods migrate vertically

through the water column, their associated bacteria travel with them, further shap-

ing the environment to which they are exposed [74, 163]. Furthermore, association

with copepods is known to have dramatic impacts on the proliferation, virulence, and

physiology of many bacterial species, including several pathogens. Metazoan hosts

can often exert a strong selective force on associated microbiota, which is reflected in

the frequent observation of species-specific and even host site-specific microbiomes.

Altogether, copepod physiology is likely to have a profound influence on their

associated bacterial flora. However, given that the physiological state of a copepod
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could vary drastically from individual to individual, the standard method of bulk

sampling of copepods could lead to physiological averaging that would mask these

effects. Individual sampling of copepods also offers the unique opportunity to study

co-occurrence patterns among bacterial taxa within the communities, potentially al-

lowing us to identify robust statistical associations between taxa driven by common

niche preferences, interspecific dependencies, and other factors.

One of the most dramatic physiological transitions that copepods in the family

Calanidae undergo is the transition from active growth to a diapausing (dormant)

state. Each year, an enormous number of Calanus finmarchicus juveniles – tens of

thousands per square meter in the North Atlantic [82, 67, 90] – enter diapause. This

transition coincides with a number of physiological changes, including cessation of

feeding [84, 85], delayed molting [116, 8], pH changes and accumulation of ammonium

in the hemolymph [144, 147], differential gene expression [166, 9, 167], and lipid

accumulation in an enlarged oil sac [84, 115]. Importantly, diapausing copepods

migrate vertically from the surface to deep ocean basins, bringing with them vast

amounts of carbon in the form of lipid stores that is eventually sequestered in the

deep ocean [84, 90]. This process (the so-called “lipid pump”) is a vital determinant

of global carbon fluxes in the ocean [90]. Thus, the bacterial communities associated

with diapausing copepods may further play a role in mediating carbon fluxes from

the lipid pump, much like the microbe-mediated “biological pump” [89]. Nonetheless,

to date, how copepod-associated bacterial communities change during a copepod’s

transition to diapause has not been characterized.

The goals of this study were (a) to characterize variability in copepod-associated

bacterial communities across many individual copepods, and (b) to assess the po-

tential drivers underlying this variability, including host physiology. To this end,

we collected 189 individual copepods (C. finmarchicus copepodites, stage C5 from

Trondheimfjord, Norway) on two separate dates during the early summer (June 6,

2012 and June 11, 2012). At this time of year, C5 copepods have typically just begun

their descent from the surface ocean, and thus, are in the early stages of the transi-

tion from active growth to a diapausing (dormant) state (Methods; Appendix A). On
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Figure 2-1: Sampling of individual copepods from the North Atlantic. Individual
copepods were collected over two sampling dates at Tröllet Station near Trondheim-
fjord, Norway (189 individuals in total; C. finmarchicus C5 copepodids). To capture
individuals in a wide range of physiological states, copepods were collected from sur-
face (0-50 meter depths) and deep (250-350 meter depths) seawater. At the surface,
copepods were largely in an active state, while at increased depths, copepods were
often in diapause (dormant). Among copepod individuals, physiological differences
were manifested by changes in morphology, including differences in prosome (body)
volume, oil sac size, and the presence of food in the gut.

each of these dates, we sampled copepods inhabiting two depth strata (shallow, 0-50

meters, and deep, 250-340 meters below the surface), thereby allowing us to sample

a broad physiological gradient between actively growing and diapausing states (Fig.

2-1). Accordingly, for each individual, we quantified several morphological character-

istics that mark the physiological transition between active growth and diapause. We

also characterized the composition of the copepod-associated bacterial community via

16S rRNA amplicon sequencing.
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2.2 Results and discussion

2.2.1 Morphological and bacterial community variability across

individual copepods

Copepods collected from shallow and deep seawater displayed the morphological

hallmarks of active growth and diapause, respectively, although copepods at each

depth exhibited substantial inter-individual variability. Consistent with previous

studies [166, 9], deep-dwelling copepods had significantly larger body volumes (Fig.

2-2a, 𝑝 = 6× 10−19, two-sided Mann-Whitney U test) and fuller oil sacs (Fig. 2-2b,

𝑝 = 5 × 10−16, two-sided Mann-Whitney U test) on average than their shallow-

dwelling counterparts. Deep-dwelling copepods were also significantly less likely to

have food in their guts (Fig. 2-2c, 𝑝 = 4×10−8, Fisher’s exact test) and, on average,

harbored fewer bacterial cells (Fig. 2-2d, 𝑝 = 6 × 10−5, two-sided Mann-Whitney

U test) than those from shallow seawater. However, even copepods sampled from

the same depth varied substantially in these morphological characteristics; for each

characteristic, the variation (standard deviation) at a single depth was comparable

to the difference in means between depths (Table S1). Thus, we hypothesized that

this morphological variability between copepod individuals – potentially indicative

of underlying physiological differences – might lead to variability in their associated

bacterial communities.

Consistent with this hypothesis, individual copepods varied substantially in the

bacterial communities they harbored. In analyzing community composition, we chose

to focus on the 241 bacterial taxa whose mean abundance was above a defined thresh-

old (𝑓𝑚𝑖𝑛 = 2 × 10−4) on both sampling dates (Materials and Methods; Fig. 2-3),

which account for 90% of all copepod-associated sequenced reads. Among this taxon

subset, over 85% (207 out of 241) were present on less than 90% copepod individuals,

suggesting that these taxa were patchily distributed across individual copepods. This

so-called “flexible” part of the copepod microbiome (Methods) was taxonomically di-

verse, with representatives from Gammaproteobacterial, Alphaproteobacterial, and
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Figure 2-2: Quantification of morphological characteristics. Distribution of morpho-
logical characteristics for many individual copepods across shallow- and deep-dwelling
populations. A roughly equal number of copepods (≈ 100) were sampled on two dif-
ferent sampling dates. (a) Prosome (body) volume. (b) Volume of oil sac. (c) Fraction
of copepods with food present in the gut. (d) Number of bacterial cells per copepod.
Procedures for quantifying each of these characteristics are described in Methods.
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Flavobacteriial lineages.

Interestingly, Flavobacteriaceae, which are commonly found associated with cope-

pods, were never detected on more than 90% of the copepod individuals, but repre-

sented 24 out of the 207 taxa in the flexible microbiome (Fig. 2-4). Thus, Flavobac-

teriaceae may not be persistent members of the C. finmarchicus microbiome. Simi-

larly, previous studies have identified members of this clade as transient, potentially

intestine-associated taxa [163, 118], although the biological drivers of their distribu-

tion have not been fully determined.

Despite significant variability in the bacterial communities associated with indi-

vidual copepods, we also identified a set of “core” bacterial taxa, each of which was

detected on more than 90% of the copepods sampled (Fig. 2-4). This core set

comprised 34 taxa (out of the 241 above our abundance threshold, Fig. 2-3) and rep-

resented a range of diverse bacterial phyla, including Actinobacteria, Bacteroidetes,

and Proteobacteria. However, 25 of the 34 core taxa were Proteobacteria, with 10

each being Gammaproteobacteria and Alphaproteobacteria. Of the gammaproteobac-

terial lineages, eight were Moraxellaceae or Vibrionaceae, both of which are bacterial

families whose associations with calanoid copepods in the North Atlantic have been

documented previously [43, 118]. Together, this core set of bacterial taxa comprised

a highly variable fraction of the community from individual to individual (range:

1.5%-93%), but together were rarely the numerically dominant; in only 22 out of 189

copepod individuals did they account for more than 50% of the community.

How universal is this core microbiome? In previous studies, the composition of

copepod-associated bacterial communities has been linked to host-specific environ-

mental factors (e.g., copepod diet [163, 118], oxygen availability [18], or pH [164]), as

well as external abiotic factors (e.g., salinity [47]). However, while one might expect

this core microbiome to be species- and/or environment-specific as has been observed

in other invertebrates [61], the existing literature suggests that the core microbiome we

observed is not unique to Calanus finmarchicus. First, the bacterial taxa that we iden-

tified as most abundant in the C. finmarchicus core microbiome are also commonly

observed in several other North Atlantic species of calanoid copepods (i.e., Acartia
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Figure 2-3: Defining OTU subset based on mean relative abundance threshold. (a)
For the first sampling date (June 6, 2012), the mean relative abundance of each
OTU versus the number of copepods in which that OTU was present at non-zero
abundance. The red solid line indicates the mean relative abundance threshold that
we imposed (2 × 10−4). Points in red correspond to OTUs with a mean relative
abundance above the threshold. (b) For the second sampling date (June 11, 2012),
the mean relative abundance of each OTU versus the number of copepods in which
that OTU was present at non-zero abundance. The red solid line indicates the mean
relative abundance threshold that we imposed (2×10−4). Points in red correspond to
OTUs with a mean relative abundance above the threshold. (c) Venn diagram of the
number of OTUs for each sampling date whose mean relative abundance was above
the threshold. (d) OTU mean relative abundance on the first sampling date versus
the second sampling date. Points in red correspond to OTUs with a mean relative
abundance above the threshold on both sampling dates.
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also have a distinct flexible component. Compositional heat map of a subset of bacte-
rial taxa (mean abundance > 2× 10−4) present over nearly 200 copepod individuals.
The left heat map shows the “core” microbiome (taxa present in >90% of copepod-
associated communities). The right heat map shows the “flexible” microbiome (taxa
present in <90% of the communities). In both heat maps, taxa are clustered by their
correlation (distance metric: log-transformed Pearson correlation as estimated with
SparCC; clustered with Ward’s minimum variance method). Copepods are clustered
by the overall similarity of their communities across core and flexible components
(distance metric: Euclidean distance between log-transformed relative abundances;
clustered with Ward’s minimum variance method). The leftmost color-coded col-
umn indicates the depth at which an individual copepod was collected (blue, shallow;
red, deep). The second from left color-coded column indicates the date on which
the sample was collected (light gray, 6/6/2012; dark gray, 6/11/2012). The topmost
lines indicate which taxa fall into one of the five most commonly observed taxonomic
families.
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sp., Temora longicornis, Centropages sp., and Calanus helgolandis) [43, 66, 149, 117].

The copepod species listed above span a wide range of feeding lifestyles, including

herbivorous, omnivorous, and detrivorous lifestyles, suggesting that feeding alone may

not dictate the composition of copepod-associated bacterial communities. Moreover,

in a different aquatic environment (the Gulf of Maine), these same taxa are also ob-

served to colonize multiple calanoid copepod species [118]. Together, this suggests

that there may be a small core set of bacterial taxa that are well adapted to generic

features of the niche provided by an individual copepod.

2.2.2 Identifying ecological factors shaping copepod-associated

bacterial communities

Overall, we found that the vertical depth at which a copepod was sampled was a

strong, but most likely indirect, predictor of the composition of its associated bacte-

rial community. In particular, when individual copepods were clustered by the simi-

larity (Spearman correlation) of their associated bacterial communities, they largely

grouped by the vertical depth at which they were collected (Fig. 2-4). Furthermore,

using PERMANOVA with copepod vertical sampling depth as the only predictor, we

showed that depth also accounted for a significant portion of the variability dissimilar-

ity between their bacterial communities (Table S2A, 𝑅2 = 0.32, 𝑝 < 10−6, bivariate

PERMANOVA with 1,000,000 permutations). Differences in bacterial composition

between shallow and deep seawater could, in theory, account for variability in com-

munity composition between shallow- and deep-dwelling copepods, as copepods are

colonized by bacteria from the ambient seawater [74] However, the bacterial commu-

nities from shallow-dwelling copepods were no more similar to shallow seawater than

to deep seawater (and likewise for deep-dwelling copepods), suggesting that ambient

seawater composition is not a direct differentiating factor (Fig. 2-5).

Instead, our data supported an alternative explanation: that host morphological

characteristics, which co-vary with depth, account for depth’s effects on copepod-

associated bacterial communities. Indeed, while depth by itself yielded a PER-
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Figure 2-5: Similarity between copepods and the ambient seawater from which they
were collected. The distance between copepod-associated community composition
and seawater composition was assessed for each individual copepod (189 in total)
with one of three distance/dissimilarity metrics. Each box-and-whisker plot describes
the distribution of distances/dissimilarities for copepods of a particular type versus
the ambient seawater type (deep or shallow) indicated.
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MANOVA 𝑅2 of 0.32, we found that, when controlling for copepod physiology via the

morphological proxies that we measured (copepod vertical sampling depth, body vol-

ume, oil sac fullness, the presence of food in the gut), the 𝑅2 for depth was reduced by

90%, though it remained statistically significant (Table S2B). Therefore, differences

in individual-specific physiological characteristics shape the bacterial niche, and thus,

they are likely to be important drivers of bacterial community composition. In par-

ticular, the specific habitat provided by an individual copepod, including its feeding

history, may shape local selective pressures [161, 163], thereby fostering significant

inter-individual variability in copepod-associated bacterial community composition.

Moreover, on each copepod individual, bacteria exist at much higher cell densities

than in the ambient seawater [163], suggesting that local interactions between bacte-

rial taxa may also influence bacterial community composition.

To quantify the effects of the copepod host and co-occurring bacterial taxa on

copepod-associated bacterial community composition, we took a two-step approach.

First, we characterized the network of correlations between individual bacterial taxa,

which allowed us to identify clusters of taxa whose distribution across individual cope-

pods was strongly positively correlated. Second, using a multivariate linear regression

approach (Methods; Appendix A), we identified putative associations linking these

clusters to each other and to the morphological characteristics that we quantified for

individual copepods. Importantly, this approach allowed us to quantify the effects of

all variables independently, while controlling for the effects of the other variables.

Overall, we identified seven clusters of bacterial taxa, each of which contain taxa

with strong correlations across individual copepods. To identify this structure, we

used SparCC to estimate the Pearson correlation of log-transformed taxon abun-

dances across all individual copepods, focusing on the 241 bacterial taxa whose mean

abundance was above our pre-defined threshold (Fig. 2-3; Methods). Of these taxa,

most (177 out of 241) were negligibly correlated with any of the other taxa. However,

the remaining 64 taxa grouped into seven clusters (Fig. 2-6). Within clusters, pairs

of taxa were typically highly positively correlated, while taxa from different clusters

were often negatively correlated. The magnitudes of these correlations were consistent
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across sampling dates (correlation=0.63, Fig. S4), suggesting that these associations

are biologically reproducible. Notably, these clusters differed in their level of phyloge-

netic coherence: some clusters (e.g., Cluster 6, Fig. 2-6) only contained bacterial taxa

from a single taxonomic class (Gammaproteobacteria), while others (e.g., Cluster 2,

Fig. 2-6) contained representatives from several disparate classes (Actinobacteria,

Alphaprotebacteria, and others).

Given these strongly correlated clusters of bacterial taxa, we next sought to iden-

tify the ecological factors that may influence their distributions across individual

copepods. The compositional nature of the bacterial community data precluded the

prediction of cluster relative abundances directly [2]. Instead, we applied a standard

additive log-ratio transform, with which we quantified the log-transformed ratio of

the abundance of each cluster relative to the abundance of the core microbiome for

each copepod [2](Methods; Appendix A). We then used multivariate regression mod-

els to predict each cluster’s log ratio-transformed abundance with copepod-specific

morphological characteristics, as well as the abundances of other clusters (Fig. 2-7).

Importantly, rather than identifying associations conditioned on a particular regres-

sion model, we used Bayesian model averaging to calculate the probability that a

predictor had a non-zero effect over all models containing all possible subsets of the

predictors [133]. Using this approach, we identified several significant associations,

including those between bacterial clusters and copepod morphology, as well as those

between pairs of bacterial clusters. These associations allowed us to identify possible

ecological factors underlying fine-scale differentiation in copepod-associated bacterial

communities at the level of individual copepod hosts.

2.2.3 Factors influencing bacterial cluster abundances within

the copepod microbiome

We first identified a positive association between Cluster 2 – a cluster that was en-

riched among shallow-dwelling copepods compared to their deep-dwelling counter-

parts (Fig. 2-4) – and the presence of food in the copepod gut (Fig. 2-7). Given
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Cluster 6

Cluster 7Cluster 3Cluster 5

Cluster 4

Cluster 1

Cluster 2

Figure 2-6: Across hundreds of copepod-associated communities, bacteria form a
small number of highly positively correlated clusters. Nodes represent individual
OTUs and are colored by taxonomy at the class level. Edges indicate positive (green)
or negative (red) correlations between bacterial taxa as approximated by SparCC.
The magnitude of the correlation is proportional to the width of the edge. Nodes for
which all inter-taxon correlations are negligible (|𝜌| < 0.35) are not shown. Nodes
are arranged according to a Fruchterman-Reingold force-directed graph drawing al-
gorithm [64]. The positions of some nodes have been adjusted for disambiguation of
cluster designations. Clusters of highly positively correlated taxa are outlined in gray.

44



Body volume
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Oil sac
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Shallow vertical
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Cluster 5
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Figure 2-7: Cluster abundances are predicted by host morphology, as well as the
abundances of other clusters. Nodes represent clusters of positively correlated bacte-
rial taxa (gray) or copepod morphological characteristics (light blue). Directed edges
indicate the association of a given predictor on the summed abundance of all bacte-
rial taxa in a cluster, controlling for the effects of all other predictors (green: positive
association; red: negative association). The width of the edge is proportional to the
probability that a predictor has a non-zero effect on the cluster abundance, as deter-
mined by Bayesian model averaging. Edges for which the probability of a non-zero
effect is less than 75% are not shown.
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that 10 out of the 29 taxa in Cluster 2 were Flavobacteriacaeae, the association that

we have identified supports a growing body of evidence indicating that Flavobacte-

riaceae (and perhaps other clades) are associated with the food a copepod ingests,

rather than any intrinsic feature of a copepod.

Many mechanisms may account for the strong positive association between Cluster

2 abundance and food in the gut. However, one possible link is that Flavobacteri-

aceae are often highly abundant on diatoms [6] and other phytoplankton [24], which

are standard sources of food for C. finmarchicus. Therefore, Flavobacteriaceae (and

perhaps other Cluster 2 taxa) may reach high abundance within the copepod mi-

crobiome by “hitchhiking” into the gut on an ingested food particle. Alternatively,

Cluster 2 taxa may typically reside at low levels in the copepod gut, but grow rapidly

on the nutrients provided when copepods feed. Regardless of mechanism, the pres-

ence of food in the gut (through its effect on Cluster 2) is a significant differentiator

of copepod microbiomes across vertical depths.

Among copepods collected at a single vertical depth, we also identified differences

in their associated bacterial communities that could be linked to host-specific mor-

phological variability. In particular, among deep-dwelling copepods, we identified

two distinct subgroups based upon their associated bacterial communities (Fig. 2-

4). One subgroup corresponded to those that harbored taxa from Clusters 3 and 6

at high relative abundance, while the other subgroup was comparatively depleted in

taxa from these clusters. Interestingly, of the six taxa classified as Oceanospirillaceae

across all clusters, four were found in Cluster 6 (comprising 80% of this cluster). This

suggests that the Oceanospirillaceae present in our survey change in abundance as a

correlated unit defined by Cluster 6.

Using our regression approach, we found that the abundance of Cluster 6 relative

to the core microbiome was positively predicted by the fullness of a copepod’s oil

sac, a repository of nutrient-rich lipids amassed during the transition to diapause. To

our knowledge, the effect of oil sac fullness on the copepod microbiome has not been

explored previously, and indeed, would have been difficult to discern with standard

bulk sampling methods. However, the mechanisms of this association are unclear.
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One hypothesis is that the fullness of the oil sac may correspond to diet quality, since

diatom blooms are typically a rich food source associated with lots of lipid storage.

Thus, Oceanospirillaceae in Cluster 6 may be present at high abundance due to

high food quality before the copepod entered diapause. Incidentally, the abundance

of Cluster 3 was not predicted by oil sac fullness, but was well predicted by the

abundance of Cluster 6, suggesting possible interactions between bacterial clusters.

Finally, we identified one cluster, Cluster 1, a hub in Fig. 2-7, which mediates

differences in the diversity of bacterial communities harbored by shallow- and deep-

dwelling copepods. Notably, this cluster was a defining feature of the communities

associated with deep-dwelling copepods: on average, the relative abundance of Cluster

1 was significantly higher among deep-dwelling copepods (mean: 48%) than among

shallow-dwelling copepods (mean: 2%) (𝑝 = 4 × 10−25, two-sided Mann-Whitney U

test). While this cluster contained a diverse mixture of taxonomic classes (Fig. 2-6),

it was dominated by a single taxon (seq1) that, alone, reached a maximum relative

abundance of nearly 90% on individual copepods (Fig. 2-4). Surprisingly, seq1’s

closest taxonomic relatives are from the genus Marinimicrobium, a common genus of

marine microorganisms whose association with brine shrimp has been documented

previously [137], but whose associations with copepods have not been demonstrated.

Thus, the bacterial communities associated with deep-dwelling copepods are domi-

nated by taxa whose roles in the copepod microbiome have not, to our knowledge,

been previously described.

The abundance of Cluster 1 strongly affects differences in overall community

(Shannon) diversity between shallow- and deep-dwelling copepods. In particular,

while some deep-dwelling copepods harbored bacterial communities that were as di-

verse as those of their shallow-dwelling counterparts, they were significantly less di-

verse on average (Fig. 2-8a, 2-8b). However, this difference was largely mediated

by Cluster 1. Indeed, if we remove Cluster 1, the effective number of species (Ne)

in the bacterial communities of deep-dwelling copepods increased dramatically (me-

dian Ne = 18 with Cluster 1 compared to Ne = 53 without Cluster 1), while the

diversity of shallow-dwelling copepod communities did not change ( Ne = 65 with
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Figure 2-8: Differences in the diversity of copepod microbiomes are driven by a small
number of taxa. (a) Kernel density plots of the Shannon diversity of bacterial com-
munities associated with copepod individuals (solid lines) and the surrounding sea-
water (dotted lines). Samples were collected from the surface (blue lines) and at
hundreds of meters in depth (red lines) on two different sampling dates (6/6/2012,
light; 6/11/2012, dark). (b) The effective number of species (𝑁𝑒 = 𝑒Shannon diversity)
in bacterial communities associated with individual copepods. On the left, 𝑁𝑒 was
calculated based upon the abundances of all OTUs. On the right, counts associated
with taxa from Cluster 1 were removed, and the remaining counts were renormalized
before calculating 𝑁𝑒. (c) Manhattan plot of the p-value of the correlation of each
individual bacterial taxon with Shannon diversity.

and without Cluster 1) (Fig. 2-8b). Moreover, this effect was specific to taxa asso-

ciated with Cluster 1; nearly all taxa had statistically insignificant correlations with

the community-wide Shannon diversity, with the exception of seq1, seq1008, and

seq10077, all of which are members of Cluster 1 (Fig. 2-8c).

Despite the importance of Cluster 1 in determining the overall diversity of the

community, the underlying drivers of its abundance remain unclear. Using our mul-

tivariate regression approach, we found that the abundance of Cluster 1 relative to

the core microbiome was positively associated with copepod body volume and oil sac

fullness and was negatively associated with shallow sampling depth and the presence

of food in the gut, all of which suggest that Cluster 1 may become more abundant

as copepods transition to diapause. However, Cluster 1’s associations with Clus-

ters 5 and 6 indicate the possible effects of inter-cluster interactions or, alternatively,

common responses to other host-associated factors that were not measured in this

study.
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2.3 Conclusion

Individual copepods – even those of the same species and collected from the same

habitat – vary considerably in the bacterial communities that they harbor. By lever-

aging the statistical power of our high-throughput sampling scheme, we have identified

robust, statistically significant associations between certain bacterial taxa and spe-

cific physiological characteristics of their copepod hosts. Thus, we suggest that each

copepod presents a distinct habitat modulated by physiological state, and that this

presents a source of variability that cannot be observed with coarse-grained sampling

techniques. We also identified both positive and negative associations between bacte-

rial taxa, indicating that interactions between co-colonizing taxa may also shape the

copepod microbiome.

A key step forward will be to characterize the mechanisms underlying the sta-

tistical associations identified in this study. In particular, we have identified several

bacterial taxa that are positively associated with the presence of food in the gut. Are

these taxa simply hitchhiking into the copepod on food particles (e.g., diatoms), or al-

ternatively, are they simply “blooming” on the copepod in response to feeding-induced

nutrient levels? We also identified a cluster of bacterial taxa that are positively as-

sociated with the fullness of the copepod’s oil sac, but the origins of this association

are unclear. Thus, future work should focus on identifying the source of copepod-

bacterial associations, perhaps using in vitro experiments with bacterial isolates to

complement studies in the field.

One of the most striking findings of this study was the prevalence of Marinimi-

crobium (in Cluster 1), which was endemic among deep-dwelling copepods up to 90%

of these communities. While we showed that Cluster 1 abundance was associated

with oil sac fullness, body volume, and the absence of food in the gut, as well as

other bacterial clusters, it remains mechanistically unclear how these associations

arise. Future work should focus on isolating and characterizing Marinimicrobium to

understand how it comes to dominate the microbiomes of deep-dwelling copepods.

More broadly, there are many additional factors not measured here that may affect

49



how bacteria assemble functional communities on individual copepod microhabitats.

For instance, copepod-associated bacterial communities may change over time as they

adapt to the copepod habitat. Indeed, microbial communities associated with model

marine chitin particulates have been found to undergo dramatic compositional and

functional shifts in a matter of days, even in the absence of external perturbations [40].

This may be particularly relevant for diapausing copepods, since they can remain

in the C5 stage (without molting or feeding) for several months, thereby allowing

bacterial communities to develop over a longer period of time. Additionally, while we

have focused on how copepods influence their bacterial inhabitants, bacteria may also

influence their copepod hosts (for instance, by provoking significant transcriptional

responses [4]). Ultimately, future work incorporating these factors will lead to a better

understanding of copepod-bacterial interactions, and how these interactions affect the

global marine ecosystem.

2.4 Methods

2.4.1 Sampling of individual copepods and seawater

Copepods were sampled at two different depths (shallow, 0-50 meters, and deep, 250-

350 meters deep) on two separate dates during the early summer (June 6, 2012 and

June 11, 2012), at which time, some individuals within the population had already

descended from the surface ocean and entered into diapause. The surrounding seawa-

ter was also sampled at each depth on each of the sampling dates. Detailed sampling

protocols are available in Appendix A.

2.4.2 Quantification of morphological characteristics

For all individual copepods, we quantified several morphological characteristics that

often vary with host physiological state during the transition from active growth to

diapause. These characteristics were the prosome (body) volume, oil sac volume, the

fraction of the oil sac that was filled with lipids, and the presence or absence of food
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in the gut. All of these characteristics were estimated from digital photographs. The

presence or absence of food in the gut was assessed in a visually from these images.

All others were quantified as described below.

Previous studies have shown that the true prosome volume of C. finmarchicus is

well approximated by numerical integrations of lateral views of the prosome [115].

However, this method is computationally intensive and thus, does not scale well to

large numbers of individual copepods. Instead, we approximated the shape of the

prosome as an ellipsoid, allowing us to calculate the prosome volume as a function

of its length and width. Notably, for a representative copepod test set, this ellip-

soid approximation provided estimates that were consistent with the more complex

numerical integration approach (data not shown). All measurements were calibrated

with digital photographs of a stage micrometer taken repeatedly during sampling.

The volume and fractional fullness of the oil sac was estimated from digital pho-

tographs as described previously [115, 166]. Briefly, for each individual copepod, the

oil sac was visually sectioned into cylindrical cross-sections whose volume could be

quantified directly from the height and cross-sectional area. The total oil sac volume

was estimated by summing over all cylindrical cross sections and adjusting for devia-

tions from a perfectly cylindrical shape as previously described [115]. The fullness of

the oil sac was estimated by normalizing the oil sac volume by an empirically defined

apparent maximum capacity [115, 166].

2.4.3 Quantifying bacterial abundance on copepods and in

seawater

The total number of bacteria present per copepod was quantified via fluorescence

microscopy as previously described [162] with minor modifications.

Formalin-preserved copepods in 1.5-mL Eppendorf tubes were homogenized by

(1) manually grinding the sample with a sterile plastic pestle (Axygen Scientific

#PES15BSI) and (2) subsequently placing the sample in a water bath sonicator

(Kendal #CD4820) for three minutes. Homogenized copepod samples were diluted
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eight-fold with artificial seawater (sterile-filtered, 0.22 𝜇m). Two replicate 2-mL

aliquots of each diluted copepod sample were filtered onto a black polycarbonate

0.22-𝜇m filter (EMD Millipore Isopore #GTBP02500) (vacuum pressure < 10 mm

Hg). Each filter was stained directly with a SYBR Gold solution (ThermoFisher Sci-

entific #S-11494, 2X, diluted in TE buffer) [17, 19, 162] for 15 minutes, after which

they were mounted in Citifluor Media (Ted Pella Inc. #NC9522768). Filters were im-

aged with a Zeiss Axiostar Plus microscope outfitted with epifluorescent illumination

(excitation: 450-490 nm; emission: 515 nm). We first counted the average number of

cells across fifty random view fields, with which we estimated the number of bacterial

cells present per milliliter.

Blank samples – containing artificial seawater (0.22-𝜇m filtered), but no copepods

– were processed in the manner described above. For samples of seawater, five 1-

mL aliquots were filtered onto a black polycarbonate filter (EMD Millipore Isopore

#GTBP02500) before staining with SYBR Gold (ThermoFisher Scientific #S-11494).

2.4.4 DNA extraction from individual copepod and seawater

samples

Total genomic DNA was extracted using a modification of a previously described pro-

tocol [194]. Briefly, samples were bead-beaten in 2-mL tubes with a mixture of 0.1-mm

diameter silica, 1.4-mm diameter zirconium, and 4-mm diameter silica beads (OPS

Diagnostics #PFMM 4000-100-28). After treatments with lysozyme and proteinase

K, genomic DNA was extracted from samples in phenol:chloroform:isoamyl alcohol

(25:24:1 v/v) solution. Subsequently, DNA was precipitated from samples overnight

in isopropanol with GlycoBlue (1𝜇L; Life Technologies #AM9516) as a co-precipitant.

Precipitated DNA was resuspended in water (molecular biology grade) and stored at

-20∘C. All copepod and seawater samples were extracted in a random order to avoid

bias, and blanks were processed simultaneously. Details of DNA extraction procedure

are in Appendix A.
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2.4.5 16S rRNA amplicon sequencing of copepod- and seawater-

associated bacterial communities

Amplicon libraries (16S rRNA gene V4 hypervariable region) were prepared with

modifications to a previously described protocol [130]. Details are described in Ap-

pendix A. To ensure that seawater and copepod samples were comparable, seawater

samples were diluted 100-fold in water (molecular biology grade) such that identical

amplification schemes could be used for all samples. Amplicon libraries of DNA ex-

traction blanks, no-template control (NTC) samples, and defined mock communities

(consisting of nine bacteria in known proportions) were prepared simultaneously.

After amplicon libraries were prepared, samples were multiplexed for sequencing.

Copepod 18S rRNA amplicons were removed from this mixture via gel extraction (Nu-

cleoSpin Gel and PCR Clean-up kit, Macherey-Nagel #740609) before sequencing.

Multiplexed, gel extracted samples were sequenced on an Illumina MiSeq (paired-

end, 250+250) at the BioMicro Center (Massachusetts Institute of Technology, Cam-

bridge, MA). Reads were merged and quality filtered with custom scripts calling USE-

ARCH [50], mothur [146], and SmileTrain (https://github.com/almlab/SmileTrain).

2.4.6 Identifying operational taxonomic units (OTUs) via dis-

tribution based clustering (DBC)

Operational taxonomic units (OTUs) were identified using distribution-based cluster-

ing, an algorithm that uses both genetic distance and the distribution of sequences

across samples to group reads into OTUs. This approach reduces the number of OTUs

with redundant information and improves the power of many downstream analyses

to describe biologically relevant trends [130].

A two-step process was used to identify OTUs. First, the DBC algorithm was

applied to quality-filtered reads with a high abundance threshold (𝑘𝑓𝑜𝑙𝑑 10) to remove

reads that likely arose through PCR or sequencing errors. This step generated 15,060

OTUs across all seawater and copepod samples. Second, the DBC algorithm was

applied to this set of OTUs (95% identity threshold, 𝑘𝑓𝑜𝑙𝑑 0). This step merged
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OTUs with representative sequences that were >95% identical and were similarly

distributed over samples. Altogether, this resulted in 9,642 OTUs across all seawater

and copepod samples.

Taxonomic assignment of individual OTUs was performed with the RDP Classi-

fier [182]. OTUs that were annotated as “Cryptomonadaceae”, “Chlorophyta”, “Bacil-

lariophyta”, “Streptophyta”, or “Chloroplast” were removed prior to normalization,

since these OTUs are likely non-bacterial in origin. After removal of these OTUs,

9,487 OTUs remained for subsequent analyses.

2.4.7 Identifying “abundant” OTU subset

From the 9,487 non-“Chloroplast” OTUs, we identified a subset of 241 OTUs that were

used for subsequent analyses. First, for each of the two sampling dates (June 6, 2012

and June 11, 2012), we identified the list of OTUs whose mean relative abundance

across all copepods sampled on that date was greater than 2 × 10−4. These lists

comprised roughly 300 OTUs for each date. Second, we found the intersection of

these two OTU lists, identifying a set of 241 OTUs whose mean relative abundance

across both sampling dates was above the threshold (Fig. 2-3). Together, these 241

OTUs corresponded to 89.9% of sequenced reads from all copepod samples.

We chose to identify our OTU subset of interest with a mean abundance threshold,

since such a threshold allows for OTUs with a wide range of distributions across

individual copepods (roughly 100 per sampling date). These include (1) OTUs present

at a low, but detectable abundance across all copepods, as well as (2) OTUs present at

high abundance on a single copepod. In practice, there are many possible thresholds

(aside from 2× 10−4) and thresholding schemes (e.g., maximum or minimum relative

abundance) that we could have used. However, the qualitative results that we have

discussed here are robust to the choice of threshold (not shown).
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2.4.8 Defining the “core” and “flexible” microbiome

Differences in sequencing depth precluded the use of an absolute cutoff in defining the

core microbiome (e.g., requiring an OTU to be present in all sequenced copepods).

Instead, we defined the “core” microbiome as OTUs that were present at non-zero

relative abundance in at least 90% of copepod-associated bacterial communities. All

OTUs that did not meet this criterion were considered a part of the “flexible” micro-

biome.

2.4.9 Using PERMANOVA to identify broad associations be-

tween metadata and bacterial communities

To assess sources of variation across copepod-associated bacterial communities, we

carried out a permutational MANOVA (PERMANOVA) [7]. All analyses were per-

formed with the adonis function from the R vegan package with a Euclidean distance

metric and 106 permutations.

2.4.10 Identifying correlated clusters of taxa

Exact computation of correlations with compositional data – such as data obtained

through 16S rRNA amplicon sequencing – can give spurious results [2]. As an alterna-

tive, we used SparCC, a procedure that allowed us to approximate the linear Pearson

correlations between log-transformed components for compositional data [63]. We

applied SparCC with the default parameters (-i 20, -x 10, -t 0.1) to compositional

abundance data for the 241 OTUs whose mean abundance surpassed the defined

threshold (Fig. 2-3). This procedure generated a 241 × 241 matrix of pairwise

correlations between all OTUs.

To identify clusters of taxa where the within-cluster correlation was strongly pos-

itive, we used a three-step procedure. First, we binarized the correlation matrix in

the following manner: taxon-taxon correlations (including negative correlations) with

values below a given threshold (0.35) were set to 0, while all others were set to 1. Sec-

ond, taxa were removed if (a) they were part of the core microbiome or (b) they lacked
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non-zero correlations with other taxa after binarization. Third, strongly positively

correlated clusters were identified using a community detection algorithm (walktrap

community, details below). Using this approach, we identified seven clusters (Fig.

2-6) for subsequent analyses.

The community detection algorithm that we used was implemented in the walk-

trap.community function from the R igraph library (nsteps = 2). The walktrap

algorithm has several advantages, including high quality of results for both test and

real-world networks and low runtime [129], which made it suitable for use here.

It is also important to note that, of the 241 OTUs for which taxon-taxon correla-

tions were estimated, the majority were excluded from the seven clusters identified,

since they were not strongly correlated with any other taxa. As a result, only 64

OTUs were represented across the seven clusters. These 64 OTUs correspond to

68.0% of sequenced reads from all copepod samples (compared to 89.9% for all 241

OTUs), and thus, still represent a significant portion of the bacterial community.

2.4.11 Multivariate regressions

Our goal was to predict the abundances of individual bacterial clusters across indi-

vidual copepods as a function of (a) the morphological characteristics of individual

copepods and (b) the abundances of other bacterial taxa. To this end, we used a mul-

tivariate linear regression approach, which allowed us to quantify the effect of each

explanatory variable on bacterial abundance, controlling for the effects of all other

variables.

The problem of relating bacterial to their potential drivers is non-trivial for at

least two reasons: (1) the large number of bacterial taxa and (2) the compositional

nature of the data. Thus, our approach was to predict the abundances of each of

the seven positively correlated clusters that we previously identified, controlling for

the abundances of all other clusters. Additionally, we used an additive log-ratio

transform [2] to remove the compositional sum constraint and to quantify the log-

ratio absolute abundance of each cluster relative to the core microbiome. A more

detailed description of our methods can be found in Appendix A.
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Chapter 3

Rapid micro-scale successions on

model marine particles

This chapter has been submitted for publication and is currently in revision.

Abstract

In the ocean, particles of organic matter harbor dense, diverse bacterial communi-
ties, which collectively digest and recycle essential nutrients. Traits like motility and
exo-enzyme production are thought to allow individual taxa to colonize and exploit
particle resources, but it remains unclear how community dynamics emerge as a func-
tion of these individual traits. By tracking the taxon and trait dynamics of bacteria
attached to model marine particles, we demonstrate that particle-attached communi-
ties undergo rapid, reproducible successions driven by ecological interactions. Motile,
particle-degrading taxa are selected for during early successional stages. However, this
selective pressure is relaxed at later stages of colonization, as secondary consumers
invade, which are unable to use the particle resource, but instead, rely on carbon
from primary degraders to create a trophic chain that shifts community metabolism
away from the particle substrate. These results demonstrate that microscale primary
successions may control the dynamics of particle-attached bacteria in the ocean and
that rapid shifts in community-wide metabolism could limit rates of marine particle
degradation.
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3.1 Introduction

Bacterial colonization of particulate organic matter (POM) in the ocean is a well-

known example of microbial community assembly with important implications for

global carbon cycling [3, 150]. On global scales, POM mediates the transfer of nearly

two billion tons of carbon from the surface to the deep ocean [89]. However, at

micrometer scales, marine particulates serve as spatially isolated, nutrient-rich mi-

crohabitats in an otherwise nutrient-poor environment [98]. Microbes from the sur-

rounding seawater, representing a complex colonization pool of bacteria, archaea, eu-

karyotes, and viruses, attach to these particles, eventually forming dense multi-species

communities [150]. Within these communities, local interactions between neighbor-

ing cells are predicted to play an important role in shaping community-level structure

and function [96, 75]. These interactions include exploitation of public goods [33] (for

instance, broadcasted degradation products of carbohydrate-active enzymes [151]),

antagonistic interactions via antibiotics [108], and quorum sensing [70, 86]. More-

over, at regional scales, the efficiency with which bacteria move through a particle

“landscape” via active or passive dispersal is likely to influence their ecological suc-

cess [158, 190, 128, 1, 56, 156, 44]. How these processes combine to give rise to

dynamics at the level of the community, particularly in the context of a diverse nat-

ural microbial assemblage, is still not well understood.

To enable studies of microbial community dynamics, we developed a model sys-

tem inspired by bacterial colonization of POM in the ocean. We simulated POM with

paramagnetic micro-particles (Fig. 3-1: median diameter 40.7 𝜇m) made of chitin –

a highly abundant biopolymer in the ocean [13]. We incubated these particles in a

sample of coastal seawater, which contained a diverse microbial assemblage of nearly

one million bacteria per milliliter, as well as myriad viruses and small eukaryotes [98].

Over nearly six days, bacteria from the surrounding seawater (Appendix B; Fig. 3-3)

self-assembled into communities on the chitin particle microhabitats (Fig. 3-1; Fig. 3-

2a, Fig. 3-2b). At discrete time intervals, we harvested pools of particles (roughly

1,000 per sample), thus allowing us to reconstruct the average community assem-
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Figure 3-1: For many individual particles, the sphere equivalent diameter was mea-
sured with a Coulter counter (Beckman Coulter Multisizer 4, 560 𝜇m aperture). Note
that, for an irregularly shaped object, the sphere equivalent diameter refers to the
diameter of a perfectly spherical object of identical volume. The chitin particles that
we considered were roughly spherical, but irregularly shaped particles were also ob-
served. As an internal standard, spherical polystyrene particles of a known diameter
(100 𝜇m, Thermo Scientific #4310A) were added to the sample before measurement.

bly dynamics occurring over many spatially distinct, but temporally synchronized,

particles. To assess the reproducibility of these dynamics, we performed three repli-

cates of the colonization process from a single, well-mixed seawater sample. Note

that naturally-occurring POM varies widely in age, size, and chemical composition,

making it challenging to discern the processes shaping their associated bacterial com-

munities. In contrast, our model system offers a hybrid approach – maintaining high

levels of microbial diversity, while reducing substrate heterogeneity – that allowed

us to characterize complex community assembly dynamics in a defined environment

with high temporal resolution.
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Figure 3-2: (A) Schematic of particle colonization procedure. (B) Particle-attached
communities stained with SYBR Green I, a double-stranded DNA strain, and imaged
with bright field (top) and fluorescence (bottom) microscopy (Appendix B). Scale
bars represent 25 𝜇m. Note that different particles are depicted for each time point.
(C) Total 16S rRNA V4 copies per particle over time for three colonization replicates.
Symbols in gray indicate measurements below the limit of detection of the assay. The
gray line (-) indicates the fit to a logistic growth model.
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Figure 3-3: The fraction of read annotations corresponding to each of three taxonomic
domains as a function of time. Metagenomic reads were annotated with MG-RAST
(BLAT search against the M5NR database, e-value < 10−5; length > 60 basepairs).
Note that, in the standard MG-RAST pipeline, a single read may have more than
one annotation. Thus, the number of read annotations is larger than the number of
reads.
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3.2 Results

3.2.1 Successions in particle-attached bacterial communities

Despite the extreme diversity of the surrounding microbial assemblage, we found

that the overall growth dynamics of particle-attached bacterial communities were

surprisingly simple. To characterize these combined growth dynamics, we quantified

the number of copies of the V4 hypervariable region of the 16S rRNA gene – a

rough proxy for the number of bacteria – present per particle on average over time.

Across three colonization replicates, the dynamics were well described by a logistic

growth model (Fig. 3-2c): bacterial communities underwent rapid exponential growth

(doubling every 3.3 hours), eventually saturating at nearly 105 16S rRNA gene V4

copies per particle after only 40 hours of colonization.

Although the total abundance curve saturated early, the underlying colonization

dynamics of individual taxa revealed a rapid ecological succession, with wholesale

community turnover not only during exponential growth, but also long after the total

bacterial abundance had saturated (Fig. 3-4a). In particular, many taxa experienced

a sharp drop in absolute abundance, often by orders of magnitude, soon after reaching

their peak absolute abundance levels (e.g. OTU 1 in Fig. 3-4c). As they dwindled,

these taxa were replaced by others, which reached maximum levels that often matched

(or exceeded) the earlier colonizers (Fig. 3-4b), but that declined in turn as still others

supplanted them. In total, this dynamic process of community turnover brought 53

highly abundant taxa – present at >1% relative abundance in at least one time point

– that each peaked in abundance at times ranging from 16-140 hours of incubation

(Fig. 3-4a). While microbial successions are widely documented (e.g. in the human

gut [99, 42], the soil [124], and the marine environment [168, 29]), such dramatic

community turnover has not, to our knowledge, been observed on the spatial (microns)

or temporal (hourly) scales documented here.

Given that these dynamics originated from the migration, growth, and interactions

of many diverse bacteria, we predicted that chance events might give rise to divergent

community dynamics, even from the nearly identical starting conditions of our three
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colonization replicates [65]. However, across these replicates, individual taxon tra-

jectories were highly reproducible (Fig. 3-4d; Fig. 3-5). For abundant taxa – present

at >1% relative abundance at any time point and in any replicate – the median

Spearman correlation between individual taxon trajectories from different replicates

was greater than 0.8 (Fig. 3-4d). This high level of reproducibility indicates that

technical variation across samples was minimal. However, it also suggests that the

average process of community self-assembly is robust to ecological drift, particularly

historical contingencies that can arise in a complex microbial milieu.

Importantly, while community turnover occurred continuously, we identified three

discrete phases of colonization based upon changes in the community-wide diver-

sity over time (Fig. 3-4e). In the first phase of colonization (t = 8-20 hours), the

communities were at their most diverse (effective number of species, Neff ≈ 180

OTUs; Appendix B). The second phase was characterized by a significant decline in

community-wide diversity, which reached a minimum (Neff ≈ 20-30 OTUs) after 36-44

hours. However, in the third phase, the community-wide diversity rose again, even-

tually plateauing (Neff ≈ 50-70 OTUs) after 72 hours. Notably, this non-monotonic

trend in community diversity held for several diversity metrics (Fig. 3-6).

3.2.2 Mechanistic drivers of successional phases

What drives the community shifts that define these three phases of particle colo-

nization? As is often true in plant communities, we hypothesized that temporal

changes in the behavior and metabolism of particle-attached communities may shape

the successional patterns that we observed [32, 57]. To test this hypothesis, we took

two complementary approaches. First, we performed metagenomic sequencing of the

time series to gain a holistic view of how the metabolic potential of the community

changed with time. Second, we amassed and phenotypically characterized a collec-

tion of bacterial strains isolated from different phases of colonization. Using their 16S

rRNA gene sequences, we mapped these isolates to the operational taxonomic units

(OTUs) originally observed via 16S sequencing (Appendix B; Fig. 3-7). This allowed

us to link the phenotypic traits of individual isolates to their taxon’s colonization
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Figure 3-4: (A) Absolute abundance trajectories for individual taxa from a single col-
onization replicate (Replicate 2). Individual trajectories are normalized to the max-
imum value. Color bar indicates order-level taxonomic identities. Line plot above
the heat map shows the logistic fit to the total bacterial abundance trajectory. (B)
Maximum abundance per particle attained by each taxon. Error bars are standard
deviations (n=3). (C) Absolute abundance trajectories of three representative taxa
across colonization replicates. Gray lines indicate the median trajectories. (D) His-
togram of cross-replicate correlations for individual taxa (Methods). (E) Shannon
diversity over time for the three colonization replicates. Samples for which sequenc-
ing coverage was insufficient for the Shannon diversity to saturate have been omitted.
The solid gray line indicates the initial Shannon diversity of the seawater.
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of a single taxon (only taxa present at a relative abundance > 1% at any time point in
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Figure 3-6: Particle-attached community diversity over time in each of three repli-
cates, as calculated with several different diversity metrics. In all plots, the diversity
of the initial seawater inoculum (t = 0 hours) is also indicated. In all cases, samples
with less than 1500 sequenced reads were excluded. (A) Simpson diversity at each
timepoint. (B) Inverse Simpson diversity at each timepoint. (C) Species richness
at each timepoint. To account for differences in sampling effort, each community
was subsampled to 1,500 reads before calculating species richness. Thus, only the
relative species richness is meaningful here. Qualitative differences in species rich-
ness are robust to subsample size. (D) Estimated asymptotic species richness over
time. Asymptotic estimators extrapolate the number of species that would be ob-
served, given infinite sampling effort. In particular, the Chao1 estimator is a robust
estimator of the minimum asymptotic species richness.
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Figure 3-7: Isolate full-length 16S sequences (roughly 1,400 basepairs) were aligned
against the Silva reference database. From this alignment, a maximum-likelihood tree
was generated with PhyML (substitution model: GTR+gamma). Taxonomic classi-
fications for strains (identified with the Ribosomal Protein Database) are indicated
in the table. Classifications with <80% confidence as determined by RDP are not
shown.

dynamics.

Overall, our data suggest that the three phases of colonization were governed by

distinct ecological processes: (i) Phase I, attachment, (ii) Phase II, selection, and (iii)

Phase III, replacement by secondary consumers. In Phase I, particle-attached bacte-

rial communities were as diverse as the seawater from which the colonizers originated

(Fig. 3-4e; Fig. 3-6), despite low total bacterial abundance (Fig. 3-2c). Moreover,

the frequencies of gene families associated with chitin metabolism (e.g., GH18 family

chitinases) were low (Fig. 3-8a). This suggests that, at early stages of colonization,

the composition of particle-attached communities is not determined by growth on

the particle substrate, but instead, may be governed by particle attachment ability.

In general, particle attachment is a complex trait influenced by bacteria-particle en-

counter rates, chemotaxis, biofilm production, and the expression of chitin binding

proteins. Nonetheless, given the diversity of taxa able to colonize particles in Phase

I, this suggests that particle attachment is a weak selective filter.

By contrast, the dramatic decline in community-wide diversity that defined Phase
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II (t = 20-44 hours) was likely driven by strong ecological selection for chitin metabolism

and rapid dispersal ability. In particular, gene families associated with chitin metabolism

peaked in relative abundance in Phase II (Fig. 3-8a), while nearly all others remained

constant in time (Fig. 3-9). These gene families were associated with multiple stages

of chitin metabolism, including extracellular chitin degradation (with GH18 family

chitinases), chitin-specific substrate attachment (via chitin-binding proteins), chemo-

taxis towards chitin monomers, and catabolism of chitin oligomers (Fig. 3-8a). In-

deed, among taxa with isolate representatives, four out of the five taxa that were

highly abundant in Phase II could grow in culture with chitin as the sole carbon

source (Fig. 3-8b; Fig. 3-10a). Interestingly, all four of these chitin-metabolizing taxa

were also able to (i) broadcast extracellular chitinases into the surrounding environ-

ment (Fig. 3-8b; Fig. 3-10e) and (ii) to consume two common chitinase degrada-

tion products, chitin monomers (N-acetylglucosamine or GlcNAc) and dimers (N’,N’-

diacetylchitobiose or (GlcNAc)2) (Fig. 3-8b; Fig. 3-10b, Fig. 3-10c). Moreover, all

taxa that gained prominence in Phase II were motile under laboratory conditions

(Fig. 3-8b; Fig. 3-10d), highlighting that rapid dispersal via active swimming may

influence colonization order.

As particle-attached communities entered Phase III (t = 44-140 hours), the community-

wide diversity rose again from its Phase II minimum as, simultaneously, the ecological

selection for chitin metabolism and rapid dispersal that defined Phase II was relaxed.

Community wide, the relative levels of gene families associated with chitin metabolism

and chemotaxis towards chitin degradation products declined in Phase III, sometimes

by orders of magnitude (e.g. GH18 chitinases, Fig. 3-8a). Similarly, among taxa with

isolate representatives that reached prominence in Phase III, none were motile under

laboratory conditions (Fig. 3-8b), and the majority (8 out of 11) were unable to grow

in culture with chitin as the sole carbon source (Fig. 3-8b, Fig. 3-10a). Incidentally,

the minority that could metabolize chitin did not broadcast extracellular chitinases,

nor could they typically consume chitin monomers or dimers (Fig. 3-8b; Fig. 3-10b,

Fig. 3-10c), suggesting a non-canonical mechanism of chitin metabolism compared to

their Phase II counterparts (Appendix B). Altogether, despite their widespread inabil-
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Figure 3-8: In both subpanels, phases of colonization (I, II, and III) are indicated
with the gray color bar. (A) The fraction of read annotations mapped to a given
functional category over time. Abbreviations: “DNA Pol I” = DNA polymerase I
(EC 2.7.7.7); “GH18 family” = Glycoside Hydrolase Family 18; “CBP” = chitin-
binding protein (Auxiliary Activity Family 10); “Chemotaxis” = N-acetylglucosamine
regulated methyl-accepting chemotaxis protein; “DeAc” = N-acetylglucosamine-6-
phosphate deacetylase (EC 3.5.1.25); “DeAm” = Glucosamine-6-phosphate deami-
nase (EC 3.5.99.6); “Chitobiose catabolism” = (GlcNAc)2 Catabolic Operon (SEED
Subsystem). (B) Left heat map: Absolute abundance trajectories of isolated taxa.
Leftmost letter identifiers show order-level taxonomic identities. Right heat map:
whether isolates do (blue) or do not (black) display a functional trait (assays described
in Methods; Appendix B). Gray: within-taxon isolates differ in their phenotype. The
number of isolates surveyed per taxon ranged from 1-3.

ity to consume chitin, the primary particle resource, Phase III-dominant taxa often

grew to levels that rivaled those from Phase II (Fig. 3-4b). Thus, Phase III marked a

community-wide shift in metabolism away from chitin towards other nutrient sources.

Given their inability to metabolize chitin directly, we hypothesized that Phase

III-dominant taxa instead consumed nutrient byproducts produced by chitin metab-

olizers. To test this hypothesis, we co-cultured isolates from two Phase III-dominant

taxa (from distinct bacterial phyla, Proteobacteria and Bacteroidetes) with each of six

chitin metabolizing isolates (representing three orders within Gammaproteobacteria).

Of the six chitin metabolizers, three could broadcast extracellular chitinases, while
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Figure 3-9: The maximum relative abundance reached versus the overall dynamic
range for functional categories. Each point corresponds to a single functional cate-
gory as annotated with MG-RAST (SEED Subsystem Level 3, similar to a KEGG
pathway). Only functional categories that reached a maximum relative abundance >
10−4 are plotted. Functional categories for which the dynamic range (maximum abun-
dance divided by minimum abundance) was less than 10 are plotted in gray. Those
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jugative transfer, Conjugative transposon, Bacteroidales, Ectoine biosynthesis and
regulation, Heme biosynthesis orphans, Phage tail proteins 2.
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Figure 3-10: Phenotypes of isolate representatives of OTUs from 16S sequencing.
Isolate names are indicated on the right and are grouped by the OTUs to which
they correspond (light/dark gray bars). Here, OTU order corresponds to ordering in
Fig. 3-8b. (A) Isolate fold growth with chitin particles (1,000 particles/mL) as the
sole carbon source. Culture growth was assayed by quantifying the amount of DNA
present in the sample, both initially (t = 0 days) and after growth (t = 7 days). Fold
growth is defined as [DNA]t=7/[DNA]t=0. Isolates for which fold growth < 5 (falling
to the left of the y axis) were deemed to have no significant growth. (B) Isolate
growth with N-acetylglucosamine (GlcNAc) (0.5% w/v) as the sole carbon source.
Total culture yield was assayed after 48 hours via optical density (OD600). Error
bars are standard deviations (n=4). (C) Isolate growth with N’,N’-diacetylchitobiose
((GlcNAc)2) (0.1% w/v) as the sole carbon source. Total culture yield was assayed
after 48 hours via optical density (OD600). Error bars are standard deviations (n=4).
(D) Example results from agar stab assay of motility after 7 days of incubation. Left
image is an un-inoculated tube (no evidence of growth). Middle image is for a non-
motile strain (growth along stab line, no growth elsewhere). Right image is for a motile
strain (growth throughout tube). (E) Example from chitinase secretion assay. Each
spot corresponds to the growth for an individual isolate. Zones of clearing around a
colony, indicating secretion of extracellular chitinases, can be assessed visually.
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three did not (Fig. 3-8b; Fig. 3-11), suggesting potential differences in their ability

to sustain a non-chitin-metabolizing subpopulation [88]. Altogether, we found that

isolates of Phase III-dominant taxa grew robustly on chitin particles in 10 out of 12

co-cultured pairs, despite their inability to grow in monoculture. Indeed, the enhance-

ment of their growth was often quite dramatic; in some cases, isolates grew 1,000-fold

(roughly 10 doublings) over seven days in co-culture, with little or no growth in mono-

culture. Interestingly, the degree of growth enhancement did not depend on whether

the chitin metabolizing co-culture partner could broadcast extracellular chitinases

(Fig. 3-11).

How do chitin metabolizers facilitate the growth of Phase III-dominant taxa?

Previous studies have documented “cheater” strains – specialized for consumption of

GlcNAc and (GlcNAc)2 – that do not produce chitinases themselves, but can ex-

ploit chitin-degrading taxa by scavenging for their degradation products [13, 138, 46].

However, the taxa that dominated Phase III were unlikely to be canonical cheaters.

In particular, gene families involved in GlcNAc and (GlcNAc)2 catabolism decreased

in relative abundance from Phase II to Phase III (Fig. 3-8a), suggesting that Phase

III was not enriched in taxa that specialized in the consumption of these products.

Similarly, only 1 out of the 11 isolated taxa that were highly abundant in Phase III

was able to grow in culture with GlcNAc or (GlcNAc)2 as the sole carbon source

(Fig. 3-8b; Fig. 3-10b, Fig. 3-10c). However, in the same minimal medium, these

isolates could grow on many other carbon sources (Fig. 3-12), indicating that growth

deficits stemmed from a lack of a suitable carbon source, rather than auxotrophies

or missing co-factors. More broadly, this implies that chitin metabolizers facilitate

the invasion of Phase III-dominant taxa by providing them with alternative carbon

sources. Possible sources include, but are not limited to, cell debris, biofilm-associated

exopolysaccharides, or small metabolic byproducts (e.g. organic acids).
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Figure 3-11: Fold growth of two Phase III-dominant taxa (OTUs 37 and 30) in
monoculture (“Mono”, gray) and in co-culture with chitin-degrading partners (“OTU
X”, blue/yellow). Blue bars: partners that broadcast extracellular chitinases. Yel-
low bars: partners that do not broadcast extracellular chitinases. Strains and their
co-culture partners were characterized taxonomically with the Ribosomal Protein
Database (RDP) classifier. The lowest level of classification with >80% confidence is
indicated for each strain. Asterisks: when fold growth in co-culture is significantly
different than in monoculture (two-tailed t-test; * = 0.01 < p < 0.05; ** = 0.001 <
p < 0.01; *** = p < 0.001). Error bars are standard deviations over three biological
replicates.

73



fructose

0.0 0.4 0.8 1.2

6D02

6G02

6C06

6E03

6H04

1A01

3C02

4B04

6D03

6E01

3D05

3F01

4D01

1F03

6E02

4G03

3B05

4H09

5G01

4A12

4C08

5A01

5F06

4E07

5C01

4A10

4G09

4F10

5D01

5F01

6B07

3D04

4B03

6C01

4A09

4C11

4D10

galactose

0.0 0.4 0.8 1.2

glucose

0.0 0.4 0.8 1.2

glycerol

0.0 0.4 0.8 1.2

mannose

0.0 0.4 0.8 1.2

Optical density (OD600)

Figure 3-12: Individual isolates were grown with mannose, glycerol, glucose, galactose,
or fructose as the sole carbon source (0.5% w/v). Total yield of cultures was assayed
after 48 hours via optical density (OD600). Isolate names are indicated on the right.
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standard deviations (n=4).
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3.3 Discussion

Overall, we have demonstrated that bacterial communities colonizing nutrient-rich

microhabitats undergo successional dynamics driven by two factors – dispersal limi-

tation and facilitative interactions – that, together, drive primary successions at the

scale of tens of microns. Together, our results suggest that the existing theory of

successions that has been developed for plants and animals may be applied to com-

plex natural microbial communities, thereby providing a basis for linking microbial

community structure to their population dynamics and activity.

Our work also illustrates that micro-scale ecological dynamics may have impor-

tant consequences for global ecosystem processes. In particular, the rapid successional

transition from primary particle degraders (in Phase II) to secondary consumers (in

Phase III) that we observed in our system suggests that the bacteria commonly found

on naturally occurring particles may not be the primary particle degraders. Instead,

most particle-attached bacteria may be secondary consumers that recycle waste prod-

ucts from primary degraders. These secondary consumers could increase the biomass

yield of the particle-attached community, while decreasing particle degradation rate,

as they compete with primary degraders for essential resources like space or oxygen.

Therefore, the timescale of this transition could influence the balance between or-

ganic matter consumption and biomass buildup in the ocean, potentially a key factor

shaping particle remineralization rates in the ocean. Further work should be aimed at

understanding the impact of particle-attached community dynamics from microscopic

to global scales.

3.4 Methods

3.4.1 Sampling of seawater

Coastal ocean surface water samples were collected on 7 October 2013 from a sampling

site located near Northeastern University’s Marine Science Center (Canoe Beach,

Nahant, Massachusetts, USA; 42∘25’11.5”N, 70∘54’26.0”W). At the time of sample

75



collection (roughly 3 PM UTC), the water temperature was 16.5∘C, while the ambient

air temperature was 18.1∘C. Salinity was measured to be 29.7 ppt using a handheld

refractometer (VWR #89370-226).

3.4.2 Colonization of chitin particles in seawater

Two milliliters of chitin magnetic beads (New England Biolabs #E8036L; roughly

2.5 x 105 beads/mL) stored in 20% ethanol were washed three times with 50 mL of

artificial seawater. Beads were resuspended in 100 mL of artificial seawater, resulting

in a bead stock at 5,000 beads/mL. In each of three 1-L screw-cap high-density

polyethylene (HDPE) bottles, 16 mL of the bead stock were added to 800 mL of

unfiltered seawater, yielding a final bead concentration of 100 beads/mL.

Bottles were rotated end-over-end at 4 rotations per minute on a homemade bottle

rotator under ambient lighting and temperature conditions. At each time point and

for each bottle sample, 50 mL of the seawater/bead mixture (5,000 beads total) were

transferred into a 50-mL conical tube (Corning Life Sciences #352070). Beads were

separated from the surrounding seawater with a neodymium magnet (McMaster-Carr

#5862K38). The seawater supernatant was transferred back into the original bottle.

The beads that remained were then gently washed three times with 50 mL of artificial

seawater before being resuspended in 5 mL of artificial seawater. For subsequent

analyses (extraction of genomic DNA, isolate collection, and bead imaging), 1 mL of

washed beads (containing roughly 1,000 beads in total) was transferred into each of

five 1.5-mL Eppendorf tubes. At a subset of time points, 1-mL samples were also

collected to characterize the surrounding seawater pool.

3.4.3 Quantification of total particle-attached bacteria over

time

As described above, 1,000 beads were prepared from each bottle at each time point.

Total bacterial DNA was quantified for each of these samples using a quantitative PCR

(qPCR) assay (Appendix B). Briefly, each sample was amplified in a qPCR reaction,
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allowing a Ct value (the number of cycles required for the PCR amplification curve

to cross a threshold) to be calculated for all samples. The number of 16S V4 copies

present in a sample was calculated from the Ct by using a standard curve.

3.4.4 Illumina 16S library preparation

Genomic DNA was extracted from all samples with the MasterPureâĎć DNA Purifi-

cation Kit (Epicentre #MCD85201) (with modifications described in Appendix B).

Amplicon libraries (16S rRNA gene V4 hypervariable region) were prepared accord-

ing to the method described in Preheim, et al [130]. Samples were sequenced on an

Illumina MiSeq (PE 250+250) at the BioMicro Center (Massachusetts Institute of

Technology, Cambridge, MA). Reads were merged and quality filtered with custom

scripts, and were clustered into operational taxonomic units (OTUs) (97% identity

cutoff) with UCLUST and USEARCH (http://www.drive5.com/usearch/). The rel-

ative abundance of each OTU was calculated by normalizing per-OTU read counts

by the total number of reads in the sample. The absolute abundance of each OTU

at each time point was calculated by multiplying the OTU’s relative abundance at a

given time point by the total amount of particle-attached bacteria at that time point.

3.4.5 Plotting absolute abundance trajectories

Only taxa present at a relative abundance greater than 1% at any time point are

shown. Plotted values are the medians over three colonization replicates. Data was

smoothed with a three-point running median filter and normalized by the maximum.

3.4.6 Cross-replicate correlations

For all taxa in a taxon subset – present at >1% relative abundance in any replicate

and at any time point – we calculated the Spearman correlation between trajectories

in two colonization replicates (e.g. Replicate 1 vs. Replicate 2). We repeated this

process for all pairs of replicates.
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3.4.7 Metagenomic sequencing of particle-attached communi-

ties

For a single replicate time series (Replicate 2), metagenomic libraries were prepared

for all time points with the Illumina Nextera XT DNA Sample Preparation Kit (Illu-

mina # FC-131-1024) and Illumina Nextera XT DNA Sample Preparation Index Kit

(Illumina # FC-131-1001). Sequencing libraries were normalized before sequencing

with a modified protocol (Appendix B). All samples were sequenced on an Illumina

MiSeq (PE 250+250) at the Genomic Diversity Center (ETH Zürich, Zürich, Switzer-

land).

3.4.8 Functional annotation of metagenomic reads

Before annotation, reads were quality filtered using the standard quality-control

pipeline in MG-RAST (http://metagenomics.anl.gov/). Briefly, reads are pre-processed

by using SolexaQA to trim low-quality regions. Subsequently, artificial duplicate

reads were identified (using a k-mer approach) and removed. Remaining sequences

were screened for matches to model organisms (e.g. human, mouse, cow, fly) and also

removed.

Quality-filtered reads were assigned to functional categories using two methods.

In the first method (used for “DNA Pol I”, “Chemotaxis”, “Chitobiose catabolism”,

“DeAc”, and “DeAm”), reads were annotated in MG-RAST with SEED Subsystems,

manually curated, hierarchical functional categorization system. Annotation transfer

cutoffs were the defaults (e-value < 10-5; minimal alignment length = 60 basepairs),

although, qualitatively, results were consistent over a wide range of values. Note that

MG-RAST allows a single read to be assigned to multiple functional categories (i.e.,

# of read annotations ≥ # of reads). Therefore, within each sample, counts were

normalized to the number of annotations, rather than to the number of reads.

The second method (used for “GH18 family” and “CBP”) involved annotation with

manually curated HMMs provided by the dbCAN database (http://csbl.bmb.uga.edu/dbCAN/).

The database of metagenomic read sequences was searched with profile HMMs for
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GH18 (chitinases) and AA10 (chitin-binding proteins) using hmmsearch (HMMER

3.1b1, May 2013, http://hmmer.janelia.org/).

3.4.9 Culturing isolates from particle samples

As described above, tubes containing 1,000 beads were prepared from each incubation

bottle at each time point. At a subset of these time points (t = 8, 24, 52, 76,

92, and 140 hours), tubes were sonicated in a bath sonicator (Cole-Parmer #8891,

now discontinued) on “low” for five cycles (30 seconds on, 30 seconds off). Beads

were separated from the supernatant with a neodymium magnet (McMaster-Carr

#5862K38). The supernatant was then divided and plated at three different dilutions

(1:104, 1:105, 1:106) on each of two types of plates: (1) Marine Broth 2216 (Difco

#279110), or (2) Tibbles-Rawling minimal media with 0.2% N-acetylglucosamine.

Both plate types were prepared with 1.5% agar (BD #214010). Plates were incubated

at room temperature for 7 days to allow both slow-growing and fast-growing strains

to become visible.

Following growth on plates, roughly 50 colonies were picked as representatives from

each time point. To purify strains for subsequent analyses, colonies were re-streaked

three times onto fresh plates containing the medium from which they were first picked.

Stocks of strain isolates were prepared by first growing strains for two days at room

temperature in Marine Broth 2216 liquid medium (Difco #279110), and then mixing

the saturated culture and 80% glycerol in equal volumes in a cryovial. All stocks were

stored at -80∘C. For taxonomic classification of isolates, the 16S rRNA gene of each

strain was sequenced via Sanger sequencing (Appendix B). This information was used

to map isolates to OTUs identified via culture-independent methods (Appendix B).

3.4.10 Growth experiments with isolates

Media was prepared by supplementing Tibbles-Rawling minimal media with the de-

sired carbon source. Strains were pre-grown to saturation for 48 hours in Marine

Broth 2216 medium prepared according to the manufacturerâĂŹs instructions (Ma-

79



rine Broth 2216, dehydrated; Difco #279110). When strains were to be grown on

chitin, strains were pre-grown in Marine Broth 2216 medium supplemented with 1,000

chitin beads/mL.

Isolate growth was assessed on each of three carbon sources: chitin resin (New

England Biolabs #S6651L; added at 103 beads/mL), N-acetylglucosamine (Sigma-

Aldrich #A3286-100G; 0.5% w/v), and N,N-diacetylchitobiose (D1523-10MG; 0.1%

w/v). For most cases, culture growth was quantified by measuring OD600 with a

spectrophotometer (Tecan Infinite F500). However, growth on chitin beads proved

difficult to measure accurately with standard optical density measurements. Instead,

culture growth was estimated based upon the change in total DNA content over time.

At discrete time points, 500 𝜇L of the culture was transferred into a 1.5-mL tube.

Total genomic DNA was extracted from each of these samples using a MasterPureTM

DNA Purification Kit (Epicentre #MCD85201; as described above). Total double-

stranded DNA content was quantified for each sample with a Quant-iT PicoGreen

dsDNA Assay Kit (Life Technologies #P7589).

3.4.11 Chitinase broadcasting assay

A plate-based chitin clearing assay was used to assess chitinase broadcasting ability.

Bacterial cultures were grown in Marine Broth 2216 until saturation. A small volume

of these saturated cultures (typically 5 𝜇L) was spotted onto a chitin clearing assay

plate containing colloidal chitin stained with Remazol Brilliant Violet 5R. Colloidal

chitin was prepared and stained as previously described [135], using an aqueous solu-

tion of 1.5% w/v sodium dichromate (Sigma #398063-100G) and 1.5% w/v potassium

sodium tartrate (Sigma #217255-100G) as a mordant. After cultures were spotted

onto plates, plates were incubated at room temperature for 5 days before imaging.

3.4.12 Motility assay

A standard agar stab assay was used to assess the potential for motility among

isolates. Motility test agar medium was prepared with Marine Broth 2216 (Difco
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#279110), Bacto Agar (BD #214010) (0.25% w/v), and 2,3,5-triphenyltetrazolium

chloride (TTC) solution (Sigma-Aldrich #17779-10X10ML-F) and autoclaved. Me-

dia was aliquoted in autoclaved glass tubes (VWR #47729-576) with plastic closures

(Cole-Parmer #EW-04500-01) (5 mL of media per tube) and allowed to cool to room

temperature. Using an inoculating needle (Thomas #TL0000), a stab inoculation

was made from a single colony for each strain into a media-filled glass tube. Tubes

were incubated at room temperature for 7 days before cultures were analyzed. Evi-

dence of motility was assessed visually. If growth occurred only along the stab line,

strains were considered non-motile under these conditions; otherwise, strains were

deemed motile. All results were confirmed via microscopy with liquid cultures in

Marine Broth 2216 medium.

3.4.13 Isolate co-culture experiments

To characterize interactions between community members, we performed co-culture

experiments with pairs of strain isolates. In each case, a chitin-degrading strain

was mixed with a non-chitin-degrading strain, with the degrader in large excess

(degrader:non-degrader ≈ 90:10). Combinations of strains, as well as monocultures of

each strain, were grown in Tibbles-Rawling minimal media with chitin beads (1,000

beads/mL) at a total starting cell density of 106 cells/mL. Cultures were grown for

7 days at room temperature and rotated end-over-end at 6 rotations per minute. For

each culture, samples were harvested at the beginning (t = 0 days) and end (t = 7

days) of the growth period and frozen at -80∘C for subsequent analyses.

Quantifying the total number of cells in each sample is experimentally challenging.

Therefore, the total amount of genomic DNA present in each sample was measured.

First, total genomic DNA was extracted from each of these samples using a Mas-

terPure DNA Purification Kit (Epicentre #MCD85201; modifications in Appendix

B). Then, total double-stranded DNA content was quantified for each sample with a

Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies #P7589).

To estimate the relative abundance of each strain within the co-cultures, amplicon

libraries (16S rRNA gene V4 hypervariable region) were prepared according to a
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previously described protocol [130]. Samples were sequenced on an Illumina MiSeq

(paired-end, 250-basepair reads) at the BioMicro Center (Massachusetts Institute of

Technology, Cambridge, MA). The absolute abundance of each strain in each sample

was calculated by multiplying the strain’s relative abundance in a given sample by

the total amount of genomic DNA present in that sample.
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Chapter 4

Range expansion promotes

cooperation in an experimental

microbial metapopulation

This chapter was published in a similar form in Datta, et al., 2013 [41]

Abstract

Natural populations throughout the tree of life undergo range expansions in response
to changes in the environment. Recent theoretical work suggests that range expan-
sions can have a strong effect on evolution, even leading to the fixation of deleterious
alleles that would normally be outcompeted in the absence of migration. However,
little is known about how range expansions might influence alleles under frequency-
or density-dependent selection. Moreover, there is very little experimental evidence
to complement existing theory, since expanding populations are difficult to study in
the natural environment. In this study, we have used a yeast experimental system
to explore the effect of range expansions on the maintenance of cooperative behav-
iors, which commonly display frequency- and density-dependent selection and are
widespread in nature. We found that range expansions favor the maintenance of co-
operation in two ways: (1) through the enrichment of cooperators at the front of the
expanding population, and (2) by allowing cooperators to “outrun” an invading wave
of defectors. In this system, cooperation is enhanced through the coupling of popu-
lation ecology and evolutionary dynamics in expanding populations, thus providing
experimental evidence for a novel mechanism through which cooperative behaviors
could be maintained in nature.
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4.1 Introduction

Natural populations often increase the geographical area that they occupy through

population growth and dispersal into new territory [53, 71, 175, 120]. Such events,

termed range expansions, occur repeatedly during the life history of a species in

response to changes in the environment (for instance, forest fires or seasonal changes in

climate), as well as changes in phenotype that allow the species to colonize regions that

were previously inaccessible to them [53, 181]. Despite their widespread occurrence,

the effect of range expansions on genetic diversity has only begun to be explored.

Recent theoretical analyses suggest that genetic drift on the low-density front of an

expanding population can lead to the fixation of neutral (or even deleterious) alleles

in a way that mimics positive selection [54, 101]. This effect, known as “allele surfing,”

is a stochastic effect that has been demonstrated experimentally for neutral alleles in

expanding bacterial colonies [77] and was recently suggested to underlie the global

patterns of human phenotypic variation observed today [110, 10, 125].

Here, we chose to study the maintenance of cooperative alleles in the context

of populations undergoing range expansions. By definition, a “cooperator” provides

a benefit to other members of the population at a cost to itself [126]. Examples

of cooperation are ubiquitous in the wild, ranging from siderophore production in

bacteria to the formation of communities in human populations [126, 186, 184, 188].

However, given the appearance of “defectors” that exploit the benefit provided by

the cooperators without incurring the cost, explaining the origin and maintenance of

cooperation in nature remains a key challenge in evolutionary biology [126, 184, 39,

28]. Several studies (both experimental and theoretical) have suggested that spatial

structuring may play a key role in the maintenance of cooperation in nature [73,

35, 123, 189]. Moreover, previous studies have showed that population dynamics can

play a key role in maintaining cooperative alleles [31, 36]. Thus, we hypothesized that

the population dynamics of expanding populations might support the maintenance

of cooperation in nature.

More broadly, cooperative alleles also comprise some of the most well known ex-
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amples of alleles for which selection is not constant, but instead depends upon instan-

taneous allele frequencies or population densities [69, 174, 192, 140, 103, 132, 141].

While range expansions are predicted to have a strong effect on the evolution of neu-

tral, deleterious, and beneficial alleles, alleles under frequency- or density-dependent

selection have not been considered previously. However, since range expansions often

create spatial heterogeneity in both population density and allele frequency [53, 77],

we hypothesized that, in contrast to stochastic allele surfing events, there might be a

deterministic coupling between population and evolutionary dynamics that would be

broadly generalizable to alleles under frequency- or density-dependent selection.

To probe how range expansions shape the maintenance of cooperation, we used a

well-characterized budding yeast model system. In this system, a cooperator strain

(SUC2) catalyzes the enzymatic conversion of sucrose into a consumable energy source

(glucose and fructose) [39, 69, 178, 72]. Although the cooperators retain some prefer-

ential access to the sugars that they produce, roughly 99% of this resource is lost to

neighboring cells [39, 69, 178]. In our system, this behavior facilitates the growth of

an obligate defector strain (Δsuc2) that cannot degrade sucrose, but can consume the

sugars produced by neighboring cells [39, 69, 178, 72]. This system shows negative

frequency-dependent selection, which leads to coexistence between the cooperator

and defector genotypes in our system [39, 69, 178, 72, 109, 76] [for a comprehensive

study of the eco-evolutionary feedback inherent in these cooperator-defector dynam-

ics, see (35)]. The cooperator strain also displays an Allee effect (where the per capita

growth rate of the population is maximal at intermediate population densities). This

type of growth is predicted to have a strong effect on the dynamics of expanding

populations [34, 37, 139, 171].

We used an experimental system (similar to that in [92]) based upon a linear

stepping-stone model (also known as the Levins metapopulation model) [95, 80, 122].

This theoretical framework, which is well established in the evolutionary and eco-

logical literature, simulates short-range dispersal through nearest-neighbor migration

between discrete, well-mixed subpopulations on a lattice (Fig. 4-1A) [95, 80]. Fol-

lowing this scheme, we allowed populations to expand in a habitat of twelve wells (a
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single row of a 96-well plate), where each well contained a well-mixed population of

cells growing in identical growth media (Fig. 4-1B). To start the experiment, a portion

of the wells were populated with cells, while the remainder were unpopulated to allow

for expansion. Each day, a fraction m/2 of the contents of each well was transferred

into the nearest neighbor wells. Next, the entire population was diluted by a fixed

dilution factor (600 in Figures 2-4), which represents a death process in the growth

dynamics. Subsequently, the cells grew overnight. The process was repeated for nine

days. We note that previous experimental studies of range expansions have focused

on expanding colonies on agar plates, which are continuous in both time and space

and dominated by stochastic sampling events on the front [101, 77]. However, our

experimental setup offers a higher level of control over migration and growth param-

eters, better approximates the patchiness of the natural environment, and allows us

to study deterministic effects that are unlikely to manifest themselves in expanding

colonies.

4.2 Results

4.2.1 Cooperators move as a traveling wave

We first explored the spatio-temporal dynamics of pure cooperators undergoing a

range expansion. In agreement with theoretical predictions [122], we found that

an expanding population of cooperators moves as a traveling wave. Over time, the

population adopted a characteristic profile in space consisting of a high-density bulk

region and a low-density front (Fig. 4-2A, Fig. 4-2B). The shape of the spatial profile

was time-invariant and well fit by the solution to a simple model of range expansions

with an Allee effect (see Appendix C and [122] for a more detailed treatment). The

functional form of the solution has three free parameters: 1) 𝜌max, the density in the

bulk population, 2) w, the width of the traveling wave, and 3) Xm, the midpoint of

the wave (Fig. 4-2C). We also found that the wave profile traveled over time with a

constant velocity (vcoop = 0.65 ± 0.01 wells/day), which we measured by fitting the
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Figure 4-1: (A) A schematic of a linear stepping-stone (or Levins metapopulation)
model [95, 80, 122]. The habitat consists of a linear array of subpopulations, each
of which is either empty or contains a well-mixed population of individuals. Subpop-
ulations are coupled to each other by nearest-neighbor migration with a fraction m
leaving for the two neighboring wells at each time step. (B) Our daily protocol of
growth, migration, and death follows the assumptions of the stepping-stone model.
Each day, a fraction m/2 of the population from any individual well is migrated into
each of the neighboring wells. Boundary conditions are reflective, meaning that wells
on the edge receive a contribution m/2 from their only neighbor and 1 – m/2 from
the corresponding well. Subsequently, the entire population is diluted by a dilution
factor (ranging from 200-1000) that is fixed for the duration of the experiment. The
entire population is then grown for 22 hours at 30∘C. The process is repeated for
several days as the population expands into the unpopulated region. For all experi-
ments, the environmental conditions are spatially homogeneous – all wells (including
unpopulated wells) are seeded with identical growth medium (YPD + CSM-His +
2% sucrose + 0.4X histidine).
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time trajectory of the wave midpoint (Xm) to a line (Fig. 4-2D). The high quality of

these fits (R2 = 0.99 for fit shown here) suggests that the velocity is indeed constant

over time. Given the migration scheme, the maximum wave velocity (vmax) is 1

well/day, since one additional well is populated each day. However, as illustrated

above, the velocity can certainly be less than vmax, as it is an emergent property of the

expanding population. To our knowledge, this is the first experimental measurement

of traveling waves in a population with an Allee effect [139].

4.2.2 Mixed cooperator-defector waves are enriched in coop-

erators at the front

Next, we considered the range expansion of a mixed population of cooperators and

defectors. Similar to the expanding cooperator population, the mixed population also

moved as a traveling wave with a constant profile and velocity (vmixed = 0.49± 0.02

wells/day) (Fig. 4-3A, Fig. 4-4). Interestingly, we observed that mixed waves of coop-

erators and defectors traveled more slowly than waves of pure cooperators (vmixed < vcoop),

even though the bulk density of the mixed population was higher than that of the

cooperators alone [109] (Fig. 4-2A, Fig. 4-3A, Fig. 4-5A). This result suggests that, in

general, intraspecies interactions can have strong and complex effects on the growth

and spread of populations.

In addition, we observed significant spatial heterogeneity in allele frequencies

within the mixed population wave. Under well-mixed conditions, the cooperator and

defector alleles are mutually invasible in our system [69], resulting in stable coexis-

tence between the two alleles at a low frequency of cooperators (Fig. 4-3B, Fig. 4-5B).

In agreement with the well-mixed prediction, the high-density bulk population main-

tained a stable equilibrium frequency of cooperators of about 15%. However, we

observed that the frequency of cooperators was significantly larger on the low-density

front of the expanding population wave, reaching a frequency that was three times

higher than that found in the bulk (roughly 45%) (Fig. 4-3C, Fig. 4-3D). It is also

interesting to note that, despite the decline in total population density at the front

88



AA

1 6 12
0

3

6
x 10

7

Position (well number)

P
o

p
u

la
ti

o
n

 d
e

n
s

it
y

 (
ρ
, 

c
e

ll
s

/m
L

)

AAA B

C D

Figure 4-2: (A) The experimentally observed one-dimensional expansion of a pure
cooperator population over nine days (m = 0.5 and dilution factor = 600). (B) Den-
sity profiles over time for expanding populations of pure cooperators (darker colors
indicate later timepoints). Circles are measurements of population density at a par-
ticular time and spatial position. Lines are fits of individual profiles to the hyperbolic
tangent function derived in Appendix C. (C) An overlay of the density profiles from
the last six days of the experiment (darker circles indicate later timepoints). Each
profile is normalized to the maximum density found in the bulk population (𝜌max)
and shifted by its midpoint position (Xm). The first three days are not included, as
the expanding population had not yet reached a steady-state profile. The red line
shows a theoretical fit to the hyperbolic tangent function derived from a standard
reaction-diffusion model of expanding populations (discussed in the Appendix C).
(D) We measure the velocity of the traveling wave by plotting the position of the
density profile midpoint (Xm) vs. time and then finding the slope of the line. As in
(C), the first three days are not included.
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Figure 4-3: A) Population density profiles for the one-dimensional expansion of a
mixed cooperator-defector population (m = 0.5 and dilution factor = 600) at its
equilibrium cooperator frequency. Darker colors indicate later timepoints. Circles
are density measurements from a particular day of the experiment. Lines are fits of
individual profiles to the hyperbolic tangent function derived in Appendix C. (B) In a
well-mixed population with no dispersal, the cooperator and defector alleles coexist at
an intermediate frequency (in this case, roughly 15%). (C) The frequency of coopera-
tors over time in an expanding mixed cooperator-defector population. The frequency
of cooperators is strongly enriched on the front of the expanding population wave
( 45%), while the bulk population remains at the equilibrium frequency predicted in
Fig. 4-3B. (D) An overlay of the density profile (in black) with the cooperator fre-
quency profile (in blue) from Day 9 of the expansion of the mixed cooperator-defector
population. The density profile is normalized to the maximum density found in the
bulk population (𝜌max). Cooperators are enriched at the low-density front of the
expanding population.
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Figure 4-4: (A) An overlay of the density profiles from the last seven days of a
one-dimensional expansion of a mixed cooperator-defector population (m = 0.5) and
dilution factor = 600) at its equilibrium cooperator frequency. Each profile is normal-
ized to the maximum density found in the bulk population (𝜌max) and shifted by its
midpoint position (Xm). The red line shows a fit to the hyperbolic tangent function
derived in Appendix C. (B) Similar to the pure cooperator wave, we can measure the
velocity of the mixed cooperator-defector wave by plotting the position of the density
profile midpoint (Xm) vs. time and then finding the slope of the line. As in (A), data
from the first two days are not included in the fit, since the expanding population
has not reached a steady-state density profile.
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A B

Figure 4-5: (A) An overlay of the cooperator and defector population density profiles
within the mixed cooperator-defector wave. Data is shown from the last four days
of the experiment (m = 0.5 and dilution factor = 600), where darker circles indicate
later timepoints. Each profile is normalized to the maximum density found in the
bulk population (𝜌max) and shifted by its midpoint position (Xm). Both cooperators
and defectors adopt a time-invariant spatial profile, and the cooperator density peaks
at a position near the front of the mixed cooperator-defector wave. (B) The midpoint
of expanding cooperator waves (Xm) plotted over time for a range of dilution factors
between 200-1000 (m = 0.5). Darker colors indicate higher dilution factors. All Xm

trajectories are roughly linear in time with slopes that decrease monotonically with
increasing dilution factors.
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of the expanding population, the density of cooperators actually reaches a peak near

the front before declining to zero at the tip of the wave (Fig. 4-6A).

The cooperator cells are enriched at the front of the traveling wave due to their

ability to outcompete defectors at low cell densities. At high densities, defector cells

can outcompete the cooperators, as they can take advantage of the sugar produced by

the cooperators without having to pay the metabolic “cost” of production. However, at

low densities, defectors in the population cannot rely on a high density of cooperator

cells to provide the sugar needed for growth [69, 142, 27]. Cooperators are able to

outcompete defector cells under these conditions because they (selfishly) retain a

small fraction of the sugars that they produce [69]. Thus, density-dependent growth

dynamics, which allow for stable coexistence between the two alleles [69, 142, 27], also

leads to strong deterministic enrichment of the cooperative allele on the low-density

front of expanding population waves.

4.2.3 Cooperators can outrun an invading wave of defectors

Next, we considered the process by which defectors invade a spatially extended popu-

lation of cooperators. As noted previously, in the absence of migration, defectors can

invade a population of cooperators over time (Fig. 4-3B). We also observed the inva-

sion of defectors into a spatially extended region of cooperators (Fig. 4-7A, Fig. 4-7B).

This invasion takes place via a genetic wave with a time-invariant frequency profile

(Fig. 4-7C) and a constant velocity (Fig. 4-7D) that we termed the “invasion velocity”

(vinvasion = 0.55± 0.03 wells/day). Thus, we used our experimental system to charac-

terize the genetic wave of invasion for a competing allele. The notion of a genetic wave

was first introduced by Fisher [59] and Kolmogorov [100], but thus far, experimental

characterizations of genetic waves in spatially extended populations have been scarce

(however, see examples in [125, 112]). Notably, we found that the invasion velocity

was less than the velocity of migrating cooperators (vinvasion < vcoop). We were in-

trigued by this comparison, since it suggested that, if a population of cooperators

continued to migrate as it was invaded, the two populations might never completely

mix. To explore this idea further, we repeated our measurements of vcoop, vinvasion,
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Figure 4-6: (A) The maximum population density (found in the bulk population) over
a range of dilution factors between 200-1000. Values of 𝜌max were estimated based
upon fits of individual density profiles to the hyperbolic tangent function derived in
Appendix C. Error bars indicate standard errors in 𝜌max from the last five days of the
experiment. It is important to note that histidine is limited in the growth media (see
Methods). Since the cooperator strain is a histidine auxotroph (and the defector strain
is not), these conditions limit the growth of the cooperator strain without strongly
affecting the defector strain. Error bars indicate the SEM for measurements with
n = 6. (B) The equilibrium frequency of cooperators that would be reached in a well-
mixed population undergoing serial growth and dilution by a fixed dilution factor.
Estimates of the equilibrium frequency were obtained by averaging the cooperator
frequency in the leftmost two wells (those least affected by expansion dynamics on
the front) over the last five days of the experiment. Error bars indicate the SEM for
measurements with n = 6.
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Figure 4-7: Note that, unlike in the previous figures, the frequency of defectors,
not cooperators, is plotted here. (A) The experimentally observed one-dimensional
invasion of defectors into a spatially extended population of cooperators (m = 0.5 and
dilution factor = 600). Since defectors (Δsuc2) cannot grow in the medium used here
without cooperators present, the invasion begins from a mixed cooperator-defector
population near its equilibrium genetic composition. (B) Frequency profiles over
time for an invading population of defectors (darker colors indicate later timepoints).
Circles are measurements of the frequency of defectors at a particular time and spatial
position. Lines are fits of individual profiles to the hyperbolic tangent function derived
in Appendix C. It is important to note that this fit is based upon a theoretical
prediction, but is simply used as an approximation to the observed sigmoidal shape
to infer the wave midpoint (Xm). (C) An overlay of the frequency profiles from the last
four days of the experiment (darker circles indicate later timepoints). Each profile
is shifted by its midpoint position (Xm). We note that no red theoretical fit line
is shown here because, to our knowledge, there is no theoretical prediction for the
shape of the genetic wave profile. (D) We can measure the velocity of the invading
genetic wave by using the same procedure that we used for the population density
wave (Fig. 4-2D). The first six days of the experiment are excluded from the fit, as
the population had not yet reached a steady-state frequency profile and density.
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and vmixed over a range of dilution factors from 200 to 1000 (Fig. 4-8A). The dilu-

tion factor, which modulates the daily death rate, allowed us to vary the dynamics

of the system by changing the effective “severity” of the environment. Using this

experimental control knob, we hoped to probe a broader range of dynamics in the

system.

As we increased the dilution factor, we found that each of the velocities we mea-

sured (vcoop, vinvasion, and vmixed) decreased monotonically (Fig. 4-8A, Fig. 4-6B for

vcoop). For population waves (e.g., vcoop and vmixed), this result can be explained

by the fact that newly populated wells on the front of the wave cannot grow to

measurable densities at higher dilution factors, thereby impeding the spread of the

population wave. For the genetic wave (vinvasion), this monotonic decrease is consistent

with the dependence predicted by the Fisher-Kolmogorov model (see [34, 37] and

Appendix C). Interestingly, we also found that the mixed cooperator-defector wave

traveled more slowly than both the pure cooperator wave and the defector invasion

wave over the entire range of dilution factors that we probed (Fig. 4-8A). This result

draws comparison to theoretical predictions suggesting that opportunistic pathogens

can slow the migration of biological species [83], and it indicates that interactions

between cells can have a significant influence on population expansions.

Most surprisingly, although vcoop and vinvasion showed similar qualitative trends, a

comparison of the two velocities immediately revealed two distinct regimes (Fig. 4-

8A). At high dilution factors (above 700), we observed that vinvasion was greater than

vcoop, while vinvasion was less than vcoop at low dilution factors (below 700). These

relationships between vcoop and vinvasion are surprising, given that under well-mixed

conditions, cooperators have a growth advantage at low densities (high dilution fac-

tors), while defectors are favored at high densities (low dilution factors). However, it is

important to note that, while these two expansion processes are both emergent prop-

erties of the well-mixed dynamics in individual wells, they occur under significantly

different environmental conditions. In particular, cooperators spread by colonizing

previously unoccupied regions; thus, at the front of the wave, population densities

(and therefore, the concentration of glucose available for consumption) are low. On
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the other hand, defectors spread into wells that are already occupied by cooperators,

in which population densities are high and growth conditions are favorable (glucose

concentration is high). Thus, our analysis shows that the velocities of range expan-

sions are strongly coupled to the environment and can produce relationships that are

not immediately apparent from dynamics observed in a well-mixed context. Interest-

ingly, a simple phenomenological model of yeast growth in sucrose that we have used

previously [69, 142, 27] predicts our experimentally observed crossing of velocities as

a function of dilution factor (Fig. 4-10).

From an ecological perspective, the relationship between vcoop and vinvasion has sev-

eral interesting implications. At high dilution factors (vinvasion < vcoop), cooperators

and defectors will eventually become completely mixed in space, after which the two

alleles will spread together into new territories (Fig. 4-9). In contrast, at low dilu-

tion factors (vinvasion > vcoop), cooperators can “outrun” an invading wave of defectors

(Fig. 4-8B). In this case, a sufficiently large region of pure cooperators expands over

time, even in the presence of an invasive allele (Fig. 4-8C, Appendix C). Broadly, the

ability of cooperators to outrun an invading defector wave provides a second mecha-

nism through which range expansions could help to maintain cooperation in nature.

4.3 Discussion

We have presented an experimental study of the effect of range expansions on the

maintenance of cooperation. Using yeast populations in the laboratory to study range

expansions gave us direct control over all migration parameters and experimental

conditions. As a result, we were able to perform a high-resolution analysis of an

expanding population of cooperating alleles in a manner that could not easily be

replicated in the natural environment.

Using this approach, we found that range expansions favor the maintenance of

cooperation in two ways. First, cooperation is strongly enriched on the front of ex-

panding populations compared to the bulk, even without spatial heterogeneity in the
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Figure 4-8: (A) Measurement of the velocities of pure cooperators (vcoop), invading
defectors (vinvasion), and the mixed cooperator-defector wave (vmixed) over a range of
dilution factors indicates two regimes: (1) at high dilution factors, defectors invade
more quickly than the cooperators can escape (vinvasion > vcoop), and (2) at low dilu-
tion factors, cooperators can “outrun” the invasion (vinvasion < vcoop). Error bars for
the velocities are standard errors in the slope of the Xm vs. time plot. Asterisks
indicate the magnitude of the p-value for the difference between vcoop and vinvasion at
a particular dilution factor (* denotes p < 0.05; ** denotes p < 0.01; *** denotes
p < 0.001). (B) A schematic depicting the case in which cooperators can outrun
defectors, in which the region occupied by the cooperators increases over time, even
as the defectors invade. (C) Experimental observation of cooperators outrunning an
invading wave of defectors (m = 0.5 and dilution factor = 400). At this dilution
factor, Δv = vcoop − vinvasion ≈ 0.2 wells/day. Over five days, the “headstart” region
containing pure cooperators increases from four to nearly five wells, consistent with
the observed Δv.
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Figure 4-9: (A) Formulation of the model used to simulate growth dynamics in indi-
vidual wells in discrete simulations. The schematic depicts the per-capita growth rate
of cooperators and defectors as a function of cell density. Yeast growth is modeled as
logistic with a carrying capacity (K ≈ 108) cells/mL. Low and high density growth
phases are delineated by a critical cell density, (Ncritical ≈ 3× 105) cells/mL. Since
Ncritical is over two orders of magnitude lower than K, 𝛾c,low and 𝛾d,low are assumed to
be approximately constant (no logistic decline). However, above Ncritical, the growth
rates are assumed to decrease from maximum values (K, 𝛾c,high and 𝛾d,high) according
to the logistic equation. (B) Discrete simulation of the frequency of cooperators as
a function of time and space. Parameter values are as described in Appendix C.
As we found experimentally, the discrete model predicts that the cooperator allele
is enriched at the front of expanding populations. (C) Discrete simulation of the
frequency of cooperators as a function of time and space. Parameter values are as
described in Appendix C. As we found experimentally, the discrete model predicts
that the cooperator allele is enriched at the front of expanding populations. (C) Dis-
crete simulation of the velocity of cooperators (vcoop ) and the velocity of defector
invasion (vinvasion ) as a function of dilution factor. Parameter values are as described
in Appendix C. As we demonstrated experimentally, the discrete model predicts two
growth regimes, in which vinvasion < vcoop at low dilution factors and vinvasion > vcoop
at high dilution factors.
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Figure 4-10: (A) An overlay of the density profile (in black) with the cooperator fre-
quency profile (in blue) from Day 9 of the expansion of a mixed cooperator-defector
population (m = 0.5 and dilution factor = 400). The density profile is normalized
to the maximum density found in the bulk population (𝜌max). Consistent with data
shown in the main text, the cooperative allele is strongly enriched at the front of the
expanding population. (B) Replicate measurements of the velocities of pure coopera-
tors (vcoop) and invading defectors (vinvasion) over a range of dilution factors. Asterisks
indicate the magnitude of the p-value for the difference between vcoop and vinvasion at
a particular dilution factor (* denotes p < 0.05; ** denotes p < 0.01; *** denotes
p < 0.001). Error bars for velocities are standard errors in the slope of the Xm vs.
time plot. (C) Additional replicate measurements of the velocities of pure cooperators
(vcoop) and invading defectors (vinvasion) over a range of dilution factors. Asterisks are
the same as in (B). In all three experimental replicates (including that shown in the
main text), we found that there were two regimes, where at high dilution factors,
defectors invade more quickly than the cooperators can escape (vinvasion > vcoop), and
at low dilution factors, cooperators can “outrun” the invasion (vinvasion < vcoop). (D)
A comparison of the velocity of expanding cooperators (vcoop) and the velocity of
invading defectors (vinvasion) as a function of dilution factor. Data is compiled from
three independent experiments. To account for experiment-to-experiment variability,
all vcoop data was normalized by their x intercept (that is, the extrapolated dilution
factor where vcoop = 0) (normalization factors were determined empirically to be 1.4
and 1.01 for data shown in (b) and (c), respectively). Dilution factors for the cor-
responding invasion velocities were rescaled by the same factor. We then compared
the slopes of vcoop and vinvasion as a function of dilution factor by using a multiple
linear regression model (analogous to that discussed in Methods). Although there
is a great deal of variation between experiments, the crossing of vcoop and vinvasion is
still statistically significant (p = 4× 10−4). We note that the exact correspondence
between velocity and dilution factor was highly variable between experiments. In
simulations, we found that this difference could be explained by a 2% decrease in the
growth rates of the two strains, which could easily arise through small variations in
the media formulation or growth conditions. As a result, experiment-to-experiment
variation primarily captures small variations in media formulation, differences in the
temperature of the incubator or the room on a given week, or intrinsic differences
between single colonies. 100



environmental conditions. Given that range expansions are common in natural pop-

ulations, they could aid in the maintenance of cooperation in nature. Moreover, the

mechanism of enrichment can be applied more generally to any allele favored at low

densities. Second, we demonstrated that cooperators can “outrun” an invading wave

of defectors under certain conditions. Since most natural populations are spatially ex-

tended, outrunning provides a plausible mechanism through which cooperation could

be maintained in spatially extended populations.

To our knowledge, the two mechanisms that we have demonstrated here are dif-

ferent from those described previously. These novel mechanisms do not invoke kin

selection or any form of reciprocity, both of which are deterministic effects that have

been shown to lead to stable coexistence between cooperators and defectors under

well-mixed conditions (12, 25). Stochastic effects due to population bottlenecks (i.e.

allele surfing [53] and Simpson’s paradox [31]) are also unlikely to play a large role in

our experiments, given the relatively large population size, rates of dispersal between

wells, and an Allee effect, which limits population growth below a critical density.

Moreover, the mechanisms that we described do not rely on spatial heterogeneity in

environmental conditions generated by deteriorating conditions [192, 193] or habi-

tat destruction [193, 23]. Thus, our experiments suggest two distinct deterministic

mechanisms in which cooperation could be maintained in a spatially homogeneous

environment.

We also believe that our results are broadly generalizable, as many examples of

obligate cheating behaviors like those in our system exist in nature. Indeed, several

recent studies in microbes isolated from the environment (see [33] for an example)

indicate that complete gene loss – which leads to obligate cheating – is a common

mechanism through which defectors can arise in natural populations. However, we do

note that facultative cheating has been observed in experimental populations [160,

143], which we have not studied here.

Given that cooperation is enriched at the expanding wave front and migrating

cooperators can outrun an invading defector wave, we might expect cooperators to

be able to “split” – that is, spatially separate themselves – from a mixed population
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of cooperators and defectors (see Fig. 4-10 for schematic). This splitting effect would

allow a cooperator population effectively to purify itself of defectors in a way that

could not be achieved in a non-migrating population. However, recent theoretical

predictions suggest that these two features are necessary, but not sufficient for split-

ting to occur [102]. Indeed, in line with this prediction, we found that the cooperator

and defector populations moved at the same velocity within the mixed population

wave (e.g., Fig. 4-6), even though the velocities of each population individually were

significantly different. This finding suggests that splitting does not occur in our sys-

tem, even at dilution factors where both cooperation enrichment and outrunning are

observed.

In part, the absence of splitting can be attributed to the overall lowered velocity of

the mixed cooperator-defector wave compared to the pure cooperators (vmixed < vcoop

over all dilution factors tested). This suggests that cooperators are “slowed down”

by their interactions with defectors, allowing the two alleles to move together in the

mixed wave in a way that maintains allelic diversity in expanding populations. A

second corollary of this slowing down effect is that, given that both vmixed and vcoop

decrease monotonically with the severity of the environment, vmixed will reach zero

while vcoop is still positive. As such, our results suggest that a population of pure

cooperators may be able to expand into harsh environments that would be inaccessible

to the mixed population. Thus, our experiments provide support for an additional

mechanism, which had previously been described theoretically [192], through which

cooperation could be aided via ecological constraints.

Overall, we suggest that the coupling of ecological and evolutionary effects drives

the spatio-temporal dynamics of cooperation in our system. However, given the

generality of our analyses, these ideas can easily be extended to the general case

of alleles under frequency- or density-dependent selection, which are a widespread

feature of many natural ecosystems. Thus, our findings support the growing, but still

underappreciated, notion that eco-evolutionary feedback may dictate the growth and

survival of natural populations [69, 142, 27].
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Figure 4-11: Experimental observation of defectors invading a spatially ex-
tended population (m = 0.5 and dilution factor = 800). Under these conditions,
Δv = vcoop − vinvasion ≈ −0.1 wells/day. Over nine days, the “headstart” region con-
taining pure cooperators decreases from four to three wells, suggesting that the coop-
erators and defectors will eventually become completely mixed and spread together
under these conditions.

Figure 4-12: In theory, it is possible for cooperators to “split” from an expanding
mixed population of cooperators and defectors, after which the cooperators travel as
a pure wave ahead of the mixed wave. We did not observe this effect experimentally,
even under conditions where (1) the cooperator allele was enriched on the front and
(2) the cooperators could “outrun” the defectors. Our result is consistent with theo-
retical predictions suggesting that these two features are necessary, but not sufficient
conditions for splitting to occur.
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4.4 Methods

4.4.1 Strains

All strains are identical to those used in Gore, et al. (2009) [69]. Strains were de-

rived from the haploid BY4741 strain of Saccharomyces cerevisiae (mating type a,

EUROSCARF). The cooperator strain has a wildtype SUC2 gene, a mutated HIS3

(ℎ𝑖𝑠3Δ1), and has yellow fluorescent protein (YFP) expressed constitutively from

the ADH1 promoter (inserted using plasmid pRS401 with a MET17 marker). The

defector strain lacks the SUC2 gene (EUROSCARF Y02321, SUC2::kanMX4), has

the wildtype HIS3 gene, and has the fluorescent protein tdTomato expressed consti-

tutively from the PGK1 promoter (inserted using plasmid pRS301 containing a HIS3

marker).

4.4.2 Experimental protocols

All experiments were performed in 200 𝜇L batch culture in BD Falcon 96-well Mi-

crotest plates. All cultures were grown at 30∘C in synthetic media (YNB and CSM-

His) supplemented with 2% sucrose and 0.4X (8 𝜇g/mL) histidine. It is important to

note that, since the cooperator strain is a histidine auxotroph, the histidine concen-

tration can be used to tune the âĂĲcostâĂİ of cooperation by preferentially limiting

the growth of the cooperators [69].

Cultures were shaken continuously at 800 r.p.m. during growth. To avoid evapo-

ration and cross-contamination between wells, plates were covered for the duration of

the experiment with Parafilm Laboratory Film. Each day, the frequency of coopera-

tors and defectors was measured via flow cytometry (BD FACS LSR II HTS)(Fig. 4-

13). The population density was estimated with flow cytometry and benchmarked

with optical density measurements at 620 nm with Thermo Scientific Multiskan FC

microplate spectrophotometer. Cultures underwent a migration step and a dilution

step each day following 22 hours of overnight growth. During the migration step, a

portion m/2 of the cells from each well was transferred into each of the two neigh-
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Figure 4-13: The cooperator strain is labeled with YFP that is expressed constitu-
tively from the ADH1 promoter, while the defector strain is labeled with tdTomato
expressed constitutively from the PGK1 promoter. We distinguish the two strains
with a Becton Dickinson (BD) LSR II HTS flow cytometer with an excitation laser
at 488 nm. An emission filter at 530/30 nm detects YFP fluorescence, while a filter
at 575/26 nm detects RFP fluorescence. The plot above is from a sample from Day 6
of the expansion of a mixed population of cooperators and defectors. The two strains
are distinguished based upon RFP fluorescence and separated with the gates shown.
This separation identifies 782 defectors out of a total of 17,983 cells, yielding an esti-
mate of f = 0.96 as the frequency of cooperators. A small number of cells (181) were
non-fluorescent (gated in the bottom right), and seven counts were deemed both RFP-
and YFP-positive, which indicated that multiple cells were detected simultaneously.
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boring wells on a new 96-well plate. The remaining 1-m cells were transferred to the

corresponding well on the new plate. We used m = 0.5 in all experiments. Boundary

conditions were reflective, meaning that wells on the edge received a contribution m/2

from their single neighbor, with the remainder coming from the corresponding well.

Serial dilutions were performed each day with a fixed dilution factor ranging from

200 to 1000. The data presented in Fig. 4-2- 4-7 were diluted by a factor of 600 each

day, 4-8C by a factor of 400, and Fig. 4-8A, 4-8B, and 4-6B- 4-5 with dilution

factors of 200, 300, 400, 500, 600, 800, and 1000.

It is important to note that all data shown in the main text was obtained from a

single nine-day run of the experiment. In three independent experiments, we found

that the dilution factor at which particular velocities were observed was highly vari-

able (±20%). However, our core conclusions were robust to this variation in each

experiment (see Fig. 4-12 for examples).
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Chapter 5

Conclusions

5.1 Summary of findings

In many environments, microbes inhabit spatially structured meta-communities, con-

sisting of many local community aggregates coupled by dispersal between them.

How are microbial communities structured within these local communities, and how

do microbes self-assemble into these structures? How might inter-species interac-

tions within local communities affect population structure at the level of the meta-

community? In the work described in this thesis, we sought to address these questions,

using both naturally occurring marine microbial communities and simple laboratory

communities as model systems. In particular, this research led to the findings de-

scribed below.

5.1.1 Local communities formed on individual copepods are

shaped by host physiological variability and inter-species

interactions

In Chapter 2, we characterized the local bacterial communities inhabiting nearly two

hundred individual millimeter-scale crustaceans (C. finmarchicus copepods), each of

which can be viewed as a habitat “scaffold” with a distinct microenvironment for bac-

teria to colonize. Although all surveyed copepods shared a common “core” set of bac-
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terial taxa, most bacterial taxa were patchily distributed across individual copepods.

We found that the distributions of many bacterial taxa were driven by physiological

differences between copepod hosts. Thus, fine-scale variability in local community

scaffolds may influence biodiversity in bacterial communities. Furthermore, we in-

ferred strong positive and negative associations between groups of bacterial taxa,

supporting the role of inter-taxon interactions shaping wild bacterial populations in

the ocean.

5.1.2 Bacteria undergo rapid, reproducible succession during

local community assembly on model marine particles

Given the inherent physicochemical and life history variability in naturally occurring

community “scaffolds”, it is difficult to quantify the dynamics of microbial community

assembly on these scaffolds. To circumvent this variability, we used a semi-synthetic

model system – immersing defined synthetic particle scaffolds into a naturally oc-

curring microbial assemblage from coastal seawater. Using this system, we found

that bacteria undergo complex successional dynamics on model particles, with rapid

turnover of community members on hourly timescales. These successions were driven

by substrate utilization and inter-taxon interactions, suggesting that the local mi-

croenvironment shapes bacterial community dynamics. Additionally, the dramatic

turnover we observed suggests that local bacterial communities may undergo dynam-

ics on timescales much faster than most traditional sampling schemes.

5.1.3 Range expansion in spatially extended meta-communities

promotes cooperation compared to well-mixed environ-

ments

In Chapter 4, we used a simple laboratory model system – based upon the clas-

sic Levins metapopulation model – to characterize how cooperative alleles spread

through an expanding microbial meta-community. Using this approach, we identi-
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fied two mechanisms through which cooperative alleles may be strongly favored at

meta-community scales, despite being only weakly favored within any individual local

community. Both mechanisms are driven by the coupling of ecological and evolution-

ary effects, which drive the spatiotemporal dynamics of cooperation in our system.

Thus, our findings support the growing, but still underappreciated, notion that eco-

evolutionary feedback may dictate growth and survival in natural populations. More

broadly, our findings also show that interactions within local communities can give rise

to non-intuitive allele frequency distributions in a spatially structured environment.

5.2 Future directions

5.2.1 Exploring the microbial milieu beyond bacteria

In characterizing natural microbial communities, the work described in this thesis has

focused exclusively on bacteria. However, naturally occurring microbial assemblages

– including seawater, our focal ecosystem – contains a much wider range of microbes.

These include myriad archaea, viruses, and small eukaryotes, all of which are im-

portant players in global ecosystems. Thus, developing a complete picture of local

microbial communities requires us to move beyond a purely bacteria-centric view.

5.2.2 Alternative stable states in microbial communities

A natural next step is to characterize the statistical properties of individual, micron-

scale local communities in high-throughput. This will allow us to identify robust

patterns of taxon co-occurrence. Furthermore, we will able to assess how how in-

herently stochastic factors (for instance, priority effects) might cause communities to

diverge to alternative stable states.

To interpret results in light of underlying ecological interactions, we need to control

for variability in patch composition and historical contingencies explicitly. In the ideal

case, each patch would be identical in physiochemical composition and life history,

but this type of controlled, highly replicated patch structure does not exist in most
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natural ecosystems. Therefore, synthetic or semi-synthetic laboratory systems, in

which patch properties are tightly controlled, can complement studies of naturally

occurring microbial communities.

The model system that we described in Chapter 3 offers a unique opportunity

to broach these questions. By controlling the patch size and composition, as well as

the pool of potential colonizers, this approach allows us to analyze many individual

communities as discrete entities, each of which is a self-organized replicate from the

same pool of colonizers. This model system offers a new way to broach the question

of “who tends to co-occur with whom” at scales of 10-100 microns, a first step towards

reconstructing interactions between taxa in a complex community. By comparing the

microbial communities associated with many individual particles, we hope to identify

robust statistical associations between taxa across many replicate communities, to

probe the space of possible communities, and potentially identify alternative stable

states.

5.2.3 Linking dynamics occurring on a single patch to emer-

gent dynamics at meta-community, ecosystem, and global

scales

Ultimately, our objective is to develop predictive models that can link individual

microbial activity to metapopulation, ecosystem, and global function.

In Chapter 4, we sought to bridge the gap between the local community and meta-

community scales with a simple laboratory system. While this laboratory system

is an oversimplied abstraction of reality, asking these same questions in a natural

setting is extremely challenging. Typically, the mechanisms and rates of dispersal are

not known, and the diversity of the surrounding microbial milieu (and interactions

between them) complicates analyses. Thus, addressing this problem will require a

combination of field studies, biophysical modeling, and controlled experiments in the

lab (see methods described in Chapter 1).

Moving beyond the meta-community scale to even higher levels of organization
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presents an additional challenge. For various parts of the ocean, several long-term

time series have been collected, characterizing the same body of water at “bucket

scales” over a period of months or years. Collecting complementary microscale time

series at these same sites could be very informative in identifying relationships between

dynamics at different spatial scales.
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Appendix A

Chapter 2: Supplementary Methods

and Data

A.1 Reagent preparation

DNA extraction buffer

Tris buffer (pH 8) 0.1 M

Sodium EDTA (pH 8) 0.1 M

Phosphate buffer (pH 8) 0.1 M

NaCl 1.5 M

CTAB 0.5% w/v

A.2 Details of sampling individual copepods and sea-

water

A.2.1 Collection of individual copepods

To collect copepods at two depths (0-50 meters and 250-350 meters), we used a double

trip close-open-close system with a 75-centimeter diameter ring and a 150-𝜇m conical

mesh net. Once the net was recovered, the contents of the cod end were poured

into 10-gallon buckets filled with cold, sterile-filtered (0.22 𝜇m) seawater. Before use,
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buckets were wiped with 10% bleach and thoroughly rinsed with Milli-Q water and

sterile-filtered (0.22 𝜇m) seawater.

Once back on shore, copepod samples were stored in the dark at 4ÂžC for process-

ing. Live copepods were periodically sieved (500 𝜇m) from the containers, rinsed with

cold, sterile-filtered seawater, and placed into an ice-chilled Petri dish. From the Petri

dish, they were captured individually using an ethanol-sterilized (95%) wide-bore glass

Pasteur pipette, mounted on an autoclaved glass slide, and photographed alive with

a Canon EOS-20D camera attached to a Zeiss Stemi 2000C stereomicroscope. After

imaging, copepod samples collected for analysis of the associated bacterial commu-

nity were based into microcentrifuge tubes containing 750 𝜇L of RNALater solution

(Sigma-Aldrich #R0901) and frozen (-20∘C) until processing. Copepod samples col-

lected for bacterial abundance counts were preserved in 1% formalin and stored at

4∘C until processing.

A.2.2 Collection of seawater

To characterize the seawater pool from which copepods were colonized, seawater was

sampled at 10-meter intervals from 0-50 meter depths and at 25-meter intervals from

250-350 meters. Water samples were collected in 5-L Niskin bottles. Temperature and

salinity measurements were obtained with a SeaBird CTD system. Seawater samples

bacterial abundance counts were preserved in 1% formalin. Seawater samples for

sequencing were filtered (1 L) onto Sterivex filters (0.22 𝜇m) and stored at -80∘C.

A.3 Details of DNA extraction procedure

DNA was extracted according to the following procedure:

1. For seawater samples, Sterivex filters were removed from their casing and cut

with a sterile razor blade in a sterile Petri dish.

2. Cut Sterivex filters and individual copepod samples were individually trans-

ferred into 2-mL screw-cap tubes with ethanol-sterilized forceps. Each tube
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contained a mixture of molecular biology grade 0.1 mm silica, 1.4 mm zirco-

nium, and 4 mm silica beads (OPS Diagnostics PFMM 4000-100-28).

3. To each tube, DNA extraction buffer (400 𝜇L; reagent description in Appendix

A) and sodium dodecyl sulfate (100 𝜇L; 10% w/v) were added.

4. Samples were bead-beaten at top speed on a vortexer using a Vortex-Genie2

adapter (Mo-Bio).

5. Lysozyme (20 𝜇L; 10% w/v) was added to each sample, upon which samples

were incubated for 30 minutes at 37∘C.

6. Proteinase K (20 𝜇L; 10 mg/mL) was added to each sample, upon which samples

were incubated for 30 minutes at room temperature.

7. To each tube, phenol:chloroform:isoamyl alcohol (500 𝜇L; 25:24:1 v/v; pH 8)

was added, upon which tubes were (a) slowly inverted on a rotating tube holder

for 10 minutes and (b) centrifuged at 12,000 x g for 5 minutes.

8. From each tube, the supernatant was extracted with 400 𝜇L of chloroform, and

then inverted and centrifuged, as previously described.

9. For each sample, genomic DNA was precipitated at room temperature overnight

with 100% isopropanol (0.6 x sample volume) and GlycoBlue (Life Technologies

#AM9561) as a co-precipitant.

10. To wash precipitated DNA, DNA was centrifuged at 13,000 x g for 30 minutes

and rinsed twice with ethanol (70% v/v).

11. Genomic DNA was resuspended in water (molecular biology grade; 30 𝜇L) and

stored at -20∘C.

A.4 Details of 16S rRNA V4 amplicon sequencing.

Libraries for 16S rRNA paired-end sequencing were prepared using a previously de-

scribed protocol [130] with the following modifications:
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∙ Addition of BSA. Copepod DNA has been found to contain inhibitory sub-

stances that preclude PCR amplification under standard conditions [117, 22].

Thus, BSA was added to all PCR reactions at a final concentration of 0.4 𝜇g/𝜇L.

∙ Pre-amplification. Low quantities of DNA template in individual copepod sam-

ples prevented proper amplification with the PE16S_V4_U515_F and PE16S

_V4_E786_R primers [130], which target the V4 region of the 16S rRNA gene

and contain a second-step priming site. Consequently, the copepod samples were

pre-amplified with U515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and E786R

(5’-GGACTACHVGGGTWTCTAAT-3’) primers, each of which are shorter

primers that lack the second-step priming site. Pre-amplification was per-

formed for 15 cycles to enrich for 16S rRNA V4 template. During the sub-

sequent amplification step, the samples were amplified for 10 cycles with the

PE16S_V4_U515_F and PE16S_V4_E786_R primers [130].

∙ Q5 polymerase. All reactions were performed with the Q5 High-Fidelity DNA

Polymerase (New England Biolabs #M0491L), a polymerase whose fidelity is

purportedly higher than that of Phusion polymerase.

More specifically, the amplification steps were performed according to the pro-

tocols described below. At each PCR step, amplifications were performed in qua-

druplicate 25-𝜇L reactions. Replicate amplifications were pooled and cleaned using

Agencourt AMPure XP-PCR beads (Beckman Coulter #A63880) before proceeding

to the next step. Quantitative PCR reactions were performed before each PCR step

to optimize the number of amplification cycles. Selected PCR products were also

visualized on 2% TBE (tris-borate-EDTA) agarose gels to confirm the presence of the

correct amplicon at each step.
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A.4.1 Pre-amplification

Primers

515F (GTGCCAGCMGCCGCGGTAA)

806R (GGACTACHVGGGTWTCTAAT)

PCR reaction setup

Volume (1 reaction)

ddH2O 11.75 𝜇L

5X Q5 Buffer 5 𝜇L

dNTPs (10 mM) 0.5 𝜇L

515F (3 𝜇M) 2.5 𝜇L

806R (3 𝜇M) 2.5 𝜇L

BSA (20 𝜇g/𝜇L) 0.5 𝜇L

Template 2 𝜇L

Q5 polymerase 0.25 𝜇L

Total 25 𝜇L

Cycling conditions

Step Temperature Time

Initial denaturation 98∘C 30 seconds

Amplification (15 cycles) 98∘C 10 seconds

50∘C 60 seconds

72∘C 90 seconds

Final extension 72∘C 10 minutes
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A.4.2 Amplification

Primers

PE16S_V4_U515_F (ACACGACGCTCTTCCGATCTYRYRGTGCCAGCMGCCGCG-

GTAA)

PE16S_V4_E786_R (CGGCATTCCTGCTGAACCGCTCTTCCGATCTGGACTACH-

VGGGTWTCTAAT)

PCR reaction setup

Volume (1 reaction)

ddH2O 11.75 𝜇L

5X Q5 Buffer 5 𝜇L

dNTPs (10 mM) 0.5 𝜇L

PE16S_V4_U515_F (3 𝜇M) 2.5 𝜇L

PE16S_V4_E786_R (3 𝜇M) 2.5 𝜇L

BSA (20 𝜇g/𝜇L) 0.5 𝜇L

Template 2 𝜇L

Q5 polymerase 0.25 𝜇L

Total 25 𝜇L

Cycling conditions

Step Temperature Time

Initial denaturation 98∘C 30 seconds

Amplification (10 cycles) 98∘C 30 seconds

52∘C 30 seconds

72∘C 30 seconds

Final extension 72∘C 10 minutes
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A.4.3 Adapter addition

Primers

PE-III-PCR-F: (AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC-

GACGCTCTTCCGATCT)

PE-IV-PCR-XXX: (CAAGCAGAAGACGGCATACGAGATXXXXXXXXXCGGTCT-

CGGCATTCCTGCTGAACCGCTCTTCCGATCT)

PCR reaction setup

Volume (1 reaction)

ddH2O 8.65 𝜇L

5X Q5 Buffer 5 𝜇L

dNTPs (10 mM) 0.5 𝜇L

PE-III-PCR-F (3 𝜇M) 3.3 𝜇L

PE-IV-PCR-XXX (3 𝜇M) 3.3 𝜇L

Template 4 𝜇L

Q5 polymerase 0.25 𝜇L

Total 25 𝜇L

Cycling conditions

Step Temperature Time

Initial denaturation 98∘C 30 seconds

Amplification (10 cycles) 98∘C 30 seconds

83∘C 30 seconds

72∘C 30 seconds

Final extension 72∘C 10 minutes
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A.5 Details of multivariate linear regression analy-

ses.

Here, we have outlined the procedure that we used to identify drivers of bacterial

abundance across individual copepods.

1. Estimate relative abundances of each OTU. Normalizing the number of counts

for a given OTU by the total counts in the sample overestimates the number of

zeros for rare OTUs. This can lead to artifacts driven by variability in sequenc-

ing depth across samples, rather than true biological variability. Moreover, for

cases in which data must be log-transformed, zeros are problematic. As an al-

ternative, we used a Bayesian framework (detailed in [63]) to estimate the true

relative abundances from observed count data. Briefly, it has been shown that

the posterior joint distribution of fractions is equal to the Dirichlet distribution,

assuming a uniform prior and unbiased sampling of reads during sequencing.

Therefore, we estimated OTU fractions in the following manner:

𝑝(�̄�|�̄�) = Dir(�̄� + 1)

where �̄� is a vector of the true fractions, and �̄� is the vector of observed counts.

The authors note that this approach implicitly assumes that all OTUs are

present in a sample, even if they were not detected, and that this assumption

may not be reasonable for rare OTUs. However, our analyses deal primarily

with OTUs whose mean abundance was comparatively high.

2. Renormalize relative abundances to subset of 241 abundant OTUs. Previously,

we had identified a subset of 241 OTUs whose mean relative abundance was

above a defined threshold in both sampling dates. Given that this was the subset

that we considered in quantifying inter-taxon correlations, we re-calculated their

relative abundances by normalizing to the total number of counts assigned to

these OTUs.
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3. Calculate the relative abundance for each cluster, the core microbiome, and

those not in clusters or the core. Each of the 241 OTUs could be assigned

uniquely to the following nine categories: clusters 1-7, the core microbiome, or

not in any cluster or the core. For each of these categories, the total relative

abundance was simply the summed relative abundances of all OTUs assigned

to that category.

4. Calculate the additive log ratio-transformed abundances for each category. For

each category, we performed the additive log-ratio transform described in Ma-

terials and Methods. To perform this transform, we used the alr function from

the R compositions library [176].

5. For each cluster, estimate the probability that a given explanatory variable has

a non-zero effect on the log ratio-transformed cluster abundance. For each clus-

ter, we fit a multivariate regression model to the log ratio-transformed cluster

abundances. This model was of the following form:

log

(︂
𝑓cluster i

𝑓core

)︂
=𝛽𝑑(vertical sampling depth) + 𝛽𝑏(body volume)+

𝛽𝑜(oil sac fullness) + 𝛽𝑓 (food in gut)+∑︁
𝑗 ̸=𝑖

𝛽𝑗 log
𝑓cluster j

𝑓core
+ 𝛽𝑛 log

𝑓not in cluster or core

𝑓core

(A.1)

To account for model uncertainty, we used Bayesian model averaging. This

allowed us to calculate the probability that a given explanatory variable has a

non-zero effect on the cluster abundance across all possible regression models

formulated from combinations of explanatory variables [134]. To perform this

calculation, we used the bicreg function from the R BMA library.

We also considered alternative model formulations that included interactions

between the copepod vertical sampling depth and copepod morphological char-

acteristics (Fig. S8). These interaction terms added flexibility to the model

121



by allowing for effects of explanatory variables to differ between shallow- and

deep-sampled copepod populations.
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A.6 Supplementary Tables

Prosome volume Oil sac Cells per
(mm3) fractional fullness copepod individual

Copepods assayed
shallow 97 95 20
deep 89 89 20

Mean
shallow 0.94 0.43 4.5 × 105
deep 0.60 0.68 2.7 × 105

Standard deviation
shallow 0.16 0.21 1.1 × 105
deep 0.25 0.17 1.0 × 105

Table A.1: Summary statistics for copepod morphological characteristics. Details of
how morphological characteristics were assayed for individual copepods are described
in Materials and Methods and Appendix A.
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A
Predictors Df Sum of squares F statistic R2 p-value
Depth 1 5.58 111.87 0.319 0.000001
Residuals 182 11.9 0.681
Total 183 17.48

B
Predictors Df Sum of squares F statistic R2 p-value
Body volume 1 6.81 136.50 0.390 0.000001
Food in gut 1 0.80 15.96 0.046 0.000009
Oil sac fractional fullness 1 0.32 6.49 0.019 0.003329
Day collected 1 0.21 4.14 0.012 0.020445
Depth 1 0.46 9.19 0.026 0.000424
Residuals 178 8.88 0.508
Total 183 17.48

Table A.2: PERMANOVA summary tables. In each table, “Df” means “degrees of
freedom”. (A) PERMANOVA summary statistics when copepod vertical sampling
depth (“Depth”) is used as the sole predictor of bacterial community composition. (B)
PERMANOVA summary statistics when copepod morphological characteristics (e.g.,
“Body volume”), as well as copepod vertical sampling depth, are used as predictors
of bacterial community composition.
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Appendix B

Chapter 3: Supplementary Methods

and Discussion

B.1 Supplementary Methods

B.1.1 Preparation of common reagents

Artificial seawater

A mixture of 40 g of sea salts (Sigma #S9883-1KG) and 1 L of Milli-Q deionized

water was prepared. This mixture was filtered through a 0.22-𝜇m filter using vacuum

filtration (Corning Life Sciences #CLS430517). Note that artificial seawater is a

mixture of salts that does not contain sources of carbon or nitrogen.

Minimal medium (no carbon source)

Minimal medium, containing sources of nitrogen, phosphorus, and sulfur, but not

carbon, was prepared with a protocol adapted from Tibbles and Rawling [170].

Required reagents

∙ NaCl (Sigma-Aldrich #S3014)

∙ MgSO4 − 7H2O (Sigma-Aldrich #63138)

∙ MgCl2 − 6H2O (Sigma-Aldrich #M2393)
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∙ CaCl2 − 2H2O (Sigma-Aldrich #C7902)

∙ NH4Cl (Sigma-Aldrich #A9434)

∙ Tris (1M, pH 8.0) (ThermoFisher Scientific #AM9855G)

∙ Disodium EDTA (0.5 M, pH 8.0) (ThermoFisher Scientific #AM9260G)

∙ K2HPO4 (Sigma-Aldrich #P3786)

∙ KH2PO4 (Sigma-Aldrich #P5655)

∙ FeSO4 − 7H2O (Sigma-Aldrich #F8633)

∙ Na2MoO4 − 2H2O (Sigma-Aldrich #331058)

∙ Vitamin solution, 1000X (as previously described [58])

∙ Trace metals solution, 1000X (as previously described [170])

For 1 liter of minimal medium:

1. Prepare “Part I” (2X) solution.

(a) Add the following components to deionized water (final volume of 450 mL).

Component Amount

NaCl 51.9 g

MgSO4 − 7H2O 6 g

MgCl2 − 7H2O 4 g

CaCl2 − 2H2O 0.24 g

Tris (1M, pH 8.0) 50 mL

Na2EDTA(0.5M) 5.4 mL

NH4Cl 20 mL

(b) Adjust pH of solution to 7.8.

(c) Add deionized water to a final volume of 500 mL.

(d) Autoclave solution to sterilize.

2. Prepare “Part II” (2X) solution.

(a) Add the following components to deionized water (final volume of 450 mL).
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Component Amount

K2HPO4 1.6 g

KH2PO4 0.4 g
(b) Adjust pH of solution to 8.0.
(c) Add deionized water to a final volume of 500 mL.
(d) Autoclave solution to sterilize.

Note: For long-term storage, keep Part I and Part II in separate containers.

3. Once cooled, combine Parts I and II with the following additives to produce 1

L of media:

Component Amount

Part I (2X) 250 mL

Part II (2X) 250 mL

FeSO4 solution (1000X) 1 mL

Na2MoO4 solution 1 mL

Vitamins (1000X) 1 mL

Trace metals (1000X) 1 mL

Carbon source solution ?

Deionized water to 1000 mL

B.1.2 Genomic DNA extractions

Before DNA extractions were performed, all samples were frozen at -80∘C for purposes

of long-term storage and cell lysis. Total genomic DNA was extracted from samples

using a MasterPure DNA Purification Kit (Epicentre #MCD85201). The protocol

for “fluid samples” was used with the following modifications:

∙ Reagent volumes were scaled up to accommodate a 500 𝜇L sample.

∙ Before isopropanol was added, glycogen (Fermentas #R0551) was added to each

sample (final concentration of 0.5 𝜇g/𝜇L) to increase yield.

∙ Following the addition of isopropanol, samples were stored at -20∘C overnight

to increase DNA yield.

127



∙ DNA pellets were resuspended in 50 𝜇L of autoclaved Milli-Q deionized water,

rather than in Tris-EDTA buffer.

B.1.3 Quantification of total particle-attached bacteria

To quantify the total number of 16S V4 copies per particle over time, we performed

quantitative PCR (qPCR) assays for each sample as described below.

Setup for qPCR reactions

Primers

∙ 515F (GTGCCAGCMGCCGCGGTAA)

∙ 806R (GGACTACHVGGGTWTCTAAT)

PCR reaction setup

Volume (1 reaction)

ddH2O 9.4 𝜇L

5X HF Buffer 4 𝜇L

dNTPs (10 mM) 0.4 𝜇L

515F (10 𝜇M) 2 𝜇L

806R (10 𝜇M) 2 𝜇L

Template 2 𝜇L

Phusion 0.2 𝜇L

SYBR Green I (200X) 0.1 𝜇L

“Phusion” = Phusion High-Fidelity Polymerase (New England Biolabs #M0530L).

SYBR Green I working stock (at 200X) was prepared by diluting the original concen-

trated stock provided by the manufacturer (10,000X) with DMSO.

Cycling conditions
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Step Temperature Time

Initial denaturation 98∘C 30 seconds

98∘C 10 seconds

Amplification (35 cycles) 50∘C 60 seconds

72∘C 90 seconds

Final extension 72∘C 10 minutes

Quantitative PCR reactions were performed with a Bio-Rad CFX96 Real-Time

PCR Detection System.

Preparation of standard curve A sample of 16S V4 amplicons (amplified

from a mixture of equal volumes of genomic DNA from all timepoints) was used

to prepare the standard curve. Total double-stranded DNA content was measured

for this sample using a Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies

#P7589). Standards were prepared with serial 10-fold dilutions (8 in total) from

this sample. The concentration for each of these standards was assumed to be con-

sistent with the dilution. Quantitative PCR was performed in triplicate for each of

these samples (with the protocol described above), thereby allowing a Ct value to be

estimated for each standard.

In accordance with theory, a plot of the Ct value vs. log(DNA concentration)

was found to be linear over a wide range of DNA concentrations, saturating at very

low concentrations. Linear regression was used to obtain the equation for the best-fit

line of the non-saturating data points in log-linear space. This equation was used to

calculate the amount of DNA in each sample.

Limit of detection

∙ Identify the most concentrated standard whose Ct is indistinguishable from the

no-template controls.

∙ Calculate the standard deviation of the Ct

∙ LOD = Ct,neg + 2 * SD(Ct,neg)
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B.1.4 Imaging of particle-attached communities

Samples were fixed for imaging by adding formalin at 1% by volume, and then storing

the samples for 24 hours at 4∘C. After this incubation period, the formalin/artificial

seawater mixture was removed from particles, using a neodymium magnet (McMaster-

Carr #5862K38) to separate particles from supernatant. Particles were re-suspended

in PBS and stored at 4∘C.

Before imaging, samples were stained with a double-stranded DNA stain (SYBR

Green I Nucleic Acid Gel Stain; Life Technologies #S-7563). A working stock of the

DNA stain (at 200X) was prepared in DMSO from the concentrated stock solution

(10,000X). This stock was added at 0.5% v/v (final concentration was 1X in solution)

to each bead sample. Beads were imaged with a Zeiss epifluorescence microscope at

40X magnification. Excitation and emission spectra of SYBR Green I are published

by the manufacturers.

B.1.5 Calculating the effective number of species (Neff) in a

community

The effective number of species (Neff) was calculated based upon the Shannon diversity

of the community as described in Jost, 2006 [91] and indicated below.

Shannon diversity = 𝐷 = −
∑︁

𝑝𝑖 ln 𝑝𝑖

Neff = exp𝐷

B.1.6 Metagenomic sequencing of particle-attached communi-

ties

The amount of DNA present was measured with a Qubit dsDNA HS (High Sensitivity)

Assay Kit (ThermoFisher Scientific #Q32851).

For library preparation, 1 ng of each sample was used. Libraries were prepared

with the Illumina Nextera XT DNA Sample Preparation Kit (Illumina # FC-131-
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1024) and Illumina Nextera XT DNA Sample Preparation Index Kit (Illumina #

FC-131-1001). Since our libraries resulted in a wide range of fragment sizes and

were at low concentrations overall, the Nextera XT library normalization protocol

was not used. Instead, a double-sided size selection was performed with Agencourt

AMPure XP beads to select for DNA fragments between 300-700 basepairs. The

concentration of fragments between 300-700 basepairs was assessed with an Agilent

2100 Bioanalyzer, after which samples were pooled.

B.1.7 Sanger sequencing of 16S rRNA for isolates

To quantify the total number of 16S V4 copies per particle over time, we performed

quantitative PCR (qPCR) assays for each sample as described below.

Setup for qPCR reactions

Primers

∙ 27F (AGAGTTTGATCMTGGCTCAG)

∙ 1492R (TACGGYTACCTTGTTACGACTT)

PCR reaction setup

Volume (1 reaction)

ddH2O 9.4 𝜇L

5X HF Buffer 4 𝜇L

dNTPs (10 mM) 0.4 𝜇L

515F (10 𝜇M) 2 𝜇L

806R (10 𝜇M) 2 𝜇L

Template 2 𝜇L

Phusion 0.2 𝜇L

“Phusion” refers to Phusion High-Fidelity Polymerase (New England Biolabs #M0530L).

Instead of using genomic DNA as the template, 2 𝜇L of a saturated culture (grown
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in Marine Broth 2216; Difco #279110) diluted 1:1000 in deionized water was added

directly to the PCR reaction tube.

Cycling conditions

Step Temperature Time

Initial denaturation 98∘C 30 seconds

98∘C 30 seconds

Amplification (35 cycles) 50∘C 30 seconds

72∘C 90 seconds

Final extension 72∘C 10 minutes

Following the PCR reaction, isopropanol precipitation was used to purify the PCR

products. Two Sanger sequencing reactions were performed for each of these purified

PCR products, using either the forward (27F) or reverse (1492R) PCR primer as the

sequencing primer (GENEWIZ, Inc.). The sequences obtained from the two reactions

were merged to obtain, in the majority of cases, the fully sequenced PCR construct.

B.1.8 Mapping isolates to OTU sequences

Isolates were mapped at 100% identity to the OTU V4 sequences identified during

16S sequencing. Note that, while isolates mapped to a particular OTU are identical

in the 16S V4 hypervariable region, they are often not identical in other regions of

the 16S rRNA gene.

B.2 Supplementary Discussion

B.2.1 Bacteria are the dominant particle colonizers at early

stages of colonization

Seawater contains a diverse range of microbial life, including not just bacteria, but

also viruses, phytoplankton, and zooplankton, among others. However, in this work,
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we have largely focused on the bacterial dynamics of particle colonization for the

following reasons:

∙ Bacteria are typically the first colonizers of naturally occurring par-

ticles and dominate at early stages. It has been observed that, dur-

ing the early phases of particle decomposition, bacterial abundance increases

rapidly. Subsequently, as bacterial biofilms form and particles aggregate, micro-

scopic bacterivores and other eukaryotes increase in abundance within particle-

attached communities. This pattern has been observed for naturally occurring

particles [20], as well as in simplified laboratory systems [97].

∙ Empirically, bacteria were the dominant particle colonizers on the

timescale of our experiment (Fig. 3-3).

Nonetheless, it is possible that non-bacterial microbes influence bacterial coloniza-

tion dynamics. This includes turnover due to viral predation or eukaryotic grazers, or

interkingdom signaling between phytoplankton and bacteria [5]. This will undoubt-

edly be an interesting subject of future work.

B.2.2 Alternative modes of chitin degradation

In this study, we observed a small subset of taxa that were:

∙ Able to grow on chitin as the sole source of carbon

∙ Do not secrete chitinases extracellularly

∙ Could not grow on GlcNAc or (GlcNAc)2 as the sole source of carbon

In the canonical mode of chitin degradation, bacteria secrete chitinases into the

environment. These chitinases are active extracellularly, thus allowing bacteria to

degrade insoluble chitin polymers with which they do not have direct contact.

Given that the taxon subset of interest does not secrete chitinases extracellu-

larly, they do not follow this canonical strategy. However, an alternative mode of

chitin degradation has been documented in which bacteria do not release chitinases
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extracellularly, but instead, tether them to their surfaces. In such cases, bacteria

are assumed only to degrade chitin with which they have made surface contact. It

is hypothesized that these taxa are slower to degrade insoluble chitin, but are also

less prone to invasion by cheaters. We have not demonstrated for this taxon subset

that the chitinases are indeed surface-tethered. However, there may be interesting

mechanisms (and resulting ecological dynamics) that warrant further exploration.

Even without releasing chitinases extracellularly, we might still expect taxa with

surface-tethered chitinases to be able to grow on common chitinase degradation prod-

ucts (GlcNAc and (GlcNAc)2). However, the isolates that we collected in this study

did not. We have not identified the mechanism that allows for this particular growth

pattern. However, we have listed some hypothetical mechanisms below that could be

tested experimentally:

∙ The chitinases produced by these taxa generate larger (or different)

enzymatic degradation products. Thus, these strains are not genetically

equipped to import or metabolize GlcNAc or (GlcNAc)2, but may be able to

metabolize other degradation products.

∙ These strains consume chitin degradation products, but only in the

presence of chitin. To our knowledge, such a mechanism has not been doc-

umented. However, it is known that chitin degradation itself is dependent on

both the genetic and environmental context. Thus, consumption of chitin degra-

dation products may be similarly regulated.

∙ These strains do not produce chitinases, but instead produce chitin

deacetylases. Such strains could produce acetate (and glucosamine) as enzy-

matic byproducts, rather than GlcNAc and (GlcNAc)2. We would predict that

such strains would grow well on acetate and/or glucosamine as the sole source

of carbon. Notably, chitin deacetylases have been found in marine bacteria,

fungi, and insects, but have largely been studied in fungal species.
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Appendix C

Chapter 4: Supplementary Methods

and Discussion

C.1 Supplementary Text

C.1.1 Analytical results regarding population density waves

Although empirical studies of expanding populations are few and far between, the

ecological theory of range expansions has a long history. Spatial models of range

expansions based upon reaction-diffusion equations were first discussed by Fisher [59]

and Kolmogorov [100] in the late 1930s, and a good summary of the results are found

in [122]. Surprisingly, the wave front profiles that we observed empirically were well

approximated by these continuous time, continuous space models, even though our

experiments were discrete in time and space. Here, we summarize the formulation

of a model of range expansions and some useful results. In accordance with our

experiments, we only discuss one-dimensional expansions here.

The dynamics of range expansions are dictated by both the growth of the pop-

ulation and the dispersal of individuals into unpopulated territory. For short-range,

isotropic dispersal, the process can be modeled with a diffusion term. Thus, the model
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can be formulated as the reaction-diffusion equation shown below:

𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
+𝐺𝑐(𝑐)𝑐 (C.1)

where 𝑐(𝑥, 𝑡) is the population density at position 𝑥 and time 𝑡, 𝐷 is the effective

diffusion coefficient for population dispersal, and 𝐺𝑐 is the per capita growth rate of

the population.

In principle, 𝐺𝑐(𝑐), could be any one of a number of functions, depending upon

the growth dynamics of the specific population in question. In our cooperatively

growing yeast populations, we found that 𝐺𝑐(𝑐) depends non-monotonically on the

population density (𝑐(𝑥, 𝑡)) [37]. In general, a habitat has a carrying capacity (𝐾)

due to resource limitation, and populations usually grow at a reduced or negative

rate close to this upper bound on the density. Populations displaying cooperative

behaviors also tend to grow slowly or not at all at low densities, since interactions

between individuals are limited. Thus, unlike the standard logistic model, the per

capita growth rate is maximized at an intermediate population density. This non-

monotonic dependence of the per capita growth rate on the population density is

known as the Allee effect [122, 34, 37]. The most common model of growth with an

Allee effect assumes the following form for the per capita growth rate:

𝐺𝑐(𝑐) = 𝑔𝑐(𝐾 − 𝑐)(𝑐− 𝑐*) (C.2)

where 𝐾 is the carrying capacity, 𝑐* is the critical population density, and 𝑔𝑐

modulates the overall magnitude of the per capita growth rate [122, 34]. The strong

Allee effect describes the case in which 𝑐* > 0, while a weak Allee effect occurs when

-𝐾
2
< 𝑐* < 0 [34].

This reaction-diffusion equation admits traveling wave solutions with a time-

invariant density profile that moves at a constant velocity. Although nonlinear partial

differential equations of this type are often difficult to solve analytically, exact solu-

tions for the velocity and shape of the wave profile are known exactly. The expression

for the velocity is shown below:
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𝑣 =

⎧⎪⎨⎪⎩
√︁

𝐷𝑔𝑐
2
(𝐾 − 2𝑐*), if 𝑐* ≥ −𝐾

2

2
√︀

𝐷𝑔𝑐𝐾|𝑐*|, if 𝑐* < −𝐾
2

(C.3)

Previous work has shown that our experimental system demonstrates a strong

Allee effect (𝑐* > 0) and that K and 𝑐* approach each other with increasing dilution

factor [37]. Thus, the analytical expression shown above predicts that the traveling

wave velocity should decrease with increasing dilution factor, in line with what we

observed experimentally.

The shape of the time-invariant wave profile is given by

𝑐(𝜉) =
K

1 + 𝑒
√

𝑔𝑐
2𝐷

K𝜉
=

K

2

[︂
1− tanh

1

2

√︂
𝑔𝑐
2𝐷

K𝜉

]︂
=

𝜌max

2

[︂
1− tanh

(︂
𝑥− Xm

𝑤

)︂]︂
(C.4)

where 𝜉 = 𝑥− 𝑣𝑡, and we set 𝐾 = 𝜌max, 𝜉 = 𝑥−Xm, and 𝑤 = 2𝐾
√︁

2𝐷
𝑔𝑐

to connect

this analysis to our experimental results.

The population density wave profiles that we observed experimentally were well

fit by this functional form. Thus, by fitting profiles from each day to this function,

we obtained estimates of Xm(t) and 𝜌max(t).

C.1.2 Analytical results regarding genetic waves

The spreading of cooperator and defector alleles can also be modeled with a reaction-

diffusion equation like the one shown below:

𝜕𝑓

𝜕𝑡
= 𝐷

𝜕2𝑓

𝜕𝑥2
+𝐺𝑓 (𝑓)𝑓 (C.5)

where 𝑓(𝑥, 𝑡) is the frequency of the defector allele at position 𝑥 and time 𝑡, 𝐷 is

the effective diffusion coefficient for population dispersal, and 𝐺𝑓 is the relative growth

rate of defectors, which is a function of 𝑓 to model frequency-dependent dynamics.

137



Frequency-dependent selection is most often modeled with the following function:

𝐺𝑓 (𝑓) = 𝑔𝑓 (1− 𝑓)(𝑓 * − 𝑓) (C.6)

where 𝑔𝑓 ≥ 0 is the strength of selection and 𝑓 * is the equilibrium frequency of

defectors in a well-mixed population.

Using this model and the results from [100], the velocity of defectors invading a

spatially extended population of cooperators can be shown to be

vinvasion = 2
√︀

𝐷𝑔𝑓𝑓 * (C.7)

As shown previously, the equilibrium frequency of defectors decreases with in-

creasing dilution factor. Thus, if 𝑔𝑓 remains constant, the above result predicts that

vinvasion should decrease monotonically with the dilution factor.

C.1.3 Discussion of outrunning

In the main text, we suggest that a “sufficiently large” leading region of cooperators

is required for outrunning to occur. To develop this idea further, we can consider

the relative movement of the invasion wave (consisting of a mixture of cooperators

and defectors in our experiments) and the pure cooperator wave, both of which have

finite widths because organisms are discrete entities [78]. If the separation between

the two waves is such that the invasion wave front ends before the cooperator wave

front begins, then outrunning will occur if and only if vcoop > vinvasion.

Interestingly, the notion of outrunning could be extended to a wide range of sys-

tems outside of the case in which cooperators outrun an invading wave of defectors.

A particular example with frequency-dependent selection is considered in the Supple-

mentary Appendix of [79].
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