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Abstract

This thesis reports on progress in understanding the set of 6D F-theory vacua. F-
theory provides a strikingly clean correspondence between physics and physical quan-
tities and mathematics and geometrical quantities, which allows us to make precise
mathematical statements using well defined and understood methods. We present two
related results that both serve the following principal goal: to understand the set of 6D
F-theory vacua using geometrical methods, and then to compare these to low-energy
supergravities. In doing so, we find a near-perfect correspondence between low-energy
supergravities that can be obtained from F-theory and field theories that satisfy known
low-energy consistency conditions, e.g. anomaly cancellation. However, we will also
isolate several cases that we prove can never arise in F-theory yet have no visible low-
energy inconsistencies. The results are presented in two chapters. First, we describe a
complete, systematic enumeration of all elliptically fibered Calabi-Yau threefolds (EF
CY3s) with Hodge number h2

,
1 > 350; physically, this classifies all F-theory models

that lead to low-energy supergravities with > 351 neutral hypermultiplets. This result
is obtained using global geometric calculations in finitely many, specific geometries.
Second, we classify which local geometrical structures, corresponding to combinations
of gauge algebras and (potentially shared) matter, can arise in F-theory. This classi-
fication is performed using local geometric calculations. This investigation reveals an
exceedingly tight correspondence between F-theory models and consistent low-energy
supergravities. Indeed, this near-perfect agreement provides a backdrop against which
discrepancies between F-theory and low-energy supergravities stand out in sharp con-
trast. We describe in detail these discrepancies, in which seemingly consistent field
theories cannot be described in F-theory. This work has several implications. First,
it further refines the understanding of 6D supergravity models in F-theory, which has
implications for string universality in 6D. It adds a level of mathematical precision
to the study of 6D superconformal field theories (SCFTs) begun in 14, 3], which is a
conjecturally complete classification of all 6D SCFTs. Our analysis confirms many of
their results, but also explicitly shows that some of their proposed models cannot in
fact be realized through their construction. Since our results can be phrased in terms of
geometry, they also have implications for the study of EF CY3s. Finally, we discuss the
subset of our results that hold in 4D F-theory as well, where they provide additional
structure in a still difficult-to-constrain landscape.

Thesis Supervisor: Washington Taylor IV
Title: Professor of Physics
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Chapter 1

Introduction and background

The goal of this thesis is to introduce and explain recent results in the intersection of
physics and geometry, in particular in the field of F-theory. The projects this thesis
details were motivated by the desire to explore the physical consequences of string the-
ory. To do so, it is necessary to explore the set of possible low-energy theories it can
produce. F-theory is a flexible tool for this task; moreover, F-theory provides a strik-
ingly clean correspondence between physics and physical quantities and mathematics
and geometrical quantities, which allows us to make precise mathematical statements
using well defined and understood methods.

The structure of this thesis is in three chapters: in chapter 1, we introduce the
basic framework of F-theory and the mathematical tools that enable one to study
F-theory with precision. In chapters 2 and 3, we present two related results that
both serve the following principal goal: to understand the set of 6D F-theory vacua
using geometrical methods, and then to compare these to low-energy field theories. In
chapter 2, we describe a complete, systematic enumeration of all EF CY3s with Hodge
number h2

,
1 > 350; physically, this classifies all F-theory models that lead to low-energy

field theories with > 351 neutral hypermultiplets. This result is obtained using global
geometric calculations in finitely many, specific geometries. In chapter 3, we classify
which local geometrical structures, corresponding to combinations of gauge algebras
and (potentially shared) matter, can arise in F-theory. This classification performs local
geometric calculations. This investigation reveals an exceedingly tight correspondence
between F-theory models and consistent low-energy field theories. Indeed, this near-
perfect agreement provides a backdrop against which discrepancies between F-theory
and low-energy field theories stand out in sharp contrast. We describe in detail these
discrepancies, in which seemingly consistent field theories cannot be described in F-
theory. At each stage, we discuss the physical implications of our results.

In order to describe these results in detail, as well as to motivate them and place
them in their context in physics as a whole, an introduction is in order. This section is
structured as follows: we begin with a gradual introduction to F-theory intended for a
non-specialist. This discussion starts at general features of string theory and ends with
two definitions of F-theory. We then introduce the mathematical tools that are natural
and necessary for the geometry we wish to study. Again, we aim to provide a point
of entry for a non-specialist. Next, with these tools in hand, we describe the precise
correspondence between geometry and physics that arises in 6D F-theory. Finally, we
state our results more precisely and situate them within the broader context of physics
as a whole.
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1.1 Physical preliminaries

In the context of theoretical high-energy physics-the study of the most fundamental

laws governing matter and the four forces-string theory represents a strange new-

comer. String theory posits that fundamental objects may be spatially extended

in one dimension and hence trace out two-dimensional worldsheets instead of one-

dimensional worldlines.[109] It was later discovered to also contain perturbative and

non-perturbative dynamical objects called branes, which come in many different vari-

eties of spatial dimension.[101] One can formulate a perturbative description of string

theory; it is a standard path integral using a classical action. Namely, this classical

action of a string worldsheet is taken proportional to its volume, precisely in analogy

with the relativistic action for a point mass or photon. Once quantized, certain excited

states of the strings correspond to massless spin 1 and spin 2 particles. Due to the

presence of a massless spin 2 particle, namely a graviton, some people refer to string

theory as a theory of quantum gravity. This striking feature should not be lightly

dismissed, especially given that it was not added by hand.

String theory's properties are numerous and diverse enough to inspire O(105) thesiss

over the past decade alone. However, for our purposes we highlight just two particularly

notable features [110]:

o String theory can be consistently defined only if it possesses an additional sym-

metry: supersymmetry.

o This supersymmetric theory can be consistently defined only if the dimension of

spacetime is precisely equal to 10.

Of course we observe neither strings, supersymmetry, nor 6 spatial dimensions in ad-

dition to the familiar 3. Therefore string theory immediately faces the problem of how

this gap can be bridged. The standard approach is not difficult to guess. We postulate

that the additional dimensions are compact, so that the total 10-dimensional spacetime

takes the form

M1 = R 3 x m 6  (1.1)

where the manifolds are labeled with a superscipt according to their dimensions. This

procedure is referred to as compactification. If all length scales of the compact di-

mensions are sufficiently small, then the characteristic energy EG required to generate

excitations in these dimensions will be beyond the capabilities of the most powerful par-

ticle accelerators. As to supersymmetry-we simply postulate that it is broken, either

spontaneously or explicitly; again, this must occur at a scale ES above what we have

currently observed in accelerators. Because supersymmetry is a feature of string theory

which is broken on a generic compactifaction manifold M, we use it as an organizing

tool to single out a discrete set of geometries on which to focus. There are a handful of

ways to construct gometries that maintain some supersymmetry, but the most popular

is to require that the geometry be Calabi-Yau. We will elaborate on this shortly, as it

is central to this work; from one perspective, this work is no more than the study of

Calabi-Yau manifolds. Supersymmetry and Calabi-Yau manifolds are motivated and

related in the appendix .4.
To summarize: to connect string thery to reality and our energy scales, we must

compactify and break supersymmetry (usually in that order). It also happens that

11



completely novel features of string theory appear upon compactification, such as for in-

stance additional gauge symmetry. Much can be learned about the inherent structure
underlying string theory from compactications. 1 Ideally, one would have an explicit
description of the space of all possible string vacua in four spacetime dimensions. Now
let us see how F-theory provides a very general toolkit for producing string compacti-
fications and studying the resulting theories.

Disclaimer: as the focus of this thesis is on F-theory:

e We make no attempt to review string theory here. For our purposes, we simply
recall that there are 5 a priori distinct string theories: IIA, IIB, SO(32), E8 ,

and so-called heterotic string theory. For discussion of how these theories can be
constructed perturbatively, there are many excellent articles and texts, e.g. [511

[1101. Dualities were uncovered that relate these theories and also suggest that it
is helpful to view them (through IIA as a particular limit of an 11-dimensional
theory dubbed M-theory. For a review of M-theory, readers may consult e.g. f99J.
For one review of the dualities, see e.g. [1301.

* We do attempt to briefly introduce supersymmetry and Calabi-Yau manifolds to
motivate the relation between the two. Readers who are not familiar with this
material and would enjoy an overview are encouraged to consult the appendix .4.

1.1.1 F-theory from IIB string theory

One perspective on F-theory is that it constitutes a generalization of JIB string theory
in which the string coupling constant 911B is allowed to vary over the compactification
space. 2 [1311 The massless excitations of strings in IIB theory lead to the following field
content, which realizes a 10D supergravity also called JIB. The bosonic field content of
this theory includes fields p-form fields Ci for i = 0, 2,4, together with a two-form B 2 ,
a scalar field 0, and of course the metric: a symmetric, covariant two-tensor g. The
p-form fields behave in exact analogy to the U(1) 1-form field A familiar from QED.
More precisely, one can define the action S with the same form as that of QED. To
this end, define the field-strength (p + 1)-form F = dA and let * denote the Hodge star
operation. Then

Sp-form OC F FA*F (1.2)

The Hodge star guarantees that the total form has the same dimension as spacetime.
For our purposes, it will be convenient to rewrite the JIB action in terms of recombined
versions of the above fields. The fields Co (the "axion") and # (the "dilaton") are
particularly important. The following redefinitions highlight the role of these fields:

T := Co +ie-

G3 := F3 - TH3
- 1 1

F := F5 - C2 A H3 + -B 2AF35 2 2
F : = dC_ 1  (p=1,3,5)

H3  = dB2  (1.3)

'Indeed, most of the dualities relating different versions of string theory involve compactification
insofar as they involve T duality at some step.

2 Much of the material of this section can be found with even more detail in the pedagogical review
[1311. Alternate pedagogical reviews are [130, 132].
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In addition to these transformations, we will also work with a rescaled metric 9E =
e -/ 2gs, which results in a canonical Einstein-Hillbert term. With these definitions,
the bosonic part of the JIB SUGRA action takes the following form:

/1 . 1 I~1-
SIIB OC d1 0xj7-R - 1] 1 2 dT A *dr+ 1 G3 A *G 3

1 2 (Im-r)2 Im-r

+ J 5 A *5 + C4 A H3 A F3 (1.4)

where the constant of proportionality is 2. Now we can check that this action is
invariant under the following symmetries:

rc~ + = cr+d
H = d-H+c-F

F = b-H+a-F (1.5)

P 5 and the metric g are taken transform trivially. These will only be symmetries of the
action if the matrix

(a bc PSL(2, Z) (1.6)

namely the coefficients must be integers, and the determinant ad - bc must be 1.
This symmetry is called S duality, and appears to extend to the entire JIB string
theory.1105, 106, 1071 This is quite remarkable as the string coupling constant g1IB =
e4 / 2 is mapped from small to large values by this symmetry. It therefore constitutes
a non-perturbative duality of the IIB string theory. A simple way to describe this
group of symmetry transformations is to say that it is generated by the following two
transformations:

T -- + T+1

--- 1(1.7)

Rewritten in this way, some noticed [117, 21 that these symmetries are identical to the
symmetries of the complex structure parameter of the torus T2

To see this correspondence explicitly, imagine the torus as a quotient of the complex
plane C by a lattice, say Z (zi, z 2) which as we have written it, is explicitly generated
by two complex numbers. From the complex coordinates on C, the resulting T 2 will
inherit a complex structure, informally a notion of which direction is imaginary. If we
only care about the complex structure and not the size of the resulting torus, then we
may without loss of generality choose zi = 1 and z2 = T. Now it is clear that different

choices of r will lead to different complex structures. However, some changes in r do
not affect the complex structure. For instance, r -+ r + 1 leaves the complex structure
unchanged because Z (1, r) = Z (1, T + 1). The transformation r -+ - simply reflects

r over the imaginary line and inverts its modulus. -r and 1 have now switched roles:
rotating the resulting torus until T is aligned with the real line, one sees that it is indeed
a rescaled version of the original.

This simple observation grew into a startling number of implications for string
compactifications. In particular, imagine compactifying IIB string theory on Rld-l x

13
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Bo-d. Based on the geometric interpretation of T, this description contains precisely
the same data as the geometry

Rld-l x yd+2 := Rl'd-l x Bd xT (1.8)

provided one forgets the volume v of the torus. In other words, what began innocently
as a 10D theory now resembles a 12D one, the two extra dimensions resulting from

the added T2 . This would be uninteresting in itself. However, as outlined in [117, 2],
one may allow the complexified string coupling constant T to vary over the internal

geometry of the compact space Bd. Doing so results in a more interesting geometrical

object. Mathematically speaking, y12-d is now a fibration instead of a trivial product

space. Whereas the original cross product could be pictured as attaching an identical

T 2 to every point of B10d, the fibration process builds y12d by attaching a T2 with

different complex structure to each point of Blod.
The principal advantage of this construction is that is enlarges the class of com-

pactifications that maintain supersymmetry. Allowing T to vary may already seem a

significant generalization, but the true power lies in the fact that r is only defined up
to PSL(2, Z) transformations, so on different coordinate patches U1 and U2 of Bld-1

we may choose T such that on the overlap U1 f U2 , Ti = Mr2 for M E PSL(2, Z).

In the case that d = 2n, this generalization allows one to generate a large class of

Calabi-Yau manifolds y12-2n for a fixed B -Id. In fact, the theory as a whole remains
supersymmetric iff the larger manifold Y is Calabi-Yau. Knowing this, we can take B

to be any (10 - 2n)-dimensional manifold with complex structure; it does not have to

be Calabi-Yau itself. This is a remarkable improvement: many more compactifications

are now possible.3

This motivation is interesting, but raises several questions. If we wish to interpret

these compactifications as truly arising from a complete 12-dimensional supersymmetric
theory, instantly stumble: 11 dimensions is the highest in which supergravities can be

consistently defined. [102] Moreover, why upon dimensional reduction taking two of the

twelve dimensions to be T 2 does the compex structure modulus descend whereas the

volume disappears? The perspective from M-theory, discussed presently, offers a clean

and fairly conservative answer to these questions.

1.1.2 F-theory from M-theory

Another perspective on F-theory, perhaps one of the most precise, is from M-theory.

Details of M-theory will be recalled as necessary; for a review, see [100]. For our

purposes, M-theory is an 11-dimensional supersymmetric theory which has as its low-

energy limit the unique theory of supergravity in 11 dimensions [102]. The action and

fields of this supergravity are explicitly known [102]. Indeed, one can see' that this

supergravity (SUGRA) theory, when compactified as R1,10 = R' 9 x S1 , produces IIA

SUGRA in the R1,9. So M-theory is an 11-dimensional supersymmetric theory which

when compactified on S1 yields IIA string theory. It turns out that we can define F-

theory through the following chain of dualities: compactify M-theory on T2 
- r2)

this yields IIA on S12. Then T-dualize along the S.2 direction; this yields IIB on S.

In the limit in which the volume v of the original T2 shrinks to zero, the resulting

3 Indeed, considering d = 6, a standard IIB compactification would require a Calabi-Yau 2-

(complex) dimensional manifold. There is only one non-trivial example: K3. On the other hand,
there are ~ 65,000 toric complex manifolds over which one can construct elliptic fibrations. [126]
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IIB theory recovers its lost dimension and appears to be IIB on R1 ,9 . This procedure
can be done fiberwise, i.e. at each point of R1 ', yielding a T2 with volume degree of
freedom and spatially varying shape, together with IIB theory in lOD: F-theory.

One thing that is not obvious is why a theory defined in this way, which manifestly
treats the directions along the first and second circles differently, should be Lorentz
invariant. We will not dwell on this as it would represent too large a detour from the
current track, but merey indicate that it is ensured by the v -* 0 limit taking the
volume of the T2 to zero, as elaborated in [131].

1.1.3 F-theory and gauge theories

For much of this work, the key organizing principle by which we classify different
F-theory compactifications will be gauge symmetry. In section 1.3, we will see that
anomaly cancellation in 6D places stringent constraints on the allowed physical theo-
ries. Moreover, there exists a precise mapping between group theory quantities within
this gauge theory and geometrical quantities defined on the base manifold B and the
resulting elliptically fibered manifold Y.[651 Given the centrality of these concepts in
the rest of this thesis, it is necessary to understand why and how gauge new gauge
symmetries and gauge fields can emerge in F-theory compactifications.

In usual field theory, gauge symmetry is simply postulated at the level of fields; one
starts with a Lagrangian that aleady includes kinetic terms of massless one-forms. In
string theory, the process of compactification on Bio-d to Rl d-I can lead to emergent
gauge symmetries of the resulting non-compact theory on R4d- 1. To understand how
this occurs in F-theory, first recall the picture from JIB or IIA string theory, where this
can occur as the result of branes coinciding and intersecting.

The story of branes within string theory almost begins with gauge symmetry al-
ready. We review branes with a focus on the IIB theory. As noticed in [1011, there
exists a dynamical object (the string) charged under a certain two-form U(1) gauge field
B2 . This is in precise analogy to one-form gauge theories where an interaction term
q f - A, indicates that the particle traveling along a given one-dimensional worldline
is electrically charged under the one-form A. Similarly, a string, which traces out a
two-dimensional worldsheet history, is charged when a term of the form f,,2 B2 ap-
pears in the action, the integral being over the worldsheet history W2 of the string.
Continuing in this way, it is natural to suspect the existence of dynamical objects of
all dimensions charged under all p-form gauge fields in any string theory. In the IIB
theory, these additional p-form gauge fields are Co, C2, and C4, together with their O
defined such that d0i = *dC1 0 - 2 - i. Hence these duals are of dimension 10, 8, and
6. We also mention that F is self-dual: F= Fi. Moreover, string theory can contain
both closed (loops) and open strings, yet it is unclear how to interpret the locations
where open strings end; branes conveniently solve this problem by providing dynamical
objects to which open string endpoints can be confined.[101]

There exist branes electrically and magnetically charged under each of these fields.
Branes are typically referred to by their spatial extent; hence there exist branes of all
even spacetime dimensions; however, by convention branes are named based only on
spatial extent. Let us focus on the eight dimensional so-called D7 brane, which are
of particular importance in F-theory. Because f", 08 the appropriate term coupling

gauge field to brane, we see that these branes are electrically charged under 08, or
magnetically charged under Co. Because the new physics contained in F-theory but
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not regular IIB is encoded in a spatially varying r = Co + ie-, D7 branes will

naturally play a crucial role.
In IIB string theory, an e.g. SU(N) gauge theory can arise when N parallel branes

become coincident; this is because open strings, stretchd between the branes, acquire

zero length in this limit, hence lead to massless degrees of freedom that fill out the

adjoint of SU(N) as explained in [1011. This heuristic picture provides a simple intuition

for how emergent gauge symmetry is possible.

All emergent gauge symmetries in F-theory are interpreted as arising from D7 branes

coinciding and intersecting one another. To execute the program of F-theory, we must

then have a procedure, which given T(x), allows us to locate D7 branes and to describe

their geometry. One simple physical observeration provides the starting point: D7
branes can be detected by jumps in CO, and these occur at singularities of T. We will

now explain each part of this statement precisely.

To detect electric charges in 3 dimensions, we separate space into two components

using a sphere S2; we can then calculate the electric flux fS2 *F, which is nonzero

iff the sphere surrounds a net charge. Similarly, D7 branes fill all space except for

two dimensions, so suppressing these dimensions, it appears to be a point in a plane.

Surrounding this point by a circle S1, we can perform the integral fs, F1 ; when this

integral is nonzero, it is a signal that we have succeeded in surrounding the D7 brane.

As is typical in gauge theories, it would appear impossible for this integral to ever be

nonzero: by Stokes' theorem fs1 F1 = fs, dCo = fs, Co. (In the final equality we

noted Si is boundaryless, OS' = ) This logic is formally correct but does not take

into account that Co is not a function but rather a section of a U(1) bundle, i.e. defined

only up to gauge transformations. Hence, just as usual, a nonzero magnetic charge can

be obtained only by using this freedom: Co -+ Co + n upon travelling once around S1;
n is an integer equal to the magnetic charge.

Now let us examine the second statement: Co -+ Co + 1 upon surrounding a sin-

gularity of T(x). This statement is more mathematical and particular to F-theory. For

now we merely state that to produce Calabi-Yau compactifications, we must define r(x)
with complex-valued equations, and therefore the singularities of T(x) are generically

complex codimension, 1 (real codimension 2), the correct counting for the set on which

T(x) is singular to be 8 dimensional. Moreover, in terms of a local complex coordinate

u on the manifold B, one can show that r ~ log(u - u.) around a singularity u,

hence the appropriate jump Re(T) = Co -> Co + 1 occurs. [1311.
This is the criterion for locating D7 branes in terms of T: D7 branes live on the

locus of singularities of T. What is the appropriate mathematical framework necessary

to locate these singularities and to determine their associated gauge symmetries? The

answer is a theorem due to the mathematician Kodaira [1331. In order to use these tools

in generality, we also recall certain fundamental concepts and formulas from algebraic

geometry.

1.2 Mathematical tools

In this section, we will introduce the basic mathematical tools that will be used through-

out this work to prove our main results. They enable one to take the heuristic idea

of adding two dimensions to a space B by fibering it with a torus T2 with complex

structure T and turning it into a precise mathematical recipe. The first ingredients of

this recipe are general elements of algebraic geometry. In the following section, we will
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apply these tools to the specific task of constructing a T2 fibration, but in this section
we will speak generally.

The field of algebraic geometry has grown to overwhelming size and diversity; yet its
core is simply the study of geometric spaces that can be defined by algebraic equations.
Once a space has been defined, one may study it further by investigating the structure
of submanifolds which may be carved out by additional algebraic conditions. Due to
the algebraic completeness of the field C of complex numbers, most classical algebraic
geometry considers only complex manifolds. For the duration of this discussion (when-
ever we refer to the compact space), all dimensions are complex unless stated otherwise.
In order to go to R1 6 in F-theory, we thus need a complex three dimensional manifold,
or threefold. The following general overview is explained in great detail in [1031.

The following mathematical objects play a central role in the study of elliptic fibra-
tions over a base B".

Divisor. An effective divisor on B is the zero-set of an algebraic function.4

Thus it has dimension n - 1, or codimension 1. A divisor is a linear combination
(with coefficients in Z) of effective divisors. Allowing negative coefficients means
that the resulting divisors can be interpreted as sets where a funiction has zeroes
together with other locations where the functions have poles. For instance, if
Ei = {F1 = 0} and E2 = {F2 = 0} then Ei + E2 = {F1F2 = 0}. In particular,
kEi = 1{F - 0}. For negative k, this is interpreted as the locus where F1 has
a pole of order k. An irreducible effective divisor Eo is one which cannot be
written as a linear combination of any other effective divisors: more precisely,
if Eo = Y-Ei for effective divisors Ei, and integer coefficients u-, then all oi
must be zero other than oro = 1. This discussion glosses over many subtelties. In
general, however, the mental picture of divisors as representing loci of zeroes and
poles of functions (counted with multiplicity) is both helpful and morally correct.
One final note: in studying the geometry of manifolds, we generall work with
homology classes of divisors rather than the divisors themselves. For an effective
divisor, this can be thought of as all divisors which can be obtained by adding
a constant to the defining function. One can see that this addition will typically
not change the topology of the resulting shape, e.g. it would simply change the
radius of a sphere defined by the usual embedding. Since we are working in
complex manifolds, smooth functions are holomorphic; functions with poles are
meromorphic.

* Line bundle. A line bundle is simply vector bundle with one-dimensional vector
space. There is a useful correspondence between divisor classes and line-bundles.
In general, defining submanifolds of a non-trivial manifold requires specifying
the defining functions locally, namely giving a collection {f0, U0 }0 of functions
defined on the open subsets U0 of B, such that f, and f3 vanish to the same
order on the same location in U, n U. Given a defining function f for a divisor
E, we may form an associated line bundle [E] by giving its transition functions
t,3 := f". In other words, given a section s of the line bundle [E], when we

write s in coordinates, its expressions in different coordinate patches are related
as s. = f-s13. One can check that this procedure actually defines objects t,13 with

the appropriate properties for transition functions.[1031 Moreover, the sections of

'These can be thought of as generalizations of polynomials beyond C".[1031.
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[E] can be interpreted as locally defined functions that vanish to order at least
one on E. In a pleasantly natural way, the process of formally adding divisors

will result in tensoring their two line bundles; this process is well-defined since

tensoring two one-dimensional vector spaces produces another one-dimensional

space. Indeed,

[-l + E21 = [Ell 0 [- 2  (1.9)

This tensoring procedure on such line bundles has all the properties of addi-

tion (inverses always exist, et cetera), and is also frequently written as addition:

[Ell + [E2]. Sections of such bundles can be interpreted as locally defined func-

tions which have zeroes and poles of the appropriate orders on the constituent

submanifolds of B. Also, by abuse of notation, we will frequently use the same

symbol E to refer both to the divisor itself and to its associated line bundle, i.e.

we drop the brackets.

* Canonical line bundle. There is one line bundle that can always be defined on

any manifold B, regardless of dimension, which for this reason is referred to as

canonical. This bundle is denoted by K and is simply the bundle of top-degree

holomorphic differential forms.

K := A"T*OB (1.10)

This is an object of fundamental importance in algebraic geometry, and it takes

on even more significance in our study of Calabi-Yau manifolds.

* Intersection number. Given two complex submanifolds Ei, E2 of B, if the

sum of their dimensions equals the total dimension n of B, then generically they

will intersect in a finite set of points. Intersection numbers are defined as follows:

take a generic representative from the homology class of each El and F2, and

then count the points of their intersection, with sign according to orientation.

This procedure guarantees that the resulting numbers are topological invariants

of the manifold B; they are usually denoted El - E2.

- Self-intersection number Notice that when B is n =2 dimensional, di-

visors are dimension 1 and can therefore be intersected with themselves

and one another. The procedure for choosing generic representatives of the

homology classes of divisors instructs us to pick two different generic rep-

resentatives of the homology class of E and intersect them, which results

again in a finite set of points instead of the infinity that would result from

intersecting two identical copies of a manifold with each other. In complex

geometry, complex submanifolds are guaranteed to have compatible orienta-

tions, so this signed sum of intersection points actually counts points. This

would suggest that we cannot ever encounter a curve E with E -E < 0. How-

ever, such curves do exist, and in fact they will be central in our analysis.

Therefore an explanation is in order. A E with a negative self-intersection

number has only one complex structure: its homology class has a single

realization as a complex submanifold of B, and therefore to choose a differ-

ent representative of its homology class with which to intersect it, we must

choose one that does not have a compatible complex structure, resulting in

intersections with opposite signs.
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* Genus and P" Since divisors on 2 dimensional B are 1 dimensional, we recall
a few results regarding 1 dimensional complex manifolds. Any 1 dimensional
complex manifold without boundary is either a sphere, a torus, or a suitable
generalization of the torus which has many "holes" instead of just one. This
number of holes is also a topological invariant called the genus g. The complex
manifold which is topologically the sphere S 2 is denoted PI and referred to as a
rational curve or as projective space. It has genus 0 whereas e.g. T 2 as a complex
manifold has genus 1. PI1 has a useful construction as the set of complex lines in
C2, namely C2 /(C - {0}), i.e. we form a quotient of C2 by identifying any two
points p and q such that p = Aq for A E C - {0} some nonzero complex number.
The main property of PI that we will consistently leverage is that all divisors on it
are equivalent to some multiple of the fundamental divisor H, which corresponds
to a hyperplane in H C C2 that after quotienting becomes a point in P. Because
of this, we often adopt a simplified notation for the line bundle [kH]:

O(k) := [kH] (1.11)

With these preliminary notions in hand, we can finally approach the main object:
given a manifold B, to construct a Calabi-Yau manifold Y by fibrering T2 (with complex
structure r) over B.

1.2.1 Weierstrass

As we saw in section 1.1.3, just as when a stack of parallel D-branes coincide, the
open strings stretched between them have endpoint degrees of freedom that fill out
the gauge sector of an SU(N) gauge theory; so too can branes in F-theory. In fact, F-
theory contains generalized (p, q)-branes that are related to ordinary branes by SL(2, Z)
transformations; these branes are able to encode more general gauge symmetries which
include all simple Lie algebras. Although many perspectives exist on this result ([2,
1311), the most useful is a long-known mathematical result that completely characterises
codimension 1 singularities of elliptic fibrations: the Kodaira classification (see e.g.
[198]).

Recall: we are ultimately interested in constructing an F-theory compactification.
In other words, we seek to construct Calabi-Yau manifold Y as an elliptic fibration5

over B: E -+ Y -+ B. To discuss the Kodaira classification, it is necessary to recall a
convenient description of an elliptic curve. In the weighted projective space p[2,3,11, an
elliptic curve can be written in so-called Weierstrass form by the equation

y2 3 + fx + g (1.12)

where (x, y, t) are generalized homogeneous coordinates on P[2,3,1] with the respective
weights of the equivalence relation defining the projective space; we work in an affine
chart where t = 1. Indeed, from this description it is obvious that f must have weight 4
and g weight 6. Because f and g together determine the complex structure of the torus,
allowing this structure to change as a function of position z on the base B amounts
to promoting f and g to functions f(z) and g(z) on the base. In fact, considering the

5 We will frequently refer to the torus T2 considered with its complex structure r as an elliptic
curve, which is a more mathematically precise label. For this reason the T 2 fibration is referred to as
an elliptic fibration.
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Type ord (f) I ord (g) ord (A) singularity 1 nonabelian symmetry algebra

I > > 0 > 0 0 none none

1, 0 0 n> 2 An_1 su(n) or sp(Ln/2])
II > 1 1 2 none none

III 1 > 2 3 A1  su(2)
IV > 2 2 4 A2  su(3) or su(2)

I > 2 > 3 6 D4 so(8) or so(7) or 02
I* 2 3 n > 7 Dn-2 so(2n - 4) or so(2n - 5)

IV* > 3 4 8 C6 e6 or f4

111* 3 > 5 9 C7 C7
I* > 4 5 10 8 C8

non-min > 4 > 6 > 12 does not occur in F-theory

Table 1.1: Table of codimension one singularity types for elliptic fibrations and associated nonabelian
symmetry algebras. In cases where the algebra is not determined uniquely by the orders of vanishing
of f, g, the precise gauge algebra is fixed by monodromy conditions that can be identified from the
form of the Weierstrass model.

defining equations as living in P[ 2 '3,I] x B, these coefficients must be sections of line the

bundles f E 0(-4K), g E O(-6K)6 for the defining equation to yield a Calabi-Yau

total space, where K is the canonical class of the base. This is simply to ensure that the

canonical bundle K of the total space Y of the fibration is trivial, which as discussed

in appendix .4 is one of many possible definitions of a Calabi-Yau space.

To understand the singularities of the defining equation, we rely on the discriminant

A to locate where its zeroes coincide. This locus is defined to be the set of points in B

where the following equation holds: 7

0 =,A = 4f3 + 27g 2 . (1.13)

Being generically codimension 1, this locus corresponds to an effective divisor on B.

On each irreducible component E of this divisor, a simple gauge algebra factor can

reside. The Kodaira classification makes the connection explicit by associating to a

given singularity a corresponding gauge algebra, according to the orders of vanishing

of f,g, and A on the associated divisor in the base. The possibilities are listed in

table 1.1. As discussed later, there are a few cases with ambiguities that arise from

monodromies of the defining equation in the fiber over the singularity; the procedure

that allows one to discriminate between these cases is known as the Tate algorithm

[84, 134, 135]. We also note that given the transformation properties of f and g, one

can read off A E 0(-12K). Note that the Kodaira singularity type only determines

the Lie algebra of the resulting nonabelian group G. In most situations we will not be

careful about this distinction; so in general, for example, we discuss tuning an SU(N)

gauge group, though the actual group may have a quotient G = SU(N)/P by a discrete

6 This notation indicates that f is formally a section of the line bundle [-4K], i.e. if -4K is
expressed in terms of effective divisors Ei as -4K = Ea u-Ej, then f is a locally defined function that
vanishes to order at least c-i on Ei. This order of vanishing is to be regarded as the order of a pole if
oa is negative.

7This formula is easily derived by setting both F = 0 and 9,F = & F = 0 in the defining equation
F = -y 2 + x3 + fx + g = 0 of the ellliptic curve E. This condition is a general criterion for finding
singularities of hypersurfaces.
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finite subgroup. In a few cases where this distinction is relevant we comment explicitly
on the issue.

With the Weierstrass description in hand, it is possible to see explicitly why 7
branes are located at the singularities of r. That the singularities of the fibration T

correspond to the divisor A, and there is an explicit description of A:

.4(24f)3
j(T) = A (1.14)

where j(T) is the SL(2, Z) "modular invariant" j-function: j(r) e-2,i, + 744 +
O(e2 rir) [131, 103]. Now consider a coordinate u in the 1 complex dimension transverse
to the singularity locus, with u = u, corresponding this locus. Then near a generic

(order one) zero of A,

(r1 ) (1.15)
U *

hence

1
r(u) ~ -log(u - u*) (1.16)27ri

which, as claimed in section 1.1.3, implies the existence of a 7 brane at u*, as f dCo 1.
Note that non-generic (i.e. higher order) zeroes of A will correspond to additional
charge, i.e. a stack of coincident branes. This is perfectly consistent with the Ko-
daira classification, which dictates that higher orders of vanishing of A correspond to
increasingly large gauge algebras.

1.2.2 Tate

In some circumstances, it is convenient to describe Weierstrass models starting from a
more general form of the equation for an elliptic curve on p[2,3,1], known as the Tate
form

y2 + ayx + a3y = 3 + a2x2 + a4 x + a6  (1.17)

Here ak C O(-kK). Given such a form, it is straightforward to transform into Weier-
strass form by completing the square in y to remove the terms linear in y, and then
shifting x to remove the quadratic term in x. In the resulting Weierstrass form, f, g
can then be expressed in terms of the ak [134].

The advantage of Tate form is that certain Kodaira singularity types can be tuned
more readily by choosing the sections ak to vanish to a given order on a divisor of
interest than by constructing the corresponding Weierstrass model. For example, if
we wish to tune a gauge algebra su(6) on a divisor E defined in local coordinates by
E = {z = 0}, in Weierstrass form f and g are described locally by functions that can
be expressed as power series in z, f = fo + fiz +f 2 z2 , etc.. The condition that A vanish
to order 5 in z while fo, go ? 0 imposes a series of nontrivial algebraic conditions on
the 1A, Ak coefficient functions. While these algebraic equations can be solved explicitly
when E is smooth [148], the resulting algebraic structures are rather complex. In Tate
form, on the other hand, the classical algebras sp(n), su(n), and so(n) can all be tuned
simply by choosing the leading coefficients in an expansion of the ak to vanish to an
appropriate order. Table 1.2 (as given in [85]) gives the orders to which the ak must
vanish to ensure the appropriate classical algebra. Note that in each case we have only
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Group ai a2 a3 a4 a6 A

su(2) = sp(1) 0 0 1 1 2 2
sp(n) 0 0 n n 2n 2n
su(n) 0 1 Ln/2J [(n + 1)/2j n n

so(4n)* 1 1 n n 2n-1 2n+2
so(4n+1) 1 1 n n+1 2n 2n+3
so(4n +2) 1 1 n n-+ 1 2n+1 2n+3
so(4n+3) 1 1 n-+ 1 n-+ 1 2n+1 2n+4

92 1 1 2 2 3 6
non-min. 1 2 3 4 6 6

Table 1.2: Table of vanishing orders needed for realizing classical groups using Tate form. For so(4n),
there is an additional monodromy condition, as specified in [851.

given the minimal required orders of vanishing. (Similar Tate forms exist for all the
exceptional algebras but we will not make use of most of them here as we can dial those
algebras directly using the Weierstrass form.) Note that while in most cases tuning a
Tate form guarantees the desired Kodaira singularity type of the resulting Weierstrass
model, there are some exceptions. In some cases the resulting Weierstrass model will
have extra singularities; we encounter some examples of this in 3.2. In other cases,
there are Weierstrass models with a given gauge group that do not follow from the
Tate form [1481. Thus, the Weierstrass form is more complete, but in many cases the
Tate formulation gives a simpler way of constructing certain kinds of tunings. It is also
worth mentioning that the coefficients in the Weierstrass form map directly to neutral
scalar fields in 6D F-theory models, so Weierstrass form is useful in computing the
spectrum of a theory and verifying anomaly cancellation; this is more difficult in Tate
form, where there is some redundancy in the parameterization for any given Weierstrass
model.

As an example of Tate form, we can tune an su(2) on the divisor {t = 0} in local
coordinates by choosing the Tate model

y2 + 2xy + 2y = x3 + tX2 + t2x+ . (1.18)

Converting to Weierstrass form we have

y2 = + (-3 + 2t)x + (2 - 2t + 5t 2/4), (1.19)

and A = 99t 2 +O(t3 ), so indeed the discriminant cancels to order t 2 and the Weierstrass
model has a Kodaira type 12 singularity encoding an su(2) gauge algebra.

In most cases, tuning a singularity in Tate form is equivalent to tuning the same
singularity in Weierstrass form in the most generic way. Examples of non-Tate tunings
have recently been explored in [148, 77, 79, 781 and in virtually all known cases involve
non-generic types of matter. For example, N < 5, the Tate tuning of su(N) and the
Weierstrass tuning of su(N) are equivalent; this can be seen explicitly by matching the
terms in the analyses of [85, 148] using the dictionary provided on page 22 of [148].
There are more possibilities for Weierstrass tunings beginning at su(6); note, however,
that for tuning on a curve E of self-intersection E -E = -2, where f, g are constant on
E since the normal bundle is equal to the canonical bundle, the Tate and Weierstrass
forms are equivalent. This fact will be relevant in the later analysis.

23



1.2.3 Additional geometry and NHCs

To apply the Kodaira classification in various contexts, it is useful to have available
some additional, well known tools from algebraic geometry. We first briefly review
relevant aspects of the geometry of the base surfaces in which we are interested. We
then discuss general arguments that allow one to deduce the existence of non-Higgsable
clusters (NHCs): groups of divisors over which even a generic fibration has a singularity
corresponds to a nontrivial gauge algebra. 8 Then we introduce a few relevant aspects
of toric geometry that allow one to explicitly execute a given local tuned gauge algebra
enhancement (increasing the Kodaira singularity) at the level of coordinates; generally,
such computations can be used to explicitly determine that a given tuned fibration is
possible either locally or globally in a geometry with a local or global toric description.
We primarily focus on local constructions in this thesis, though in some situations
global analysis on a toric base is also relevant.

We are interested in complex surfaces B that can act as the base of an elliptically
fibered Calabi-Yau threefold. We thus focus on rational surfaces that can be realized by
blowing up P2 or Fm, m < 12 at a finite number of points. We review a few basic facts
about such surfaces (for more details see e.g. [71). Divisors in a complex surface are
integer linear combinations of irreducible algebraic curves on B. The set of homology
classes of curves in B form a signature (1, T) integer lattice F = H2 (B, Z) = Zl+T

where T = hl'1 (B) - 1. The intersection form on F is unimodular, and for T 7 1
can be written as diag (+1,-1, -1,..., -1). (For Hirzebruch surfaces Fm with m
even, the intersection form is the matrix ((01)(10)).) The canonical class K satisfies
K . K = 9 - T, and can be put into the form (3, -1, -1. -1) when the intersection
form is diagonal as above, and in the form (2,2) for even Hirzebruch surfaces. The
set of effective curves, which can be realized algebraically in B, form a cone in the
homology lattice. In F-theory, gauge groups can only be tuned on effective curves, so
these are the curves on which we focus attention. As an example of a set of allowed
bases and their effective cones, the Hirzebruch surfaces Fm have a cone of effective
curves generated by the curves S, F where S - S = -m, S - F = 1, F - F = 0, and can
support elliptic Calabi-Yau threefolds when mi = 0, . . . , 8, 12.

The Zariski decomposition [140] enables one to write -kK = of the base in an
explicit form that allows one to read off minimal (generic) degrees of vanishing of f, g
and A on a given irreducible divisor. Given any effective divisor, in particular -nK,
we can expand it over the rational numbers as a combination of irreducible effective
divisors. We can write

N

-kK = -jo E + X (1.20)
i=1

where {Ei } is the set of irreducible effective divisors of negative self-intersection, each
of which must be rigid, and X - E, E -E ;> 0. By the Riemann-Roch formula, curves
of genus 0 satisfy

-2 = 2g - 2 = E - (K + E) (1.21)

8 1n this context it may not be obvious in what sense we can speak of generic elliptic fibrations.
However, the concept can be made precise in the following way: given the bundles O(-4K) and
O(-6K), we can choose bases for the spaces of sections of these bundles. Then the f and g appearing in
the Weierstrass equation are said to be generic they are sums of basis element sections with arbitrarily
chosen coefficients in C. Non-generic elliptic fibrations are those in which we impose some constraints
on these coefficients, such as relations between them or setting some to zero.

24



Table 1.3: List of "non-Higgsable clusters" of irreducible effective divisors with self-intersection -2
or below, and corresponding contributions to the gauge algebra and matter content of the 6D theory
associated with F-theory compactifications on a generic elliptic fibration (with section) over a base
containing each cluster. The quantities r and V denote the rank and dimension of the nonabelian
gauge algebra, and Hcharged denotes the number of charged hypermultiplet matter fields associated
with intersections between the curves supporting the gauge group factors.

(implying, e.g., that a -2 curve E satisfies K -E = 0). Taking the intersection product
of (2.1) with a -n curve E = El yields (in the case N = 1)

-k(n - 2) o,(-n) (1.22)

This immediately implies o > k(n - 2)/n, so that for n > 3, for example, we have
> > , > 2 for k = 4,6, respectively. A section of the line bundle O(-kK) thus

3 3'

vanishes to at least order [a] oil each E; therefore, for n = 3 we are in case IV of the
Kodaira classification, for which the algebra is su(3). (In principle, one must perform an
additional calculation using the Tate algorithm to distinguish this from su(2). We will
describe how this is done shortly.) This reasoning can be applied to deduce the existence
of all the non-Higgsable clusters [1251. These are clusters of mutually intersecting
divisors of self-intersections < -2 that are forced, by this geometric mechanism, to
support gauge algebras even for a generic fibration. By demanding that no points in
B reach a singularity type (ord f 4, ord g > 6), one can derive a complete set of
constraints for when these NHCs can be connected by -1 curves. 9 The NHCs are listed
in table 1.3.

For genus 0 curves that intersect their neighbors, one can elaborate on the previous
formula 2.1. Taking for example instead N = 3 (i.e. including two neighbors), and
assuming that the curve E intersects each of the two curves ER,L with multiplicity one,
we have -kK = ULEL + OE + URER + X. Intersecting with the curve E, which we

9 1t is important to understand why -1 curves play a pivotal role here. Any two non-Higgsable
Kodaira type singularities that are independently consistent can also be simultaneously realized on
divisors that are separated by a > 0 curve. (For instance, when the base is a Hirzebruch surface IF,
which is a P1 bundle over P1 , the fiber is a 0 curve.) On the other hand, two NHCs cannot be separated
by a curve of self-intersection < -1, since then the resulting collection would itself be one larger NHC.
And not all combinations of NHC's can be separated by a -1 curve. These facts isolate -1 curves as
a particularly interesting intermediate situation whose cases must be studied with care.
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Cluster gauge algebra r V Hcharged

(-12) C8 8 248 0
(-8) C7 7 133 0
(-7) C7 7 133 28
(-6) C6 6 78 0
(-5) f4 4 52 0
(-4) so(8) 4 28 0

(-3, -2, -2) 92 0 su(2) 3 17 8
(-3, -2) 02 0 su(2) 3 17 8

(-3) su(3) 2 8 0
(-2, -3, -2) su(2) ( so(7) q su(2) 3 23 16

(-2, -2, ... , -2) no gauge group 0 0 0



-3 -2

-m E3

{-3, -4,...,-8, -12} -2 -3

-2 -2 -2

esus7(8 92 Du(2) 02 ED su(2) su(2) (D so(7) esu(2)
C6, C7, C 8

Figure 1.3: Clusters of intersecting curves that must carry a nonabelian gauge group factor. For
each cluster the corresponding gauge algebra is noted and the gauge algebra and number of charged
matter hypermultiplet are listed in Table ??

take to have self-intersection -n, yields

-k(n - 2) > -n-+ L + TR

o- > n-'(k(n-2) +L+ UR) (1.23)

This inequality demonstrates that the orders of f and g on neighboring divisors in-
fluence the minimum (generic) order of f and g on E itself; the higher these orders
become on neighboring divisors, the higher must be the order on E. We will see the
utility of this in many of the following calculations.

We mention here that this kind of analysis can be rephrased in terms of more explicit
sheaves. Instead of speaking only of sections of 0(-kK) on the base, it is possible to
describe the leading nonvanishing term in f, g in terms of sections of a line bundle over
any given divisor. To this end, consider a divisor E of interest, which can locally be
defined as the set {z = 0} for some coordinate z. Then any section s E 0(-kK) can
be expanded as a Taylor series in z: s = Eo.0 sizZ locally. As derived in [171 using a
short exact sequence, the leading nonvanishing coefficient si in this expansion may be
considered as a section of a sheaf defined over the rational curve E; moreover this sheaf
is explicitly given as

Si E O>P1 (2k + (k - i)n - j) (1.24)

In this formula, n is the self-intersection number of E and the sum adds the orders #j
of s on ET for all neighbors Ej of E (with appropriate multiplicity if the intersection
has multiplicity greater than one). We will also have use for this formulation in what
follows. Just like the above Zariski formula, it can be used to determine the minimal
order of vanishing of f and g on a divisor of interest, incorporating information about
the orders of f and g on neighboring divisors; this task is easily accomplished by
identifying the smallest i such that si C 0(m) for nonnegative m. This is the first
nonvanishing term in the expansion s = Ej sizi and therefore the order of s on E.
(One can check that this reproduces the above formula 1.23.)

The preceding analysis is useful in determining the leading nonvanishing terms in
f, g on each divisor and the corresponding non-Higgsable gauge groups over the given
base. In order to analyze tunings of the Weierstrass model over various divisors, while
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this abstract approach is in principle possible to extend and implement, it is helpful
to have a more explicit presentation of the sections si in terms of monomials. For

instance, it will be useful to know not just whether which of the fi in the local Taylor
expansion of f over E is identically zero or not, but also how many independent degrees

of freedom there are in each fi, or equivalently the expression in a local coordinate on

E. When E is a rational curve (equivalent to P), and any other curves with which

it intersects are other rational curves connected by single transverse intersections in a

linear chain, we can give a complete and explicit description of the local coordinates on

E and its neighbors using the framework of toric geometry. In particular, in this case,
we may complete the local coordinate system around E {z = 0} with a coordinate

w on E, (which could be a local defining coordinate for one of E's neighbors). Then the

statement fi E 0(j) says that fi is an order j polynomial in w, and the expressions

(1.24) are precisely reproduced by an analysis in local toric coordinates. Furthermore,
this expression holds for all values of i, not just the first nonvanishing term, since the

toric coordinates act as global coordinates. In the following analysis, therefore, we

focus on explicit local constructions of tunings in the toric context, and freely use the

language of toric geometry, which we now review briefly. Our use of toric geometry

should always be understood as a convient way to do calculations in local coordinates

that are valid for genus zero curves intersecting with multiplicity one. This kind of

local analysis thus allows us to compute tunings on sets of curves that can be locally

described torically, even if the full base geometry is not a toric surface. When the base

is itself a compact toric variety, toric coordinates can be used to cover the full base and

we can completely control the Weierstrass model in terms of monomials in the toric

language.

1.2.4 Toric geometry

Here we recall some notions and notations from toric geometry; interested readers may

consult excellent references such as [1501 for more background, most of the relevant

concepts are described in this context in more detail in 1126]. A toric variety can be

described by a fan, which for a two (complex) dimensional variety is characterized by a

collection of r integral vectors {v} 1 in the lattice N = Z2, each of which represents

a rational curve in a toric surface.
We restrict attention to smooth toric varieties, where vi, vi+1 span a unit cell in

the lattice, associated with a 2D cone describing a point in the toric variety where

a pair of local coordinates vanish. A rational curve of self-intersection -n satisfies

nvj = v-I + v,+ 1 . A compact toric variety also has a 2D cone connecting v, v1. The

principal formula we will borrow from toric geometry describes a basis of sections of

line bundles over a toric variety, with fixed vanishing order on Dj,

S(-nK)Dj,., = span({m - M I m - vi > -n & m . vj = -n + nj}) (1.25)

The lhs denotes sections of -nK that vanish to order exactly nj on the particular

divisor Dj associated to vj, where -K = Dj + Eij7 Di. (Taken together for all

nj > 0, this reproduces the full collection of sections of ((-nK) without poles.) The

additional constraints indexed by i correspond to conditions imposed from other toric

rays. The rhs is the span of a basis of sections of -nK with the desired orders of

vanishing. Finally, M denotes the dual lattice to N = Z2. Throughout this work, this

formula is used frequently.
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In chapter 2 ([1261), we perform global analyses in terms of monomials. In chapter
3, we are not necessarily performing a global analysis of toric monomials. For a local
analysis on a single divisor we only include'the rays i = j 1 adjacent to vj in the toric
fan, while by increasing the number of rays we can include further adjacent divisors in
a linear chain, or by including all rays in the toric fan we can consider a global analysis
on a toric base B.

1.3 Mathematics 4 physics of 6D F-theory

1.3.1 6D SUGRA

In the classification of 6D supergravity (SUGRA) vacua, one can bring to bear the
additional tool of anomaly cancellation, which turns out to be quite powerful. The
Green-Schwarz mechanism is possible in 6D iff the anomaly polynomial factorizes,
which can be rephrased as a set of equations on various group theory quantities derived
from simple factors of the gauge group and their representations [51, 1461. In fact,
these equations are restrictive enough to strongly constrain the set of possible 6D
supergravity theories that can be realized from F-theory or any other approach [64,
1241. These relations can furthermore determine uniquely the matter content of the
6D theory in many cases. Vectors in the anomaly polynomial, which lie in the lattice
of charged dyonic strings, map directly to certain divisors in H2 (B, Z), which for F-
theory constructions enables computation of the low-energy spectrum of the theory
and associated constraints purely in terms of easily computed quantities in the base.
This relationship greatly simplifies the implementation of anomaly constraints in the
F-theory context. Before stating the anomaly cancellation conditions in the simplified
form relevant to this work, we pause: first, we describe in more detail the field content
of 6D SUGRA; then we recall the Green-Schwarz mechanism both generally and in the
case of 6D theories.[51]

One can study the representations of the 6D supersymmetry algebra in order to
determine the possible fields: in 6D for K = (1, 0) i.e. 8 supercharges, the possible
multiplets are: [1021

* (gi,, B+, - ): "graviton" multiplet. The two-form of this multiplet. is selfdual.

* (B-,, +, 0): "tensor" multiplet. The two-form of this multiplet is anti-selfdual.

* (A/, -): "vector" multiplet. Such multiplets are the gauge fields appropriate to
supersymmetry.

* (4#, ?/+) "hypermultiplet." Such multiplets constitute the supersymmetric equiv-
alent of fermionic matter.

The massless field content of a general 6D (1,0) SUGRA is then 1 graviton, T tensors,
V vectors, and H hypermultiplets. We will consider gauge theories with semisimple
gauge group g = H Gi. This requires V = >'s dim(Gi) vector multiplets to fill out
the adjoint representations of each simple factor. Some hypermultiplets may become
charged under these gauge groups; others may remain neutral. Given such a general set
of possible massless fields, let us now consider the constraints placed on these theories
by anomaly cancellation.

1 0There may be overall discrete quotients of these simple factors. We comment on this as necessary,
but our results appear insensitive to such information.

28



F/R F/R

+- 0

FIR F/R

F/R F/R

Figure 1.4: Schematic outline of cancellation between tree-level counterterm and one-

loop anomaly in the Green-Schwarz mechanism.

The Green-Schwarz mechanism is possible for lOD and 6D SUGRA theories; schemat-

ically, it corresponds to adding a counterterm to the action in order to cancel the one-

loop diagram responsible for the anomaly, as in figure 1.3.1. We briefly review this,
following [1471. Anomalies in n dimensions can be characterized by the presence of

a non-zero "anomaly polynomial," which is an (n + 2)-form; in 6D, it is 18. One can

derive this form by so-called Wess-Zumino descent:

SAS J I(A)

JAI7 = dIJ

18 = dI7  (1.26)

This definition is sensible; if I8 vanishes, then 16 is BRST closed; see (1001 for additional

details. In general, the anomaly polynomial takes the form

i8 = - n(trR22+ trR2 X - X +4 E (1.27)
i<j

where

X~n = trAdjF" - nRtrRF"
R

j nR ,RtrRF2trR;F? (1.28)
Ri,R'.

Here "tr" denotes trace in the fundamental representation of the simple group Gj; the

subscript "Adj" denotes a trace in the adjoint representation; na counts the number of

hypermultiplets transforming in representation Ri of group Gj; and na.,R, counts the

number of hypermultiplets that transform in mixed representations (Ri, R') of Gi x Gj.

Anomaly cancellation via the Green-Schwarz mechanism is possible iff the anomaly

polynomial factorizes as

I8 = QoXcX3 (1.29)
2

It is convenient to express X' as

XQ = aatrR2 + b trF2  (1.30)
2 (A
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where Ai is a group theoretic normalization constant depending on the simple factor i;
see Appendix??.

Then the Green-Schwarz mechanism 151, 145] to cancel these anomalies amounts
to adding the following counter-term to the action:

S' = S + - QBaXfl (1.31)

where B' is one of the 1 +T (anti)selfdual two-forms of the theory, with gauge-invariant
field strength 3-form given by H' = dB' + la'W3L + y Then the total variation
of the modified action is

6A S' = Q,3(JA Bo)X + fIJ(A) = 0 (1.32)

The interplay between this general field theory constraint and the geometry of F-
theory compactification is startlingly direct. Consider an F-theory compactification on
a base B with canonical class K and nonabelian gauge group factors Gi. According
to the Kodaira classification, these simple factors Gi correspond to singularities on
effective divisors of B, so there is a collection of divisors EA in correspondence with the
simple gauge group factors Gi. One might imagine that the above anomaly cancellation
conditions, which express a' b in terms of the field content, can be related to these
Ei and their geometric properties. Incredibly the relation is direct and complete. As
derived in 165], the mapping

a - K
bi -+ E (1.33)

preserves all inner products a - a, a - bi, and bi - bj. In other words, treat a and bi as
vectors in R1.T. Then one may compute inner products using Qa. Similarly, for a
two-dimensional B, one may select the divisors Ei on which Gi occur and intersect
them with one another. Given this correspondence, the anomaly cancellations can be
arranged into the follwing simple form 165, 124].

H-V = 273 - 29T (1.34)

o = Bdj - x B (1.35)
R

K-K = 9-T (1.36)

1 RA2 (-AA*') (1.37)-K .Ej = A RhN Adj-T

Ei Ei= 3C - Ca (1.38)
\R

E Ej= AjAj Z s A" A (1.39)
RS

where AR, BR, OR are group theory coefficients defined through

trRF2 = ARtrF 2  (1.40)

trRF4 = BRtrF4 + CR(trF2) 2 , (1.41)
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Ai are numerical constants associated with the. different types of gauge group factors

(e.g., A = 1 for SU(N), 2 for SO(N) and G2 , ... ), and where x and x denote the
number of matter fields that transform in each irreducible representation R of the gauge
group factor Gi and (R, S) of Gi 0 Gj respectively. (The unadorned "tr" above denotes
a trace in the fundamental representation.) Note that for groups such as SU(2) and
SU(3), which lack a fourth order invariant, BR = 0 and there is no condition (1.35).
All these group theory coefficients are collected in appendix ?? for ease of referece.

In this thesis, we use the anomaly cancellation conditions first to explicitly con-
struct and describe all EFCY3 with h2

,
1 (see section 1.3.3) in chapter 2. In chapter

3, we use these same conditions to develop general rules that constrain the possibil-
ities for F-theory tunings. In this latter chapter, we are also interested in exploring
the "swampland" [92] of models that appear consistent from known low-energy con-
siderations but are not realized in F-theory. The 6D anomaly conditions as well as
other constraints such as the sign of the gauge kinetic term can be used to strongly
constrain 6D supergravity theories based on the consistency of the low-energy theory.
It has been conjectured [631 that all consistent 6D K = 1 supergravity theories have
a description in string theory. Given the class correspondence between the low-energy
theory and the geometry of F-theory, and the fact that essentially all known consistent
6D SUGRA spectra that come from string theory can be realized in F-theory, it seems
that F-theory may have the ability to realize the full moduli space of consistent 6D
supergravity theories. Thus, in the chapters of this thesis where we present results,
we highlight particularly those cases where a given tuning seems consistent from low-
energy considerations but does not have a known construction through an F-theory
Weierstrass model.

1.3.2 6D SCFT

In [4], Heckman, Morrison, and Vafa proposed a method of generating 6D SCFTs
through F-theory. Here we perform only a cursory review. One of the crucial ingredients
in the classification of [4], as in the classification of 6D supergravity theories, is the set
of non-Higgsable clusters, which form basic units for composing 6D SCFTs.

To decouple gravity, F-theory is taken on a non-compact manifold (cross R5
,1)

containing some set of seven-branes wrapped on various closed cycles in the base. This
defines a field theory, which should flow to an SCFT under RG. Length scales are
removed by simultaneously contracting all the relevant 2-cycles (divisors) in the base
geometry to zero size. Whether this is possible in a given geometry can be determined
by investigating the adjacency matrix [4] with entries defined by

Aij := -(Di n Dj) (1.42)

If this matrix is positive definite, then all two-cycles can be contracted simultaneously;
otherwise, they cannot. It is interesting to note that no closed circuit of two-cycles with
nontrivial wri can satisfy this condition. Hence the strategy cannot be implemented in
theories with gravity, as on a compact base, such cycles of divisors always exist.

The part of the classification that we carry out in this thesis that relates to tunings
on local configurations of negative self-intersection curves can be applied to the con-
struction and classification of 6D SCFT's. In a recent and quite comprehensive work
[31, the authors adopted a related ("atomic") perspective on classifying 6D SCFTs via
the F theory construction. This work was posted during the completion of this this
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thesis, and overlaps with the relevant parts of this work. Where there is overlap, our
results are in agreement with those of [3]. Our investigation differs in some aspects,
mainly related to the fact that we do not restrict to the study of SCFTs but are instead
interested in using these tunings in SUGRA as well, so that we are studying a much
broader range of possible tunings, including on curves of nonnegative self-intersection,
and computing Hodge number shifts, which are irrelevant for 6D SCFTs. Our results
also extend those of [31 in that while most of the computations in that thesis were
based on field theory considerations, particularly anomaly cancellation, we have also
explicitly analyzed the local geometry in all the cases relevant to 6D SCFTs, confirming
the close correspondence between field theory and geometry ill those situations relevant
to SCFTs.

1.3.3 Calabi-Yau Threefolds

One of the primary goals of this work is to use tunings as a means of exploring and
classifying the space of elliptically fibered Calabi-Yau threefolds. Two crucial topo-
logical invariants of a Calabi-Yau threefold are its Hodge numbers h2

, and hl'1 . The
notation hu' denotes the dimension of the Dobeault cohomology of differential forms
with i holomorphic and j antiholomorphic indices; these provide a refinement of the
Betti numbers of de Rham cohomology suited to complex manifolds. In our case of
Calabi-Yau threefolds, h2

,
1 represents the number of independent complex structures

which can be placed on the topological threefold, i.e. the dimension of its complex mod-
uli space. hlJ on the other hand represents the number of independent Kdhler metrics
that can be placed on the threefold. Computing these two invariants is necessary to
distinguish and therefore classify Calabi-Yau threefolds.

For any given elliptically fibered CY threefold Y with a Weierstrass description over
a given base B, the Hodge numbers of Y can be read off from the form of the singu-
larities and the corresponding data of the low-energy theory. A succinct description
of the Hodge numbers of Y can be given using the geometry-F-theory correspondence
[21,[1281,1651

h1 "(Y) =r + T + 2 (1.43)
h 2 J(Y) Hneutrai - 1 = 272 + V - 29T - Hharged (1.44)

Here, T = h1J(B) - 1 is the number of tensor multiplets in the 6D theory; r is
the rank of the 6D gauge group and V is the number of vector multiplets in the 6D
theory, while Hneutrai and Hcharged refer to the number of 6D matter hypermultiplets
that are neutral/charged with respect to the gauge group G. The relation (1.43) is
essentially the Shioda-Tate-Wazir formula [137]. The equality (1.44) follows from the
gravitational anomaly cancellation condition in 6D supergravity, H - V = 273 - 29T,
which corresponds to a topological relation on the Calabi-Yau side that has been verified
for most matter representations with known nongeometric counterparts [138, 136]. The
nonabelian part of the gauge group G can be read off from the Kodaira types of the
singularities in the elliptic fibration according to Table 1.1 (up to the discrete part,
which does not affect the Hodge numbers and that we do not compute in detail here).

One use of these conditions is to compute the shifts in Hodge numbers for a given
tuning of an enhanced gauge group on a given divisor or set of divisors. In many of
the local situations we consider here, we can directly compute the shift in the Hodge
number h 2 j by determining the number of complex degrees of freedom (neutral scalar
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fields) that must be fixed in the Weierstrass model to realize the desired tuning. In
other cases, where we do not have a local model, we can use (1.44) to compute h2

j

for a tuning based simply on the spectrum of the theory. Note that h" follows simply
from the gauge group and number of tensors, and does not depend upon the detailed
matter spectrum.

In cases where we have a global toric model, there is a direct relationship between

Hncutral and the number W of Weierstrass moduli given by the toric monomials in M
that describe f, g, i.e. the sum of the monomials that form bases for O(-4K) and
O(-6K) as given by (1.25), after subtracting the degrees of freedom that have been
fixed by tuning. This relationship is given by

Heutrai - W - Waut + N- 2 , (1.45)

where N- 2 is the number of -2 curves, and waut is the number of automorphismus of
the base, given by 2 for a generic base with no toric curves of self-intersection 0 or
greater and adding n + 1 for every toric curve of self-intersection n > 0. This formula
allows us to directly compute the shift in h2

, even in local toric models.
. One imortant and somewhat subtle point that we originally observed in [18]: usually

in counting degrees of freedom in a toric model, -2 curves contribute an extra degree
of freedom because they arise when two blowups are performed at the same point."1

An equivalent representative of the same shape can be obtained by performing the
same two blowups but at distinct points. Choosing these two complex positions to be
identical artificially eliminates one complex degree of freedom, in other words chooses
a representative from a codimension one subspace of the complex moduli space of the
base. Therefore the true number of complex degrees of freedom on this base is the
original naive count, plus one. However, when a gauge algebra is tuned on a -2 curve,
we no longer have the freedom to perform the two blowups at different points; this
tuning pins the -2 curve in place. Therefore when counting degrees of freedom of this
tuning, one must also account for implicitly fixing this extra complex degree of freedom
in addition to all the others which have been explicitly fixed.

One additional subtlety is that in certain special cases where a tuned group can
be broken to a smaller group without decreasing the rank, such as G 2 -+ SU(3) or
F4 -+ SO(8), the moduli associated with this breaking seem to contribute to h2,1 (X)
as neutral multiplets even from the larger group, so that the Hodge numbers of the
Calabi-Yau do not change in such a breaking [18, 91]. This is relevant in a few special
cases in the following analysis.

One of the goals of this thesis is to continue to develop a systematic set of tools
for classifying elliptic Calabi-Yau threefolds through F-theory (chapter 3). This might
seem like the reverse of the logical order: to apply F theory, one needs to know about
(elliptically fibered) Calabi-Yaus. But there are still many unanswered questions about
Calabi-Yau threefolds in general; for example, it is still unknown whether there are
a finite or infinite number of topological types of non-elliptic Calabi-Yau threefolds.
Some evidence suggests [87, 128, 188, 190, 18, 90] that, particularly for large Hodge
numbers, a large fraction of Calabi-Yau threefolds and fourfolds that can be realized
using known construction methods are elliptically fibered. Since the number of elliptic
Calabi-Yau threefolds is finite this suggests that the number of Calabi-Yau threefolds
may in general be finite, and that understanding and classifying elliptic Calabi-Yau

"We elaborate on the concept of a "blowup" in chapter 2, where it is used extensively to describe
the relevant base manifolds.
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threefolds may give insights into the general structure of Calabi-Yau manifolds. As
an example of how the methods developed here can be used in classification of elliptic
Calabi-Yau threefolds, in 3.8.1 we identify several large classes of known Calabi-Yau
threefolds in the Kreuzer-Skarke database as tunings of generic elliptic fibrations over
allowed bases.

In the context of classification of Calabi-Yau threefolds, there is an additional point
that should be brought out. Our classification is essentially one of Weierstrass models,
which contain various Kodaira singularity types. While any elliptic Calabi-Yau three-
fold has a corresponding Weierstrass model, the Weierstrass models for any theory with
a nontrivial Kodaira singularity type, corresponding to a nonabelian gauge group in
the low-energy 6D F-theory model, have singular total spaces. The singularities in the
total space must be resolved to get a smooth Calabi-Yau threefold. This resolution at
the level of codimension one singularities maps essentially to Kodaira's original classifi-
cation of singularities. Resolutions at codimension two, however, are much more subtle,
and in many cases a singular Weierstrass model can have multiple distinct resolutions
at codimension two, corresponding to different Calabi-Yau threefolds with the same
Hodge numbers but different triple intersection numbers. There has been quite a bit.
of work in recent years on these codimension two resolutions in the F-theory context
[148, 156, 94, 95, 96, 97, 98], but there is as yet no complete and systematic descrip-
tion of what elliptic Calabi-Yau threefolds can be related to a given Weierstrass model.
For the purposes of classifying 6D F-theory models this distinction is irrelevant, but it
would be important in any systematic attempt to completely classify all smooth elliptic
Calabi-Yau threefolds.

1.4 Results in context

Before embarking on a detailed discussion of our results in the following chaptesrs, we
pause to state them more precisely and situate them in the context of physics as a
whole.

1.4.1 A small picture: context within F-theory literature

The next two chapters are devted to a detailed discussion of two results:

In chapter 2, we carry out a systematic analysis of Calabi-Yau threefolds that
are elliptically fibered with section ("EFS") and have a large Hodge number
h2

,
1 > 350. This corresponds physically to constructing all F-theory SUGRA

models with > 351 neutral hypermultiplets. EFS Calabi-Yau threefolds live in
a single connected space, with regions of moduli space associated with differ-
ent topologies connected through transitions that can be understood in terms of
singular Weierstrass models. We determine the complete set of such threefolds
that have h2 1 > 350 by tuning coefficients in Weierstrass models over Hirzebruch
surfaces. The resulting set of Hodge numbers includes those of all known Calabi-
Yau threefolds with h2

,
1 > 350. We speculate that there are no other Calabi-

Yau threefolds (elliptically fibered or not) with Hodge numbers that exceed this
bound. We summarize the theoretical and practical obstacles to a complete enu-
meration of all possible EFS Calabi-Yau threefolds and fourfolds, including those
with small Hodge numbers, using this approach; this sets the stage for our more
general discussion in the next chapter.
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* In chapter 3, we classify which local geometrical structures, corresponding to com-
binations of gauge algebras and (potentially shared) matter, can arise in F-theory.
This classification is performed using local geometric calculations; we study tuned
Weierstrass models over combinations of divisors, which corresponds physically to
studying Higgsable combinations of gauge algebras and (shared) matter. This in-
vestigation reveals an exceedingly tight correspondence between F-theory models
and consistent low-energy field theories. Indeed, this near-perfect agreement pro-
vides a backdrop against which discrepancies between F-theory and low-energy
field theories stand out in sharp contrast. We describe in detail these discrep-
ancies, in which classes of seemingly consistent field theories cannot be obtained
through any F-theory compactification. This work has several implications. First,
it further refines the understanding of 6D supergravity models in F-theory, which
has implications for string universality in 6D. It adds a level of mathematical pre-
cision to the study of 6D superconformal field theories (SCFTs) begun in [4, 31,
which is a conjecturally complete classification of all 6D SCFTs. Indeed, no one

has yet identified a 6D SCFT that cannot be constructed by these methods, and
these methods generate many previously unknown SCFTs. Given that 6D is the
largest number of dimensions in which an SCFT can exist, much work in the
study of SCFTs in general dimensions relies on compactifications from 6D; as
such, understanding this set of theories is of much theoretical interest. Our anal-
ysis confirms many of the results of [4, 31 in a more mathematically rigorous way,
but also explicitly shows that some of their proposed models cannot in fact be
realized through their construction. Since oinr results can be phrased in terms of
geometry, they also have implications for the study of EF CY3s; in this context,
our work can be viewed as one component which would be necessary to create a
hypothetical algorithm that would take as input a base B's intersection structure
and output a list of all (generic and tuned) elliptic fibrations over B. Finally,
we discuss the subset of our results that hold in 4D F-theory as well, where they
provide additional structure in a large and still difficult-to-constrain landscape.

1.4.2 The big picture: context within physics

In 6D, understanding the discrepancies we have isolated has general physical interest.
It could well reveal new low-energy consistency conditions which render the apparently
consistent supergravity models inconsistent and thus remove the discrepancy. Other-
wise, the discrpancy will reveal some limitation of F-theory. Nonetheless, we should

emphasize that our results show an exceedingly close agreement between the set of
supergravities that satisfy low-energy consistency conditions and those which can in
fact be realized as F-theory models: we have checked this agreement explicitly in many
examples, where in principle F-theory might have failed. That it still passes so many of
these mathematical tests should be considered additional evidence for F-theory, hence
evidence for string theory in general.

Some of our results have direct implications for the study of 4D compactifications
from F-theory, as discussed in the conslusions of chapter 3. This is due to the nature

of this work as both physical and mathematical. Many of the mathematical structures

we uncover are insensitive to the dimension of the base B; the proofs descend to 4D
F-theory models. Indeed, not only will these constraints from F-theory directly prove

useful in constraining the string theory landscape, but there is a bonus. While most
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of these constraints have clear field-theory interpretations in 6D, the analogous 4D
constraints are currently lacking such an interpretation. This is due to the absence of
the Green-Schwarz mechanism in 4D, which is the main ingredient necessary in mapping
geometry to physics in 6D. As these constraints will be phrased purely in terms of low-
energy 4D SUGRA field theories, understanding what physical mechanisms underly
them will be a rich project for future work that could well have implications beyond
F-theory.
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Chapter 2

Classification: h2 '1 > 350

This chapter describes the first of two main results in this thesis: the systematic clas-
sification of all EFS Calabi-Yau threefolds with h2,1 > 350. Our results are both con-
structive and exhaustive: we explicitly verify that each Calabi-Yau exists, and we also
provide arguments that there can be no others. We speculate that there are no other
Calabi-Yau threefolds (elliptically fibered or not) with Hodge numbers that exceed this
bound. Our results also enjoy two additional features: we associate the gauge algebra
and matter representations that appear in the low energy SUGRA model corresponding
to F-theory compactified on each threefold; thus, our work is a complete enumeration of
F-theory 6D SUGRA models that have 351 or more neutral hypermultiplets. Moreover,
our results imply that all Hodge numbers with h2, > 350 of Calabi-Yau manifolds in
the Kreuzer-Skarke database can be realized as elliptically fibered CY3s. Thus, our re-
sult adds another data point to the growing body of evidence [87, 128, 188, 190, 18, 901
that many Calabi-Yau threefolds have realizations as elliptic fibrations (especially at
large h2,1).

We now describe some of the details of the steps needed to systematically classify
EFS Calabi-Yau threefolds starting at large h2,1

2.1 Systematic classification of EFS Calabi-Yau threefolds

A complete classification and enumeration of Calabi-Yau threefolds that are elliptically
fibered with section can in principle be carried out in three steps:

1. Classify and enumerate all bases B2 that support a smooth elliptically fibered
Calabi-Yau threefold with section.

2. Classify and enumerate all codimension one gauge groups that can be "tuned"
over a given base, giving enhanced gauge groups in the 6D theory.

3. Given the gauge group structure, classify and enumerate the set of compatible
matter representations - in some cases this may involve further tuning of codi-
mension two singularities.

In the remainder of this section we describe some general aspects of the procedures
involved in these steps 1-3 for the construction of EFS CY3s with large h2,1. Some
of the technical limitations to carrying out these three steps for all EFS Calabi-Yau
threefolds are discussed in 2.5.1.

37



A key principle that enables efficient classification of the threefolds of interest
through the structure of their singularities is the decomposition of an effective divi-
sor (curve) D in B2 into a base locus of irreducible effective curves Ci of negative
self-intersection, and a residual part X, which satisfies X -C > 0 for all effective curves
C. Treated over the rational numbers Q, this gives the Zariski decomposition [140}

D =Z iCi + X, y;EQ. (2.1)

This decomposition determines the minimal degree of vanishing of a section of a line
bundle over curves C0 in the base. For example, on F12 we have an irreducible effective
divisor S with S - S = -12, -K - S = -10. Thus, -K has a Zariski decomposition
-K = (5/6)C + X. It follows that -4K = (10/3)C + X, -6K = 10C + X. Since f, g
are sections of O(-4K), 0(-6K) respectively, f must vanish to degree 4 (= [10/31)
on S, and g must vanish to degree 5 on C, implying that there is an e8 type singularity
associated with the generic elliptic fibration over F 12 . This matches the well-known fact
that the gauge group of the generic F-theory model on F12 is E8 [118]. This general
principle was used in the classification of all non-Higgsable clusters in [1251, and will
be used as a basic tool throughout this thesis. Note that tile Zariski decomposition
determines the minimal degree of singularity of f, g over a given curve, but the actual
degree of vanishing can be made higher for specific models by tuning the coefficients
in the Weierstrass representation.

One final comment is necessary to discuss the bases relevant to this classification.
Such bases are conveniently described in terms of a mathematical operation known as a
blowup. This procedure arose as a general method for resolving singularities; in general,
a blowup of a point on a complex surface replaces that point by a copy of P' that has
self-intersection -1 and is known as an exceptional divisor.[103 For our purposes, it
will be sufficient to define a blowup in the context of toric manifolds. To preserve toric
symmetries 1150], it is necessary to blow up only at intersection points between toric
divisors. Given rays vi, v 1i+ in the toric fan, and their corresponding divisors Di and
Di+,, a blowup at the point Di -Dj+ corresponds to adding a new ray VE := v + vi+1
(corresponding to a new divisor E) to the toric fan such that the new fan takes the
form ( ... V, E, vi+1, .. .). In toric geometry, each Di intersects only its two neighbors,
and always does so in multiplicity one. This procedure, then, has the following effect
on the geometry: first, Di - E = E -D i+ = 1, whereas now Di - D i+ = 0; the former
neighbors have been separated. Moreover, the effect on the self-intersection numbers
is as follows: Di -Di and D i+ - Dji+ are both decreased by one. The self-intersection
number of the new divisor E is indeed -1. One can see this immediately from the
definition of vE and the formula vi + vi+1 = -E -EVE- With this tool in hand, we may
explore the bases that are relevant to our study.

2.2 Bases B2 for EFS Calabi-Yau threefolds with large h2 ,1

The bases B2 that can support an elliptically fibered Calabi-Yau threefold are complex
surfaces, which can be characterized by the structure of effective divisors (complex
curves) on the surface. Divisors on B2 are formal integral linear combinations of alge-
braic curves, which map to homology classes in H2 (B2 , Z). The effective divisors are
those where the expansion in terms of algebraic curves has nonnegative coefficients; the
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effective divisors generate a cone (tile Mori cone, dual to the Kdhler cone on cohomology
classes) in H2 (B2 , Z).

The minimal model program for classification of complex surfaces and the results of

Grassi show that the only bases B2 that can support an elliptically fibered Calabi-Yau

threefold are P2 , lF,(0 < m < 12), the Enriques surface, and blow-ups of these spaces.

The values of h2 , for the generic elliptic fibration over each of these surfaces can be read

off from the intersection structure of each base using Table 1.3 and equations (1.43)
and (1.44). The intersection structure of divisors on the bases F, is quite simple. F,

is a P bundle over P, with hl"' (F,) = 2, so T = 1. The cone of effective divisor
classes on each of these surfaces is generated by S, F, where S is a section of the Fl

bundle with S - S = -a, and F is a fiber with F -F = 0, F -S = 1.1
The -12 curve on F12 carries an E8 gauge group, so the generic elliptic fibration

over this base has r = 8, V = 248 and h"' = 11, h2
, = 491. Similarly, for Fs and

F7 we have h"' = 10, h2, = 376, and for F6 , h"' = 11, h2,1 = 321, with decreasing
values of h2 " for Fm, m < 6 (see [126] for a complete list). Since tuning Weierstrass

coefficients to increase the size of the gauge group or blow up points in the base entails
a reduction in h2 ,, to construct all EFS CY3s with h2 " > 350, we need only consider
the minimal bases F12 , F8 , and F7 . Note that, as discussed, for example, in 1125], F,
for m = 9, 10, 11 contain points on the -in curve where f, g must vanish to degrees
4, 6, which must be blown up leading to a new base of the form of F12 or a blow-up
thereof, so the Hirzebruch surfaces F 9 , Flo, F,, are not good bases for an EFS CY3.

The irreducible effective divisors on Fm are those of the form D = aS + bF, b > ma,
since if b < ma, then D - S < 0 and D contains S as a component (and is therefore

reducible). Blowing up a base B2 = Fm at a point p produces a new -1 curve, the

exceptional divisor E of the blow-up. Each curve C in B2 that passes once smoothly

through p gives a proper transform C' - C - E, with E - C' = 1. Since F, is a P
bundle over Pl, each p E F, lies on some fiber in the class of F.

We can describe a sequence of blow-ups on Fm by tracking the cone of effective

divisor classes after each blow-up. The result of a single blow-up at a generic point on

Fm gives a new base B2, with an exceptional divisor E having E -E = -1 extending
the cone of effective divisors in a new direction. If we denote the specific fiber of F,

containing p as F1, then Fl ~ F, - E is also in the new cone of effective divisors,
with Fl - E = 1. There is also an effective divisor in the class S = S + mF (with

5 - = +m) that passes through the generic point p, and this gives a new curve 5'
in B2 with S' - S' = m - 1. In this way, we can sequentially blow up points on Fm
to achieve any allowable base B2 for an EFS Calabi-Yau threefold. An example of a

sequence of bases formed from four consecutive blow-ups of F1 2 is shown in Figure 2.1.

A point in the base must be blown up whenever there is a (4,6) vanishing of

f, g at that point. In general, such a singularity can be arranged at a point in the

base by tuning 29 parameters in the Weierstrass model [1411. This matches with the

gravitational anomaly cancellation condition H - V = 273 - 29T (see (1.34)), since

a single new tensor field arises when the point in base is blown up. (Recall, the map

between 6D anomaly coefficients a and bi, considered as (1 + T)-component vectors,
vectors in H2 (B, Z), hence the dimension of this space (the number of homology-distinct

two-cycles) increases by one whenever T does.) From (1.43) and (1.44) we thus see that,

'Really, [F] is a class in H2, and the fibers are a continuous family of divisors in this class that
foliate the total space; as mentioned earlier, we will generally go back and forth freely between divisors
and their associated classes.
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Figure 2.1: A general F-theory base B2 is formed by a sequence of blow-ups on a Hirzebruch surface
F,. In this example, three generic points are blown up sequentially on F12 , and a fourth blow-up
point is chosen to be on the exceptional divisor from the third blow-up. These points are all blown up
on fibers in such a way that a global C* structure is preserved. The final base 3 enters the discussion
in the text in several places.

generically, blowing up a point will cause a change in the Hodge numbers of a base by

Ah ' = +1, Ah 2,1 = -29. (2.2)

As an example, the final base 3 depicted in Figure 2.1 is associated with four blow-ups
of F12, and thus has Hodge numbers h1' = 11 + 4 = 15, h2 1 = 491 - 4 x 29 = 375.
In some situations, when there is a gauge group involved along divisors containing the
blow-up point, there is also a change in V that modifies the number of moduli removed
by the blow-up, and correspondingly affects the Hodge numbers of the new Calabi-Yau
threefold.

In general, the combinatorial structure of the cone of effective divisors on B2 can
become quite complicated. A simple subclass of the set of bases that are formed when
multiple points on Fm are blown up consists of those bases where the points blown
up lie on # distinct fibers, and those blown up on each fiber are at the intersection
of irreducible effective divisors of negative self intersection lying within that fiber or
intersections between such divisors and the sections S, S of the original Fm. In this
case, a global C*-structure is preserved on the base B2 ; bases of this type were classified
in [127]. When # 5 2, so that all points blown up lie on two or fewer fibers, the base
is toric; the set of toric bases was classified in 1126]. In cases where the number of
fibers blown up satisfies # m, the initial point pi blown up on each fiber can be
a generic point and a representative of the class S can be found that passes through
all these points, so that the base has a global C* structure. Almost all the bases we
consider in this thesis will have this structure, and can be represented as C*-bases with
# nontrivial fibers. We will discuss particular situations where we need to go beyond
this framework as they arise.
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For the toric and C*-bases, an explicit representation of the monomials in the
Weierstrass model can easily be given, as described in 126, 1271. This representation
is useful for explicit calculations.

One issue that must be addressed in enumerating distinct bases for EFS CY3s is
the role of -2 curves in the base. In general, isolated -2 curves, or connected clusters
of -2 curves that do not carry a gauge group, are realized at specific points in the
moduli space of fibrations over bases without those -2 curves. For example, blowing

up F 12 at two distinct generic points pr, p2 gives rise to two nontrivial fibers, each
containing two connected curves of self-intersection (-1, -1) (like the left two fibers in
the base t from Figure 2.1). In the limit where P2 approaches p1, this becomes two
blow-ups on a single fiber, containing three connected curves of self-intersection (-1,
-2, -1) (e.g., the right-most fiber in Figure 2.1). This cal be seen in the toric and C*
cases directly through the enumeration of muonomials, as discussed in [126, 127]; the
-2 curves in clusters not associated with Kodaira singularities giving nonabelian gauge
groups correspond to extra elements of h2

,' not visible in the explicit monomial count,
and the corresponding Calabi-Yau is most effectively described by the more generic
base where the blow-up points are kept distinct. On the other hand, when a -2 curve
supports a nontrivial gauge group either due to an NHC or a tuning, this curve is "held
in place" by the singularity structure, which would not be possible in the given form
without the -2 curve. Thus, when enumerating all distinct possible EFS CY3s, we
should only include -2 curves in bases where (f, g, A) have nonzero vanishing degrees
over these curves2

By following these principles, we can systematically enumerate the bases associated
with EFS CY3s with large h2 . In almost all cases, the bases have a C* structure and
can be described as F 12 blown up at a sequence of points along one or more fibers. The
precise sequences of possible blow-ups are detailed in Section 2.4.

2.3 Constraints on codimension one singularities and as-
sociated gauge groups

In this and the following sections, we describe in more detail how codimension one
and two singularities in the elliptic fibration of the Calabi-Yau threefold X over a
given base B2 can be understood and classified. In this analysis we use the physical
language of F-theory; though in principle the arguments here could be understood
purely mathematically without reference to gauge groups or matter, the physicdl F-
theory picture is extremely helpful in clarifying the geometric structures involved.

As we have described already, the NHCs of intersecting irreducible effective divisors
of negative self-intersection tabulated in Table 1.3 give rise to nonabelian gauge groups
and, in some cases, charged matter over any base B2 that contains these clusters.
These physical features of the EFS CY3s encode the topological structure of X through
equations (1.43) and (1.44). Additional and/or enhanced gauge groups and matter can
also be realized, giving rise to a range of different EFS CY3s over a given base B2 , by
tuning the parameters in the Weierstrass model. Over simple bases like P2 , the range
of possible tunings is enormous, giving rise to many thousands of topologically distinct
CY3s elliptically fibered over the fixed base [142, 143]. For the CY3s with large h2 ,1

2 Note that there is one additional subtlety, which arises when a configuration of -2 curves describes
a degenerate elliptic fiber 11271, but this situation does not arise for any bases considered in this thesis
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that we consider here, however, the range of possible tunings over the relevant bases
B 2 is quite small.

Some general constraints on when codimension one singularities can be tuned be-
yond the minimal values required on a given base follow from the Zariski decompositions
of -4K and -6K. These constraints provide strong bounds on the set of possible gauge
groups that can be tuned over any given B2 . These constraints, which we analyze in
general terms in this section, do not, however, guarantee the existence of a given tuned
model with specific gauge groups. To confirm that a Weierstrass model can be realized,
a more detailed analysis is needed, as discussed in the subsequent sections.

2.3.1 Weierstrass models

While the Zariski decomposition of f, g, A, and the anomaly cancellation conditions
described in the last two sections place strong constraints on the set of possible gauge
groups and matter fields that can be tuned in a Weierstrass model over any given base
B2 , these constraints are necessary but not sufficient for the existence of a consistent
geometry. To prove that a given Calabi-Yau geometry exists, it is helpful to consider an
explicit construction of the Weierstrass model. This can be done in a straightforward
way for toric bases using the explicit realization of the monomials in the Weierstrass
model as elements of the lattice N* dual to the lattice N in which the toric fan is
described. This approach generalizes in a simple way to bases that admit only a single
C* action. The details of this analysis are worked out in detail in 1126, 1271. It is
also possible to describe Weierstrass models explicitly for bases that are not toric or
C*, though there is at present no general method for doing this and the analysis must
be done on a case-by-case basis. Explicit construction of the moniomials in a given
Weierstrass model plays two important roles in analyzing the Calabi-Yau threefolds we
consider in this thesis. First, by imposing the desired vanishing conditions for f, g, A
on all curves carrying gauge groups, we can check the explicit Weierstrass model to
confirm that no additional vanishing conditions are forced on any curves or points that
would produce additional gauge groups or force a blow-up or invalidate the model due
to (4, 6) points or curves. Second, we can perform an explicit check on the value of
h2 1 computed using the last term in (1.44) by relating the number of free degrees of
freedom in the Weierstrass model to the number of neutral scalar fields. This analysis
can, among other things, reveal the presence of additional U(1) gauge group factors
that contribute to V and r. In [127], for example, it was found using this type of
analysis that a small subset of the possible C*-bases for EFS Calabi-Yau threefolds
give rise to generic nonzero Mordell-Weil rank.

We recall here the relationship between h2" and the number of Weierstrass mono-
mials W for a generic elliptic fibration over a C* base:

h2"(X) = Hneutrai - 1 = W - waut + N - 4 + N- 2 - G 1 , (2.3)

where waut = 1 + max(O, 1 + no, 1 + n,) is the number of automorphism symmetries,
with no, n, the self-intersections of the divisors coming from S, S, N is the number
of fibers containing blow-ups, N- 2 is the number of -2 curves that can be removed
by moving to a generic point in the moduli space of the associated threefold, and
G1 is the number of -2 curve combinations that represent a degenerate elliptic fiber.
The relation (2.3) is a slight refinement of the relation determined in [127] to include
tuned Weierstrass models; in particular, when considering tuned (non-generic) elliptic
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fibrations over a given base the set of -2 curves contributing to N- 2 does not include
certain -2 curves where A vanishes to some order, even if this -2 curve is not in a
non-Higgsable cluster supporting a nonabelian gauge group. We encounter an example
of this in the following section.

2.3.2 Weierstrass models: some subtleties

As mentioned earlier, and also discussed in [126, 1271, curves of self-intersection -2
must be treated carefully when analyzing the Weierstrass monomials and corresponding
Hodge numbers. -2 curves that do not carry vanishing degrees of f, g, A in most
circumstances are associated with special codimension one loci in Calabi-Yau moduli

space, and indicate additional elements of h 2
,
1 that are not visible in the Weierstrass

monomials for the model with the -2 curve. To consistently distinguish different

topological types of Calabi-Yau threefolds, we should generally only consider the most

generic bases in each moduli space component, which have no -2 curves on which
f, g, A do not vanish to some degree. For example, the Weierstrass model describing
the base 6 appearing in Figure 2.1 has one fewer parameter than expected for the
given Calabi-Yau threefold, corresponding to a contribution of N- 2 = 1 in (1.45). The
generic base for this threefold is given by blowing up four completely generic points in

F12, which gives four distinct (-1, -1) fibers; the base 0 that contains a -2 curve in

one fiber arises at limit points of the moduli space where one of the blow-up points lies

on the exceptional divisor produced by one of the other blow-ups. The generic elliptic

fibration over 8 thus lives on the same moduli space as the generic elliptic fibration

over the base with four (-1, -1) fibers. If, on the other hand, we tune an SU(2) factor

on the top -1 curve of the (-1, -2, -1) fiber, then the -2 curve acquires a degree of

vanishing of A of at least 1, and it is fixed in place by the structure of the singularity.

This SU(2) factor cannot be tuned in the bulk of the moduli space of the generic four-

times blown up F 12. In this situation, N- 2 = 0, and it can be checked that the C*
Weierstrass model contains the correct number of monomials. 3

Another subtlety that must be taken into account when computing the number of

free parameters for a Weierstrass model with given codimension one singularity types is

the appearance of each of the gauge group factors SU(2), SU(3) in two distinct ways in

the Kodaira classification. In a generic situation, in the absence of other gauge groups,
an SU(2) or SU(3) gauge group tuned by a Kodaira type III or IV singularity, as listed

in Table 1.1 is simply a special case of a type 12 or 13 singularity, and the complete set
of degrees of freedom needed to compute h 2J should be computed by imposing only

the latter conditions. In other cases, however, such as in the context of non-Higgsable
clusters, the type III or IV singularity type may be forced by the structure of other

gauge groups or divisors. In this case the specified gauge group structure may not be

possible with an I, singularity type, in which case there are no monomials associated

with such additional freedom.

Finally, for those gauge algebra types that depend not only on the degrees of van-

ishing of f, g, A, but also on monodromy, the correct counting of degrees of freedom in

the Weierstrass model depends on the monodromy conditions. The monodromy con-

ditions for each of the gauge group choices in type IV, Io, and IV* Kodaira singlets

3 The fact that additional structure can appear associated with -2 curves also arises in a related
context in 4D heterotic theories based on elliptically fibered Calabi-Yau threefolds over bases containing
these curves [1491.
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are described in [134, 135], and can easily be characterized in terms of the structure of
monomials in the Weierstrass model (1491.

For all the models considered here, we have carried out an explicit construction
of the Weierstrass monomials, and confirmed that the appropriate geometric structure
exists and that the number of monomials properly matches the value of h2 , when the
proper shifts according to -2 curves and automorphisms as described in (1.45) are taken
into account. For all the models considered here, the blow-ups on the different fibers
are independent, since the gauge groups on S, S do not change. This means that the
monomial analysis can be performed in a local chart around each fiber independently,
without loss of generality.

2.3.3 Constraints on Weierstrass models: an example

As an example of the utility of the explicit Weierstrass monomial construction, we
consider a simple example of a situation in which the Zariski and anomaly analyses
suggest that a tuning may be possible, but it is ruled out by explicit consideration of
the Weierstrass model.

Consider again the base B 2 = depicted in Figure 2.1. We can ask if an SU(2)
can be tuned through an 12 (0,0,2) singularity on the top -1 curve C of one of the
(-1, -1) fibers. (In fact, this analysis is equivalent for any such fiber on F12 , since as
discussed above the analysis is essentially local on each fiber in this situation where
there is no change in the degree of vanishing of f, g, A on S, S.) The SU(2) that
we might tune in this fashion does not violate any conditions visible from the Zariski
analysis, since we can take A = 2C + lOS + X, and still satisfy X - D = 0 where D
is the lower -1 curve connecting C and S. (Note, however, that we cannot have a
type III or IV SU(2) on C, since this would force a vanishing of A on D.) Tuning
an SU(2) on C also does not present any problems involving anomalies, since we have
sufficient hypermultiplets to have an SU(2) with the requisite 10 fundamental matter
fields. This configuration is, however, ruled out by an explicit Weierstrass analysis. In
the toric language [150, 1261, we can take F12 to have a toric fan given by vectors vi E
N = Z2: vi = (0, 1), V2 = (1, 0), V3 = (0, -1), V4 = (-1, -12). The allowed Weierstrass
monomials for the generic elliptic fibration over F12 are then u E N*, (u, vi) > -n with
n = 4,6 for f, g respectively. Taking a local coordinate system where z = 0 on the
fiber F associated with v2 , and w = 0 on 5, the allowed monomials in f = fk,,ZkWm,
9 = gk,mz wr are those with k,m ;> 0, 12(m - n) + (k - n) <; n; these degrees of
freedom are depicted in Figure 2.2. The only monomial that keeps S from having
a (4,6) singularity is the w7 term in g, so the coefficient go,7 cannot vanish without
breaking the Calabi-Yau structure. Blowing up the point of intersection between F
and S adds the vector V5 = (1,1) to the toric fan, so we must remove the monomials
u with (u, v5) < -n from f, g; in the chosen coordinates, this amounts to removing all
monomials such that m+ k < n, as depicted by the red diagonal line in the figure. With
a change of coordinates z = (x, w = x, f = jX4, g = X6 , we have a local expansion
around E, F' = F - E with coordinate x = 0 on E. We can then expand

f(, x) = fo(( + ()X + (2.4)
= (foo + fi,o( + f4,O(4) + (fi,i( + ,1(2 . f5, 1 ( 5)X + (2.5)

X) = O() + 1(()x + - - - (2.6)

= (o,o + 1,o( + - -- ,o() + (o, +1,1( + 7,1()X +-- (2.7)
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The condition that A vanish at order x0 requires that 4f3 + 27 6 = 0, which we can
satisfy by setting fo(() -3a 2 , o(() = 2a 3 for some quadratic function a((). The
condition. that A vanish at order x then requires that

2f6f1 + 9 o01 = 0. (2.8)

This condition cannot, however, be satisfied when a # 0, without setting o0, = 0,
since fl contains no term of order (0. But Poi = 90,7 = 0 forces g to vanish to degree 6
on S so there would be a degree (4, 6) singularity on S, which is incompatible with the
Calabi-Yau structure. Thus, we cannot tune an 12 SU(2) singularity on C. Note that
while the coordinates (, x make this computation particularly transparent, the same
result can be derived directly in the z, w coordinates. In particular, this means that an
SU(2) cannot be tuned on the curve in question even if further points on the base are
blown up.

Note also that while this analysis rules out an SU(2) on the -1 curve C in question,
it is still possible to tune A to vanish to second order on this curve. If fo = o = 0, then
(2.8) is automatically satisfied. This allows for the possibility of a (1, 1, 2) vanishing of
(f, g, A) on C. Indeed, such a vanishing - which does not lead to any gauge group -
arises in some configurations for EFS CY threefolds, as we see below.

This kind of analysis can be used to check explicitly whether a Weierstrass model
exists for any given combination of gauge group tunings that satisfy the Zariski and
anomaly cancellation conditions. This is straightforward for the gauge groups that are
imposed by particular orders of vanishing of f, g, since this corresponds simply to setting
the coefficients of certain monomials in these functions to vanish. The analysis is more
subtle, however, for type I,, and I,* singularities, such as the I2 example considered
here, where vanishing on A requires more complicated polynomial conditions on the
coefficients. For large n, the algebra involved in explicitly imposing an In singularity
can be quite involved. This is not an issue for any of the threefolds considered in this
thesis, but presents a technical obstacle to a systematic analysis for general h2'. We
return to this issue in 2.5.1.

Finally, note that the fact that an SU(2) cannot be tuned on the top -1 curve of a
(-1, -1) fiber matches with the example described in 2.3.2, where an SU(2) tuned on
the top curve of a (-1, -2, -1) fiber fixes the middle (-2) curve in place. The lower
-1 curve cannot be moved to a different location on the -12 curve S, which would
remove the -2 curve, since this would leave behind precisely the configuration we have
just ruled out. This confirms that this -2 curve does not represent a missing modulus
and does not contribute to N- 2 in (1.45), even though it does not itself support a gauge
group.

2.3.4 Anomalies and matter content

One final note is necessary before proceeding to the classification. A feature of F-theory
especially in 6D is the correspondence between physical and geometrical quantities
summarized in 1.3. In particular, the equations of anomaly cancellation can be solved
explicitly. For tunings on an isolated rational (genis zero) curve C of self-intersection
C-C = n, we immediately obtain K- C = -n -2. These are the only relevant geometric
inputs necessary to solve the anomaly cancellation equations. In exploring the space of
tuned fibrations with h2J > 350, we will encounter only a small subset of the possible
gauge algebras and associated representations. We list the group theory coefficients for
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Figure 2.2: Monomials in the generic Weierstrass model over F 12 are of the form
fJZ kWm,gkzAw', and can be associated with points depicted above in the lattice N* dual to
the lattice N carrying the rays in the toric fan for F12. Circles denote monomials in f, and dots denote
monomials in g. Blowing up a generic point in F 12 can be described in a local coordinate system by
setting all monomials below the red line to vanish. As described in the text, an SU(2) gauge group
cannot be tuned on the exceptional divisor from the blow-up without forcing the monomial coefficient

g0, to vanish, which makes it impossible to form a Calabi-Yau due to a (4, 6) vanishing on the divisor
S.

Table 2.1: Group theory coefficients AR, BR, CR for fundamental and adjoint matter representations
of gauge groups relevant for the analysis of this thesis. Note that the gauge groups SU(2), SU(3), G 2

have no fourth order Casimir so there are no coefficients BR.

the representations relevant for this chapter are compiled for convenience in Table 2.1.
We also calculate the matter and shifts in h2' 1 as a function of the self-intersection
number n, tabulating those results in Table 2.2

The 6D anomaly cancellation conditions provide additional constraints on the set
of possible structures for EFS Calabi-Yau threefolds. For any set of possible gauge
groups satisfying the Zariski conditions described in the previous section, the anomaly
cancellation conditions can be used to further check the consistency of the model and
to compute the possible matter spectra, giving Hcharged, which can then be used in
(1.44) to compute h2,. For example, consider tuning a gauge group SU(2) on a curve
C of genus g and self-intersection -n. Assuming only fundamental (2) and adjoint (3)
matter, the spectrum of fields charged under this gauge group is uniquely determined
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Group Rep AR BR CR
SU(2) 2 1

3 4 - 8
SU(3) 3 11

8 6 - 9
G27 1

14 4 -

0 0.-1.....- - ..



matter Ah" A ,
su(2) (16 - 6n) x 2 +1 -29 + 12n
su(3) (18 - 6n) x 3 +2 -46 + 18n

g2 (10-3n)x 7 +2 -56 + 21n

Table 2.2: Table of matter content and Hodge number shifts for tuned gauge algebra summands on
a -n curve C. Shifts are computed assuming the curve carries no original gauge group; for n > 3
the contribution from the associated non-Higgsable cluster must be subtracted, These shifts also do
not include any necessary modifications for bifundamental matter, which must be taken into account
when C intersects other curves carrying a gauge group.

by the anomaly cancellation conditions

1
K-C=2g+n-2 -(A 3 (1 - X 3 ) - A2 2 ) = 2/3 - x 2 /6 - 2 3 /3 (2.9)

6
1

C C = -7 - - (C3 (x3 - 1) + C2x 2 ) = 8(x 3 - 1)/3 + x2/6, (2.10)
3

to be X3 = g, X2 = 16 - 6n - 16g. For a rational curve C with g = 0, there are simply

16- 6n fields in the fundamental (2) representation. This matches with the expectation

that when -n < -3 there is a larger gauge group and an SU(2) is impossible. For

higher genus curves g the number of fields in the adjoint is generically g with no

higher-dimensional matter representations. For specially tuned models, higher matter

representations are possible, but for su(2) all representations other than 2 contribute

to the genus [142, 1481. Gauge groups on higher genus curves and associated exotic

matter representations of this type do not appear in the models considered here at

large h2,, and are discussed further in 2.5.1.
From the gauge group and matter content associated with a given tuned Weierstrass

model, the Hodge numbers can be computed from (1.43), (1.44). Continuing with the

preceding example, tuning an SU(2) gauge group on a divisor of self-intersection -n

that does not intersect any other curves carrying gauge groups leads to a change in

Hodge numbers of

Ah" Ar = +1, (2.11)
Ah 2J =AV - AHciarged = +3 - 2(16 - 6n) = -29 + 12n. (2.12)

It is straightforward to compute the contribution to the Hodge numbers from tuning

any of the other gauge groups associated with a Kodaira singularity type on a rational

curve of given self-intersection. Table 2.2 tabulates these values for the gauge group

factors that are relevant for this thesis.
Finally, the anomaly cancellation condition (1.39) indicates that when two curves

C, D intersect and both carry gauge groups, a certain part of the matter is charged

under both gauge group factors. This bi-charged matter is a subset of the total charged

matter content in each case, and must be taken into account when computing the Hodge

numbers of a threefold with this structure in the base. For example, two SU(2) factors

tuned on two intersecting -2 curves each have, from Table 2.2, 4 fundamental matter

fields. From (1.39), there is one bifundamental matter field transforming in the 2 x 2

representation. This field, which contains 4 complex scalars, is counted in the matter

charged under each of the SU(2). Thus, while the change in I 2 ,' from tuning each

of these SU(2) factors individually is Ah 2" = -5, the net change from tuning both
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of these factors is -6; i.e., the second SU(2) requires tuning only a single additional
Weierstrass modulus.

2.4 Systematic construction of EFS CY threefolds with
large h2'1

We now systematically describe how all Calabi-Yau threefolds that are elliptically
fibered with section (EFS) and have h2j > 350 are constructed by tuning gauge
groups on F12 , F8 , F7 , and blow-ups thereof. We begin with the Hirzebruch surfaces
and consider all possible tunings that would give a threefold with h2, 1 > 350. For
those tunings that are possible by the Zariski and anomaly cancellation conditions we
check the Weierstrass models explicitly using the toric monomial method. For each set
of valid Hodge numbers we compare with the Kreuzer-Skarke database [129] of Hodge
numbers for Calabi-Yau threefolds realized as hypersurfaces in toric varieties using the
Batyrev construction [151]. The final results of our analysis are compiled in Figure 2.3,
and the full set of constructions is listed in Table 2.3.

2.4.1 Tuning models over F12

To systematically construct all Calabi-Yau threefolds that are elliptically fibered with
section, beginning with the largest value of h 2

,' and preceding downward, we begin with
the generic elliptic fibration over F 12 . As described above and in [128], this Calabi-Yau
threefold has Hodge numbers (hl', h2

j) = (11, 491), and has the largest value of h 21

possible for any EFS CY threefold.
There are few ways available to tune an enhanced gauge group over the base B2

F12 . The gauge algebra on the curve S with S . S = -12 is e8 and cannot be enhanced.
Tuning a gauge algebra on any fiber F would increase the degree of vanishing at the
point S - F beyond (4,5, 10), which is not allowed since such a point lies on S and
cannot be blown up to give a valid base. The only option for tuning is on the curve
S = S + 12F, which has self-intersection +12 (or on curves with a multiple of this
divisor class, which would have self-intersection > 48). Tuning an su(2) factor on the
curve S gives 88 fundamental matter fields, from Table 2.2, so the Hodge numbers are
(12,318). A threefold with these Hodge numbers is in the Kreuzer-Skarke database,
but has h2 j < 350, so we do not concern ourselves further with it here. Tuning any
larger gauge group factor reduces h2

,
1 still further; for example, tuning an su(3) gives

Hodge numbers (13,229).
This example illustrates the basic paradigm: on curves of higher self-intersection,

there are fewer restrictions on the possible tunings, but more charged matter is required
to fulfill anomaly cancelation conditions. As a rule of thumb, it is often easy to increase
h1 ,1 via tuning so long as one is willing to accept a large decrease in h2 .

There is one other possibility that should be discussed here, and that is the possi-
bility of tuning an abelian gauge group factor. As shown in [152], any U(1) factor can
be seen as arising from a Higgsed SU(2) gauge group factor (which may be a subgroup
of a larger nonabelian group), under which some matter transforms in the adjoint rep-
resentation. The U(1) factor is associated with the divisor class C in the base that
supports the SU(2) gauge group after unHiggsing; to have an adjoint, irreducible curves
in this divisor class must have nonzero genus. In the case of B2 = F 12 , the divisor class
C cannot intersect S without producing a (4,6) singularity, so it must be a multiple
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Figure 2.3: l t this chapter we explicitly construct all 0l1ipt1icaly fibered Calabi-Ya threefolds
with section having 12. ;> 350. The Hodge numbers of these threefolds are shown here, with the

detailed construction explainwd in tIhe bulk of the text. Black points represent generic elliptic fibrations

over different bases 1,, and colored points represent tuned Weierstrass models over these bases with

enhanced gauge groups. The three purple data points appear to be new Cahbi-Yu a manifolds not found

in the K'retuzer-Skarke database (ste 2.5.3). All elliptically fibered Calabi-Yau threefolds with section

are co1ected by geonttric transitions associated with tuiing Weierstiass moduli over a particular base

("Iiggsing unlliggsilg") and or blowing up and down points in the base (corresponding to tensi1nless

string transitions in the phV'ysical F-theory context). Note that the point (10, 376), corresponding to

generic elliptic fibrations over FFs, is connected to the other threefolds shown through a sequence

of blow-up ad blow-down transitiolls oil the base that pass through the set of threefolds with smaller

Hodge numbers h < 150. Note aOso that there are two distinct constructions that give the Hodge

numbers (19, 355); in addition to I untuied Weierstrass model with generic gauge group G. x SU(2)
there is a tuning of the generic (1h5,375) Weierstrass model with a gauge group SU(2) x SU(3) x S()(2).

49



C = uS of the curve of self-intersection +12 in B2 . For n = 2, the curve 25 has genus
g = 11, and the resulting SU(2) model would have 11 adjoint matter fields and 128
fundamental matter fields. Although this model should exist, it has a substantially
reduced number of Weierstrass moduli corresponding to uncharged matter fields, even
after breaking of the SU(2) by a single adjoint. Similarly, a discrete abelian group
would involve further breaking of the U(1) that would maintain a relatively small value
of h 2

,
1 . Thus, while in principle it may be possible to tune an abelian factor, for this

base and the others considered here the resulting Calabi-Yan threefold has relatively
small h2,1, and we do not need to consider abelian factors in constructing threefolds
with h2

,
1 > 350. We discuss abelian factors further in 2.5.1.

2.4.2 Tuning models over F8 and F7

The generic elliptically fibered Calabi-Yau threefolds over the Hirzebruch bases F7 and

F8 have Hodge numbers (10, 376). The discussion of tuning over these bases is precisely
analogous to the preceding discussion for the base F 12 , and there are no tuned models
over these bases with h 2

1
1 > 350. Since 376 - 29 < 350, there are also no threefolds

formed over bases that are blow-ups of F7 or F8 that have h2
,
1 > 350. The threefolds

with Hodge numbers (10, 376) over these bases are, however, continuously connected
to the threefolds over F12 and blow-ups thereof; for example, blowing up F8 at four
generic points on the curve S of self-intersection -8 gives a base that is equivalent
to the one reached by blowing up F12 at four generic points. It is not immediately
clear whether the threefolds formed from generic elliptic fibrations over F7 and F8 are
equivalent. We discuss this issue further in 2.5.3.

2.4.3 Decomposition into fibers

To find further EFS CY threefolds with large h 2
,
1 we must blow up one or more points

in the base B = F 12 to get further bases over which a variety of Weierstrass models can
be tuned. We can blow up any point on F12 that does not lie on the curve S of self-
intersection -12. Any such point lies on a fiber F that intersects S and 5 each at one
point. After blowing up one point we can blow up another point on the same fiber or on
another fiber. Until the number of blow-ups is large (> 12), blow-ups on distinct fibers
do not interact, so that we may analyze the sequence of blow-ups possible along one
given fiber, and then we can combine such sequences to construct threefolds involving
the blow-ups of multiple fibers. Along any given fiber, as long as each blow-up occurs
at an intersection of curves of negative self-intersection or at the point of intersection
of the fiber with 5, we can use toric methods for describing the monomials, as in 1.1.
After a sufficient number of blow-ups, it is also possible to construct fibers that do not
fit into the toric framework, though we need to consider only one example of this in
the analysis for threefolds with h2

j > 350. For fibers that simply consist of a linear
sequence of mutually intersecting curves, such as those in Figure 2.1, for convenience
we label the curves C1 , C2,..., with C1 the curve that intersects the -12 curve C (so
we always have C1 - C1 = -1).

2.4.4 F 12 blown up at one point (F j)

We now consider the sequence of fiber geometries that can arise when we blow up
consecutive points in F 12 that lie in a single fiber. Blowing up a generic point on F 12
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gives a toric base with a single nontrivial fiber (-1, -1) containing curves C2, C1, as
in the first step in Figure 2.1. As discussed in 2.2, blowing up a point when no gauge
groups are involved leads to a shift in Hodge numbers of +1, -29. The generic elliptic

fibration over the base F12 with a single blow-up, which we denote F"1 , thus has Hodge
numbers (12, 462).

For the base F' as for F12, there is no place that we call tune a gauge group
other than the +11 curve; as described in 2.3.1, tuning an su(2) factor on either -1
curve raises the degree of vanishing of f,g on S to (4,6), and is not possible. Any
other tuning on the -1 curves increases the degree of vanishing still further and is not
allowed. The model with an su(2) on the +11 curve is just the blow-up of the case with
Hodge numbers (12,318) and has Hodge numbers (13,301) (note that the number of
fundamental matter fields is reduced by 6 compared to the +12 curve in Fm).

2.4.5 Threefolds over the base F12

Now consider blowing up a second point on F 12 by blowing up a point on F 1 . If the
second point is a generic point that does not lie on the first blown-up fiber, we can
take it to be on a separate fiber. The shift in Hodge numbers just adds between the
two fibers and is then 2 x (+1, -29), giving an EFS threefold with Hodge numbers

(13,433).
Now, consider which points in the (-1, -1) fiber can be blown up and give a

consistent model. We cannot blow up a point in Cr (the -1 curve intersecting the -12

curve), since then it would become a -2 intersecting a -12, which is not allowed by
the intersection rules of [125]. A representative S' of the (non-rigid) +11 class passes
through each point on C2 (this is one of the degrees of freedom in Waut in (2.3)), so
without loss of generality we can blow up any point in C2, and we get a fiber of the
form (-1, -2, -1), which now connects a +10 curve ' to a -12 curve. In the absence
of tuning, the corresponding Calabi-Yau threefold simply lies in a codimension one
locus in the moduli space of complex structures of the threefold with Hodge numbers
(13,433) having two (-1, -1) fibers. Now, however, we consider what can be tuned on
the (-1, -2, -1) fiber. For the same reason, described in the example in 2.3.1, that
we could not tune any gauge group on the upper -1 of a (-1, -1) fiber, we cannot
tune a gauge group on the -2 curve (C2). Thus, the only curve on which we can tune
any gauge group is the top -1 curve C3. It is easy to check that we can tune an su(2)
on this top curve, either by tuning a type 12 singularity or the more specialized type
III. This does not violate the Zariski or anomaly conditions, and explicit examination
of the Weierstrass model shows that this configuration is allowed. From Table 2.2,
we see that this tuning shifts the Hodge numbers by (+1, -17), giving a Calabi-Yan
with Hodge numbers (14,416). No other Calabi-Yau with h2,1 > 350 can be formed by

tuning a gauge group over IF. Some checking is needed, however, to confirm that no
other gauge group can be tuned on C3. From the analysis of 2.3.1, the only allowed
degrees of vanishing on C2 are (0,0, 1) or (1, 1,2), so by the averaging rule the only
way in which the degrees of vanishing on C3 could give any larger gauge algebra than

SU(2) is for a type IV (2,2,4) singularity carrying an su(3) gauge algebra. Expanding

9 = go(w) +1 (w)C+ - - - in powers of a coordinate C that vanishes on C3 (with w = 0
on 5), the condition for an su(3) gauge group at a type IV singularity is that 92 be a
perfect square. The highest power of w appearing in 92, however, is w7 , corresponding

to the single monomial of degTee 5 in g over S. If 92 is a perfect square then this
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coefficient would have to vanish, giving a (4, 6) vanishing on S. Thus, there is only one

possible tuning of F'1, with a single su(2) on C3.

2.4.6 Threefolds over the base F 13

Now we consider blowing up a third point on F12. Unless all three points are on the
same fiber, we. simply have a combination of the previously considered configurations.
On the twice blown up fiber (-1, -2, -1), we cannot blow up on C1 or C2, or we would
have a cluster that is not allowed in such close proximity to the -12 through the rules
of 11251. So we can only blow up on the initial -1 curve C3. As above, a representative

of th +10curveon [2]
of the +10 curve on Fthrough each point on C3, so a blow-up at any such

point gives the base F3 with fiber (-1, -2, -2, -1). This is on the same moduli space
as the Calabi-Yau with Hodge numbers (14,404) having three (-1, -1) fibers. We

can, however, tune various gauge groups on F3 that fix the -2 structure in place.
From the analysis of previous cases we know that we cannot tune a gauge group on Ci
or C2, and the only possible gauge algebra on C3 is su(2). (Note that the argument

from the previous section constraining the gauge group on C3 remains valid even when
additional points are blown up). By the averaging rule, the largest possible vanishing
orders of f, g, A that are possible on C4 are (3,3,6). A systematic analysis shows that
we can tune the following gauge algebra combinations on the initial (-1, -2) curves
C4 and C3:

E su(2) - (hl', h2 J) = (15,399) (2.13)

su(2) ED - * (h' 1 , h2 J) = (15,387) (2.14)

su(2) E su(2) - (hl'1, h2 J) = (16,386) (2.15)

su(3) ff su(2) (h,'i, h 2,) = (17, 377) (2.16)

92 E su(2) - (h" 1, h2") = (17,371) (2.17)

Note that in the last three cases, there is bifundamental matter. For example, in the
case (2.15) the shift in h2

,
1 corresponds to the net change in V -Hch. From Table 2.2 we

would expect -5 - 17 = -22, but there is a bifundamental 2 x 2 from the intersection
between the -1 and -2 curves so that 4 of the matter hypermultiplets have been
counted twice, and the actual change to h2' 1 is 404 - 18 = 386.

All of the tunings (2.13)-(2.17) give consistent constructions of EFS Calabi-Yau
threefolds. Note, however, that the threefold realized through (2.14) is not a generic
threefold in the given branch of the moduli space. For this construction, the curve C2

is a -2 curve without vanishing degree for A. Thus, the threefold can be deformed
by moving C to a different point on S. This gives a C* base with a single (-1, -1)

fiber and a (-1, -2, -1) fiber with a single su(2) as can be tuned on F12. Checking the
Hodge numbers, we see that indeed the resulting model is equivalent to the blow-up of
the (14,416) threefold at a generic point, so we do not list this construction separately
in Table 2.3.

The final case (2.17) is of particular interest, as it appears to give a Calabi-Yau
threefold that did not arise in the complete classification by Kreuzer and Skarke of
threefolds based on hypersurfaces in toric varieties. In this case there is a matter field
charged under the 02 D su(2) transforming in the (7, 12) (half-hypermultiplet in the
fundamental of su(2)), which raises h 2

,
1 by 7: 404 - 5 - 35 + 7 = 371. Given the
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apparent novelty of this construction, for this particular threefold we spell out some

of the details of the Weierstrass monomial calculation that we have performed as a
cross-check. After requiring that (f, g, A) vanish to degree (2, 3,6) on the (-1)-curve

C4 and (2, 2,4) on the adjacent (-2)-curve C3 (A must vanish to degree 4 on C3 and
to degree 2 on C2, by the averaging rule), the number of Weierstrass monomials in f, g
becomes

Wf = 125, W = 260. (2.18)

With waut = 1 + (9 + 1) = 11, N- 2 = G, = 0, we have then h2,1 = 125 + 260 -
11 - 3 = 371, in agreement with the expectation from anomaly cancellation. It is also
straightforward to check that this set of Weierstrass monomials does not impose any
unexpected (4, 6) vanishing on curves or points in the base which would invalidate the
threefold construction. Because a (2, 3, 6) tuning is ambiguous, we consider the possible
monodromies associated with the gauge group on C4, which can be analyzed in terms
of monomials in a local coordinate system. Expanding f = Ei fji( and g = Ei i('
in a coordinate C that vanishes on C4, the monodromy that determines the choice of

gauge algebra 02,so(7) or so (8) is determined by the form the polynomial containing
the leading order terms in ( from the Weierstrass equation

X3 + 2x + 3 , (2.19)

where the coefficients f2 and 93 are functions on the -1 curve C4 only of the usual

coordinate w, which vanishes on S. The monodromy condition that selects the gauge

group can be found from the factorization structure of (2.19),

x3 + Ax + B (generic) = 92
(x - A)(x2 + Ax + B) = so(7) (2.20)

(x - A)(x - B)(x + (A + B)) e so(8). (2.21)

From an analysis similar to that described in section 2.3.1 (which can also be read off

directly from Figure 2.2, noting that the monomials (wk correspond to zj+3(n-k)wk,

for n = 4, 6 for f, g respectively), we find that f2, 93 have the form

f 2 (w) = f2,0+ f2,1W + f 2,2w2 + 2,3w3 + 2,4W

$3(W) = 93,0 +3,+ 3,2W2 + g3,3W3 + g3,4W4 3,5W + 3,6 6 + 93,7WT2.22)

The w 7 term in 93 corresponds to the monomial w7 with coefficient go,7 in the original
z, w coordinates, which as discussed above cannot be tuned to zero since this would

force a (4,6, 12) singularity on S. This implies, however, that (2.19) cannot have a
nontrivial factorization. Any tuning of an so(7) gauge algebra, for example, must,
upon expanding (2.20), yield 12 = B - A2 , which would imply that A must be no more
than quadratic and B no more than quartic (a higher-order cancellation with A cubic

and B sextic is not possible since this would lead to 9th order terms in g). This means,
however, that g3 = AB could be at most of order six; in other words, this factorization

cannot be achieved without tuning the w 7 term in 93 to zero. A similar argument

demonstrates that an so(8) cannot be tuned on C4, but it is clear already that any
tuning of so(8) involves at least the restrictions of so(7) on the monomials in question,
hence the impossibility of so(7) implies the impossibility of so(8). Thus, the presence

of the w 7 term in g guarantees that the monodromy associated with a Kodaira type I0
singularity over C4 must give an 92 gauge algebra, as in (2.17).
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The upshot of this analysis is that the tuning (2.17) allows the tuning of a 02

algebra, which would lead to Hodge numbers (17,371) while no tuning beyond g2 is
possible on C4. This is reasonable as a physical model, but because this tuning does
not enhance the rank of the overall gauge algebra (and hence change h1'J, it does not
constitute a distinct threefold; see 2.5.3.

One other issue that should also be explained explicitly is the reason that it is not
possible to tune an su(3) algebra on C4 without tuning a gauge group on C3. It is
straightforward to check using monomials that tuning g to vanish to order 2 on C4

forces g to also vanish to order 2 on C3, so a type IV (2, 2, 4) vanishing on C4 forces
a type III (1, 2, 3) vanishing at least on C3, which must always be associated with
a nonabelian gauge group. And tuning a (0, 0, 3) vanishing on C4 produces at least
a (0,0, 2) vanishing on C3 by the averaging rule, but by checking monomials we can
verify that no vanishing is imposed on f or g on C3 so again tuning an su(3) on C4
necessarily imposes at least an su(2) on C3.

This completes the classification of possible tuning structures that are possible on

12; the resulting Calabi-Yau threefolds are tabulated in Table 2.3.

2.4.7 Threefolds over the base F1

At the next stage, again we can only blow up on the first -1 curve (C4) in the

(-1, -2, -2, -1) fiber inI F131 , since for example a -12 curve cannot be connected1 12~
by a -1 curve to a (-2, -3) cluster so we cannot blow up on the second (-2) curve C3.

Again, the Calabi-Yau threefold F} over the base with the resulting (-1, -2, -2, -2, -1)
fiber is in the same moduli space as the one with four (-1, -1) fibers and has Hodge
numbers (15, 375). But there are an increasing number of possible gauge groups that
can be tuned on the initial three curves C5, C4, and C3.

All of the analysis performed for tunings on C4-C1 in F holds for tunings on these

same curves in F14. Thus, each of the gauge groups tuned over F 1 can be tuned in a

parallel fashion on F4]. The only difference is that C4 is now a -2 curve, so the gauge
groups on that curve have reduced matter content and the change in Hodge numbers
from the tuning decreases accordingly. For example, while tuning an su(2) e su(2)
on C4 and C3 over F12 shifts the Hodge numbers by (Ah1 '1 , Ah2j) = (+2, -18) as
discussed above, the shift for the same gauge group tuning on F1 is (+2, -6) since
there are 6 fewer matter fields in the fundamental 2 representation of the su(2) over C4.

We can also confirm directly that none of the allowed tunings on C4-C1 impose any
mandatory vanishing condition on C5. Thus, the tunings (2.15)-(2.17) can all be done
in a similar fashion, giving another set of threefolds tabulated in Table 2.3, including
another apparently new threefold not in the CY database at (18,363). Note that the

tuning (2.13) of a single su(2) on C3 in F4 gives a threefold on the same moduli space

as the blow-up at a generic point of this tuning on F1, with Hodge numbers (16,370).
Finally, we can consider tuning a gauge group on C5 in combination with any other

gauge groups on the other curves. As in the analysis in the previous section, if no
gauge group is tuned on C3, the threefold is non-generic since the curve C1 can be
moved on S. By the averaging rule, tuning an su(2) on both C3 and C5 will also force
an su(2) on C4. An su(2) can be tuned on C5, along with su(2) factors on C4, and
C3, giving a threefold with Hodge numbers (18,356). Enhancement of the Su(2) on
C4 to su(3) is then still possible, which yields a threefold with the Hodge numbers

54



-1 -

-3

-2 -2

-2 -2

-12 -12

Figure 2.4: Blowing up on the top -2 curve (C4 ) on a (-1, -2, -2, -2, -1) chain results in a divisor
structure giving a non-toric base, with a (-3, -2, -2) non-Higgsable cluster (case (C) in the text).
In the limit of moduli space where the intersection points of the two -1 curves with the -3 curve

coincide, the fiber becomes (-2, -1, -3, -2, -2, -1) and the base becomes toric (case (B)).

(19,355). Note that these Hodge numbers are identical to those of a generic fibration

over a five-times blown up F 12 (discussed below); this provides the first example of a

situation where two apparently distinct constructions produce threefolds with identical

Hodge nmnbers. The possible relationship between such models is discussed in 2.5.3.
Finally, the middle su(3) (on C4) can again be enhanced to 9 2 , another rank-preserving

tuning that does not constitute a distinct threefold. There are also a number of possible

configurations where su(3) and larger gauge groups are tuned on C5 , but since C5 is

a -1 curve and gauge groups tuned on such divisors carry more matter, these all give

threefolds with smaller Hodge munbers h 2 , < 350. One such tuning that is worth

mentioning, however, is given by imposing the condition that A vanish to degree 4 on

C5 . This can be arranged, giving for example a model with gauge group sp(2) D su(2)
and Hodge numbers (20,340), which arises in the Kreuzer-Skarke database. A more

detailed exploration of these and other models with h2
,
1 < 350 is left to further work.

[4]
This completes the summary of threefolds based on tuning of F12 .

2.4.8 Five blow-ups

At this stage the story becomes even more interesting. We can blow up the fiber

(-1, -2, -2, -2, -1) again at an arbitrary point on C5 to get (A) F[ with a re-

sulting (-1, -2, -2, -2, -2, -1) fiber. We can also, however, blow up in two other

ways. We can blow up the point of intersection between C5 and C4 giving a chain (B)

(-2, -1, -3, -2, -2, -1). Alternatively, we can blow up a generic point in the curve

C4, giving the fiber (C) shown in Figure 2.4. In the latter case, the fiber and associated

base no longer have a toric description. Let us consider these three cases in turn:

(A) This is the straightforward generalization of the previous examples, F1 has

Hodge numbers (16,346), and is on the same moduli space as the base with five (-1, -1)
fibers. There are a variety of tunings, which all have h2

,
1 < 350 and which therefore

for the present purposes we omit. It bears mentioning that tunings on the multiple -2

curves in this base give a rich variety of possible threefolds, and it is at this point that

larger algebras such as f4 and c6 can be tuned.

(B) In this case, as discussed in [1261, the appearance of the non-Higgsable cluster

(-3, -2) requires a non-Higgsable gauge algebra 92 D su(2). The associated rank 3
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gauge algebra with 17 vector inultiplets and 8 charged matter multiplets raise the Hodge
numbers of this base to (19, 355). There are various tunings on C6, but all go below
h2.1 = 350, except for a single 5u(2) on 06 that gives a standard shift to a threefold
with Hodge numbers (19, 355) + (1, -5) = (20,350). Note that without tuning, the
initial -2 curve in this fiber represents an extra Weierstrass modulus, so this is not a
generic configuration, as discussed in the following case. Note also, however, that the
analysis of section 2.3 shows that no gauge group can be tuned on the -1 curve 05
since it is adjacent to a non-Higgsable cluster that is not a single -3 curve.

(C) In this non-toric case we again have the same non-Higgsable cluster as in the
previous case, and the same Hodge numbers (19,355). In this case there are also no
tunings possible. This construction represents the generic class of threefolds of which
the untuned model (B) above represents a codimension one limit. The final blow-up of
a point in C4 in this non-toric construction can be taken to approach the point which

was blown up to form C5 in F12 , producing the -2 curve found in (B).

2.4.9 More blow-ups

Further blow-ups raise the Hodge number h2
,
1 below 350. As the number of blow-ups

increases, the number of fiber configurations also increases. We leave a systematic
analysis of tuned models over further blown up bases for further work.

2.5 Conclusions

In this thesis we have initiated a systematic analysis of the set of all elliptically fibered
Calabi-Yau threefolds, starting with those having large Hodge number h2

,
1 . These

Calabi-Yau threefolds fit together into a single connected space, with the continuous
moduli spaces associated with different topologies connected together through transi-
tions between singular points in the different components of the moduli space. This
structure is clearly and explicitly described in the framework of Weierstrass models.
In principle, the approach taken here could be used to classify all EFS CY threefolds.
There are, however, a number of practical and technical limitations to carrying out this
analysis for the set of all threefolds with arbitrary Hodge numbers given the current
state of knowledge. We describe these issues in 2.5.1. A similar analysis could in
principle be carried out for Calabi-Yau fourfolds, though in this context there are even
larger unresolved mathematical questions, discussed in 2.5.2. Some other comments
on future directions are given in 2.5.3.

2.5.1 Classifying all EFS Calabi-Yau threefolds

In order to classify the complete set of EFS Calabi-Yau threefolds, some specific tech-
nical problems that begin to arise at smaller Hodge numbers need to be resolved. The
primary outstanding issues seem to be the following 4 items:

General bases: A systematic means for explicitly enumerating the complete set of
possible bases B2, including bases that are neither toric nor "semi-toric" has not yet
been developed.

Tuning classical groups: A general rule for determining when the gauge groups
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h" h Base K-S # (Ah", Ah21 ) Fiber !extra

11 491 IF12  1 (0,0) 0
12 462 F12  2 (1,-29) 11
13 433 F 12  4 2 x (1, -29) 2x(11)
14 416 IF1 2  2 (3,-75) 121 su(2)
14 404 IF1 2  6 3 x (1,-29) 3x(11)
15 399 F 12  1 (4, -92) 1221 su(2)
15 387 IF 12  4 (1, -29) + (3, -75) 11 + 121 su(2)
16 386 IF 12  1 (5, -105) 1221 su(2) e su(2)
17 377 IF1 2  3 (6, -114) 1221 su(3)esu(2)
10 376 Fs 2 (0,0) 0

F7  (0,0) 0
15 375 IF 12  9 4 x (1,-29) 4x(11)
17 371 F 12  0 (6,-120) 1221 92 eD5u(2)
16 370 F 12  3 (1, -29) + (4, -92) 11 + 1221 su(2)
17 369 F 12  1 (6, -122) 12221 su(2) e su(2)
18 366 IF12  2 (7, -125) 12221 su(3) e su(2)
18 363 IF12  0 (7,-128) 12221 g2 e su(2)
16 358 F12  7 2 x (1, -29) + (3, -75) 2 x (11)+121 su(2)
17 357 IF12  2 (1, -29) + (5, -105) 11+ 1221 su(2) E su(2)
18 356 IF12  1 (7, -135) 12221 su(2) e su(2) e su(2)
19 355 IF12  3 (8, -136) 213221 92 e su(2)

(generically non-toric)
IF12  3 (8, -136) 12221 su(2) D su(3) e su(2)

19 353 F12  0 (8, -138) 12221 su(2) e 92 D su(2)
20 350 IF1 2  1 (9, -141) 213221 su(2) e 92 D su(2)

Table 2.3: Table of all possible Calabi-Yau threefolds that are elliptically fibered with section and
have h2 1 > 350. For each pair of Hodge numbers, the number of distinct constructions found by
Kreuzer and Skarke giving these Hodge numbers is listed (0= new construction). The data for explicit
construction through a tuned elliptic fibration over a blow-up of F 1 2 is given for each threefold. In
each case, the fiber types and extra tuned gauge groups (beyond those forced from the structure of the
original Hirzebruch base - es in all cases except the (10, 376) CY's) is indicated. Each fiber is given
by a sequence of the (negative of the) self-intersection numbers of the curves in the fiber; underlined
curves carry tuned gauge group factors, while overlined curves carry gauge group factors associated
with non-Higgsable clusters. Note also that tunings which do not increase the rank (e.g. su(3) -+ 92)

likely do not represent distinct threefolds; see section 2.5.3.
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SU(N), SO(N), and Sp(N) can be tuned on a given divisor is not known.

Codimension two singularities: A complete classification of codimension two sin-
gularities and associated matter representations has not yet been realized.

Extra sections and abelian gauge group factors: There is no general approach
available yet for determining when an elliptic fibration of arbitrary Mordell-Weil rank
can be tuned over a given base B2.

We describe these issues in some further detail and summarize the current state
of understanding for each issue in the remainder of this section. If all these issues
can be resolved, it seems that the complete classification and enumeration of EFS
CY threefolds may be a problem of tractable computational complexity, as discussed
further in 2.5.1.

General bases

As discussed in 2.2, the set of possible bases is constrained by the set of allowed non-
Higgsable clusters of intersecting divisors with negative self-intersection [125], and a
complete enumeration of all bases with toric and semi-toric (C*) structure has been
completed [126, 127]. In principle, there is no conceptual obstruction to explicitly
enumerating the finite set of possible bases B2 that support an elliptically fibered CY
threefold, but in practice this becomes rather difficult since the intersection structure
can become rather complicated as more points are blown up. For bases with smaller
values of h2

,
1 than those considered here, there are more ways in which points can

be blown up without preserving a toric or C* structure. This leads to increasingly
complicated branching structures in the set of intersecting divisors. It is a difficult
combinatorial problem to track the new divisors of negative self intersection that may
appear as non-generic points are blown up in a base that has no C* synnetry. For
example, new curves of negative self intersection may appear from curves of positive
or vanishing self intersection that pass through multiple blown up points; in more
extreme cases, a set of points may be blown up that lie on a highly singular codimension
one curve, complicating the divisor intersection structure. A related issue is that the
number of generators of the Mori cone of effective divisors can become large - indeed,
for the del Pezzo surface dPq formed by blowing up P 2 at 9 generic points, the cone of
effective divisors is generated by an infinite family of distinct -1 curves.

While the combinatorics of this problem may seem forbidding, several pieces of
evidence suggest that a complete enumeration may be a tractable problem. The analysis
of C* bases in [1271 shows that allowing certain kinds of branching and corresponding
loops in the web of effective rigid divisors (associated with multiple fibers intersecting
S, 5) does riot dramatically increase the range of possible bases 4 ; the full set of C* bases
is several times larger than the number of toric bases (~ 160,000 vs. -60,000), but
not exponentially larger. It also seems that as the complexity of C* bases increases,
the range and complexity of non-C* structures that can be added by further blow-ups
decreases. Further work in this direction is in progress, but it seems likely that the
total number of possible bases may not exceed the number already identified as toric
or C*-bases by more than one or two orders of magnitude.

4some simple branching structures of this kind are also encountered in the classification of 6D
superconformal field theories [1531
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Tuning I, and I*, codimension one singularities

As described in 2.3, 2.3.4, and 2.3.1, though the intersection structure of divisors,
Zariski-type decomposition, and 6D anomalies can strongly restrict which gauge groups
can be tuned over any given configuration of curves, these conditions are necessary
but not sufficient, and to verify that a valid threefold with given structure exists a
more direct method such as an explicit Weierstrass construction is needed. For gauge
algebras such as e7 and c8 that are realized by tuning coefficients in f and g to get the
desired Kodaira singularity types, it is fairly straightforward to confirm that Weierstrass
models with the desired properties can be constructed. For algebras like 02, C6 , or J4 that
involve monodromy but are still realized by tuning f, g, it is also possible to check the
Weierstrass model directly by considering the set of allowed monomials in the specific
model; examples of this were described in 2.4. There are some types of gauge algebra,
however, namely those realized by Kodaira type I, and I,*,, where the tuning required
is on the discriminant A and not directly on f, g. This leads to a more difficult algebra
problem, since as n becomes larger, the set of required conditions become complicated
polynomial conditions on the coefficients of f, g, rather than linear conditions as arise
in all other cases.

An example of this kind of difficulty arises in considering the tuning of a Kodaira
type I,, singularity giving an su(n) gauge algebra over a simple curve of degree one
in the base B2 = P2. In this case, anomaly cancellation conditions restrict the rank
of the group so that n < 24. But explicit construction of the models for large n is
algebraically somewhat complicated. In this case, f is a polynomial of degree 12 in
local coordinates z, w in the base, and g is a polynomial of degree 18. If we consider
a curve C defined by the locus where z = 0, we can expand f, g, A in the form e.g.
f = fi 2(w) + fli(w)z + - - + fOz 12 , where fm is a polynomial of degree m in w. An
explicit analysis of su(n) models in this context was carried out in (148], and Weierstrass
models for these theories were found for n < 20, n = 22, and n = 24, but no models were
identified for n 21, 23. Similarly, in [154], Weierstrass models for elliptic fibrations
over bases B2 = F1, F2 with Kodaira type In singularities over the curves S of self-
intersection -1, -2 in these bases were analyzed. Anomaly considerations suggest that
in each case there are enough degrees of freedom to tune an 115 singularity, but solutions
were only found algebraically up to n = 14.

In general, such algebraically complicated problems arise whenever one attempts
to tune an I,, or I* singularity. For a complete classification and enumeration of
all elliptically fibered Calabi-Yau threefolds with section, either a direct method is
needed for constructing a solution for the resulting set of polynomial equations on the
coefficients of f, g, or some more general theorem is needed stating when this algebra
problem has a solution. This problem is also in some cases apparently intertwined with
the issue of determining the discrete part of the gauge group, associated with torsion
in the Mordell-Weil group, as discussed in 2.5.1.

Codimension two singularities

The possible singularity types at codimension two are not completely classified. In most
simple cases, a local rank one enhancement of the gauge algebra gives matter that can
be simply interpreted [134, 155, 138]. For example, at a point where an I,, singularity
locus crosses a (0, 0, 1) component of the discriminant locus A there is an enhancement
to In+1 corresponding to matter in the fundamental representation of the associated
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iu(n). In other cases, however, the singularities can be more complicated. Despite
much recent progress in understanding codimension two singularities and associated

matter content [148, 156, 136, 157, 158, 159, 160, 161, 162], there are still many aspects
of codimension two singularities, even for Calabi-Yau threefolds, that are still not well
understood or completely classified. In principle, however, there should be a systematic
way of relating codimension two singularity types to representation theory in the same
way that the Kodaira-Tate classification relates codimension one singularity types to
Lie algebras.

One particular class of codimension two singularities that is not as yet systemat-
ically understood or classified are cases where the curve C that supports a Kodaira
type singularity is itself singular. For simple singularity types, such as an intersection
between two curves - which gives bifundamental matter - or a simple intersection of
the curve with itself - which for su(n) gives an adjoint representation or a symmetric
+ antisymmetric representation - the connection between representation theory and
geometric singularities is understood [147, 148]. For more exotic singularity types of
C, however, there is as yet no full understanding. Analysis of anomalies in 6D theories
[1421 indicates that for any given representation R, there is a corresponding singularity
that contributes to the arithmetic genus of the curve C through

1
gR = -- (2A 2CR ABR - AAR), (2.23)

12

where the anomaly coefficients AR, BR, CR are defined through (1.41). For example,
the 20 "box" representation of SU(4) should correspond to a singularity with arithmetic
genus contribution 3 on the curve C; while a potential realization of this representation
through an embedding of an A 3 singularity into a D6 singularity was suggested at the
group theory level in [148], the explicit geometry of the associated singularity has not
been worked out. Without a general theory for this kind of singularity structure, a
complete classification of EFS CY threefolds will riot be possible.

Mordell-Weil group and abelian gauge factors

One of the trickiest issues that needs to be resolved for a complete classification of
EFS Calabi-Yau threefolds to be possible is the problem of determining when addi-
tional nontrivial global sections of an elliptic fibration over a given base B2 can be
constructed, and explicitly constructing them when possible. The construction of an
explicit Weierstrass model depends on the existence of a single global section. Using
the fiber-wise addition operation on elliptic curves (which corresponds to the usual
addition law on T2 ), the set of global sections forms a abelian group known as the
Mordell-Weil group. The Mordell-Weil group contains a free part Zk of rank k, and
can also have discrete torsion associated with sections for which a finite multiple gives
the identity (0 section). The rank of the Mordell-Weil group determines the number of
abelian U(1) factors in the corresponding 6D gauge group [120]. In recent years there
has been quite a bit of progress in understanding the role of the Mordell-Weil group
and U(1) factors in F-theory constructions and corresponding supergravity theories
[163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 1521. We
review briefly here some of the parts of this story relevant for constructing EFS CY
threefolds, and summarize some outstanding questions.

For a single U(1) factor (rank 1 Mordell-Weil group), a general form for the corre-
sponding Weierstrass model was described by Morrison and Park in [1671. It was shown
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in [1521 that a Weierstrass model with a single section of this type can always be tuned
so that the global section, corresponding to a nontrivial four-cycle in the total space of
the Calabi-Yau threefold, becomes "vertical" and is associated with a codimension one
Kodaira type singularity giving a nonabelian gauge group factor in the 6D theory with
matter in the adjoint representation. From the point of view of this thesis, this means
that any model with a rank one Mordell-Weil group can be constructed by first tuning
an SU(2) or higher-rank nonabelian group on a curve of nonzero genus, and then Hig-
gsing the group using the adjoint matter to give a residual U(1) gauge group factor.
This should in principle make it possible to systematically construct all Calabi-Yau
threefolds with rank one Mordell-Weil group.

For higher rank, the story becomes more complicated. Elliptic fibrations with
Mordell-Weil groups of rank two and three can be realized by constructing threefolds
where the fiber is realized in different ways from the Weierstrass form (??) [179, 1801.
Explicit constructions of Weierstrass models for general classes of threefolds with rank
two and three Mordell-Weil group were identified in [171, 172] and [1761 respectively, but
there is no general construction for models with Mordell-Weil rank higher than three.
CY threefolds with much larger Mordell-Weil rank have been constructed; it was shown
in [1271, in particular, that for certain C* bases there is an automatic ("non-Higgsable")
Mordell-Weil group of higher rank, with ranks up to k = 8. It must be possible to
construct an elliptically fibered Calabi-Yau threefold over the base P 2 with Mordell-
Weil rank seven; this follows from the explicit construction in [1481 of an SU(8) model
with adjoint matter (with an I8 singularity on a cubic curve), which can be Higgsed
to give U(1) 7 (though the explicit Higgsed model has not been constructed). It is also
possible that an SU(9) model with adjoint matter may exist oil P2 , which would give a
Mordell-Weil rank of 8. It is not known whether all higher rank Mordell-Weil groups can
be constructed by Higgsing higher rank nonabelian gauge groups; this would mean that
the results of [152] or a single section could be generalized to an arbitrary number of
sections, so that all global sections could simultaneously be tuned to vertical sections
without changing hl". If this were true, it would lead to a systematic approach to
constructing all EFS CY threefolds with arbitrary Mordell-Weil rank, but more work
is needed to understand this structure for higher rank models. It is also known that
the Mordell-Weil rank cannot be arbitrarily high; for example, anomaly cancellation
conditions in 6D impose the constraint that the rank satisfies k ; 17 when the base is
P2 [1651, and this constraint can probably be strengthened considerably.

Beyond the rank of the Mordell-Weil group, which affects the Hodge numbers of
the threefold formed by a particular Weierstrass model through (1.43), the torsion
part of the Mordell-Weil group is also as yet incompletely understood. For a complete
classification of EFS CY threefolds from Weierstrass models, a better understanding
is needed of what kinds of torsion in the Mordell-Weil group are possible and how
they can be tuned explicitly in Weierstrass models. In particular, while the Kodaira
type dictates the Lie algebra of the corresponding 6D theory, the gauge group G may
take the form fJi Gj/F where Gi are the associated simply connected groups and F is
a discrete subgroup dictated by the torsion in the Mordell-Weil group. We have not
studied this discrete structure in this work, but understanding it is necessary for a full
classification of EFS CY threefolds. A systematic discussion of Mordell-Weil torsion
is given in [139]. Some examples of Mordell-Weil groups with torsion are given, for
example, in [152].
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2.5.2 Classifying all EFS Calabi-Yau fourfolds

The methods of this thesis can be used to analyze elliptically fibered Calabi-Yau man-
ifolds of higher dimensionality, though there are more serious technical and conceptual
obstacles to a complete classification of fourfolds or higher. Elliptically fibered Calabi-
Yau fourfolds are of particular interest for F-theory compactifications to the physically
relevant case of four space-time dimensions.

The classification of minimal bases B2 that support EFS Calabi-Yau threefolds,
which formed the starting point of the analysis here of EFS CY3s with large h2',
depended upon the mathematical analysis of minimal surfaces and Grassi's result for
minimal surfaces that support an elliptically fibered CY threefold. The analogous
results for fourfolds are less well understood. In principle, the mathematics of Mori
theory [1811 can be used to determine the minimal set of threefold bases that support
EFS Calabi-Yau fourfolds, but this story appears to be somewhat more complicated
than the case of complex base surfaces. For fourfolds, the set of possible transitions
associated with tuning Weierstrass models include blowing up curves as well as divisors,
which further complicates the process of analyzing the set of bases, even given the set of
minimal bases. Some basic aspects of these transitions are explored in [179, 182, 1831.
At least in the toric context, however, an analysis of CY fourfolds along the lines of this
thesis seems tractable. There has been some exploration of the space of Calabi-Yau
fourfolds with a toric description [179, 184, 185, 186, 1871, and a complete enumeration
of toric bases B3 with a P1 bundle structure that support elliptic fibrations for F-theory
models with smooth heterotic duals was carried out in 11491, along with a complete
classification of non-toric threefold bases with this structure. A systematic analysis
using methods analogous to [125, 1261 of the space of all toric bases that support
elliptically fibered CY fourfolds seems tractable, if computationally demanding. Note
that since over many bases there are a vast number of different tunings, classifying
the bases and associated generic Weierstrass models is a much more tractable problem
than a complete classification of CY fourfold geometries.

2.5.3 Further directions

The analysis initiated in this thesis can in principle be continued to substantially lower
values of h2'1 before any of the issues described in 2.5.1 become serious problems. Even
outside the set of toric and C* bases, the number of ways that the Hirzebruch surfaces
Fm with large m can be blown up is fairly restricted. Algebraic problems with I, and
I*, nontrivial Mordell-Weil groups, and exotic matter content are all issues that become
relevant only at lower values of h2

,
1 . Further work in this direction is in progress, which

may both reveal more about the structure of elliptically fibered Calabi-Yau threefolds
and may also help provide specific situations in which the issues described in 2.5.1
can be systematically addressed. There are a number of more general conceptual issues
that can be addressed in the context of this program, which we discuss briefly here.

Hodge number structures

The approach taken here, which in principle can systematically identify all elliptically
fibered Calabi-Yau threefolds that admit a global section, is complementary to meth-
ods involving toric constructions that have been used in many earlier studies of the
global space of CY threefolds. The systematic analysis by Kreuzer and Skarke [129]
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of CY threefolds that can be realized as hypersurfaces in toric varieties through the
Batyrev construction [1511 gives an enormous sample of Calabi-Yau threefolds whose
Hodge numbers have clear structure and boundaries. The analysis of elliptically fibered
threefolds through Weierstrass models groups the threefolds according to the base B2
of the elliptic fibration, and both simplifies the classification arid enumeration of models
and enables the systematic study of non-toric elliptically fibered CY threefolds. The
fact, observed in [128, 1271, that generic elliptic fibrations over both toric bases arid a
large class of non-toric bases span a similar range of Hodge numbers, with similar sub-
structure arid essentially the same boundary, suggests that these sets of threefolds are
not just a small random subset, but may in some sense be a representative sample of
all Calabi-Yan threefolds. In 11881, Candelas, Constantin, arid Skarke used the Batyrev
construction and the method of "tops" [1891 to analyze Calabi-Yau threefolds with an
elliptic (K3) fibration structure arid identified certain patterns in the set of associated
Hodge numbers. Some of these patterns are clearly related to the transitions described
through Weierstrass models as blow-ups and tuning of gauge groups. For example, the
characteristic shift by Hodge numbers of (+1, -29) is clearly seen from the Weierstrass
based analysis as the set of blow-up transitions between distinct bases B2. Similarly,
shifts such as (+1, -17) can be seen as arising from transitions on the full threefold
geometry associated with tuning an su(2) algebra on a -1 curve, etc. In [1881, another
structure noted is the classification of fibrations into "E8 ," "E7 ," etc. types based on
the way in which the elliptic fiber degenerates along the base. These correspond pre-
cisely in the Weierstrass/base picture to the families of threefolds that can be realized
by blowing up points and tuning additional gauge groups over the bases F 12 , F8 , etc..

One structure that is manifest in the Hodge numbers of Calabi-Yau threefolds,
however, which is not as transparent from the Weierstrass point of view is the mirror
symmetry of the set of threefolds, which exchanges the Hodge numbers h" and h2".
From the Batyrev point of view, mirror symmetry has a simple interpretation in terms
of the dual polytope defining a toric variety used to construct a Calabi-Yau manifold.
From the point of view of Weierstrass models of elliptic fibrations over fixed bases,
however, it seems harder to understand, for example, how a blow-up transition with
change in Hodge numbers (+1, -29) is related to a sequence of blow-ups that give a
shift (+29, -1) and typically generate a full chain of divisors in the base associated with
a gauge group factor E8 x F4 x (G2 x SU(2)) 2 [126, 128]. Understanding how these two
different approaches of toric constructions based on reflexive polytopes and Weierstrass
models on general bases can be brought together to improve our understanding of mirror
symmetry arid the structure of Hodge numbers for CY threefolds is an exciting direction
for further work.

General Calabi-Yau's with large Hodge numbers

The results presented here add to a growing body of evidence that the set of ellipti-
cally fibered CY threefolds with section may provide a useful guide in studying general
Calabi-Yau threefolds, and may in fact dominate the set of possible Calabi-Yau three-
folds. While there is as yet no clear argument that places any bound on the Hodge
numbers of a general Calabi-Yau threefold, several pieces of empirical evidence seem

to suggest that the CY threefolds with the largest Hodge numbers may in fact be
those that are elliptically fibered. In this thesis we have shown that all Hodge num-

bers for known Calabi-Yau manifolds that have h 2 1 > 350 are realized by elliptically

63



fibered threefolds. It seems natural to speculate that the threefolds constructed here
may constitute all Calabi-Yau threefolds (elliptically fibered or not) that lie above this
bound. The results of [1281 suggest that more generally, the outer boundary of the set
of Hodge numbers for possible CY threefolds may be realized in a systematic way by
elliptically fibered threefolds, and further empirical evidence from 11881 also suggests
that a large fraction of the models in the Kreuzer Skarke database with large Hodge
numbers are elliptically fibered. Since the methods of this thesis do not depend oil
toric geometry, it seems that this set of observations is not an artifact of the toric ap-
proach, but rather that those threefolds constructed using toric methods form a good
sample, at least of those threefolds that admit elliptic fibrations. Other independent ap-
proaches to constructing Calabi-Yau manifolds have recently given further supporting
evidence for the dominance of elliptically fibered manifolds in the set of Calabi-Yaus.
In [190, 191], the complete set of Calabi-Yau fourfolds constructed as complete inter-
sections in products of projective spaces were constructed. From almost one million
distinct constructions it was found that 99.95% admit at least one elliptic fibration; a
similar analysis finds that 99.3% of threefolds that are complete intersections admit an
elliptic fibration [192]. Taken together, these results suggest that it may be possible
to prove that all Calabi-Yau threefolds have Hodge numbers that satisfy the inequality
hl" + h2J < 491 + 11 = 502. Some initial exploration of one approach to finding such
a bound from the point of view of the conformal field theory on the superstring world
sheet has been undertaken in 1193, 194].

Rank-preserving tunings

In this thesis we have identified three tuned elliptic fibrations which would correspond
to Hodge numbers (17, 371), (18,363), and (19,353). We have performed a number of
checks to confirm that these models are consistent, which all work out, so naively these
appear to represent a new set of Calabi-Yau threefolds. Such hypothetical threefolds do
not appear in the Kreuzer-Skarke database, however. This may be related to the fact
that they arise from tuning moduli in other Calabi-Yau threefolds that have the same
value of hlm" (the threefolds with Hodge numbers (17,377), (18,366), and (19, 355)
respectively), associated with the enhancement of su(3) to 02. This means that the
geometric transitions associated with these tunings are less dramatic than the other
tunings and blow-ups since they do not actually change the dimension of Hl'1 . One
possible scenario is that these apparently new Calabi-Yau threefolds may actually rep-
resent special loci in the moduli spaces of the corresponding su(3) structure threefolds,
and might not actually represent topologically distinct Calabi-Yau manifolds. This
situation might be analogous to the tuning of moduli in a base to give a -2 curve at
a codimension one space in the moduli space, which changes the structure of the Mori
cone but not the topology of the manifold. Further study of the detailed structure of
these apparently new threefold constructions goes beyond the methods developed in
this thesis but should in principle be able to clarify this issue. Throughout this work,
it should be understood that where rank-preserving tunings occur, they likely do not
represent distinct threefolds.

Uniqueness and equivalence of Calabi-Yau threefolds

Another difficult problem on which the methods of this thesis may be able to shed some
light is the question of when two Calabi-Yau threefolds, given by different data, are
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identical. In the Kreuzer-Skarke database there are many examples of Hodge numbers
for which multiple toric constructions provide CY threefolds, as illustrated in Table 2.3.
A priori, it is difficult to tell when these threefolds represent the same complex manifold.
Wall's theorem 11951 states that when the Hodge numbers, triple intersection numbers,
and first Pontryagin class of the threefolds are the same the spaces are the same as
real manifolds, but even this does not guarantee that two manifolds live in the same
complex structure moduli space. The problem of telling whether two sets of triple
intersection numbers given in different bases are equivalent is also by itself a diffi6ult
computational problem. Thus, it is difficult to tell whether two Calabi-Yau manifolds
given, for example, by the toric data in the Kreuzer-Skarke list, are identical.

The methods of this thesis provide an approach that can resolve this kind of question
in some cases. When the construction of an elliptically fibered Calabi-Yau threefold over
a given base with specified Hodge numbers can be shown to be unique (up to moduli
deformation) using the Weierstrass methods implemented here, this guarantees that
any two CY threefolds that are both elliptically fibered and share these Hodge numbers
must be identical as complex manifolds. In particular, with the exceptions of the Hodge
number pairs (10, 376) and (19, 355), for all the Hodge numbers found in this thesis
with h 2 J > 350, there was a unique EFS CY threefold construction. It follows that
any EFS CY threefolds with these Hodge numbers should be geometrically identical
as Calabi-Yau manifolds. As an example, consider the elliptically-fibered Calabi-Yau
threefold with Hodge numbers (12, 462). There are two distinct toric constructions
of threefolds with these Hodge numbers in the Kreuzer-Skarke database. Both admit
elliptically fibrations. As we have proved here in 2.4.4, however, there is a unique
construction of such a CY threefold, which is realized by considering the generic elliptic

fibration over a base F12 given by blowing up the Hirzebruch surface F12 at any point
not lying on the -12 curve S. In principle, continuing this kind of argument to lower
Hodge numbers might be able to significantly constrain the number of possible distinct
Calabi-Yau threefolds that can be realized using known constructions. In principle this
line of reasoning can also be applied at a more refined level by computing the triple
intersection numbers for the manifolds in question. This approach may be able to
distinguish some pairs of elliptic fibration constructions with identical Hodge numbers,
such as the two constructions found here for threefolds with Hodge numbers (19, 353),
or the generic elliptic fibrations over IF7 and F8, which both have Hodge numbers (10,
376). Of course, however, many CY threefolds are likely to admit multiple distinct
elliptic fibrations (as found for fourfolds in 11911), so in some cases apparently distinct
constructions of elliptic fibrations will still give equivalent Calabi-Yau threefolds. We
leave further exploration of these interesting questions to future work.
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Chapter 3

Local structures in F-theory:
exploring the (mis)match between
F-theory and low-energy field
theories

In this chapter, we move from the previous global analysis to a local one. We will
systematically analyze the local combinations of gauge groups and matter that can
arise in 6D F-theory models over a fixed base. We compare the low-energy constraints
of anomaly cancellation to explicit F-theory constructions using Weierstrass and Tate
forms. In particular, we classify and carry out a local analysis of all enhancements of
the irreducible gauge and matter contributions from "non-Higgsable clusters," and on
isolated curves and pairs of intersecting rational curves of arbitrary self-intersection.
Such enhancements correspond physically to unHiggsings, and mathematically to tun-
ings of the Weierstrass model of an elliptic CY threefold. We determine the shift in
Hodge numbers of the elliptic threefold associated with each enhancement. We also
consider local tunings on higher genus curves, intersecting curves, and codimension two
tunings that give transitions in the F-theory matter content, as well as the tuning of
abelian factors in the gauge group. These tools can be combined into an algorithm that
in principle enables a finite and systemati6 classification of all elliptic CY threefolds
and corresponding 6D F-theory SUGRA models over a given compact base (modulo
some technical caveats in various special circumstances that we describe explicitly),
and are also relevant to the classification of 6D SCFT's. To illustrate the utility of
these results, we identify some large example classes of known CY threefolds in the
Kreuzer-Skarke database as Weierstrass models over complex surface bases with spe-
cific simple tunings, and we survey the range of tunings possible over one specific base.
We identify some new local structures in the "swampland" of 6D supergravity and
SCFT models that appear consistent from low-energy considerations but do not have
F-theory realizations.

3.1 Outline of results

The following three sections represent the core of this chapter. In them, we present
and derive a set of fairly simple rules that call be used to determine which gauge

66



symmetries and matter representations are allowed, given the local geometric data of a

set of one or more intersecting divisors within a complex base surface appropriate for

F-theory. For each tuning over the local divisor geometry, we compare the constraints

given from low-energy consistency conditions to the possibility of an explicit F-theory

construction. Before diving into details, we pause to delineate our results and outline

our methods and strategy.

The setting of our analysis is 6D F-theory, i.e. F-theory compactified on a Calabi-

Yau threefold that results from an elliptic fibration with section over a two (complex)-
dimensional base manifold B. We focus on local combinations of effective divisors

(curves) in B. We focus particularly on smooth rational (genus 0) curves that intersect

pairwise in a single point. These cases are particularly amenable to study: we can

analyze them locally using toric methods, they are the only divisor combinations needed

to tune elliptic Calabi-Yau threefolds that arise as hypersurfaces in toric varieties as

studied in 1291, and they are the only configurations needed for analyzing 6D SCFTs.

For these combinations of curves, we carry out a thorough analysis using both the field

theory (anomaly) approach and a local geometric approach for explicit construction of

Weierstrass and/or Tate models. In these cases we can confirm that, with a few notable

exceptions that we highlight, the anomaly constraints match perfectly with the set of

configurations that is allowed in a local Weierstrass model. In addition to these cases

where we have both local geometry and field theory control of the configuration, we also

consider more briefly more general configurations needed to complete the classification

of tunings over a generic base, including higher genus curves ( 3.2.4), exotic matter

representations that can arise for non-generic tunings on smooth curves or tunings on

singular curves ( 3.5), and tuning of abelian gauge symmetries, which requires global

structure through the Mordell-Weil group ( 3.6).

The results of our analysis could be applied in a variety of ways. Most simply, they

provide a toolkit for easily developing a broad range of examples of 6D F-theory su-

pergravity models and corresponding elliptic Calabi-Yau threefolds and/or 6D SCFTs;

given a base geometry one can construct a set of tuned models with any particular

desired properties subject to constraints imposed by the base geometry. More gener-

ally, these results can be used in a systematic classification of 6D supergravity models

or SCFTs. A complete list of toric bases that support 6D supergravity models was

computed in [1261. The results presented here in principle give the local information

needed to construct all possible tunings on toric curves over these bases, which could

be used to compaie with the Kreuzer-Skarke database [46] to give an interpretation of

many of the constructions in that large dataset in terms of elliptic fibrations and to

identify those examples of Calabi-Yau threefold that are not elliptically fibered. The

broader set of constraints described here for more general tunings in principle gives

the basic components needed for a systematic classification of all tunings, including

on non-toric curves over generic bases. Combined with the systematic classification of

bases 171, this provides a framework for the complete classification of all Weierstrass

models for elliptic Calabi-Yau threefolds. A more detailed description of how such an

algorithm would proceed is given in 3.7. Note that in this more general context, and

even to some extent in the more restricted toric context, our rules really only provide a

superset of the set of allowed tunings. The local rules that we provide, even when sup-

ported by local explicit Weierstrass constructions, must be checked for a global tuning

for compatibility by explicit construction of a global Weierstrass model that satisfies

all the conditions needed for the tuning. While we expect that at least in the toric
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context, local rules are essentially adequate for determining the set of allowed tunings,
in a more global context this is less clear. For toric bases, there is an explicit descrip-
tion of the Weierstrass model in terms of monomials [1261, so that, at least for tuning
over toric divisors in toric bases, the technology for producing a global Weierstrass
model is available. For more general bases, or tunings over non-toric curves, a concise
and effective approach for tuning Weierstrass models is not at present known to the
authors.

Within this setting, we summarize the results of the following sections. These
results can be summarized in terms of the following data: given a base-independent
local collection of divisors {Dj} with given genera and self- and mutual intersections, we
determine a list [{Dj}] of the possible gauge symmetries over these divisors, along with
the matter representations and shifts in the Hodge numbers (Ah', Ah J) between the
generic and tuned models.

" Section 3.2 analyzes tunings C[E] for isolated divisors E with -12 < E -E. Curves
of self-intersection below -12 cannot arise in valid F-theory bases, and no tuning
is possible over any curve with self intersection below -6. Local models are used
to describe all tunings on genus 0 curves, and tunings on higher genus curves are
constrained through anomalies.

" Section 3.3 determines L[C] for NHCs C that consist of strings of multiple in-
tersecting divisors. Explicitly, these are the multi-curve NHCs (-3, -2, -2),
(-2, -3, -2), (-3, -2), and clusters of -2 curves of arbitrary size. (There are in
practice bounds on the size and complexity of such -2 clusters that can appear
F-theory SUGRA bases, some of which we discuss here). Local toric models are
used for the NHCs with -3 curves, and a simple "convexity" feature is used to
classify tunings over -2 clusters, the validity of which is checked in Tate models
in 3.4.

* Section 3.4 analyzes multiple intersecting curves beyond the NHCs. We show that
there are only five cormbinations of gauge algebras (or families thereof) that can
be tuned on intersecting pairs of divisors, and analyze the constraints on these
combinations using local (largely Tate) methods. We also consider constraints on
tunings of multiple branes intersecting a single brane, both when the single brane
carries a gauge group and when it does not. The latter case includes the "E8
rule" [4] governing what gauge groups can be realized on divisors that intersect a
-1 curve, which we generalize to include tunings, and a similar but weaker rule
for curves of self-intersection zero.

" Section 3.5 gives some further rules that apply for tuning exotic matter represen-
tations with a finer tuning that leaves the gauge group (and h1 '1 (X)) invariant
while modifying the matter content. The underlying F-theory geometry and
corresponding mathematical structure of non-Tate Weierstrass models is only
partially understood at this point so this set of results may be incomplete.

" Section 3.6 gives a guide to tuning abelian gauge factors over a given base. While
much is known and we can make some clear statements about tunings and con-
straints, this is also a rapidly evolving area of research and this set of results may
also be improved by further progress in understanding such models.
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3.2 Classification I: isolated curves

In this section we consider all possible tunings of enhanced groups on individual divisors
in the base. In general, a divisor in the base is a curve E of genus g and self-intersection
E - E = n. In this section we concentrate on generic tunings of a given gauge group,
which means that the curve E is generally smooth, and supports only certain generic
types of matter. For example, for su(N) a generic Weierstrass tuning on a genus 0
curve will give matter only in the fundamental (N) and antisymmetric (N(N - 1)/2)

representations; when the genus g is nonzero, there are also g adjoint (N 2 - 1) matter
fields. Further tunings that keep the gauge group fixed but enhance the matter content
are discussed in 3.5.

For each type of curve and gauge group we consider both anomaly constraints and
the explicit tuning through the Weierstrass model of the gauge group. We focus pri-
marily on rational (genus 0) curves. For individual rational curves we find an almost
perfect matching between those tunings that are allowed by anomaly cancellation and
what can be realized explicitly in F-theory Weierstrass models. For curves of neg-
ative self-intersection that can occur in non-Higgsable clusters, and for exceptional
algebras tuned on arbitrary rational curves, we compute the Hodge shifts explicitly
in Weierstrass models and confirm the match with anomaly conditions. For curves of

self-intersection -2 and above supporting the classical series su(N), sp(N), and so(N),
we use the Tate method to construct Weierstrass models explicitly, and anomaly can-

cellation to predict the Hodge number shifts.

A summary of the allowed tunings on isolated genus 0 curves and associated Hodge
shifts are presented in Table 3.1. These tunings listed are all those that may be allowed
by anomaly cancellation. The details of the analysis for these cases are presented in

3.2.1- 3.2.3. In 3.2.4 we use anomaly cancellation to predict the possible tunings and
Hodge number shifts for tunings on higher genus curves, though we do not compute

these explicitly using local models as the local toric methodology we use here is not
applicable in those cases. The upshot of this analysis is that for genus 0 curves, virtually
everything in Table 3.1 that is allowed by anomaly cancellation can be realized explicitly
in Weierstrass models, with the exception of some large SU(N) tunings on curves of
self-intersection -2 or greater, as discussed explicitly in 3.2.3, and so(14) on -2 curves
3.2.2.

To make the method of analysis completely transparent, we carry out an explicit
computation of the possible tunings on a -3 curve using both anomaly and Weierstrass

methods in 3.2.1. This example demonstrates how such anomaly calculations and
local toric calculations are done in practice. It also serves to highlight the non-trivial
agreement between these completely distinct methods: both at the gross level of which
algebras can be tuned, but also at the detailed level of Hodge number shifts. The

corresponding calculations for curves of self-intersection -4 and below, as well as the

multiple-curve non-Higgsable clusters, can be found in Appendix .3.

Before proceeding with the example calculation, we should note that the core of

this section's results, Table 3.1, can be found to a large extent in a corresponding table

in [134]. Our version differs from that in [134] in two respects: we include algebras
that are not subalgebras of e8 , and we also include shifts in Hodge numbers that result

from implementing these tunings. This extra information is essential in order to use
these tunings as an organizational tool to search through the set of elliptically fibered

threefolds. Finally, our analysis of local Weierstrass models allows us to determine that
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g matter (Ah", AIo)
su(2) (6n + 16)2 (1, -12n - 29)
su(N) ((8 - N)n + 16)N (N - 1, (15N-N

2 
)n - (15N + 1))

+(n + 2) N(N 1)

sp(N/2) ((8 - N)n + 16)N (22, -(215N N2
-2 31N-N2

(n + 1) (N(N-1) _

so(N) (n + (N - 4))N (LN/2] - r., -h. - (N + 16)n - (N27N+12s

+(n + 4)25- [(N+1)/2J S
92 (3n + 10)7 (2 - r., [-7(3n + 8) - h.])
f4 (n + 5)26 (4 - r., [-26(n + 3) - h.])
6 (n + 6)27 (6 - r,(78, - h.) - 27(n + 6))

C7 (4 + n/2)56 (7 - r., (133 - h.) - 28(n + 8))

Table 3.1: Possible tunings of gauge groups with generic matter on a curve E of self-intersection n,
together with matter and shifts in Hodge numbers, computed from anomaly cancellation conditions.
For algebras that can be obtained from Higgsing chains from cs, these matter contents were previously
computed in [134}. r., h. are the rank and difference V - Hcharged of any non-Higgsable gauge factor
that may exist on the curve before tuning. Note that tunings are impossible when the formula for the
multiplicity of representations yields a negative number or a fraction. (Multiplicities of . are allowed
when the representation in question is self-conjugate.) N for sp(N/2) is assumed to be even

virtually all of these configurations that are allowed by anomaly analysis are actually
realizable locally in F-theory, with some specific possible exceptions that we highlight.

Following the extended example of tunings on a -3 curve, we give a general analysis
of tunings on curves of self-intersection -2 and above; these cases can be uniformly
described in a single framework. In these sections and in the Appendix, we discuss
all possible tunings except for so(N), because these tunings are particularly delicate.
so(N) tunings are separately described in 3.2.2.

3.2.1 Extended example: tunings on a -3 curve

Let us begin with an extended example that will illustrate many of the features of the
following computations. On an isolated -3 curve, the minimal gauge algebra is su(3),
which can be enlarged as

9 = su(3) -+ -2 - so(7) -+ so(8) -+ f4 -+ e6 -4 e7
(f,g) = (2,2) - { (2,3) } -+ { (3, 4) } -+ (3,5)

The middle three and subsequent two gauge algebras are distinguished by monodromy
of the singularity, as per the Kodaira classification; we will describe this in detail below.
These tuned algebras and their associated matter all fall in a Higgsing chain from e7.
The complete set of tunings a priori allowed on a -3 curve also includes so(N) for
8 < N < 12, but these will be discussed in the following section.

Spectrum and Hodge shifts from anomaly cancellation

First we will perform an anomaly calculation; then we will discuss a local toric model

(essentially F3 with the +3 curve removed) on which we can implement these tunings.
A tabulation of the relevant anomaly coefficients AR, BR, CR and A values is given in
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Appendix .2 Taking the "C" condition, we find:

3 (R

--3 ='( CR - 9)
\ R/

0 =Z C (3.1)
R

Since all coefficients CR > 0 for su(3) (which follows from the definition of CR and
the absence of a quartic Casimir), this implies that no matter transforms under this
gauge group; there is only the vector multiplet in the adjoint 8. This in turn implies
that the presence of this gauge algebra contributes to the quantity Ho (1.44) by an
amount h. = V - Hcharged and r = 2 (this algebra's rank) to hl'. Since the gauge

algebra su(3) (with no matter) corresponds to the generic elliptic fibration over a -3
curve (i.e., -3 is an NHC), we conclude that all shifts between the generic case and a
tuned case in the Hodge numbers (Ahl'l, Ah 2,1 ~ AHo) = (Ar, A(V - Hcharged) must
be calculated as (Ah", AHo) = (rtuned - 2, Vtuned - Hcharged,tuned - 8), as denoted in

Table 3.1.
With this most generic case in mind, let us calculate the corresponding quantities for

92. Assuming only fundamental matteri, with a multiplicity Nf, anomaly calculation

gives

Y, -E = -2 ( CR- CAd
3 (zR

-3 = 4(f_5
3 4 2

Nf = 1 (3.2)

The contribution to Ho is (recall that the adjoint of 92 has dimension 14 and the

fundamental has dimension 7):

AHo = 14- 7- 8 = +7- 8 = [-1] (3.3)

In other words, implementing this tuning decreases Ho by one in comparison to the

generic case. Note that, as mentioned in 1.3.3, it seems that one of the charged scalars

in the 7 of 92 will really act as a neutral scalar for purposes of computing h 2,1(X), since

it can be used to break the gauge group without reducing rank. We continue to treat

this scalar as charged, without contributing to H0 , here and in the rest of the thesis,
but this caveat should be kept in mind for all 92, f4 and so(2n + 1) tunings, and is

indicated by the notation [-1].

For so(7), CAdj = 3, which implies 164] that the only relevant representations on

'This is the generic matter type expected for g2. More generally, other C coefficients are > 5/2
and therefore the presence of even one hypermultiplet in one of these non-fundamental representations
makes it impossible to satisfy the C condition on any negative self-intersection curve.
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negative self-intersection curves are 7f and 8,. Since C 0 and 3s =, we have

Y - E = CR -- C~dj

-33-3 = N, - _3

N 8 =2 (3.4)

One can then use the "A" condition to demonstrate2 that Nf 0:

K -E = Aadj - AR
6 ( R

1 = (5 - Ns - Nf)

3 (5- 2- N)

N\f 0 (3.5)

With knowledge of the representation content in hand, we call compute the change in
Ho:

AHo = A(V - H) = 21 - 2 x 8 - 8 = -3. (3.6)

Note that the absence of fundamental matter in this case means that there is no rank-
preserving breaking so(7) -+ g2, so that the shift in Ho is not denoted in brackets. A
similar calculation for zo(8) yields N. = 2, Nf = 1, hence

AHo = A(V - H) = 28 - 3 x 8 - 8 = +4 - 8 = -4 (3.7)

Proceeding to f4, we find again that only fundamental matter is possible on a (-3)-
curve, and

E-E = A( CR -c.4dj

62 /N _ 5
3 12 12)

-3 = Nf -5

Nf = 2 (3.8)

Recalling that the dimensions of the fundamental and adjoint are 26 and 52, respec-
tively, we find

AHo =52 - 2 x 26 - 8 = [-8] (3.9)

For e6, we find

E-E A= (CR-CAdj
3(R

- 62 fNf 1'

3 12 2)

N = 3 (3.10)
2
1n calculating K - E, we use (K + E) - E = 2g - 2 = -2 for a genus 0 curve (topologically PI).
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Given that the dimensions of fundamental and adjoint are 27 and 78, respectively,

AHO = 78 - 3 x 27 - 8 = -3 - 8 = -11 (3.11)

Enhancing finally to C7, we find

122 (N 1)

3 (246
-3 2(N - 4)

5
N = -(3.12)

2

which is possible because the fundamental 56 of C7 is self-conjugate, and hence admits
a half-hypermultiplet in six dimensions. This contributes to H0 in the amount +133 -
556 = -7, i.e. represents a shift of -4 subsequent to tuning an C6 , or in total AHO
-15 from the generic case of su(3).

These calculations can be summarized simply as:

g su(3) 92 so(7) so(8) f4 C6 C7 (3.13)
AHo 0 - [-1] -3 -4 [-8] -11 -15

Spectrum and Hodge shifts from local geometry

Now we would like to explain this from a more direct geometric viewpoint. We will find
that we must be careful to implement the most generic tuning, which (when we consider
monodromy) will not always be obtained simply by setting monomial coefficients to
zero. We use a local model that can be considered a convenient way to visualize the
monomials in f and g (in local coordinates); alternately, our local models are simply
concrete ways of generating the full set of monomials consistent with equations 1.24.
Torically, the self-intersection number of any toric divisor E -+ vi corresponding to
vi in the fan can be determined by the formula vi-1 + v+11 = -(E - E)vj. Therefore,
a linear chain of k rational curves with any specified self-intersection numbers may
be realized by a toric fan with k + 2 rays, which corresponds to a non-compact toric
variety. In this example, we need three rays (corresponding to the -3 curve and its
neighbors). Without loss of generality, we take this fan to be (3, -1), (1,0), (0, 1).
Using the methods of section 2, we find that the monomials of -nK are determined
to lie within (or on the boundary of) a wedge determined by the conditions: x > -n,
y > -n, and y < n + 3x. The first condition is automatically satisfied when the latter
two are.

In this description of the fan, the -3 curve E corresponds to the ray v = (1, 0). We
will study the monomials of f (-4K) and g (-6K) in order to determine the number
of degrees of freedom (i.e., complex structures) that must be removed in order to im-
plement a given tuning. We describe the different cases in order:

Case 1: su(3): This is the untuned case, apparent from the diagrams. If we put
local coordinates z and w such that E = {z = 0} and a neighboring curve (say cor-
responding to the ray (0, 1)) is {w = 0}, then the monomials in -kK represented by
points (a, b) correspond concretely to Za+k b+k. Since the lowest-x monomials in f
and g are at -2 and -4 respectively, this implies that the orders (f, g) are (2, 2) on
E. This places us in Kodaira case IV. To determine whether this corresponds to su(3)
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1 40

Figure 3. 1: A representationI Of' inonom11ials 11L - (leffl) and -6K (right) over(,i the~c

local mnodel1 of a -3 curve "" and its two neighbors. Bothi sets of monomlials should

be considered as extending infinitely in the positive x and y directions. TO write

these moanomiials xpitywe may establish a local coordinate systemn -, such that

J = { = 0} (corresponding to the ray (11,0) of the toric fani) anlld one of its two

n~eigh1bors V' (corresponding to the ray (0,1)) is J,' = =w 0}. Then a monomlial

((1, b) (- -kK' COrresp)Onds COnCretely to z~e~

01' !3u(2') requires testing a monodromyv condition as outlined inl c.g. [851. To state this

C0ondition, let us expand f = j, f-' anid q E yjz as Taylor series in ;. Ex:plicitly,

theni, tile m11nodr1omy1 Cond~ition to chieck is whether. 92(U) is a, perfect square: if it is,

tile fibration corresponds to an !5u(3.); otherwise,, it corresponds to 511(2). I11 ouir case, it

is clear that 92(V) (being the constant polynomial in w) is a perfect square. The prop-

erties of -3 curve geomietry' conspire to force us into this usua-lly non-generic branch

of the Kodaira type IV case. Having established 5iu(3) as the base (untuned) case,
let uis investigate tuned fibrations. Along the way, we will count how many complex
degrees of freedom (mtonomnial coefficients) must be fixed inl order to tune a given model.

Case 2: 11.: This is the generic case of all (f, g) = (2 , 3 ) type singularity. To

implemlent this tuning, then, C-11 that is required is that y v-anish to degree 3, esl

accomplished b~y removing the single monomnial ill Y2. Hence, implementing this tuning

removes precisely- oine. degree of freedom

as,- we had concluded earlier using anomialy calculatious.

Case 3: 5o(7): We now encounter a more subtle issue of counting. Tile mion-

odromy conditions that distinguish tile three gauge algebras that call accompany a

(2, 31) singularity are specified by the factorization properties of tile polynomnial

3+f2(w )x + flA(wt) 1(3.14)

3 + x + B (generic) 4 2

(x - A4)(.i2 + Ax + D) !3 o (7)

(x-A) (r - B) (v + (A4 + B).) =7 so(8) (3.15)
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The coefficients here are chosen in order to ensure that no quadratic term appears in

the total cubic polynomial. To obtain the second condition (so(7)), we proceed by

writing explicitly

X3 + (f2,o + f2,IlW + f2,2 w2)X + (93,0 + g3,1w + 93,2W 2 + 93 ,313). (3.16)

This expression uses explicit knowledge of the monomials. Recalling that the order in w

of a monomial (a, b) in -4K is b + 4, we may read off that the only monomials of f2 are

{wO, w1, w2 }. Similarly, the only monomials available for 93 are {wo, wi w2 w 3 }. The

seven coefficients above must then be tuned to enforce the appropriate factorization.

Expanding the factorized version of the cubic (in x) polynomial, it is clear that we

must impose that the coefficient of x be given by B - A 2 and that of xo given by -AB.

This can be minimally accomplished by setting to zero the coefficients c and g above.

More generally, A and B must be respectively linear and quadratic, with 5 independent

degrees of freedom. This represents a loss of two additional degrees of freedom (besides

the first, which represented tuning from su(3) to 92). Hence

AHO = -3 (3.17)

again in accordance with the anomaly results.

Case 4: so(8): Consulting the list above, to achieve so(8), we must completely

factorize the polynomial. Expanding yields the constraints

a-+bw+cw2 = -A 2 -AB-B 2

d+ew+fw2 +gw3  = AB(A+B) (3.18)

This requires that now both B and A must be linear in w, so we can for example simply

set the f coefficient to zero as well. This removes an additional 1 degree of freedom

(beyond the previously removed three) leading to

AHO = -4 (3.19)

as expected from anomaly results.

Case 5: f4: To tune to the f4/C6 case, we must enhance the degrees of vanishing

of f and g to (3,4), which requires that we eliminate all (a, b) E -4K with b < -2

and (c, d) E -6K with d < -3. The generic such tuning is an f4 algebra. Inspecting

the monomial figure, we find that from the initial (untuned) scenario, this requires us

to eliminate the leftmost column of f (3 monomials) and the leftmost two columns of

g (1 + 4 monomials), so that in total

AHo = [-8] (3.20)

as expected from anomaly results.

Case 6: 6: In this case, the monodromy condition is whether g4 is a perfect square.

Counting up from the left (as before), the available monomials are {wo, w1 , ... , w }. We

can make this polynomial of degree 6 into a square by restricting it to be of the form

94(w) = (a + 3w + 3w 2 + Ew3 )2 , (3.21)
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which clearly preserves 4 of the 7 original degrees of freedom. This counting indicates
that (as expected) we lose 3 more degrees of freedom in tuning from f4 to e6 , for a total
change of

AHo = -11 (3.22)

from the original (untuned) su(3). Note that this minimal tuning cannot be reached
by simply setting to 0 three of the coefficients in g4.

Case 7: e7 : Enhancing finally to e7 requires enhancing the degrees of vanishing
of (f, g) to (3, 5). Up to this point, we have already enhanced to (3, 4), so it remains
only to eliminate the remaining 7 monomials of g4, yielding a shift in Ho of -7 in
comparison to a tuning of f4, or a shift of -4 subsequent to tuning C6, in accordance
with anomaly calculations.

We thus have found that explicit computation of Weierstrass models with monomi-
als confirms that all tunings compatible with anomaly cancellation on a -3 curve can
be realized in F-theory, with the proper number of degrees of freedom tuned in each
case.

3.2.2 Special case: tuning so(N > 8)

We have not so far explored the tuning of so(N) with N > 8, i.e. a Kodaira type
I*,,o singularity. Such gauge algebras are non-generic in two ways: 1) they require
a vanishing of A to order greater than the minimum min{2 ord(f), 3 ord(g)}, and 2)
even and odd so(N) are distinguished by a subtle monodromy condition 11551. Due to
these complications, we have reserved the treatment of these tunings to this section.
The results to follow are almost precisely in accord with Table 3.1, by applying the
rule that a tuning is not allowed when the formula for the multiplicity of any of its
representations becomes negative or fractional (with fractions of - allowed for real
representations). However, for clarity, we explicitly list the allowed tunings for -2, -3,
and -4 curves in Table 3.2.

The situations in which these complications arise on curves of negative self-intersection
are quite limited. For instance, it is impossible for so(N) to arise on a curve of self-
intersection < -5. This is a straightforward consequence of the NHC classification,
which dictates that such curves must at least host algebras of f4 or C6,7,8. Because no
so(N) contains any exceptional algebra as a subalgebra, we can conclude that these low
self-intersection curves cannot be enhanced to any so(N). We focus here on tunings
only on individual curves of self-intersection -4, -3, and -2, excluding tunings on
clusters of more than one curve. These are the cases relevant for tunings on NHC's.
Indeed, it is easy to see, upon consulting the analysis of -2 chains, that higher so(N)'s
are impossible on any chain of more than one -2 curve. Therefore such tunings, if they
occur, can do so only on isolated -2, -3, or -4 curves. We proceed to analyze each
case separately. Tunings of so(N) on individual curves of more general self-intersection
are treated in the following subsection.

As is our general strategy, we examine each potential tuning both geometrically (in
a local toric model) and from the standpoint of anomaly cancellation. We again find
that these methods agree, with one noteable exception: we will find that the anomaly-
consistent so(14) on a -2 is impossible to realize geometrically. The structure of this
section is slightly different from previous ones: we first perform anomaly calculations
for curves of self-intersection -4, -3, and -2; and then perform geometric calcula-
tions for these curves. We will see that tunings are limited by the existence of spinor

76



Curve so(N) Nf N, (Ah", AHo)
-2 7 1 4 (3,[-18])

8 2 4 (4,-20)
9 3 2 (4,[-23])
10 4 2 (5,-27)
11 5 1 (5,[-32])
12 6 1 (6, -38)
13 7 (6,[-45])

-3 7 0 1 (1,-3)
8 1 2 (2,-4)
9 2 1 (2,[-6])
10 3 1 (3,-9)
11 4 1 (3,[-13])
12 5 (4,-18)

-4 N N-8 0 ([(N -8)/2j,N (-L + +28)

Table 3.2: Allowed so(N > 7) representations and associated matter. No so(N) tuning is allowed on

a curve of self-intersection < -5. All shifts are from the generic gauge algebras: 0, su(3), and so(8),
respectively.

representations-they become too large to satisfy anomaly cancellation. Geometrically,

this will manifest as a (4, 6) singularity at a codimension-2 (i.e. dimension-0) locus in

the base which corresponds to the location of spinor matter. Let us now see how this

unfolds explicitly.

Spectrum and Hodge shifts from anomaly cancellation

The anomaly calculation proceeds simply, but reveals an intricate pattern of spinors

depending upon the curve self-intersection, matching e.g. 11341. First notice that the

adjoint representation has Cadj = 3, and therefore the C condition can be satisfied only

for representations with C < 3. (There are no representations with negative C.) Given

A = 2 for so(N), the C condition takes the form

E 4 = C -) (3.23)

Indeed, since we consider only curves with E - E < 0, the only representations that

can cancel the -3 are those with C < 3. As discussed in [64], the only such repre-

sentations are the fundamental (C = 0) and the spinor (for N < 14). Given that the

fundamental representation does not contribute at all to this condition, this equation

uniquely fixes the number of spinor representations on a given curve. The results are

summarized in table 3.2. It is important in implementing these conditions to recall

that the 32 and 64 dimensional spinor representations (of so(11/12) and so(13/14))
are both self-conjugate. Therefore, half-hypermultiplets can transform in these repre-

sentations. These hypers are counted with multiplicity 1; if they were to be counted

with multiplicity 1, anomaly cancellation for so(11/12) would be impossible on a -3

curve and anomaly cancellation for so(13/14) would be impossible on a -2 curve. As

an example, on a -3 curve, the C condition reads -2+ 3 = = NC,. For N = 9, 10,
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C, = 3, so there is one spinor rep. For N = 11, 12, C = and therefore a half-hyper
spinor rep is required. Above this, we can see that C, = 3, and even the smallest
amount of spinor matter, a half-hyper, can no longer satisfy anomaly cancellation. As
spinors were the only candidates to satisfy these conditions in the first place, we can
decisively state that so(N) tunings with N > 12 are forbidden on -3 curves.

As to the fundamental representations, their numbers can be determined from the
A condition

K - E AR - Aadj (3.24)
3 (

R

Using A, = 2 [(N+1)/2j-4, Aadj = N - 2, and Af = 1, we can easily solve for Nf. For
instance, on a -3 curve, we have already determined that there is 1 spinor hyper for
so(9/10) and 1 for so(11/12). Since the left hand side of the condition is K - E = -1,
we obtain -3 = Nf + NA., - (N - 2). As an example, for so(9) on a -3 curve, this
gives Nf = 7 - 2 - 3 = 2. For so(10), the only change is that Aadj = 10 - 2 = 8
increases by one, hence Nf = 3. Similarly, for N = 11, 12, although only a half-hyper
transforms in the spin representation, the coefficient A, doubles in comparison to the
previous cases. Thus again, the only numerical change is that Aadj increases by one
as N increases; Nf = 5,6 for so(11/12). This one example of tunings on a -3 curve
illustrates the general pattern of matter representations on all three curves considered;
further calculations are entirely analogous and are therefore omitted.

One final remark is in order: we found that so(14) was the largest so(N) that
anomalies allow on a -2 curve and so(12) was the highest allowed on a -3 curve. One
might expect this pattern to continue, with e.g. so(10) the highest possible tuning
on a -4 curve. But, at this very lowest self-intersection curve before such tunings
become impossible, they regain renewed vigor: all so(N)'s are tunable on a -4 curve.
It is straightforward to verify that the matter in table 3.2 for a -4 curve satisfies
anomaly cancellation. The reason there is no restriction is simply that it was the spin
representations that led to a problem before, and on a -4 curve, there are no spin
represenations: all matter is in the fundamentals.

Spectrum and Hodge shifts from local geometry

Now we check the predictions from anomaly cancellation by constructing, where pos-
sible, local models for the allowed so(N) tunings and showing how the disallowed tun-
ings fail. These local calculations are subtler than others we have so far encountered.
Namely, we must impose a non-generic vanishing of ord(A) > min{3 ord(f), 2 ord(g)}.
Moreover, there are two distinct monodromy conditions distinguishing so (8+ 2m) from
so(7 + 2m) in the I* Kodaira case, one condition each for n even and odd. These
conditions are clearly stated in [136, 851. For our purposes, instead of using these re-
sults directly, we note that the monodromy conditions can be summarized succinctly
as follows. To be in the generic Kodaira case I* , i.e. so(7 + 2m), requires that A
vanish to order 6 + m. However A6+m must not vanish; otherwise we would be in the
next highest Kodaira case. All monodromy conditions for I,*, can be summarized as
the requirement that A6+.m be a perfect square. When this is the case, the resulting
gauge algebra is enhanced so(7 + 2m) -+ so(8 + 2m).

For our local models, we use the fan {(0, 1), (1, 0), (n, -1)}, where n is (negative)
the self-intersection number of the middle curve E represented by the vector (1,0) and
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assumes the values 2,3,4. Because a -3 curve is the simplest example that captures
the complexity of these tunings, we begin with it, moving then to -2 and finally -4
curves.

On a -3 curve, we will be able to tune up to but not including an so(13). Let us
see how this is possible. We have already seen how an so(8) may be tuned, so let us
investigate the first new case: so(9), i.e. the generic I* singularity. To implement this
tuning, we simply require

A6 of2 + g = 0 (3.25)

In the above we suppress the coeffients of the separate terms (4 and 27, respectively)
as they will play no role in determining whether this quantity can be set to zero and (if
this is possible) how many degrees of freedom must be fixed to do so. In implementing
this condition, we must keep in mind that the orders of f and g must remain 2 and 3,
respectively. It is clear that such a tuning (on a smooth divisor) will be possible iff f2 is a
perfect square and 93 is a perfect cube. Indeed, expanding in a local defining coordinate
w for the curve represented by (0, 1), we see that fA ~ 3n-4 and g. ~ w3n-3, which
we will use repeatedly. In particular, f2 ~ w

2 and g3 - w 3, 3 whence this condition can
be satisfied if f2 DC #2, 93 Oc #3 for an arbitrary linear term # = a + bw. Note that for
cancellation between these terms, the two. coefficients a and b are arbitrary but fixed
between f and g, and moreoever, once an overall coefficient for #2 is chosen for f2,

this fixes the overall coefficient of 03. Hence there are 2 degrees of freedom remaining,
whereas we started with 3 + 4 = 7 in arbitrary quadratic and cubic polynomials.
Therefore, we lose 5 degrees of freedom in this tuning, in precise accordance with the
change AHo predicted from the matter determined by anomaly cancellation. (NB: This
change is counted from 92, the generic (2,3) singularity.) Comparing with the known
change of AHO = -3 in tuning so(8) from 82, we see that this tuning represents a loss of
2 additional degrees of freedom. (Or, from the generic non-Higgsable algebra su(3), we
have AHO = -6). To reassure ourselves that this indeed works, we recall the anomaly
calculation: su(3) has no hypers, only a vector in the adjoint, so its contribution to Ho
(in the terms V - Hcharged) is +8. For so(9), we have both vectors and hypermultiplets,
so the contribution to V - Hcharged is +36 - 1 - 16 - 2 - 9 = +2, a loss of 6 degrees of
freedom.

To tune an so(10) requires implementing a mondromy condition: g4 + 10h must
be a perfect square [851. This is indeed possible, and since 94 ~ W6, we lose 3 degrees
of freedom in requiring that it take the form (~ w 3 ) 2 . Again, we have a match with
anomaly cancellation.

To tune an so(11) we now require A 7 = 0, namely

0 = A7  f3 2 + 9394
= f304 +3 94 (3.26)

Now this will be possible with g4 oc #f3, which consumes all the degrees of freedom of

g4, L.e. all 7 (or the 4 that remain after tuning an so(10)); again, we have agreement
with anomaly cancellation calculations.

To tune an so(12), we now impose the more complicated monodromy condition that

1 1 q4 _ 2(3.27)y = 40(95 + 3~4 f32(.7

3 The notation ~ w" will be used throughout this section to denote a polynomial of degree n in w
with arbitrary coefficients.
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be a perfect square. This is also possible. We have 10 degrees of freedom in g5 ~ I9

and 6 in f3 ~ w . By requiring 95 DC ##5, g5 ~ w8 and f3 OC of, f3 ~ U4, we can factor
out #2 from p; we can then tune g5 so that p/02 is a perfect square, so that we satisfy
the monodromy condition (3.27). This fixes 1 + 4 = 5 degrees of freedom, consistent
with anomaly cancellation.

What goes wrong at the crucial case so(13)? To implement this tuning, we must
set to zero A8 :

0 = A8  OC f f2 + ff4+ g gs +g

= f,02 + 4f4 +3 gs (3.28)

We combined the first and last terms upon recalling that g4 oc #f3. For this quantity
to be zero, # must divide f3, which implies in this case that # divides f3 because 0
cannot be a perfect square. This leads to an unacceptable singularity on the curve
C0 = {# = 0}! This arises because, now, #2ff2 and 01f3, so that f vanishes to order
4 on C4p. Meanwhile, we have already found that 3 193, and now q#2 194 and 01gs. This
leads directly to a (4,6) singularity on C.

On a -2 curve, the story is similar but slightly more complicated: we can tune up
to but not including so(14), which produces a discrepancy with anomaly cancellation. 4

Geometrically, we will see that the so(14) tuning fails for reasons similar to but slightly
different from the failures we have previously encountered. To begin investigating these
tunings, note that on this geometry, f,, g.,, oc w 2". On an isolated -2 curve, we have

f2 ~ W 4 , 93 ~ w 6 , which implies that an I* can be tuned by taking # = a + bw + cw2
to be an arbitrary quadratic. In the process, 5 + 7 - 3 = 9 degrees of freedom are
fixed. This is to be interpreted as a change from 92, the generic (2,3) gauge algebra;
or since so(8) can be tuned from 92 by fixing 6 degrees of freedom, this is a change
of 3 additional degrees of freedom from so(8), consistent with anomaly cancellation
calculations. (Recall that anomaly cancellation predicts AHO = -14, -20, -23 for 92,
so(8), and so(9), respectively.) We can continue the analysis exactly as before, and
no subtleties arise in counting degrees of freedom. Let us jump, then, to the case of
so(13), the generic 13* singularity. Again we must require

A OC f3 2 + + # (3.29)

but in this case, # is quadratic and can therefore be chosen to be a perfect square.,
Hence we can satisfy the required condition #1f3 while also maintaining # { f3. Let us
denote 4,2 = q. Making this choice, namely fixing a quadratic to be the square of a
linear function eliminates one degree of freedom. Also, factoring f3 =,03, for generic
degree 5 f3, we lose one more degree of freedom. Finally, setting 95 = f3 + #f4 fixes
all 11 degrees of freedom of g5 - w1 0 . This completes the required cancellation, fixing
1 + 1 + 11 = 13 degrees of freedom in the process. This matches with the shift from
so(11) expected from anomaly cancellation.

It is riot possible to tune so(14). The appropriate monodromy condition is to require
that A9 be a perfect square.

A9  = 3 ( 3 - 18,0 2 J3 f4 + 10893 (96 - f(330)

4 Thanks to Nikhil Raghurarn for illuminating discussions on this point.
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As the f3 term has lowest order (in 4),it cannot be cancelled by any other term unless
#f3, hence 41f3. But now 4'g5 = fj + '2f4, and one can check that our previous

constraints have likewise made all lower order terms in f and g divisible by 0 to
sufficiently high order that a (4, 6) singularity at {# = 0} is inevitable, and we conclude
that so(14) cannot be tuned on a -2 curve. This conclusion was also reached in [11]
based on the analysis of [1361. This is the sole discrepancy with anomaly cancellation
in this section. Hence so(14) on a -2 curve is a member of the tuning swampland.
One would strongly desire a field theory argument that also rules out so(14) with this
combination of matter. We leave this as an intriguing open question.

On a -4 curve, the discussion is completely analogous, save for one crucial differ-
ence: f2, 93 ~ z 0 are constants, therefore # is a constant. It is always true that a
constant divides higher order terms in A, and this condition therefore places no re-
strictions on the tunings. On an isolated -4 curve, there is no apparent restriction
on tuning so(N)'s. In SUGRA models, of course, large N will eventually cease to be
tunable because h2

,
1 is finite and there will riot be sufficiently many complex degrees

of freedom to implement the tuning. Such failures result from global properties of the
base. From an anomaly cancellation standpoint, this failure eventually results from an
inability to satisfy gravitational anomaly cancellation. As we discuss in 3.4.3, a local
bound on N can also be imposed by other curves of non-positive self intersection that
intersect a -4 curve supporting an so(N), though such bounds are not fully understood
in the low-energy theory. In SCFT's, there is no reason to expect that the series of
so(N) tunings will ever terminate at any N.

3.2.3 Tuning on rational curves of self-intersection n > -2

In this section we consider the possible tunings on an isolated curve of self-intersection
n > -2. For such curves, it is straightforward to use anomaly analysis along the
lines of the preceding section to confirm that in general the generic matter spectrum
is that given by Table 3.1 for each of the groups listed. Since in some cases the set
of possible tunings is unbounded given only local constraints, a case-by-case analysis
is impossible. Fortunately, beginning at n = -2, we can systematically organize the
computation easily as a function of n. For the exceptional Lie algebras (e, f, g) we can
check that the tunings are possible using Weierstrass, and explicitly check the Hodge
numbers. For the classical Lie algebras (sp,su) we use Tate form. For so(N) the
analysis closely parallels that of the previous section, and we compare the Tate and
Weierstrass perspectives.

Tuning exceptional algebras on n > -2 curves

For simplicity we begin with -1 curves, then generalize. From the local toric analysis,
we have an expansion of f, g in polynomials fA, g in a local coordinate w, where deg
(fk) = 4 + k, deg (g) = 6 + k. The number of independent monomials in fo, fn, ...

and go,gi,... are thus 5,6,... and 7,8,... respectively.
To tune an e 7 on the -1 curve, we must set fo = fi = f2 = go = ... 94 =O 0. This

can clearly be done by setting 63 independent monomials to vanish. Thus, we can tune
the e 7 and we confirm the Hodge number shift in Table 3.1. A similar computation
allows us to tune f4 by the same tuning but leaving g4 generic (11 monomials), giving
the correct Hodge shift of 52. For c 6 we have the monodromy condition that g4 is a
perfect square, so we get the correct shift by 57. Finally, for 82 we leave f2, g3 generic
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(7 + 10 = 17 mononials), for a correct Hodge shift of 35. We have the usual caveat
regarding the f and g2 and rank-preserving breaking.

We can generalize this analysis by noting that on a curve of self-intersection n > -2,
the local expansion gives

deg(fk) = 8 + n(4 - k), deg(gk) = 12 + n(6 - k). (3.31)

Tuning any of the exceptional algebras on any such curve then is possible, since the
degree is nonnegative for k < 4,6 for f, g respectively. The number of Weierstrass
monomials that must be tuned can easily be computed in each case and checked to
match with Table 3.1. In this comparison it is important to recall from (1.45) that
each -2 curve contributes an additional neutral scalar field, while each curve of self-
intersection n > 0 contributes n + 1 to the number of automorphisms, effectively
removing Weierstrass moduli from the neutral scalar count. For example, for e7 the
number of monomials tuned is

(( 9 + 4n) + - - + (9 + 2n)) + ((13 + 6n) + (13 + 2n)) = 92 + 29n. (3.32)

The number of neutral scalars removed by this tuning is then

92 + 29n - (n + 1) = 91 + 28n, (3.33)

in perfect agreement with the last line of Table 3.1. The shifts for the other exceptional
groups can similarly be computed to match the anomaly prediction.

Tuning su(N) and sp(N) on n > -2 curves

We now consider the classical Lie algebras, beginning with Su(N). These tunings are
more subtle for several reasons. First, the tunings involve a cancellation in A that is
not automatically imposed by vanishing of lower order terms in f, g so the computation
of such tunings is more algebraically involved. Second, these tunings can involve terms
of arbitrarily high order in A, f, g, and can be cut off when higher order terms do not
exist in f, g, even in a purely local analysis.

To illustrate the first issue consider the tuning of su(2) on a -1 curve. The analysis
of the general su(N) tuning through Weierstrass was considered in [148]. For su(2), this
tuning involves setting fo = -3q 2 , go = 203 to guarantee the cancellation of Ao, and
then solving the condition A, = 0 for g1. On a -1 curve this amounts to replacing the
5+ 7+8 = 20 monomials in fo, fl, gi with 3 monomials in a quadratic #. The shift in
Ho is therefore by 17, in agreement with Table 3.1. As N increases, the explicit tuning
of the Weierstrass model in this way becomes increasingly complicated. For N > 6,
there are multiple branches, including those with non-generic matter contents, even for
smooth curves; we return to this in 3.5. A systematic procedure for tuning su(N)
for arbitrary N through explicit algebraic manipulations of the Weierstrass model is
not known. Thus, in these cases rather than attempting to explicitly compute the
Weierstrass model to all orders we simply use the Tate approach described in ??.

Already from Table 3.1, we can see that as n increases, the bound of allowed values
on N so that the number of fundamental representations is nonnegative decreases. We
then wish to determine which values of N can be realized using the Tate description
and compare with this bound from anomalies. For n = -2, -1, 0, there is no bound
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on N from anomalies. To analyze the Tate forms, we determine the degrees of the
coefficients in an expansion ai = E ai(k) zk to be, in parallel to (3.31),

deg(ai(k)) = 2i + n(i - k) . (3.34)

To tune su(N), we must tune in Tate form a2 to vanish to order 1, a3 to vanish to order

Ln/2], etc.. This can clearly be done for any N on n = -2, -1,0 curves, so there is no
problem with tuning any of these groups, consistent with the absence of a constraint
from anomalies.

Now, however, consider for example a curve of self-intersection +1. From anomalies
we see that the number of fundamental matter representations is 16+(8-N)n = 24-N,
which becomes negative for N > 24. So we want to check which values of N < 24 admit
a Tate tuning of su(N). For n = 1, the maximum degree possible of the ai's is

deg(ai, a2, a3 , a4, a6 ) = (3,6,9,12, 18). (3.35)

For each aj, this is the largest value of k such that (3.34) is nonnegative. To tune a
Tate su(24), we need the a's to vanish to orders (0, 1, 12, 12,24). This can be achieved
by setting a3 = a6 = 0 and leaving arbitrary the largest terms in a4 (i.e., a4(12)). So we
can tune through Tate an su(24). Tuning a higher su(N) would require the vanishing
also of a 4 to all orders, which would produce a singular Weierstrass model with A = 0
everywhere, consistent with the anomaly constraint. This is not the end of the story,
however. To tune a Tate su(23) requires the a's to vanish to orders (0, 1, 11, 12,23).
But since there is no order 11 term in a3 or order 23 term in a6, this drives the Tate

model automatically to su(24). Thus, there is no Tate tuning of su(23) on a +1 curve.

Similarly, there is no Tate tuning of su(21), although su(22) may be tuned; and su(19)
can also be tuned without obstruction. Precisely this same pattern was encountered
in 1148] when an attempt was made to tune these groups directly in the Weierstrass
model over a +1 curve, although in that context a particular simplification was made
and there was no complete proof that there was no more complicated construction of

these algebras. The upshot, however, is that on a curve of self-intersection +1, there
is a slight discrepancy between the anomaly constraints and what we have been able

to explicitly tune through Tate or Weierstrass. We have an almost exact agreement,
but the gauge algebras su(21) and su(23) lie in the "swampland" of models that seem

consistent from low-energy conditions but cannot at this time be realized in any known
version of string theory.

We can perform a similar analysis for the su(N) groups on other curves of posi-
tive self intersection; the results of this analysis are tabulated in Table 3.3. Several
other curve types have similarly missing su(N) groups in the Tate analysis. For +2, +3
curves it is impossible to tune su(15), su(13) respectively using the Tate form, an ex-

plicit attempt to construct Weierstrass models showed a similar obstruction (with some

simplifying assumptions made) in 165]. It is interesting to note that in most of the cases

where the Tate analysis does not provide an su(N - 1) but does allow for tuning an

algebra su(N), the su(N) theory always has either zero or one hypermnultiplets in the

fundamental N representation, so that there is no direct Higgsing to su(N - 1). One

might think that in the two cases (n = 1, N = 22 and n = 7, N = 10) there should be

two fundamentals, so that the theory might be Higgsable to the missing model. In the

su(22) case, for example however, this tuning also forces5 an additional su(2) to arise in

5 Thanks to Nikhil Raghuram for pointing this out.
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Table 3.3: Table of su(N) algebras that can be realized on a curve of positive self-intersection
+n using Tate, compared to bounds from anomaly cancellation. The last column are cases in the
"swampland".

some cases on a curve that intersects E; this would absorb the two fundamentals into
a single bifundamental, so that there may generally be no direct Higgsing to Su(21). It
may also be relevant that in the explicit tuning of su(24) on a +1 curve in [1481, the
resulting gauge group had a global discrete quotient, so that the precise gauge group is
SU(24)/Z 2 , not SU(24). In any case, it seems likely that there is no Weierstrass model
corresponding to these configurations that cannot be constructed using Tate, and this
would give a self-consistent picture with the other results in this thesis, but we do not
have a complete proof of that statement.

For tunings of sp(N), the story is similar but simpler. Anomaly cancellation shows
that sp(N) can only be tuned on curves of self-intersection n > -1. From the Ko-
daira conditions it is immediately clear that sp(N) cannot be tuned on a curve of
self-intersection -3 or below. For a curve of self-intersection -2, the monodromy con-
dition that distinguishes sp(N) from su(N) automatically produces an su(N) group,
since the condition is that fo = k2 where 0 itself is a perfect square, and since fo is a
constant on a -2 curve, it is always a perfect square. Just as for su(N) we can use Tate
to determine when sp(N) can be tuned on a given curve of self-intersection n > -1.
In this case there are no inconsistencies between anomaly conditions and the tuning
possibilities; the swampland in this case is empty, and all possibilities in Table 3.1 that
have nonnegative matter content are allowed.

Tuning so(N) on n > -2 curves

Finally, we consider so(N) on curves of self-intersection n > -2. Complementing the
analysis of 3.2.2, we see what the Tate analysis has to say about these cases. It is
straightforward to check that there is no problem with tuning up to su(12) using Tate
for a local analysis around any curve of self-intersection n > -2. We simply cancel
according to the rules in Table 1.2 and we get Weierstrass models that provide the
desired group. The Tate procedure breaks down, however, at so(13). To tune this
algebra the a's must be taken to vanish to orders (1, 1, 3,4,6). Taking the Tate form

y2 + zalyX + z3 3y = X3 +Z2X z44X + zd6, (3.36)

and converting to Weierstrass form we find that d2 divides all coefficients in f and g up

to f4, g. This is the # that played a key role in the analysis of 3.2.2. Unless # = d2
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n anomaly bound on N Tate realizations swamp

+1 24 . .. ,20, 22, 24 21, 23

+2 16 ... ,14,16 15
+3 13 ... ,12 13
+4 12 ... , 10,12 11
+5 11 ... , 10 11
+6 10 ... 10

+7,-+8 10 ... ,8,10 9
+9,... ,+16 9 ... ,8 9

> +16 8 ... ,8



is a constant, the Tate tuning of so(13) and beyond gives a problematic Weierstrass
model. For -4 curves alone, 0 is a constant, so the Tate form breaks down for all other
curves. Note that one might try to set # to a constant, even though it has monomials
of higher order. This leads to a problem at the coordinate value w = 00 on the curve
where the group is tuned.

Analysis of the anomaly equations and the properties of the so(N) spinor repre-
sentations as discussed above indicates that the anomaly conditions are satisfied for

so(13) and so(14) on a curve of self-intersection n if and only if n is even. While the
Tate analysis is problematic in these cases, the Weierstrass analysis of 3.2.2 easily

generalizes to arbitrary n > -4. As long as the degree of # is even, which occurs when
the degree of f 2 is a multiple of four, we can decompose = =2 and find a Weierstrass
solution for so(13). This occurs precisely when n is even, so the Weierstrass analysis
shows that all so(N) gauge groups with N < 13 allowed by anomaly cancellation can

be tuned on a single smooth rational curve in a local analysis. In the same way that

.o(14) develops a (4, 6) singularity on a -2 curve as described in 3.2.2, the same oc-
curs on any curve of self-intersection -2 + 4m, m > 0. These are the only cases where
there is a discrepancy between low-energy constraints and F-theory tunings.

The only remaining situation is so(N) on an isolated -4 curve where N > 14. In

this case, there is no constraint from anomalies as the number of fundamental matter
fields is N - 8. Similarly, there is no constraint from Tate for any N. So in this case,
everything allowed from anomalies can be tuned in F-theory.

This completes our analysis of tunings of all gauge groups on rational curves on the
base using only constraints from the local geometry.

3.2.4 Higher genus curves

In the discussion in this section so far we have focused on curves of genus 0. For tuning
toric curves on toric bases, or for 6D SCFT's, this is all that is necessary. For tuning
more general curves on either toric or non-toric bases for general F-theory supergravity
models, however, we must consider tuning gauge groups on curves of higher genus. For

example, we could tune a gauge group on a cubic on the base jP2 ; such a curve has
genus one.

For a smooth curve of genus g, the matter content includes g matter hypermul-

tiplets in the adjoint representation of the group, and the rest of the matter content
is determined accordingly from the anomaly cancellation condition. The generic mat-
ter content and Hodge number shifts for tunings over a curve of general genus g are
given in Table 3.4. Unlike the genus 0 cases, where we have performed explicit local
analyses in each case (except those of large N for the classical groups), in this Table
we have simply given the results expected from anomaly cancellation. In each case,
the matter content is uniquely determined from the anomaly cancellation conditions

(1.34-1.38) with E -E = n and (K + E) -E = 2g - 2, given the constraint that only the
adjoint and generic matter types (e.g. the fundamental and two-index antisymmetric

representations for su(N)) arise.

3.3 Classification II: multiple-curve clusters

It is useful to break our analysis of allowed tuned gauge symmetries into tunings on iso-

lated curves and on multiple-curve clusters. First, these multiple-curve NHCs already
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g matter A(h',', Ho)
su(2) (6n + 16 -- 16g)2 + (g)3 (1, -12n - 29(1 - g))
su(3) (6n + 18 - 18g)3 + (g)8 (2, -18n - 46(1 - g))
su(N) ((8 - N)n + 16(1 - g))N (N - 1, -(15N 2N

2 
)n - (15N + 1)(1 - g))

+(n + 2 - 2g) N(N-1) -+ (g)(N
2 

- 1)

sp(N/2) ((8 - N)n + 16(1 - g))N (N/2., -( 15N2 N2 -2 )n - (31N 2N
2 

( ))
+(n + 1g-) (N - ) N(N+)

so(N) (n + (N - 4)(1 - g))N (LN/2], -(N + 16)n - ( N
2
-7N+128)(- g)

+(n + 4 - 4g)25- L(N+1)/2j S + (g) N(N- 1)

92 (3n + 10 - 10g)7 + (g)14 (2, [-7(3n + 8 - 8g)])
N (n + 5 - 5g)26 + (g)52 (4, [-26(n + 3 - 3g)])
C6 (n + 6 - 6g)27 + (g)78 (6, -27n - 84(1 - g))
C7 (4 - 4g + n/2)56 + (g)133 (7, -28n - 91(1 - g))

Table 3.4: Possible tunings on a curve E of genus g and self-intersection n, together with matter
and shifts in Hodge numbers. Note that su(2) and su(3) are listed separately; the antisymmetric in
the case of su(2) is a singlet, and does not contribute to the Hodge number shift, so this case differs
slightly from the general su(N) formula. The su(3) case, which also lacks a quartic Casimir, is also
listed explicitly for convenience.

arise in regular patterns in bases; and second, the possible tunings on multiple-curve
NHCs are very tightly constrained and thus represent a very small subset of combi-
nations of a priori allowed tunings on each curve within these clusters. For clusters
containing a -3 curve, some possibilities that satisfy anomaly cancellation (and all
rules to be discussed later) are not possible; these therefore deserve special attention
and cannot be treated except as individual cases. For -2 chains, on the other hand, a
very distinctive "critical" structure appears, which is also best highlighted by examining
this class individually.

3.3.1 The clusters (-3, -2, -2), (-2, -3, -2), and (-3, -2)

Multiple-curve NHCs containing a -3 curve present examples of an interesting phe-
nomenon: although the calculations proceed similarly to the above (and can be found
in appendix .3), we will pause to highlight this phenomenon. Simple anomaly cancel-
lation and geometry-based arguments both immediately show that the NHC 02 EDsu(2)
cannot be enhanced to more than so (8) P su(2). From the geometry point of view, this
restriction arises because the next Kodaira singularity type beyond so(8) is f4, which
would lead to a (4, 6) singularity at the intersection between the -2 and -3 curves.
(A more detailed analysis shows that an attempt to enhance su(2) to su(3) by tuning
monodromy will also force a (4,6) singularity.) This leaves two possible enhancements,
both of which satisfy anomaly cancellation: so(7) ) 92 and so(8) D su(2). In no case
can so(8), however, be realized. The allowed tunings are presented in table 3.5.

This curious fact was first derived in 117, 3], where it was shown generally that a
Kodaira type I meeting type IV can only be consistently implemented when the I

is 92; when meeting type III, it can only be implemented as a 92 or so(7). Our local
analysis simply confirms these results while also explicitly constructing local models for
those cases that are allowed. Although these facts are mysterious from the standpoint
of anomaly cancellation, some progress has been made to explain this discrepancy solely
in the language of field theory (in particular global symmetries [101).

86



cluster g (Ah"1 , AHo) matter
(-3,-2) 92 eDsu(2) (0,0) (7, 42) + 42

_ _ 0o(7) ED su(2) (1,-i) (84, j2) + 8,
(-3,-2,-2) 92 ED su(2) (0,0) (7, 42) + 12
(-2,-3,-2) su(2) ED so(7) EDsu(2) (0,0) (12, 8s,-) + (, 8s, 12)

Table 3.5: A priori possible tuned gauge algebras, together with matter and Hodge shifts, on the
NHCs with multiple divisors. (Tunings on -2 curves can be found in the separate Table 3.6 in the

following subsection.)

cluster 9 (Ah", AHo)
22 g2 E su(2) (3, [-12])

so (7) E su(2) (4, [-15])
222 su(2) ED 92 E su(2) (4, [-8])

su(2) E so(7) D su(2) (5, [-12])
92 E su(2) D - (3, [-11])

2222 su(2) E 92 E su(2) E - (4, [-8])
22222 -e su(2) e 92 ED su(2) D - (4, [-8])

21 -.. 2k>5 (Only su(n)'s; see 3.3.2) see (3.41)

Table 3.6: Table of possible tunings on -2 chains. (Chains are listed with self-intersections sign-
reversed.) Because matter is very similar between these cases, we do not list it explicitly, preferring
to display the shift in Hodge numbers resulting from that matter. For convenience, we summarize the
relevant matter content here: 4 x 2 for su(2), 4 x 7 for 92, 4 x 8. + 7 for so(7) and 2 x 8. +2 x 8, +2 x 8f
for so(8), where the 8.,8c matter representations are functionally equivalent. su(2) shares a half-
hypermultiplet with all groups but itself, where it shares a whole hyper; with so's, it is the spinor
representation which is shared.

3.3.2 -2 clusters

The final cluster type to consider is a configuration of intersecting -2 curves. We begin
by discussing linear chains of -2 curves connected pairwise by simple intersections,
focusing on tunings of su(N) gauge algebras. We then comment on -2 clusters with
more general structure, and discuss the small number of specific possible tunings with
larger gauge algebras.

Several interesting phenomena arise in the study of tunings on clusters of -2
curves. It seems that as far as tunings are concerned, -2 is a "critical" value of the
self-intersection number; first of all, these curves and clusters are the lowest in self-
intersection number to admit a null tuning. They form the only unbounded family of
NHC's for 6D F-theory models, at least insofar as they arise in non-compact toric bases
for F-theory compactifications. Second, tunings of su(N) on -2 chains are also criti-
cal, in that precisely all matter transforming under a given su(N) can be shared with
neighboring su(N)'s. 6 Finally, certain combinations of -2 curves can form degenerate
elliptic curves associated with an elliptic curve in the base itself. We will proceed to
analyze these chains both by local models, general geometric arguments, and anomaly
cancellation arguments. The results of this analysis are summarized in table 3.6.

6When extending our analysis to non-compact bases, it is also of interest that -2 curves present
the main ingredient in constructing the "end-points" crucial to the study of SCFT's in [3].
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Linear -2 chains

Rather than using local toric models, in this section we primarily use a simple local
feature of the tuning over -2 curves to simplify the analysis. This feature, which
can be understood both geometrically and from anomaly cancellation, gives a simple
picture of the structure of -2 cluster tuning that avoids detailed technical analysis.
The conclusions of this simple analysis can then be checked using local models, which
we do in part later in this section and in part in the following section. To see the basic
structure of tuning over -2 curves, recall that the Zariski analysis leads to inequality
1.23, which constrains the minimum order of a section of -nK given its orders on
neighboring curves. The feature of interest appears when this formula is applied to -2
curves. Indeed, letting k denote the order of vanishing of any section (of any -nK)
on a -2 curve E and kR and kL denote the orders of vanishing of the section on the
neighbors of E, 1.23 becomes

k > 2 (3.37)
- 2

This feature and some of its consequences was used in [181, and was dubbed the "con-
vexity condition" in [3]. More generally, if the -2 curve E intersects j other curves
Ej, i = 1,.. . , j, then the order of vanishing on E satisfies k > (Ej ki)/2. The conse-
quence for su(N) tunings on a -2 curve connected to a set of other -2 curves with
tuned gauge algebras su(Mj) is that

2N > Ml. (3.38)

This condition follows immediately from anomaly cancellation, since at every inter-
section there is a hypermultiplet of shared matter in the (N, Mi) representation, and
E only carries 2N matter fields in the fundamental representation. Thus, this simple
convexity condition naturally captures the constraints of anomaly cancellation.

Comparison to harmonic functions yields some immediate insight. For instance, on
a closed or infinite chain of -2 curves, a (0, 0, n) tuning on any divisor forces a (0, 0, n)
tuning on every divisor. More generally, imagine that a curve E supports a tuned su(n)
gauge algebra, associated with vanishing orders of (f, g, A) of (0, 0, n). Now consider
a linear chain of k (-2)-curves connected in sequence to E, with curves labeled by

El, - ' k, with Ek = E. The order of vanishing of A on D1 then satisfies n [n j].
We can recover from this rule the infinite case. Note that in some cases the inequality
cannot be saturated .

The local rule (3.38) gives a clear bound on possible tunings of -2 curves combined
in an arbitrary cluster. In the following section we prove using Tate tunings that, at
least at the local level of pairwise intersections, every tuning of a combination of su(N)
algebras on intersecting divisors that is allowed from (3.38) can be realized through
a Weierstrass construction, so at least locally there is a perfect match between the
constraints of the low-energy field theory and F-theory. Here we proceed simply using
(3.38) to make some observations about possible tunings of su(N) combinations on -2
clusters.

The local rule (3.38) has simple consequences for tunings over any linear chain of -2
curves. In particular, on a linear chain of -2 curves Ei, the sequence of gauge algebras
6u(Ni) must be convex, with each Ni greater or equal to the average of the adjoining
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Ni_,, N i. This constraint gives a systematic framework for analyzing local tunings
on any linear chain of -2 curves. Note, however, that the set of possible tunings even
on a single isolated -2 is a priori infinite, when no further constraints from neighboring
divisors are taking into account. The finite bound on possible tunings of curves of self-
intersection -2 or above is discussed in the following section and 3.7, in the context of
intersection with other curves in the base. For 6D supergravity models with a compact

base, the actual number of possible tunings is always finite, while for 6D SCFT's the

family of possible tunings is infinite. Similarly, for 6D SCFT's there is no bound on
the number of possible -2 curves that can be combined in a chain, while for compact

supergravity models there is a finite bound.
Given this structure, we can simply classify all su(N) tunings over clusters of -2

curves. The tunings allowed are precisely those that satisfy (3.38). If we have a, set of
1 curves Ej that carry gauge algebras su(Nj), with intersection numbers Iij E {0, 1},
then the total gauge algebra is

E squ(N-j) ,(3.39)

the matter content is

E (Ni, Nj), (3.40)
i,j:I 1~

and the shift in Hodge numbers is

A(h", h 2 J) (Z (Ni - 1), ,(-N? - 1) + E (NiNj) . (3.41)

The "critical" nature of -2 chains is particularly apparent when the inequality (3.38)
is saturated. In this case, all of the 2N fundamental matter fields on E are involved in

bifundamental matter fields. An interesting feature of this is that there is an almost

perfect cancellation between the number of vector and hyper multiplets. In particular,
for a closed chain of -2 curves, with su(N) tuned on each, we have a contribution to

Hcharged - V of precisely 1 for each -2 curve. This interesting possibility is discussed
further in a related set of circumstances in the following subsection.

Nonlinear -2 clusters

We can use (3.38) to describe su(N) tunings on more complicated configurations of

-2 curves, which may include branching or loops. Remarkably, this simple averaging
rule strongly constrains the kinds of clusters that can support tunings, revealing a

potentially very interesting structure.
First, consider a -2 curve E that is comected to c linear chains of -2 curves of

length li - 1. Assume that su(N) is tuned on E. Then from the above analysis, each of

the curves connected to E from the linear chains must support at least a gauge factor
su([N(li - 1)/l]). From (3.38), however, the sum of the resulting Mi has an upper
bound of 2N. This immediately bounds the types of chains that can be connected to E.
A chain of length 1 contributes at least N/2 to Ej Mj, a chain of length 2 contributes

at least 2N/3, etc.. Thus, we can have at most four chains connected to E, and this is

possible only for chains of length one. If we have 3 chains, it is straightforward to check

that the allowed lengths are (1, 1, 1 - 1) for arbitrary 1, (1, 2, 1 - 1) for 1 < 6, (1, 3, 3),
arid (2,2,2). Thinking of these configurations as Dynkin diagrams, the extremal cases

in this enumeration correspond precisely with the classification of degenerate elliptic
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curves associated with affine Dynkin diagrams D4 , D1+1, and E, [1981. Examples of
these degenerate elliptic curves are illustrated in Figure 3.2. All of these nontrivial -2
curve configurations can be realized, for example on rational elliptic surfaces [196, 197].
Specific examples of such realizations were encountered in the classification of C* bases
in [8].

In the extremal cases, we have a situation where combinations of su(N) can be
tuned on these divisors with a contribution to Hhaged - V that is independent of N.
For example, on the (2, 2,2) configuration corresponding to E6 , we can tune a gauge
algebra su(3N) on E, su(2N) on the components of the chains that intersect E, and
su(N) on the terminal links in the chains. This presents an apparent puzzle, since
in a compact base only a finite number of tunings are possible and we would expect
higher-rank tuning to require more moduli.

Weierstrass models for the extremal -2 clusters can be analyzed using the method-
ology used in [8]. For example, for the case of a -2 curve E intersecting four other -2
curves, in local coordinates where the other curves intersect E at w = 0, 1, 2, oo, the
generic Weierstrass model takes the form

f fo +f2(z 2 +f4 (z+-l--_ (3.42)

9 90 + 92( 2+ g4(2 +---, (3.43)

where = w(w -1)(w -2). We can set A = O(z 2 ) by tuning go to cancel in the leading
term. This gives a gauge algebra of su(2) on E and no gauge algebra on the other curves.
The shift in Ho is then given by AHo = V - HcIargcd = -5. This appears surprising
as we have only tuned one modulus, but keeping careful track of extra moduli from
-2 curves this is correct; once we have done this tuning, the discriminant identically
vanishes on the four additional curves, so they are no longer counted as contributing
to N- 2 as discussed in 1.3.3. We can further tune 92 so that the next term in the
discriminant vanishes. This then gives an su(4) on E and an su(2) on the other four
curves. We now have V - Hharged = -5 again, but we have nonetheless tuned a
modulus. Repeating this, we use one modulus each time we increase the algebra on E
by N -+ N + 1. This represents an apparent disagreement between the moduli needed
for Weierstrass tuning and anomaly cancellation.

Some insight can be gleaned into what is transpiring in these situations by observing
that these -2 configurations are essentially degenerate genus one curves that satisfy
E - E = -K - E = 0. On a smooth curve of this type, the only matter would be
a single adjoint representation of su(N), giving Hcharged - V = 1, independent of
N. When the smooth genus one curve degenerates into a combination of -2 curves,
the resulting configuration of su(N) groups is precisely that realized on the extremal
-2 clusters, with no matter in the fundamental, and bifundamental matter at the
intersection points. Indeed, the multiplicity of N that is tuned on each -2 curve for
each extremal cluster associated with a degenerate elliptic curve is precisely the proper
multiplicity to give the elliptic curve. Thus, this can be thought of in each of these
cases as tuning an su(N) on the elliptic curve and taking a degenerate limit.

The tuning of a single degree of freedom for each increase in N can be understood as
the motion of a single seven-brane in the transverse direction to the genus one curve E.
The fact that N can only be tuned to a certain maximum value for the smooth genus
one curve E with E -E = 0 follows from the fact that A = -12K; there is always some
maximum N such that -12K - NE is effective. In a compact base with an extremal
-2 cluster, this corresponds to the fact that the Weierstrass expansion terminates and
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Figure 3.2: Some configurations of -2 curves associated with Kodaira-type surface singularities

associated with degenerate elliptic fibers. The numbers given are the weightings needed to give an
elliptic curve with vanishing self-intersection. Labels correspond to Kodaira singularity type and
associated Dynkin diagram.

only a finite number of tunings are possible. For example, tuning two of these clusters,
with the sets of four additional -2 curves in each cluster connected pairwise by -1
curves gives a base studied in [81, which has the unusual future of supporting a generic
U(1) factor associated with a higher rank Mordell-Weil group. This structure may be
a clue to the anomalous anomaly behavior. In this compact base, f, g in (3.42) only go
out to order z8, z12 respectively, giving a bound on the gauge group that can be tuned.

A closed loop of -2 curves fits into this framework as the affine Ali Dynkin
diagram/degenerate elliptic curve. We comment on this further in 3.4.5. Note also
that in some situations these degenerate genus one curve configurations of -2 curves
can be blown up further, giving more complicated configurations with related properties
[?]; in general such configurations, once blown up, have curves of self-intersection -5
or below, and do not admit infinite tunings. Blowing up a loop of -2 curves to form a
loop of alternating -1, -4 curves is an exception, as mentioned in 3.4.5.

Tuning other groups on -2 curve clusters: special cases

So far all tunings we have discussed on clusters with multiple -2 curves have involved
only su(N). It happens that only a handful of other algebras can can be tuned on
-2 clusters. For instance, sp(N) cannot be tuned on any < -1 curve. Also, it is
straightforward to see that the f and e algebras cannot arise on multiple -2 curve
clusters. (Simply observe that a (3,4) singularity on one -2 curve must force at least a
(2, 2) singularity on any intersecting -2 curve, hence these exotic algebras would share

matter. In section 3.4.1, we discuss why this is always impossible both for geometric
and anomaly-cancellation reasons.) This analysis leaves only the case I*.

In this subsection we go through the explicit analysis of the various cases of -2
curve clusters that support algebras other than su(2), looking at Weierstrass models
and the corresponding anomaly conditions. While some aspects of this analysis are
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essentially covered by the rules of tunings on intersecting brane combinations in the

following section, it is worth emphasizing one subtlety, which is related to the fact that

certain algebras such as su(2) can be tuned in several different ways, either as a type

I2 or as a type III or IV. We have for the most part not emphasized this distinction

as it is not relevant for minimal tunings in most cases, and is not easy to understand

in terms of the low-energy theory, however it is relevant in these cases, which serve as

an illustration of how these distinctions are relevant in special cases.

In more detail, the Kodaira cases to consider are combinations of Ig tunings with

su(2) tuned as either type III or IV. Let us see why this is. To understand why Il
cannot be tuned, suffice it to say that geometrically, it forces a (4, 6) singularity at

the intersection point with any other -2 curve. Although this could be demonstrated

directly, we note here that it will follow from our geometric arguments that even so(8)
cannot be tuned on any -2 cluster; the monomials in f and g that must be set to

zero to achieve an so(8) are a strict subset of those which must be set to zero in

tuning so(9). From the anomaly cancellation standpoint, this statement is perfectly

consistent, because we expect all matter to be 8 half-hypermultipets of an su(2) forced

on an adjacent curve, and therefore the dimension of the matter shared with su(2)

cannot exceed 8, but of course would be for so(;> 9). In fact, it is impossible for an I3

to appear next to anything but su(2). This is because an I (2,3) singularity forces at

least a (1, 2) singularity on any intersecting -2 curve. Attempting to tune su(3) with

a IV singularity requires that g2 be a perfect square. However, a toric analysis for

two intersecting -2 curves reveals that g2 has a lowest order term of order w3, which

cannot be the lowest order term of a perfect square. Eliminating this monomial directly

produces a (4,6) singularity at the intersection point. This conclusion is also reasonable

from the field theory point of view: the fundamental of su(3) is not self-conjugate, and

therefore the matter shared with it can be at most 6-dimensional.

In summary, the only tunings on -2 curve clusters that contain algebras other

than su(N) are combinations of 1* and III/IV su(2)'s. In fact, the averaging rule

implies that tunings containing one IJ component may only occur in chains with < 5
curves. (On larger clusters, the averaging rule implies that the (2,3, 6) singularity

would persist to at least the nearest neighbor, immediately yielding a (4,6) singularity

at the intersection point.) Therefore, our task is to classify the allowed combinations of

su(2), 92, so(7), and so(8). We will find that only 92 and so(7) can be realized, but not
so(8).7 As discussed above, an I* tuning necessarily forces at least a III singularity

on an intersecting -2 curve, so we will not encounter any isolated IJ tunings. (This

geometrical constraint is not yet well characterized in terms of the low-energy field

theory; see 3.4.3)
Let us now classify these tunings: namely, a single 92, so(7), or so(8) together with

its neighbors, which must be su(2)'s. This must occur on a chain of length < 5. We will

construct these models in order of increasing length of chain, starting on a configuration

(Ei, F2) of two intersecting -2 curves, and progressing to a chain (E1, - - - , E5) of

five -2 curves in a linear configuration. For each of these four configurations, we

tune a 92, then attempt to enhance to so(7) or so(8). Because we will immediately

find that so(8) cannot be tuned, we will not consider it on any configuration but

the first. (Configurations with additional -2 curves have strictly fewer monomials,
so any obstruction to tuning on smaller configurations will apply trivially to larger

7This matches with the low-energy constraint from global symmetries [101, as discussed in more
detail in 3.4.3.
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configurations as well.) To set notation, we will use {z = 0} to be a local defining
equation for the curve E on which the type I singularity is tuned; any intersecting curve
of interest we will take to be defined as {w = 0}. We will consider f = fi,j fi3zwi
and similarly for g; when discussing orders of vanishing on e.g. E = {z = 0}, we

will use terms fi,. and gi,. with one blank subscript to refer to functions of w in an
implicit expansion f = E; fi,. (w)z'. Similarly f.,j refers to an implicit expansion

f = Ei f. (z)wJ. While we only discuss linear chains here explicitly, a similar analysis
governs the tuning of an I factor on a small branched -2 cluster; details are left to
the reader.

Case 1 (a): 92 on (-2, -2). To implement the tuning 92 on E1, we must impose

(ordrf, ordr1 g) = (2, 3), so for f we eliminate 1 + 2 degrees of freedom in setting fo,.
and fi,. to zero, while for g we eliminate 1 + 2 + 4 degrees of freedom in setting go,.,
g1,., and g2,. to zero. Now let us examine f2,. = E4 f2,iWi and g3,. = E6 2  i.
By inspection, the geometry does not force a non-generic factorization, so we have
indeed tuned 92, and not one of the other I* cases. The removal of these monomials
forces (ordr2f, ordY2 9)= (1, 2), so that we obtain an su(2) neighbor. As a check, note
that implementing this tuning fixes 10 monomials as well as two -2 curve moduli,
which yields a shift in Ho of -12, consistent with anomaly cancellation. No further
complications have arisen in this instance.

(b): so(7) Enhancing this tuning to so(7), we impose

f2 = B-A 2  (3.44)

93 = -AB (3.45)

which is most generically achieved by setting A = Al w + A2w 2 and B = Biw+B2w 2 +
B3w3 + B 4 w4 , for a total loss of 9 - 6 = 3 degrees of freedom. Note that all coefficients
f2,i and 93,i will generally remain nonzero. This implies that the orders of (f, g) on E2
remain (1,2), so that the neighboring su(2) remains type III. It is worth mentioning
that these calculations agree with the anomaly calculations of shifts in H when one
tunes the 82 D su(2) -- so(7) D su(2) combination, provided that it is one of the four
8. representations of so(7) that is also charged as a fundamental under su(2)-not the
7 f. This bifundamental matter is consistent with the process of Higgsing back to 82

as it leaves the 7 unharmed to play the role of the 7 fundamental of 82. Moreover,
this matches with the global symmetry analysis of [10], which indicates that the 8.
representation must be shared instead of the 7 representation.

(c): so(8): Forbidden This tuning is impossible, as mentioned above; hence all
so(8) tunings will be impossible on larger -2 chains. To see this in this context,
recall that to enhance the tuning to so(8), we require the more stringent factorization
condition

f2 = AB-(A+B) 2  (3.46)

g3 = AB(A + B) (3.47)

which is most generically achieved by setting A = Aiw + A 2w2 , B = Biw + B2w2 .

Notice that this removes all monomials zawb in g with b < 3, hence a+ b > 6. Therefore
the order of g at the intersection point between the -2 curves is at least 6. Notice as
well that this tuning removes the order z 2 term in f. Combining these facts, this tuning

attempt would yield a (4, 6) singularity where the -2 curves meet.
Case 2 (a,i): 92 on El of (-2, -2, -2). In this cluster we may tune either on the

first curve El or the middle curve E2. The former presents distinct differences, which
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we will discuss first, after which we will move on to discuss the tuning on E2, which
proceeds analogously to the tuning on (-2, -2).

Let us now implement the tuning on E1 . The additional complication will be the
possibility of a forced gauge algebra on the final curve E3 . On E2 , the effect is a type
IV singularity with 92 consisting of a single monomial. In fact, this monomial is z3 in
a defining coordinate z for E2, so we will never encounter the issue of an su(3) on E2.
On E3, there is only an II type singularity, which does not produce a gauge algebra.
This tuning has proceeded without obstruction.

(a,ii): so(7): Forbidden Since f2,. = f2,1w + f 2,2w 2 and 93,. = 93,2W 2 + 93,3W 3 +
93,4W 4 , the required factorization condition is satisfied by the choice A = A 1w, B =
B1 w + B2w 2 . Note that this requires the w 4 term in 93,. to vanish, in addition to
imposing a relation among the remaining coefficients. We lose 2 degrees of freedom,
as expected from the point of view of anomaly calculations above. This factorization
constraint removes the single monomial of in g that is order 2 over E3 , leading to a III
singularity on E3. An su(2) on E3 would have to share more matter than it carries in
the first place; therefore this enhancement, as well as subsequent ones, are inconsistent.
In more geometric terms, a (4,6) singularity appears at i -E2-

(b,i) 92 on E2 Attempting to tune Il on the middle curve E2 proceeds without
difficulty, in complete analogy to tuning on the Ei in the configuration (-2, -2) of
case 1. Implementing a tuning of 92 on the middle curve E2, we investigate the forced
tunings on its neighbors E, and E3. (By symmetry, it suffices to consider only El,
which incurs an (f, g) = (1, 2) type III singularity.) One can confirm that there is
generic factorization on E2, so we are indeed in the 2 case.

(b,ii): so(7) Since (on E2) f2,. = f2,Iw + f2,2w 2 + f 2 ,3 w3 and 93,. = 93,2W 2 +
93,30 3 + 93,4W 4 , the relevant factorization condition can be achieved with A = A 1w,
B = Biw + B2w 2 + B3 W3 , for a loss of 2 degrees of freedom. This is consistent with
aniomaly calculations, and moreover the singularities on the adjacent curves remain
type III.

Case 3 (a,i): 92 on Ei of (-2, -2, -2, -2) The novel contribution to this cluster
is the possibility of tuning on the initial curve El. However, this is impossible. The
pathology of this attempted tuning is visible even without investigating monomials.
A (2,3,6) singularity on -E will, by the averaging rule, immediately produce at least
a (2,3,6) singularity on E2 , leading to an unacceptable (4,6) singularity at El - E2-
Indeed, this same logic shows that no tuning of Ig is possible on a chain of > 6 -2
curves, as there is no curve in this chain that with have fewer than 3 additional -2
curves to one side. We reemphasize: even 92 cannot be tuned here.

(b,i): 92 on E2 of (-2, -2, -2, -2). In this case, we will tune on E2, which is quite
analogous to tuning on Ei of the configuration (-2, -2, -2). We find no additional
restrictions, but we the presence of the -2 curve El leads to the presence of another
(type III) su(2) neighbor. Examining first the effect on El, a 02 produces the expected
III or (f, g) = (1, 2) singularity. On E3, the effect is a type IV singularity with g.,2
consisting of a single monomial, and on E4, there is only a type II type singularity, as
in case (a, i) above.

(b,ii): so(7): Forbidden This is already assured from the analysis of case 2, as
we have merely added another -2 curve, which can only add constraints.

Case 4 (a): 92 on (-2, -2, -2, -2, -2). The previous analysis already shows
that we cannot tune an Ig singularity anywhere but the middle curve; otherwise, there
would be a string of > 3 -2 curves to one side of the Io, which would force a (4, 6)
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singularity. Thus, our goal is simply to verify that a 02 can be tuned on the middle
curve E3, in precise analogy to tuning on E2 of case 3. We already know that tuning
so(7) and so(8) tunings are forbidden in this context, because this case is obtained
from the previous one by an additional blowup at the endpoint -1 curve of the local
model. The task, then, is simply to verify that the generic I 02 singularity can be
consistently imposed. By investigating the monomials, one can implement this tuning,
finding that on E3, f2,. = f2 ,2W 2 and g3,. = 93,2W 2 + g3,3W 3 + g3,4W 4 (in a defining
coordinate w for E2 ), which implies that no factorization is generically forced, so this
tuning belongs in the 02 subcase of I tunings, as desired. Moreover, on E2, there is
a forced IV singularity, for which g.,2 = 93,2z3 , yielding su(2). Similarly for E4. This
ensures an su(2) is adjacent to the tuned 02 on either side. As to 715, each carries
a type II singularity-in other words, no tuned algebra. This ensures that such a g2
tuning can in fact be realized, completing the desired classification.

3.4 Classification III: connecting curves and clusters

At this point, we have investigated tunings over individual curves or non-Higgsable
clusters. To go further, we would like to determine constraints on what groups can
be tuned over intersecting divisors. In particular, low-energy anomaly cancellation
conditions and corresponding F-theory geometric conditions impose clear constraints on
what groups can be tuned over intersecting divisors. At this point we are unaware of any
specific constraints on global models that go beyond conditions that can be expressed
in terms of gauge groups tuned on a single divisor E and its immediate neighbors
(i.e., divisors intersecting E). Thus, it may be that determining local constraints on
such configurations may be sufficient to determine the full set of global tunings that is
possible. We do not attempt to prove the completeness of local conditions here, but
focus in this section on various conditions that constrain tunings that are possible on
multiple intersecting curves.

In 3.4.1 we give a simple set of arguments that show that there are only 5 (families
of) pairs of gauge groups that can be tuned on a pair of intersecting divisors. In 3.4.2,
we determine constraints on these families in terms of the self-intersections of the curves
involved and the group types. In 3.4.3 we consider a more general set of constraints
on a curve E that intersects with two or more other curves supporting gauge groups,
including generalizations of the E8 rule for curves E that do not themselves support a
gauge group.

In this analysis we continue to focus on divisors with single pairwise intersections.
A few comments on more general intersection possibilities are made in 3.4.5

3.4.1 Types of groups on intersecting divisors

We begin by giving some simple arguments that rule out all but five possible combi-
nations of (families of) pairs of algebras supported on divisors El, E2 that intersect
at a single point. The allowed combinations, determined from anomaly cancellation
conditions, are listed in Table 3.7.

From the field theory point of view, the possibilities of the groups that are tuned

is constrained from the anomaly equation 1.39

E1 - E2 = A1A2  AR, AR RXRI, 2  (3.48)
R 1 ,2
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Ogn gm", anomaly constraints on n, in matter AHO(X)
su(N) su(M) [N/2J 8 + (4 - [M/2])m, [M/2J 8 + (4 - [N/2])n (N, M) +NM
sp(j) sp(k) j 5 8 + (4 - k)m, k < 8 + (4 - j)n (2j, 2k) +4jk

SU(N) sp(k) [N/2] 8 + (4 - k)m, k < 8 + (4 - [N/2J)n (N, 2k) +2Nk
so(N) sp(k) k < n + N - 4, N < 32 + (16 - 4k)m (N, 2k) +Nk

N = 7: k < 8 + 2n, 2 < 8 + (4 - k)m (8., 2k) + 8k
_2 sp(k) k < 3n + 10, 7 32 + (16 - 4k)m I(7,2k) +7k

Table 3.7: Algebras of product groups that can be tuned on a pair of intersecting curves of self-
intersection n, m, and constraints from anomaly conditions. Further constraints from Tate tuning
conditions are discussed in text. Shift to Hodge numbers is relative to the shift of the individual group
tunings.

In words, the shared matter, weighted with the product of its A coefficients and its
multiplicity, must equal El -E2 (which is one or zero in the cases we studied here).

From this low-energy constraint it is clear that bi-charged matter is quite difficult to
achieve for any algebras other than su(N) and sp(N). For these algebras A = 1. For g2
and so(N), A = 2. For all the other algebras, A > 2. For all matter representations that
appear in generic F-theory models, and all known matter representations that can arise
in F-theory, the coefficients AR are integers. We assume that this is generally the case
though we have no completely general proof. Thus, we can only have El. E2 = 1 when
both factors are either su(N) or sp(N) and A 1 = A 2 = x = 1, such as for a situation
where there is a full matter hypermultiplet in the bifundamental representation, or
when one factor is 02 or so(N) and the other is su(N) or sp(N) and we have a half-
hypermultiplet in the bifundamental representation. (Note that the so(N) fundamental
can be replaced by a spinor when N = 7,8 and the anomaly conditions are unchanged.)
While the fundamental 2N of sp(N) is self-conjugate (pseudoreal), only for the special
case SU(2) = Sp(1) is the fundamental of su(n) self-conjugate. Thus, field theory
considerations seem immediately to restrict to the 5 possibilities in Table 3.7.

We can show directly in F-theory using a local monomial analysis that indeed the
five possibilities in Table 3.7 are the only combinations of algebras on intersecting divi-
sors that admit a tuning in the Weierstrass model. We begin by showing that f4 cannot
live on a curve that intersects another curve supporting any nontrivial algebra. To be-
gin, let us label the curves of f4 and its neighbor g as Ei and E2 respectively. Now notice
that f4 corresponds to a (3, 4) singularity. If a non-trivial algebra other than one in the
1i, series appeared on E2 , it would have to be at least a (1, 2) singularity-immediately
leading to a (4, 6) singularity at E1 -E2. Thus, such tunings are inconsistent. It remains
only to prove that a I>2 algebra cannot appear on E2, for which it will be sufficient
to rule out just I2, i.e. an su(2) tuned by (0,0, 2). By thinking in toric monomials, it
is easy to see why this is inconsistent with a (3,4,8) tuning on El. Let w be a local
coordinate on El such that E2 = {w = 0}, and vice versa for z and E1 = {z = 0}.
Then we can expand f, g, and A in Taylor series in z and w. By hypothesis, f contains
no monomials with powers of z lower than z 3 , and g contains none with powers lower
than z 4 . To tune A to order 2 on E2, we must require the vanishing of both Ao and
A1 in the expansion A = Z-o Aiwi. For Ao f3 + g2, this implies fo cX 02 and

go c #3 for some expression #. Immediately we see that fo must be a perfect square,
which forces us to exclude the monomial uwz3; moreover, for go to be a perfect cube,
the coefficients in g of both woz4 and woz5 must be zero.

Now let us impose the constraint A 1 f0 fi + gogi = 0. The lowest order (in z)
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term in f 2fi is now Z11 (4 + 4+3) whereas the lowest order term in gogi is z90 (6+ 4).
The required cancellation between these terms can only occur, then, if g, vanishes to
order at least 5 instead of 4. But now this putative tuning is in serious trouble. We have
removed from f the single monomial w z 3 with m + n < 4 (where w"'z'). Moreover,
we have removed from g the three monomials with m + n < 6. This guarantees a (4, 6)
singularity at El - E2, as we expected to find. This proves that no gauge algebra can be
tuned on a divisor intersecting a divisor carrying a singularity of order (3, 4) or higher.

A similar analysis shows that divisors intersecting other divisors carrying the groups
with algebras so(n),42 can only have sp(n) algebras. If we assume El carries a gauge
algebra with (f, g) vanishing to orders (2, 3), we similarly analyze fo, go at leading
orders in z, etc.. A second curve E2 intersecting El cannot carry a (2, 3) singularity
or we immediately have a (4,6) singularity at the intersection point. We thus need
only consider gauge algebras su(n), sp (n) on E2. We consider I,, type singularities. As
above, we have fo OC #2, go 3 . For an su(n) algebra the split condition dictates that
we must have # a perfect square 0 = #2. But then zLo, z4lfo and similarly z 6 1go.
To tune an su(3) we have [1481 fi ~ Oo'j, gi ~ #fi,92 ~ V2 + Of2, and since g2 and
#f2 scale at least as z3 ,z 4, z 2[11, which means z3 fi, z 5 1gi, z'g2, so we get a (4, 6)
singularity at the intersection. A similar effort to tune an Su(3) through a type IV
singularity would give a term z3 in g2, which implies that 92 is not a perfect square
so the monodromy gives an su(2) algebra on any curve with a type IV singularity
intersecting a singularity of order (2, 3).

This completes the demonstration that the only possible pairs of nontrivial algebras

that can be realized on intersecting curves are those in Table 3.7. Note that the analysis
here was independent of the dimension of the base, so the same result holds for 4D

F-theory compactifications.

3.4.2 Constraining groups on intersecting divisors

We now consider the possible combinations of gauge groups that can actually be realized

for the five possible pairings from Table 3.7. In each case we compare the constraints
from anomaly cancellation to a local Tate analysis, as was done for single curves in

3.2.3. We take the self-intersections of the two curves to be El - El = n, E2 - E2 = M,
and we are assuming that El -E2 = 1. We consider the various cases in turn, indicating

potential swampland contributions in each case.

sp(j) e sp(k) (no swamp):
We begin with the case Sp(j = N/2) x Sp(k = M/2), where the analysis is simplest.

In this case, we expect a single (full) bifundamental hypermultiplet in the (N, M) =
(2j, 2k) representation. The number of fundamentals on each of the two curves is, from
Table 3.1, 16 + (8 - 2j)n, 16 + (8 - 2k)m respectively. We therefore have the constraints
from anomaly cancellation

j 8 + (4 - k)m,
k < 8+(4-j)n. (3.49)

Here, the self-intersections satisfy n, m > -1, since sp(k) cannot be tuned on a -2

curve.
Now let us consider the Tate model. Tuning sp(j) on a curve of self-intersection n

requires tuning the a coefficients (a,, a2 , a3 , a4 , a6 ) to vanish to orders (0, 0, j, j, 2j). The

weakest constraint comes from the a4 condition. From (3.34), we see that the degrees
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of the coefficients ini a4 are deg(a 4 (,)) = 8 + n(4 - s). Imposing both constraints, we
see that a4 can be written in terms of monomials z'wt subject to the conditions that
t < 8 + (4 - s)n, s < 8 + (4 - t)m. Tuning the algebras sp(j) e sp(k) on our curves of
self-intersections n, m requires having a monomial in a4 with degrees s = j, t = k, and
we see that such a monomial exists if and only if the constraints (3.49) are satisfied.
This shows that in a local model, using the Tate construction, all possible sp(j) sp(k)
algebras consistent with anomaly constraints can be tuned on a pair of intersecting
curves.

su(2j) ( su(2k) (no swamp):
A similar analysis can be carried out in the other cases of Table 3.7. We next

consider SU(N) x SU(M). If N, M are both even, with N = 2j, M = 2k, the tuning
is precisely like that of the Sp(j) x Sp(k) case just considered, except for the tuning of
a2 to first order. The a2 tuning is always possible, so it cannot affect the conclusion,
and so for even N, M everything that is allowed from anomalies can be realized using
Tate. Note that for these algebras, we can have in particular n = m = -2.

su(2j + 1) ® su(2k) (apparent swamp):
Next consider the case N = 2j + 1, M = 2k. In this case, the constraint from a4 is

just as (3.49) but with j replaced by j + 1. But there must also either be at least one
monomial in a3 of order at least j in z or a monomial in a6 of order at least 2j + 1, or
else the symmetry automatically enhances to SU(N + 1). The conditions that must be
satisfied are then (a4 and (a3 or a6 )), where

a4 : j 7+(4-k)m, k<8+(3-j)n

a3: j<6+(3-k)m, k 6+(3-j)n (3.50)
a6: 2j+ 1 12+(6-2k)m, 2k 12+(5-2j)n.

Some of these conditions imply others. In particular, the a6 condition on j is always
stronger than the a4 condition on j, and the a3 condition on k always implies the a4
condition on k. Nonetheless, the analysis is a bit subtle as different combinations are
ruled in or out in different ways. For example, su(3) D su(6) violates the a3 condition
but satisfies the a6 condition, while sn(9) esu(2) satisfies the a3 condition but violates
the a6 condition.

Let us consider some specific cases of even-odd SU(N) x SU(M). First, we note
that when n = -2, the a6 condition on j is weaker than the a3 condition, and equal
to the a4 condition as well as to the anomaly condition. And when n = -2, the a6
condition is again equivalent to the a4 condition and the anomaly condition, and all of
these are in this case stronger than the a3 condition. It follows that when n = m = -2
a Tate tuning is possible precisely when the anomaly conditions are satisfied, and there
is no swampland contribution.

Now, however, we consider the case n = -1, m = -2. In this case, the a6 condition
on k is 2k < 7 + 2j; this is stronger than the a4 constraint and weaker than the a3
constraint so it must be satisfied for a Tate tuning. But this condition is also stronger
than the anomaly cancellation condition 2k < 9 + 2j. For j = 1, there is a potential
swamp contribution at k = 5, and more generally the algebras su(2j + 1) E su(2j +8)
will be allowed by anomalies but not by Tate. This represents a simple family of cases
that either should be shown to be inconsistent in the low-energy theory or realized
through Weierstrass if possible. These cases are of particular interest since they are
relevant for 6D SCFT's as they can be realized on intersecting -1, -2 curves that can
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n I m swamp contribution (N, M) -a (su(N) ED su(M))

-2 -2 no swamp
-2 -1 (10, 3), (11, 3), (12, 5), (13, 5), ...

-1 --1 (3, 10), (3, 11), (5, 12), (5, 13), . . . (++)
0 0 (2, 15), (3, 14), (3, 15),(3, 16), (4, 15), (5, 14), ... (+ ++)
1 1 (2, 19), (2, 21), (3, 18), (3, 19), (3, 20), (3, 21), . (+ *4)

Table 3.8: Some combinations of su(N) D su(M) algebras that appear to be in the "swampland" as
they cannot be tuned on intersecting curves of self-intersection n, m through Tate, but satisfy anomaly
cancellation.

be blown down to give a decoupled field theory. The simplest of these examples is
su(3) EDsu(10) where the su(10) has 20 hypermultiplet matter fields in the fundamental
representation and su(3) has 12 matter fields in the fundamental representation (of
which one is technically distinct as it lies in the anti-fundamental, affecting the global
symmetry group even though the content is identical as 6D hypermultiplets include a
complex degree of freedom in a representation R and a matching complex degree of
freedom in the conjugate representation).

Next, consider rm = n = 1, where two curves of self-intersection 1 are intersecting.

In this case the anomaly constraint says that N + M < 24, and the even-odd Tate

constraints impose the condition N + M < 19. This is similar in spirit to the results

of 3.2.3, and can be related explicitly in some circumstances. For example, on P2 a

pair of lines supporting gauge groups SU(N), SU(M) can be tuned to be coincident to

reach a gauge group SU(N + M) on a single line. Thus, both the upper bound and the
"swamp" of models where N + M = 21, 23 are consistent between these pictures.

su(2j + 1) es u(2k + 1) (apparent swamp):

Finally, we consider the odd-odd case N = 2j + 1, M = 2k + 1. In this case the

constraints are similar to (3.50), with appropriate replacement of k -+ k + 1 in the a4
constraint and 2k -+ 2k + 1 in the a6 consti-aint. Again we must satisfy a4 and either

a3 or a6. As in the even-odd cases, once again in the special case n = n = -2, this

set of constraints again leads to no conditions beyond those imposed by anomalies.
For other combinations we have further contributions to the potential swampland from

tunings that are not possible in Tate. For n = m = 1, where the anomaly constraint is

N + M < 24, the odd-odd Tate conditions impose the stronger condition N + M < 20,
so odd-odd combinations with N + M = 22,24 cannot be tuned by Tate.

We thus see that the Tate approach only gives a subset of the su(N) EDsu(M) models

that anomaly cancellation suggests should be allowed on a pair of intersecting divisors,
giving some apparent additional contributions to the "swampland". The number of

cases with no known F-theory construction is relatively large, and it would be nice to

understand whether these admit Weierstrass constructions or are somehow inconsistent

due to low-energy constraints, or neither.

We summarize some of the apparent swampland contributions where Tate tuning is

not possible in Table 3.8 The fact that there is no swamp when n = M = -2 indicates

that, at least locally, the convexity condition used in the preceding section is the only

constraint on tuning product groups on any -2 cluster that need be considered.

su(N) ED sp(k) (apparent swamp):

We now consider su(N) (D sp(k). From the above analysis, the anomaly and Tate
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constraints are identical to the case su(N) D su(2k). When N is even there are no
swamp contributions. When N is odd and n > -2, there are additional potential
swamp contributions.

92 D sp(k) (apparent swamp):
Next consider 02 ( sp(k). The anomaly constraints dictate k < 3n + 10, 7 <

32 + (16 - 4k)m. The primary constraining Tate coefficient is again a 4 . To have a

92 on the n-curve, a4 must have a coefficient proportional to z 2 . This imposes the
constraint 2 < 8 + (4 - k)m, equivalent to the second anomaly constraint. On the
other hand, the Tate constraint on k is k < 8 + 2n. For n = -2 this is equivalent to
the anomaly constraint (k < 4); for larger n, however, the Tate constraint is stronger.
There is also a further constraint from the condition that a6 must have a coefficient
proportional to z 3 , or the 2 will be enhanced to so(7) or greater. This condition
implies that 2k < 12 + 3n, which is substantially stronger than the anomaly conditions.
For n = -2, we have k < 3, for n= 1 we have k 4, for n =0 we have k < 6, etc..
Thus, there is an apparent tuning swampland of models that contains, for example,
92 E sp(4) when the 02 is on a -2 curve, and has four fundamental hypermultiplets.
This is true in particular when the sp(n) factor is on a -1 curve, in which case this
should be an SCFT, so this represents another potential contribution to the 6D SCFT
swampland. It is not clear whether there can or cannot be a Weierstrass model in
this case as Weierstrass and Tate are not necessarily equivalent for sp(4), though as
mentioned earlier it seems likely that no non-Tate Weierstrass model can be realized
for this algebra without involving exotic matter. Further elements of the swampland in
this case include 92 esp(5) through 2 D sp(7) when the 02 is on a -1 curve, 2 Psp(7)
through 92 p Sp(10) when the 02 is on a 0 curve, etc..

so(N) ED sp(k) (apparent swamp):

Finally, we turn to the cases so(N) E sp(k). These are the most delicate cases; we
consider the small values of N explicitly. We begin with so(8) E sp(k). In this case,
the three different eight-dimensional representations 8., 8 , 8c are equivalent under
anomalies, and physically related through triality symmetry. Anomaly constraints limit
k < 4 + n, 2 < 8 + (4 - k)m. For a Tate tuning the constraints associated with upper
bounds on the size of the group are, similar to the 2 case, 2 < 8+ (4 - k)m, again like
the second anomaly constraint, and again the constraint k < 8 + 2n which now matches
the first anomaly constraint. So it seems that the anomaly and Tate constraints are
consistent. There is however a subtlety here associated with the monodromy condition
for so(8). This imposes the condition that the order z4 term in a2 - 4a4 must vanish
[85]. In the special case that the sp(k) has k = 1, and n = -2, the only possible
monomial in a 4 of order w is wz2 . But this cannot be part of a perfect square, so
the so(8) monodromy condition cannot be satisfied. Thus, in this case the tuning is
not possible. Furthermore, in this case even a Weierstrass tuning is not possible. This
fact was mentioned in 3.3.1, and we elaborate further here. It was shown in [17] that
so(8) Tsu(2) = so(8) Dsp(1) cannot be tuned on any pair of intersecting divisors where
the second factor is realized through a Kodaira type III or IV singularity; the argument
there was given in the context of threefold bases, but holds for bases of any dimension.
The argument given there shows in this context that in 6D, so(8) ( su(2) cannot be
tuned oi any pair of intersecting divisors where the second divisor is a -2 curve. It
was also shown in [3], in the context of 6D SCFTs, that an so(8) D su(2) cannot be
realized on a pair of intersecting -3, -2 curves. The upshot of this analysis is that an
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su(2) on any -2 curve cannot intersect an so(8) on any divisor (not just a -3 curve) 8 .
This apparent element of the tuning swampland was shown to be inconsistent at the
level of field theory in [10]; actually, the argument there demonstrated this result only
at the superconformal point, but the same result should hold for a general 6D F-theory
supergravity model, since locally the -2 curve can generally be contracted to form an
SCFT. This is an interesting example of a case where an apparent element of the tuning
swampland is removed by realization of a new field theory inconsistency.

We turn now to so(7) esp(k). The anomaly constraints are similar but now depend
on whether the bi-charged matter is in the spinor (8,) or fundamental (7) representa-
tion. In all cases, the second constraint 2 < 8+ (4 - k)m agrees between anomalies and
Tate. The anomaly conditions for spinor matter are k < 8 + 2n and for fundamental
matter are k < 3+ n. Performing a generic Tate tuning, the bound is k < 8+ 2n. This
suggests that the general Tate tuning gives matter must be in the spinor-fundamental
representation. This matches with the known examples of the -2, -3, -2 non-Higgsable
cluster, which carries spinor matter for an so(7) on the -3 curve, and the results of [10]
that the four su(2) fundamental matter fields on an -2 curve transform in the spinor
representation of an so(7) flavor group. That result implies that for an su(2) on a -2
curve there cannot be a bifundamental with so(7), but a remaining open question is
whether there can be an explicit Weierstrass tuning of an so(7) E sp(k) algebra on a
more general pair of divisors with bifundamental matter, and if this is indeed impossible
what the field theory reason is.

The other so(N) E sp(k) tunings can be analyzed in a similar fashion, though the
analysis is simpler since anomalies show that spinors cannot appear at the intersection
point. For so(9) the Tate condition computed using the Tate form from Table 1.2
appears to give the bound k < 6 + n from a6 . This cannot be correct, since the
anomaly bound gives k < 5 + n, which seems to allow Tate constructions of models
that violate anomaly cancellation. In fact, the maximal case k = 6 + n actually gives
so(10). This can be understood if we carefully impose the proper additional monodromy
condition. In terms of the Tate form of so(9) from Table 1.2, the algebra is actually
so(10) if (a +4a6 )/z 4 is a single monomial when evaluated at z = 0, and thus a perfect
square, which occurs for the generic Tate form in the current context precisely when
k = 6 + n. So this Tate condition and the corresponding anomaly condition for so(9)
match perfectly. The Tate bound on k from m, 4 < 12+ (6 - k)m, is stronger than the
anomaly bound, 9 < 32 + (16 - 4k)m, but both are satisfied for all compatible values
of m, k from 3.2.3, so there is no swampland.

For so(10), we can enforce the monodromy condition that (a2 + 4a6 )/z 4 is a perfect
square on z = 0 by setting a6 to vanish to order z5 instead of z4 . In this class of tunings,
the anomaly condition k < 6 + n matches the a3 Tate condition k < 6 + (3 - 2)n, while
the 7t condition 10 < 32+ (16 - 4k)m from anomalies is slightly weaker than the Tate
condition 2 < 6+ (3 - k)m, leaving in the tuning swampland for example so(10) EDsp(k)
for k = 8,9 when in = +1 (and necessarily n > 2,3). For so(11), the Tate condition
without considering monodromy is k < 8+ n, which is again weaker than the anomaly
condition k < 7 + n. The discrepancy can again be corrected by the monodromy
condition that for Tate so(11) as in table 1.2, we have so(12) when (a4 - 4a2a6 )/z6 is
a perfect square on z = 0. This monodromy condition is stated in [851 for so(4n + 4)
with n > 3, but the analysis here indicates that it must also hold at n = 2. With this
monodromy, the first conditions agree; the other conditions, 11 < 32+ (16 - 4k)m and

8 Thanks to Clay Cordova for discussions on this point
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2 < 8 + (4 - k)rm also agree. There is an exact matching between anomaly conditions
and Tate conditions for the cases so(12), and as discussed earlier all so(14) models on
curves of even self intersection (but not -4) are in the tuning swamp.

For tunings of so(N) e sp(k) where the so(N) is on a m = -4 curve, there is no a
priori upper bound on N, and the pattern continues in a similar way as for so(9)-so(12).
For so(N = 4j), the a4 Tate bounds k < 8+(4-j)m = N-8, j < 8+(4--k)m precisely
match the anomaly bounds. For so(N = 4j+2), the a3 Tate bound k < 6+(3 -j)m =
N - 8 matches the anomaly bound and j 5 6 + (3 - k)m -> N < 26 + (12 - 4k)m is
stronger than the anomaly bound N < 32 + (16 - 4k)m, leaving a small swampland
contribution. Similarly for so(4j+1),so(4j+3) when the proper monodromy conditions
are incorporated as for so(9),so(11). The upshot of this analysis is that so(N) E sp(k)
tunings have a few swampland contributions, but not many.

3.4.3 Multiple curves intersecting E

Having analyzed the combinations of algebras that can be tuned on a pair of intersecting
curves, we can consider the more general class of local constraints associated with a
single curve E that supports a gauge algebra g, and which intersects k other curves
Ei, i = 1..., k, with each curve having a fixed self-intersection. In principle such
geometries can be analyzed using the same methods used in the preceding section for
a pair of curves. A more general structure relevant for this analysis is related to the
global symmetry of the field theory over the curve E. Such global symmetries were
recently analyzed in the context of 6D SCFTs in [111. From the field theory point of
view, the global symmetry can be determined by the nature of the matter transforming
under g. For example, the fundamental representations of su(N) are complex, and on a
curve carrying M such representations, there is a global symmetry su(M) that rotates
the representations among themselves. In general, the direct sum of the algebras gq
supported on the k curves Ei that intersect E must be a subalgebra of the global algebra
of E. The global symmetries for curves of negative self intersection were computed
in 1111, and these are included in the Tables in the Appendix of information about
tunings of groups on curves of fixed self-intersection. A similar computation can be
carried out for curves of nonnegative self intersection; indeed, the computations in the
preceding section are closely related to the computation of the global symmetry, though
for the global symmetry the constraint associated with the curve intersecting the desired
curve would be dropped. Note that in 1111, only global symmetries associated with
generic intersections were incorporated, more generally, for example, there could be a
component of the global symmetry group associated with antisymmetric representations
of su(N), which can appear in more complicated bi-charged matter configurations [791.
Note also that in considering situations where multiple curves intersect a given curve E
that supports a gauge algebra g, the distinction between different realizations of g, such
as between type 12 and III, IV realizations of su(2), are important. These distinctions
are relevant for instance for the cases in 3.3.2, and are tracked in [11]. A complete
analysis of all local rules for a single curve intersecting multiple other curves would
need to distinguish these cases.

In general, in the situation where multiple curves E intersect a single curve E
supporting a gauge algebra g, there are constraints on the gauge algebras that can be
tuned over the Ei coming from the pairwise constraints determined in the preceding
subsection, and a further overall constraint associated with the global symmetry on
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E. Every configuration that satisfies these constraints automatically satisfies the local
anomaly conditions. It is natural to expect that perhaps all possibilities compatible
with these two conditions call actually be realized in F-theory. In principle this could be
investigated systematically for all possible combinations. We do not do this here, but to

illustrate the point we consider a couple of specific examples; in one case this hypothesis
holds, and in the other case it seems not to and there are further contributions to the
swampland. We leave a detailed analyses of all the cases for this story to future work.

Consider in particular the case where E has self-intersection n and supports a gauge
algebra su(2N). The global symmetry in this case associated with the 16+ (8 - 2N)n
matter fields in the fundamental representation of su(2N) is su(16 + (8 - 2N)n). In a
local model around E we have the usual Tate expansion. Let us ask what gauge groups
su(2M1) can be tuned on the intersecting divisors Ei. We take all the 2N, 2Mi to be
even for simplicity; as discussed above in the odd cases there will be some anomaly-
allowed models that cannot be tuned by Tate. Without imposing any constraints from
the self-intersections of the E, anomaly constraints impose the condition E Mi < N.
This is also the condition imposed by the global symmetry. Looking at the constraining
term a4 in the Tate expansion, we see that as above deg(a4 (8 )) = 8 + n(4 - s). The
gauge group on E indicates that we set to vanish all coefficients in a4 up to s = N.
The leading coefficient is then of degree 8 + n(4 - N). To tune gauge groups su(2MI)
at points w = wi on E, we must then take a4(N) = Hfj( - zi)M. This can precisely be
done for all sets {Mi} that satisfy the condition. Thus, in this case all possible tunings
are possible that are compatible with anomaly constraints, which are the same as the
tunings obeying the pairwise and global symmetry constraints.

Another interesting class of cases arises when we consider a -1 curve intersecting
with two -4 curves. In this case, with a sp(k) on the -1 curve, anomaly cancellation
and the global symmetry group suggest that it should be possible to tulle so(N), so(M)
on the two -4 curves as long as N + M < 16 + 4k. This does not always seem to be
the case, at least with Tate tunings, even when each intersection is pairwise allowed.
For example, while so(11) E sp(1) P so(9) and so(11) D sp(2) E so(13) call be tuned in
Tate, so(13) E sp(1) e so(7) and so(15) E sp(2) E so(9) cannot. Thus, it seems there
is a further component of the tuning swampland associated with cases allowed by the
global group and pairwise intersections that cannot be realized as three-divisor tunings.

3.4.4 No gauge group on E

We can also consider situations where E carries no gauge group and intersects a set of
other curves Ei. Although anomaly cancellation does not give any apparent constraint
in such a situation, F-theory geometries are still constrained. An example of this is the
E8 rule that has been mentioned above, which from the SCFT point of view can be
viewed as a generalization of the above arguments regarding global symmetries. When
a rational curve E is a generic exceptional divisor E -E = -1, the analysis of e.g. [121
establishes that in the limit in which the curve shrinks to zero size in a non-compact
geometry, the resulting SCFT has a global E8 symmetry. Therefore it is natural to

expect that 91 ( 92 9 e8 for gauge algebras on a pair of curves E 1, E2 that intersect
E, or more generally that the sum of algebras over any set of curves that intersect E
is contained in 8. The E8 rule holds in the case of NHCs, as discussed in Appendix C
of 14]; the full set of rules for NHCs that can intersect a -1 curves is given in [1251.

It is natural to conjecture that the E8 rule holds for all tunings on any set of curves
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Ei that intersect a -1 curve that does not support a gauge algebra. A consequence of
this would be that any tunings over E and the Ei that could be Higgsed to break all
gauge factors over E would also lead to a configuration that satisfies the E8 rule.

A slightly stronger version of the E8 rule would be that any tuning allowed by the
E8 rule and anomaly cancellation should be allowed. We have used Tate tunings to
investigate the validity of the tuned version of the E8 rule, both in the weaker form and
the stronger form. It is straightforward to check, given a pair of algebras a, b, what the
consequences are of the Tate tuning of these algebras on a pair of curves intersecting
a -1 curve E. In analogy with the rule (3.37), from the Zariski decomposition (or a
local toric analysis), it follows that if a -1 curve E intersects other curves Ei on which
a. E 0(-nK) vanishes to orders ki, then a, must vanish to order k > 0 where

k > -n + ki.. (3.51)

Thus, for example, if we try to perform a Tate tuning of su(5) on each of two divisors

Ei, E2 that intersect the -1 curve E, since for su(5) we have ord(ai, a2, a3, a4, a6) =
(0, 1, 2, 3,5), it follows that ord_(ai, a2 , a3, a4 , a) ;> (0, 0, 1, 2,4), which forces an su(3)
on E. In fact, even trying to tune su(5) e su(4) leads to an su(2) on E. This suggests
that the stronger version of the E8 rule fails. To confirm this we can perform an explicit
Weierstrass analysis. As discussed previously, the Weierstrass and Tate formulations
are equivalent for tunings of su(N), N < 5. This is true even when the divisor on which
the algebra is tuned is reducible as long as it is smooth, so that the ring of functions
is a UFD and there is no exotic higher-genus matter. Thus, we can write the general
Weierstrass form for su(5) on E U E2 = {0 = 0} in the form [85, 1481

19 1
f = - 2 + 1 #0' 2L2 + fU3 (3.52)

3 2
1 1 3 2 1

9 -3 27 (P+4 /)20. go

d th res4+tg d(353)

and the resulting discriminant is of the form

A = -(M{ - f5'?2 + 23 )u5 + O 6) (3.54)
16

We can consider the discriminant now in terms of a local Weierstrass analysis on E =
{z = 0}. The term f multiplies U3, giving a section of -4K. From a local toric analysis
like those we have been doing, it follows that fU 3 (essentially a4 in the Tate analysis)
must vanish at least to order z 2 . Similarly, V)202 (- a3) is a section of -3K, which
must vanish to at least order z, and jo5(~ a6) must vanish to order z 3 . It follows that
the Weierstrass model has at least a Kodaira 12 singularity on E that supports an su(2)
when we tune su(5) E su(5) on a pair of curves intersecting E.

This shows that the tuned version of the E8 rule fails, in the sense that there are
some configurations that this rule apparently would accept from the low-energy point
of view, which are not allowed in F-theory. We can view this as part of the swampland,
assuming that the justification of the E8 rule from field theory holds for an arbitrary
-1 curve holds, that is that there is always a limit where the curve shrinks to an
SCFT with global symmetry E8. Similar considerations show that other subgroups of
E8 suffer from similar tuning issues, in particular this occurs for su(9). It does seem,
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Algebras a E b C C8  C8 ( -, C7 D su(2), C6 D su(3), f 4 E g2, So(8) i so(8),
that can be tuned in F-theory so (8) D su(4), su(4) p su(4), su(6) D su(2),

su(5) q su(3), su(8) D -, so(16) D -
Algebras a D b C C8 su(5) ( su(5), su(4) e su(5), su(3) E su(6),
that cannot be tuned in F-theory su(2) E su(7),su(9) (D
("E8 swamp") so(7) E so(9),so(5) E so(11)
Algebras a D b not in q8 c8 D su(2), C7 D su(3), e6 ( 92, C6 P su(4), f4 P su(4)
that cannot be tuned in F-theory su(4) eso(9),so(17) e .

Table 3.9: Tunings that do and do not satisfy the E8 rule, which states that any pair of algebras
tuned on curves intersecting a -1 curve not supporting an algebra must have a combined algebra that
is a subalgebra of c8. Tunings in the swamp mostly tested using Tate, though proven explicitly for
su(5) D su(5) in text that Weierstrass also fails in this case. Algebras that cannot be tuned in F-theory
largely checked using both Tate and Weierstrass. This list is not comprehensive but illustrates the
general picture.

on the other hand, that all tunings that go beyond the groups contained in E8 are
disallowed, at least at the level of Tate tunings. A summary of this analysis is given in
Table 3.9.

In regard to the failure of tuning su(9) using Tate on a divisor intersecting a -1
curve, several comments are in order. First, note that the analysis in 185, 148, 791
gives a systematic description of all su(N) tunings for N < 9, but that there is as
yet no completely systematic description of su(9) tunings. In fact, a similar issue has
been encountered in tuning ani su(9) algebra on a divisor to attain a non-generic triple-
antisymmetric matter field at a singular point on the divisor that would need to have
an c8 enhancement [148, 791. It may be that the unusual way in which C8 contains
su(9) as a subgroup may act as some kind of obstacle to F-theory realizations of su(9)
in contexts where other subgroups of c8 are allowed.

Further investigation of the E8 rule in the context of tunings, particularly trying
to understand why certain subgroups such as su(5) P su(5) are disallowed in F-theory,
may provide fruitful insight into the connection of F-theory and low-energy supergravity
theories.

We can also ask about the analogue of the E8 rule for curves of higher self-
intersection. We consider here the situation of a 0-curve E intersecting two or more
other curves EA. For all the exceptional groups (including 02, j 4 ), it is clear that any
pair of groups can be tuned on a pair of divisors Ei, E2 , so for example we can tune
C8 ( e8 on the two divisors E. There are, however, constraints on what classical groups
can be tuned on the Ei. Most simply, it is clear from the Tate construction, since
deg a4(,) = 8, that using Tate to produce any combination of algebras su(2M ) is only
possible if Zj Mi < 8, so that the total algebra is always a subalgebra of su(16). Sim-
ilarly, an c 8 tuned on one side can be combined through Tate with an su(8) on the
other side, but not with su(N), N > 8. We can also tune so(32) on one side, or e.g.
e8 e so(16). It is tempting to speculate that the consistency condition is related to
the weight lattice being a sublattice of one of the even self-dual dimension 16 lattices
C8 P C8, spin(32)/Z2 . It is also possible that an su(17) algebra may be realizable using
a Weierstrass construction; in any case, it seems that the rank of the algebra realized
must be 16 or less.

Note that there are some analogues of the E8 rule for -2 curves, as discussed in
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3.3, which depend upon details of the geometry that are not easily understood from

the low-energy point of view. For example, when a -2 curve E is connected to two
other -2 curves, it is not possible to tune an su(2) on one of them and not on E. This
phenomenon is not currently understood from the low-energy point of view.

Although one could imagine an extension of the E8 rule and the corresponding
rule for a 0-curve to a curve of positive self-intersection, the primary constraints on
gauge groups tuned on other divisors intersecting such a curve seem to come from the
connection between the other curves and the remaining geometry. We leave further
investigation of such non field-theoretic constraints for further work.

3.4.5 More general intersection structures

We have focused here on situations where multiple curves intersect a single curve E
each at a single point. More complicated possibilities can arise geometrically. For
example, the curve E can intersect itself at one or more points, or acquire a more
complicated singularity. In such situations, a gauge group on E will either require an
adjoint representation (when the tuning is in Tate form on a singular divisor) or a more
exotic "higher genus" matter representation when the tuning is in non-Tate form; such
configurations were discussed in 3.5.

Another interesting situation can arise when two curves E, E' intersect at multiple
points. In principle such geometries can be analyzed using similar methods to those
used here. We point out, however, one case of particular interest. If two -2 curves
intersect at two points, or more generally if k -2 curves intersect mutually pairwise
in a loop, then if we were to be able to tune an SU(N) group on each curve there
would be bifundamental matter on each pair of curves, and the shift in Hodge number
h 2 ,

1 (X) would be the same for every N. This would appear to give rise to an infinite
family of theories with a finite tuning. This example, along with a handful of other
similar situations, was shown to be impossible in any supergravity theory with T < 9
in [64, 124]. Closed loops of this kind are also encountered in the context of F-theory
realizations of little string theories. From the F-theory point of view the possibility of
an infinite family of tunings is incompatible with the proof of finiteness for Weierstrass
models in [124]. We know, however, that such -2 curve configurations are possible 9,
for example in certain rational elliptic surfaces that can act as F-theory bases. In
fact, these configurations are another example of degenerate elliptic curves, like those
discussed in 3.3.2, but in this case associated with the affine Dynkin diagram Ak1.
As in those cases, we expect that the tuning of a single modulus will increase N by
one, and that there is an upper bound on N associated with the maximum value such
that -12K - NE is effective. Note, however, that from the low-energy point of view
this constraint is not understood. This issue is discussed further in 3.9.

Note that similar closed cycles of curves can occur for alternating -4, -1 sequences,
with alternating SO(2k), Sp(k) gauge groups. These can be thought of as arising from
blowing up points between every pair of -2 curves, and again correspond to degenerate
genus one curves with E - E = K -E = 0, and the explanation for finite tuning is again
similar.

9 Thanks to Yinan Wang for discussions on this point
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3.5 Tuning exotic matter

Up to this point we have focused on classifying the gauge groups that can be tuned
over the various effective divisors in the base through tuning codimension one singu-
larities in the Weierstrass model. In many circumstances, the gauge group content
and associated Green-Schwarz terms, which are fixed by the divisors supporting the
gauge group, uniquely determine the matter content of the theory. In other cases,
however, there is some freedom in tuning codimension two singularities that can realize
different anomaly-equivalent matter representations that can be realized in different
F-theory models associated with distinct Calabi-Yau threefold geometries. The exis-
tence of anomaly-equivalent matter representations for certain gauge groups was noted
in [134, 147, 148, 1361, and explicit Weierstrass models for some non-generic matter
representations were constructed in [148, 77, 79, 78]. Tuning a non-generic matter
representation without changing the gauge group in general involves passing through a
superconformal fixed point (SCFT) [79]. At the level of the Calabi-Yau threefold, such
a transition leaves the Hodge number h1 '1 (X) invariant (since the rank of the gauge
group and the base are unchanged), but generally decreases h2 " (X) as generic matter
representations are exchanged for a more exotic singularity associated with non-generic
matter.

A systematic approach to classifying possible exotic matter representations that
may arise was developed in 1142, 1481. Associated with each representation R of a
gauge group G is an integer

gR - (2ACR BR - AR). (3.55)12

The number gR corresponds to the arithmetic genus of a singularity needed in a curve C
to support the representation R, in all cases with known Weierstrass realizations; it was
argued in [142] that this relationship should hold for all representations. For example,
antisymmetric k-index representations of su(N) have gR = 0 and can be realized on
smooth curves, while the symmetric k-index representation of su(2) has g = k(k - 1),
and for k = 3 a half-hypermultiplet of this representation is realized on a triple point
singularity in a base curve having arithmetic genus 3 [78].

The exotic codimension two tunings of exotic matter on a single gauge factor that
have been shown explicitly to be possible through construction of Weierstrass mod-
els are listed in Table 3.10, along with the corresponding shifts in the Hodge number
h2 , (X). The change in h2 1 (X) corresponds to the number of uncharged hypermulti-
plets that enter into the corresponding matter transition, i. e. to the number of moduli
that must be tuned to effect the transition. This list may riot be complete; it is possible
that other exotic matter representations may be tuned through appropriate Weierstrass
models. This subject is currently an active area of research. Nonetheless, if there are
one or more other exotic representations possible that are riot listed in the table, for a
given tuning of gauge groups from codimension one singularities on a given base, the
generic matter content is finite. Each divisor supporting a gauge group has a finite
genus, and there are a finite number of states in each of the generic representations. In
each specific case, anomalies in principle constrain the number of possible transitions
to exotic matter to a finite set, so that the evaluation of a superset of the set of possible
codimension two tunings is a finite process; the remaining uncertainty is whether each

of those models with exotic matter not listed in Table 3.10 has an actual realization in
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g R gR initial matter tuned matter Ah2
su(N) N(N + 1)/2 1 (N2 - 1) G 1 (N(N + 1)/2) e (N(N - 1)/2)) -1
su(2) 4 3 3 x 3 ED 7 x 1 4 e 7 x 2 -7
su(6) 20 0 15 ® 1 120 E 6 -1
su(7) 35 0 3 x 21 ® 7 x 1 35 D 5 x 7 -7
Su(8) 56 0 4 x 28e 16 x 1 56E9 x 8 -16
sp(3) 14' 0 14 D 2 x 1 -14'e 6 -2
sp(4) 48 0 4 x 27 E 20 x 1 48 e 10 x 8 -20

Table 3.10: Known exotic matter representations that can be realized by tuning codimension two
singularities over a divisor in the base, including the tuning of Weierstrass moduli that impose singu-
laritics in a generically smooth divisor. Half hypermultiplets are indicated explicitly in the transitions;
when the result of the transition is a half-hypermultiplet, the genus given is that of the half-hyper.
Hodge number shifts are indicated in each case. Other exotic matter representations may be possible
that have not yet been realized explicitly through Weierstrass models. Note that the first example
listed, of transitions from an adjoint to symmetric + antisymmetric matter, has only been explicitly
realized so far in Weierstrass models for SU(3).

F-theory. At the time of writing this is not determined for all possible matter repre-
sentations, but further progress on this in some cases will be reported elsewhere. Note
that certain related exotic multi-charged representations have also been identified 1791,
such as the (2, 2, 2) of su(2) , the (6, 2) of Su(4) D su(2), etc., which can arise from
Higgsing of the exotic matter listed in Table 3.10; while not listed explicitly in the
table, such multi-charged exotic matter should also be considered in possible tunings.

A further issue is that in some cases there are combinations of exotic and conven-
tional matter multiplets that appear from low-energy anomaly cancellation considera-
tions to be possible but that cannot be realized in F-theory. Thus, certain transitions
that appear to be possible may be obstructed in F-theory. As an example, at least
for the method of constructing Weierstrass models developed in 179], an su(8) theory
with some 56 multiplets must also have at least one 28 multiplet. This gives another
class of situations where the finite enumeration of tunings gives a superset of the set
of allowed Weierstrass models, of which some may not represent consistent F-theory
constructions.

3.6 Tuning abelian gauge factors

In the analysis so far we have focused on tuning nonabelian gauge factors, which are
determined by the Kodaira singularity types in the elliptic fibration over each divisor
in the base. Abelian gauge factors are much more subtle, as they arise from nonlocal
structure that is captured by the Mordell-Weil group of an elliptic fibration [21. There
has been substantial work in recent years on abelian factors in F-theory, which we do
not attempt to review here. While there are still open questions related to abelian con-
structions, particularly those of high rank, the general understanding of these structures
has progressed to the point that a systematic approach can be taken to organizing the
tuning of abelian factors in F-theory models over a generic base. We describe here how
this can be approached in the context of the general tuning framework of this thesis,
beginning with a single abelian factor and then considering multiple abelian factors
and discrete abelian groups.
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3.6.1 Single abelian factors

A general form for a Weierstrass model with rank one Mordell-Weil group, correspond-
ing to a single U(1) factor, was described by Morrison and Park [1671. Over a generic
base, such a Weierstrass model takes the form

2 12 2 1 3 2 1
y2 3+ (ele3 - 1e b2eo)x + (-eoe+ 1 eie 2 e 3 - -e3 + 2 beoe2 - 1 b2 e2) . (3.56)

33 27 3 4 1

Here, b is a section of a line bundle O(L), where L is effective, and ej are sections of
line bundles 0((i - 4)K + (i - 2)L), where K is the canonical class of the base. This
provides a general approach to tuning a Weierstrass model with a single U(1) factor.
One chooses the divisor class L, and then curves b, e in the corresponding classes,
which define the Weierstrass model.

A simple conceptual way of understanding this construction and the associated
spectrum comes from the observation, developed in [167, 152] (see also [821), that when
b -+ 0 (3.56) becomes the generic form of a Weierstrass model from the SU(2) Tate
form, where e3 is the divisor supporting the SU(2) gauge group. The divisor class

[e3] = -K + L always has positive genus, since L is effective. Thus, the resulting SU(2)
group has some adjoint representations. The U(1) model (3.56) can be found as the
Higgsing of the SU(2) model on an adjoint representation, and has the corresponding
spectrum. While in some situations the enhanced SU(2) leads to a singular F-theory
model, the spectrum can still be analyzed consistently from this point of view.

Thus, the generic tuning of a U(1) factor on an arbitrary base can be carried out
by choosing a curve e3 of genus g > 0. From Table 3.4, and the usual rules of Higgsing
an SU(2) to a U(1), we see that the resulting matter spectrum consists of

generic U(1) matter = (6n + 16 - 16g)(i1) + (g - 1)( 2) (3.57)

where n = [e3]- [e3] is the self-intersection of the curve e3 . Since the Higgsing introduces
one additional modulus for each uncharged scalar, the change in Hodge numbers for
this tuning is g less than that for the SU(2) model:

generic U(1) A(h1 '1 , h2,1 ) = (1, -12n + 30(g - 1) + 1). (3.58)

As the simplest example, choosing e3 to be a cubic on P2 with n = 9 gives g = 1, and a
matter content of 108 fields of charge 1 under the U(1), while the Hodge numbers are
(3, 166). Note that here the Hodge number h2,1 (X) is determined from the low-energy
theory using the rules of Higgsing and anomaly cancellation; directly computing the
number of independent moduli in the Weierstrass model (3.56) is tricky due to possible
redundancies, and has not yet been carried out in general, to the best knowledge of the
authors.

This approach allows for the tuning of a generic U(1) on an arbitrary base. The
spectrum will become more complicated when e3 intersects other divisors that carry
gauge groups, and must be analyzed in a parallel fashion to other intersecting divisors
that each carry nonabelian gauge factors. When the U(1) derives from the Higgsing of
an SU(2), however, the matter follows directly from the Higgsing process and can be
tracked in the low-energy theory. Note also that the curve e3 can be reducible, in which
case the corresponding SU(2) model will arise on a product of irreducible factors, with
bifundamental matter in place of adjoint matter; such situations are discussed in some
detail in [771.
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The U(1) factors tuned in this way will have only the generic types of U(1) matter,
associated with charges q 1, 2. It is known, however, that U(1) models with
higher charges such as q 3 can be found, see e.g. [82]. As described in [78],
such U(1) models can be described as arising from the Higgsing of SU(2) models with
exotic matter, such as in the three-index symmetric matter representation. From the
point of view of the unHiggsed nonabelian model, the SU(2) factor on e3 can acquire
exotic matter through a transition such as the one described in the second line of
Table 3.10 where 3 adjoints of SU(2) and seven neutral fields are exchanged for a half-
hypermultiplet in the 4 representation and seven fundamentals, with a shift in h2 ,1 of
-7. If the resulting theory has at least one further adjoint, on which the SU(2) is then
Higgsed, this gives a U(1) factor with charge q = 3. By systematically constructing
all SU(2) models with exotic matter we thus should in principle be able to construct
all U(1) models with higher charges. There are a number of questions here that are
still open for further work, however. We summarize the situation briefly. As discussed
in [152], when the U(1) is unHiggsed to SU(2) it may introduce (4, 6) singularities
at codimension two or even at codimension one. Thus, a systematic analysis of all
U(1) models with exotic matter through Higgsing might require constructing classes of
singular SU(2) models. A more direct approach would be to consider how the SU(2)
transition to exotic matter is inherited in the U(1) theory, where it should correspond
to a direct transition of U(1) models exchanging standard matter types for q = 3
or higher matter. From the general analysis of [791, such abelian transitions should
pass through superconformal fixed points of the theory. A direct construction of these
transitions in the U(1) theory has not yet been completed. It is also not known in
principle whether all U(1) models with charge 3 matter can be constructed in this
fashion through Higgsing of models with the same or higher rank nonabelian symmetry.
Further work is thus needed to complete the classification of non-generic F-theory
models with a single U(1) factor and higher charged matter over a given base. One
way to frame this question is in the context of 6D string universality [63]; from the low-
energy point of view, for a given gauge group and associated divisor class, we can classify
the finite set of matter representations that are in principle allowed. For a theory with
abelian factors, some progress was made in classifying the allowed spectra in [146, 165,
166], but a complete classification has not been made. The open question is whether
in all cases with abelian factors, all anomaly-allowed matter representations can be
realized by explicit Weierstrass models in F-theory. In particular, for generic SU(2)
models with 4 or higher matter or the corresponding Higgsed U(1) models with matter
of charges q = 3 or higher, while some F-theory examples have been constructed
others have not, and the universality question is still open.

3.6.2 Multiple U(1)'s

As the rank of the abelian group rises, the algebraic complexity of explicit construc-
tions increases substantially. A general rank two U(1) x U(1) Weierstrass model was
constructed in [77] (less general U(1) 2 models were constructed in [169, 170]). The
general U(1) 2 model can be understood in a similar fashion to the U(1) models just
described, in terms of unHiggsing to a nonabelian model. In general, there is a divi-
sor class associated with each U(1) factor; most generally, these divisor classes can be
reducible, and there may be some overlap between the curves supporting the resulting
SU(2) factors, in which case the rank is increased to two over the common divisor.
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Specifically, if we denote by AC, BC the curves on which the "horizontal" U(1) divisors
become vertical, with C the common factor, as described in 1771, the unHiggsed gauge
group will be SU(2) x SU(2) x SU(3), with the factors supported on curves A, B, C,
each of which may be further reducible in which case the gauge group acquires mul-
tiple factors accordingly. The charges of the general U(1) x U(1) model can then be
understood simply from the Higgsing of the appropriate nonabelian model, in parallel
to the construction described above for a single U(1) factor from the unHiggsed SU(2)
spectrum. The details become somewhat more complicated, and we do not go into
them explicitly here (see [77]), but the tuning and full spectra of a generic U(1) x U(1)
model can in principle be described using this analysis.

As in the case of a single U(1), the generic U(1) x U(1) spectrum described here
consists of only the most generic types of charged matter under the two abelian factors.
Note, however, that this includes matter charges associated with a symmetric represen-
tation of SU(3), which can be realized for example, from the Higgsing of an SU(3) on a
singular curve with double point singularities and a non-Tate model with a symmetric
representation and at least one additional adjoint, as constructed in [77, 79. For more
exotic matter representations, there is as yet no general understanding, and many of
the open questions described above, such as the explicit realization of abelian matter
transitions, and the existence and Higgsing of appropriate rank two nonabelian models
with exotic matter, are relevant here as well.

Constructing models with more U(1)'s becomes progressively more difficult. One
class of U(1) 3 models was constructed in [176], though these models do not capture
many of the spectra that could result from Higgsing nonabelian rank 3 models, and
are certainly not general. The construction of a completely general abelian model with
U(1)k where k > 2 is still an open problem. Nonetheless, from the point of view of
geometry and field theory a general approach was outlined in [771 that in principle gives
an approach to the tunings that gives what should be a superset of the set of allowed
possibilities, in the spirit of this thesis. The idea is that each U(1) factor should come
from a divisor Ci, and these divisors can be reducible, with separate components in
principle for each subset of the divisors, generalizing the AC, BC rank two construction
described above. To proceed then, we consider all possible divisor combinations that
can support ail unHiggsed rank k nonabelian group. The possible rank k abelian group
constructions, and the corresponding charges, can then be determined from Higgsing
the corresponding nonabelian model. In each case, the specific spectrum and anomaly
cancellation conditions allow us to compute the potential shift in Hodge numbers.
This gives in principle a finite list of possibilities that would need to be checked for the
existence of an explicit Weierstrass model. In practice, the fact that no generic way
is known to implement Higgsing in the Weierstrass context makes the explicit check
impossible with current technology, even for generic types of matter. Here we also in
principle would need to deal with exotic matter contents.

Another approach to constructing higher-rank abelian models proceeds through
constructing fibrations with particular special fiber types that automatically enhance
the Mordell-Weil rank, see e.g. 174, 82]. It is not clear, however, how this approach can
be used in the systematic construction of models, particularly through the perspective
of tuned Weierstrass models as we have considered here. Nonetheless, this approach
may provide a useful alternative perspective on the systematic construction of higher-
rank abelian theories.

To summarize, for rank one U(1) models with generic matter, we have a systematic
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approach to constructing all tunings. When considering more exotic matter or higher
rank nonabelian groups, we have a systematic algorithm for constructing a finite set
of possibilities along with the Hodge numbers of the elliptic Calabi-Yau threefold, but
the technology does not yet exist to explicitly check all possibilities. Note that there is
also as yet no proof that the general higher rank Higgsing strategy will give all possible
higher-rank abelian spectra, unlike for rank one and two with generic matter, where
the results of [167, 771 represent general constructions, all of which are compatible with
the Higgsing approach.

3.6.3 Discrete abelian gauge factors

Finally, we describe briefly the possibility of systematic tunings of discrete abelian
gauge factors. Such discrete factors, and corresponding matter, have been the subject
of substantial recent work [152]. As described in [1521, one systematic way to approach
discrete abelian factors is through the Higgsing of continuous abelian U(1) factors on
states of higher charge. For example, Higgsing a U(1) theory with matter of charge

1 on a field of charge +2 gives a theory with a discrete abelian Z2 symmetry and
matter of charge 1 under the Z2. In the context of (3.56), this Higgsing call be realized
by transforming b2 into a generic section e4 of the line bundle O(2L). This gives an
explicit approach to constructing the simplest class of discrete abelian gauge models,
those with Z2 gauge group and charges 1. On a generic base, choosing e3 to be a curve
of genus g and self-intersection n, the resulting spectrum and Hodge shifts should be

generic Z2 : matter (6n + 16 - 16g)( 1), A(h'", 112,1) = (0, -12n + 32(g - 1)) .

(3.59)
While constructions of models with more complicated groups and/or matter over
generic bases have not been given explicitly in full generality, we can follow the same
approach as used for the general U(1)k models to construct a class of potential Hodge
numbers and spectra that should be a superset of the set of allowed F-theory possibil-
ities. Basically, for each possible U(1)k model, we consider the Higgsings on charged
matter that leave a residual discrete gauge group. In addition to the caveats discussed
above for the U(1)k models, there are also the issues that the U(1)k model may in
principle be singular even if the model with the discrete symmetry is not, and that in
principle there may be allowed models with discrete symmetries that cannot be lifted
to U(1)k models. These are all good open questions for further research that would
need to be resolved to complete the classification process in this direction.

3.7 A tuning algorithm

We now describe a general algorithm that, given any explicit choice of base B, produces
a finite list of possibilities for tuned Weierstrass models. In the most concrete case
of toric bases and tunings over toric divisors, this algorithm can be carried out in an
explicit way to enumerate and check all possibilities. More generally, the algorithm will
produce a superset of possible tunings, for which explicit realizations as Weierstrass
models must be confirmed. We begin by describing the algorithm in a step-by-step
fashion. We then summarize the outstanding issues related to this algorithm.
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3.7.1 The algorithm

i) Choose a base
We begin by picking a complex surface base that supports an elliptically fibered

Calabi-Yau threefold. As summarized earlier, from the work of Grassi [1211 and the
minimal model program, this surface must be a blow-up of P 2 or a Hirzebruch surface
Fm, m < 12. The Enriques surface can also be used as a base, but the canonical class
is trivial up to torsion, so f, g do not seem to have interesting tunings. The important
data on the base that must be given includes the Mori cone of effective divisors and
the intersection form.

ii) Tune nonabelian groups with generic matter on effective divisors of self-
intersection < -1

The set of effective irreducible curves of negative self-intersection forms a connected
set. This can be seen inductively: The statement certainly holds for all the Hirzebruch
surfaces F,,; for m > 0, IF contains a single curve of negative self-intersection, and
for m = 0 there are no such curves. And any point p in a Hirzebruch surface, or any
blow-up thereof, either lies on a curve of negative self-intersection, or on a fiber of the
original Hirzebruch with self-intersection 0, so blowing up p gives another base with the
desired property. (In the latter case, the fiber becomes a -1 curve after the blow-up,
which intersects the negative self-intersection curve on the original IFi.)

Furthermore, at least one curve of negative self-intersection in any base containing
such curves will intersect an effective curve of self-intersection 0. This can be seen by
taking, for example the original -m curve on any blow-up of Fm, n > 0, and noting
that any base other than P 2 and FO can be seen as a blow-up of F,, m > 0.

Together, these statements and our analysis of 3.2, 3.4.2 are sufficient to prove
that in principle there are a finite number of possible tunings on all curves of negative
self-intersection as long as the Mori cone contains a finite number of generators. We
can proceed by starting with a negative self-intersection curve E that intersects a 0-
curve, construct the finite set of possible tunings over E, etc., and then proceed by
constructing tunings over curves that intersect that curve, etc., checking consistency
with previous curves at each stage. This shows in principle that there is a finite
algorithm for constructing all tunings over curves of negative self-intersection given a
finitely generated Mori cone.

Note that the Mori cone contains a finite number of curves of self-intersection -2
or below. In practice, we can proceed effectively by using the results of Section 3.2,
3.3 to construct all possible tunings of nonabelian gauge groups on individual effective
divisors and non-Higgsable clusters represented by curves of self-intersection -2 or
below as units in the algorithm. The connection with -1 curves and at least one 0-
curve are needed in principle to bound the infinite families that otherwise could be
tuned on chains of -2 curves or alternating -4, -1, -4, -1,... chains, and are also
useful in practice to bound the exponential complexity that would be encountered by
independently tuning the clusters without consideration of their connections.

Note also that in some unusual cases like dP9 , the Mori cone has an infinite num-
ber of generators, associated with an infinite number of (-1)-curves. This algorithm
appears inadequate in such cases, however in all cases that we are aware of of this
type, nothing can be tuned on the infinite family of -1 curves due to a low number of
available moduli in h 2 J. This issue is discussed further below.

iii) Tune nonabelian groups on the remaining effective divisors
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We now consider tunings on remaining effective curves of non-negative self-intersection.
We restrict attention to cases where the number of generators of the Mori cone is finite,
and there are a finite number of effective curves with genus below any fixed bound; we
discuss below situations where the number of Mori generators is infinite. The effective
curves on which gauge groups can be tuned are generally quite constrained. From the
analysis of 3.4.1, no gauge group can be tuned on any divisor that intersects a curve on
which an algebra of f4 or above is supported. Thus, the non-negative curves on which
we are allowed to tune are perpendicular to all such curves, ill particular perpendicular
to all curves of self-intersection -5 or below. This acts as a powerful constraint, partic-
ularly for bases with large h1' 1 (B), which can only arise in the presence of many curves
that have large non-Higgsable gauge factors. An example is given in 3.8.2. Restrict-
ing attention to curves C in the subspace with C - D = 0 for all D of self-intersection
D - D < -5, the genus grows as g = 1 + (K + C) - C/2, which increases rapidly with
the self-intersection of C. Practically, this rapidly bounds the set of curves on which
tunings are possible. While we do not give here an explicit algorithm for efficiently
enumerating these curves, in general, the finiteness of the number of tunings follows
from an argument given in [1241, which uses the Hilbert Basis Theorem to show that
the number of distinct strata of tuning in the moduli space of Weierstrass models is
finite. We now can in principle consider all possible tunings of the divisors that admit
tunings (using Tables 3.1 and 3.4), and constrain using the rules that govern connected
divisors described in Section 3.4. This gives a finite list of possible nonabelian gauge
factors tuned on divisors in the base, which by construction satisfy the 6D anomaly
cancellation conditions.

iv) Tune abelian gauge factors

We can use the methods described in Section 3.6 to identify the set of possible
abelian models and spectra that could in principle be realized from the Higgsing of
additional nonabelian gauge factors on effective divisors.

v) Tune exotic matter

Finally, we can, in any specific case, identify a finite number of possible tunings to
anomaly-equivalent exotic matter content, as described in Section 3.5. Table 3.10 gives
the set of possible such transitions that have been explicitly identified in Weierstrass
models. This gives a finite set of possible matter contents for a given nonabelian gauge
content, though as discussed earlier not all of these may have Weierstrass realizations.
Analogous transitions can be carried out for abelian factors, either through the corre-
sponding unHiggsed nonabelian theory, or in principle directly through abelian matter
transitions.

3.7.2 Open questions related to the classification algorithm

Here we summarize places where the algorithm encounters issues that are not yet
resolved. Each of these is an interesting open research problem. Note that for tunings
of nonabelian gauge groups with generic matter over toric divisors in toric bases, there
are no outstanding issues, and the algorithm can in principle be carried out for all bases
and tunings.

* Base issues

The algorithm described here requires that the cone of effective divisors on the base
have a finite number of generators. This is not the case for some special cases of bases
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such as the 9th del Pezzo surface dPg. The algorithm described here would riot work
for such bases. While the algorithm described here can be carried out for any specific
base with a finitely generated cone of effective divisors, the full program of classifying
all elliptic Calabi-Yau threefolds also requires classifying the set of allowed bases. In

[71, all non-toric bases that support elliptic Calabi-Yau threefolds with h2,1 > 150 were
constructed (these all have finitely generated Mori cones, so the algorithm here could
be applied without encountering this problem in classifying all tuned elliptic Calabi-
Yau threefolds with h 2 1 > 150). To continue the algorithm used there to arbitrarily
low Hodge numbers would require resolving several issues in addition to the finite cone
issue. In particular, that algorithm used the intersection structure of classes in the Mori
cone. In some cases at lower Hodge numbers this does not uniquely fix the intersection
structure of effective divisors on the base; for example, one must distinguish cases where
3 curves intersect one another in pairs from the case where all three intersect at a point.

* Apparent infinite families
As mentioned above, in some bases such as dP the Mori cone has an infinite number

of -1 curves. Our algorithm would appear to break down in such situations. Because
the number of tunings is proven to be finite, however, there cannot be any tunings on
an infinite family of distinct curves. Thus, it seems that the finite number of moduli in
any given case must limit the possibilities so that there are nonetheless a finite number
of tunings. For example, for the base dP we have H = 273 - 29 - 9 = 12, giving
insufficient moduli to tune even an SU(2) on a -1 curve, so in fact the number of
tunings here is finite even though the number of -1 curves is infinite.

We have also not given a completely rigorous proof and explicit algorithm for enu-
merating the set of curves of self-intersection 0 or above on a base with a finitely
generated Mori cone. While we believe that this is in principle possible, and in ex-
plicit examples seems straightforward, a more general analysis and explicit algorithm
relevant for non-toric bases would be desirable.

* Explicit Weierstrass tunings
In the work here we have carried out local analyses that ensure the existence of

Weierstrass models for any of the local tunings over individual curves or clusters of
curves of self-intersection -2 or below, except some cases of large rank classical groups or
complicated -2 curve structures. Beyond these cases, we have used anomaly cancellation
conditions to determine a superset of the set of allowed models for tunings over general
local configurations of arbitrary curves, with Tate models used to produce most allowed
constructions in the case of intersecting rational curves. An explicit implementation of
the algorithm would need to confirm the existence of Weierstrass models to determine
which models in the superset admit explicit constructions. We are not aware of any
known exceptions to the existence of Weierstrass models other than those discussed
explicitly here, but we cannot rule them out for example when considering multiple
intersecting curves supporting nonabelian gauge groups, or gauge groups on higher
genus curves.

* Exotic matter representations
We have listed in Table 3.10 the set of non-generic matter representations that

have been found identified in the literature through explicit Weierstrass models. Even
for these matter representations, it is not clear whether all combinations of fields that
satisfy anomaly cancellation can be realized in F-theory constructions. It is also not
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known whether there are other exotic matter representations that may admit realiza-
tions in F-theory. We have also assumed that all exotic matter representations can be
realized through a transition from an anomaly-equivalent set of generic representations;
this statement is not proven.

9 Codimension two resolutions

As mentioned in 1.3.3, while our algorithm in principle could hope to classify the
complete finite set of Weierstrass models over a given base, there is a further challenge
in finding all resolutions of the Weierstrass model to a smooth elliptic Calabi-Yau three-
fold. Despite the recent work on codimension two resolutions in the F-theory context
[148, 156, 94, 95, 96, 97, 981, there is as yet no general understanding or systematic
procedure for describing such resolutions, particularly in the context of the exotic mat-
ter representations just mentioned where the curve in the base supporting a nontrivial
Kodaira singularity is itself singular. While the munber of distinct Weierstrass models
must be finite by the argument of [124], to the best of our knowledge there is no argu-
ment known that the number of distinct resolutions of codimension two singularities in
a given Weierstrass model is finite 10, so a complete classification of elliptic Calabi-Yau
threefolds would require further progress in this direction.

* Abelian gauge groups

We have outlined an approach to constructing a superset of the set of possible
abelian models over a given base. For a single U(1) and generic (charge 1, 2) matter,
this can be done very explicitly using the Morrison-Park form [167] and Higgsing of
SU(2) models on higher genus curves. For two U(1) factors and generic matter this
can in principle similarly be done following the analysis of [771, though we have not
gone through the details of the possibilities here. For more U(1) factors, while the
approach described here and in [771 can in principle give a finite set of abelian models
through Higgsing nonabelian models, which should represent a superset of the set of
allowed possibilities, there is no general construction known of the explicit multiple
U(1) models. For non-generic U(1) charged matter, again while in principle a finite list
of possibilities compatible with anomaly cancellation can be made, explicit Weierstrass
constructions beyond those of charge 3 matter in [781 are not known. In principle,
exotic matter transitions could be classified directly in terms of the abelian spectrum,
though this has not yet been done. For discrete abelian groups, again in principle a
finite set of possibilities can be constructed by Higgsing the abelian models, but explicit
Weierstrass constructions are not known beyond the generic Z2 models and some Z3
models mentioned above.

Most of the complications and issues that arise in confirming the existence of Weier-
strass models for complicated gauge-matter combinations arise only as the Hodge num-
ber h2" (X) becomes small. None of these issues were relevant in the classification of
Weierstrass models for elliptic Calabi-Yau threefolds with h2

,
1 > 350 in [18], and we

expect that one could go quite a bit further down in h2 " before encountering a problem
with the systematic classification that would require substantially new insights into any
of these problems.

We also emphasize that in principle, there is no obstruction to carrying out this
algorithm for arbitrary toric constructions, with nonabelian gauge tunings only over
toric divisors.

l 0Thanks to D. Morrison for discussions on this point
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3.8 Examples

In this section we give some examples of applications of the methods developed and
described here. In each case, the goal is not to be comprehensive, but to illustrate the
utility of the methodology developed in this thesis and to suggest directions for more
comprehensive future work.

3.8.1 Example: two classes of tuned elliptic fibrations in Kreuzer-
Skarke

The rules that we have established so far must in particular be satisfied by any Calabi-
Yau elliptic fibiation over toric surfaces. We have a complete set of rules that list
the allowed tunings on isolated toric curves; on multiple-curve NHCs; and on clusters
either neighboring or separated by a -1 curve. In each case we have provided a formula
for the shift in Hodge numbers of the resulting threefold in comparison to a general
elliptically fibered Calabi-Yau over the same base. It is perhaps useful at this point to
see how these rules simplify practical computations.

To this end, we use our rules to explore two classes of tuned fibrations within the
Kreuzer-Skarke database [46], which contains all Calabi-Yau threefolds that can be
realized as hypersurfaces in toric varieties associated with reflexive 4D polytopes. In
the future, these rules may be useful to perform a more exhaustive study of all tuned
elliptic fibrations over toric (or more general) surfaces. For purposes of illustration, we
will consider the following simple classes of fibrations over toric bases as classified in
[1261:

* tunings of 6, 7 over -4 curves.11

" tunings of su(2) over -2 curves.

Proceeding to the first example, whenever a base contains a -4 curve, we en-
hance its generic so(8) to e6 and e7 when possible. By the E8 rule, this will be pos-
sible whenever the neighboring clusters (separated by -1 curves) support at most
su(3) or su(2) algebras, respectively. For instance, -the -4 curve in the sequence

( .. , -3, -2, -1, -4, -1 - 2, -3, - - -) will admit enhancement to 7, whereas the -4
curve in the sequence (- - - , -1, -3, -1, -4, -1, -3, -1, -- ) will admit an enhancement
only to C6, and no enhancement is possible on

(. - , -2, -3, -1, -4, -1, -3, -2, -1, --), since the -3 curve of a (-3, -2) NHC sup-
ports the algebra 02 and g2 ( 6 C8.

Implementing this program yields the following results, as plotted in the diagram
below. There are 1,906 distinct Hodge numbers of generic fibrations over bases that
support these tunings, and 1, 562 distinct Hodge numbers of tuned fibrations over these
bases. The diagram is a scatterplot of both sets of Hodge numbers.

Let us now consider our second example, namely tunings of su(2) o -2 curves in
toric bases. As we saw above, chains of -2 curves have simple properties with respect
to tunings. For su(2), the allowed tunings are precisely controlled by the averaging rule:
a su(2) can be tuned on any divisor in a -2 chain, but once a second su(2) is tuned
on a different curve, all curves in between are forced to carry su(2)s as well (at least).
Therefore, to find all these tunings, we sweep all toric bases and identify -2 chains.

"It is likely that a non-rank-enhancing tuning of so(8) to 4 does not yield a distinct Calabi-Yau
but rather merely specializes to a subspace of the original's moduli space.

117



4e.,

Figure 3.3: [Color online.J Tnings of CG aiIld C7 on -4 curves. Blue (lots iiark Hodge

numbers of untuiled models over toric bases where the 5o(8) gauge symmetry oil a -4

curve can be eilIanced to at least an cc. Orange dots mark Hodge inumbers of tuned

models over the same bases (without distinguisiing between C6 and c-. Here the y axis

11 is plotted versus the x axis h.

For each base, for each -2 chain, we choose a starting and ending point (which could

coincide) for the tuned su(2)s. The total set of such tunings on a given base is found

by activating all independent combinations of such tunings on the different -2 chains

of the base. Since we are here interested in a coarse classification of tuned manifolds

by their Hodge numbers, ili this case there is a shift by A(hi 1121) = (+, 1 -(1 + 4))

for each tuned group of su(2)s of length 1.

Searching for tunable -2 curves, we find 8,517 distinct Hodge numbers of bases

on which tunings are possible, resulting iin 1, 537 distinct tuned Hodge numbers. In

this exaniple and in the above, all Hodge numbers are in the Kreuzer-Skarke database,

strongly suggesting that these tuned elliptic fibrations represent different constructions

of the models in this database. This construction is a rather simple and direct way

to see that at least some manifolds with these Hodge munbers are elliptically fibered.

The Hodge numbers of generic fibrations over bases with -2 chains, together with the

Hodge numbers of resulting tunings, are graphed in the scatterplot.

3.8.2 Example: tunings on IF 12

As an example of the general tuning algorithm, we consider classifying tuned Weier-

strass models over the toric base F 2, the twelfth Hirzebruch surface. We focus on the
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Figure 3.4: [Color online. Tunings of su(2) o1 (chains of) -2 curves. As for the

previous example, blue (lots mark Hodge numbers of untuned models over toric bases

with -2 curves that can support a 81u(2) gauge synnetry. Orange dots mark Hodge

numbers of tuned models over the same bases. Here the y axis 1?21 is plotted versus

the x axis /1.

general classification of the superset of possible models, rather than explicit Weierstrass

constructions.

The Hirzebruci surface F12 has a cone of effective divisors generated by the curves

S aId F, where S - S = -12, S - F = 0, F -F = 0. The toric divisors are S, F, S, F

where S = S + 12F has self- iitersection -5 = +12. The curve S is a non-Higgsable

cluster supporting a gauge group Es. No curve intersectiig S can carry a gauge group,

since this would produce nmatter charged under the Es and a (41 6) singularity. Thus.

the only curves on which we can tine nonabelian gauge factors are multiples of S, kS.

This simplifies the classification significantly. The generic elliptic fibration over F has

Hodge numbers (11, 491) [128, so this is our starting point.

First, we consider tuning single noabelian gauge factors on S. This curve has

self-i ntersection n = +12 and genus y = 0. Since f, g can be described torically

as functions in a local coordinate z of degrees 4, 7, where S ={ = 0}, with at

least one monomial at each order, we can iimnediately tuine the gauge group types

su(2), C7 that are enforced simply by the order of vanishing of f, g. The resulting

tuiings are tabulated in Fable 3.11. It is also straightforward to confirim fron a direct

toric monomial analysis that we can tune the orders of vanishing of fJ g with a proper

choice of monodroiny conditions to get any of the other gauge groups with algelbrs

su(3), 92. so(7), so(8), fl, c. This illustrates the general methods of 3.2.3 in a specific
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G curve(s) matter (h'4(X), h 21(X))
(11, 491)

su(2) S 88 x2 (12, 318)
su(3) 5 90 x3 (13, 229)
su(4) 5 64 x4+ 14 x6 (14, 166)
su(5) 5 52 x5+ 14 x1O (15, 115)
su(6) S (40 + r) x 6+ (14 - r) x15 (16, 76 - r)
su(7) S (28 + 5r) x 7+ (14 - 3r) x21 (17, 49 - 7r)
su(8) S 25 x8+ 10 x28 + 1 x56 (18, 18)

C6 S 18 x27 (17, 83)
C7 5 10 x56 (18, 64)

su(2) x su(2) 5, S 64 x (2, 1) + 64 x (2, 1) + 12 x (2, 2) (12, 193)
su(2) 25 128 x2 +11 x3 (12, 205)
su(3) 25 118 x3 +11 x8 (13, 87)
su(4) 25 32 x4 + 28 x6 +11 x15 (14, 45)
su(2) 35 120 x2 +34 x3 (12, 152)
su(3) 35 54 x3 + 34 x8 (13, 65)
su(2) 45 64 x2 +69 x3 (12, 159)
U(1) [2S] 256 x 1 + 20 x 2 (12, 215)

Z2 12S] 256 x 1 (11, 235)

Table 3.11: Some tunings on F12. Gauge group described is tuned on a multiple of 5, additional
non-Higgsable factor of E8 from S is dropped. Curve for U(1) models is corresponding value of

[e3] supporting associated unHiggsed SU(2). Tunings with rank-equivalent descriptions (e.g. 02) not
included in list.
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context.
The classical groups with algebras su(N),sp(N),so(N) must be considered sepa-

rately. We focus attention on the SU(N) groups, though similar analysis could be done
for the other classical groups. For su(N), N = 6, 7 there are exotic matter contents
that can be tuned using Weierstrass as described in [79]; these are included in the
Table. For SU(N) and Sp(k), from the matter spectrum in Table 3.1 it is clear that
at N = 2k = 10 there is a problem as the number of fundamental representations
becomes negative. In fact, a Tate analysis indicates that tuning su(8) eliminates the
single monomial of a6 that has order < 5 on the -12 curve, forcing a non-minimal sin-
gularity there. This is an example of the constraint discussed in 3.4.4 that a 0-curve
with an e8 on one side cannot have an su(N) with N > 8 on the other side tuned
using Tate. This is an example of a tuning in the swampland, which looks consistent
from the low-energy point of view but is not allowed in F-theory. Note that the groups
that we can tune in this way that are subgroups of E8 , matching with the expectation
that any tuning on this base should have a heterotic dual, with the resulting gauge
group realized from an E8 bundle over K3 with instanton number 24. An explicit con-
struction was given in [79] for non-Tate Weierstrass tunings of su(8) with r matter in
fields the triple-antisymmetric (56) representation; there it was argued that the only
heterotic dual to a tuning on the +12 curve of F12 has r = 1. This suggests that in
this context non-Tate Weierstrass models with exotic matter may be valid even if the
Tate form causes a problem. Understanding this better is an interesting question for
further research.

Since S is a non-rigid divisor (n > 0), we can tune multiple independent gauge
factors on different curves Ci in this divisor class, which will then intersect one another
with Ci -Cy = 12. For example, tuning two SU(2) factors on such curves gives a model
with gauge group (Es x)SU(2) x SU(2), where there are 12 bifundamental fields in the
(2,2) representation. From the spectrum and anomaly constraints we would expect to
be able to tune various product groups.

Now let us consider tunings on the curve C = 25. This curve has self-intersection
n = 48, and from -K.C = 2(-K.C) = 28, we have g = 11. From Table 3.4, we see that
we can tune such models for SU(2), SU(3), and SU(4). Similarly, we can tune SU(2)
and SU(3) models on 35 (n = 108,g = 34) and SU(2) on 4S (n = 300, g = 116). While
we have not attempted to explicitly construct Weierstrass models for these theories,
it seems likely that the SU(2) and SU(4) models are all consistent as they can be
constructed in field theory by Higgsing the SU(8) model on 5 on an adjoint. The
status of the SU(3) model on 35 is less clear as it would arise from Higgsing the SU(9)
model on S.

From these realizations of SU(2) and other nonabelian groups on higher genus curves
we can implement the construction of U(1) models. As discussed in the main body of
the text, U(1) models and their spectra can be realized from Higgsings of nonabelian
models over the same base (which can be allowed to have some singularities that are
removed in the Higgsing). In the simplest cases, we achieve the U(1) model by Higgsing
an SU(2) with generic matter; these can be explicitly realized using the Morrison-Park
form [1671. In this case, we consider the SU(2) realizations on kS for k = 2,3,4.
These give U(1) theories with various spectra, as listed in the table. Many further
U(1) models with explicit Weierstrass models could be constructed with q = 3 charges
through matter transitions in the unHiggsed SU(2) theory to SU(2) models with 4
matter, as discussed in [781. and the superset of all such models could be constructed
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by transferring an arbitrary number of groups of 3 adjoints into 4's, realized in the
abelian model through a matter transition, though Weierstrass models for all these
are not known. Furthermore many U(1) x U(1) models with generic matter spectra
could be constructed using the methods of 177], and the hypothetical superset of all
U(1)k models may be constructable at the level of spectra by considering all Higgsings
of nonabelian models including those constructed above, though we have neither a
method for explicitly constructing Weierstrass models in these cases, nor a proof that
this exhausts all possibilities for k > 2. We do not explore these considerations further
here.

We conclude by constructing the model with discrete Z2 gauge group with what
seems to be the largest value of h2 J. This follows from taking the k = 2 generic U(1)
model above and Higgsing on a field of charge 2, following [1521. Many more models
with discrete gauge groups and various charges could be constructed, some explicitly
in Weierstrass, and a larger superset by considering all Higgsings on non-unit charges
of abelian U(1)k models.

3.9 Conclusions and Outlook

In this thesis we have reported on progress towards a complete description of the set
of Weierstrass tunings over a given complex surface B that supports elliptic Calabi-
Yau threefolds. These Weierstrass tunings can be used to classify elliptic Calabi-Yau
threefolds and to study F-theory supergravity and SCFT models in six dimensions. In
particular, for a given base B the results accumulated here give a set of constraints
on the set of possible tunings over B, which give a finite superset of the finite set of
consistent tunings. While we have not completely solved the tuning classification prob-
lem, we have framed the structure of the problem, developed many of the components
needed for a full solution, and identified a few remaining components that need a more
complete analysis for a full understanding.

The tools developed in this work can be used in a number of ways, including gen-
erating examples of elliptic Calabi-Yau threefolds and F-theory models with particular
features of interest, the classification of elliptic Calabi-Yau threefolds and correspond-
ing 6D supergravity theories, and exploration of the "swampland" of 6D theories that
seem consistent but cannot be realized explicitly in F-theory. In this concluding section
we summarize the specific results of this thesis as well as a set of further issues to be
addressed, and we discuss the implications for the 6D swampland and the potential
extension of this kind of analysis to 4D F-theory models.

3.9.1 Summary of results

This progress extends previous work in the following ways:

* We have completely classified local tunings of arbitrary gauge groups with generic
matter on a single rational curve, and shown in all cases except su(N) and so(14)
that the tunings allowed by anomaly cancellation can be realized. in explicit lo-
cal Weierstrass/Tate models; for su(N) we have found Tate models for almost
all cases, with a few exceptions at large odd N and divisors of positive self-
intersection for which Tate models are impossible and no Weierstrass models are
known.
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" We have completely classified local tunings in the same way over all multiple-
curve non-Higgsable clusters.

" We have classified allowed local tunings on a pair of intersecting rational curves,
and shown that a large fraction of anomaly-allowed tunings can be realized by
Tate or Weierstrass models, but we have also identified quite a few exceptions.

" We have identified some specific configurations, such as su(10) E su(3) and 02 (

sp(4) on a pair of intersecting curves of self-intersections -2 and -1, that are

allowed by anomalies but not in F-theory. These represent a component of the
"swampland" both for supergravity theories and for SCFTs, and must be explained

if the assertion of F-theory universality for 6D SCFT's is to be proven. We have
found a substantially larger number of configurations in the supergravity swamp-

land that do not have low-energy field theory descriptions through an SCFT with

gravity decoupled as they involve curves of nonnegative self-intersection.

" We have identified extremal configurations of -2 curves, associated with degen-
erate elliptic curves satisfying E -E = -K -E = 0, as loci that in F-theory admit a

finite number of su(N) tunings though low-energy consistency does not constrain
N in any known way.

" Combining the preceding results gives a complete set of tools that can in principle

produce the finite set of all possible tunings over toric curves in toric bases. Work

in this direction is in progress [?]. In the toric case, each prospective tuning can be

checked for global consistency in a global Weierstrass model using toric methods.

" These tools, in the context of 6D SCFT's, give a systematic description of tun-

ings of an SCFT in terms of a Weierstrass or Tate model on the set of contracted
curves, complementing the analysis of [3]. In particular, this work goes beyond
that reported in [31 in that we systematically construct explicit Weierstrass mod-

els for the configurations allowed by anomaly constraints, and identify some new
configurations that do not admit Tate tunings and do not have known or straight-
forward Weierstrass models, yet which satisfy low-energy consistency conditions.
These tunings can also be applied in the closely related context of F-theory real-
izations of little string theories.

" We have used anomaly cancellation to classify the set of possible tunings over
curves of arbitrary genus that are acceptable from low-energy considerations.

" We have computed explicitly the Hodge number shifts for the elliptic Calabi-Yau
threefold for all the preceding tunings.

" We have provided geometric proofs of strong constraints on local combinations
of allowed tunings, matching constraints from anomaly considerations. In partic-

ular, we have shown that the only possible pairs of gauge group factors that can

arise on intersecting divisors, and hence the only combinations of gauge groups

that can share matter in any low-energy theory arising from F-theory, have one

of the five combinations of algebras listed in Table 3.7 (or arise as a product
subgroup of one of the allowed realized individual or product groups after an

appropriate breaking).
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* We have given a general procedure for classifying allowed tunings of non-generic
matter and abelian gauge fields, which will give a finite set of tunings allowed
over any given base, and which should be a superset of the complete set that can
be explicitly realized in F-theory.

3.9.2 The 6D M = 1 "tuning" swampland

In general, one of the goals of this work is to narrow down the "swampland" of models
that seem consistent from low-energy considerations but that lack UV descriptions in
string/F-theory [631. For 6D supergravity models, this problem can be broken into
two parts: first, the matching of completely Higgsed 6D supergravity models to F-
theory constructions, arid second the matching of all possible gauge enhancements
through tuning/unHiggsing in the F-theory and supergravity models. There are still
substantial outstanding questions related to the first part; in particular, we do not have
a proof that a low-energy model with a BPS dyonic string of Dirac self-charge -3 or
below implies the presence of a non-Higgsable gauge field, while F-theory implies this
condition. In this thesis we address the second part of the question: given a completely
Higgsed 6D supergravity theory with an F-theory realization we ask whether all possible
unHiggsings of the 6D SUGRA theory that are consistent with anomaly cancellation
can be realized as tunings of the corresponding F-theory model. By comparing field
theory and F-theory geometric analysis of various local combinations of gauge groups
over different curve types, we have shown that in almost all cases, F-theory reproduces
precisely the set of gauge groups and matter through tunings that are allowed by
anomaly cancellation conditions and other low-energy consistency constraints. We
have also, however, identified some situations where field theory and F-theory are not
in agreement. We list these here.

Tunings on a single divisor For local tunings of generic matter types over a single
rational curve, we found that virtually everything that is allowed by anomaly cancel-
lation has an explicit Tate or Weierstrass realization. The main class of exceptions
were the tunings of large-rank su(N) algebras listed in Table 3.3. For those cases, Tate
models are not possible. In some examples such as su(21) and su(23) on a +1 curve, a
straightforward approach to Weierstrass models also fails; although we have not proven
rigorously that a Weierstrass realization is impossible this seems unlikely as other known
non-Tate Weierstrass models realize exotic matter. These swampland examples may
have a low-energy inconsistency, may be realizable through exotic Weierstrass models
or may be stuck in the swampland. In addition, we find that so(14) cannot be tuned
on a -2 curve, using an explicit Weierstrass model. This appears to be a discrepancy
of a somewhat different flavor. Together, so(14) and large su(N) tunings constitute
the complete set of single-divisor swampland examples encountered in this work.

Tunings on a pair of divisors For local tunings of generic matter over a pair of
rational curves that intersect at a single point, we found a larger class of instances of
models that are allowed through anomalies but not through Tate constructions. In
addition to a couple of known examples such as so(8) E su(2) when the Su(2) is on a
-2 curves (which is known to have field theory inconsistencies [101), we found other
examples of algebras su(N) esp(k), su(N) &su(M), 92 esp(k), and so(N) esp(k) that
are acceptable according to anomaly cancellation but do not have Tate realizations. A
simple example is su(2j + 1) e su(2j +8) on a pair of curves of self-intersection -1, -2.
A further list of examples of tunings on two intersecting curves without Tate forms is
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given in 3.4.2. Like the examples on a single rational curve, we do not have a proof
that Weierstrass models cannot be found for any of these cases.

Tunings on degenerate elliptic curves As discussed in 3.3.2, 3.4.5, there are
some local combinations of divisors, for example a sequence of two or more -2 curves
mutually intersecting in a loop, which naively admit an infinite number of gauge group
tunings with a finite number of inoduli needed for the tuning. These correspond to
low-energy 6D supergravity theories with T > 9 with no apparent inconsistency. We
have identified these configurations in F-theory as degenerate elliptic curves satisfying
E - E = -K - E = 0. From the F-theory point of view su(N) gauge groups can be
tuned on such curves with N taking values only up to a specific bound associated
with the constraint A = -12K. As discussed in [1241, however, there is no low-energy
understanding at this time of this "Kodaira constraint," so that for effective cones
containing such -2 curve configurations there is effectively an infinite swampland. This
is an example of the more general issue that adding a gauge group with only adjoint
matter (essentially an A = (1, 1) inultiplet) does not affect anomaly conditions, and
canl be limited in F-theory but not in the low-energy theory.

Exotic matter We have listed in 3.5 some exotic matter content for which there
are known constructions. Other types of matter appear to be allowed by the anomaly
constraints, but are at this point lacking Weierstrass constructions. The resolution of
this part of the tuning swampland will be addressed further elsewhere.

Constraints from divisors without gauge factors

We have explored the validity of the "E8 " rule [41, which constrains the gauge factors
that can be tuned on divisors that intersect a -1 curve carrying no gauge group. Such
constraints are riot currently understood from 6D supergravity, though they can be
partly explained in SCFT limits. We have identified some exceptions to the E8 rule that
suggest some new low-energy consistency condition in both supergravity and SCFT.
We have also sketched an analogue of the E8 rule for divisors of self-intersection 0. Such
constraints are riot understood at all from low-energy conditions. These constraints are
somewhat similar to the constraint that, for example, a low-energy theory containing
a BPS dyonic string of Dirac self-charge -3, which would correspond in F-theory to a
-3 curve in the base, needs to carry a gauge group su(3) in this case. A related set
of issues is the distinction between type III, IV, and 12, 13 realizations of Su(2), su(3),
which have slightly different rules for intersections but are not easily distinguished in
the low-energy theory. Understanding the E8 rule and these other related conditions
from low-energy considerations is an important part of the outstanding problem of
clearing the 6D swampland.

Abelian gauge factors We have outlined an algorithm, following [77], which in prin-
ciple gives a superset of the set of possible F-theory models with abelian gauge field
content. This algorithm is based on Higgsing of nonabelian gauge factors with adjoint
matter. Proving that all abelian F-theory models can be constructed in this fashion,
and matching precisely with low-energy anomaly constraints, particularly for higher-
rank abelian groups, remains an outstanding research problem.
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3.9.3 Tate vs. Weierstrass

One interesting question that arises in attempting to do generic tunings is the extent to
which Tate models can produce the full set of possible tunings. It is known that there
are Weierstrass tunings of su(N) with N = 6, 7, 8 that cannot be realized through Tate
[85, 148, 79], though these are associated with exotic matter (e.g., in the three-index
antisymmetric representation). We have also identified cases of so(N) with N = 13
on curves of self-intersection n with n even but not n = -4, where Weierstrass models
can be realized but Tate cannot. It is known that Weierstrass and Tate tunings of
su(N) are equivalent for N < 6, and are believed to be more generally equivalent
when exotic matter representations are not included. It therefore seems likely that
many of the tunings found here on a single curve or a pair of curves that do not have
Tate realizations also do not have Weierstrass realizations and represent elements of
the swampland. But identifying precisely the set of cases where Tate and Weierstrass
forms are not equally valid, is a remaining task that needs to be completed to clear out
this part of the F-theory swamp.

3.9.4 4D F-theory models

The focus of this thesis has been on 6D supergravity theories described by F-theory
compactifications on complex surfaces. An analogous set of constructions give 4D N =
1 supergravity theories from F-theory compactifications on complex threefolds. While
the 4D case is much less well understood, and the connection between the underlying
F-theory geometry and low-energy physics is made more complicated by fluxes, D-
brane world-volume degrees of freedom, a nontrivial superpotential, and a weaker set
of anomaly constraints, the basic principles of tuning that we have developed here
are essentially the same in 4D. For threefold bases, divisors that have a local toric
description can again be analyzed torically, and we can write Weierstrass and Tate
models for the kinds of gauge groups and matter that can be tuned.

Perhaps the clearest result of this thesis that immediately generalizes to 4D F-
theory constructions is the constraint derived in 3.4.1 that limits the possible products
of gauge groups on intersecting divisors to only the five (families of) algebra pairings
listed in Table 3.7. This constraint is also valid for tunings in 4D F-theory models,
with the same microscopic derivation from the Weierstrass analysis. A consequence
of this result is that we have shown in general that any N = 1 low-energy theory of
supergravity coming from F-theory can only have matter charged under multiple gauge
factors when the factors are either among those in Table 3.7, or both factors come from
the breaking of a larger single group (or product group) such as e8 that is realized in
F-theory.

More generally, the methods summarized in 1.1 in association with (1.24), which
were developed in [17], can be used to identify the non-Higgsable gauge group and
local tunings on any local combination of divisors an a base threefold, with explicit
Weierstrass and Tate constructions for local toric geometries. For single divisors, the
set of possible tunings will follow a similar pattern to that found here in 3.2. The
non-Higgsable clusters over single toric divisors have been analyzed (in the context of
P1 bundles), and the finite set of possible tunings over such combinations of divisors
can be constructed using the same methods as those used here and is again finite
in most cases. A similar analysis is also possible for divisors with a positive or less
negative normal bundle. For example, in analogy with a +1 curve, it is straightforward
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to confirm that any of the exceptional gauge algebras can be tuned on a divisor with

the geometry of D = p2 with a normal bundle of +H, and that a Tate form for Sp(k)

and SU(2k) can be realized in a toric model, for k < 16, in analogy with the bound of

12 for the same tunings on the +1 curve [148].

Also for multiple intersecting divisors, a similar analysis can be carried out.

The difficult part of generalizing the analysis of this thesis to 4D is the absence of

strong low-energy constraints for 4D Af = 1 supergravity models. While in 6D, as we

have shown here, the set of constraints imposed by low-energy anomaly cancellation

conditions is almost precisely equivalent to the constraints imposed by Weierstrass

tuning, in 4D the known low-energy constraints are much weaker, so the apparent

swampland is much larger. Whether this is an indication that F-theory describes a

much smaller part of the space of consistent 4D supergravity theories, or we are simply

lacking insight into 4D low-energy consistency conditions, is an important open question

for further research (see [1831 for some initial investigations in this direction).

3.9.5 Outstanding questions

In this thesis we have made progress towards a complete classification of allowed tun-

ings for Weierstrass models over a given base. A desirable final goal of this program

would be a complete set of local constraints (in terms only of gauge algebras, matter

representations, and the self-intersection matrix of the base) such that a fibration exists

that produces a non-singular Calabi-Yau threefold and corresponding 6D supergravity

model if and only if that fibration satisfies all of the local constraints. Here we summa-

rize some questions that still need to be addressed to complete the classification and to

match Weierstrass tunings in 6D F-theory models to low-energy supergravity theories.

" The remaining local configurations in the "tuning swampland" summarized in

3.9.2 should hopefully be able to be identified either as allowed by as-yet-

unknown Weierstrass tunings, or as inconsistent in UV-complete quantum 6D
supergravity theories.

" We have addressed in this thesis local constraints associated with the tunings of

gauge groups and matter over a single divisor corresponding to a curve in the base

and the set of other curves intersecting that divisor. We do riot know that every

model that satisfies all local constraints of this type is globally consistent, though

we do not know of any counterexamples. It would be desirable to either prove

that local constraints are sufficient or identify conflicts that can arise nonlocally.

" We have only checked Weierstrass/Tate realizations for rational curves with local

toric descriptions. It would be desirable to expand the methodology to higher-

genus curves without a local toric description.

" There are some indications [18, 911 that tuned gauge factors such as 92 that can

be broken without decreasing rank give additional contributions to h2
, (X) from

the associated charged matter fields that are uncharged under the smaller group.

For a precise computation of h2 ,1 in general cases, such contributions should be

clearly understood and incorporated. This may be related to the issue of tuning

su(N) factors on degenerate elliptic curves; in both cases the essential issue is

the addition of a (1, 1) multiplet with gauge bosons and hypermultiplets that
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precisely cancel anomaly constraints. The connection between this phenomenon
and the topology of the elliptic Calabi-Yau threefold should be better understood.

* The classification of exotic matter representations, particularly those realized by
gauge groups supported on singular divisors in the base, must be completed.
In particular, the method of analysis in 3.5 assumed that any exotic matter
configuration can be realized as a tuning of a generic matter configuration - that
is, that there are no non-Higgsable exotic matter configurations possible. While
we believe that this is true we do not have a rigorous proof of this statement.

" It needs to be shown whether the approach used here of constructing abelian
gauge factors from Higgsing of nonabelian tuned gauge factors is able to produce
all abelian gauge structures of arbitrary rank; even if this is possible, a systematic
understanding of how this can be implemented for higher-rank gauge groups and
what singularities are possible in the nonabelian enhanced model for a consistent
Higgsed abelian theory must be better understood.

A further set of questions, which fit into this general framework but which go beyond
the goal of classifying all tunings over a given base surface, include the following:

" We have not addressed the question of different resolutions of the Kodaira singu-
larities, which are not relevant for the low-energy 6D physics, but would need to
be addressed in general for a complete classification of smooth elliptic Calabi-Yau
threefolds, as discussed in 1.3.3.

" While substantial progress has been made towards the complete classification
of non-toric bases that support elliptic Calabi-Yau threefolds [7], technical issues
remain to be solved for a complete classification of all allowed bases for h2

,
1 (X) <

150.

" The complete elimination of the 6D swampland would require progress on relating
apparently consistent completely Higgsed low-energy models (such as those with -
3 dyonic strings but no gauge group) to F-theory constructions and/or developing
new constraints on low-energy 6D supergravity theories.

" As discussed in the previous subsection, much work remains to be done to gen-
eralize this story to 4D F-theory constructions.

The partial progress presented in this thesis, then, should be viewed as both a set
of tools for Weierstrass constructions and as a framing of the remaining challenges and
an invitation to meet them. It is becoming increasingly clear that the sets of ellipti-
cally fibered Calabi-Yau threefolds, associated Weierstrass models, and 6D supergravity
theories are tightly controlled, richly structured, and closely related. Moreover, as dis-
cussed in 1.3.3, elliptically fibered Calabi-Yau manifolds may represent a very large
fraction of the total number of Calabi-Yau varieties in any dimension, so that the anal-
ysis of elliptic Calabi-Yau spaces may give insight into the more general properties of
Calabi-Yau manifolds. Following this general line of inquiry will doubtless reveal many
other physical and geometric insights yet undiscovered.
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.1 Tabulated results

Ultimately, one of the principal utilities of our results is to enable easy calculations.
In practical calculations, it is convenient to have explicit lists of all a priori allowed

tunings. Therefore, in this appendix, we unpack the formulas for Hodge shifts in terms
of self-intersection number n (and possibly a group parameter N), re-packaging them
in tables that explicitly list all allowed tunings on a given self-intersection number
curve or given cluster. We give a table for each isolated curve or multi-curve cluster
with negative self-intersection number. These tables for isolated curves are presented
first, followed by the tables concerning multi-curve clusters. For each curve or cluster,
the data listed include: algebra, matter representations, Hodge shifts from the generic
fibration, and finally the global symmetry group as determined in [111. This last piece
of information is reproduced here because it provides a field theory constraint on which
algebras can be tuned on intersecting divisors as discussed in section 3.4.2.

One final note for using these tables: instead of displaying changes in h2 ,1 , we display
changs in HO, the number of neutral hypermultiplets of the theory. There is reason
to believe [18, 911 that rank-preserving tunings (in which h1'1 does not change) do
not constitute topologically distinct threefolds, but simply realizations of the original
tuning specialized to a certain submanifold of complex moduli space. Nonetheless,
it seems that the resulting physical theories are distinct, so from the standpoint of
studying 6D SUGRA and SCFT, these tuned models must be included. Brackets [.]
are placed around shifts AHO that cannot be equated to Ah2 .

9 matter (Ahl'', AHo) global symmetry algebra(s)
su(2) 10 x 2 (1, -17) so(20)
su(3) 12 x 3 (2, -28) su(11) ...
su(N) (8 + N) x N + N(N-1) (N - 1, -15N+N

2 
- 1) su(8 + N)

sp(N/2) (8+N) x N (',-8N-N 2 - 1) so (16 + 2N) ...
so(7) 2 x 7 + 6 x S (3,[-41]) sp(6) ( sp(2)
so(8) 3 x (8r + 8. + 8.) (4,-44) sp(3) D sp(3) E sp(l)E 3

so(9) 4 x 9 + 3 x S (4,[-48]) sp(4)
so(10) 5 x 10 + 3 x S (5,-53) sp(5)
50(11) 6 x 11 + 1 x S (5, [-59]) sp(6)
so(12) 7 x 12 + i x S (6, -66) sp(7)

92 7 x 7 (2, [-35]) sp(7)
f4 4 x 26 (4, [-52])
C6 5 x 27 (6, -57)
C7 - x 56 (7,-63) -

Table 12: Table of all tunings on an isolated -1 curve. The ellipses "..." indicate that su(2), su(3), and
the sp(N) series may have different global symmetry algebras other than those listed here depending
on the details of their tuning; see [111. We have simply listed global symmetry for the most generic
tuning.

We should emphasize: all of the information in this section is in principle contained
in the body of the thesis, e.g. Table 3.1. At first glance, it may appear that the tables
presented here do have more information, namely the information about when certain
series can no longer be consistently tuned. However, it is possible to read this off from
the original tables as well: given a general formula for the matter multiplicies of an
algebra g in terms of self-intersection number n (and possibly a group parameter N),
a group will be impossible to tune whenever one of the following occurs: the formula
predicts either negative multiplicity representations or fractional representations (This
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g matter (Ah", AHo) global symmetry algebra(s)
.u(2) 4 x 2 (1,-5) su(4) (12); s0(7) (III/IV)
su(3) 6 x 3 (2, -10) su(6) ...

su(N) 2N x N (N - 1, -N 2 - 1) su(2N)
so(7) 7 + 4 x S (3, [-18]) sp(4) D sp(1)
so(8) 2 x (8f + 8f + 8,) (4, -20) sp(2) @ sp(2) D sp(1)D 2

so(9) 3 x 9 + 2 x S (4,[-23]) sp(3)
so(10) 4 x 10 + 2 x S (5, -27) sp(4)
so(11) 5 x 11+ S (5, [-32]) sp(5)
so(12) 6 x 12 + S (6, -38) sp(6)
so(13) 7 x 13 + - x S (6, [-46]) sp(7)2

02 4 x 7 (2, [-14]) sp(4)
f4 3 x 26 (4, [-26])
C6 4 x 27 (6,-30)
C7 3 x 56 (7,-35)

Table 13: Table of all tunings on an isolated -2 curve. We have explicitly included two global
symmetry algebras for su(2), depdening on whether it is tuned as an 12 or III/IV singularity type.
Again, an ellipsis "..." denotes that there are other symmetry algebras for su(3) when it is tuned in
a non-generic way.[11]

9 matter (Ah"'1 , AHo) global symmetry algebra
su(3) 0 (0,0)

02 7 (0,-1) SP(1)
so(7) 2 x S (1,-3) SP(2)
so(8) 8 f + 8s + 8c (2,-4) sp(1) e sP(1) e sp(1)
so(9) 2 x 9 + S (2, [-6]) sp(2)
so(10) 3 x 10 + S (3,-9) sP(3)
so(11) 4 x 11 + 1 x S (3, [-13]) SP(4)
so(12) 5 x 12 + i x S (4, -18) sp(5)

f4 2. x 26 (2, [-8])
C6 3 x 27 (4, -11)
C7___ x 52 (5, -15)

Table 14: Table of all tunings on an isolated -3 curve.

g matter (Ah1 '", AHo) global symmetry algebra
so(8) 0 (0,0)

so(N> 8) (N -8) x N ([(N - 8)/2,-N N 2 + 28) sp(N - 8)
f4 26 (0,[-2])
C6 2 x 27 (2,-4)
C7 2 x 52 (3,-7) -

Table 15: Table of all tunings on an isolated -4 curve.

last requires some care, since !-multiplicity representations may occur when the rep-
resentation is self-conjugate, in which case this denotes a half-hypermultiplet.). This
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. . . .. . . . .. . .

Table 16: Table of all tunings on an isolated -5 curve. All matter has trivial global symmetry algebra.

g matter (Ah' 1 , AHo)
C6  0 (0,0)

C7 52 (1, -1)

Table 17: Table of all tunings on an isolated -6 curve. All matter has trivial global symmetry algebra.

discussion also makes it clear that while the information in this appendix is already
contained throughout the body of the thesis, unpacking it requires some work. Hence,
the motivation to collect these expressions more explicitly here.

Also note that the two final tables in this section, which pertain to to multiple-curve
clusters, are reproduced here for convenience; the identical tables also appear in the
body of the thesis.

.2 Tabulations of group theory coefficients

In this appendix, we present tables of the coefficients A, B, arid C, which appear
in anomaly cancellation conditions in 6D. All these coefficients have been calculated
elsewhere, but as the existing calculations and results are somewhat scattered through-
out the literature, we collect these results here for ease of reference. Many of these
coefficients were originally derived in [146]; additional classical group coefficients are

reproduced from [64j, and normalization coefficients A are defined as in [124].

.3 Complete HC Calculations

Here we construct a local model of each tuning possible on an NHC. We perform both
anomaly calculations and calculations in local geometry to show which tunings are al-
lowed and which cannot be realized. For each tuning, we find the matter representations
using anomaly cancellation arguments, and calculate AHO using anomaly cancellation
as well as local geometry. The results of this section, as well as other results of this

thesis, are summarized in appendix refsec:results.

.3.1 The Cluster (-3,-2)

An appropriate local toric model has the fan {vi}l = {(3,1), (1,0), (0,1), (-1,2)}.
Let us now consider the base (untuned) case and check that it corresponds to 92 Psu(2)
on {-3, -2}, as has already been derived as part of the NHC classification. Although
we have already given several anomaly calculations, it is useful to follow the anomaly
calculations in these cases, because the "A" condition allows one to determine the shared

matter, and highlights an interesting feature of su(2) shared matter. This is a feature
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cluster 9 (AhAHo)
22 g2 P su(2) (3, [-12])

so (7) D su(2) (4, [-15])
222 su(2) ( 92 D su(2) (4, [-8])

su(2) D so(7) D su(2) (5, [-12])
92 D su(2) E - (3,[-11])

2222 su(2) ( 92 D su(2) P - (4, [-8])
22222 - su(2) ( 02 D su(2) - (4,[-8])

21--- 2k I (Only su(n)'s; see 3.3.2) see (3.41)

Table 18: Table of possible tunings on -2 chains. (Chains are listed with self-intersections sign-
reversed.) Because matter is very similar between these cases, we do not list it explicitly, preferring
to display the shift in Hodge numbers resulting from that matter. For convenience, we summarize the
relevant matter content here: 42 for su(2), 47 for 92, 48. + 7 for so(7) and 48. + 2 8 r for so(8). su(2)
shares a half-hypermultiplet with all groups but itself, where it shares a whole hyper; with so's, it is
the spinor representation which is shared.

cluster g 1 (Ah1 '1 , AHo) matter
(-3,-2) 92 D su(2) (0,0) (7,12) + (2

SO(7) e Su(2) (1,-1) (8, 2)+8,
(-3,-2,-2) 02 (D su(2) (0,0) (7, -2) + -2

(-2,-3,-2) Su(2) oso(7) PSu(2) (0,0) (42, 8s, -) + (-, 8s, 12)

Table 19: Table of possible tuned gauge algebras, together with matter and Hodge shifts, on the
NHCs with multiple divisors.

Group representation R dimension AR BR CR

l N 1 1 0
Adjoint N 2 - 1 2N 2N 6

N(N-1) N-2 N-8 3
SU(N) N(N+1) N+2 N+8 3

N(N-1)(N-2) N
2

-5N+6 N
2

-17N+54 3N - 12
j6 2 23N-1

N(N+I)(N+2) N
2

+5N+6 N
2
+17N+54 3N+12

N 1 1 0
=Adjoint N(N-1) N-2 N-8 3SO(N) 2___

__- N(N+l) N+2 N+8 3
S 2 L(N-1)/2] 2 L(N+1)/2]-4 2 [(N+1)/2J-5 3.2 [(N+1)/2]-7

N 1 1 0
Sp( ) N(N-1) - 1  N-2 N-8 3

N(N-4)(N+1) N
2

-5N+6 N
2

-17N+54 3N 12
6 2 23N-1

ED_ = Adjoint N (N+1) N+2 N+8 3

Table 20: Values of the group-theoretic coefficients AR, BR, CR for some representations
of SU(N), SO(N) and Sp(N/2). Also note that we do not distinguish between S
spin representations of SO(N) for even N, as these representations have identical group
theory coefficients. For SU(2) and SU(3), there is no quartic Casimir; BR = 0 for all
representations, and CU(2,3)) = C? + BR/2 in terms of the values given in the table.
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Group representation R dimension AR CR

I 7 1 T
G2  Adjoint 14 4

F 26 1
4 Adjoint 52 3

E6  27 1 1
Adjoint 78 4 1

E 56 1
E7  Adjoint 133 3 1

E8 E = Adjoint 248 1

Table 21: Group theoretic coefficients AR and CR for the exceptional groups. Note
that BR is not included as it vanishes for all exceptional groups.

Group SU(N) Sp(N) SO(N) G 2  F4  E6  E7  Es
A 1 1 2 2 6 6 12 60

Table 22: Group theoretic normalization constants A for all simple Lie groups.

of these calculations that cannot be seen in clusters besides those containing multiple
divisors.

The "C" calculations straightforwardly yield Nf = 1 for 9 2 on a (-3)-curve, as
we already saw when discussing the (-3)-cluster, above. Similarly, for an su(2) on a
(-2)-curve, we obtain

E -E = 2 (C - CAdj3 (R

1 /N\-2 =3 2 8
N = 4 (60)

fundamentals. The "A" condition of bifundamental matter is more interesting in this
case, because it dictates

- - j = AjAj E A' Azxj (61)
R

Recall,we are considering j - = 1 for neighbors and is zero otherwise. The sum on
the right hand side is over all shared representations between the two gauge groups,
which (consistent with the string theory description) can occur only between divisors
that intersect. The Ai are all integer-valued (and must be positive), the xij denote the
multiplicities of the representations, and the A are group theory coefficients introduced
earlier. The key fact in this case is that, whereas A = 1 for su(2), A = 2 for 02, ,o(7),

and so(8) (A is always the same for differnet gauge algrebras distinguished only by
monodromy). Since A = 1 by definition for fundamental representations, the equation
now reads 1 = 2x, so it is crucial that x, the multiplicity of the shared hypermultiplet,
can be x = 1 This is the case because the fundamental representation of su(2) is
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self-conjugate, and in six dimensions, a half-hypermultiplet can be shared. Indeed,
organizing these representations as explicitly as possible, we have

92 e su(2)
(7, }2) (62)

12

and it is clear that if su(2) could not shaxe half-hypermultiplets, then the bifunda-

mental would imply 7 (as opposed to 31 shared fundamentals of su(2), which would

be a contradiction because su(2) only has 4 fundamentals total. This same feature in

principle, from anomaly cancellations alone, would allow su(2) to remain adjacent to

so(7) and so(8), with 7 and 8 dimensional fundamental representations, as well as 8
dimensional spinor representations. Returning to the main calculation for 02 & Su(2),
we have a total contribution to Ho of 14+ 3 - 17 x 2 - 1 x 2 = +9. Thus, to calcu-
late shifts from this generic case, we must subtract 9. This is the base, untuned value

against which the further tunings are compared.

Similar anomaly calculations for so(7) D su(2) yield matter N, = 2 spinors and

Nf = 0 fundamentals, giving a contribution to Ho of +21 + 3 - 18 x 2 - 8 = +8; in2
other words, a shift of 3Ho = 8 - 9 = -1.

Likewise, for so(8) E su(2), we obtain N, = 2, Nf = 1, for a contribution of
+28+ 3 - -8 x 2 - 2 x 8 = +7; in other words, this would be a further shift of -1 from

so(7), or a total shift of -2 from the untuned case. From anomaly cancellations alone,
this configuration appears to be allowed.

Let us now match these results with those of the local geometric model. By in-
specting the model, we see that (f, g) vanish to orders (2,3) on the -3 curve F1
corresponding to vi, and to orders (1,2) on the curve C2 corresponding to V2. More-
over, expanding in a local coordinate w that defines {w = 0} = E2 and z such that

{z = 0} = El, let us define fi and gi by the expansion f = Ei fizi, 9i = EZ gz. Then

f2 = fi,1mW + fi,2W 2 and 93 = 93,2W 2 + g3,3w3 . Hence we immediately see that on r2
we are in Kodaira case III, an su(2), whereas on E, we are in case I with generic

93 / *2; hence this curve carries 02. So far, this just confirms that our local model
reproduces the known gauge algebras of this NHC.

Proceeding to the tunings, we implement so(7) by imposing th6 appropriate condi-
tion

x3 +f2x+g 3 = (x-A)(x 2 +Ax+B)

x3 + (fi,1W + f1 ,2 W2 )x + (g3,2w 2 +93,3W 3 ) X3 + (B - A 2)x - AB (63)

This immediately implies that A must be proportional to w; with this restriction, B

can be of the form B1 w + B2W2 , so we lose only one degree of freedom. This is in

accorance with the anomaly calculation.
Proceeding to so(8), we find that this tuning is impossible. It requires the factor-

ization

x 3 + (f1 ,mW + f1 ,2 W2)x + (93,2W 2 + 93 ,3W3) = (x - A)(x - B)(x + (A + B))

= x 3 + (AB - (A + B)2 )x + AB(A -()

which requires now that B c w have no quadratic term; hence we would lose one

further degree of freedom, in perfect agreement with anomaly cancellation. However,
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let us ask what form f and g now take. Indeed, f oc w 2 z 2 +z 3 (W 2 +. - -) and g Oc w3 z 3 +
z 4 (w 2 + - --) + -- -, which implies that at the intersection point El - E2 = {z = w = 0},
(f, g) vanish to orders (4, 6). Hence the so (8) tuning is not allowed. This is another
example of the result discussed in the main text that global symmetries prevent such a
gauge group from intersecting with an su(2) on a -2 curve realized through a Kodaira
type III or IV singularity.

.3.2 The Cluster (-3, -2, -2)

One might naively expect that the previous analysis would extend without modification
to this cluster. However we will see that even enhancement to 50(7) is impossible, i.e.
no monodromy at all is allowed for the type 10* singularity that generically gives rise to
g2. To see this, again exlicitly construct the local model, which can be simply obtained
from the previous model by adding the vector V5 = (-2,3) to the fan. This modifies
the monomials in such a way that the generic orders of (f, g) have orders (2, 2) on E2
and (2,3) on El. Moreover, making the same expansion of f and g in powers of z as
above, we have

f2 = f2,2W2

93 = 93,2W2+ 93,3W 3  (65)

Notice that the only change insofar as we are concerned from the cluster (-3, -2) is
that f2 now has no linear term. In fact, this prevents any tuning at all. To see this,
we will attempt to implement the monodromy condition for so(7), the most modest
enhancment. The failure of this tuning will imply the failure of all potential higher
tunings.

Indeed, so(7) requires f2 = B - A 2 and 93 = -AB, whence B must be linear and
therefore 92 must be purely cubic in w. But this implies that the total f and g have
the lowest order terms f oc w 2z 2 +-.- and g Oc w3 z 3 + w 2z4 + .-_ where in each case
ellipses indicate higher order terms. In other words, we again have a (4,6) singularity
at the intersection E1 - E2 {z = w = 0}.

To summarize, no tunings are allowed on this cluster.

.3.3 The Cluster (-2,-3,-2)

Our local model will be a portion of F3 blown up four times, with the overal divisor
structure (+1, -2, -1, -2, -3, -2, -1, -2), which is to be cyclically identified, as al-
ways. By omitting all but 5 rays in the fan (the middle three of which correspond to
the sequence (-2, -3, -2), we obtain a local model of this geometry.

The anomaly calculation proceeds as above, for the cluster (-3, -2). The only
difference is that now the original (untuned) gauge algebra on the -3 curve is su(7),
which must as above have matter 2 x 8,. Therefore all matter is shared, in the form

su(2)O so(7)ED su(2)
(12 8,) (66)

(8s 12)

This yields a contribution to Ho of +21 + 3 + 3 - 2 x 8 = +11. This configuration is
enhanced to su(2) E so(8) e su(2), which is identical in matter except that the so(8)
now carries one additional multiplet in the fundamental 8f, for a contribution to Ho
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of +28 + 3 + 3 - 3 x 8 = +10; in other words, AHO = -1 upon performing this tuning.
We will find that these tunings are not possible in the following monomial analysis.
Although consistent with anomaly cancellation, these tunings suffer from a field theory
inconsistency identified in 1101.

The monomial calculations first confirm the untuned gauge / matter content: con-
sulting the figures, it is clear that there are no monomials for fo or for gi<1 on the
divisor vi = (1,0). Similarly for V3. These two divisors, adjacent to the (-3)-curve

(v4 ) are the (-2)-curves on which su(2)'s are forced. Similarly, on the middle curve

v 4 , one directly sees that the degrees of vanishing on V4 are (f, g) = (2, 4). This falls
into the I0* case. In order to distinguish monodromies, we first read off the available
monomials for f2 ({wl}) and for g3 ({}). The polynomial to investigate then takes the
form

x3 +f 2,1wx+0 = x3 +(B-A2 )+AB)

or = x2 +(AB-(A+B) 2)x+ AB(A+B) (67)

corresponding to so(7) and so(8) respectively. In order for the first equation to hold,
the constant term requires that either A or B be equal to zero. Investigating the xi

term, we must choose A = 0, while B can be proportional to w 1. Hence we begin with
one degree of freedom (in f2), and end with one. This implies that the so(7) is indeed
the minimal gauge group. In the second case of tuning an so(8), it is clear that this
is only possible when A = B = 0, resulting in the loss of one degree of freedom. This
is in accordance with the anomaly calculation. However, we must pause to examine
the reality check allowed by the local toric model. This factorization can only be
satisfied with (f, g) = (3,4), hence at the point of intersection of -3 with either -2,
we have a total vanishing of order (f, g) = (4,6), so this tuning cannot be achieved. In
other words, the Non-Higgsable Cluster (-2, -3, -2) is completely rigid: it admits no
tunings.

.3.4 The Cluster (-4)

Our model is F 4 (with +4 curve removed), and the analysis proceeds along nearly
identical lines to that of F3 . For instance, the conditions defining the monomials for
f and g are identical save for the one modification: the slope of the line bounding the
top of the triangle is now - j. (It intercepts the b = 0 axis at n = 4, 6 still for f and
g, respectively.)

From the anomaly point of view, the initial (forced) gauge algebra is so(8); one way
to see this is to note that no group of lesser rank can satisfy all anomaly cancellation
conditions on a curve of self-intersection < -3. (For example a su(N > 4) has adjoint
CAdj = 6, which means that on a -n curve, -3n = ER NRCR - 6. Since C > 0
for all representations R, it is clearly impossible to satisfy this equation on a -n
curve for n > 3.) Investigating the anomaly conditions for so(8) reveals that they
are satisfied with no matter, leading to a contribution to Ho of +28 vectors (in its
adjoint). Enhancement to f4 is accompanied by the appearance of 1 fundamental
hypermultiplet, for a contribution of +52 -26 = +26 to H0 , or a change of AHO = -2.
Finally, enhancement to e 6 is accompanied by 2 fundamentals, for a contribution to Ho
of +78 - 2 x 27 = +24, i.e. AHO = -4 from the generic fibration.

In the monomial counting picture, we have the following explanation: the untuned
version is so(8) because the slope of the triangle's upper boundary (-- ) implies that
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from (6,0) the boundary rises to a maximum of height at (-6, 3); this is the unique
monomial in 93, and its first component is even, which implies that 93 = wo is a

perfect square. It is clear that to increase the order of f and g from (2, 3) to (3,4),
only one monomial from each of -4K and -6K need be removed; we lose 2 degrees

of freedom. Enhancing to C6 requires imposing the monodromy condition that g4 be a

perfect square. The available monomials are {wo w1, w2, w 3 w 4}, so we may impose
the condition that this be a perfect square by setting it equal to the square of a generic

quadradic. This restricts to a three dimensional subspace of the original 5 parameter

space; in other words, we lose 2 more degrees of freedom beyond the f4 tuning. To tune

to C7 requires that we enhance the order of (f, g) from (2, 3) to (3, 5) in other words

eliminating the 1 monomial of f2 as well as all 1 + 5 monomials of g3 and g4; so we

shift by -7 in Ho from the untuned so(8), or by -3 subsequent to a tuning to C6. This

is all in accordance with the anomaly results.

.3.5 The Cluster (-5)

We begin with the base (untuned) case: f4, which can be enhanced exactly twice, to

e6 and further to C7. Anomaly calculations yield no matter for the f4 (so it contributes

the dimension of its adjoint, +52, to Ho), whereas for c6, we find 1 fundamental hyper-

multiplet, yielding a contribution of +78 - 27 = +51 to Ho; i.e. AHO = 51 - 52 = -1.
A final enhancement to C7 reveals 1. hypermultiplets (the fundamental also enjoys the

self-conjugate property as for su(2)'s), which yields a contribution of +133- 56 = +49
to HO, i.e. AHo = -3 from the generic fibration.

A monomial analysis confirms this. Examining the local model, we find fi<2 and

gi<3 have no monomials, hence f and g are forced to vanish to degree at least (3,4)

on E. We also see that g4 is the span of {wo, wi, w2 }, so that generically there is no

factorization. To tune to C6, we need only set this quadratic to be the square of a

general linear function, thereby losing one degree of freedom. This is in accordance

with anomaly results. In order to enhance to C7, we need only increase the order of g

from 4 to 5, i.e. to eliminate all 3 monomials in g4. This represents a shift of -3 from

the original (untuned) f4, or a shift of -2 subsequent to tuning an C6, also in agreement

with our anomaly calculations.

.3.6 The Cluster (-6)

The local model is F6 (with the +6 curve removed). The initial gauge algebra is C6,

which has no matter, and hence contributes V = 78 adjoint vectors to the count of HO;

this can be confirmed by investigating the "C" condition on a -6 curve. The analagous

calculation for e7 reveals 1 fundamental hypermultiplet, which leads to a contribution

of 133 - 56 = 77 to HO, which leads to a shift AHO = -1.

A monomial analysis confirms these results: the upper boundary of the triangle of

monomials now has slope -1, which implies there is only one monomial in 94. This

must be removed in order to obtain a degree of vanishing of (f, g) = (3, 5) so that the

resulting algebra will be 7; hence we indeed lose just one degree of freedom.

.3.7 The Clusters (-7), (-8), and (-12)

The algebras of these clusters cannot be enhanced. At this point, it bears mentioning

that we have never enhanced a cluster to C8. Indeed, we are interested in tunings which
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do riot change the base geometry, i.e. require no blowups of the base alone. However,
an e8 on any curve E other than a -12 curve will necessitate blowups in the base. The

reason is straightforward: to tune c 8, f and g must be of order 4 and 5. Yet f and g
restricted to E are polynomials, and will generically have isolated zeroes. Such points

will lead to (4, 6) (non-minimal) singularities, which require blowups of the base. In

fact, the number of blowups required on a curve E with a tuned cr is always equal to

that required to bring the self-intersection of E to -12. (It is not difficult to confirm

this. In fact, it is zeroes of g5 that lead to these singularities. Using equation 1.24,
we see that deg(g5 ) = 12 + n, where n is the self-intersection of the curve on which

c8 appears. Hence g5 has the correct number of zeroes to bring the self-intersection

to -12 after blowing up.) Without loss of generality then, we can simply restrict to

tunings of e8 only on existing -12 curves.

.4 Supersymmetry and Calabi-Yau manifolds

This appendix provides a quick overview of supersymmetry and Calabi-Yau manifolds

and is intended purely to motivate Calabi-Yau corupactifications in the context of super-

symmetric theories. Those familiar with this material need not consult this appendix.

Readers seeking an expanded and pedagogic treatment are encouraged to consult the

excellent text fl.
The Coleman-Mandula theorem dictates that attempting to enlarge the Poincare

algebra of a Lorentz-invariant quantum theory must always result in a trivial, i.e. direct

sum, enlargement. The theorem holds under a handful of very general assumptions:

interesting theories do exist which do not obey these hypotheses and hence are not

bound by the theorem, but they are few and far between. Supersymmetry provides

a broad class of theories that effectively combine spacetime symmetries and internal

symmetries in highly nontrivial ways; it manags to skirt the Coleman-Mandula theo-

rem because technically the resulting enlargement of the Poincare Lie algebra is not a

Lie algebra at all, but technically a Lie-superalgebra. At any rate, the fact that su-

persymmetry manages to non-trivially enhance the Poincare Lie algebra so essential to

particle physics renders it worthy of intense study. Let us now describe supersymmetry
broadly.

Supersymmetry is a global internal symmetry of a classical or quantum theory

which has fermionic symmetry transformation parameter C. Let #i denote a bosonic
field, Vi a fermionic one. Then schematically, a supersymmetry transformations with

parameter E acts produces the following infinitesimal transformation of fields

601Wx = C0i1W

342(x) = C2(X) (68)

We can see that fermionic degrees of freedom must be rotated into bosonic degrees

of freedom, and vice versa; this is the only way to write nontrivial Lorentz-covariant

transformation laws. Inquiring about the ground states of a supersymmetric theory,

we will find several nice properties. To see these properties generally, recall that any

symmetry transformation may be implemented in the quantum theory by its charges.

In more detail, the supersymmetry algebra extends the Poincare algebra in the

following way:

{QA' } 2 mP6A (69)
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All other commutators are zero. The above uses the notation of [1041. Here Q and Q
are the conserved charges corresponding to the supersymmetry operation, i.e. at the
quantum, operator level they are the generators of supersymmetry transformations;
they are fermionic spin 1 operators of opposite chirality. The brackets {, } represent
anticommutators, as appropriate to fermions. Pm represents the momentum operator.

Instead of further explaining this notation, for which that text is an excellent ref-
erence, we simply call attention to the following features.

" Schematically, the relation {Q, Q} = 2P indicates that the operator Q is the
square root of P, hence supersymmetry transformations are operations that, when
performed twice, yield a translation.

" The labels A, B index multiple supercharges. The total number of spinor compo-
nents possible in any dimension is 32; this implies for 4D, where spinors have 4
components, that the greatest number of independent supersymmetry operations
is - = 8. The total number of independent supersymmetry operations is often
denoted K. This is relevant to this thesis in that we are explicitly concerned
only with K = 1 6D supersymmetric theories; in other words, supersymmetry is
implemented by 8 total spinor components that together comprise a single pair
Q, Q. We focus on K = 1 as opposed to M = 2, 4 as each is progressively less in-
teresting; these have already been understood quite completely, because very few
compactification spaces are able to maintain such supersymmetry. For K = 4,
where all supersymmetries are preserved, the only valid compactification space is
the six-torus T6 .

" A particularly useful property of supersymmetric theories is that any state that
maintains more supersymmetry than another will automatically have lower en-
ergy. Moreover the ground state energy is bounded. Given that the Hamiltonian
H is the time component of the momentum operator P, it follows that

E (0'HIVP)
1

I Q') 12

Since this quantity is non-negative the lowest energy ground state possible in
any supersymmetric theory has E = 0. Moreover, because Q is the generator
of supersymmetry transformations, this lowest a priori ground state must be in-
variant under supersymmetry transformations. When a theory possesses multiple
supersymmetries, certain states can preserve some and break others. The above
observation generalizes easily to show that states with more symmetry automat-
ically have lower energy. We note that as discussed in [1021, the supersymmetry
algebra must be modified on AdS space; this modification leads to a different
bound which allows negative energy ground states.

" Finally, we mention that in theories that contain a graviton, i.e. an Einstein-
Hillbert term in the action, supersymmetric extensions are sometimes possible.
Such theories, the main objets of focus in this thesis, are referred to as theories
of supergravity. Given that diffeomorphism invariance of gravity theories can
be rephrased as invariance under local translations, and that in P implements
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local translations when its symmetry parameter x -+ x + a becomes a spacetime

function a(x), it follows that now supersymmetry must now be a gauge symmetry:

C C c(x).

Let us now consider theories defined on compactification spacetimes R' x M. We

choose the same actions S but simply change the domains of the fields. As usual,
the statement that supersymmetry remains a symmetry of this physical theory means

that the action S is invariant under these transformations; promoting E to a fermionic

function over spacetime, invariance of S translates to 6S oc VE. Now it is no longer
obvious whether a covariantly constant e(x) exists on this spacetime. 12 Focusing on
M, we require that we be able to find a covariantly constant epsilon and ask what
constraints this places on the geometry of M itself. For manifolds M of even dimension
2n, this constraint leads naturally to the consideration of Calabi-Yau manifolds.

One way to phrase this problem is in terms of holonomy. Indeed, after parallel
transporting c around a closed loop, it will return to its original position possibly
rotated, E' = RE for a rotation R E Spin(2n) D SO(2n) D SU(n). Clearly if we
are to be able to choose a covariantly constant E, it must return to its original value
unchanged. It happens that this condition is not merely necessary but also sufficient
to ensure a covariantly constant E exists. If around any loop, the matrix R is contained
in SU(n), then there will exist a covariantly constant e.[] This general mathematical
fact is easy to see in four-dimensions, when Spin(4) ' SU(2) x SU(2). With this
formulation in hand, we can try to find a simpler geometric characterization.

To this end, consider a complex structure on M; this can be accomplished whenever
the holonomy can be taken to be in U(n). This structure is locally equivalent to the
existence of holomorphic and antiholomorphic coordinates zi and 2 j i = 1, 2,. .. , non
a patch of M with operators 0, and Oi derivatives with respect to these coordinates.
This division into holomorphic and antiholomorphic cascades to effect all geometrical
quantities defined on M; already it splits the tangent space TM into two halves, since

the partials {., Oj}j=1,...,.;=1...., provide a basis for TY M. Thus we can similarly speak
of holomorphic differential forms and holomorphic halves of the exterior derivative

d= + 6.
Again: the goal is to characterize more simply the somewhat abstract condition

that the holonomy on M always be contained in SU(n) C SO(2n). This condition
has a pleasantly simple interpretation in terms of top-degree holomorphic forms. As
always for top-degree forms, such a differential form can be written:

Q = w(z)dzi Adz2 A ... A dzn (70)

which transforms as

w'(z') = det (-) w(z) (71)

12 As the total spacetime is a product space, we may obviously choose e to have no dependence on
the position in the R' factor.

13Arising constantly throughout algebraic geometry, a complex structure is the simplest generaliza-
tion of the notion of the complex number i to even-dimensional manifolds. A complex structure is an
map J: M -+ End(TM) sending x -+ End(TxM), smoothly assigning a linear map from each tangent
space TxM to itself.'This map is a proxy for i; we require I(x)v = -V for all points x and tangent
vectors v.

1
4 More formally, this simply means that the structure group of the tangent bundle is SU(n), i.e.

the tangent bundle is a vector bundle associated to a principle-SU(n) bundle.
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between coordinate patches. If holonomy were only U(n), then the properties of uni-

tary matrices imply only that the determinant det ( d) would be a complex number
di

of modulus one. When the holonomy is in SU(n), then det( d) =1 by definition.

Therefore, w(z) is literally a scalar function, and we can define global non-vaninishing

top degree forms. (We could simply choose them to be a fixed constant.)
Thus, in constructing Calabi-Yau manifolds, we must simply ensure that the bundle

ATzM of top-degree holomorphic forms admits a global section, i.e. is a trivial bundle.

In section 1.1 we will see how the process of elliptically fibering a base manifold is
designed to ensure that the resulting manifold has this property and hence is Calabi-
Yau.
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