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Abstract

Improvements in technology, autonomy, and positioning mechanisms have greatly
broadened the range of application of unmanned aerial vehicles. These vehicles are
now being used in aerial photography, package delivery, infrastructure inspection, and
many other areas. Many of these uses demand new techniques for path planning in
complex environments-in particular, spatially heterogeneous and time-evolving wind
fields [22, 23, 24]. Navigating and planning [26, 25, 28, 12] in wind fields requires
reliable and fast predictive models that quantify uncertainty in future wind velocities,
and benefits strongly from the ability to incorporate onboard and external wind field
measurements in real time.

To make real-time inference and prediction possible, we construct simple hierar-
chical Gaussian models of the wind field as follows. Given realizations of the wind
field over a domain of interest, obtained from detailed offline measurements or com-
putational fluid dynamic simulations, we extract empirical estimates of the mean
and covariance functions. The associated covariance matrices are anisotropic and
non-stationary, and capture interactions among the wind vectors at all points in a
discretization of the domain. We make the further assumption that, given a particular
prevailing wind heading, the local wind velocities are jointly Gaussian. The result is a
hierarchical Gaussian model in which the mean and covariance are functions of the
prevailing wind conditions. Since these empirical covariances are known only for a few
prevailing wind conditions, we close our model by interpolating covariance matrices on
the appropriate manifold of positive semi-definite matrices [44], via a computationally
efficient construction that takes advantage of low-rank structure.

Finally, assimilation of successive point observations is conducted by embedding
a standard Kalman filter within a hierarchical Bayesian inference framework. This
representation will then be used for wind field exploitation.

Thesis Supervisor: Youssef M. Marzouk
Title: Associate Professor of Aeronautics and Astronautics

3



Acknowledgments

This research project would not have been possible without the support of several

people.

First and foremost, I would like to thank "la Caixa", my main sponsor, for providing

a full scholarship to study in the US. It has constituted an unforgettable experience

and will certainly have a wide impact in my future career.

I would like to express my deepest gratitude to my advisor Prof. Youssef Marzouk,

who has offered superior guidance and unconditional support. Our discussions in

a range of different topics have made me grow not only academically but also as a

person.

This thesis was enriched significantly through the comments, answers, and sugges-

tions of Prof. Nicholas Roy and Prof. P.-A. Absil. I would also like to thank deeply to

my colleagues in the lab; to name a few, Alessio, Angxiu, Ferran, Jake, Lucio, Mario,

Pablo, Patrick, Remi, TC, Zheng...

Last but not least, I wish to express my love to my family and friends; for their

understanding and endless support through the duration of my studies. Finally, I

would also like to say thanks to every single person who has contributed to increase

my passion towards both academia and industry.

To all of them,

Thank you!

Antoni M. Musolas Otaio

4



Contents

1 Introduction

1.1 Motivation . . . . . . . . . . . . . .

1.2 Statement of the problem . . . . .

1.2.1 General problem . . . . . .

1.2.2 Problem of interest . . . . .

1.3 Previous work . . . . . . . . . . . .

1.4 Thesis objectives and organization .

2 Mathematical building blocks

2.1 Gaussian stochastic processes and random fields . . .

2.1.1 Preliminary definitions . . . . . . . . . . . . .

2.1.2 Direct-conditioning of Gaussian distributions

2.1.3 Gaussian mixture model . . . . . . . . . . . .

2.2 Sampling Gaussian distributions . . . . . . . . . . . .

2.2.1 Cholesky factorization . . . . . . . . . . . . .

2.2.2 Gibbs sampling . . . . . . . . . . . . . . . . .

2.2.3 Other sampling techniques . . . . . . . . . . .

2.3 Bayesian perspective on filtering . . . . . . . . . . . .

2.3.1 Introduction to filtering . . . . . . . . . . . .

2.3.2 Kalman filter . . . . . . . . . . . . . . . . . .

2.4 Introduction to differential geometry . . . . . . . . .

2.4.1

2.4.2

The manifold of symmetric positive definite matrices

Interpolation on a matrix manifold . . . . . . . . . .

5

11

. . . . . . . . . . . . . . . . . . . 1 1

. . . . . . . . . . . . . . . . . . . 13

. . . . . . . . . . . . . . . . . . . 13

. . . . . . . . . . . . . . . . . . . 13

. . . . . . . . . . . . . . . . . . . 14

. . . . . . . . . . . . . . . . . . . 18

20

20

20

21

22

23

24

25

26

29

29

30

31

31

32



2.5 Introduction to dynamic programming . . . . . . . . . . . . . . . . .

2.5.1 Infinite horizon problems . . . . . . . . . . . . . . . . . . . . .

2.5.2 Optimality conditions of the stochastic shortest path problem

34

34

35

3 Formulation 36

3.1 The big picture ........ .............................. 36

3.1.1 Main assumptions of the model . . . . . . . . . . . . . . . . . 37

3.1.2 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Hierarchical Gaussian models for wind fields . . . . . . . . . . . . . . 39

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Gaussian models for a wind field . . . . . . . . . . . . . . . . 40

3.2.3 Relation with the Karhunen-Loeve expansion . . . . . . . . . 41

3.2.4 Direct conditioning of the covariance matrix . . . . . . . . . . 42

3.2.5 Low-rank covariance interpolation . . . . . . . . . . . . . . . . 43

3.2.6 Linear spline through data matrices . . . . . . . . . . . . . . . 46

3.3 Wind field estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Static model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 Hierarchical dynamic model .. . . . . . . . . . . . . . . . . . . 51

3.4 Wind field exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 State space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Control space . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.3 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.4 Solver: asynchronous value iteration . . . . . . . . . . . . . . . 56

3.5 Integrated estimation and exploitation . . . . . . . . . . . . . . . . . 57

4 Numerical results 59

4.1 Wind field estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1.1 Assimilation of static data . . . . . . . . . . . . . . . . . . . . 59

4.1.2 Interpolation of the wind variance field . . . . . . . . . . . . . 60

4.1.3 Assimilation of dynamic data . . . . . . . . . . . . . . . . . . 66

6



4.2 W ind field exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Deterministic path planning . . . . . . . . . . . . . . . . . . . 69

4.2.2 Certainty equivalence . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.3 Stochastic solution . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Integrated estimation and exploitation . . . . . . . . . . . . . . . . . 71

5 Conclusions and future work 76

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7



List of Figures

1-1 Comparison between an example of general domain (MIT main campus)

and our problem of interest . . . . . . . . . . . . . . . . . . . . . . . 14

1-2 Literature division of the wind-field navigation problem. . . . . . . . 15

1-3 Comparison between a 2D representation of the problem of interest and

a 3D view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1-4 Snapshots of an unsteady state solution of the wind velocity field in

the problem of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1-5 Mean and variance field of the wind velocity field in the problem of

interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1-6 Organization of the proposed solution for wind field estimation . . . . 19

2-1 Quadratic interpolation among three matrices lxi, interpolants are

positive and interpolated is not. . . . . . . . . . . . . . . . . . . . . . 33

3-1 Piecewise linear interpolation of covariance matrices. . . . . . . . . . 47

3-2 Domain of the wind field and representation of the prevailing wind. 48

3-3 Graphical interpretation of the static model. . . . . . . . . . . . . . . 49

3-4 Graphical interpretation of the dynamic model. . . . . . . . . . . . . 50

3-5 Graphical interpretation of the complete model. . . . . . . . . . . . . 52

3-6 Representation of the control space. The UAV can move to any of the

8 neighboring nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3-7 Convergence of the total cost (sum across all states). . . . . . . . . . 57

8



4-1 Conditioning of the GRF in a simple domain given a measurement.

Vectors represent mean and ellipses are pointwise covariance. . . . . . 60

4-2 Linear interpolation of covariance matrices as a function of 9. The

obstacle is green when the plot corresponds to a data point (Part I). . 61

4-3 Linear interpolation of covariance matrices as a function of 9. The

obstacle is green when the plot corresponds to a data point (Part II). 62

4-4 Linear interpolation of covariance matrices as a function of 9. The

obstacle is green when the plot corresponds to a data point (Part III). 63

4-5 Linear interpolation of covariance matrices as a function of 9. The

obstacle is green when the plot corresponds to a data point (Part IV). 64

4-6 Linear interpolation of covariance matrices as a function of 9. The

obstacle is green when the plot corresponds to a data point (Part V). 65

4-7 Linear interpolation of covariance matrices as a function of 0. The

obstacle is green when the plot corresponds to a data point (Part VI). 66

4-8 The KF enables assimilation of data as the UAV navigates. Not optimal

path, just acquiring measurements for wind field estimation (Part I). 67

4-9 The KF enables assimilation of data as the UAV navigates. Not optimal

path, just acquiring measurements for wind field estimation (Part II). 68

4-10 Mean of the random variable that defines the wind field (left) and

isoconsumption of energy lines (right) for the certainty equivalence

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-11 Mean and variance field of the random variable that defines the wind

field (left) and isoconsumption of energy lines (right) for the stochastic

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4-12 Mean wind velocity field (left) for a particular heading of the prevailing

wind. Locus of points where optimal path to red triangle would change

if we consider stochasticity . . . . . . . . . . . . . . . . . . . . . . . . 71

9



4-13 Mean and variance field of the random variable that defines the wind

field (left). Isoconsumption of energy lines and optimal path (right) for

the stochastic solution. The path is updated as the UAV acquires more

inform ation (Part I). . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4-14 Mean and variance field of the random variable that defines the wind

field (left). Isoconsumption of energy lines and optimal path (right) for

the stochastic solution. The path is updated as the UAV acquires more

information (Part II). . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4-15 Mean and variance field of the random variable that defines the wind

field (left). Isoconsumption of energy lines and optimal path (right) for

the stochastic solution. The path is updated as the UAV acquires more

information (Part III). . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4-16 Mean and variance field of the random variable that defines the wind

field (left). Isoconsumption of energy lines and optimal path (right) for

the stochastic solution. The path is updated as the UAV acquires more

information (Part IV). . . . . . . . . . . . . . . . . . . . . . . . . . . 75

10



Chapter 1

Introduction

1.1 Motivation

During the second half of the 20th century, the decision-making process with regards

to optimization evolved. First, computational modelling allowed predicting outputs

in physical processes and then this approach shifted from a deterministic overview

to a probabilistic one. In a second stage, only decisions of designs in which safety

or precision were crucial were computed by means of models that account for their

uncertainties. Nowadays, most models are being computed stochastically. The

combination between computation and stochasticity may allow a better understanding

of complex systems before making decisions related to process and design.

Nowadays a wide range of applications require dealing with uncertainty by means

of random variables. Most models use Gaussian distributions as underlying variables,

both for its simplicity and its capacity to represent experimental data. However, these

models usually turn out to be high dimensional, and it is common to be confronted

with problems that are 106, 10 dimensional or even more [32]. Apart from their mean

value, Gaussian distributions are defined by covariance or precision matrices. In high

dimensional cases, these matrices cannot be even stored. Therefore, it is mandatory

to take advantage of their sparsity patterns to deal with them. In particular, usage of

iterative methods is in order due to the inexpensive cost per iteration and the small

memory requirements as opposed to direct methods that typically include matrix
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factorizations, which becomes prohibitively expensive for dimensions greater than 105 .

One of such applications that combines numerical modeling and sthocasticity

is wind field navigation. Improvements in technology, autonomy, and positioning

mechanisms are opening the door to more sophisticated and capable unmanned aerial

vehicles (UAVs) that fly over uncertain but predictable to some extend wind conditions.

As a result of the research on this topic, regulation is evolving and becoming more

permissible on UAVs flying in urban environments. At the same time, industry is

forecasting huge saving by incorporating these vehicles on their operations. Society

is also in the process of accepting UAVs flying in urban environments. These recent

developments have greatly broadened the range of application of UAVs. Indeed, these

vehicles are now being used in aerial photography, package delivery, infrastructure

inspection, and many other areas. But what do the regulators, industry, and society

demand? Primarily the aforementioned stakeholders demand the following three

characteristics:

1. Safety, any potential risk may become a threat to society.

2. Reliability, the UAV must guarantee arrival to the destination.

3. Efficient paths, need to minimize energy consumption and/or time to become

competitive.

In turn, these three depend on the external wind conditions, so there is a clear

need for understanding UAV navigation in complex wind fields.

Navigating and planning in wind fields require reliable predictive models that

quantify uncertainty in future wind velocities, while enabling inference from onboard

and external wind field measurements in real time. These data-informed predictions

feed path planning algorithms that aim to minimize energy consumption or flying

time. New techniques for path planning in urban environments have to be envisioned,

in particular, spatially heterogeneous and time-evolving wind fields. The problem

can be cast as path planning under uncertainty, where the urban canopy imparts

some predictability on the wind field but the rapid changes of the wind due to its low

viscosity makes such prediction to be a challenge.

12
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1.2 Statement of the problem

1.2.1 General problem

The general problem that we aim to solve can be phrased as follows: given a domain

(e.g., Figure 1-la), improve the navigation of a UAV by taking into account the

external wind conditions. To solve this problem, we will characterize the wind field

first with offline data, and then we will incorporate any source of online measurements

using inference techniques.

Before even starting to devise a solution for the problem, we have to bear in mind

that the requirements of the proposed procedure shall be:

" Methodology must be scalable and robust.

* Solution must be fast to obtain and recomputable online.

" Algorithms must be efficient in terms of data storage.

1.2.2 Problem of interest

Instead of solving a general domain, we will work on a toy problem to focus on the

technicalities of modelling rather than in the nuances of problem-specific characteristics.

We claim that our solution can be extrapolated to more complex domains.

Geometrically speaking, the domain that will be analyzed is based on a 2D domain

of 100 x 100 meters of side with an inner square building of 10x 10 meters. The

discretization has dimensionality of 40 x 40. As will be introduced in section 3.1.2, we

will characterize the wind field by building a covariance matrix of the wind velocity

components. These matrices will be of around 3200x3200 elements, one row and

column for each components of the wind and for each element of the discretization.

Our wind field (Figure 1-1b) will be characterized by its external prevailing wind

heading (9), which is measured in the top of the building. In the 2D representation,

we illustrate the heading with a blue arrow in the middle of the obstacle (Figure 1-3a).

13
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(a) Example of the domain for a gen- (b) Illustration of the problem of in-
eral problem terest.

Figure 1-1: Comparrson between an example of general domain (MIT main campus)
and our problem of interest

In terms of offline data (i.e., precomputations before UAV takes off), we will rely

an unsteady computational fluid dynamics (CFD) solver. Online measurements will

come from a wind station that measures the external prevailing wind conditions 0.

We will measure also the wind velocity in the location of the UAV, that is, the UAV

will have an in-built anemometer.

1.3 Previous work

Spatially heterogeneous and time-evolving fields have been broadly studied. Not only

the case of wind fields (e.g., [22, 23, 24]) is nowadays on the crest of the wave but also

similar to some extent is the navigation in the ocean with strong currents [28, 12].

Navigating and planning [26, 25] in fields requires reliable and fast predictive models

that quantify uncertainty in future wind velocities, and benefits strongly from the

ability to incorporate onboard and external wind field measurements in real time.

However, the larger the scale of the domain and the lower the viscosity of the media,

the more often we can observe sudden changes in the velocity conditions. In the

particular case of wind, the conditions are so volatile that considering only the mean

can be not sufficient, and in some cases, even not meaningful. Figure 1-4 illustrates

14
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Wind Field Wind Field Wind Field

Estimation Exploitation Exploration

Figure 1-2: Literature division of the wind field navigation problem.

the wind field in different time instances for the exact same external conditions. It is

not difficult to notice that these snapshots may differ substantially from the mean

(Figure 1-3a).

In the literature, the problem of wind field navigation is typically divided (see

Figure 1-2) as follows:

" Estimation consists of characterizing the wind field with offline data and incor-

porating any source of online measurements (e.g., [23, 24]).

" Exploitation consists of using the wind field to improve planning in terms of

efficiency, reliability, or safety (e.g., [25, 28]).

" Exploration consists of navigating with the primary goal of learning more features

of the wind field online (e.g., [26, 12]).

Although the aforementioned volatility of the wind conditions, most of the solutions

in the literature consider only the steady state solution for wind field estimation, and

then perform wind field exploitation over it.
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Mean wind velocity field

x0

W

(a) 2D view of the problem of interest, (b) Illustration of the problem of in-
mean wind velocity field. terest (bis).

Figure 1-3: Comparison between a 2D representation of the problem of interest and a
3D view.

In the present study, we investigate the possibility to work with more accurate

representations that deal not only with the mean wind velocity field, but also with its

spatial covariance. Thus, given a domain and a fixed external conditions, we account

for uncertainty by estimating the mean and covariance of an unsteady CFD solution.
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Figure 1-5: Mean and variance field of the wind velocity field in the problem of interest.

1.4 Thesis objectives and organization

The problem of path planning under uncertainty involves two steps: (i) characterizing

the uncertainty of the domain of interest and (ii) devising an efficient algorithm

that can deal with such uncertainty to find an optimal path. The project focuses

on the modeling and inference challenges of wind field estimation by constructing

spatiotemporal Gaussian process (GP) representations of complex wind fields, with

anisotropic and non-stationary covariances. These representations can then be used for

filtering with autoregressive dynamics or direct conditioning. The main goal is to apply

our formulation on a simple model navigation problem in an urban wind environment,

and evaluate whether planning that takes advantage of wind field modeling and

conditioning can outperform more naive path planning schemes.

First, we make the assumption that, for a given prevailing wind, the domain of

interest has a wind field that can be approximated as a Gaussian random field (GRF).

Second, since a GRF is continuous over the domain, we discretize it in a regular (or

not) grid. Then, we use an unsteady CFD solver to simulate the domain and to obtain
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Figure 1-6: Organization of the proposed solution for wind field estimation

a bunch of simulations over time corresponding to a fixed prevailing wind. Forth, we

make an ergodicity assumption (i.e., the wind field at a particular time has the same

distribution as an ensemble of snapshots acquired over time). Finally, we compute the

mean and covariance matrix of the grid points across all the CFD solutions, namely,

the statistics of the wind field.

To be more specific, the mean refers to the pointwise mean of each component of

the velocity. The covariance matrix contains the pointwise variance of each component

of the velocity, the covariance of each component of the velocity with the others in

the same point in the grid, and the covariance of each component of the velocity with

respect to all the other points in the grid.

These statistics will be used later to (i) assimilate static and dynamic data, (ii)

obtain approximations of the same statistics corresponding to conditions of prevailing

wind for which we do not have data, (iii) update the wind field over time, (iv) perform

stochastic path planning.

The project is organized as follows. In Chapter 2, the mathematical building

blocks are reviewed. In particular, we review basic concepts of Gaussian random fields

and its sampling techniques, as well as Bayesian filtering, and succinct introductions

to differential geometry and dynamic programming. In Chapter 3, we describe our

wind field estimation approach and how to apply it to wind field exploitation. We

describe also the integration of both, wind field estimation and exploitation, in Section

3.5. Numerical results are shown in Chapter 4. After having presented these results,

conclusions, limitations, and future work are discussed in Chapter 5.
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Chapter 2

Mathematical building blocks

2.1 Gaussian stochastic processes and random fields

2.1.1 Preliminary definitions

A stochastic process [13] is a collection of random variables {Xt}to defined on a

probability space (Q, T, IP). That is, for each time t > 0, w -+ Xt(w) is a random

variable.

A stochastic process X ={Xt}t>o can be seen as a function that assigns a real

number for each real t > 0 and each w E Q :

R+ x Q -+ R,

(t, W) - Xt (W).

A GP [33] is a stochastic process for which any finite subcollection of {Xt}to

has a joint Gaussian distribution. In terms of notation, we refer to Xt ~ GP(m, C),

meaning that X is distributed as a GP with mean function m(t) and covariance kernel

C(t, t').

By a joint Gaussian distribution we refer to one that has density defined as follows:

fx(X, . .(. k) = I exp ( (x - /I)TE-1(x - p) (2.1)
V(2,7r)kJE 2
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where x and the mean p are real k-dimensional column vectors and ZEI is the

determinant of the covariance matrix E. Notice that E is a discretization for some

values of t of a much more general C(t, t'). A random field {Ft : t E T} is a

generalization of a stochastic process such that the underlying parameter no longer

needs to be a simple real, but can take values that are multidimensional vectors

instead. In the same way we defined GP, a GRF is a random field with Gaussian

probability density function.

If /u and E are functions of certain scalar (or vector) parameter 0, we say that the

GP (or GRF) defined above is a hierarchical GP (or GRF).

A similar object to the GRF is the Gaussian Markov random field (GMRF). To

introduce the notion of GMRF [35] we need first to state the definition of a graph and,

in particular, an indirected graph. A graph is an ordered pair G = (V, E) comprising a

set V of vertices or nodes together with a set E of edges or links, which are 2-element

subsets of V. In other words, an edge is related with two vertices, and the relation is

represented as an unordered pair of the vertices with respect to the particular edge.

A GMRF with respect to a graph G = (V, E) is a multivariate normal distribution

in which the missing edges correspond to zeros on the precision matrix (E-1):

X = (XV),VE ~ V(y, E ),

where:

(E-1) = 0 if {u, v} E.

2.1.2 Direct-conditioning of Gaussian distributions

We can manipulate the covariance matrix such that we condition the GRF or GMRF

to some particular observations in some particular locations. To do that, we introduce

the notion of conditional covariance matrix for the multivariate Gaussian Random

variable. If p and E are partitioned as follows:
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then, the distribution of x1 conditional on x2 = a is multivariate normal (x 1 jx2 =

a) ~ N(-, E) where:

A= p + E12E22 (a - A2)

and covariance matrix:

E l= - E12E2E21.

2.1.3 Gaussian mixture model

Given some random variables with distribution f. and some wcights p, a mixture is

defined as:

f(x) = Zpifi(x).

A Gaussian mixture corresponds to the case when fi are of the shape (2.1), i.e.,

corresponding to Gaussian random variables.

Denoting pa(k) for the kth moment of f and pk) for the kth moment of fi, it follows

immediately from the definition that

A (k) = Ef [xk] = piEf, [xk] - k)

For instance, the mean can be written as:

Ef[x] =E pjp
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Also, the variance reads:

Var(f) = /4 2 - _ )2) _-1) 2

2.2 Sampling Gaussian distributions

Sampling becomes really useful for understanding high-level interactions between

variables, in particular for the case of multivariate Gaussian random variables repre-

senting some properties in a defined space. This is always the case in spatial statistics

(see [35]). When data can be represented in a one, two or three dimensional space,

observing the interactions of the desired property according to the position may be

particularly useful. Examples of the above are wind field models, climate models,

weather forecasting or petroleum reservoir predictions that rely on the propagation

of samples over time [5]. The entries in the mean value are easily understood since

they typically represent mode values of the properties under study. However, the key

issue in these models is that entries in either the covariance or precision matrices are

difficult to assess. Sampling these fields and analyzing different samples is an excellent

way to understand their behavior.

The most common way to sample Gaussian distributions is by means of Cholesky

factorization. The method is based basically in a LLT factorization, which is always

seen as an expensive approach. On the other side, since it is a direct method the

samples it produces are exact and, once the factorization is done, drawing samples

requires only one matrix vector product. Another advantage of Cholesky factorization

is that, as it will be presented, it can draw samples from a covariance and precision

matrices indistinctly. For large dimensional Gaussian distributions, the conventional

technique is Gibbs sampling. This method is powerful thanks to its inexpensive cost

per iteration and small memory requirements, especially if the precision matrix is

sparse.

In this section we review Cholesky factorization and Gibbs sampling since they

are the traditional techniques for drawing samples. After that, we study the sampling
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techniques described in [32] and [17] as they are the cutting edge iterative samplers.

The first one produces a Gaussian realization using a covariance matrix that is an

approximation to the desired covariance in a smaller dimensional Krylov space and

finds samples using conjugate gradients. As we will see, the procedure allows working

with either precision or covariance matrices. The second sampler uses Chebyshev

polynomial acceleration for the stochastic iteration to accelerate convergence in the

mean and covariance. Both algorithms do not require explicit storage of covariance or

precision, but they need the matrix vector product of it instead. For each technique,

we describe its usage, algorithm, and order of operations. It is not the intention of

this review to prove the convergence of the sampling algorithms, some references are

given to this respect.

2.2.1 Cholesky factorization

Cholesky factorization is the conventional method to sample from Gaussian distribu-

tions [42]. The samples it produces are exact and that is what makes this algorithm

so attractive. The method can draw samples from either a covariance (Algorithm

la) or precision matrix (Algorithm 1b). Once the covariance or precision matrix is

factorized, sampling from them requires only a triangular matrix vector product or a

backsubstitution [34], respectively.

Algorithm la: Cholesky factorization sampler from N(O, A)

input: n x n symmetric positive definite matrix A,

output: c exactly distributed as N(O, A)

1. sample z ~ N(O, I);

2. A = CCT; Cholesky factorization

3. c = Cz; triangular matrix vector product
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Algorithm 1b: Cholesky factorization sampler from N(O, A- 1 )

input: n x n symmetric positive definite matrix A,

output: y exactly distributed as N(O, A-')

1. sample z ~ N(O, I);

2. A = CCT; Cholesky factorization

3. z = CTy; Triangular system of equations, solved by backsubstitution

Both Algorithm la and Algorithm lb are exact and impressively simple. The only

drawback of the method is that factorizing a matrix takes (1/3)n3 operations. If A

has bandwidth b, Cholesky factorization requires O(b 2n) operations.

Recall that LLT factorization is only permitted in symmetric positive definite (or

semi-definite) matrices, but this is not an issue since covariance and precision matrices

satisfy this condition by construction.

2.2.2 Gibbs sampling

For large linear systems, Cholesky factorization may not be feasible, and less demanding

techniques, both in terms of operations and memory, should be used. Perhaps the most

popular iterative method to sample from a Gaussian distribution is Gibbs sampler

(e.g., [11], [18], [21]).

As described in Algorithm 2, the idea behind Gibbs sampler is sampling each

component of the multivariate vector conditioning to the value of the other components.

By iterating within this procedure, the sample is guaranteed to converge to a sample

from N(O, A 1 ).
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Algorithm 2: Gibbs sampler from N(O, A- 1 )

input: n x n symmetric positive definite matrix A, initial state y0 , and kmax

output: ykmax approximately distributed as N(O, A- 1 )

1. for k = 0, ... , kmax do

1.1. for i = 1, ... , In do

1.1.1. sample z ~ N(- A- Ai,_i(y-i), A )

1.1.2. yi = z;

1.2. end

2. end

In Algorithm 2, Ai,_i refers to all the elements in row i of the matrix A except the

one corresponding to column -i. Also, notice that line in 1.1.1. z is an scalar and

its variance is A-'. The sampling of z is as trivial as sampling a scalar of N(O, 1),

multiplying VA-i and adding its mean (-A-1Ai,_iy-).

Although it exists a version of Algorithm 2 that uses the covariance matrix instead,

the algorithm is remarkably more efficient for sampling a precision matrix because it

takes full advantage of its sparsity.

2.2.3 Other sampling techniques

Sampling in Krylov spaces with conjugate gradients

The idea behind this algorithm is to produce a Gaussian realization using a covariance

matrix that is an approximation to the desired covariance in a smaller dimensional

Krylov space [32, 39]. As we will see, the procedure allows working with either

covariance (Algorithm 3a) or precision (Algorithm 3b) matrices. Not surprisingly,

comparing both algorithm we notice that there is no difference apart from line 5.3.

Algorithm 3a requires an additional matrix vector product but it is exactly the same

than in line 5.4, which therefore is computed in both algorithms only once. A discussion

of this algorithm together with its proof of convergence is presented in [32].

The conjugate gradient algorithm to solve systems of equations takes 2n 2 operations

per iteration for a full matrix [313. Since the conjugate gradient sampler is a slight
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modification (adding line 5.3 in Algorithm 3a and 3b), it only requires around 2n

additional operations [32].

Notice that this algorithm does not require any kind of precomputation. It neither

requires building any matrix, it is enough with the matrix vector product of the

covariance/precision matrix. As discussed above, the precision matrix tends to be

sparse, which makes a vectorization of its matrix vector product feasible. These

facts make this algorithm impressively versatile. Moreover, the conjugate gradient

algorithm is famous for its extraordinary performance on solving linear systems of

equations, and this is a quality to take into consideration when using the conjugate

gradient as a sampling technique.
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Algorithm 3a: Conjugate gradient sampler from N(O, A)

input: Given n x 1 vectors b and x0 , and an n x n

symmetric positive definite matrix A,

specify some stopping tolerance E. and kmax

output: ckmax approximately distributed as N(O, A)

1. r0 = b - Ax0 ;

2. p0 =ro-

3. do = p(O)TApO;

4. c0 = x;

5. for k = 0, ..., kmax do

r(k-
1

)Trk-1
5.1. 7k-i .dk

5.2. xk = xk-1 + k-1pk-1.

5.3. Sample z - N(O, 1), and set ck = ck-1 + z Apk-1.

5.4. rk = Vxq5(x k) - rkl1 - -Yk-lA pk-I is the residual.

5.5. RrkTrk

5.6. pk - rk -/3kpk-1 is the next conjugate search direction.

5.7. d= p(k)TApk.

5.8. Break if IIr kI 2 <E.

6. end

Algorithm 3b: Conjugate gradient sampler from N(O, A- 1 )

Refer to Algorithm 3a and modify:

5.3. Sample z - N(O, 1), and set yk yk-1 + z pk-1.

Chebyshev accelerated SSOR sampler

Finally, we mention without presentation the Chebyshev accelerated SSOR sampler

[17]. As its name indicates, the algorithm uses Chebyshev polynomial acceleration [36]

for the stochastic iteration to accelerate convergence in the mean and covariance. The
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algorithm requires only matrix vector product and the full ensemble of the matrix is not

necessary. However, it also requires matrix splitting of successive over-relaxation (SOR)

and symmetric successive over-relaxation (SSOR) [29, 1, 19]. The most expensive

computations of the algorithm are solving two triangular systems of equations: one

backsubstitution and one forward substitution per iteration. For a general matrix A,

solving these systems of equations may require around n2 operations each. Another

strong requirement of this algorithm is precomputing the extremum eigenvalues, for

which Lanczos algorithm shall be a fast approach.

2.3 Bayesian perspective on filtering

In this section, we introduce a Bayesian perspective on filtering. We use the notation

and structure in Chapter 4 of [38]. Filtering consists of recursively updating the

estimation of a dynamic system as we acquire more information. As we will see, this

technique will then be applied in our wind field estimation framework. Our states will

be the components of the velocity of the wind at each point and the new information

will be the measurements of the wind that we get from the UAV.

2.3.1 Introduction to filtering

Let Xk E R" be the state of a dynamic system of interest at step k = 1, 2, ... and

y E R' the measurement at k. A probabilistic state space model can be defined as

a sequence of conditional probability distributions Xk - p(xk I Xk_1), together with a

measurement model of the form: P(Yk I Xk). The first equation describes the stochastic

dynamics of the system and the second explains the distribution of the measurements

conditional to the state.

In order to reduce the computational cost and make the recursion have a close

form, we need to assume two Markovian properties. First, the state Xk given Xk1 is

independent of the previous states and measurements. Secondly, the current measure-

ment y given the current state Xk is conditionally independent of the measurement

and state histories.
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The Bayesian filter operates in the following way. Firstly, the recursion starts from

the prior distribution p(xo). The predictive distribution of Xk, given the dynamic

model, is computed as:

P(Xk I Y1:k-1) J P(xk I Xk-1)P(xk-1 I Y1:k-1) dxk-l.

Finally, the posterior distribution of Xk conditioned on Yk is computed as:

P(xk I Y1:k) = 1P(Yk I Xk) P(Xk I Y1:k-1),

where Zk is the normalization constant.

2.3.2 Kalman filter

The Kalman filter (KF) is the closed form solution to the Bayesian filtering equations

for the filtering model where the dynamic and measurement models are linear Gaussian.

Using the notation introduced before, the model reads as:

Xk = Ak-lxk-1 + qk-1,
(2.2)

Yk = Hkxk + rk,

where qk-1 - N(O, Rk) is the process noise, and the prior distribution is Gaussian

x0 ~ N(mo, Po), Ak_1 is the transition matrix of the dynamic model, and Hk is the

measurement model matrix.

The Equations (2.2) admit a closed form solution and the distributions of interest

are Gaussian with the following statistics:

P(xk I Y1:k-1) = N(xk I M, Pk-),

P(xk Y1:k) = N(xk Ink, Pk),

P(Yk I Y1:k-1) = N(yk I Hkmk;, Sk).

At each step, the parameters of the distributions above are computed using the
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following procedure:

m- = Ak1m k1,

Pi = AklPkl1A'_1 + Qk-1,

Vk = Yk - Hkm~,

Sk = HkP HT + Rk,

Kk = P-HTS 1,

mk = m- + Kkvk,

Pk = P- KkSkKk.

Therefore, the statistics of the random variable of interest are:

m-k =Aklmk1,

P j =Ak1Pk1 A T1 + Lk-1,

mk =mk + P Hk'(HkP Hk + Rk>-1 (yk - Hkmk),

Pk =P j - P jHk'(HkP jHkT + R4)~ 1HkP,-.

2.4 Introduction to differential geometry

2.4.1 The manifold of symmetric positive definite matrices

Let S (n, r) denote the space of symmetric positive (semi-)definite n x n matrices of

rank r, endowed with an appropriate notion of distance d. This manifold has been

studied extensively in the literature. Let A1 and A 2 belong to such manifold. One

of the most celebrated results is the existence of a natural metric d(A 1, A 2 ) that is

invariant with respect to matrix inversion:

d(A1 , A 2 ) = d(A--1, A-1), (2.3)
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and with respect to congruence via any invertible matrix Z:

d(A1 , A 2 ) = d(Z A1ZT , ZA 2ZT). (2.4)

Moreover, a parametrization of the geodesic between A1 and A 2 is given by:

=A1-+A2(t) A2 exp(t logm(A 2 A7)A2

-1 - 1

where ,A 1-A 2 (t) E S+ (n, n) for all t E R, and A1 , A 2 2 are symmetric inverse

square roots. Clearly, A1 A 2A1 2 admits an eigenvalue decomposition of the form

UAUT, where A is a diagonal matrix containing the generalized eigenvalues of the

pencil (A1 , A 2 ), and U their corresponding eigenvectors. Therefore, PA 1-+A 2 (t) can be

expressed as:

(,A 1-4A 2 (t)= A, expm(tlogm(UAUT ))A = A UAt UT A . (2.5)

Notice that we recover the trivial cases SA 1-A 2 (t = 0) = A1 and A 1 -+A 2 (t = 1) = A 2.

Apart from the parametrization, the geodesic also admits a close form expression for

its distance:

1  1 1 1on
d(A 1 , A 2 ) = d(A7 2 A2A1 2, I) = 11ogm(A1 2 A2A1 2 .F og2(Ak,k)-

k=1

2.4.2 Interpolation on a matrix manifold

Interpolating the covariance matrices with respect to a parameter can be useful as

a tool to save storage and computational cost. One could approach this problem by

interpolating component-wise the matrices of interest. However, covariance matrices

must satisfy some conditions. Indeed, by construction, they are symmetric and

positive definite (or at least positive semi-definite). The symmetric property would

be preserved in an hypothetical interpolation by components. Also, the positive

definiteness would also hold for a convex combination of two matrices. However, in the
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A(O)

0

Figure 2-1: Quadratic interpolation among three matrices xi, interpolants are positive
and interpolated is not.

case we would be interested on higher order interpolation, that may be not guaranteed.

To illustrate, Figure 2-1 shows a hypothetical scenario where we are interested on

performing quadratic interpolation among three points of a 1 x 1 matrix A = A(O).

Notice that even though the three data points are positive, so they belong to the

manifold of symmetric positive definite (s.p.d.) matrices, we are not guaranteed that

the interpolated A(9) is positive.

The intuition of interpolating will be to draw a line in the manifold of s.p.d.

matrices of dimension N x N (denoted as S+(N, N)). In particular, we will use the

concept of geodesic line. As defined in differential geometry, a geodesic minimizes arc

length for points "sufficiently close". In turn, to define a curve of extremal length, we

need to define a notion of distance. There is a preferred distance in S+(N, N) [15, 10],

which coincides with the F6rstner and Moonen metric introduced in [16] and used in

[41].

The geodesic corresponding to this notion of distance defines a line parameterized

by s between A, B E S+(N, N), [10].

The invariance characteristic is especially relevant for covariance matrices [40]

since in that case the Gl(n) action corresponds to a change of basis (x' = Lx).
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2.5 Introduction to dynamic programming

Dynamic programming was introduced by Richard Bellman in the sixties in its

manuscripts [6, 7]. The beauty of this methodology is that it allows incorporating

new information as soon as it is obtained (dynamically). Not surprisingly, it turns out

that almost all optimization problems can be cast using the dynamic programming

framework. Philosophically speaking, the dynamic decision making process is the one

that we, as humans, face daily in our life. In the moment a decision has to be made,

we do not typically have all the necessary information. Instead, sometimes we need

to incorporate information as we go. That is precisely dynamic programming. It is

neither surprising that this methodology is used nowadays not only in mathematics

and operations research, but also in economics, management science, policy making,

and computer science, to name a few.

In the sequel we introduce the infinite horizon problem, which means that the

dynamical system will not stop running. We expose the conditions for optimality

thereaftcr.

2.5.1 Infinite horizon problems

As described in [8, 9], the total cost associated to an initial state so and a policy

7r= {po, /i,... } for the infinite-stage problem reads:

J, (so) = lim E a k ag(skJk(Xk), wk)}, (2.6)
n-+oo--k

n ok=0,1,,.. k=O

where g(sk, Ak (Xk), Wk) is the cost of being in the state sk in stage k, applying

a policy k(Xk), and having a disturbance wk. The discount factor of such cost is

denoted by a.

If we consider the undiscounted problem (a = 1) and we set the cost to g(s, u, w),

notice that it is possible to rearrange Equation 2.6 such that we obtain the following
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recursion:

Jk+l(s) = min Eg(s u, w) J(f(s,uw)) k=O,1, ... (2.7)

Therefore, it is natural to denote the optimal infinite horizon cost as:

J*(s) = lim J"(s). (2.8)

Combining Equations 2.7 and 2.8, we get the following form:

J*(s) = min E g(s, u, w) + J*(f(s, u, W)) (2.9)

which is a system of equations. The optimality conditions of such equations are

described in the following subsection.

2.5.2 Optimality conditions of the stochastic shortest path

problem

As described in [8], we need to satisfy the following two conditions to guarantee the

most useful results for the stochastic shortest path (SSP) problem:

" There exists at least one proper policy.

" For every improper policy, the corresponding cost is infinity for at least one

state.

Under these two assumptions, we have the following results that will be used later:

" The optimal cost vector (Equation 2.8) is the unique solution of Bellman's

equation (Equation 2.9).

* The method of value iteration (and its asynchronous version) converges to the

optimal cost vector independently of the initial cost vector.
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Chapter 3

Formulation

3.1 The big picture

The problem of navigating in complex wind fields requires a multidisciplinary approach.

First, we need to understand the wind field behavior over the domain of interest. To

do that, given a particular value of the external wind conditions (prevailing wind), we

use a Monte Carlo simulation on a proprietary unsteady CFD model to compute an

approximation of the pointwise mean and covariance matrix in a predefined regular

grid. Using an unsteady CFD model allows taking into account the potential vortices

and irregular features as part of the uncertainty described by the mean and covariance.

Notice that even in the simplest cases, the covariance is anisotropic and non-stationary.

Such sample covariance matrix captures the interactions of the wind behavior among

all points in the grid.

Our approach surpass the modeling and inference challenges in this setting by

constructing spatiotemporal GP (Section 2.1.1) representations of complex wind fields.

We assume that, given a prevailing wind, the wind field over the domain of interest

forms a GRF. That is, for any discretization of such domain, the wind components of

the points in the grid follow a Gaussian distribution (Equation 2.1).

Once the mean and covariance matrix are computed and the Gaussian assumption is

made, the GRF in the grid is well defined for each prevailing wind. This representation

can then be used for multiple Bayesian inference techniques. Perhaps the simplest one
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would be direct conditioning to particular measurements, which we apply in Section

3.2.4.

Another well-known technique that we use is filtering (e.g., [14]). A lot of work

has been done with regards to filtering of Gaussian distributions in both linear and

nonlinear dynamics. We focus on the KF (Section 3.3.2), an algorithm that allows

updating the state of the system over time by incorporating potential measurements.

As described in Section 2.3.2, the algorithm applies only for Gaussian distributions

within linear dynamics and it works in a two step fashion. The first step corresponds to

updating the system using the linear dynamics. The second step allows incorporating

new measurements to reduce the uncertainty of the state. In our particular problem,

we can define the state as the components of the wind in all points of the grid. The

dynamics of the system will be precisely in charge of updating the wind field such

that the covariance in each time discretization matches the one corresponding to the

prevailing wind. Measurements acquired online either in some stations of the city or

by the UAV itself can also be incorporated in the second step of the algorithm.

3.1.1 Main assumptions of the model

In our framework, we assume that, given a prevailing wind described by its heading 0,

the wind field is a GRF of two spatial dimensions. Therefore, given a discretization

of the domain, the components of the points in the grid follow a joint Gaussian

distribution with mean and covariance matrix given by (3.1) and (3.2), respectively.

This assumption is sound since the components of the wind in each point of the grid

can take any value in the real line and they tend to be symmetric, as the normal

distribution does. Indeed, industry best practices to deal with the uncertainty of wind

is to use the Rayleigh distribution for the modulus of the wind in a particular location.

Such distribution is obtained precisely by computing the modulus of two Gaussian

random variables. Notice also that we are not considering a joint Gaussian distribution

for (w, 0) but only for w(9) if 0 is fixed, which is a more relaxed assumption.

Once the wind field is characterized for a particular time step as a GRF, we make

the assumption that it is also an observed linear Markov dynamic model. Essentially,
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we need to satisfy the conditions described in 2.3.2 to apply the results of the KF.

As we will see in the sequel, we suppose that the heading of the prevailing wind is

observed with certainty. That is, at each time step, we can measure without error the

conditions of the external wind conditions. Together with the preceding assumption,

we see that we will have a GRF describing the wind field at each time step.

Moreover, given that we obtain the covariance matrices for each prevailing wind

from an unsteady CFD solver, we suppose that the wind field at a particular time has

the same distribution as an ensemble of snapshots acquired over time. In other words,

we assume ergodicity.

Finally, we suppose also that we have certainty in the location of the UAV and,

when doing path planning, we do not consider the maneuvers of the vehicle.

3.1.2 Initial data

Suppose we have some snapshots of the wind field corresponding to a certain prevailing

wind 0:

w (1)(), w( 2) (), w( 3)(9), . .. , w()(9), w(')(0) E RN i = 1, ... , n.

Each ) (9) is a vector containing the components of the velocity vector in each

point of a discretization of the domain and corresponds to a particular time step of

an unsteady CFD solver. Notice that we are assuming that the dynamical system

conformed by all the time steps is ergodic. In other words, the system has the same

behavior averaged over time as averaged over all the states.

We can compute the sample mean of these snapshots as follows:

in

W(0) ~! - W~i (0).
i=1

Similarly, we can obtain the sample covariance:

in
1i=0. (0) =W $ ( (0) - (0)) (W i (0) -V G()) T.n -1 g
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Notice that these two statistics of the sample are parameterized by 0, i.e., we shall

have a sample mean and covariance for each value of 0. Suppose we can sample from

m different values, i.e., 01,... , 0m. Thus, we have:

V(00) de.Woo; W(o1) de w-;. s(oM) def . (3.1)

And similarly for the covariance is stored as:

0 d(ef -C; (1) , Co'; ... ; O(M) dN Com.(.2

3.2 Hierarchical Gaussian models for wind fields

3.2.1 Preliminaries

Herein we assume that all the matrices in (3.2) are rank deficient. We truncate their

rank to r, so they belong to the space of symmetric positive semi-definite N x N

matrices of fixed rank r. We denote this manifold as S+ (r, N) [44]. Notice that even

if they were not to have the same rank, it is possible to truncate their singular value

decomposition (SVD) (3.3) [43] to a value r for which the least N - r eigenvalues for all

the matrices in (3.2) are negligible. In other words, if they have rank(Cw(Oi)) = r(Oi),

we can still truncate for a r < min r(9i):
1,....M

r(O)
C0(0) = Z Ai(9)vi(9)vi(O)T ~ Ai(O)vi(9)vi(O)T. (3.3)

i=1 i=1

Recall that performing an SVD implies defining a notion of orthogonality, we use

the L 2 norm.

Since the matrices are rank deficient with r < N, the number of samples to

characterize the sample mean and covariance may be n < N and still provide a good

approximation.

Notice that we do not ensemble any of the matrices in (3.2). We shall use a

randomized SVD approach to obtain the eigenvalue decomposition directly from the
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samples. Then, we store the Y(Oj) Yo that are rectangular real matrices N x r

that satisfy the following relation:

Ow (0j) = VorAr,- Ar V{ oYoi=1 ... ,m (3.4)

which can be easily obtained directly from the SVD (3.3) by putting the first r

eigenvectors times the square root of the corresponding eigenvalues in columns.

In our particular problem, the sample mean and covariance matrices described

above correspond to the components of the wind in a grid, given a condition of

prevailing wind 0. A covariance like the one in (3.2) is anisotropic and non-stationary

and captures the interactions of the wind behavior among all points in the grid.

3.2.2 Gaussian models for a wind field

As discussed, we assume that, given a prevailing wind described by 0, the wind field

is a GRF of two spatial dimensions. However, in our case, the covariance matrix E is

rank deficient, then the multivariate normal distribution is degenerate and does not

have a density. In order to have a generalization of the density for the degenerate case,

we choose a different measure. In particular, we can restrict the Lebesgue measure to

the r-dimensional affine subspace where the Gaussian distribution is supported. In

that case, the distribution has density:

fX(Xi,. ... , Xk) =_ 1 = exp(1 (X - p)T E+(X - P)),
,) det*(27rE) 2

where E+ is the generalized inverse and det* is the pseudo-determinant.

Nonetheless, as it will be presented below, the rank deficient covariance matrices

presented herein will be eventually full rank by the natural addition of white noise.
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3.2.3 Relation with the Karhunen-Loeve expansion

Once the GRF given 0 is defined, the truncation described in (3.3) can be understood

as the Karhunen-Loeve (KL) expansion [27] of the discretized version of the GRF

given 0.

The KL expansion involves the computation of the spectrum of the covariance

kernel C(x, -). The spectrum is related to the covariance kernel via the following

second kind integral equation, also known as Fredholm equation:

C(x, z)0j(z)dz = Aj4j(x),

where Oi(x) are the eigenvectors and Ai the eigenvalues.

Once the spectrum of the covariance kernel is computed we may proceed to the

KL expansion of the GRF Y. In general, a KL expansion may be expressed as:

Y(x, w) = yy (x) + E o-i(x)zi(w), ai(x) = #i(x),
i>1

where py(x) = yy and zi(w) = Kj ~ N(O, 1).

Hence, if the eigenvalues are sort from largest to smallest, the latter series can be

truncated using only the first r pairs of eigenvalues/eigenfunctions. This approximation

is the one that minimizes the mean-squared error.

The covariance matrices in (3.2) correspond to a discretization of the covariance

kernel described above. Therefore, some properties of such decomposition can be

applied.

As a result, the factorization presented in (3.5) is the r-decomposition that min-

imizes the total mean square error in the L2 norm. Also, the total variance of the

r-truncated approximation is:

Ak(9)=

Then, the r-truncated expansion explains the following percentage of the total variance
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for the prevailing wind condition corresponding to 0:

Ei= 1 Ak(0)

3.2.4 Direct conditioning of the covariance matrix

Given the Gaussianity of our model, there exists a close form for the conditionals.

First, we rewrite the SVD (3.3) into two pieces where part A contains the unknown

information and part B corresponds to some measurements:

n<N v (9) 
O,(0) = Z A(0) (9)T o =

=1 VP (0)

Ai h(O)V- (O)V (0)T E Ai (O)V- (O)V!(0)T

A i(O)v!3(O)V 4(0)T E Ai (0) 0 (0) V!3(0) T

A(O) C(O)
C(O)T B(O),

Notice that it is possible to rearrange the components of any vector and matrix in

(3.1) and (3.2) in order to have the components with measurements at the end.

Therefore, the Gaussian random variable that comes from the discretization of

the GRF conditioned to some pointwise measurements (y = Hw) takes the following

form:

(Wjy = Hw; 0)~ N(^A(0) + C(0)B(0)~ 1(y - F'B(0 )), A(0) - C(0)B(0>-1 C(0)T),

where j-(0) = {^W A(0) WB(0)}

(3.5)

As described in [45], it is trivial to add noise in the

identity matrix times a in the B(9) part of (3.5), where

due to noise.

Notice the hierarchical nature of our model, where all

their corresponding prevailing wind conditions 0.

measurement by adding an

a is the additional variance

random variables depend on
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3.2.5 Low-rank covariance interpolation

Approximations of the statistics of a random variable are key to characterize uncertainty.

Sometimes it is not enough to interpret the mean and then some measure of variability

must be quantified. For multidimensional random variables, it is typically sufficient

to estimate the covariance matrix to have a sense on variability. An important

consideration is that the covariance matrices in such problems may depend upon a set

of parameters. In that setting, sometimes interpolation of a covariance matrix may be

required for two reasons: (i) impossibility to store the matrices for a continuous value

of the explanatory parameter, (ii) having only access to the matrices for a finite number

of realizations of the parameter. However, some challenges arise when considering

such interpolation. For instance, often the interpolants belong to a particular manifold

and it is desirable that the interpolated matrices belong to the same one. The most

popular application of interpolation on matrix manifolds is on reduced order models,

where interpolation has been proved to be useful (e.g., [3, 2, 4]).

As described in Section 2.4.1, extensive work has been done on characterizing

the manifold of s.p.d. matrices (e.g., [15, 40]). The manifold is fully characterized

and it has a preferred notion of distance called the natural metric on the symmetric

cone [15]. Nevertheless, there are fewer references on the definition of the manifold of

symmetric positive semi-definite matrices (s.p.s.d.) [10, 44]. In this former manifold,

it does not exist a standard notion of metric or distance because it is not possible to

define one with the same characteristics as in s.p.d. matrices. On top of that, even

fewer authors talk about interpolation or regression in the aforementioned manifolds

[4, 30, 20]. One intuitive approach to perform interpolation is following a geodesic

between two interpolants in the manifold of interest. The parameter may be then

defined as the proportion of distance between the two given data points (matrices).

In order to deal with covariance matrices under a specific manifold, we need to

define the concept of distance in the specific space we are working with. However,

as shown in [10], there is not a preferred notion of distance in S (r, N), r < N, that

satisfies the invariance characteristics (Equations 2.3 and 2.3). These properties are
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especially relevant for covariance matrices. In that case, the invariance under inversion

would mean that the distance between covariance matrices is the same than with their

corresponding precision matrices. The invariance under congruence transformation

corresponds to a change of basis.

Now we would like to build a line similar to the one in (Equation 2.5) but

for S+(r, N). The approach that we will be using going forward [44] consists of

interpolating (under some conditions) the square root factors Y of dimension N x r,

i.e., we take advantage of the decomposition described in Equation (3.4).

Without loss of generality, let us consider that the two available data points are

Coo and C0, and we can obtain their square roots as follows:

C = Vr A rV T =YY,

01 V0'1A',VJ0 oy0 Y'Col =01A'V =YY

The idea consists of finding a geodesic line that satisfies two conditions. Firstly,

we would like the matrix symmetric for all points contained in the line [44]. Secondly,

we would like the parametrization to be invariant with respect to the decomposition.

Therefore, we need to find Y such that:

(i) Y =Y To, (
00 (3.6)

(ii) Yeo + Y = Y01Q, for some Q.

Once the matrix Q is obtained, the geodesic line [44] in S+(r, N) reads as:

Co. = (Y0 + sY)(Y 0 + s )T.

And we recover the Co, by multiplying again its factors:

C0, = Y Y4T = 0W(05)

Therefore, it will be enough to obtain a Q of the form in (Equation 3.6). To
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do that, we follow the procedure below, first multiplying the second condition in

(Equation 3.6) by Y on the left hand side:

Y 7 Ye0 + YoY =o Y41y 1Q.

Transposing the equation:

Y0 Yo0 +Y T Yo0 = QTYo'Y60 .

Subtracting the Equations (3.7) and (3.8),

YTY - Y = Y 0Y 1Q - QT yTO'y0 .

Constraining using the first condition in Equation (3.6):

YT =YYOo.

Therefore, it all comes down to satisfying the following equality:

YT Y01Q = QT YoY 0 .

Now, we perform a polar decomposition on Y00 o:

Y = UP, where P = pT and UT = U 1 .

Notice that we can do such decomposition by again performing a SVD:

Y Yo = Uoo,ol Aoo,ol VTia

And, since V 0,01 is an orthonormal matrix, we have:

Uo,9 1v0 o'9 1 V P0 1A 00 , 0 1

U P
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So we define U and P as:

U = U 0,01 V ,

P = Voo,olAoo,ol,VT os

Then, Equation (3.9) becomes:

UPQ = QT pTUT.

As a conclusion, Q is as simple as:

Q=UT .

Therefore,

Y=YOUT Y0 0 .

Then we have the curve:

s -*(Y + s) (Y +s4) T .

YO I YT

(3.10)

Notice that we have taken advantage of the way we stored the matrices, i.e.,

C,(0) = YoYT, and we also recover the C,(0,) again with the same factorization form.

3.2.6 Linear spline through data matrices

Following the previous section, we can also perform piecewise linear interpolation

between our data matrices. Therefore, the piecewise interpolation reads as follows:

eO (9 Oj+ 1) '-_+ OW (08) = (ya + SY) (ya+ )T

0, E 03 +SYeT
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S+ rN) '

CW(Oj+1)

Figure 3-1: Piecewise linear interpolation of covariance matrices.

where s is the following proportion:

Oj+1 - Oj

And Y is such that:

(i) YO y 0

(ii) Y, +- Y Q

for some Q.

Figure 3-1 represents the piecewise interpolation. In particular, we show the step

between the covariance matrices corresponding to Oi and Oj+1. Notice that we take

j = 1, 2, . . .m as described in the initial data in Section 3.1.2.

In the same way, Figure 3-2 shows the goal of the interpolation of in the wind field.

Here, we have the covariance matrix corresponding to Oj for j = 1, 2,... m and we

would like to find he one for 0,.
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G P(m(Oj+1), C(Oj+,))

G P(m(O,), C(O S))

GP(m(O,), C(Q ))

Figure 3-2: Domain of the wind field and representation of the prevailing wind.

3.3 Wind field estimation

As described in Section 1.2.2, the wind field that will be analyzed is based in a 2D

domain of 100x 100 meters of side with an inner obstacle of lOx 10.

As seen previously, given the Gaussianity assumption, we can easily manipulate the

covariance matrix such that we condition the samples to some observations obtained

in at any locations. To do that, we introduced the notion of conditional covariance

matrix for the multivariate Gaussian random variable. We apply this framework in

Section 3.3.1.

Apart from direct conditioning, we are interested in creating a dynamic wind

field that allows updates as the UAV obtains onboard measurements. To do that, we

assume the Markovian property described in Section 2.3.2 and proceed by embedding

a KF structure with autoregressive dynamics to the wind field. We formulate this

solution in Section 3.3.2.

3.3.1 Static model

As the UAV navigates through the wind field of interest, more information of the

pointwise velocity of the wind is obtained. This information can come from:
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.uJ

W

y W

Figure 3-3: Graphical interpretation of the static model.

" Pointwise measurements obtained from the UAV.

" Measurements from anemometers.

Now we would like to assimilate these observations to make better predictions of

the wind field.

The statistical system for the wind field w with prior w - (L, C,) conditioned

on pointwise observations y measured with error covariance E reads:

y Hw+q,

q _ y,

q ~ N(O, E).

Graphically, the system can also be interpreted as in Figure 3-3.

After applying the formulation in Section 3.2.4, we get a posterior estimation that

captures the information from the observations. Notice that this posterior wind field

is also Gaussian and the conditional mean and covariance are computed in closed

form. Results are shown in the following Chapter.

3.3.2 Dynamic model

The solution presented above allows assimilating static data, i.e., at one single time

step. Now we are interested in assimilating data over a period of time. To do that, we

consider a vector that contains all the two components of the wind at all locations Wk,

for each time step k = 1, 2.... In the present section, we suppose that the conditions

of the prevailing wind 0 k are observed without error for all k. We relax this assumption

in Section 3.3.3.
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Ok-1 Ok Ok+1

Wk-1 Wk Wk+1

yk- 1 Yk YkW+ 1

Figure 3-4: Graphical interpretation of the dynamic model.

Now, we define the following filtering framework where the dynamics and measure-

ment models are linear Gaussian:

Wk =aCWk-l + 1 - Fk-1,

k = Hkwk + qk, (3.11)

rk-1 ( ) - aW(-1)
VII -Z a2

And we have the following conditions:

a E[O, 1),

qk LY,,

qk ~A(0, E),

WO ~V(W s(00 ), OW (00 )).

Graphically, the dynamic system can also be interpreted as in Figure 3-4. Strictly

speaking, as per the equations above, the graph should have and edge between 0 k-1

and Wk, k = 1, 2.... However, notice that we can always augment the state, i.e.,

considering 9 k (Ok-1, Ok) and thus, come back to the presented graph. Therefore,

for simplicity and in order to revert to the graph of a typical KF, we decide not to

add the mentioned edge.

50



Clearly, the parameter a describes the dynamics of the system. Three particular

details deserve further attention:

* a E [0, 1) guarantees finite variance for all k.

" Define the increment of time between states as At := tk - tk_1. If time step is

short, then it is better to set a~ 1 and the state estimates do not change a lot

over time. Conversely, if At is large, then it is preferable to set a ~ 0.

" The information from CFD is built into the wind field via the precomputed

Wi(Ok) and Cw(0k).

Notice that the preceding formulation corresponds to a KF as seen in Section 2.3.2.

In our case, we set Ak to be a multiple of the identity for all k, which corresponds to

an autoregressive model (e.g., [37]). This filter is useful when we want to recompute

the state online relying almost only in new measurements but embedding a notion of

memory of previous states.

3.3.3 Hierarchical dynamic model

Using the representation described in Equation 3.10, it is possible to have an approxi-

mation of a line that contains the covariance matrices for all possible values of the

prevailing wind heading 0. In order to use all the available data points (and so, to

get a better approximation), we performed a linear spline among the data to find the

unknown matrices.

In Section 3.3.2, we supposed that we observed without error the conditions of the

prevailing wind at each time step. Now we relax this assumption and we propose an

additional filtering framework (in conjunction with Equation 3.11) for 9k where the

dynamics and measurement models are also linear Gaussian:

= kA-1 + 1J -'/
3 2 Sk1, (3.12)

yk = AkOk +Pk.
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0 0 0

Yk-1Yko Yk 4+1

Ok- 0-ek k+1

Wk-1 Wk Wk+1

yk -1 Yko Ykw+1I

Figure 3-5: Graphical interpretation of the complete model.

The combination of Equations 3.11 and 3.12. This case corresponds to observed

but uncertain prevailing wind 0 in each step.

Graphically, the dynamic system can also be interpreted as in Figure 3-5. Again,

strictly speaking, the same reasoning in the previous section apply and, as per the

equations above, the graph should also have and edge between 0 k-1 and Wk, k = 1, 2 ...

here. As described above, augmenting the state, i.e., considering 0 k (Ok-1, Ok), we

recover the graph in Figure 3-5.

Notice that the parameter Ok enters directly into the statistics of Wk. Therefore,

even if 0 k has a normal distribution, the model is non-Gaussian in each time step. For

that reason, the solutions of the KF presented in Section 2.3.2 do not apply anymore

and more involved and computationally intense algorithms need to be devised.

These algorithms are based in particle filtering, which in our case would consists

of, at each step, generating particles and computing first the KF in Equation 3.12,

then for each particle solving the KF in Equation 3.11. Finally, computing a Gaussian

mixture model of the distributions of all particles to have the estimate of the wind

field at the end of each step (flowchart page 59). The details of the application of this

algorithm on this context are left as further research. For the sake of simplicity, we

use the model in Equation 3.11 in the numerical results, Section 4.1.3.
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3.4 Wind field exploitation

Navigating and planning in urban wind fields involves two steps. First, the wind

field estimate and its uncertainty within the domain of interest must be characterized.

Second, an efficient algorithm must be designed in a way that can deal with such

uncertainty to find an optimal path. Quantifying uncertainty in current and future

wind fields requires a reliable predictive model and benefits strongly from the ability

to incorporate onboard and external wind field measurements in real time. These data-

informed predictions in turn inform path planning algorithms that aim to minimize

energy consumption or flying time, enabling wind field exploitation. The problem is

then typically divided in wind field estimation and wind field exploitation as defined

above; we focus on the former in the present section.

As discussed in Section 3.3, we suppose we have a mean and covariance matrix

given a condition of prevailing wind. Such covariance is anisotropic and non-stationary

and captures the interactions of the wind behavior among all points in the grid.

We assume that, given a prevailing wind, the wind components of the points in

the grid follow a Gaussian distribution. Once the mean and covariance matrix are

computed and the Gaussian assumption is made, the GRF in the grid is well-defined

for a particular prevailing wind. Such problem is now well-posed to be tackled using

dynamic programming, in particular as a SSP problem. The goal of the proposed

project is comparing a minimum-energy planner aware of the wind field to the naive

shortest distance planning. The end-goal would be to recompute the trajectory online

as we obtain more information about the wind field, instead of supposing that the

statistics of the behavior of the wind are constant.

In this section we describe the formulation for the path planning algorithm. As

described below, this corresponds to a SSP problem. However, as described in 3.1.1,

we will consider that the only source of stochasticity is in the costs and, given a policy,

we do not have uncertainty in the location of the UAV.
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3.4.1 State space

The state (i) is defined as the position of the UAV. As mentioned before, there are

$ nodes in the domain (Figure 3-2). Therefore the state i can take any value from
22

3.4.2 Control space

Our space of controls is either moving to any of the 8 neighboring nodes or staying in

the present state (Figure 3-6). We increment the cost of taking a diagonal (as opposed

to moving vertical or horizontally) by a factor that accounts for the larger distance of

such movement. Notice that there are some improper policies. For instance, given the

upper left corner as origin and the lower right as destination, the policy of always going

down does not terminate. We set to infinity the cost of being in the borders of the wind

field and inside of the inner obstacle. Although this is not the case for the toy-problem

described herein, the number of states may be so large that we may be obligated to

find suboptimal solutions. An alternative would be to optimize only for a particular

finite number of n steps (n-step lookahead). Secondly, given a particular location, we

only consider a finite number of controls, this approach is also suboptimal in itself

and more complex policies should be examined. A common practice is to randomized

such transitions and describing the position as the probabilities of staying in the closer

nodes. However, this approach increases the computational cost dramatically and it

became infeasible to recompute the costs of the wind field online.

Third, notice that we do not consider the dynamics of the UAV. Typically, an

aircraft is restricted to the movements allowed by its maneuvers. However, if the

distance between nodes is large enough, it is feasible to approximate such dynamics in

the way it is formulated in this project.

3.4.3 Cost function

In the formulation presented herein, we are interested in minimizing the consumption

of energy.
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Figure 3-6: Representation of the control space. The UAV can move to any of the 8

neighboring nodes.

First, we can write the recursion for the stochastic shortest path problem [8, 9]:

( N/2 '1N
Ak (i) = Min) gA (i, U) + E Pij (u) Jk+1(j) , i = 11 1 * * -. (3.13)

UEU(i) j=1 2

We suppose that the consumption of energy is proportional (up to a constant

a with the appropriate units) to the modulus of the relative velocity, which is the

direction defined by our control minus the one defined by the wind. For each i and u,

we set pij(u) = 1 only for a particular j. In other words, given a state and a control,

the following state is deterministic.

We denote with V(i) as the relative velocity of the UAV (VuAv(i)) with respect to

the velocity of the wind (V(i)) in a particular location i. Then, for some constant -Y:

gk(i, u) = yE, [(VuAv - Vw)T (VuAv - Vw)] .

Since V(i) = [V( 1)(i), V(2)(if) has 2 components, we will use linearity of the

expectation operator and adding twice the well known identity that relates E[V2 ] and

E[V]2:
2

E[V(i) T V(i)] = E[V(i)]T E[V(i)] + 1: Var[V(m)(i)].
m=1

Then, for a particular location i, we have the following form for the cost:
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k(iu) =E[(VuAv -V w) T (VuAv -Vw)]=

=Ew[VUTAVVUAvI - 2EwVWIT Ew[VuAV] + Ew[VIVw] =

[V 2 (3.14)
=VUTAVVUAV - 2EW[VW]TvUAv + E E[Vw]TE,[Vw] + ( Var[V")] =

m=1
2

=(VUAV - Ew[Vw] )T (VUAV - Ew [Vw]) + E Var[Vm)].
M=1

As will be described below, we do not consider any randomness in the velocity of

the UAV (VUAV(i)), so its expectation will equal its value and its variance will be 0.

3.4.4 Solver: asynchronous value iteration

To solve the problem we use asynchronous value iteration, which is iterating Equation

3.13 using always the available information updated for other states in each step. As

proved in [8] and summarized in 2.5, if we set to infinity the costs associated to the

improper policies and we can guarantee that there exists at least one proper policy,

the value iteration algorithm will converge to the optimal solution.

Figure 3-7 describes the convergence of the total cost (sum across all states) as a

function of the number of iterations of the asynchronous value iteration algorithm.

Notice that after a certain number of iterations, the total cost stays the same. Also, if

we start from a vector of costs that has 0 in all the components, we are also guaranteed

[8] that after each iteration, the cost for each state will (monotonically but not strictly)

increase. Since we do not have any possibility to have negative costs and the costs are

increasing for each step, the sum of the costs being constant means that the algorithm

has reached convergence. Moreover, the policy corresponding to the optimal cost is

an optimal policy.
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Figure 3-7: Convergence of the total cost (sum across all states).

3.5 Integrated estimation and exploitation

Integrating wind field estimation and exploitation consists of using approximations of

the wind field to reduce the cost function of a UAV navigating around a domain of

interest. In our case, the cost function was the consumption of energy and wind field

exploitation reduces to path planning. In this section, we combine Section 3.3 and 3.4

to update our estimate of the wind field while we recalibrate the path simultaneously.

The following flowchart in page 59 represents the necessary steps to pursue wind

field integration within the framework defined in Chapter 3. Notice that, as briefly

described in Section 3.3.3, the model is no longer Gaussian and it is necessary to use

particle filtering.

In our particular example, we found particularly useful to update the path planning

using the solution that we had in the previous step as a first approximation for the

value iteration algorithm in the subsequent step.

Results of wind field integration are shown in Section 4.3. However, as mentioned

previously, in terms of wind field estimation, we use the framework in 3.3.2, which

supposes that we observe the prevailing wind without error.
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Chapter 4

Numerical results

4.1 Wind field estimation

In this section we apply the formulation described in Section 3.3 and we show visually

how wind field is updated as we acquire more information. Also, for consistency,

throughout this section we use (without description) the notation introduced in Section

3.3.

4.1.1 Assimilation of static data

Assimilation of static data was described mathematically in Section 3.3.1. This

approach allows incorporating static wind measurements and extrapolate such infor-

mation to the whole wind field. A representation of this methodology can be observed

in Figure 4-1, where arrows represent pointwise mean and ellipses are pointwise covari-

ance. Notice the increment of variability due to vorticity after the obstacle. Moreover,

in this Figure it is possible to ascertain spatial correlation. Indeed, for a particular

measurement before the obstacle (Figure 4-1b), the ellipses are reduced consider-

ably in size, implying acquisition of information. However, for a given measurement

downstream (Figure 4-1c), there is little gain of information upstream.

59



005 005- 005

j 2
n>

9

-01 -005 0 005 0.1 -01 -00 0 0.05 01 -0.1 -005 0 005 .1

(a) Prior estimation (b) Posterior representation (c) Posterior representation

Figure 4-1: Conditioning of the GRF in a simple domain given a measurement. Vectors
represent mean and ellipses are pointwise covariance.

4.1.2 Interpolation of the wind variance field

Now we would like to interpolate the covariance matrices as described in Section

3.2.6. We use the data described in 3.1.2. The following sequence of Figures show

how the pointwise variance changes as we move from one heading of the prevailing

wind conditions to another one. Notice that, even though we interpolate the whole

covariance matrices, we only show the variance field (i.e., the diagonal of the matrix).

This does not mean that we do not require the other elements of the covariance

matrices, we clearly use them when assimilating static and dynamic data. We color

the obstacle in green when the variance field corresponds to a data point. Following

the notation in Section 3.2.6, we perform piecewise linear interpolation from each

covariance data point, where m = 5 and so j 1, 2,... 5.
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Figure 4-2: Linear interpolation of covariance matrices as a function of 0. The obstacle

is green when the plot corresponds to a data point (Part I).
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Figure 4-3: Linear interpolation of covariance matrices as a function of 0. The obstacle
is green when the plot corresponds to a data point (Part II).
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Figure 4-4: Linear interpolation of covariance matrices as a function of 0. The obstacle

is green when the plot corresponds to a data point (Part III).
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Figure 4-5: Linear interpolation of covariance matrices as a function of 0. The obstacle
is green when the plot corresponds to a data point (Part IV).

64

Variance field in x + y

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.

0,7

Jo

0.7

0.2

0.1

--0

0.6

n ,

0.2

01

x

Variance field in x + y Variance field in x + y

2I

Variance field in x + y

0.6

0.5

0.4

0.3

0.2

0.1

0

0.7

0.6

0.5

04

0.3

Variance field in x + y

, 0

- Jr



Variance field in x + y

Figure 4-6: Linear interpolation of covariance matrices as a function of 0. The obstacle

is green when the plot corresponds to a data point (Part V).

65

0.7

0.6

0.5I

Variance field in x + y

Variance field in x + y

C

j

Variance field in x + y

Variance field in x + y

X

Variance field in x + y



Variance field in x + y

I I0.6 0.6

0.5 0.5

0.4 0.4

0.3 01.3

0.2 0.2

0.1 0.1

00
X x

Variance field in x + y
T 0.7

0.6

0.5

0.4

0.3

0.2

0.1

X

Figure 4-7: Linear interpolation of covariance matrices as a function of 0. The obstacle
is green when the plot corresponds to a data point (Part VI).

4.1.3 Assimilation of dynamic data

Next, we show the results from the formulation in Section 3.3.2. The usefulness

of the approach presented herein is two-fold. First, the KF allows extrapolating

measurements in time. Second, our formulation allows changing the prevailing wind

conditions simultaneously. Notice also in the last Figures of the following sequence

that, when we do not have measurements, the wind field estimate naturally comes

back to the prior wind field.
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Figure 4-9: The KF enables assimilation of data as the UAV navigates. Not optimal
path, just acquiring measurements for wind field estimation (Part II).
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Mean and variance field in x + y
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Figure 4-10: Mean of the random variable that defines the wind field (left) and

isoconsumption of energy lines (right) for the certainty equivalence solution.

4.2 Wind field exploitation

In this section we analyze our wind field exploitation formulation described in Section

3.4. The solution is presented for three levels of stochasticity by reducing Equation 3.14

to (i) fully deterministic, (ii) be equivalent to the expectation, or (iii) fully stochastic.

4.2.1 Deterministic path planning

For this formulation, we consider the following reduced version of the costs:

g = E_ (VUAv - Vw)T(VcJAv - Vw)I (u 4vU - Vw)(VuAv - Vw).

4.2.2 Certainty equivalence

For this formulation, we consider the following reduced version of the costs:

= EwL(VUAV - Vw )T(VuAv - Vw)] (VU AV - EXw1)T(XuAv - E[Xw]).

The results are shown in Figure 4-10.
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Figure 4-11: Mean and variance field of the random variable that defines the wind
field (left) and isocosumption of energy lines (right) for the stochastic solution.

4.2.3 Stochastic solution

For this formulation, we consider the following complete version of the costs:

gs th - aEwe(VUeaVVw)(VUAV-Vw)= (7UAV-nd te[Vw)T(V usEsl t)+he Varane)
M=1

The results are shown in Figure 4-11.

Notice that the deterministic solution is the only one that considers the realization

of the wind field as opposed to the mean. Also, the stochastic solution is the only that

considers the pointwise variance. In the zone right after the obstacle, the mean is zero

but the variance is the highest due to vorticity. It is interesting to realize that in the

certainty equivalence solution, we are obtaining costs that are lower than in reality

(since the mean is close to zero). However, both the deterministic (uses a realization

so the velocity after the obstacle is higher) and the stochastic (uses also the variance)

would achieve similar results in that region but for completely different reasons.

Finally, Figure 4-12 shows the locus of points where the optimal path changes if

we take into account the uncertainty in the wind field velocity.
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Mean wind velocity field

- -- - - - - - - - -

Figure 4-12: Mean wind velocity field (left) for a particular heading of the prevailing

wind. Locus of points where optimal path to red triangle would change if we consider

stochasticity

4.3 Integrated estimation and exploitation

Finally, as described in Section 3.5, we integrate wind field estimation with path

planning. We use the formulation in Section 3.3 for wind field estimation and the

formulation in Section 3.4 in its stochastic version for path planning.

In this section, we recompute the asynchronous value iteration for each step of the

KF. In other words, the dynamic programming formulation is recomputed whenever

we get new information about the wind field. We use as a first approximation for the

value iteration algorithm (Section 3.4.4) the optimal policy in the previous step of

the KF. Recycling the previous solution as a starting point for value iteration in the

subsequent step renders faster convergence.

The solution of the path planning in a dynamic wind field is represented in the

following sequence of Figures.
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Figure 4-13: Mean and variance field of the random variable that defines the wind
field (left). Isoconsumption of energy lines and optimal path (right) for the stochastic
solution. The path is updated as the UAV acquires more information (Part I).
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Mean and variance field in x + y
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Figure 4-14: Mean and variance field of the random variable that defines the wind

field (left). Isoconsumption of energy lines and optimal path (right) for the stochastic

solution. The path is updated as the UAV acquires more information (Part II).
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Figure 4-15: Mean and variance field of the random variable that defines the wind
field (left). Isoconsumption of energy lines and optimal path (right) for the stochastic
solution. The path is updated as the UAV acquires more information (Part III).
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Figure 4-16: Mean and variance field of the random variable that defines the wind
field (left). Isoconsumption of energy lines and optimal path (right) for the stochastic

solution. The path is updated as the UAV acquires more information (Part IV).
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Chapter 5

Conclusions and future work

5.1 Conclusions

In the present thesis, we have proposed a formulation to improve wind field navigation.

As a testbed we have used an example that seeks a compromise between approximating

as much as possible the reality while keeping simplicity.

In terms of wind field estimation, one of the key steps of the formulation is the

interpolation of covariance matrices on matrix manifolds. The main conclusion is that

interpolating matrices is feasible as long as it is done in the proper manifold. If we

perform a KL expansion of the normal random variables that have our parameterized

matrices as covariances and then we interpolate these low rank matrices, this procedure

can become an extremely efficient way to store parameterized covariance matrices.

Notice the importance of efficiency on the framework we propose, since it has to be

used online.

Besides interpolation of low rank covariance matrices, we update our estimation

of the wind field online as the UAV follows the optimized path. To do that, we saw

that the KF enables assimilation of onboard measurements in an appropriate fashion

and, in the absence of data, it recovers the wind field estimation corresponding to the

present prevailing wind conditions.

In terms of wind field exploitation, we have considered three levels of stochasticity

that correspond to computing the cost function using either a sample, just the
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expectation, or fully stochastic. There are also three levels of lookahead when defining

the cost function. First, we can treat the problem as stationary, which means that

we are not getting any additional information of the wind field while the UAV is

flying. Secondly, one can incorporate some onboard measurements to refine the state

of the wind field and replan accordingly. The last and most precious would be to

have a model that can predict future wind fields and plan taking into account future

predictions.

Two main conclusions can drawn from the particular toy problem considered herein.

First, it is possible to recompute the value iteration algorithm to solve the shortest

path problem online. In particular, the solution in the previous state of the wind field

can be used as initial guess for the algorithm. This approach renders fast convergence.

Second, taking into account the wind field, the optimal path is no longer just the

shortest distance. In other words, as we can see in the previous section, the shortest

path is not trivially the least Euclidean distance.

5.2 Limitations

As described above, after generating the wind field library, we extract the mean and

covariance matrix in a predefined regular grid. These statistics are then assumed

to represent a multivariate Gaussian random variable. As mentioned previously,

uncertainty of the modulus of the wind is usually treated with Rayleigh distributions,

such distribution is obtained precisely by computing the modulus of two Gaussian

random variables corresponding to the value of its components. However, some

questions arise in this context. First, although in our context Gaussianity is assumed

after conditioning to a given prevailing wind (i.e., creating a hierarchical Gaussian

model), does this Gaussian approximation hold for a larger environment? We plan to

run validations of the model by acquiring real data. Another question that needs to be

addressed is how sparsely can we discretize the prevailing wind conditions. Finally, we

plan to learn features to predict the locations for which the Gaussian approximation

most closely matches the CFD estimate. Such features may allow obtaining regions
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where we are more confident that our results hold.

As described above, one of the principal issues of the approach is the curse of

dimensionality. Performing a Monte Carlo simulation requires a lot of samples. That

is feasible for small domains but it is a challenge as the problem becomes larger.

Finally, we have to point out that there is not a preferred notion of distance in

S+ (r, N). Therefore, the geodesic on which we do the interpolation of covariance

matrices must be chosen. This choice may be subjective and adds an undesired degree

of freedom to the problem.

5.3 Future work

In terms of wind field estimation, although the methodology presented has been shown

to be useful in these initial investigations, significant work remains in addressing the

complete problem. The primary challenges will be in generating the necessary set of

wind fields from a CFD solver in order to get the inputs for the covariance matrices for

complex domains. In that scenario, incorporating the resulting wind field estimates

into a trajectory planner could also be challenging in terms of computational cost.

We also plan to benchmark our results against actual in-situ data after defining a

suitable success metric that incorporates the result of the planning research. However,

local measurements within urban canyon tend to be noisy and updating the entire wind

field from an instantaneous measurement might be very inaccurate. To quantify this

issue, both direct-conditioning and KF allow incorporating errors in the measurements.

Regarding the potential lines of investigation on interpolation of matrices on

manifolds, it would be interesting to include in this analysis higher order interpolation

and regression. Moreover, the previous conclusions could be improved if we considered

more explanatory variables. Another potential source of further research is to consider

the same problem on other manifolds. Finally, we can conclude that this approach

could be applied to multiple other fields. It has not been the purpose of the present

thesis to discuss to what extent the conclusions that have been drawn might be

exported to other areas; rather, we have focused on the specifics of how to interpolate
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covariance matrices on matrix manifolds.

As a further research in terms of wind field exploitation, the main interest would

be to reduce the sources of suboptimality and limitations of the solution presented

herein. Among those, there are:

* Adding the dynamics of the UAV, for instance the Dubins equations.

o Refining control space by using a randomized policy that would be consistent,

i.e., one that makes possible to recover the optimal path as we enlarge the grid.

o Adding forecasts of the wind field to be able to solve the complete problem and

not only the one step lookahead.

* Applying the same formulation for a complex domain.

Beyond suboptimality, we will evaluate the usefulness of our approach by doing

trajectory planning across a significant portion of the MIT campus. Then, we would

like to use the resulting wind field estimate and compare the energy consumption of a

planner aware of and naive to the wind conditions.

Finally, as presented in the literature review, there exists the notion of wind field

exploration. As described before, exploration consists of navigating with the primary

goal of learning more features of the wind field online. We would like to address also

this problem by changing the cost function in our wind field exploitation framework

to some information theoretical measure, such as mutual information.
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