Equivariant Quantum Cohomology and the Geometric Satake Equivalence

by

Michael Viscardi

Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

© Massachusetts Institute of Technology 2016. All rights reserved.

Signature redacted

Author ...
Department of Mathematics
May 18, 2016

Signature redacted

Certified by ...
Roman Bezrukavnikov
Professor of Mathematics, MIT
Thesis Supervisor

Signature redacted

Accepted by
Alexei Borodin
Chairman, Department Committee on Graduate Theses
Equivariant Quantum Cohomology and the Geometric Satake Equivalence

by

Michael Viscardi

Submitted to the Department of Mathematics on May 18, 2016, in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

Recent work on equivariant aspects of mirror symmetry has discovered relations between the equivariant quantum cohomology of symplectic resolutions and Casimir-type connections (among many other objects). We provide a new example of this theory in the setting of the affine Grassmannian, a fundamental space in the geometric Langlands program. More precisely, we identify the equivariant quantum connection of certain symplectic resolutions of slices in the affine Grassmannian of a semisimple group G with a trigonometric Knizhnik-Zamolodchikov (KZ)-type connection of the Langlands dual group of G. These symplectic resolutions are expected to be symplectic duals of Nakajima quiver varieties, and thus our result is an analogue of (part of) the work of Maulik and Okounkov in the symplectic dual setting.

Thesis Supervisor: Roman Bezrukavnikov
Title: Professor of Mathematics, MIT
Acknowledgments

I would like to thank my advisor, Roman Bezrukavnikov, for his incredible generosity, knowledge, and support. I would also like to thank Davesh Maulik and Paul Seidel for agreeing to serve on my thesis committee.

I would like to thank Joel Kamnitzer, Davesh Maulik, Michael McBreen, David Nadler, Andrei Okounkov, Paul Seidel, and Valerio Toledano Laredo for helpful discussions and comments on this project, and Thomas Haines and Simon Riche for helpful correspondence on their work.

Thanks to Gus Lonergan, Yi Sun, and Mitka Vaintrob for wide-ranging discussions on this thesis and other topics, and for making my life at MIT brighter.

Finally, an enormous thank you to my parents for their love and support.
Contents

1 Introduction 9

2 Recollections on quantum cohomology 13
 2.1 The equivariant small quantum connection 13
 2.2 Symplectic resolutions 14
 2.3 Quantum cohomology of symplectic resolutions 15
 2.4 Reduced virtual fundamental class 17
 2.5 Unbroken maps 17

3 Symplectic resolutions of slices in the affine Grassmannian 19
 3.1 Geometric Satake equivalence 19
 3.2 Minuscule cells 20
 3.3 Gradings 21
 3.4 Convolution 23
 3.5 Transversal slices 24
 3.6 Picard group 26
 3.7 Equivariant cohomology 27

4 Calculation of the equivariant quantum connection 31
 4.1 Torus-invariant curves 31
 4.2 Unbroken maps 32
 4.3 The tangent bundle on fixed points 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4 The tangent bundle on fixed curves</td>
<td>34</td>
</tr>
<tr>
<td>4.5 Localization</td>
<td>35</td>
</tr>
<tr>
<td>4.6 Trigonometric KZ connection</td>
<td>38</td>
</tr>
<tr>
<td>4.7 Reduction to Picard rank 1</td>
<td>39</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

The problem considered in this thesis lies at the intersection of three major dualities of modern mathematics and physics. In roughly chronological order, the three dualities are:

- **Geometric Langlands duality.** The Langlands program, a vast program connecting number theory and representation theory, was initiated by Langlands in the 1960s [40]. Its analogue in the geometry, the geometric Langlands program, was initiated by Laumon, Beilinson, Drinfeld, Ginzburg, and others [41, 4, 26], and is intensely studied today both in mathematics and in physics [39, 24, 37]. The basic objects of study are a reductive algebraic group G (such as GL_n or SO_n) and its Langlands dual group G^\vee (obtained by interchanging the systems of roots and coroots).

- **(Equivariant) mirror symmetry.** Originally a duality in string theory, mirror symmetry was set on mathematical footing in the 1990s, and is a fundamental duality in modern mathematical physics [31]. An equivariant version is currently being developed [56, 44, 7]. In its original form, mirror symmetry predicts an equality between the quantum connection (or A-model) of a Calabi-Yau 3-fold M, and the Gauss-Manin connection (or B-model) of its mirror M^\vee.
• **Symplectic duality.** Also originally a duality in physics [32], a large part of this duality has been recently set on mathematical footing in [10] and [9], and is continuing to be developed in current work of Braverman, Finkelberg, and Nakajima [49]. It replaces the theory of semisimple Lie algebras \mathfrak{g} with a more general and geometric theory of symplectic resolutions X and their symplectic duals X^\vee.

We now describe the problem more precisely. Let G be a connected semisimple algebraic group over \mathbb{C}. A fundamental object in the geometric Langlands program is the affine Grassmannian Gr_G, a certain ind-scheme that geometrically “encodes” the Langlands dual group G^\vee. In [35], the authors identify certain symplectic slices X_0 inside of Gr_G, and construct $T \times \mathbb{C}^*$-equivariant symplectic resolutions $X \to X_0$ of these slices. In types ADE, these symplectic resolutions are conjectured in [10] to be symplectic dual to certain Nakajima quiver varieties (see Remark 3.12).

The main result of this thesis, Theorem 4.6, computes the $T \times \mathbb{C}^*$-equivariant small quantum connection of these symplectic resolutions (modulo certain parameters) in the case that they are Picard rank 1. (Following the strategy of [13], we expect to show that the general case can be derived from this one; see section 4.7.) In particular, we observe that this connection is closely related to the trigonometric Knizhnik-Zamolodchikov (KZ) connection of G^\vee, a fundamental system of differential equations with regular singularities arising in conformal field theory [18]. The proof strategy is classical: we show that our spaces have finitely many torus-invariant curves, and identify each of their contributions to the quantum corrections using virtual localization.

Our result provides a new example in the program of Bezrukovnikov, Braverman, Etingof, Maulik, Okounkov, Toledano-Laredo, and others [2, 6] describing the relation between equivariant quantum cohomology of symplectic resolutions and Casimir-type connections (among many other objects). Previously, this relation has been studied in the settings of the Springer resolution [13], Nakajima quiver varieties [43], and
hypsotropic varieties [44].

Due to the conjectural symplectic duality between quiver varieties and slices in the affine Grassmannian, our work can also be thought of as a symplectic dual analogue of (part of) the work of [43] on quiver varieties. We expect that there is a precise relation in the context of equivariant quantum K-theory [53]. Equivariant quantum K-theory associates two difference equations to a conical symplectic resolution, one in the Kähler parameters and the other in the equivariant parameters. In the recent paper [1], it is conjectured, and proven in the case of quiver varieties, that symplectic duality interchanges these two difference equations. We expect that the full picture can be summarized as follows:

<table>
<thead>
<tr>
<th>Quantum differential/difference equations for quiver varieties</th>
<th>Kähler parameters</th>
<th>Equivariant parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum cohomology</td>
<td>Trigonometric Casimir [43]</td>
<td>Rational qKZ [43]</td>
</tr>
<tr>
<td>Quantum K-theory</td>
<td>Trigonometric dynamical difference [55]</td>
<td>Trigonometric qKZ [55]</td>
</tr>
</tbody>
</table>

Thus, we conjecture that the quantum K-theoretic difference equations for our symplectic resolutions in the Kähler and equivariant parameters are, respectively, the trigonometric qKZ equations and the trigonometric dynamical difference equations. These are the same difference equations appearing in the quiver variety picture, but with the Kähler and equivariant parameters interchanged. The first part of this conjecture is consistent with Theorem 4.6 since the trigonometric qKZ equations naturally degenerate to the trigonometric KZ equations. Thus, the result in this thesis can be viewed as a step toward completing the understanding of quantum K-theory.
in the context of symplectic duality for quiver varieties and affine Grassmannians.

The paper is organized as follows. In Chapter 2, we recall some basic results on quantum cohomology we will need. In Chapter 3, we recall from [35] how to construct symplectic resolutions from the affine Grassmannian, and identify those which are Picard rank 1. Finally, in Chapter 4, we compute the quantum connections of these Picard 1 spaces (modulo certain parameters), and relate them to a trigonometric KZ-type connection.
Chapter 2

Recollections on quantum cohomology

2.1 The equivariant small quantum connection

All varieties and cohomology are over \mathbb{C}. Let G be a reductive algebraic group and X a smooth quasi-projective G-variety such that the fixed locus X^G is compact. By definition, the operator of quantum multiplication by a class $\gamma \in H^*_G(X)$ has matrix elements

$$(\gamma \cdot \gamma_1, \gamma_2) = \sum_{\beta \in H_2(X,\mathbb{Z})} q^\beta \langle \gamma, \gamma_1, \gamma_2 \rangle_\beta,$$

where (\cdot, \cdot) denotes the standard inner product on $H^*_G(X)$ and the angle brackets denote 3-point, genus 0, degree β, G-equivariant Gromov-Witten invariants on X.

Consider the trivial bundle with fiber $H^*_G(X)$ and base $H^2(X)$. Define the G-equivariant quantum connection of X to be the connection $\nabla_{quantum}$ on this bundle defined, for any $D \in H^2(X)$, by

$$\nabla^quantum_D = d_D - D^\bullet,$$
where \(d_D \) denotes the derivative in the direction of \(D \).

Assume that \(H^*_G(X) \) is a free module over \(H^*_G(\text{pt}) \). Then we have a natural \(H^*_G(\text{pt}) \)-module isomorphism \(H^*_G(X) \cong H^*(X) \otimes H^*_G(\text{pt}) \). Thus, we can view \(\nabla \) as a family of connections, parametrized by equivariant parameters in \(H^*_G(\text{pt}) \), on the trivial bundle with fiber \(H^*(X) \) and base \(H^2(X) \). It is well-known that each connection in this family is flat [31].

2.2 Symplectic resolutions

We recall some standard facts on symplectic singularities and symplectic resolutions; see [33, 9] for further details.

Recall that a smooth variety \(X \) is said to be a **symplectic resolution** if \(X \) is equipped with an algebraic symplectic form \(\omega \) and the map to its affinization \(X_0 = \text{Spec}(\mathcal{O}_X) \) is proper and birational. A symplectic resolution \(X \rightarrow X_0 \) is said to be **conical** if there is a \(\mathbb{C}^* \) which acts compatibly on the resolution and base, contracting the base to a point, and which acts with positive weight on the symplectic form \(\omega \). Conical symplectic resolutions include several examples of spaces that commonly arise in geometric representation theory [9]:

Example 2.1. For a reductive algebraic group \(G \) with a Borel subgroup \(B \) and nilpotent cone \(\mathcal{N} \subset \mathfrak{g} \), the Springer resolution \(T^*(G/B) \rightarrow \mathcal{N} \) is a conical symplectic resolution, where \(\mathbb{C}^* \) acts fiberwise on \(T^*(G/B) \).

Example 2.2. The Hilbert scheme \(\text{Hilb}_n(\mathbb{C}^2) \) of \(n \) points in \(\mathbb{C}^2 \) with its Hilbert-Chow morphism to \(\text{Sym}^n(\mathbb{C}^2) \) forms a conical symplectic resolution, with \(\mathbb{C}^* \)-action on \(\text{Hilb}_n(\mathbb{C}^2) \) induced from the standard one on \(\mathbb{C}^2 \). More generally, the Hilbert scheme \(\mathcal{H}(k,n) \) of \(n \) points on a crepant resolution of \(\mathbb{C}^2/(\mathbb{Z}/k\mathbb{Z}) \), where \(\mathbb{Z}/k\mathbb{Z} \) acts symplectically on \(\mathbb{C}^2 \), is a conical symplectic resolution.

Example 2.3. Let \(\mathcal{M}(k,n) \) denote the moduli space of torsion-free sheaves \(\mathcal{E} \) on \(\mathbb{P}^2 \) with rank \(\mathcal{E} = k \) and \(c_2(\mathcal{E}) = n \) together with a framing \(\mathcal{E}|_{\mathbb{P}^1} \cong \mathcal{O}_{\mathbb{P}^1}^{\oplus k} \). Then \(\mathcal{M}(k,n) \)
mapping to its affinization, together with a suitable \mathbb{C}^* action, is a conical symplectic resolution.

Example 2.4. Nakajima quiver varieties mapping to their affinizations are known to be conical symplectic resolutions. When the quiver is affine type A, these generalize the previous two examples.

Example 2.5. The spaces considered in this paper, resolutions of slices in the affine Grassmannian, admit the structure of a conical symplectic resolution (see Section 3.5).

In [10, 9], the notion of *symplectic duality* between two conical symplectic resolutions is introduced. One associates a Koszul "category \mathcal{O}" to any symplectic resolution (e.g. the standard category \mathcal{O} for the Springer resolution), and roughly, two symplectic resolutions are said to be symplectic dual if their corresponding categories \mathcal{O} are Koszul dual.

Example 2.6. By [5], the Springer resolution is symplectic self-dual (or more canonically, $T^*(G/B)$ is symplectic dual to $T^*(G'/B')$, where G' is the Langlands dual group of G).

Example 2.7. By [9, Corollary 10.11], the Hilbert schemes $\mathcal{H}(k, n)$ and framed instanton moduli spaces $\mathcal{M}(k, n)$ in Examples 2.2 and 2.3 are symplectic dual. For $k = 1$ they are isomorphic.

Example 2.8. The spaces considered in this paper (Example 2.5) are expected to be symplectic dual to certain Nakajima quiver varieties; see Remark 3.12.

2.3 Quantum cohomology of symplectic resolutions

Any conical symplectic resolution X may be deformed to an affine variety (namely, the generic fiber of its universal Poisson deformation), so that the ordinary Gromov-
Witten theory of X is trivial. However, such a deformation is not in general \mathbb{C}^*-equivariant, so the equivariant Gromov-Witten theory of X can be highly non-trivial.

In the notation of Section 2.1, we will take X to be a conical symplectic resolution and $G = T \times \mathbb{C}^*$ for a Hamiltonian torus T (i.e. T stabilizes the symplectic form ω). By [10, Prop. 2.5], a symplectic resolution X has no odd-dimensional cohomology, so the assumption that $H^i_G(X)$ is a free module over $H^4_G(pt)$ is satisfied [29].

In [13], it is shown that the equivariant quantum connection of a symplectic resolution $X \to X_0$ can be expressed via Lagrangian Steinberg correspondences, i.e. Lagrangian components of the Steinberg variety $Z := X \times_{X_0} X$. It is also shown how the general computation can be reduced to one for symplectic resolutions whose Picard group has rank 1. We simply summarize here the fundamental ideas: the divisor equation reduces us to the study of 2-point Gromov-Witten invariants. Any curve in X must lie in a fiber of $X \to X_0$ since X_0 is affine, so the evaluation map from the space of stable 2-pointed maps to $X \times X$ factors through the Steinberg variety. Finally, a dimension count yields that the pushforward of the reduced virtual fundamental class (see the next section) to Z can be expressed as a non-equivariant rational linear combination of Lagrangian Steinberg components. One may then apply deformation invariance of ordinary Gromov-Witten invariants to reduce the computation of these non-equivariant constants to the Picard rank 1 case.

For the Springer resolution, the equivariant quantum connection is determined in [13] to be equivalent to the trigonometric Dunkl/affine KZ connection [17]. For quiver varieties, the equivariant quantum connection is determined in [43] to be equivalent to a trigonometric Casimir-type connection [58]. These two results encompass Examples 2.1 - 2.4. The main result of this thesis identifies the answer in Example 2.5 with a trigonometric KZ-type connection.
2.4 Reduced virtual fundamental class

Suppose $X \to X_0$ is a conical symplectic resolution. Let β be an effective curve class on X, and let $\overline{\mathcal{M}}_{0,2}(X, \beta)$ be the moduli space of 2-pointed stable maps to X of class β. Then it is well-known that there is a so-called reduced virtual fundamental class $[\overline{\mathcal{M}}_{0,2}(X, \beta)]^{\text{red}}$ of dimension $\dim X$ which satisfies

$$[\overline{\mathcal{M}}_{0,2}(X, \beta)]^{\text{red}} = -h[\overline{\mathcal{M}}_{0,2}(X, \beta)]^{\text{vir}},$$

where $[\overline{\mathcal{M}}_{0,2}(X, \beta)]^{\text{vir}}$ is the usual virtual fundamental class, and h is the weight of the symplectic form under the \mathbb{C}^*-action.

2.5 Unbroken maps

For convenience, we recall the notion of unbroken maps here from [43, Section 7.3]. Let X be a conical symplectic resolution with an action of a torus T that preserves the symplectic form. Let $f : C \to X$ be a T-fixed point of $\overline{\mathcal{M}}_{0,2}(X, \beta)$ such that the domain C is a chain of rational curves

$$C = C_1 \cup \ldots \cup C_k$$

with the two marked points lying on C_1 and C_k, respectively.

Note that all nodes are fixed by T. We say that f is an unbroken chain if at every node of C, the tangent weights of the two branches are opposite and non-zero.

More generally, we say that f is an unbroken map if it satisfies one of the following three conditions:

1. f arises from a map $C \to X^T$,

2. f is an unbroken chain, or
3. The domain C is a chain of rational curves

$$C = C_0 \cup C_1 \cup \ldots \cup C_k$$

such that C_0 is contracted by f, the two marked points lie on C_0, and the remaining curves form an unbroken chain.

A map is said to be broken if it does not satisfy any of the above conditions. The following is proven in [54, Section 3.8.3]:

Lemma 2.9. Every map in a given connected component of $\overline{M}_{0,2}(X, \beta)^T$ is either unbroken or broken. Only unbroken components contribute to the T-equivariant localization of the reduced virtual fundamental class.
Chapter 3

Symplectic resolutions of slices in the affine Grassmannian

Let G be a connected semisimple algebraic group over \mathbb{C}. We choose a maximal torus T and a Borel subgroup B containing it. Let r be the rank of G, and let $\alpha_1, ..., \alpha_r$ denote the simple roots. Let Λ^\vee denote the coweight lattice of G, and let Λ^\vee_+ denote the dominant coweights. Let Q^\vee denote the coroot lattice of G. Finally, let Δ denote the set of roots of G, Δ_+ the set of positive roots, and Σ the set of simple roots.

3.1 Geometric Satake equivalence

Let $\mathcal{K} = \mathbb{C}((t))$ and $\mathcal{O} = \mathbb{C}[[t]]$. Recall that the affine Grassmannian Gr_G is the ind-scheme defined by $G(\mathcal{K})/G(\mathcal{O})$.

The Langlands dual group G^\vee, defined by interchanging the root and coroot systems of G, is of fundamental importance in the Langlands program and geometric representation theory. By the Tannakian formalism, this group can be reconstructed from its tensor category of finite-dimensional representations $(\text{Rep}(G^\vee), \otimes)$. The geometric Satake equivalence [42, 26, 45] describes this category in terms of the geometry
of the affine Grassmannian of G: namely, it gives an isomorphism of tensor categories

$$\text{Perv}_{G(O)}(\text{Gr}_G) \simeq \text{Rep}(G^\vee),$$

where the left-hand side denotes the category of left $G(O)$-equivariant perverse sheaves on Gr_G, with tensor structure given by the convolution product (see section 3.4).

It is well-known that the $G(O)$-orbits on Gr_G are indexed by the dominant coweights Λ_+^\vee of G, which can be identified with the dominant weights of G^\vee. For $\lambda \in \Lambda_+^\vee$, we denote the corresponding $G(O)$-orbit by Gr^λ. If we let t^λ denote the image of t under the map

$$\mathbb{C}^*(t) = G_m(K) \to G(K) \to \text{Gr}_G,$$

then $\text{Gr}^\lambda = G(O) \cdot t^\lambda$. Under the geometric Satake equivalence, the intersection cohomology sheaf $IC_\lambda := IC(\text{Gr}^\lambda)$ is sent to the irreducible highest-weight representation V_λ of G^\vee.

Let $s \in \mathbb{C}^*$ act on Gr by "loop rotation" $t \mapsto st$. This \mathbb{C}^* action contracts each $G(O)$-orbit Gr^λ to the G-orbit G/P_λ, where $P_\lambda = \text{Stab}(t^\lambda)$ is the parabolic subgroup of G spanned by the root subgroups U_α for α such that $(\alpha, \lambda) \leq 0$.

3.2 Minuscule cells

Of particular importance to us will be the orbits Gr^λ with λ minuscule, that is, minimal in Λ_+^\vee with respect to the standard partial ordering. It is well-known that this is equivalent to saying that the pairing of λ with any root of G is -1, 0, or 1. Since $\overline{\text{Gr}}^\lambda = \bigcup_{\mu \leq \lambda} \text{Gr}^\mu$, it follows that $\overline{\text{Gr}}^\lambda = \text{Gr}^\lambda$ is smooth for λ minuscule; by the previous section, we have $\text{Gr}^\lambda \simeq G/P_\lambda$.

It follows that every non-zero minuscule coweight is fundamental. By definition, minuscule coweights are indexed by Λ_+^\vee/Q^\vee. In particular, there are no non-zero.

20
minuscule coweights in types $E_8, F_4, \text{ or } G_2$. In the remaining types, the non-zero minuscule coweights, and the corresponding representations of G^\vee, are as follows, where the ω_i are fundamental coweights [8, Section 7.3]:

Type A_n: $\omega_1, \ldots, \omega_n$ (exterior powers of the vector representation)
Type B_n: ω_1 (the vector representation)
Type C_n: ω_n (the spin representation)
Type D_n: $\omega_1, \omega_{n-1}, \omega_n$ (the vector and half-spin representations)
Type E_6: ω_1, ω_6 (the two 27-dimensional representations)
Type E_7: ω_7 (the 56-dimensional representation)

We now give some examples of the corresponding minuscule Schubert cells:

Example 3.1. The minuscule coweights for $G = PGL_n$ are $0, \omega_1, \omega_2, \ldots, \omega_{n-1}$, where ω_i is the ith fundamental weight of $SL_n = (PGL_n)^\vee$. The corresponding Schubert cells are $Gr^0 = pt$ and $Gr^{\omega_i} = Gr(i, n), 1 \leq i \leq n - 1$.

Example 3.2. For G of type B_n and of adjoint type, the minuscule Schubert cell G/P_{ω_1} is isomorphic to $Gr_{\omega}(n, 2n)$, the Grassmannian of maximal isotropic subspaces in a $2n$-dimensional symplectic vector space.

Example 3.3. For G of type E_6 and of adjoint type, the minuscule Schubert cell G/P_{ω_1} is isomorphic to OP^2, the 16-dimensional projective plane over the complexified octonions.

For a complete description of minuscule Schubert cells in all types, see [16].

3.3 Gradings

For any $\lambda \in \Lambda_+^\vee$, the geometric Satake equivalence gives an isomorphism of vector spaces $H^*(IC_\lambda) = V_\lambda$. This vector space has two natural gradings: one by coho-
logical degree in $H^*(IC_{\lambda})$, and one by weight spaces of V_{λ}. We describe how each of these gradings is transported to the other side of the equivalence.

Fix a regular nilpotent element $e \in \mathfrak{g}^\vee$, and complete it to an \mathfrak{sl}_2-triple e, f, h using the Jacobson-Morozov theorem [19]. For example, one can take $e = \sum_{\alpha \in \Delta} e_{\alpha}$; then $h = \sum_{\alpha \in \Delta} \alpha$. Then:

Lemma 3.4. [26] Under the geometric Satake equivalence,

$$H^i(IC_{\lambda}) \simeq \{v \in V_{\lambda} : h \cdot v = iv\}, \ i \in \mathbb{Z}.$$

Remark 3.5. While the right-hand side of the lemma depends on the choice of h and the left-hand side does not, the isomorphism in the lemma may also be conjugated by h via its action on $\text{Rep}(G^\vee)$.

Example 3.6. For $\mathfrak{g}^\vee = \mathfrak{sl}_n(\mathbb{C})$, we may take e to be the matrix with 1's above the diagonal and 0's elsewhere, and h the diagonal matrix with diagonal entries $n - 1, n - 3, \ldots, -n + 1$. Let $\lambda = \omega_1$, so that $\text{Gr}^\lambda \simeq \mathbb{P}^{n-1}$ and $V_{\lambda} \simeq \mathbb{C}^n$. Then IC_{λ} is the constant perverse sheaf $\mathbb{C}_{\mathbb{P}^{n-1}[n-1]}$, which has non-zero cohomology in degrees $n - 1, n - 3, \ldots, -n + 1$.

Choose $\mu \leq \lambda$. Observe that, since each Gr^μ is simply connected, $IC_{\lambda}|_{\text{Gr}^\mu}$ is a constant complex, i.e. a graded vector space. Define the *Brylinski filtration* on V_{λ} associated to e by

$$F^i(V_{\lambda}) = \{x \in V_{\lambda} : e^i \cdot x = 0\}.$$

This filtration is independent of e since all such e are conjugate under T. Then we have:

Lemma 3.7. [26] There is a canonical isomorphism

$$(IC_{\lambda}|_{\text{Gr}^\mu})_{-2i-(2p,\mu)} \simeq \text{gr}_i^F(V_{\lambda}[\mu]),$$
where $V_{\lambda}[\mu]$ denotes the μ weight space in V_{λ}. In particular, $I\!C_{\lambda}|_{G^{T^{\omega}}}$ and $V_{\lambda}[\mu]$ are isomorphic as ordinary vector spaces.

3.4 Convolution

By the isomorphism

$$\frac{G/H \times G/H}{G} \simeq H\backslash G/H$$

in the setting $G = G(K)$ and $H = G(O)$, the $G(K)$-orbits in $\text{Gr} \times \text{Gr}$ are also indexed by Λ'_{γ}. Given $(L_1, L_2) \in \text{Gr} \times \text{Gr}$ and $\lambda \in \Lambda'_{\gamma}$, we say that L_1 and L_2 are in relative position λ and write $L_1 \xrightarrow{\lambda} L_2$ if (L_1, L_2) lies in the $G(K)$-orbit corresponding to λ. Let $L_0 = \text{Gr}^0$. Given $\lambda_1, \ldots, \lambda_n \in \Lambda'_{\gamma}$, we define the (closed) convolution diagram

$$\widetilde{\text{Gr}}^{\lambda_1} \times \cdots \times \widetilde{\text{Gr}}^{\lambda_n} := \{(L_1, \ldots, L_n) \in \text{Gr}^n : L_0 \xrightarrow{\lambda_1} L_1 \xrightarrow{\lambda_2} L_2 \xrightarrow{\lambda_3} \cdots \xrightarrow{\lambda_n} L_n\}.$$

We will also denote this space by $\text{Gr}^{\lambda_1, \ldots, \lambda_n}$. Define the convolution morphism

$$m : \widetilde{\text{Gr}}^{\lambda_1, \ldots, \lambda_n} \to \text{Gr}^{\lambda_1 + \cdots + \lambda_n}$$

by $m(L_1, \ldots, L_n) = L_n$. The map m is known to be semismall [45], and when the λ_i are minuscule, $\text{Gr}^{\lambda_1, \ldots, \lambda_n}$ is smooth (since each Gr^{λ_i} is), and hence m is a resolution of singularities.

Example 3.8. If $G = PGL_2$, then $\text{Gr}^{\omega} \times \text{Gr}^{\omega}$ is the Hirzebruch surface $F_2 = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(-2) \oplus \mathcal{O}_{\mathbb{P}^1}) = T^*\mathbb{P}^1$, and the map $m : \text{Gr}^{\omega} \times \text{Gr}^{\omega} \to \text{Gr}^{2\omega}$ is the contraction of the zero section.

Given $I\!C_{\lambda_1}, \ldots, I\!C_{\lambda_n} \in \text{Perv}_{G(O)}(\text{Gr}_G)$, define the convolution product

$$I\!C_{\lambda_1} \ast \cdots \ast I\!C_{\lambda_n} := m_!(I\!C(\widetilde{\text{Gr}}^{\lambda_1, \ldots, \lambda_n})).$$

23
Since m is semismall, we have

$$IC_{\lambda_1} \ast \ldots \ast IC_{\lambda_n} \in \text{Perv}_{G(\sigma)}(\text{Gr}_G),$$

which under geometric Satake corresponds to the tensor product of representations $V_{\lambda_1} \otimes \ldots \otimes V_{\lambda_n}$.

3.5 Transversal slices

Consider the group $G[t^{-1}] \subset G((t))$. Let $G_1[t^{-1}]$ denote the kernel of the natural ("evaluation at ∞") homomorphism $G[t^{-1}] \to G$. For $\mu \in \Lambda^\vee_+$, set $\text{Gr}_\mu = G_1[[t^{-1}]] \cdot t^\mu$.

Finally, for $\lambda, \mu \in \Lambda^\vee_+$ with $\lambda \geq \mu$, set

$$\overline{\text{Gr}}^\lambda_\mu = \overline{\text{Gr}}^\lambda \cap \text{Gr}_\mu.$$

By Lemma 2.9 in [11], $\overline{\text{Gr}}^\lambda_\mu$ is a transversal slice to Gr^μ inside of $\overline{\text{Gr}}^\lambda$, and by Theorem 2.7 in [35], $\overline{\text{Gr}}^\lambda_\mu$ has symplectic singularities. We now describe an instance in which $\overline{\text{Gr}}^\lambda_\mu$ has a symplectic resolution.

Suppose $\lambda_1, \ldots, \lambda_n \in \Lambda^\vee_+$ are minuscule coweights, and consider the convolution morphism

$$m : \overline{\text{Gr}}^{\lambda_1, \ldots, \lambda_n} \to \overline{\text{Gr}}^{\lambda_1+\ldots+\lambda_n}.$$

For $\mu \in \Lambda^\vee_+$ with $\mu \leq \lambda_1 + \ldots + \lambda_n$, consider the transversal slice $\overline{\text{Gr}}^{\lambda_1, \ldots, \lambda_n}_\mu$, and set

$$\overline{\text{Gr}}^{\lambda_1, \ldots, \lambda_n}_\mu = m^{-1}(\overline{\text{Gr}}^{\lambda_1+\ldots+\lambda_n}_\mu).$$

Then by [35, Theorem 2.9],

$$m : \overline{\text{Gr}}^{\lambda_1, \ldots, \lambda_n}_\mu \to \overline{\text{Gr}}^{\lambda_1+\ldots+\lambda_n}_\mu.$$
is a symplectic resolution.

Example 3.9. If $G = PGL_2$, then $\widetilde{Gr}_0^{\omega,\omega} \simeq T^*\mathbb{P}^1$, and the map $\widetilde{Gr}_0^{\omega,\omega} \to \overline{Gr}_0^{2\omega}$ is the contraction of the zero section (or alternatively, the Springer resolution for sl_2).

Example 3.10. [35] More generally, if $G = PGL_2$, $\lambda_1 = \ldots = \lambda_n = \omega$, and $\mu = (n-2)\omega$, then $\widetilde{Gr}_0^{\lambda_1,\ldots,\lambda_n} \to \overline{Gr}_0^{\lambda_1+\ldots+\lambda_n}$ is a resolution of the A_{n-1} singularity $\mathbb{C}^2/(\mathbb{Z}/n)$.

Note that the groups G and \mathbb{C}^* act compatibly on both the resolution and the base. It is clear that the \mathbb{C}^*-action contracts the base to the point t^μ, hence contracts the resolution to the fiber $m^{-1}(t^\mu)$. This \mathbb{C}^*-action makes m into a conical symplectic resolution (see Section 2.2).

Remark 3.11. If the coweights λ_i are not all minuscule, the variety $\widetilde{Gr}_\mu^{\lambda_1,\ldots,\lambda_n}$ will be singular; however, it is known to have symplectic singularities [35, Theorem 2.9].

Remark 3.12. Suppose G is simply-laced. Then to λ and μ one can associate a quiver variety $Q(\lambda, \mu)$, whose graph is the Dynkin diagram of G with some choice of orientation, and with dimension vector v and framing vector w defined by $\lambda = \sum w_i \omega_i$ and $\mu = \lambda - \sum v_i \alpha_i$. Then it is conjectured [9, Example 10.27] that $\widetilde{Gr}_\mu^{\lambda_1,\ldots,\lambda_n}$ and $Q(\lambda, \mu)$ are symplectic duals.

Remark 3.13. In type A, the space $\widetilde{Gr}_\mu^{\lambda_1,\ldots,\lambda_n}$ is known to be isomorphic to a quiver variety, as well as a resolution of a Slodowy slice intersected with a nilpotent orbit; for details, see [46].

In the special case $n = 2$, we have the following:

Lemma 3.14. The central fiber $m^{-1}(t^\mu)$ of $\widetilde{Gr}_\mu^{\lambda_1,\lambda_2}$ is irreducible.

Proof. By [61, Cor. 5.1.5], the irreducible components of $m^{-1}(t^\mu)$ of dimension $\langle 2\rho, \lambda_1 + \lambda_2 - \mu \rangle$ are in bijection with a basis for the μ multiplicity space

$$\text{Hom}(V_\mu, V_{\lambda_1} \otimes V_{\lambda_2}).$$
But since λ_1 and λ_2 are minuscule, [30] gives that $m^{-1}(\mu)$ is equidimensional, and [52, Lemma 10.2] gives that the multiplicity space is 1-dimensional. This proves the lemma.

\[\square \]

3.6 Picard group

Recall that the affine Grassmannian of G is naturally equipped with an ample $G(\mathcal{O})$-equivariant line bundle $\mathcal{L} := \mathcal{O}(1)$, which generates the Picard group if G is simply connected [61, Theorem 2.4.2].

There are n natural line bundles defined on $\widetilde{\text{Gr}}_{\mu}^{\lambda_1, \ldots, \lambda_n}$ as follows. Consider the n-fold iterated convolution morphism

\[
m : \widetilde{\text{Gr}} = G(K) \times^{G(\mathcal{O})} \text{Gr} \times^{G(\mathcal{O})} \ldots \times^{G(\mathcal{O})} \text{Gr} \to \text{Gr}.
\]

Let π_1 be the projection to the first factor of Gr, and define $\mathcal{L}_i = \pi_1^* \mathcal{L}$. For $2 \leq i \leq n$, the $G(\mathcal{O})$-equivariant line bundle \mathcal{L} on the ith convolution factor induces a line bundle \mathcal{L}_i on Gr. It is then known that \mathcal{L} satisfies naturality with respect to convolution as follows (see, e.g. [59]):

\[
m^* \mathcal{L} = \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_n.
\]

We now restrict everything to the resolution of a slice $m : \widetilde{\text{Gr}}_{\mu}^{\lambda_1, \ldots, \lambda_n} \to \text{Gr}_{\mu}^{\lambda_1 + \ldots + \lambda_n}$. Then \mathcal{L} restricted to the affine variety $\text{Gr}_{\mu}^{\lambda_1 + \ldots + \lambda_n}$ is trivial, so we conclude that, on $\widetilde{\text{Gr}}_{\mu}^{\lambda_1, \ldots, \lambda_n}$,

\[
\mathcal{O} = \mathcal{L}_1 \otimes \ldots \otimes \mathcal{L}_n.
\]

Let $D_i = c_1(\mathcal{L}_i)$ be the corresponding divisor classes, so that we have

\[
D_1 + \ldots + D_n = 0.
\]

Note that for G not simply connected, \mathcal{L} may not be equivariant on each connected
component of Gr_G, in particular on Gr^{λ_i}. However, a suitable multiple $L^\otimes N$ will be $G(O)$-equivariant, e.g. for $N = |A^V/Q^V|$. So the above construction may be applied to $L^\otimes N$ to yield the same result.

The rank of the Picard group of $\tilde{\text{Gr}}^{\lambda_1,\ldots,\lambda_n}$ is not known in general. However, in the case $n = 2$ we have the following:

Lemma 3.15. For $\mu < \lambda_1 + \lambda_2$, the space $\tilde{\text{Gr}}^{\lambda_1,\lambda_2}$ has Picard rank 1.

Proof. Recall from [10, Prop. 2.5] that a conical symplectic resolution X has no odd cohomology groups (this is also clear in our setting since Gr is a union of even-dimensional cells), and hence that $\text{Pic}(X) \otimes \mathbb{C} \simeq H^2(X, \mathbb{C})$. So we have

$$\text{Pic}(\tilde{\text{Gr}}^{\lambda_1,\lambda_2}) \otimes \mathbb{C} \simeq H^2(\tilde{\text{Gr}}^{\lambda_1,\lambda_2}, \mathbb{C}) \simeq H^2(m^{-1}(t^\mu), \mathbb{C}).$$

Note that $m^{-1}(t^\mu)$ is a B-invariant irreducible (by Lemma 3.14) subvariety of $\text{Gr}^{\lambda_1} \simeq G/P_{\lambda_1}$. This maximal parabolic flag variety has an affine paving by B-orbits with a single codimension 1 stratum; thus, we obtain an affine paving of $m^{-1}(t^\mu)$ with a single codimension 1 stratum, so $H^2(m^{-1}(t^\mu), \mathbb{C})$ is 1-dimensional.

In the case $n = 2$, we let $D := D_1 - D_2 = 2D_1 = -2D_2$.

3.7 Equivariant cohomology

We first compute the ordinary cohomology of our symplectic resolutions:

Lemma 3.16. We have

$$H^*(\tilde{\text{Gr}}^{\lambda_1,\ldots,\lambda_n}) = V_{\lambda_1} \otimes \ldots \otimes V_{\lambda_n}[\mu].$$

Proof. As a vector space, the stalk of $IC_{\lambda_1} \ast \ldots \ast IC_{\lambda_n} = m_* IC(\tilde{\text{Gr}}^{\lambda_1,\ldots,\lambda_n})$ at t^μ is known [26] to be isomorphic to the weight space $V_{\lambda_1} \otimes \ldots \otimes V_{\lambda_n}[\mu]$; see Lemma 3.7.
for the case \(n = 1 \). Since \(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n} \) is smooth, we conclude that

\[
H^*(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n}) = H^*(m^{-1}(t^\mu)) = V_{\lambda_1} \otimes \ldots \otimes V_{\lambda_n}[\mu].
\]

By Lemma 4.1, the space \(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n} \) is \(\tilde{T} \)-equivariantly formal, so

\[
H^*_\tilde{T}(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n}) \simeq H^*(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n}) \otimes_{\mathbb{C}[\alpha_1,...,\alpha_r,h]} \mathbb{C}[c_1,...,c_r]
\]

and localized equivariant cohomology is given by

\[
H^*_\tilde{T}(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n})_{\text{loc}} \simeq V_{\lambda_1} \otimes \ldots \otimes V_{\lambda_n}[\mu] \otimes \mathbb{C}[\alpha_1,...,\alpha_r,h].
\]

The weight spaces in each \(V_{\lambda_i} \) are obviously 1-dimensional, so the fixed-point basis in \(H^*_\tilde{T}(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n})_{\text{loc}} \) may be indexed as \(v_{(\nu_1,...,\nu_n)} \), where \(\nu_i \in W \cdot \lambda_i \) and \(\sum \nu_i = \mu \).

For non-localized equivariant cohomology, we have the following result (referring to [28] for more details):

Lemma 3.17.

\[
H^*_\tilde{T}(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n}) \gamma = \text{Hom}_{U_h(g)}(M_\gamma, V_{\lambda_1} \otimes \ldots \otimes V_{\lambda_n} \otimes M_{\gamma-\mu}),
\]

where \(U_h(g) \) is the asymptotic universal enveloping algebra of \(g \), \(\gamma \) is an equivariant parameter, and \(M_\gamma \) and \(M_{\gamma-\mu} \) are universal Verma modules for \(U_h(g) \).

Proof. We have that \(H^*_\tilde{T}(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n}) \) is Poincaré dual to \(H^*_{\text{BM}}(\tilde{\text{Gr}}_{\mu}^{\lambda_1,...,\lambda_n}) = H^*_{\text{BM}}(m^{-1}(t^\mu)) \).

The lemma now follows from [28, Prop. 8.1.5]. \(\square \)
For $n = 2$, we will be interested in the truncated Casimir operator

$$ \Omega^{\text{trunc}} := \sum_{\alpha \in \Delta} e_\alpha \otimes e_{-\alpha} $$

which acts on $H^*_T(\Gr_{\lambda_1, \lambda_2})$ by acting factor-wise on $V_{\lambda_1} \otimes V_{\lambda_2}$.
Chapter 4

Calculation of the equivariant quantum connection

From now on, we restrict to the case $n = 2$, i.e. the resolution of a slice $m : \widetilde{\text{Gr}}^{\lambda_1,\lambda_2}_{\mu} \rightarrow \text{Gr}^{\lambda_1+\lambda_2}_{\mu}$.

4.1 Torus-invariant curves

We first determine the torus-fixed points and torus-invariant curves of $\widetilde{\text{Gr}}^{\lambda_1,\lambda_2}_{\mu}$. For brevity, we set $\tilde{T} = T \times \mathbb{C}^*$.

Lemma 4.1. 1. The \tilde{T}-fixed points in $\widetilde{\text{Gr}}^{\lambda_1,\lambda_2}_{\mu}$ are indexed by pairs of weights (ν_1,ν_2) of G^\vee such that $\nu_1 \in W \cdot \lambda_1$, $\nu_2 \in W \cdot \lambda_2$, and $\nu_1 + \nu_2 = \mu$. In particular, there are finitely many such points.

2. Let (ν_1,ν_2) be a \tilde{T}-fixed point of $\widetilde{\text{Gr}}^{\lambda_1,\lambda_2}_{\mu}$, and let α^\vee be a root of G^\vee such that $\nu_1 + \alpha^\vee \in W \cdot \lambda_1$ and $\nu_2 - \alpha^\vee \in W \cdot \lambda_2$. Then there is a unique \tilde{T}-invariant curve $C_{\nu_1,\nu_2,\alpha}$ connecting the points (ν_1,ν_2) and $(\nu_1 + \alpha^\vee,\nu_2 - \alpha^\vee)$, and all \tilde{T}-invariant curves are of this form. In particular, there are finitely many such curves.

Proof. Since each λ_i is minuscule, the set of weights of the representation V_{λ_i} of G^\vee
is simply $W \cdot \lambda_i$. It is well-known that the T-fixed points of Gr^λ_i are then given by t^ν with $\nu \in W \cdot \lambda_i$, and the T-fixed points of $\tilde{\text{Gr}}^{\lambda_1,\lambda_2}$ are given by $(t^{\nu_1}, t^{\nu_1+\nu_2})$ with $\nu_1 \in W \cdot \lambda_1$ and $\nu_2 \in W \cdot \lambda_2$. Hence, the T-fixed points of the fiber of the convolution morphism $m^{-1}(t^\mu)$ are indexed by such pairs (ν_1, ν_2) with $\nu_1 + \nu_2 = \mu$. Finally, since the \mathbb{C}^*-action contracts $\tilde{\text{Gr}}^{\lambda_1,\lambda_2}_\mu$ to its central fiber $m^{-1}(t^\mu)$, the \tilde{T}-fixed points of $\tilde{\text{Gr}}^{\lambda_1,\lambda_2}_\mu$ are the same as the T-fixed points of $m^{-1}(t^\mu)$. This proves (1).

Likewise, the \tilde{T}-invariant curves in $\tilde{\text{Gr}}^{\lambda_1,\lambda_2}_\mu$ are the same as the T-invariant curves in $m^{-1}(t^\mu)$. Note that, by definition, $m^{-1}(t^\mu)$ is a subvariety of $\text{Gr}^\lambda_i \simeq G/P_\lambda_i$. It is well-known that this parabolic flag variety has finitely many T-invariant curves, given by $(SL_2)_\alpha$-orbits, where α is any root of G belonging to G/P_λ_i. Such a curve connects the fixed points corresponding to ν_1 and $s_\alpha(\nu_1)$, and since $m^{-1}(t^\mu)$ is a T-invariant (in fact $G(O)$-invariant) subvariety of Gr^λ_i, this curve must lie entirely inside of $m^{-1}(t^\mu)$. Now, we have $s_\alpha(\nu_1) = \nu_1 - (\nu_1, \alpha) \alpha'$, and since ν_1 is minuscule and the curve connects distinct points, $s_\alpha(\nu_1) = \nu_1 \pm \alpha'$. Thus, for roots α' of G' such that $\nu_1 + \alpha' \in W \cdot \lambda_i$, there is a unique T-invariant curve connecting t^ν and $t^{\nu_1+\alpha'}$ in Gr^λ_i. Since $\nu_1 + \nu_2 = \mu$, this curve connects the T-fixed points (ν_1, ν_2) and $(\nu_1 + \alpha', \nu_2 - \alpha')$ in $m^{-1}(t^\mu)$. This proves (2).

\[\square \]

4.2 Unbroken maps

Recall from section 2.5 the definition of unbroken maps.

Lemma 4.2. The unbroken maps $f : C \to \tilde{\text{Gr}}^{\lambda_1,\lambda_2}_\mu$ are of the following two types:

1. $C \simeq \mathbb{P}^1$ and f is a multiple cover of a \tilde{T}-invariant curve $C_{\nu_1,\nu_2,\alpha}$ branched over its two endpoints.

2. $C \simeq C_0 \cup C_1$, where C_0 is a rational curve contracted to a \tilde{T}-fixed point, the two marked points lie on C_0, and $C_1 \simeq \mathbb{P}^1$ is a multiple cover of a \tilde{T}-invariant curve $C_{\nu_1,\nu_2,\alpha}$ branched over its two endpoints.
Proof. The curve $C_{\nu_1,\nu_2,\alpha}$ has T-weight α at (ν_1, ν_2), since it is an $(SL_2)\alpha$-orbit and since the loop rotation \mathbb{C}^* acts trivially on the central fiber $m^{-1}(t^\mu)$ in which $C_{\nu_1,\nu_2,\alpha}$ is contained. Since these are linearly independent, the only unbroken chains are \mathbb{P}^1's, which by definition yields the lemma. \qed

As noted in [43, §7.3.1], the contribution of the second type of unbroken map is diagonal in the fixed-point basis, so we will focus on the first type of map.

4.3 The tangent bundle on fixed points

We begin with the following elementary result:

Lemma 4.3. For any coweights $\mu \leq \lambda$ of G, the tangent space to Gr^λ at t^μ is isomorphic to

$$\bigoplus_{\beta \in \Delta} \bigoplus_{n=0}^{\max(0,(\beta,\mu))} g_\beta t^n$$

Proof. We have

$$T_{t^\mu} Gr^\lambda \simeq g(\mathcal{O})/(g(\mathcal{O}) \cap \text{Stab}(\mu)) \simeq g(\mathcal{O})/(g(\mathcal{O}) \cap g(\mathcal{O})^\mu),$$

where $g(\mathcal{O})^\mu := \text{ad}_{t^{-\mu}} g(\mathcal{O})$. For X in a root subspace g_β, we have $\text{ad}_{t^{-\mu}} X = t^{-\langle \beta, \mu \rangle} X$, so we can decompose

$$g(\mathcal{O}) = \bigoplus_\beta g_\beta(\mathcal{O})$$

$$g(\mathcal{O})^\mu = \bigoplus_\beta t^{-\langle \beta, \mu \rangle} g_\beta(\mathcal{O}).$$

Substituting these into the above yields the lemma. \qed

We can now determine the T-weights of tangent bundle at a \widetilde{T}-fixed point:
Lemma 4.4. Let \((\nu_1, \nu_2) \in \text{Gr}^\lambda_{\mu,1,2}\) be a \(\tilde{T}\)-fixed point. Then the \(T\)-weights of the tangent space \(T_{(\nu_1, \nu_2)}\text{Gr}^\lambda_{\mu,1,2}\) are pairs of roots \(\beta, -\beta\) such that \(\langle \beta, \nu_1 \rangle = 1\) and \(\langle \beta, \nu_2 \rangle = -1\).

Proof. Since \(\text{Gr}^\lambda_{\mu} = G/P_{\lambda_1}\), the \(T\)-weights of \(T_{\nu_1} \text{Gr}^\lambda_{\mu}\) are all roots \(\beta\) such that \(\langle \beta, \nu_1 \rangle > 0\). Since each \(\nu_i\) is minuscule, this implies \(\langle \beta, \nu_i \rangle = 1\). Hence, the \(T\)-weights of \(T_{(\nu_1, \nu_2)}(\text{Gr}^\lambda_{\mu,1,2})\) are \(\beta\) such that either \(\langle \beta, \nu_1 \rangle = 1\) or \(\langle \beta, \nu_2 \rangle = 1\). There is a split exact sequence

\[
0 \to T_{(\nu_1, \nu_2)}(\text{Gr}^\lambda_{\mu,1,2}) \to T_{(\nu_1, \nu_2)}(\text{Gr}^\lambda_{\mu,1,2}) \to T_{\mu}(\text{Gr}^\mu) \to 0
\]

since \(\nu_1 + \nu_2 = \mu\). By Lemma 4.3, the \(T\)-weights of \(T_{\mu}(\text{Gr}^\mu)\) are roots \(\beta\) with \(\langle \beta, \mu \rangle > 0\). So the above sequence gives that the \(T\)-weights of \(T_{(\nu_1, \nu_2)}(\text{Gr}^\lambda_{\mu,1,2})\) are \(\beta\) such that either \(\langle \beta, \nu_1 \rangle = 1\) or \(\langle \beta, \nu_2 \rangle = 1\), and \(\langle \beta, \nu_1 \rangle + \langle \beta, \nu_2 \rangle = \langle \beta, \mu \rangle \leq 0\). But since \(\langle \beta, \nu_i \rangle \in \{-1, 0, 1\}\), these conditions in fact imply that \(\langle \beta, \mu \rangle = 0\). This proves the lemma.

\[\square\]

4.4 The tangent bundle on fixed curves

We now decompose the tangent bundle \(T(\text{Gr}^\lambda_{\mu,1,2})\) into \(T\)-equivariant line bundles on each \(\tilde{T}\)-invariant curve \(C_{\nu_1, \nu_2, \alpha}\).

Define \(L_{\beta}\) as the \(T\)-equivariant line bundle on \(C_{\nu_1, \nu_2, \alpha}\) whose fibers at \((\nu_1, \nu_2)\) and \((\nu_1 + \alpha^\vee, \nu_2 - \alpha^\vee)\) have \(T\)-weights \(\beta\) and \(s_\alpha(\beta)\), respectively. Since \(s_\alpha(\beta) = \beta - \langle \beta, \alpha^\vee \rangle \alpha\), the degree of \(L_{\beta}\) is \(-\langle \beta, \alpha^\vee \rangle\).

Lemma 4.5. The restriction of \(T(\text{Gr}^\lambda_{\mu,1,2})\) to \(C_{\nu_1, \nu_2, \alpha}\) decomposes as a direct sum of \(T\)-equivariant line bundles

\[
\bigoplus_{\beta} L_{\beta}
\]

where \(\beta\) ranges over the \(T\)-weights of the tangent space \(T_{(\nu_1, \nu_2)}(\text{Gr}^\lambda_{\mu,1,2})\), i.e. all roots satisfying \(\langle \beta, \nu_1 \rangle = \pm 1\) and \(\langle \beta, \nu_2 \rangle = \mp 1\). For \(\beta\) appearing in the "horizontal" direc-
tion $T_{\nu_1} \Gr^\lambda$, the degree of L_β is non-negative, and for β appearing in the "vertical" direction $T_{\nu_2} \Gr^\lambda$, the degree of L_β is non-positive.

Proof. The tangent bundle of $\Gr_{\mu}^{\lambda_1, \lambda_2}$ is equivariant with respect to the reductive part of the stabilizer of t^μ, in particular with respect to $SL(2)$. So the Borel of $sl(2)$ acts on the tangent space at (ν_1, ν_2). The element e_α in the radical of that Borel must act trivially, since it cannot be that $\langle \beta, \nu_1 \rangle = \pm 1$ and $\langle \beta + \alpha, \nu_1 \rangle = \pm 1$. Thus, the tangent bundle decomposes as an $SL(2)$-equivariant bundle into the direct sum of L_β, where β ranges over the T-weights of the tangent space at (ν_1, ν_2) obtained in Lemma 4.4, as desired.

By the proof of Lemma 4.1, α satisfies $\langle \alpha, \nu_1 \rangle = -1$ and $\langle \alpha, \nu_2 \rangle = 1$. The horizontal roots β satisfy $\langle \beta, \nu_1 \rangle = 1$, so $\langle \beta - \alpha, \nu_1 \rangle = 2$, and thus $\beta - \alpha$ cannot be a root since ν_1 is minuscule. Considering root strings, we conclude that $\langle \beta, \alpha^\vee \rangle \leq 0$, so $\deg L_\beta = -\langle \beta, \alpha^\vee \rangle \geq 0$. The vertical roots are simply the negatives of the horizontal ones by Lemma 4.4, so the claim for vertical roots follows.

4.5 Localization

We can now calculate the contribution of $C_{\nu_1, \nu_2, \alpha}$ to the quantum product by the divisor class D in the fixed-point basis $\nu_{(\nu_1, \nu_2)}$. Let $f : C \to \Gr_{\mu}^{\lambda_1, \lambda_2}$ be a degree d cover of $C_{\nu_1, \nu_2, \alpha}$, i.e. the first type of unbroken map on $\Gr_{\mu}^{\lambda_1, \lambda_2}$ identified in Lemma 4.2. There is a single quantum parameter $q = q^{[C_{\nu_1, \nu_2, \alpha}]}$. We want to calculate

$$(D \bullet \nu_{(\nu_1, \nu_2)}, \nu_{(\nu_1 + \alpha^\vee, \nu_2 - \alpha^\vee)})$$

$$=-h \sum_{d>0} (D, d[C_{\nu_1, \nu_2, \alpha}])(\alpha_{\nu_1, \nu_2}) \nu_{(\nu_1 + \alpha^\vee, \nu_2 - \alpha^\vee)}q^d.$$
Note that a factor of d can be pulled out from $(D, d[C_{\nu_1, \nu_2, \alpha}])$. By virtual localization, modulo h we have:

$$d(\text{ev}_*[\mathcal{M}_{0,2}(\overline{\text{Gr}}_{\mu}^{\lambda_1, \lambda_2}, d[C_{\nu_1, \nu_2, \alpha}])_{\text{red}}, v_{(\nu_1, \nu_2)} \otimes v_{(\nu_1 + \alpha', \nu_2 - \alpha')})$$

$$= \frac{d}{d} e'(T_{(\nu_1, \nu_2)} \overline{\text{Gr}}_{\mu}^{\lambda_1, \lambda_2}) e'(T_{(\nu_1 + \alpha', \nu_2 - \alpha')} \overline{\text{Gr}}_{\mu}^{\lambda_1, \lambda_2}) \frac{H^1(C, f^*\overline{T\text{Gr}}_{\mu}^{\lambda_1, \lambda_2})}{H^0(C, f^*\overline{T\text{Gr}}_{\mu}^{\lambda_1, \lambda_2})},$$

where the factor of $1/d$ comes from $\text{Aut}(f) = \mathbb{Z}/d\mathbb{Z}$, and e' denotes the product of non-zero T-weights.

Let $S = \{ \beta \in \Delta : \langle \beta, \nu_1 \rangle = 1 \text{ and } \langle \beta, \nu_2 \rangle = -1 \}$, and set

$$\mathcal{T} = \bigoplus_{\beta \in S} f^*L_{\beta},$$

so that, by Lemma 4.5, we have $f^*\overline{T\text{Gr}}_{\mu}^{\lambda_1, \lambda_2} = \mathcal{T} \oplus \mathcal{T}^*$. Thus, by Lemma 11.1.3 in [43], we obtain that the above quantity is equal to ± 1; more precisely, it is given by

$$(-1)^{\text{rank } \mathcal{T} + \text{deg } \mathcal{T} + \# z},$$

where $\# z$ denotes the number of 0 weights in $\mathcal{T} \oplus \mathcal{T}^*$. Each of the quantities in the exponent is easily calculated; we obtain

$$\text{rank } \mathcal{T} = |S| = \frac{1}{2} \dim \overline{\text{Gr}}_{\mu}^{\lambda_1, \lambda_2} = \langle \rho, \lambda_1 + \lambda_2 - \mu \rangle$$

$$\text{deg } \mathcal{T} = -d \left(\sum_{s} \beta_s \alpha^s \right)$$

$$\# z = 1.$$

It is also easy to check that $\text{deg } \mathcal{T}$ is even.

Finally, note that the effective curve class $[C_{\nu_1, \nu_2, \alpha}]$ generates $H_2(G/P_{\lambda_1})$, and
\(D = 2D_1 \) restricts to \(O(2) \) on \(G/P_{\lambda_1} \), so

\[
(D, [C_{\nu_1, \nu_2, a}]) = 2.
\]

We conclude that

\[
(D \bullet v(\nu_1, \nu_2), v(\nu_1 + a\nu, \nu_2 - \alpha \nu_2)) = -(-1)^{\rho \lambda_1 + \lambda_2 - \mu} 2\hbar \sum_{d > 0} q^d = -(-1)^{\rho \lambda_1 + \lambda_2 - \mu} 2\hbar \frac{q}{1 - q}.
\]

Summing over all torus-invariant curves, we finally obtain:

Theorem 4.6.

\[
D* = D \cup -2\hbar \frac{q}{1 - q} \tilde{\Omega} + \ldots
\]

where the dots denote a scalar operator, and \(\tilde{\Omega} \) acts on the fixed point basis \(v(\nu_1, \nu_2) \in H^*(Gr_{\mu})_{\text{loc}} \) by

\[
\tilde{\Omega}(v(\nu_1, \nu_2)) = (-1)^{\rho \lambda_1 + \lambda_2 - \mu} \sum_{\alpha} v(\nu_1 + \alpha \nu, \nu_2 - \alpha \nu) \mod \hbar,
\]

where the sum is taken over all \(\alpha \in \Delta \) such that \(\nu_1 + \alpha \nu \in W \cdot \lambda_1 \) and \(\nu_2 - \alpha \nu \in W \cdot \lambda_2 \).

On the other hand, the truncated Casimir operator \(\Omega^{\text{trunc}} \) identified in Section 3.7 acts on the fixed-point basis with the same non-zero matrix elements as \(\tilde{\Omega} \). So up to rescaling coefficients and modulo \(\hbar \), we have \(\tilde{\Omega} = \Omega^{\text{trunc}} \). We conjecture that the two operators are, in fact, equal.

By Theorem 4.6, the \(T \)-equivariant quantum connection of \(Gr_{\mu}^{\lambda_1, \lambda_2} \) is given by

\[
\nabla_D^{\text{quantum}} = d_D - D \cup +2\hbar \frac{q}{1 - q} \tilde{\Omega} + \ldots
\]

37
4.6 Trigonometric KZ connection

Let G^\vee be a semisimple algebraic group of rank r with maximal torus T^\vee, and let \mathfrak{g}^\vee and t^\vee denote their Lie algebras. Choose simple roots α_i and root vectors $e_{\alpha_i} \in \mathfrak{g}$ for $i = 1, \ldots, r$. Let Δ_+ denote the set of all positive roots. Let x_1, \ldots, x_r be an orthonormal basis in t^\vee. Let

$$\Omega = \sum_{i=1}^r x_i \otimes x_i + \sum_{\alpha \in \Delta_+} (e_\alpha \otimes e_{-\alpha} + e_{-\alpha} \otimes e_\alpha)$$

be the corresponding Casimir element in $U(\mathfrak{g}^\vee)^{\otimes 2}$, and decompose Ω into positive and negative parts:

$$\Omega^+ = \frac{1}{2} \sum_{i=1}^r x_i \otimes x_i + \sum_{\alpha \in \Delta_+} e_\alpha \otimes e_{-\alpha}, \quad \Omega^- = \frac{1}{2} \sum_{i=1}^r x_i \otimes x_i + \sum_{\alpha \in \Delta_+} e_{-\alpha} \otimes e_\alpha.$$

Define the trigonometric r-matrix

$$r(u) = \frac{\Omega^+ e^u + \Omega^-}{e^u - 1}.$$

Let V_1, \ldots, V_n be representations of G^\vee. Consider the trivial vector bundle with fiber $V_1 \otimes \ldots \otimes V_n$ and base \mathbb{C}^n with coordinates (u_1, \ldots, u_n). For $a \in t$ and $h \in \mathbb{C}$, define the trigonometric KZ connection $\nabla^{KZ}(a, h)$ on this vector bundle by (see, e.g. [57])

$$\nabla^{KZ}(a, h) = \partial - 2h \left(\sum_{i<j} r^{ij}(u_i - u_j) d(u_i - u_j) + \sum_i a^{(i)} du_i \right),$$

where r^{ij} denotes r acting on the ith and jth tensor factors, and likewise for $a^{(i)}$. Note that this is invariant under the action of the diagonal, so we may translate all the u_i so that $u_1 + \ldots + u_n = 0$.

Note that Ω^+ and Ω^- preserve the weight decomposition of $V_1 \otimes \ldots \otimes V_n$. Hence, for any μ appearing as a weight of $V_1 \otimes \ldots \otimes V_n$, the trigonometric KZ connection
restricts to a connection on the subbundle with fiber $V_1 \otimes \ldots \otimes V_n[\mu]$.

Specializing to $n = 2$ and setting $u = u_1 - u_2$, we can write differentiation in the
direction u as

$$\nabla^K_Z = d_u - 2\hbar(a^{(1)} + a^{(2)}) + 2\hbar \left(\frac{\Omega^+ e^u + \Omega^-}{1 - e^u} \right)$$

$$= d_u - 2\hbar(a^{(1)} + a^{(2)} - \Omega^-) + 2\hbar \frac{e^u}{1 - e^u} \Omega.$$

Note that the quantum connection and trigonometric KZ connection cannot match
exactly, since the latter is trivial for $\hbar = 0$ while the former is not (due to classical
multiplication). However, identifying $q = e^u$, we see that, assuming our conjecture
from the previous section, the purely quantum part matches the corresponding part
of the trigonometric KZ connection, but with Ω replaced by Ω^{trunc}. We thus view
the quantum connection as a "truncated" trigonometric KZ-type connection.

Finally, it is natural to conjecture that $D\cup = 2(a^{(1)} + a^{(2)} - \hbar \Omega^-)$, and that the
full connections are equal under the identification of equivariant parameters $\lambda = \hbar a$.

4.7 Reduction to Picard rank 1

We briefly describe how we expect the strategy of [13] allows us to reduce to the case
$n = 2$.

The semi-universal Poisson deformation of $\tilde{\text{Gr}}_{\lambda_1, \ldots, \lambda_n}$ is the corresponding Beilinson-
Drinfeld Grassmannian $\text{Gr}^{\lambda_1, \ldots, \lambda_n}_{A^n}$ over $A^n = \mathbb{C}(x_1, \ldots, x_n)$ (see [34]). For the x_i pairwise distinct, the fiber is the ordinary product $\text{Gr}^{\lambda_1} \times \ldots \times \text{Gr}^{\lambda_n}$. Over a generic point of the hyperplane $\{x_i = x_j\}, i \neq j$, the fiber is the convolution product $\text{Gr}^{\lambda_i} \times \text{Gr}^{\lambda_j}$ times the ordinary product of the remaining factors.

As described in [35], this restricts to a Poisson deformation of $\tilde{\text{Gr}}_{\mu}^{\lambda_1, \ldots, \lambda_n}$. For
the x_i pairwise distinct, the fiber is affine. Over a generic point of the hyperplane
$\{x_i = x_j\}$, we expect that the fiber to be related to a $\tilde{\text{Gr}}_{\mu'}^{\lambda_i, \lambda_j}$-bundle over an affine
variety for some μ'. Applying the argument described in [13] for general symplectic resolutions, we would obtain that the quantum corrections are given by a sum over $1 \leq i < j \leq n$, of the quantum corrections for $\widetilde{\text{Gr}}_{\mu'}^{\lambda_i, \lambda_j}$, yielding each of the summands in the trigonometric KZ connection.
Bibliography

[34] J. Kamnitzer. The Beilinson-Drinfeld Grassmannian and symplectic knot homology, arXiv:0811.1730

[38] M. Kontsevich. Enumeration of rational curves via torus actions, The moduli space of curves (Dijkgraaf et. al. eds.), Progress in Mathematics 129, Birkhäuser

