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ABSTRACT

A protein's function in the cell depends on its structure, which in turn depends on the

intracellular environment. Stress like heat shock or nutrient starvation can alter intracellular

conditions, leading to protein misfolding - i.e. the inability of a protein to reach or maintain its

native conformation. Since many proteins interact with each other, protein misfolding and

cellular stress response must be examined both on the scale of individual protein conformational

changes and on a more global level, where interaction patterns can reveal larger-scale protein

responses to cellular stress.

On the individual scale, one example of a protein particularly susceptible to misfolding is the

human von Hippel-Lindau (VHL) tumor suppressor. When expressed in the absence of its

cofactors, VHL cannot fold correctly and is quickly degraded by the cell's quality control

machinery. Here, I present a biophysical characterization of a VHL mutation that confers

increased resistance to misfolding. Mathematical modeling provides an explanation for this

mutant's increased stability in the cell by predicting how its cofactor and chaperone interaction

sites are buried or exposed in the protein's predicted conformation.

On a more global level, a budding yeast cell undergoing glucose deprivation both acidifies its

cytosol and exhibits widespread protein clustering. By employing a proteome-wide

computational assay, I examine how this drop in pH could lead to the formation of higher order

protein structures. This modeling framework also provides a rationale for why these two related

phenotypes might be beneficial, since protein clustering can help regulate relevant metabolic

pathways and provide protection from protein misfolding and/or degradation.

Thesis Supervisor: Jeremy England

Title: Thomas D. and Virginia W. Cabot Career Development Professor of Physics
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Chapter 1

Protein folding and misfolding

Proteins, composed of chains of amino acids connected by peptide bonds, typically must

undergo folding to reach a structure or set of structures that is required for its cellular function.

A primary component in determining how a protein can fold is its amino acid sequence, which

can determine inter-residue and extra-molecular interactions and is subject to energetic effects

based on the hydrophobicity of each amino acid. The cellular interior, however, is a highly

heterogeneous and densely crowded solution of proteins, which can interfere with how proteins

reach and maintain these stable conformations (Luby-Phelps, 2000). A polypeptide chain must

also be able to reach its native state on a biologically relevant timescale, despite the large number

of available conformations of the protein. The protein folding problem, first articulated

approximately fifty years ago, involves three primary questions: 1) how an amino acid chain

gives rise to a unique native conformation, 2) how a protein can fold quickly enough to be useful

to the cell, and 3) how we can predict computationally the 3D structure of a protein based solely

on its sequence (Dill and MacCallum, 2012). In particular, solving the third component of this

formulation - i.e., creating an algorithm to predict accurate structural information directly from

the amino acid sequence - would be beneficial for a wide range of concepts, ranging from

discovering new protein functions to designing better targeted drugs.

Current thought on how and why proteins fold can be traced back to Anfinsen's

experiments in refolding denatured ribonuclease A. His finding that this protein could refold

after denaturants were removed in vitro indicated that the information necessary to encode the

protein's structure was contained in the amino acid sequence alone. This result then led to the
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thermodynamic hypothesis, which states that a protein's native conformation under physiological

conditions is at its Gibbs free energy minimum (Anfinsen, 1973). The correlation between a

protein's lowest energy structure and its native state appears to hold true for many proteins

studied to date, and this dogma has helped guide our understanding of the protein folding process

for over 50 years (Dill et al., 2008). Looking at protein folding through a thermodynamics lens

can also give insight into the stability of a protein. Thermodynamic stability refers to the change

in Gibbs free energy associated with the transition from the unfolded to the folded state, which

reflects a balance between making enthalpically-favored inter-residue contacts, increasing the

entropy of associated water molecules, and decreasing the entropy of the overall structure among

other considerations. A Gibbs free energy value that is significantly lower for the folded state of

the protein than for the unfolded state is said to be thermodynamically stable, with associated

higher levels of the folded state present at equilibrium.

Several algorithms that aim to predict the 3D structure of a given protein rely on free

energy minimization; however, the astronomically large number of conformations of an amino

acid chain necessitates a better understanding of how proteins are able to traverse their energy

landscapes quickly enough to find their native state on the timescale of cellular interactions.

Overcoming this argument relies both on understanding the cellular milieu in which proteins fold

and on how sections of proteins can fold locally to give rise to the global structure. Ab initio

algorithms, which aim to determine fold based solely on sequence, tend to work based on small

input protein sizes, vast computing power, and new approaches to creating starting points for

energy minimization. The ROSETTA software suite, first published in the late 1990's as a

relatively successful entry to the Critical Assessment of Protein Structure Prediction (CASP)

contest, generates an ensemble of structures based on a simulated annealing program that builds
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up longer structures from short peptide chains found locally in the protein sequence.

Discrimination among these 'decoy' models is then achieved by using a scoring function based

on energy minimization (Simons et al., 1999). Currently, an expanded version of the software

called Rosetta@Home (and its interactive version, FoldIt) aims to increase the available

computing power by widely distributing folding problems to run on tens of thousands of

privately-owned computers who donate idle processor time to the project.

Ab initio methods like Rosetta can provide structural information about small proteins

(<100 residues), but for larger peptide chains homology modeling has given more accurate

predictions at the cost of necessitating more experimental structure predictions. The query

sequence is aligned with a database of other protein sequences whose structures have been

experimentally determined, and the fold(s) of the highest scoring protein(s) are then mapped onto

the target sequence. For a target sequence with >50% sequence identity to its template, the root

mean square error can be within I Angstrom, while a sequence identity of less than 30% can

have a completely incorrect fold (Baker and Sali, 2001). This type of modeling is limited by

both the accuracy of sequence alignments and by the availability of experimentally determined

structures.

Given sequence alignments of homologous proteins across species, recent work has also

indicated that three-dimensional fold can be calculated based on evolutionary couplings of amino

acids (Marks et al., 2011, 2012; Morcos et al., 2011). The underlying idea is that amino acids

that are spatially correlated and form a residue-residue contact in the protein's native

conformation are more likely to have undergone selective pressure to co-evolve, where a

mutation in one will be more likely to necessitate a corresponding mutation in its interaction

partner to maintain the contact. By increasing the sophistication of methods used to determine
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from multiple sequence alignments which evolutionary couplings authentically represent co-

evolving residues, this technique has shown success in predicting three-dimensional folds of

membrane proteins (Hopf et al., 2012) and inter-protein contacts in complexes (Hopf et al., 2014;

Ovchinnikov et al., 2014).

Another consideration of the protein folding problem is examining the reaction rates

associated with folding processes; even though a protein may be thermodynamically stable, it

still may be unable to reach its free energy minimum on a biologically relevant timescale. The

sample space of potential conformations is astronomically large, leading to Levinthal's paradox:

if proteins randomly have to sample potential conformations, the protein would not be able to

fold on a timescale compatible with life. Proteins also may be able to adopt nonfunctional,

irreversible states distinct from the native state, leading to a depletion of the correctly folded

protein. The irreversible states, including aggregated forms of different proteins, are separated

from the native folded state by free energy barriers associated with intermediate transition states.

If the free energy barrier to these nonfunctional states is high enough, the reaction rate of

proteins achieving these terminal forms is low enough to be irrelevant on cellular time scales.

Such proteins whose functional conformations are separated from their non-functional

conformations by high energetic barriers are termed 'kinetically stable' (Sanchez-Ruiz, 2010).

Several proteins like alpha-lytic protease have also been observed whose native state is not

actually at a free energy minimum (and therefore fall outside of the thermodynamic hypothesis),

which are able to stay in their native conformations due to kinetic trapping by experiencing large

energetic barriers between the native state and a lower-energy conformation (Sohl et al., 1998).

Low thermodynamic and/or kinetic stability can then lead to decreased amounts of correctly

folded protein in cells, and are therefore potential contributors to cellular persistence - namely,
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the ability of a protein to maintain a fold that is resistant to cellular machinery that targets

misfolded proteins.

Misfolding, where a protein either cannot reach or cannot maintain its native

conformation in the cell, causes a loss of functionality associated with that protein; furthermore,

these molecules can form potentially cytotoxic aggregates if left in the crowded intracellular

environment (Chiti and Dobson, 2006, 2009). Mutations that lead to protein misfolding and/or

aggregation have been implicated in proteopathies such as Huntington's and prion disease,

emphasizing a need to better understand the cellular response to protein misfolding in the context

of the physical driving forces that govern how an amino acid sequence can reach its native

structure.

Protein quality control targets misfolded proteins

The protein quality control (PQC) machinery, found in different forms across all

kingdoms of life, consists of the cellular pathways linked to protein folding and misfolding

(Hartl et al., 2011). Chaperone proteins, a key component of PQC systems, can either assist a

protein in folding or can target incorrect conformations for either refolding or destruction

through the ubiquitin proteasome pathway or autophagy (Kim et al., 2013). Despite the

prevalence of PQC machinery across organisms, many aspects of the system are not well

understood. One current area of investigation involves how PQC systems recognize substrates

that are misfolded. A recent discovery suggests that the ubiquitin ligase nuclear protein San] can

recognize exposed hydrophobicity and substrate protein insolubility and target these aberrant

proteins for destruction in the nucleus of the cell (Rosenbaum et al., 2011). Subcellular

localization has also been shown to play a role in how and when proteins become degraded,
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including differential shuttling of misfolded or aggregated proteins to juxtanuclear quality

control compartments (JUNQs) or cytosolic insoluble protein deposits (IPODs) that uniquely

determine protein fate (Kaganovich et al., 2008). Other hypotheses involve the lack of some

specific tertiary structural element in misfolded proteins or the recognition of other structural

motifs.

Complicating the question of how PQC systems can recognize misfolded substrates,

proteins can contain regions (up to and including the entire sequence) that lack well-defined

three-dimensional structures under physiological conditions. These intrinsically-disordered

proteins (Uversky and Dunker, 2010) can often adopt a wide range of conformational states as

part of their molecular function and are overrepresented in certain classes of proteins like those

involved in cancer pathways (lakoucheva et al., 2002). In eukaryotes, proteins with disordered

regions >30 residues long comprise approximately half of the proteome (Dunker et al., 2008).

Studying such proteins, whether the structural disorder is intrinsic or not, has proven difficult

since these proteins do not respond well to experimental methods of determining structure like

X-ray crystallography. These proteins often display a larger hydrodynamic radius than expected

from their sequence length on non-denaturing PAGE assays, resulting from their inability to

collapse completely into a well-folded state. Intrinsically-disordered proteins can also be

recognized by their sensitivity to protease digestion - since increased flexibility is associated

with more disordered regions, parts of the backbone become more exposed in solution and

therefore more vulnerable to protease digestion (Fontana et al., 2004). This flexibility has also

been shown to have functional advantages, allowing for a wider range of low-affinity

interactions with multiple binding partners (Rosenbaum et al., 2011). Another method of

examining intrinsic disorder in proteins is circular dichroism, which measures the difference in
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sample absorption of left and right circularly polarized light, with characteristic patterns

observed for different secondary structural elements in far-UV circular dichroism and for tertiary

elements in near-UV circular dichroism (Greenfield, 2006). Computational methods have also

proven useful for studying IDPs. Artificial neural networks trained on disordered sequences

form the basis of the PONDR (Prediction of Naturally Disordered Regions) family of algorithms,

while biophysical predictors like FoldIndex rely on sequence characteristics like the relatively

high ratio of mean net charge to mean hydropathy for IDPs to predict disordered regions (He et

al., 2009). Experimental methods for studying IDPs, both in terms of classification and in terms

of exploring more detailed structural and functional information, are an ongoing field of

research.

Although NMR spectroscopy has provided some insight into examining structural

fluctuations in proteins, obtaining an accurate snapshot of a disordered protein's allowed

conformations remains challenging (Oldfield and Dunker, 2014). Recently, a phenomenological

model developed by J.L. England to estimate the "burial trace," or the squared distance of each

amino acid from the center of mass in the lowest-energy fold of a polypeptide chain, has shown

promise as a method of computationally exploring the allowed conformational space of protein

folds (England, 2011). The burial trace is computed by minimizing an energy function

consisting of the hydropathies of each residue and the stretching between neighbor amino acids,

subject to steric constraints. The calculation generally takes less than a second to run for short

sequences, and adding noise to the parameters of the system can generate an ensemble of amino

acid burial patterns for a given protein sequence that can be used to investigate the variability in

structures that a protein can adopt.
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Examining the benefits of using the model in this manner requires testing it on a well-

defined system of structural disorder. The human von Hippel-Lindau protein (pVHL) is one

such example that both contains intrinsically disordered regions and is particularly susceptible to

incorrect folding. This model misfolding protein forms part of an E3 ubiquitin ligase complex

that targets molecules like HIF-l for degradation, and has been catalogued in depth because

hundreds of different mutations have been linked to cancer pathways in humans (Nordstrom-

O'Brien et al., 2010). The first -60 residues of the 213-residue protein remain disordered in the

protein's native state, and it must undergo a distinct folding pathway in vivo including interacting

with chaperones and binding with its cofactors elongin B and elongin C to achieve a state

resistant to cellular degradation (McClellan et al., 2005; Schoenfeld et al., 2000). When folded

correctly in complex with its cofactors, the non-disordered region adopts a well-defined tertiary

structure; however, the protein adopts a molten globule state without its binding partners in vitro

that consists of a partially collapsed state with some secondary structure but no tertiary structure

(Sutovsky, 2004). This molten globule state, determined by gel filtration chromatography Stokes

radius calculations, ease of low-concentration urea denaturation, and circular dichroism,

indicates that pVHL has difficulty achieving its native state without interactions with other

proteins. Perturbations to the system, including mutations to pVHL, are likely to lead to a

misfolded or otherwise nonfunctional version of the protein in vivo (Hansen et al., 2002; Knauth

et al., 2006). When VHL is introduced into non-native systems like S. cerevisiae or E. coli,

where it does not exist naturally, the protein cannot achieve a biologically stable state and in

yeast is quickly degraded by the cell (Melville et al., 2003; Sutovsky, 2004). In the context of

understanding PQC in yeast, pVHL is a protein whose typical state is poised between adequate

folding and being targeted for destruction through a misfolding recognition pathway.
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To investigate the link between the underlying biophysics of protein folding and the role

of the PQC machinery in recognizing and either repairing or clearing misfolded proteins, the

England model was used to investigate the folding characteristics of the human von Hippel-

Lindau tumor suppressor protein. Burial traces were calculated to predict exposed residues for

the lowest energy conformations of different mutations of pVHL, 20 of which were created

experimentally, to help elucidate the interplay between some of the physical forces that govern

protein folding and the PQC response.
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Abstract

The human von Hippel-Lindau (VHL) tumor suppressor is a marginally stable protein previously

used as a model substrate of eukaryotic refolding and degradation pathways. When expressed in

the absence of its cofactors, VHL cannot fold and is quickly degraded by the cell's quality

control machinery. In this work, we combined computational methods with in vivo experiments

to examine the basis of VHL's misfolding propensity. By expressing a set of randomly mutated

VHL sequences in yeast, we discovered a mutant form stable against degradation. Subsequent

modeling suggested the mutation had caused a conformational change affecting cofactor and

chaperone interaction, and this hypothesis was then confirmed by additional knockout

and overexpression experiments targeting a yeast cofactor homolog. These findings offer a

detailed structural basis for the modulation of quality control fate in a model misfolded protein

and highlight burial mode modeling as a rapid means to detect functionally important

conformational changes in marginally stable globular domains.
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Introduction

To function properly in the cell, a globular protein chain typically must remain folded

into a specific conformation or set of conformations known as its native state. A primary

determinant of how a globular protein folds is its amino acid sequence, which fixes the pattern of

internal and external forces that act on the polypeptide chain in the aqueous environment. When

a protein cannot reach or cannot maintain its native conformation in the cell it is considered to be

in a misfolded state, which is often accompanied by a loss of cellular function. Misfolded

proteins also exhibit a marked tendency to associate non-specifically, and sometimes form

potentially cytotoxic aggregates if left to accumulate in the crowded intracellular environment

(Amen and Kaganovich, 2015; Chiti and Dobson, 2006, 2009; Luby-Phelps, 2000). A large

range of globular proteins have been shown to form amyloid fibrils under partially-denaturing

conditions (Chiti and Dobson, 2009). Mutations or stochastic processes that lead to protein

misfolding and/or aggregation have been implicated in proteinopathies such as Huntington's,

Alzheimer's, Parkinson's, and the prion-based Creutzfeldt-Jakob disease, emphasizing a need to

better understand the cellular response to protein misfolding in the context of the physical

driving forces that govern how an amino acid sequence can reach its native structure (Mulligan

and Chakrabartty, 2013).

The protein quality control (PQC) machinery consists of the cellular pathways linked to

protein folding and misfolding. Chaperone proteins, a key component of PQC systems, can

either assist a misfolded protein in refolding or can target incorrect conformations for destruction

through the ubiquitin proteasome pathway or autophagy (Kim et al., 2013). Despite the

prevalence of PQC machinery across organisms, many aspects of the system are not well

understood. Misfolded proteins are able to reach a wide variety of different non-native states,
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and the PQC must be able to recognize this diverse group of conformations either to assist

refolding or to target them for destruction before the misfolded polypeptide can detrimentally

affect the cell. Hsp70, a pleiotropic heat-shock-induced chaperone conserved from bacteria to

eukaryotes, has been shown to recognize exposed hydrophobic sites, particularly short (~5-7

residue) hydrophobic sequences flanked by positively-charged amino acids (Marcinowski et al.,

2013; Rildiger et al., 1997). The eukaryotic chaperonin TRiC, on the other hand, has eight

distinct subunits that are each capable of recognizing distinct motifs in a variety of substrates,

with mutations in different subunits leading to different cellular phenotypes (Amit et al., 2010;

Spiess et al., 2006). Because the outcome of the PQC triage decision must ultimately depend on

a protein's structure, investigating the role of small conformational perturbations in the

sensitivity of a misfolded protein to the QC machinery can indicate how a PQC substrate's fate is

modulated for typical substrates.

Marginally stable proteins, which can misfold easily and exist at a 'tipping point'

between stable conformations and PQC-targeted misfolded variants, have been used as an

experimental mechanism to explore PQC substrate recognition and subsequent refolding and

degradation pathways. The human von Hippel-Lindau protein (VHL) is one such example that is

particularly susceptible to incorrect folding. This model misfolding protein forms part of an E3

ubiquitin ligase complex that targets molecules like HIF-1 for degradation, and has been

catalogued in depth because hundreds of mutant forms have been linked to cancer pathways in

humans (Nordstrom-O'Brien et al., 2010). The first ~60 residues of VHL remain disordered in

the native state; however the 213-residue protein as a whole must traverse a distinct folding

pathway in vivo including interacting with chaperones such as Hsp70 and TRiC and binding with

its cofactors elongin B and elongin C to achieve a state resistant to cellular degradation
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(McClellan et al., 2005; Schoenfeld et al., 2000). For TRiC, two short motifs in the VHL

sequence - Box 1 and Box 2 - have been shown to be necessary and sufficient for TRiC binding

to VHL in yeast (Feldman et al., 2003). When folded correctly in complex with its cofactors, the

non-disordered region adopts a well-defined tertiary structure; however, the protein adopts a

molten globule state without its binding partners in vitro that consists of a partially collapsed

state with some secondary structure but no tertiary structure (Sutovsky, 2004). This molten

globule state indicates that VHL has difficulty achieving its native state without interactions with

other proteins. Perturbations to the system, including mutations to VHL, often lead to a

misfolded or otherwise nonfunctional version of the protein in vivo (Hansen et al., 2002; Knauth

et al., 2006). When VHL is introduced into non-native systems like S. cerevisiae or E. coli,

where it does not exist naturally, the protein cannot achieve a biologically stable state and in

yeast is quickly degraded by the cell (Kaganovich et al., 2008; Melville et al., 2003; Sutovsky,

2004; Weisberg et al., 2012). Since VHL is a protein whose typical state is poised between

adequate folding and being targeted for destruction in yeast, it is ideal for use as a probe of how

different folds (or misfolded variants) can lead to diverse outcomes through PQC pathways.

One of the persistent difficulties in understanding the physical mechanisms of protein

misfolding and subsequent PQC interactions is that almost by definition, misfolded proteins are

not amenable to conventional methods of structural characterization. Protein chains that adopt

main different conformations cannot be crystallized easily, and aggregation-prone proteins are

difficult to solubilize for in vitro characterization. Thus, in examining the effects of different

mutations on a marginally stable protein like VHL, a computational model that could give

insight into the resulting structural changes could offer a new and much needed perspective on

the connection between sequence, structure, and recognition by PQC machinery for a large
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number of sequences. Recently, we developed a phenomenological model to predict tertiary

structural information from sequence alone in globular proteins that has shown promise as a

method of computationally exploring the allowed conformational space of fluctuating protein

folds (England, 2011). The burial trace is computed by minimizing an energy function

consisting of the hydropathies of each residue and the stretching between neighbor amino acids,

subject to steric constraints. The calculation generally takes less than a second to run for short

sequences, and adding noise to the parameters of the system can generate an ensemble of amino

acid burial patterns for a given protein sequence that can be used to investigate the variability in

structures that a protein can adopt. The rapidity of this model in determining structural

information makes it an excellent candidate for probing large numbers of potential mutations of

marginally stable proteins to understand PQC response to different conformations in silico and to

guide in vivo experiments. This analysis could also shed light on a possible functional role for

marginal stability, which may enable sensitive modulation of expression through qualitative

transitions in conformational state.

To investigate the link between the underlying biophysics of protein folding and the PQC

fate of a model misfolded protein, the burial mode model was used to investigate the folding

characteristics of the human von Hippel-Lindau tumor suppressor protein. Burial traces were

calculated to predict exposed residues for the lowest energy conformations of different mutations

of VHL, 20 of which were generated experimentally and tested for their degradation properties

in vivo. One of these mutations had markedly and consistently higher levels of VHL present at

steady state. Through the use of burial mode analysis, the structural basis of its enhanced ability

to persist in the cell was characterized. Our findings confirm that VHL sits on a structural

tipping point in sequence space, where a single mutation can lead to a qualitative shift in folding
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stability that leads to an altered quality control outcome. Not only do these results highlight the

power of a new computational model in gaining elusive information about the structure of

intrinsically disordered proteins, they also raise the possibility that such proteins may generally

be poised to exhibit strong sensitivity to mutation in vivo, where small perturbations can lead to

large differences in the amount of folded protein that survives PQC supervision.
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Results

Our initial goal was to see if we could use computational modeling of the VHL protein to

design mutations that would alter its misfolding and degradation. Since VHL is a human protein,

it lacks its elongin binding partners when expressed in yeast, and thus is quickly degraded. We

began by using burial mode analysis to design mutations of VHL that would be expected to

reduce the protein's misfolding propensity, and thus slow the degradation of the protein in the

yeast cytosol.

Our previous work presented a phenomenological framework to estimate the "burial

trace," or the distance of each amino acid from the center of mass in the lowest-energy fold of a

globular polypeptide chain. This burial trace predictor assumes that each amino acid behaves

like it is connected by a spring to its neighbor residues, simulating peptide bonds (Fig. 1). These

hypothetical springs contribute to the overall energy for the system, along with the energetically

unfavorable terms of putting hydrophilic residues far from the center of the protein and burying

hydrophobic ones. This energy function can then be minimized through linear optimization

under geometric constraints, specifically to ensure that the individual peptides are not clustered

into a small volume that would lead to prohibitive steric clashing in a physical scenario. The

calculation generally takes less than a second to run for short sequences, and results in a

prediction of the distance of each residue from the center of the protein in its lowest energy state,

called the burial trace.
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Fig. 1. Overview of burial mode modeling (a). An amino acid chain can be modeled as points

connected by springs representing peptide bonds. An energy function including costs for

stretching neighbor residues apart and putting hydrophobic residues on the outside of the

protein can be minimized under our desired steric constraints to predict low-energy burial

patterns. (b) An example of a burial trace, plotting a measure of an amino acid's distance from

the center of mass of the protein in its lowest-energy conformation versus that amino acid's

index in the protein sequence.
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VHL's relatively small size (213 residues) and predominance of alpha helical structure in

its non-disordered region make it a good candidate for use of the burial mode model. As a first

attempt at modeling VHL stability, all (3 possible VHL pair-swap mutations (where amino

acids at two different locations in the sequence are switched, which preserves overall residue

frequencies for the sequence) were ranked according to a parameter called structural variability.

The hypothesis behind our procedure was that VHL mutants that were less capable of fluctuating

between structurally different conformations at low energy (i.e. at energies comparable to the

thermal energy scale kT above the energy of the optimal ("native") configuration) were less

likely to be recognized as misfolded by the quality control system. Accordingly, for each pair-

swap mutation, we first calculated the burial trace that was maximally different from the optimal

lowest energy trace at fixed, low energy. Then, we ranked the mutations, and selected those ten

for which this maximized difference was smallest. This procedure yielded ten "least structurally

variable" mutants to test experimentally. We also selected a control group of ten mutations that

were randomly chosen with uniform probability over all possible pair-swap mutations. The

complete set of mutations is listed in Table 1.

Low Structural Variability Mutations Random Mutations

1. K171 P61 11. E173 K196
2. R176 G14 12. E70 G19
3. V20 R3 13. V155 G 19
4. P99 V74 14. T124 K159
5. V66 P40 15. T157 V194
6. K171 P5 16. D28 A56
7. V20 R4 17. G93 V181
8. R167 All 18. R69 S168
9. C162 N7 19. L201 E173
10. Q203 N109 20. S183 C162

Table 1. List of mutants that were created experimentally, half of which were chosen based on a model parameter
and half of which were chosen randomly.
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All 20 mutations were then created in an S. cerevisiae constitutive plasmid with an

attached fluorescent Dendra2 tag and transfected into budding yeast cells, which contain neither

native VHL protein nor the human elongin co-factors. If the VHL protein were able to adopt a

fold that is resistant to PQC degradation, then the attached fluorescent tag would also be

preserved and observable. Fluorescence was detected by using quantitative flow cytometry (Fig.

2a). A subset of these mutants were then tagged with GFP and integrated into the genome under

the control of a galactose-operated promoter, and their expression level was quantified by

fluorescence microscopy at steady-state levels (Fig. 2b).
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Fig. 2. Analysis of VHL mutant stability by flow cytometry and fluorescence microscopy

(a) Fluorescence measurements by quantitative flow cytometry for all experimentally-created

VHL mutations and normalized to fluorescence of the wild type sequence. The orange entry

indicates the most stable mutant, VHL" (L201-El 73) in both panels. (b) Selected mutants were

also introduced to S. cerevisiae cells and expressed endogenously as a GFP fusion construct,

and observed directly by fluorescence microscopy with results normalized to GFP levels without

VHL. Error bars for all sections represent standard error. See also degradation curves in

Figure S.
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Despite how they were chosen, the first ten non-randomly chosen mutations exhibited

lower overall fluorescence than the ten randomly chosen control mutations. This result either

could be interpreted to mean that the predictions of the burial mode model were wrong, or else

that our chosen criterion for enhanced VHL folding (low predicted structural variability) was the

wrong one. Had the random control set behaved no differently than the designed mutants, the

trail would have gone cold at this point. Surprisingly, however, two mutations in the random

control set achieved greater than a three-fold increase over the wild type sequence in the flow

cytometry data. The mutant V155-G19 (henceforth referred to as VHL"13), which demonstrated

70% of the fluorescence of the Dendra2 tag alone, changed a hydrophobic residue in the Box 2

region (spanning residues 148-155) which mediates the chaperonin TRiC's interaction with VHL

and replaced it with the smaller and more flexible glycine, which is normally located in the

disordered N-terminal region. This mutation was distinct in our set because it was the only one

that directly affected a knQwn chaperonin binding site, which provided a natural rationale for its

altered degradation.

The mutant VHL' 9, L201-E173, however, exhibited the highest level of fluorescence with

a five-fold increase in steady-state levels compared to the wild type sequence and -85% of the

baseline Dendra2 level, which corresponds to a five-fold increase in the protein's ability to

escape PQC degradation. This mutation's high steady-state levels were further confirmed in the

fluorescence microscopy. The biophysical characteristics of the residues swapped were

dissimilar, with the hydrophobic leucine at residue 201 changing into a negatively charged

glutamic acid (normally at residue 173) and vice-versa. Although both mutations occurred in the

region that adopts a well-defined conformation during correct folding, neither was in a known
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binding site for cofactors or chaperones, raising the possibility that an allosteric response could

explain the structural change necessary to evade PQC degradation systems.

Past work has established several interaction sites in the well-folded region of VHL,

including two short motifs called Box I (residues 114-118) and Box 2 (residues 148-155) that

are known to bind to chaperonins (Feldman et al., 2003) and a short binding motif for VHL's

cofactors elongin B and elongin C. A BLAST search for VHL cofactors elongin B and elongin

C also revealed that although elongin B does not have a counterpart in yeast, a homolog of

elongin C is present. Furthermore, this homolog has been shown to bind to a VHL fragment

containing residues from 157-171, which contains the known elongin B/C binding site, in vitro

(Botuyan et al., 2001). Since elongin B and C stabilize VHL in human cells, one testable

hypothesis is that burying the chaperonin interaction sites (and therefore possibly protecting

VHL from chaperone-assisted degradation) and exposing the elongin interaction site could help

explain why certain mutations caused the protein to resist degradation in the cell.

To explore how mutations could affect conformations, particularly in understanding

exposure patterns of different interaction sites, the burial trace of each experimentally created

mutant was computed using the burial model and compared to the actual burial trace calculated

from the crystal structure of the well-folded region. Since the basic burial trace model works

best on alpha-helical structures, each input sequence was truncated to residues 63-204

corresponding to the region that can be crystallized (PDB IVCB) in an attempt to improve

accuracy within the region that can adopt a well-defined folding state (Stebbins et al., 1999).

Fig. 3 shows the predicted burial traces for the wild type and VHL1 9 sequences, along with

maximal and minimal predicted burial values at each residue for all 20 experimentally created

mutations. The experimental burial trace obtained directly from the crystal structure of wild type
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VHL (PDB I VCB chain C) is also shown. The crystal structure burial trace shows a distinctive

burial of the Box 1 and Box 2 regions, suggesting that TRiC uses these regions to recognize the

protein's failure to fold natively. The elongin binding site meanwhile is moderately exposed

compared to Box I and Box 2 in the native conformation.

Out of all the experimentally tested mutants, the well-stabilized VHL' 9 mutation (Fig. 3,

orange line) is predicted to have the most buried Box 1 and Box 2 regions, similar to how TRiC

is able to bury these motifs in achieving its native conformation in human cells. Furthermore,

the elongin interaction region of the VIHL19 mutation was distinctive in that the burial mode

model predicted that it was one of the most exposed regions in the entire sequence. This

property of burying known chaperone interaction sites and exposing the cofactor binding site is

unique among the other mutant and wild type sequences (Fig. 3, gray envelope and black line,

respectively), and is more similar to the known native conformation of the protein derived from

its crystal structure.
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Figure 3. Burial mode analysis of VHL mutants

(a) The crystal structure of parts of VHL can be obtained when the protein is bound in complex

to cofactors like elongin C, which binds to VHL between residues 157-166. VHL also is known

to interact with chaperones in regions called Box 1 and Box 2. (b) The VHL 9 mutation (orange

line) is predicted to bury its Box 1 and Box 2 regions, suggesting a conformation that is closer to

the form the protein takes when stably bound as part of the VBC complex (green line). The

elongin-interaction site of the mutation is also predicted to be highly exposed compared to both

the wild type (black line) and the other experimental mutations (grey envelope). Location of

specific mutations are shown in Figure S2.
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To test the significance of this finding, we also calculated each possible pair swap

mutation in the region of VHL that can be crystallized (residues 63-204) and compared their

burial traces by Pearson correlation to the crystal structure's burial trace. Only 6.18% of

possible mutations in this region had a higher correlation with the crystal structure than the

VHL19 mutant (Fig 4a).

The two stabilizing mutants were unique in that they affected chaperone binding sites,

either through direct mutation, as in the case of VHL , or through causing the burial of these

sites to be more energetically favorable, as in VHL1 9. The other distinctive component of the

VHL' 9 burial trace, however, was its extreme exposure of its elongin cofactor binding site. We

hypothesized that VHL' 9 evades degradation by combining reduced chaperonin interaction with

increased stabilization through interaction with the elongin co-factor. Thus, we scored all

possible pair swap mutations by ranking directly how well the Box 1 and Box 2 chaperonin

interaction regions were buried and the elongin interaction site was exposed based on the burial

model's predictions. This score can be obtained from a mutated sequence by calculating the sum

of the predicted distances of the most-buried residues in the Box I and 2 regions from the center

of mass of the protein, and adding this subscore to the predicted distance of the maximally-

exposed residue in the elongin interaction region from the most exposed residue of the entire

protein (Fig 4b). The smallest score would correspond to Box I and Box 2 being located at the

center of the protein and the elongin interaction site being on the most external part of the

protein's surface, which would in turn correspond to the hypothetically best way of evading

degradation by achieving greater folding stability in the cell.
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Figure 4. VHL1 's burial pattern is distinct from the other mutated sequences (a) Compared to all

possible pair swap mutations in the region of VHL that is able to be crystallized (residues 63-

204), VHL 9 (black arrow) is predicted to have a higher burial pattern correlation with the

crystal structure than 93.82 % of all other possible mutations. (b) An illustration of how scores

were generated for each possible mutant, where the smallest score would correspond to maximal

burial of the Box 1 and 2 regions and maximal exposure of the elongin interaction site. (c) Each

possible pair swap mutation in the region [63,204] was scored according to Fig. 4b. VHL1 9 has

the lowest (best) score out of -10,000 mutations. The locations of the other experimental

mutants in the histogram are indicated by the gray lines, with VHL 19 marked by the orange line.
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Amazingly, according to this scheme, VHL19 turned out to have the lowest (most

optimal) score out of -10,000 possible mutations (Fig. 4c). The location of the other

experimentally determined mutants is also shown, indicating a large gap in scores between

mutant VHL1 9 and the rest of the experimental sequences. The scores of the rest of the

sequences, however, did not correlate with their fluorescence levels, indicating that this may be a

binary effect only observed at the extreme achieved by VHL 9 .

The homolog of elongin C, Elcl, is not an essential protein in S. cerevisiae, so to test our

hypothesis that the VHL19 mutation helped stabilize the protein by decreasing chaperone

interactions and/or interacting with Elci, the mutated VHL sequences were transfected into an

Elcl knockout of yeast. Fluorescence microscopy was again used to measure persistence of the

VHL mutant protein in the cell (Fig. 5). The stable expression of VHL' 9 in the knockout strain

Aelcl was decreased to that of the wild type, indicating that Elcl could be helping to stabilize

this mutation and lending credence to the findings of the burial model. A plasmid containing

human elongin B and C, known to help stabilize VHL in humans, was then transfected to cells

expressing the integrated VHL mutants and constitutively expressed (EBC OE strain). The

presence of VHL's natural cofactors further stabilized the VHL 19 mutant by -70%, providing

more evidence that the cofactor elongin homolog directly contributes to the exceptional extra

stability of the VHL' 9 mutant.
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Fig. 5. Analysis of mutant VHL interaction with Elcl through deletion and overexpression GFP

constructs with VHL were expressed in wild type S. cerevisiae (grey, center in grouping), a

knockout strain for the yeast homolog of elongin C Aelcl (light blue, leftmost in grouping), and

in the EBC OE strain that introduced and overexpressed human versions of elongin B and C

(dark blue, rightmost in grouping). Although expressing VHL 19 in the Elcl knockout strain

decreased the mutant VHL's levels to that of wild type VHL, the presence of human elongin B

and C markedly increased VHL19levels. Error bars represent standard error in all sections.

Degradation curves for the wild type sequence under both EBC OE and knockout conditions are

also shown supplementalfigure S.
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Having quantified fluorescent levels, we then looked more closely at the cell biological

phenotypes of the different mutants. Further observation of the behavior of different VHL

mutants in the Aelci environment revealed clear puncta formation for most mutants, including

VHL'9, in the absence of the yeast homolog of elongin C (Fig. 6). Puncta formation is linked to

different aspects of the PQC system, including differential processing of terminally misfolded

proteins and as a response to external and internal stress (Amen and Kaganovich, 2015;

Narayanaswamy et al., 2009). Elongin C is itself part of the polyubiquitination process,

functioning as a component of an E3 ubiquitin ligase complex in both yeast and mammals and

therefore directly contributing to PQC systems through its participation in ubiquitin-mediated

degradation pathways (Lisztwan et al., 1999; Ramsey et al., 2004). Intriguingly VHL13 (which

had also exhibited high fluorescence in the original flow cytometry experiment) escaped this

cellular phenotype, remaining diffuse throughout the cell. This VHL sequence is the only one

tested that changed a residue in a known chaperonin binding site, indicating that this mutation

might be able to escape PQC recognition and avoid being sequestered in puncta before

degradation. This result is certainly consistent with our original hypothesis that the higher

fluorescence of VHL 13 was due to altered chaperonin interaction.
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Fluorescently tagged VHL mutants display a distinct cellular phenotvpe when expressed in the

Aelcl strain compared to the wild type strain. Different panels show different mutant versions of

VHL in both the wild type (top) and Aelcl (bottom) strains, with green representing the

fluorescent protein fusion construct and red the vacuole. VHL4 and VHL5 were unable to be

detected in the cell at appreciable quantities, and only GFP alone and VHL13 escaped the puncta

phenotype characterized by the other VHL forms.

39

GIP VHL - VHL4 VHL VHL VHL



Discussion

The ability of a cell to recognize aberrant proteins and target them for either refolding or

destruction is crucial to maintaining protein homeostasis and preventing pathological

aggregation. At the same time, allosteric interactions caused by relatively minor mutational

changes can have a large impact on how a protein is categorized by the PQC system.

Consequently, an improved understanding of how potential PQC substrates may be driven

between qualitatively different conformational states by various perturbations is essential to a

full understanding of how the cell maintains proteostasis.

A persistent challenge in studying many PQC substrates is that by nature they tend to be

structurally disordered and are therefore not easily amenable to traditional methods of in vitro

structural characterization (Oldfield and Dunker, 2014). As a result, there is an opportunity for

computational methods to play a central role in providing valuable structural information that

can be used in combination with experimental results to better understand how the PQC fate of

misfolding-prone proteins may be affected by mutation or stress. This study presents a novel

method of integrating computational biophysics techniques to gain an experimentally testable

glimpse into how marginal stability affects protein interactions with the PQC machinery. This

approach of using in silico results to guide in vivo experiments, and vice-versa, demonstrates that

both approaches can be used in tandem to yield better explanations for these biophysical

phenomena.

In particular, due to its marginal stability, VHL has been used as a model substrate for

chaperone proteins involved in assisted folding pathways as well as for studying PQC systems.

Hsp90, Hsp70, and TRiC have all been shown to interact with VHL in yeast, with the chaperonin

TRiC potentially functioning as a 'holdase' for containing nascent VHL until it can bind to its
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elongin cofactors (Feldman et al., 1999). Although TRiC hasn't been directly implicated in the

degradation processes, some mutant forms of VHL have also been shown to be able to refold

after denaturing events in a chaperonin-independent way in vitro but not in vivo (Feldman et al.,

2003; Yang et al., 2013).

In this study we present 20 novel pair swap mutations of VHL that switch the position of

two residues in the sequence and examine the protein products in yeast for a measure of their

ability to escape rapid degradation by the cell. In particular, two mutations caused VHL to be

detected in much larger amounts than that of transfected wild type VHL: swapping the valine

and glycine residues at positions 155 and 19 respectively (VHL1 3) and swapping the leucine and

glutamic acid residues at positions 201 and 173 (VHL' 9). The first mutant directly affected a

chaperone binding site, while the second did not mutate residues in any known chaperone or

cofactor interaction motifs.

Initially, these results were surprising because both stabilizing mutations were chosen

randomly as part of the control group, while the test group of ten mutants designed to exhibit

more stability actually produced less-stable behavior on average. The underlying rationale

behind choosing this latter group of mutants focused on predicting how easily a protein structure

could access different structures at a low energy, with the idea that sequences displaying the least

variability in predicted structure also might indicate increased thermodynamic stability and

decreased degradation by the PQC system. The behavior of these mutants in vivo illustrates the

difficulty in teasing apart the mechanisms of PQC response for marginally stable proteins. In the

case of the ten designed mutants, the lower-than-expected observed amounts present in the cell

may have been indicative that the mutated sequences were 'kinetically trapped' in one

configuration that was more easily identified by the PQC system. An estimate between the
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random and non-random sets bounded the probability of observing no highly fluorescent hits in

the non-random set while obtaining two or more hits in the random control set at a maximum

value slightly below 0.1. It is possible that the structural variability calculations actually

predicted the opposite effect than originally thought - namely, lower ability to persist in the cell

rather than higher thermodynamic stability. In this case, our designed parameter to maintain

protein structure despite small energetic fluctuations may have made these mutants more

susceptible to degradation, underscoring the importance of examining how protein

conformational changes can affect the outcome of PQC interactions. Future sequence design

protocols along the lines of our initial attempt should therefore be modified to include not only

the effect of structural variability, but also the importance of maintaining resemblance to a native

fold that exposes the right parts of the chain on the surface.

To explain the two unexpectedly stable hits in the random control sample, the biophysical

burial mode model was used to examine each of the twenty mutated sequences. These structural

predictions were also compared to the wild type sequence and its experimentally determined

structure. Strikingly, the burial mode model predicted that the mutated sequence of VHL' 9

would fold such that it would bury known hydrophobic chaperone interaction sites while

exposing a motif known to be necessary and sufficient for binding to a homolog of its human

cofactor elongin C in yeast (Figure 3). The two chaperone interaction sites have been identified

as binding to TRiC, with the first motif also similar to the known Hsp70 recognition motif of a

short hydrophobic sequence flanked by charged residues (Kim et al., 2013; Ruidiger et al., 1997).

Thus, one possible effect of the VHL19 mutation could be to suppress interaction between the

VHL protein and the PQC machinery. Even more intriguingly, the burial mode modeling also

points to the possibility that this mutant form of VHL is stabilized because of interactions with a
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cofactor homolog that does not stabilize the wild type sequence. The cofactor elongin C exists in

yeast despite the absence of other VHL cofactors, but previous studies had indicated that it does

not increase the half-life of wild type VHL (McClellan et al., 2005). However, when we

introduced VHL' 9 into a yeast strain lacking the elongin C homolog, levels of mutant VHL were

decreased to that of the wild type protein, providing compelling experimental evidence in

support of the hypothesis that the yeast homolog of elongin C does substitute for the human co-

factor's effect as predicted and stabilizes the VHL' 9 mutant. This hypothesized interaction

between the elongin cofactor homolog Elci and VHL in yeast was further supported when the

different mutants were examined by microscopy (Figure 6), since the absence of Elcl gives rise

to a new quality control phenotype in wild type and most mutated forms of VHL.

Using VHL as a model protein, the burial model has been shown to be capable of

providing explanations of the relative likelihood of a mutated protein being degraded based on its

ability to adopt different conformational states. Furthennore, this predictive capability was able

to scan a large set of sequences in a relatively short time, providing rapid structural information

about all possible mutations to narrow and refine experimental studies. The effectiveness of the

burial mode model in explaining structural changes in mutant forms of VHL has significant

implications for the underlying physical driving forces behind VHL stability. The model

predicts structural change by calculating the trade-off between hydrophobic and steric effects;

thus, our findings point to the possibility that VHL's marginal stability originates in a fluctuating

balance struck among three distinct stretches of moderately hydrophobic sequence (Box 1, Box2,

and the ELC-binding region) that compete for limited space in the protein's packed hydrophobic

core.

43



Meanwhile, the elevated levels of VHL ", V 155-G19, that we observed are more likely to

have been the result of altered interaction with chaperones that directly followed from changes to

known chaperone binding sites. The fact that this mutant was alone in escaping the puncta

phenotype observed by microscopy in other VHL variants in the Aelci strain further illustrates

the complex interactions that characterize cellular PQC systems involving both segregation and

degradation of terminally misfolded proteins.

Stabilization both through modulation of chaperone interactions and through cooperative

interactions with binding partners is implicated for VHL in determining how the PQC responds

to conformational variants. Past computational work has underlined the importance of allosteric

conformational change to VHL structure and function (Liu and Nussinov, 2008). Our findings

confirm the importance of these effects specifically in connection to cofactor binding.

Furthermore, this analysis also raises the question of whether or not a marginally stable protein's

susceptibility to adopting different structural forms might be advantageous to the cell, since this

differential folding pattern based on small perturbations is directly coupled to PQC response.

For example, an enhanced sensitivity to mutation can allow an additional level of cellular

modulation of a protein's functional fold, or can contribute to a protein's enhanced ability to

rapidly traverse an evolutionary landscape to find potential new folds.

Expanding our computational and experimental analysis to other proteins besides VHL

may also prove informative in how the PQC responds to other marginally stable proteins, and in

elucidating the importance of such a protein's structural flexibility in a cellular context. The

well-characterized p53 protein is similar to VHL in that it is small enough for burial trace

analysis (393 amino acids), includes an N-terminal intrinsically disordered region, shows low

thermodynamic and kinetic stability, and is characterized by a large number (>1000) of cancer-
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related mutations found in humans (Joerger and Fersht, 2007). Additionally, a recent study has

indicated that p53 interacts with the same chaperonin, TRiC, that is involved in VHL folding

(Trinidad et al., 2013). This protein's similarity to VHL, both in terms of its functional

properties and its clinical importance, makes it an enticing target for burial analysis. Further

exploration of the structural basis of misfolded protein recognition, including of client tumor

suppressors like VHL and p53, can give new insights into how cells maintain proteostasis and

what structural mechanisms can drive qualitative shifts in the PQC fates of marginally stable

proteins on the brink of structural disorder.
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Experimental Procedures

Yeast Strains, growth conditions and materials

Yeast growth, media preparation and manipulations were performed according to standard

protocols (Adams et al., 1997). The strains used are listed in Table 2.

Strain

BY4741

BY4741 Aelcl

Genotype

BY4741 Mata his3delO Ieu2del0 metl5delO ura3delO

BY4741 Mata his3delO leu2del0 met]5delO ura3delO

elcl::KANMX

Reference

(Brachmann

et al., 1998)

(Winzeler et

al., 1999)

BY4741 GFP

BY4741 GFP-VHL

(wt or mutants)

BY4741 his3::GALp-GFP -HIS3

BY4741 his3::GALp-GFP- VHLH' "nutans-HIS3

Plasmids used in this study are summarized in Table 3. VHL gene was fused to GFP or DDR2

and was expressed under the control of a galactose-regulated promoter (Gallp), nis-TFP was

used as a nuclear marker and expressed under GAL I Op.

Plasmid Description Reference
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pESC-LEU-ELONGIN B/C

pDK2-22 pRS303-GAL~p GFP GALlOp nls-TFP This study

pDK2-(2-2 1) pRS303 GALlp GFP-VHLw or mutants GALI Op nls-TFP This study

pDK5 (1-21) pESC-URA GALlp GFP-VHL"or'"mutants GALlOp nis-TFP This study

pDK437 pRS316 GPDp DDR2 This study

pDK437 (2-21) pRS316 GPDp DDR2 - VHLw't or mutants This study

Microscopy

For imaging yeast cells were grown on galactose containing media to middle log phase and

seeded on concanavalin A (Sigma) coated 4-well microscope plates (IBIDI). Confocal 3D

images were acquired using a dual point-scanning Nikon AlR-si microscope equipped with a

Plnano Piezo stage (MCL), using a 60x PlanApo VC oil objective NA 1.40. Calculations of the

fluorescence intensity and image processing were performed using NIS-Elements software.

Single cell degradation assay

Cells were grown as described earlier. The expression of GFP-VHL variants was induced by

switching to galactose-containing media for 6 hours. The degradation was calculated as a

decrease in the green fluorescence intensity after cells were transferred to glucose media (time

0). The fluorescence intensity of single cells was calculated using NIS-software. All data points

were nonnalized to GFP fluorescence decay under the same conditions.
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FACS analysis

Yeast strains were grown on selection media for 2 days, diluted twice a day to log phase, and at

the 3 day the fluorescence intensity of the DDR2 tag fused to VHL were analyzed by FACS with

488 laser using BD FACSDiva (BD Biosciences, San Jose, CA) software.

Mutagenesis

Different VHL mutants were cloned using restriction free cloning protocol as described (van den

Ent and Lowe, 2006). Briefly, primers were designed according to desired mutation and used for

first PCR reaction to amplify a mega primer caring two mutations on the VHL sequence. Mega

primers were used for a second PCR reaction to amplify the whole pDK5 plasmid with the

desired two mutations using high fidelity DNA polymerase (KAPA KR0370). Dpnl digestion

were used after second PCR to get rid of the old methylated plasmids and left only with the new

mutated plasmids. VHL mutants were then subcloned to pRS plasmids for FACS analysis.

Statistical Analysis

For comparing the designed mutants to the control group, we estimated our probability of the

result arising from chance by calculating the number of "hits" (fluorescence levels above a

threshold T) in both the designed and control group:

Max(P( no hits > T in designed I f) * P( 2 or more hits > T in control f)

where each probability is calculated as a binomial distribution arising from f, the underlying

fraction of hits expected to be seen above the threshold. For the calculation in this paper, the

threshold was set at 60%.
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Supplemental Figures
Figure S1, related to Figure 2. Degradation curves for VHL.

(a) Degradation curves are shown for the two most stable mutations, VHL19 (orange) and VHL13 (black),

and wildtype sequence (grey). Both mutated sequences exhibit slower degradation compared to the

wildtype. Curves are normalized to GFP degradation as well as initial values. (b) The degradation curves

for the wildtype sequence under normal (grey), elci knockout (light blue), and human elongin BC

overexpression (dark blue) are shown, using the same normalization scheme as in (a). Error bars for (a)

and (b) are standard error over a triplicate experiment.
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Figure S2, related to Figure 3. Positions of relevant mutations of VHL.

The crystal structure of VHL (light grey) with its binding partner elongin C (dark grey) is shown, with the

mutated residues for VHL19 (orange) and VHL13 (green). The second mutation in VHL13, at position 19,

falls in a disordered region that has not been crystallized.
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Chapter 3

Understanding protein sequence evolutionary constraints

The previous chapter illustrated that a combination of computational and experimental

techniques can be used to understand how an individual misfolded protein can be targeted for

degradation by the cell. Under a fluctuating environment, however, many different pathways can

be affected by changing external conditions. Individual protein misfolding is also only one

potential outcome of external stresses that cause change in the intracellular environment.

Therefore, environmental perturbations can represent a driving force that acts to select for

specific protein biophysical characteristics. Since these stress responses can change intracellular

conditions, one idea is that cytosolic proteins can act collectively to improve overall cellular

survival. In this context, a large, coordinated response across both proteins and pathways could

help explain how yeast cells are able to exhibit resistance to glucose starvation by entering a

quiescent state where metabolism, translation, and division are downregulated. By examining

how biophysical characteristics like electrostatic attraction change as a result of starvation stress,

we can explore the evolution of collective cytosolic properties.

Previous work has helped elucidate the general evolutionary constraints that act on

individual protein sequences, with recent work also providing insight into the constraints on the

network topology of protein-protein interaction networks. Epistasis, the phenomenon where

genotypic changes can contribute non-linearly to larger phenotypic changes, also represents a

promising avenue for exploring how proteins can exhibit both collective behavior and collective

evolution. However, understanding selective pressures using this framework has been

challenging because it requires identifying relatively weak interactions within a large potential
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sequence space. In this chapter, I include a discussion of the general constraints that act on

individual protein sequences, and will then connect these constraints to selective pressures that

act on protein interactions. In the context of environmental perturbations, we can then examine

how protein collective behavior evolves to enhance cellular survival under adverse conditions.

Early observations of how proteins differ among species came from examining the

sequence compositions of different proteomes, particularly between microorganisms (Freeland

and Gale, 1947; Stokes and Gunness, 1946). The line of reasoning that species might have

different amino acid frequencies has helped researchers identify key variations; by using the

mathematical techniques of principal components analysis, full-proteome composition signatures

between archaea, eubacteria, and prokaryota were found to be distinguishable (Pe'er et al.,

2004). Disordered proteins, which are more commonly found in multicellular eukaryotes, are

also more correlated with an increase in the residues R, K, E, P, and S (Dunker and Obradovic,

2001; Romero et al., 2001). These proteome characteristics have also been used to postulate

evolutionary advantages. One study reported that the negatively-charged glutamic acid and the

positively-charged lysine and arginine residues have a correlated enrichment in

hyperthermophilic species (Tekaia et al., 2002). Multiple evolutionary explanations have been

proposed to explain this difference in charged residue frequencies between thermophiles and

mesophiles, including increased stability through ionic interactions (Tekaia et al., 2002) and a

decreased tendency to participate in hydrophobic-based aggregation (Greaves and Warwicker,

2007). However, these studies have been limited in their ability to examine emergent collective

protein behavior that forms a direct response to environmental stresses.

Another evolutionary constraint that has been observed is selection for the

thermodynamic and kinetic properties of individual proteins. Protein misfolding can lead to the
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formation of irreversible aggregates, which are toxic to the cell and require dedicated quality

control systems that can be overwhelmed (Chiti and Dobson, 2006; Kaganovich et al., 2008;

Mulligan and Chakrabartty, 2013). Furthermore, many globular proteins have the ability to form

amyloid-like structures under native conditions based on local unfolding, indicating the degree to

which cells must be able to handle potential misfolding events (Chiti and Dobson, 2009).

Therefore, the dynamics of protein folding and misfolding represent a potential biophysical

evolutionary constraint.

One selective pressure that has been demonstrated is a heightened tendency towards fast

(but not the fastest possible) folding kinetics of a group of protein sequences, which can help

avoid aggregation of long-lived intermediate states (Mirny and Shakhnovich, 1999). An even

stronger evolutionary pressure has also been demonstrated in the SH3 domain family,

specifically a strong tendency to have slower unfolding rates (Di Nardo et al., 2003; Sikosek and

Chan, 2014). Highly abundant protein species also evolve more slowly, which has been

connected to the correlation between protein abundance and aggregation (Ciryam et al., 2013;

Serohijos et al., 2012). This evolutionary constraint pushing proteins towards being less likely to

misfold is a global trend, but tends to act at the level of individual sequences.

An additional factor to consider in the evolution of protein folding kinetics is the

presence of chaperone proteins. This class of proteins, discussed in the previous chapters, helps

proteins to fold and additionally can target misfolded proteins for either refolding or degradation.

The thermodynamic stability of proteins presents a barrier to the evolution of individual proteins;

namely, many mutations tend to be destabilizing and are not well-tolerated by the cell due to an

increase in misfolding (Tokuriki et al., 2008). Chaperones can help mitigate this limitation on

mutational exploration, specifically by allowing proteins that might have been selected against
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otherwise on the basis of fold stability or folding kinetics to explore new regions of the fold's

fitness landscape (Tokuriki et al., 2004; Wyganowski et al., 2013). Therefore, a protein's

evolvability - the ability of a sequence to try new mutations and therefore new functions and/or

folds - can be tied to the presence and co-evolution of proteostasis networks.

This connection between protein quality control systems and their client proteins also

leads to the question of how molecular chaperones have evolved and what selective pressures act

on them. From a biomedical standpoint, using a directed evolution approach in the lab can be

beneficial to engineering chaperone systems that are better able to target the cytotoxic aggregates

found in neurodegenerative diseases like Huntington's, Parkinson's, and Alzheimer's. One

rationale for this methodology is that these diseases often onset after reproductive age and may

not provide strong deterrents to maintaining full proteostasis activity against "late-expressing"

mutations (Balch et al., 2008; Gavrilov and Gavrilova, 2002; Mack and Shorter, 2016).

Recent forays into this field have also provided examples of the tradeoffs involved in

increasing efficiency of specific chaperone proteins. An early study attempted to improve the

efficiency of the bacterial chaperonin system GroEL/ES and its involvement in the folding

process of the green fluorescent protein GFP (Wang et al., 2002). Although they were able to

increase the folding efficiency of GFP significantly, their engineered GroEL/ES system

subsequently displayed increased specificity as well. The variants were generally unable to

assist their normal clients with folding, which in E. coli amounts to roughly 10% of cytosolic

proteins (Clare and Saibil, 2013). These results indicate that there exists an evolutionary tradeoff

between being general enough to interact with multiple client substrates and overall functional

efficiency for molecular chaperones.
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Selective pressure that acts on interaction sites also forms an evolutionary constraint on

intrinsically disordered proteins (IDPs) as well. As discussed in Chapter 1, these proteins are

characterized by a much more diverse and flexible ensemble of structures that define their native

conformational state(s). Due to this plasticity, IDPs are not necessarily subject to the same

overall constraints that characterize globular proteins; however, their sequences are not random

and they are also susceptible to biophysical limitations (Sikosek and Chan, 2014). IDPs tend to

be the hubs in protein-protein interaction networks, and are capable of binding to multiple

interaction partners (Dunker et al., 2005; Oldfield et al., 2008). IDPs can undergo partial or

almost complete folding upon binding (Dyson and Wright, 2005), so mutations that affect

binding sites are subject to increased evolutionary pressures that are still being explored (Brown

et al., 2010).

Experimental and evolutionary characterization of protein

interaction networks

Client substrate recognition as an evolutionary constraint extends beyond chaperones and

IDPs as well. The expansion of high-throughput proteomic technologies over the past few

decades has enabled researchers to elucidate protein-protein interaction networks for different

species, including S. cerevisiae. One particular methodology is yeast two-hybrid (Y2H)

screening, a high-throughput experiment that is able to measure the presence of an interaction

between a bait and prey protein through the expression of a reporter gene; recent advances in

experimental design have allowed for increasingly accurate binary interaction networks to be

found (BrUckner et al., 2009). In combination with massive libraries, this technique has enabled

probing of -70% of all possible S. cerevisiae binary interactions within the yeast proteome (Yu

et al., 2008). Mass spectrometry has also emerged as a powerful new tool capable of handling
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interactome-level questions. Based on how ions derived from peptide sequences can be

characterized by their mass-to-charge ratio, mass spectrometry can detail with high accuracy

which proteins were present in a complex that had previously been purified (BrUckner et al.,

2009). Simultaneously, the frameworks of experimental and computational systems biology and

network topology have contributed to a better understanding of how protein interactions function

in the cellular environment.

The evolution of experimental techniques to identify the components of protein

interaction networks has also led to an increased ability to probe the evolution of the protein

interaction networks themselves. The expansion of available genomic information has enabled

researchers to use multiple sequence alignments and phylogenetic trees to identify co-evolving

amino acids within and between proteins which share an aspect of the protein's evolutionary

history and are likely to be highly spatially correlated (G6bel et al., 1994; Lockless and

Ranganathan, 1999; Pazos and Valencia, 2001; Pazos et al., 2005). This approach has been used

to predict protein-protein interactions and to infer three-dimensional structural information from

genetic data alone (Hopf et al., 2014; Ovchinnikov et al., 2014; Skerker et al., 2008; Weigt et al.,

2009). Beyond general biophysical constraints imposed on a protein's stability and folding

kinetics, these results indicate that understanding how evolutionary pressures act at a systems

level can provide information about how cells have evolved to survive and thrive under different

environmental conditions that can affect many protein pathways at once.

One evolutionary constraint that acts on the entire protein interaction network is the

degree of binding partners for each protein within the interactome. Individual proteins can act as

'hubs' that have many potential interactions; work from 2002 showed that these proteins evolve

more slowly than less-connected sequences in the network (Fraser et al., 2002). Furthermore, the

60



same study also showed that proteins that interact have similar evolutionary rates, pointing to

inter-protein coevolution. In an artificial minimum proteome, a correlation between protein copy

number, charge, and mass were also found to be optimized for protein-protein interaction

networks (Xu et al., 2013). Protein abundance has also been shown to be negatively correlated

with evolutionary rate, likely as a result of a selective pressure to avoid misinteraction between

proteins (PAl et al., 2001; Yang et al., 2012).

The concept of promiscuity as a central feature of proteins within an interaction network

can also provide information on how specificity evolves. A toxin-antitoxin system was used in a

recent study to show that interaction specificity - i.e. the ability of one protein to exclude most

strong binding except to its interaction partner - likely evolves through a promiscuous

intermediate state (Aakre et al., 2015). For signal transduction systems like histidine kinases

and their response regulators in bacteria, specificity allows for cells to accurately interpret

environmental information, with crosstalk between different signaling components having the

capacity for deleterious effects. Therefore, residues in multiple proteins have been shown to

coevolve to target different substrates and maintain a degree of pathway specificity (Skerker et

al., 2008).

In the crowded cellular environment, minimization of nonfunctional interactions can also

serve as a topological constraint on protein-protein interaction networks. Work based on

assuming that nonfunctional interactions are a waste of protein resources predicted that yeast

have close to the theoretical maximum number of allowable proteins (Zhang et al., 2008). Later

work also showed that a selective pressure against potentially disease-causing nonfunctional

binding can cause protein interaction networks in multicellular organisms both to limit the size of

their proteomes and to favor a scale-free topology with a few hub proteins and many proteins
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with few interaction partners (Johnson and Hummer, 2011). This tendency towards decreasing

nonfunctional interactions is also echoed in cell's expression profile, where hub proteins and

sequences with increased ability to interact nonspecifically tend to have decreased abundances

(Heo et al., 2011; Levy et al., 2012). Another constraint imposed on hub proteins as part of their

interaction network topology focuses on how they contact their binding partners - hub proteins

that tend to be more disordered with a single promiscuous binding interface also tend to interact

more through hydrophobic contacts than electrostatic contacts, which impacts the overall

network formation (Dosztinyi et al., 2006; Peleg et al., 2014).

Additionally, protein quality control systems that impact the evolvability of individual

proteins can also impact how protein-protein interactions evolve. Active chaperones that directly

catalyze folding have been shown to allow a fuller exploration of sequence space to strengthen

functional interactions and to decrease nonfunctional interactions by lessening the selective

pressure for individual protein stability (Qetinba and Shakhnovich, 2013). These results

indicate the degree to which protein quality control and stress response systems can impact the

evolutionary trajectory of both individual proteins and their interactions.

Stress response as a proteomic-level selective pressure

Constraints on the evolution of individual protein sequences, like selection for stability

and slower unfolding, are examples of global pressures that can also affect how protein

interaction networks form. Mutational effects, like the relative advantages of promiscuity versus

specificity in network topologies, also might only become apparent when viewed from a systems

level. However, these evolutionary trajectories of protein groups have only been studied

extensively in the context of protein-protein interaction networks, and further work is needed to
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understand fully the degree to which co-adaptation of complexed proteins underlies observed

patterns of amino acid coevolution (Pazos and Valencia, 2008).

Epistasis, which refers to multiple mutations in a gene or set of genes having

compounding instead of additive effects, has been identified as a potential framework for

understanding how proteins can evolve collectively (Weinreich et al., 2013). In this context,

mutations spread out across many genes or proteins might have a disproportionate effect on a

cell's phenotype. In particular, epistasis has been implicated as a driving force behind the

evolutionary trajectory of a transcription factor and its DNA binding sites (Anderson et al.,

2015). However, detecting these signals can be computationally challenging, since it requires

detecting relatively weak yet potentially related genotypic changes across large groups of

proteins. Epistatic interactions also remains elusive to quantify, with different studies reporting

either minor or major effects on protein evolution (Papp et al., 2011; Starr and Thornton, 2016).

Furthermore, determination of the degree to which epistasis acts between proteins has been

identified as an appropriate framework to better understand evolutionary processes (Poelwijk et

al., 2015; Starr and Thornton, 2016).

Previously, I have focused on understanding protein quality control systems in the

context of protein misfolding and its impact on protein evolvability. However, these systems

also form part of a cell-wide response to different types of intracellular and extracellular stress.

Environmental perturbations like nutrient deprivation or heat shock result in large phenotypic

changes in cellular behavior and affect the cell's ability to maintain homeostasis. The degree to

which nutrient starvation, for example, can directly impact the local environment of many

cytosolic proteins in S. cerevisiae provides a lens with which to view protein evolution in the

context of enhancing survival given selection on the collective behavior of cytosolic proteins.
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Particularly, glucose deprivation in S. cerevisiae typically causes a drop in cytosolic pH,

which impacts the local environment of cytosolic proteins (Orij et al., 2009). Changes in the

local environment have also been linked to collective protein behavior like higher-order

assembly formation in this yeast (Petrovska et al., 2014). The large-scale nature of this

environmental stress and emerging evidence of its correlated widespread protein response make

it an ideal system for examining how epistasis can shape proteome-level selection pressure as a

response to nutrient deprivation. Evidence for the degree to which yeast proteins have evolved

to exhibit this collective behavior can be found in the next chapter.
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Abstract
Under rapidly fluctuating environments, cells that are able to respond appropriately to harsh

conditions are more likely to survive and reproduce. In the case of nutrient starvation, many

proteins must act in concert to keep a unicellular organism alive, pointing to a concerted

selective pressure that acts on many proteins simultaneously. However, understanding how the

collective behavior of cytosolic proteins evolves can be difficult since this process involves

looking for weak signals spread across many protein sequences. Here, we present the budding

yeast glucose starvation response as an example of proteome-level selection pressure. In S.

cerevisiae, starvation conditions - specifically a lack of glucose - lead to a rapid pH drop in the

cytosol. This deficit in nutrients is also linked to an enhanced ability of proteins to form higher-

order structures. In this study, we present a proteome-wide computational analysis to examine

how protein interactions might be affected by a drop in pH, and present evidence that proteins

that are normally associated under physiological conditions may actually be more

electrostatically attractive at lower pH values. This tighter association of different proteins could

help the cell control large-scale metabolic pathways and store and protect individual proteins

from terminal misfolding and aggregation. Studying this phenomenon allows for exploration of

proteomic-scale evolution, something that can be difficult to characterize by current

experimental methods.
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Introduction
Studying the evolutionary trajectories of protein sequences has given a greater

understanding of how proteins fold and behave in the crowded intracellular environment.

Environmental fluctuations can occur rapidly as well, exposing cells to a wide variety of

extracellular stimuli that can have profound effects on their intracellular states. Since external

stress can affect many functions throughout the cell, it also represents a selective pressure that

acts on many proteins at once. Since many cytosolic proteins are either involved or affected by

environmental fluctuations like nutrient depletion, one possibility is that an emergent collective

behavior of these proteins can confer increased resilience to suboptimal conditions. The large-

scale responses that occur as a response to environmental stress therefore provide a way to study

the evolutionary forces that underlie coordinated protein behavior.

Prior evolutionary studies have tended to focus on individual protein sequences. For

example, global evolutionary constraints like those imposed on protein minimal stability and

unfolding kinetics have been identified as common selective pressures (Di Nardo et al., 2003;

Mirny and Shakhnovich, 1999; Sikosek and Chan, 2014). However, recent work has been able

to demonstrate that the coevolution of amino acids between proteins is sufficient to make

predictions about three-dimensional structures of protein complexes (Hopf et al., 2014;

Ovchinnikov et al., 2014). At the level of proteomes, amino acid sequence composition also has

been shown to be capable of distinguishing among both kingdoms and individual species

(Freeland and Gale, 1947; Pe'er et al., 2004). Evolutionary explanations like increased protein

stability or decreased tendency to aggregate have been suggested as possible explanations for

differences in charged residues for thermophilic species when compared to mesophiles (Greaves

and Warwicker, 2007; Tekaia et al., 2002). However, due to the nature of tracking relatively

small, widespread signals across many sequences, examining how the proteome as a unit evolves
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to survive stress - and how proteins might coordinate emergent behavior as a result - remains

difficult to quantify.

One large-scale perturbation that imposes severe constraints on a population of cells is an

absence of necessary nutrients. These starved cells, either individually or communally, must be

able to respond appropriately to this environmental cue to mitigate potential damage or to avoid

premature apoptosis. Such large-scale cellular insults also have the capacity to alter how each

individual protein behaves and how these proteins form interactions with each other. Many

species have dedicated protein quality control (PQC) systems that can attempt to rescue

misfolded protein variants that become more abundant under stress conditions or target them for

degradation (Hart] et al., 2011; Kim et al., 2013). Although these systems are complex and well-

suited for a variety of responses, they rely on ATP and other energy carriers being readily

available to ftnction - which can be depleted under nutrient deprivation. Since multiple

pathways are affected by extracellular conditions, having a signal capable of quickly initiating

stress response tactics for many proteins at once can be advantageous for cellular survival.

One potential example of both a rapid and large-scale phenotypic change that occurs

during nutrient depletion can be found in intracellular pH shifts. In the budding yeast

Sacharomyces cerevisiae, starvation conditions - specifically a lack of glucose - can lead to a

rapid pH drop in the cytosol. The underlying mechanism is thought to be related to the inability

of vacuolar and plasma membrane ATPases to properly maintain intracellular pH in yeast's

preferred acidic environment (Diakov et al., 2013; Martinez-Mufioz and Kane, 2008; Orij et al.,

2009, 2011). This acidification process occurs on the order of seconds to minutes, and upon re-

addition of glucose the pH quickly returns to a physiological level. However, the effects of this

pH drop on cytosolic proteins and their interactions is an open question.
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Because this drop in pH subsequently changes the local environment of cytosolic

proteins, it also represents a chance to examine how collective protein behavior might have

evolved under this different intracellular context. Acidification can sometimes be an essential

part of a molecular process, as is the case with spider silk formation (Askarieh et al., 2010) and

brine shrimp's entry into a dormant state (Busa and Crowe, 1983). A shift in the pH of the

cellular cytosol could also have a profound effect on the proteome as a whole, since shifts in pH

cause a change in the charge profile of individual proteins. Recent work has shown that the pH

shift associated with yeast starvation causes the protein glutamine synthetase to form higher-

order structures, which could represent an emergent collective behavior than can be examined in

the context of proteome-scale evolution (Petrovska et al., 2014). Furthermore, starvation-induced

changes have been linked to protein assemblies like puncta structures in a wide range of other

yeast cytosolic proteins, characterized by a protein transitioning from being diffuse in the cytosol

to forming tightly colocalized clusters that can be detected as a small bright spot using

fluorescence microscopy and are characterized by their quick reversibility upon glucose

readdition (Narayanaswamy et al., 2009; O'Connell et al., 2014; Peters et al., 2013; Petrovska et

al., 2014; Sagot et al., 2006; Suresh et al., 2015). This formation might help protect proteins

from adverse structural changes during quiescence, which is the non-growing state cells can

enter during suboptimal conditions (Laporte et al., 2011; Peters et al., 2013).

A link between glucose starvation, cytosolic acidification, and higher-order protein

structure formation in budding yeast has been implicated in several studies, particularly filament

formation of glutamine synthetase (Petrovska et al., 2014) and the clustering of proteasomes into

'proteasome storage granules' under low pH conditions (Peters et al., 2013). Since acidification

can change the protonation state of multiple amino acids within the relevant pH range, one
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possible hypothesis is that acidification can cause proteins to become more electrostatically

attractive to each other. In other words, the pH shift - traditionally thought to be only a by-

product of the decreased ATP availability necessary for maintaining intracellular pH at

homeostatic levels - may also act as a modulator that can regulate collective protein behavior on

a global scale as a direct response to starvation stress.

However, this observation leads to another question: can collective protein behavior be

beneficial to cellular survival? Under starvation conditions, cells must optimize their overall

energy usage yet be available to re-enter the cell cycle quickly when conditions improve. These

constraints necessitate shutting down flux through many metabolic pathways; when the cell is in

a quiescent state, cellular growth and division are no longer prioritized. Alternatively,

colocalizing proteins that mediate pathways critical for cellular survival (but not growth) could

yield more efficient pathway organization (Castellana et al., 2014). Since harsh conditions can

also cause proteins to unfold, which leads to cytotoxic and irreversible aggregates, protecting

proteins by temporarily storing them in reversible puncta might also confer a selective

advantage. Additionally, this quick puncta dissolution could also allow cells to exit quiescence

rapidly and prepare them to resume division, as seen in the case of actin bodies that act as a

reserve of actin molecules during quiescence and enable rapid cell-cycle re-entry (Sagot et al.,

2006).

Analysis of the functional benefits of this putative large-scale protein coordination also

provides a framework for examining a broader question: proteomic-scale evolution. If these

puncta or other higher-order assemblies actually enable cells to better survive starvation

conditions, then this "by-product" pH shift might have acted as a selection pressure over an

evolutionary timescale that enabled budding yeast to take advantage of an extracellular-mediated
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process. Puncta formation is also associated with metabolic proteins, opening the idea that we

may be observing a selection pressure that acts on the entire protein interaction network instead

of targeting one particular protein or pathway subset. Studying how different species have

evolved to survive and thrive in adverse conditions requires looking for not only individual

protein evolutionary trajectories but also relatively obscure signals hidden across many proteins

- something that is difficult to test experimentally but can be an ideal candidate for

computational approaches. Here, we establish a mechanism by which pH can act as a tunable

and readily reversible knob in the cell that can modulate protein interactions like puncta

formation on the scale of the entire proteome. Furthermore, we present these results as an

example of selection pressures acting on the proteome as a unit instead of at the level of an

individual protein, illustrating how the yeast protein interaction network has evolved to enable

cells to survive prolonged starvation.

Results
When the pH of a protein's environment changes, amino acid side chains have the

potential to change protonation state and thus change the overall charge of the protein. Since the

acidification associated with glucose starvation occurs on a short timescale, many yeast cytosolic

proteins have the potential to change their net charge as a result. From an electrostatics

perspective, protein interactions also have the potential to be affected; if one protein remains

negatively charged under acidic conditions while an interaction partner goes from negatively to

positively charged, these two proteins might display an increased mutual attraction and therefore

a different interaction pattern under starvation stress. This large-scale variability in protein

characteristics in response to changing cytosolic pH provides an opportunity to examine how the

full set of protein interactions can be modulated under stress conditions.
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Mathematical model of structure formation using electrostatic

attraction

To explore the idea that the pH drop can cause proteins to co-assemble based on

electrostatic attraction, the predicted charge of each cytosolic yeast protein can be calculated

given amino acid side chain pKa values. These predictions have been used previously to

understand distributions of isoelectric points (the pH at which a protein exhibits no net charge) in

various organisms (Knight et al., 2004). Based on the Henderson-Hasselbalch relation, the net

charge of a given protein from its residues can be given by

Sequence

qprotein 1 + lOpH-pKaresidue
residue ={R,H,K,N-terminus}

Sequence
1S0 pH -pKaresidue

1 + 1OpH-pKaresidue
residue=Y,C,D,E,C- terminus)

where the first summation on the right side of the equation gives a partial charge from the

positively-charged arginines, histidines, lysines, and the N-terminus while the second summation

gives the partial charge contributed by the negative tyrosines, cysteines, aspartic acids, glutamic

acids, and the C-terminus given the pKa values of each residue and the pH of the environment

(Cameselle et al., 1986).

Considering just electrostatic interactions, proteins may be induced to come closer

together based on two overlapping ideas: decreasing electrostatic repulsion of a protein pair and

increasing electrostatic attraction. For example, two proteins that interact under normal pH

conditions might become more electrostatically attractive to each other as the pH drops and
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therefore associate more closely (Fig. I a). Protein pairs that are already colocalized, like those

known to interact with each other, provides a way to test whether proteins that are already

spatially correlated with each other preferentially undergo an increase in electrostatic attraction

to form higher-order structures.

To test this idea that pH can cause interacting protein pairs to form higher-order

structures, we also need a metric that can stratify interactions based on their ability to become

more attractive at a lower pH. To keep from introducing bias based on longer sequences having

a propensity for larger charge values, protein charges are first normalized by the number of

amino acids in their sequences. Multiplying the charge (q) per number of amino acids (1) of the

ith protein with thejth protein gives the following metric:

- qi,pHqj,pH
Efi,j},pH 

1ij

This heuristic will be more negative when two proteins are predicted to be more electrostatically

attractive at a given pH, and more positive when the two proteins are more likely to be repulsive

(Fig. 1 b). This model is simplistic in that it doesn't account for localized charge density, ion

concentration in the cytosol, or other environmental considerations beyond predicted net charge

of the proteins themselves. However, looking at protein interaction pairs through this

phenomenological framework allows us to examine many protein pairings quickly while helping

us understand the degree to which simple charge differences can mediate larger-scale changes in

protein interaction networks.
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Figure 1. Changes in electrostatic charge mediate protein interactions

A change in pH can cause several amino acids either to gain or lose protons, which can cause a

change in the net charge of the protein. If two proteins undergo charge shifts such that their

electrostatic attractiveness increases with decreasing pH, then they could form higher-order

structures like puncta. By using the heuristic described in Equation 2, we can stratify

interactions based on their electrostatic attraction. Two proteins that are oppositely charged

with large charge magnitudes would give a very negative EpH score; alternatively, two proteins

with the same charge at a given pH will display a positive EpH.
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Y2H interactions distinguishable using model

Protein pairs that interact under normal pH conditions may swing through shifts in

charge that make them more likely to associate more closely, forming the basis for how puncta

form under starvation conditions. To test this idea, we took the yeast interactome determined

from the union of multiple yeast two-hybrid (Y2H) screenings that together contained ~500

cytosolic binary protein interactions (Yu et al., 2008). For each pair, we computed E{i,j},pH for

pH 7 (approximately physiological) and for pH 5 (estimated cytosolic pH under starvation

conditions). Summing these scores gives one number, Z Etij},p,, that will be negative if the

interactome as a whole is predicted to have strengthened interactions on average.

If the set of yeast cytosolic proteins has undergone a collective selective pressure to avoid

cellular death during starvation based on modulating charged interactions, then the group of

actual interactions is likely to be distinct from random pairings of proteins that do not necessarily

interact in vivo. 10,000 random interactomes were created, each of which drew from the same

group of proteins as the Y2H set and included the same number of protein pairs. Importantly,

restricting the random interaction sets to actual yeast sequence information allows us to examine

the collective behavior of real protein interactions instead of identifying generalized bias in

sequence composition. The comparison of this distribution of random sets to the real

interactome is shown in Fig. 2. Under neutral pH, the real interactome is more negative than

99.4% of the random interactomes, indicating that under normal conditions electrostatic

attraction can help mediate protein-protein interactions. This expected result gives us more

confidence that our simple heuristic can isolate biophysical characteristics from large protein

datasets. When the pH drops to 5, the distribution of random interactomes becomes less

attractive on average; however, the real set of Y2H protein pairings remains at the same level.

80



4000

2000

-0.4 -0.2 0 0.2
LENt

0.4 0.6

B. 4000

2000

o 0.
-0.4 -0.2 0 U.2

\-'E Acidic

0.4 0.6

Fn4000

2000

0 -
-0.4 -0.2 0 0.2 0.4 0.6

Figure 2. Real interactions predicted to be more attractive than random interactions under both

neutral and acidic conditions.

In allpanels, the black striped arrow indicates the score for the real set of Y2H interactions. A)

Histogram of the scores of randomized interaction sets at neutral pH. Real interactions are

more attractive on average than random ones. B) Randomized scores at acidic pH (pH = 5).

Most random interactions become less attractive on average, but the real set of interactions

remains roughly the same as atpH 7. C) Histogram of the score atpH 5 minus the score atpH 7

for randomized interactions.
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This effect, where real interactions appear to be 'buffered' against changes in pH, was

surprising - our initial prediction was that the real interactions would have a more negative score

under acidic conditions, corresponding to becoming tightly colocalized enough to form higher-

order structures. While the real interaction set is more attractive than all 10,000 random

interaction sets tested under acidic conditions, it does not become more attractive under the shift

in pH. Additionally, these results were unchanged when the underlying topology - namely, the

degree of each protein node in the interaction network - was kept consistent between the real and

random interactomes (results not shown). These findings suggest that the budding yeast

interaction network displays a non-random pattern under pH stress, where an average real

interaction is more likely to stay at the same level of electrostatic attraction under cytosolic

acidification compared to random pairs of proteins.

In the context of understanding puncta formation, one explanation might be that proteins

with different roles in the cell might also have different abilities to form higher-order structures.

Sequestering proteins in puncta and therefore decreasing their function might prove

advantageous under starvation conditions, particularly if those proteins are involved in cell cycle

and division processes that are detrimental when energy sources are scarce. Therefore,

determining whether S. cerevisiae sequences are distinct from other species can help distinguish

whether the interaction network has undergone selective pressure to exhibit collective behavior.

Large-scale functional control represents a selective pressure

If this pH drop has provided a selection pressure on proteins in yeast to display the

experimentally observed clustering behavior, then we can examine similar, homologous protein

sequences in different organisms that do not display pH-shifting behavior. If their protein
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interaction pairs are less likely to be electrostatically attractive at lower pH, then this finding

would provide evidence that the pH shift has acted as a selection pressure on the yeast proteome.

We identified homologous sequences between the yeast Y2H set of interacting protein

pairs and the proteomes of different organisms, ranging from close unicellular relatives like S.

pombe to more diverged species like humans using the Ensembl Biomart database (Cunningham

et al., 2015). An interaction was considered to be homologous if an ortholog for both partners in

each Y2H interacting set were also found in the cross species, and an interaction score averaged

over number of homologous interactions was calculated for each cross species. Fig. 3a shows

the average interaction score for the subset of yeast interactions that exist in each organism.

Only two organisms, S. cerevisiae and the blind cave fish A. mexicanus, are predicted to have

attractive interactions under both neutral and acidic conditions. Since the blind cave fish lives

under extreme conditions anyway - typically cold and dark caves - we believe that this organism

has unusual pH-dependent properties at baseline.
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Figure 3a. S. cerevisiae proteins distinguishable from other organisms by their predicted

response to different pH values.

Each data point represents the set of budding yeast sequences that have direct homologs in a

different species - the list is given in the Methods section. The colorbar represents the fraction

of the budding yeast sequences that have homologs for that organism. Dotted lines demarcate

attractive versus non-attractive for interactions at neutral and acidic pH. The only organisms

that fall within this attractive region for both pH values are S. cerevisiae and A. mexicanus, the

blind Mexican cave fish. (Photo of S. cerevisiae: Ppdictionary.com/mycology. Photo of A.

mexicanus: CC License JohnstonDJ)
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Each average interaction score was computed for sequences directly from the comparison

organism as well, as shown in Fig. 3b. Only baker's yeast sequences display attraction,

characterized by having an interaction score that is negative, under both neutral and acidic

regimes. These results indicate that S. cerevisiae sequences have preferentially evolved to

display properties that are characteristic of large scale puncta formation under low pH. This

finding becomes more apparent when we directly compare yeast sequences to those of other

species, as shown in Fig. 3c. For all organisms studied, yeast sequences are either more

attractive at acidic pH or display very little difference when compared to their cross-species

homologous sequences. Together, these results suggest that the S. cerevisiae protein interaction

network has evolved to take advantage of the large-scale acidification that occurs during glucose

starvation.
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Figure 3b. S. cerevisiae proteins distinguishable from other organisms by their predicted

response to different pH values

Colors, dotted lines, and axes are the same as in Fig. 3a. However, scores were calculated using

the homologous sequences found in the cross-species directly. S. cerevisiae is the only organism

whose protein sequences display on average a pattern of being electrostatically attractive under

both neutral and acidic pH conditions.
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Figure 3c. S. cerevisiae proteins distinguishable from other organisms by their predicted

response to different pH values

Each bar represents the difference in average interaction score between budding yeast

sequences and the sequences of other species, listed on the independent axis, with calculations

done for both neutral (blue) and acidic (yellow) conditions. Although the pattern varies at

neutral pH, for almost all organisms budding yeast sequences tend to display more

attractiveness at acidic pH than their cross-species sequence counterparts, shown by most

yellow bars being negative.
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To provide evidence that this difference in the yeast interaction network has the

functional advantage required for selection, we then decided to examine which protein

interaction pairs in S. cerevisiae were more likely to become more attractive at low pH. One

such candidate group is the set of essential proteins, which are characterized by their knockouts

being unable to form colonies when plated. Because they are crucial for ensuring yeast division,

essential proteins might therefore be expected to form non-functional structures preferentially

under quiescence when compared to non-essential proteins.

To better understand which proteins might cluster to decrease their functional activity and

which might rely on continuing normal operations, the group of Y2H interactions was split into

three groups: interactions where both proteins are considered essential, interactions where only

one protein is considered essential, and interactions where neither protein is essential. Ei,j},pH

was calculated for all interactions, and histograms of the three different classes were made for

neutral and acidic pH values as shown in Fig. 4. When the cytosolic pH is roughly

physiological, interactions containing essential proteins were virtually indistinguishable from

those containing two non-essential proteins (p = 0.4657, Kolmogorov-Smirnov test). However,

under acidic conditions interactions containing either one or two essential proteins shift from

having a positive (less attractive) to negative (more attractive) median score when compared to

physiological pH. In comparison, the median of the class of interactions containing no essential

proteins remains greater than zero, indicating that these interactions are not as likely to become

more attractive under our prediction scheme (p = 0.009, Kolmogorov-Smirnov test between two-

essential and no-essential histograms). Furthermore, more interactions with either one or both

proteins being essential become more attractive when they go from a neutral to an acidic

environment compared to interactions where neither protein is essential; 58.8% of interactions
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with 2 essential proteins, 54.2% of interactions with I essential protein, and 37.7% of

interactions where neither protein is essential have lower scores at pH 5 than pH 7.

89



0.4

-3 -2 -1 0 1 2 30. 20

-3 -2 -1 0 1 2 3
E Nea 10-3

0
-3 -2 -1 0 1 2 3

\, E 10-

2 Essential

1 Essential

--- A--- 0 Essential

Figure 4. Essential proteins more likely to strengthen Y2H interactions at low pH.

All Y2H interactions were classified based on whether they consisted of two essential proteins

(blue line), exactly one essential and one non-essential protein (red dotted line), or two non-

essential proteins (black triangles). Histograms for each classification are shown for: A)

neutral pH, B) acidic pH, and C) the change in score from pH 7 to pH 5. Interactions that

contain at least one essential protein are more likely to become more electrostatically attractive

under acidic conditions.
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Functional relevance of high-scoring proteins

These results indicate that essential proteins are more likely to tightly colocalize on an

electrostatic basis than non-essential proteins, which provides evidence that puncta formation can

shut off different processes dependent on their functional role in the cell. To further explore the

relationship between function and puncta formation, we enumerated all possible triplets of

cytosolic proteins included in the Y2H data set. Instead of filtering through the lens of pre-

determined interactions, each protein was assumed to interact with the remaining two proteins in

the triplet. Scores for all three interacting pairs within a triplet were calculated and summed for

pH 5 and 7, and the groupings were ranked based on going through the largest change to become

more attractive under the acidic pH. The top scoring group is shown in Table 1.

Protein Name Description

YMR227C TFIID subunit; involved in RNA

polymerase II transcription initiation

YLR435W Protein with a potential role in pre-rRNA

processing

YELO12W Ubiquitin-conjugating enzyme that

regulates gluconeogenesis

Together, YMR227C and YLR435W appear as a pair in eight of the top-scoring triplets.

Functionally, these two proteins are relevant in the context of known phenotypic changes under
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starvation conditions. When budding yeast cells are deprived of glucose, gene expression is

altered - although some proteins like those involved in aspects of stress response become more

abundant, both transcription and protein synthesis decrease overall (Ashe et al., 2000; Gasch et

al., 2000; Gray et al., 2004; Klosinska et al., 2011). One class of proteins that is heavily

downregulated during carbon starvation is the group of proteins associated with ribosome

biogenenesis, ribosome processing, and translation, with transcription of these genes increasing

within minutes of glucose readdition (Kresnowati et al., 2006). YMR227C, the yeast gene

TAF7, is part of the TFIID complex that is thought to function as a regulatory checkpoint

responsible for repressing premature transcription (Gegonne et al., 2006). It is also required for

transcription of up to 24% of the S. cerevisiae proteome (Shen, 2003). Remarkably, translation-

associated genes are statistically overrepresented in the set of genes that YMR227C modulates (p

< 10^ -4 using PANTHER), indicating that abrogating its function would directly lead to

downregulation of a large group of proteins involved in translation (Mi et al., 2013). Together

with YLR435W, a protein involved in ribosomal biogenesis through 20S pre-rRNA processing

(Peng et al., 2003), the increased predicted ability of them to cluster electrostatically could help

explain part of the halt in transcription and ribosomal biogenesis associated with glucose

deprivation.

This example, where higher order protein structure formation can control an array of

cellular functions, indicates that targeting one protein through sequestration in puncta can also

affect transcriptional control that occurs during glucose starvation. Pathways like the PKA and

Snfl systems become activated under starvation conditions and help to regulate these differential

gene expression patterns (Broach, 2012). Recent work has suggested a link between the Snfl

pathway and higher order protein structure formation, specifically the protein KogI (YHRI 86C)
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that forms part of the target of rapamycin complex I (TORCI) complex in yeast (Hallett et al.,

2015). In the absence of glucose, a Snfl protein phosphorylates Kogl, which causes it to break

away from the TORCI complex and form an inclusion - a puncta structure - that reverses upon

glucose addition allowing Kogi to rejoin the complex. This reversible, glucose-dependent

assembly formation of KogI therefore helps regulate downstream targets of the TORC I

complex, which includes a variety of protein and nucleotide biosynthesis whose control is

associated with yeast entering a quiescent state (Barbet et al., 1996). These experimental results,

together with our observations of the proteins most likely to undergo a shift in attractiveness

under starvation conditions, point to a larger role for pH in modulating protein interactions that

could affect phenotypic gene expression levels in the absence of glucose.

The third protein in the triplet, YELO12W, exhibits ftmnctional relevance as well. This

protein forms part of an ubiquitin-conjugating enzyme that downregulates the gluconeogenesis

pathway in yeast (Schile et al., 2000). Specifically, gluconeogenesis is a pathway that converts

malate into glucose while S. cerevisiae are not in the presence of the fermentable carbon source

glucose. Since this pathway is only activated when cells are either carbon-starved or only have

access to non-fermentable carbon sources, sequestering downregulators byby electrostatic

colocalization may allow the pathway to proceed during glucose starvation, which would

constitute a direct example of a metabolic pathway that could be regulated by cytosolic pH state

as a messenger for glucose presence.

To further explore this idea, we looked at the eight downregulators and two upregulators

of gluconeogenesis in S. cerevisiae. If the downregulators are confined to puncta while the

upregulators remain diffuse at an acidic pH, then this higher order protein structure formation

could help explain how starvation-associated acidification can regulate an individual metabolic
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pathway. We generated random groups of eight cytosolic proteins, and calculated the sum of

interaction scores at each possible pairing within this group at pH 7 and 5 for 10000 trials. We

then compared those scores to that of the gluconeogenesis downregulators, and did the same for

the pair of upregulators using randomized cytosolic protein pairs. Results are shown in Fig. 5.

At neutral pH, gluconeogenesis downregulators are significantly less attractive than an average

grouping of cytosolic proteins. However, when the pH drops, gluconeogenesis negative

regulators are predicted to become much more likely to form electrostatically-mediated higher

order structures according to our criteria, with only 0.23% of random groupings having a more

attractive score. This group also undergoes one of the largest changes in interaction score

compared to the control distribution. On the other hand, the upregulators retain an average score

under both neutral and acidic conditions, indicating that their collective charge profile is much

less affected by glucose-mediated acidification than the downregulators.
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Figure 5. Down regulators of gluoconeogenesis predicted to form puncta under acidic

conditions, while positive regulators are unaffected by pH.

Random groups of cytosolic proteins, chosen to match the number of down or up regulators of

gluconeogenesis, were scored and the histograms for trials under different conditions are shown.

In all cases, the black striped arrow shows the location of the real group of down or up

regulators. Conditions are as follows: A) Neutral pH for real down regulators and random

cytosolic protein groupings, B) acidic pHfor real down regulators and random cytosolic

proteins groupings, C) change in score from pH 7 to pH 5for down regulators and randomized

groupings, D) neutral pHfor real up regulators and random groupings, E) acidic pHfor real up

regulators and randomized groupings, and F) the change in scores between neutral and acidic

pHfor up regulators and randomized groupings. While down regulators show a pattern of being

more likely to become more attractive at low pH, the up regulators do not.
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Entry into quiescence due to glucose starvation also affects many other pathways beyond

transcriptional control of translational products and activation of gluconeogenesis pathways.

Cell cycle control, translation, and large-scale metabolic responses all undergo phenotypic

changes in response to starvation. To tease out how starvation-induced protein collective

behavior can control different pathways on a larger scale, we next used Metropolis-Hastings

Monte Carlo sampling to generate a group of 30 cytosolic proteins that undergo the largest

change in group interaction score that involves an increase in attractiveness at low pH compared

to neutral pH. Each protein was then classified according to its Gene Ontology GO Slim term,

and was grouped into one of four categories: cell cycle, translation and RNA control,

carbohydrate and energy metabolism, and other. The first three titles are functional

classifications that tend to be suppressed during quiescence, which we predict are more likely to

become co-insoluble as a means of controlling cellular processes on a larger scale (Gray et al.,

2004). A comparison of our optimized group of proteins to the full cytosolic set is shown in Fig.

6. Together, cell cycle, translation, and metabolic control account for 69% of the selected group

of proteins. In contrast, these same groups only account for 29% of the full group of cytosolic

proteins.
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Figure 6. Cell cycle, translation, and metabolic proteins dominate group selected for

undergoing the largest downwards shift in total interaction score.

A) The fraction of all cytosolic proteins that can be classified as being involved in cell cycle

(purple), translation and RNA control (light blue), carbohydrate and energy metabolism (green),

and none of the above (yellow). The first three categories are typically decreased during glucose

starvation in S. cerevisiae. B) Fraction ofproteins that fall into the same categories for the

optimized group of 30 proteins that undergo the largest shift to become more attractive at acidic

pH.
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These potential functional benefits from controlling metabolic pathways, including

gluconeogenesis and ribosome biogenesis, on a large scale indicate that the yeast proteome

evolved to take advantage of the glucose deprivation pH drop. By clustering together due to

increased electrostatic attraction, these proteins could be protected from detrimental non-

reversible aggregation and premature degradation. The reversible nature of the clustering also

means that when the cellular pH returns to baseline levels upon nutrient availability, cytosolic

proteins can reactivate quickly and help bring the cell out of a quiescent state by returning to

normal function.

Discussion

This work highlights the importance of understanding intracellular spatial heterogeneity

in response to changing environmental conditions, and further suggests that understanding how

yeast form puncta structures in response to starvation can help us understand the physical forces

that drive protein colocalization in cells. Previous studies have shown that maximum metabolic

efficiency is linked to protein cytosolic distribution, with different enzymes in a pathway

colocalized in a common volume to improve downstream processing (Castellana et al., 2014).

These metabolic deposits might lead to different collective behavior as interactions between

different colocalized proteins become stronger and repulsion between like protein sequences

becomes weaker, which corresponds in our electrostatic framework to protein charge becoming

closer to neutral as the pH drops. From a functional standpoint, metabolic processes like

ribosome biosynthesis might become less crucial for a cell entering a starvation-induced

quiescent state where protein transcription rate decreases. The same may also be true for

production of nucleotides; prior research indicates that flux through the de novo nucleotide

biosynthetic pathway sharply decreases upon removal of carbon-source nutrients in yeast (Brauer
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et al., 2006). Therefore, proteins that are part of this pathway may form structures like puncta to

halt unnecessary metabolite production.

Here, we have examined whether the drop in pH associated with glucose depletion in

yeast can act as a large-scale modulator that controls the collective behavior of cytosolic

proteins. Our heuristic for determining degree of attraction between two proteins has been able

to distinguish real, Y21-1-confirmed interactions from random pairings of proteins. Furthermore,

we have determined that the proteins that are most likely to assemble according to our criteria

correspond to pathways that control growth, cell cycle and division, translation, and metabolism,

which also represent functions that tend to be downregulated during starvation conditions. Two

proteins that we predict are likely to become more "sticky" and help mediate puncta formation

are also associated with transcriptional and post-transcriptional control of translation and

ribosome biogenesis, which have been experimentally determined to decrease substantially in the

absence of glucose in S. cerevisiae.

In addition to sequestering proteins that would then shut off different functional

processes, higher-order structure formation might also form protective storage depots of

cytosolic proteins. The cell expends energy during translation to produce these proteins, so

storing them reversibly in anticipation of improved glucose availability can help the cell survive

and re-enter the cell cycle. In addition to keeping the proteins from being degraded, puncta

formation can also help protect them from misfolding events which, on a large scale, can be

lethal to the cell. Storage depots have been suggested in the context of proteasome storage

granules, which are also reversible assemblies composed of the large complex of the proteasome

degradation system in yeast (Peters et al., 2013). In this case, the proteasome is a large structure

that would be costly to degrade and is crucial for cellular survival under growth conditions.
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Similarly, the GO group that underwent the largest shift to become more attractive at pH 5 on

average was categorized by "proteolysis involved in cellular protein catabolic process," which

includes units of the yeast proteasome.

These functional benefits - large-scale and rapid pathway control and reversible storage -

point to the presence of a selective pressure that has acted on a large subset of cytosolic proteins.

S. cerevisiae are distinct in their ability to survive prolonged periods of starvation, and the

associated cytosolic pH shift and puncta formation across large subsets of the proteome have

only been observed in this species and, conditionally, D. discoideum (Petrovska et al., 2014).

This situation provides an example of putative evolutionary selection that has shaped an entire

protein interaction network. Traditionally, observing such widespread selection has been

challenging since it necessitates looking for a small signal spread across a large set of proteins;

instead, prior work has tended to focus on understanding the evolution of individual protein

sequences or the general topology of protein-protein interaction networks. This computational

study could provide evidence that the drop in pH has acted as a selection pressure on the yeast

proteome as a whole, with the significance of small-scale sequence alterations only becoming

apparent when examining large-scale, cellular-level processes. This notion that evolution can act

on the level of the proteome to modulate a collective property of the cytosol, in addition to the

selective pressures that target individual genes and proteins, can provide new insight into

evolutionary processes.
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Materials and Methods

Calculating pH-based protein charges

Yeast cytosolic proteins were identified by comparison against the YeastGFP Fusion

Localization database (Ghaemmaghami et al., 2003; Howson et al., 2005; Huh et al., 2003).

Proteins were included in the set if they were categorized as 'cytosolic', including proteins that

were tagged in multiple subcellular localizations. Protein charges were calculated according to

the Henderson-Hasselbalch equation as described in Eq. 1 in the Results section. Amino acid

pKa values used are as listed: D (3.9), E (4.3), R (12.0), K (10.5), H (6.08), C (8.28), Y (10.1)

(Gunner et al., 2006). All calculations were done using Matlab.

Calculating Y2H interactions

Yeast two-hybrid data were derived from a collective dataset (Yu et al., 2008). Entries were

screened to remove self-self entries, leaving 535 interactions composed of 539 unique proteins.

For randomized interaction sets, 535 pairs were drawn with replacement from the set of 539 pairs

were used for each trial. The figures show histograms with 10,000 trials. For comparison of

interactions with cross-species sequences, homologs of each yeast cytosolic protein were found

using BioMart with the Ensembl database release 77 (Cunningham et al., 2015; Herrero et al.,

2016). The list of organisms used for the cross-species comparisons are listed below, along with

their percentage of homologous proteins present:
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A. carolinensis 0.204082

A. fumigatus 0.506494

A. gossypii 0.71243



A. mexicanus 0.170686

A. niger 0.486085

A. oryzae 0.458256

B. taurus 0.19295

C. elegans 0.233766

C. intestinalis 0.246753

C. neofonnans 0.458256

D. rerio 0.187384

D. melanogaster 0.2282

G. gallus 0.198516

H. sapiens 0.204082

K. pastoris 0.61039

L. chalumnae 0.200371

M. musculus 0.200371

P. marinus 0.152134

S. pombe 0.445269

T. guttata 0.183673

T. melanosporum 0.486085

T. truncatus 0.220779

Y. lipolytica 0.55102

Yeast I
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Monte Carlo simulations

To generate the set of 30 proteins used for functional classification, Monte Carlo sampling was

implemented with a probability of accepting a randomly substituted protein into the group

proportional to a Boltzmann distribution. Each interaction score was calculated as the sum of all

possible pairwise interactions within the current group at both pH 5 and 7, and the energy analog

in the Boltzmann distribution was taken to be ZijApH 5-pH 7 Ejj for the ith and jth proteins within

the current set of 30. Trials were run for >100000 generations and checked for reasonable

convergence of the difference in summed interaction scores at pH 5 and pH 7.

Classifying protein functional classes

For ftnctional classifications, proteins were first categorized by their Gene Ontology (GO) Slim

term (Ashburner et al., 2000; Gene Ontology Consortium, 2015). Proteins that were associated

with the following labels were classified under the Cell Cycle and Division category: 'mitotic

cell cycle', 'meiotic cell cycle', and 'regulation of cell cycle'. The grouping 'ribosomal small

subunit biogenesis', 'cytoplasmic translation', and 'RNA modification' was categorized under

translational control. Finally, 'carbohydrate metabolic process' and 'generation of precursor

metabolites and energy' protein labels were grouped under the heading of carbohydrate and

energy metabolism.
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Chapter 5

Discussion and epilogue

The field of protein biophysics has expanded dramatically over the past decade. Protein

folding has emerged as a new horizon, fueled by the complexity involved in understanding the

ensemble of structures that is more likely to characterize a sequence than one rigid conformation.

New algorithms designed to tackle the protein folding problem have shown great promise in

helping to elucidate both the biophysical and evolutionary parameters that explain how proteins

function in the intracellular environment.

Understanding protein folding has become critically important in light of the wide variety

of human diseases that have been determined to have their origin in protein misfolding including

Alzheimer's disease, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and Type II

diabetes mellitus (Mukherjee et al., 2015; Mulligan and Chakrabartty, 2013, 2013). Prion

diseases like the transmissible spongiform encephalopathies also share the hallmarks of

misfolding; their infectiousness stems from the ability of a prionic, misfolded variant to induce

native copies of the protein to adopt the prionic form and aggregate (Jackson and Krost, 2014).

However, ftnctional roles for prion proteins in yeast have been identified in connection with

their ability to be inherited in their prionic form across generations (Halfmnann et al., 2012; True

and Lindquist, 2000). These findings illustrate the need for a better understanding of protein

misfolding, aggregation, and sequence evolution.

Two original projects have been presented in this dissertation, both of which have been

focused towards understanding how protein characteristics can change in the context of cellular

stress. In the first paper, published in Structure in 2015 (Chapter 2), we explored how a
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marginally stable protein is targeted for degradation in the cell (Brock et al., 2015). The von

Hippel-Lindau protein pVHL, used as a model misfolded protein, was mutated and transfected

into a unicellular environment that lacks at least one crucial cofactor. One mutation was able to

resist cellular degradation in this environment. Through a combination of computational and

experimental techniques, we saw that the mutant form of pVHL was predicted to shift into an

alternate conformation that was better able to bind to the homologous cofactor that was still

present in yeast. This enhanced binding abrogated the necessity of the secondary cofactor that is

only found in multicellular organisms. The conformational change also predicted that the mutant

pVHL could also hide its chaperone target sites better than the wild-type, providing another

method in which it could escape protein quality control recognition.

Together, these results provided insight into the factors that can modulate quality control

fate for an example marginally stable protein. This paper also highlights the strength of adding

computational analyses to experimental data, especially for proteins like pVHL that contain large

disordered regions that are difficult to characterize using solely experimental methods. Since

pVHL is a tumor suppressor protein, future directions could include expanding this analysis to

include other proteins like p53 that are also involved in cancer, exhibit significant

thermodynamic and kinetic instability, and contain large disordered regions. In particular, using

the England burial trace model could help find new ways to exploit protein-protein interactions

to stabilize protein variants that are connected with disease states in humans. Many point

mutations tend to be destabilizing, and the frequency of mutations in tumor suppressor proteins

in inherited cancers suggests that introducing a variant protein form that could help stabilize the

native tumor suppressor could provide a viable avenue for therapeutics research (Sikosek and

Chan, 2014).
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The interaction of pVHL with its cofactors and chaperones also points to the necessity of

understanding protein folding at a systems level. Since many functional forms of proteins bind

either transiently or long-term, examining protein interactions can allow us to better understand

functional pathways in the cell. Complex collective behavior of proteins has also been observed

in the context of stresses like nutrient starvation (An et al., 2008; Narayanaswamy et al., 2009;

Peters et al., 2013). The exceptionally crowded environment of the cytosol also provides another

facet to understanding how proteins form both transient and longer-lived interactions in both

functional and nonfunctional contexts (Luby-Phelps, 2000).

Understanding how proteins interact differently under both normal and abnormal

conditions also provides a framework to probe protein coevolution. Evolutionary constraints on

individual sequences to maintain thermodynamic properties, sequence composition, charge

profiles, or abundances have been observed, along with constraints on the overall topology of

interaction networks (Sikosek and Chan, 2014). The rapid advancements in sequencing

technology have also fueled the expansion of the number of sequenced genomes. This

availability in data has enabled us to probe the evolutionary history of many protein sequences.

However, understanding how proteins evolve collectively through the cumulative effect of amino

acid variants spread throughout the proteome remains an exciting challenge.

In Chapter 4, we attempt to answer how a proteome can evolve to exhibit collective

cytosolic behavior as a response to nutrient starvation. In S. cerevisiae, the cytosol tends to

acidify under glucose starvation, and this condition has also been connected to higher order

protein assembly formation (Petrovska et al., 2014). We propose that this pH shift can cause

many proteins to be inactivated simultaneously, which would regulate metabolism generally and

could also provide a protective benefit. Modeling results show that protein-protein interactions
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retain their electrostatic attractiveness even when the pH drops to levels found in glucose

starvation, while randomized interaction sets do not display this behavior. Furthermore, this

behavior only seems to be found in S. cerevisiae when compared to other organisms that do not

display the same response to nutrient depletion, indicating that a selective pressure could explain

this collective response. Proteins that are more likely to tightly colocalize and form structures

under this condition are also more likely to be involved in functional roles that are attenuated

under starvation condition, including gluconeogenesis downregulators and metabolic and cell

cycle inducing pathways. These results indicate that a collective property of the cytosol -

namely, tightly colocalizing protein groups together - can serve to modulate metabolic response

in general and represents a selective pressure that has affected the systems behavior of cytosolic

proteins as a group.

These results exemplify a novel approach to understanding how evolution can act on a

level that has been difficult to characterize previously. By looking at the collective behavior of

cytosolic proteins under stress conditions, we were able to tease out a selective pressure that has

acted in concert across a large swathe of the S. cerevisiae proteome. This new framework could

be applied to look at broader contexts of stress response; however, the implications extend

beyond the specific model and system used in this paper. By demonstrating that selective

pressures can act at a systems level to shape collective behavior, these results highlight the

complexities involved in protein evolution and the necessity of examining proteins from a

systems perspective to gain new insights.
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Appendix A

Alternative models to examine VHL allosteric response

In the chapter dedicated to understanding how a misfolded variant of VHL can escape

quality control degradation, we used a previously developed biophysical model that had shown

success in predicting allosteric response (Brock et al., 2015; England, 2011). This model, which

uses sequence information to calculate a burial trace based on amino acid hydrophobicity and

sequential order, is particularly well suited to this type of analysis. Each calculation typically

takes less than a second to run, which allows us to screen many possible mutations on a feasible

timescale. In contrast, using typical force-field folding algorithms like Rosetta can be

prohibitively slow, especially for VHL's crystallizable region that contains > 100 residues.

Previous work has shown that using experimentally characterized hydropathies like the

Kyte-Doolittle values are already optimal for correlating predicted burial trace with known

crystal structure values (Perunov and England, 2014). These results confirm that hydrophobicity

is a dominant factor in protein folding, at least in globular domains, and that these parameters in

the model are already at near-optimal levels. Therefore, one alternative model might examine

averaged hydrophobicity values taken over the sequence of VHL that can be crystallized. These

results would provide information about whether the predicted structural change caused by the

mutation can be explained more simply in terms of hydropathies, without relying on the steric

constraints that the burial trace model provides.
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Figure 1. Average hydropathies of residue windows compared to burial trace model.

Hydrophobicity was averaged along a window size denoted by color for (A) the wildtype
sequence and (B) VHL19, the stabilizing mutation. For comparison, the burial trace for (C)
wildtype and (D) VHL19 are shown below as well.

The averaged hydrophobicity at each residue was calculated by finding the mean

hydrophobicity using the Kyte-Doolittle scale of the immediately preceding and following amino

acids, and results are shown in Figure 1. The total number of amino acids averaged is referred to

as the window size; even window sizes calculated an average hydrophobicity for the first of the

two residues in the middle of the stretch, while odd window sizes were averaged around and

reported on the true median. Importantly, more hydrophobic residues are more positive on this

scale. To further examine whether average hydrophobicity is sufficient to explain the burial
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trace products by itself, I also plotted correlation of the average hydrophobicity with the

normalized burial trace for both the wildtype and mutated sequences. In this case, the degree of

anticorrelation corresponds to how well the averaged hydrophobicity model is able to

recapitulate the predicted burial traces.

*Wildtype Sequence

VHL19

0
0

0

0

0

0

2 4 6 8 10
Window Size

12 14 16 18 20

Figure 2. Correlation between burial trace model and average hydrophobicity for the mutated
sequence VHL19 (orange stars) and the wildtype sequence (black circles).

Here, we see that the optimal window size is 7 for the wildtype and 6 for the mutant

sequence, with a correlation of roughly -0.4 and -0.3 respectively. Therefore, although average

hydrophobicity contributes to the results of the burial trace model, the level of correlation is not

sufficient to reproduce the results even at the optimal window sizes. This finding is particularly

115

0

-0.05

-0.1

-0 15

-0.2

- .

Z
t -0.25

+

-0.31-

-0.351-

-U4
I . . . .



true when discussing allostery, as is the case for the VHL19 mutation. The burial trace model

optimizes overall exposed hydrophobicity against steric constraints and energetic costs

associated with stretching peptide bonds. The average hydrophobicity model, on the other hand,

is much more localized - for our optimal window sizes, changes in a distal region do not have an

impact on local sequence. Therefore, this model would have been insufficient to view allosteric

contributions from mutations in this context, which can be seen by comparing the lessened

anticorrelation of the mutant and its burial trace when compared to the wildtype.

By using simple biophysical characterizations, this technique can provide an

understanding of when hydrophobicity and steric constraints alone are enough to explain protein

structural changes due to mutations. For example, VHLI 9's differential burial pattern in our

predictions illustrates that the mutant is able to alter the exposure of its interaction motifs directly

from these sequence characteristics, as opposed to necessitating prior interactions to change the

conformational pattern of the cofactor and chaperone motifs. Furthermore, this insight is distinct

to the burial mode model and it is particularly helpful in capturing complex, nonlinear responses

to mutational change.

Another useful exercise is to study VHL in alternate models of allostery to see how our

model's results compare to other predictive methods. One technique that has shown promise in

understanding large-scale protein motion is normal mode analysis, which uses

eigendecomposition of a vibrational system to describe residue fluctuations (Grant et al., 2006;

Skjaerven et al., 2009; Skjxrven et al., 2014). For example, predicted fluctuations of the amino

acids in VHL derived from its crystal structure in PDB I VCB are shown below.
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NMA derived fluctuations for PDB id 1vcb (C)

I IiI~ ~ Ii
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Residue No.
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162 182 202

Figure 3. Fluctuations of each residue in VHL (derived from the crystal structure, PDB ID
1 VCB) derived from normal modes analysis using Bio3D (Grant et al., 2006; Skjwrven et al.,
2014). The chaperonin interaction sites Box 1 and Box 2 are highlighted by the yellow and blue
boxes, the elongin interaction region is highlighted by the red box, and the orange boxes at 173
and 201 show the locations of the residues involved in the VHL19 pair swap mutation.

0

Here, we see that Box 1 experiences relatively little fluctuation, while the other interaction sites

exhibit a mix between low and high levels of local fluctuations. Furthermore, residue 173 - one

of the two amino acids mutated in VHL 19 - has a higher predicted ability to fluctuate than its

counterpart 201.

Normal mode analysis can also be combined with other techniques to study allosteric

response directly. One example, which also incorporates machine learning algorithms, is
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AlloPred (Greener and Sternberg, 2015). This tool takes in a PDB crystal structure and the

active site, and uses this information to predict protein allostenic pockets that can influence the

active site. To compare to our burial trace prediction that VHL19 can alter the location of the

VHL19 mutated residues, L201-E173, I defined the 'active sites' to be either the elongin

interaction region or the elongin interaction region + chaperonin interaction sites, since these

motifs were the places that our model predicted a large-scale structural change. In both cases,

the top-scoring predicted pocket contained residue 201, as shown in the figure below.

Figure 4. Structure of VHL, with the AlloPred predicted allosteric pocket shown with green
balls and the elongin interaction region shown using grey sticks. The rest of the structure is
shown with red ribbon cartoons. The black arrow denotes the location of residue 201.

*'*

Although the predicted binding pocket contains a relatively large number of residues, the

inclusion of residue 201 agrees with the outcome of our burial trace model and its experimental

validation. In the plain normal mode analysis calculation, residue 201 was predicted to be less
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able to experience large fluctuations. Therefore, one possible suggestion is that replacing the

leucine at 201 with the charged residue glutamic acid might cause that chain to exhibit a different

flexibility pattern, which could then affect other regions of the protein. From the burial trace

model, we predict that swapping residues 201 and 173 changes the optimization of hydrophobic

and steric constraints such that the interaction motifs can either be pushed into or out of the

protein core relative to the wildtype sequence without its binding partners. Further exploration

of the physical considerations underlying exactly how this pair-swap mutation causes this

differential pattern could be an interesting avenue for future study.
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Appendix B

Additional aspects of collective behavior under starvation

conditions

Sequence composition for S. cerevisiae

Sequence composition differs between species, and characteristics of sequence

composition have been demonstrated to be under potential selective pressures as discussed in

Chapters 3 and 4. In this study, we provided evidence that the cumulative effect of changes in

charge across protein interaction partners and functional groups can affect overall cytosolic

collective behavior under glucose deprivation. To tease out the degree to which these

correlations between proteins might be important, we also examined S. cerevisiae sequence

composition to determine whether the results that we saw were explainable purely in terms of

overall sequence composition. For comparison purposes, the sequence compositions of S.

cerevisiae and H. sapiens are shown below.
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Figure 1. Sequence composition for S. cerevisiae (denoted as

(human, yellow bars) proteomes.

T W Y V

yeast, blue bars) and H. sapiens

Several amino acids, like glycine, valine, and alanine, are overrepresented in humans when

compared to baker's yeast. Histidine also exhibits an increased frequency in S. cerevisiae, which

might help contribute to this species' collective protein behavior under low pH conditions since

histidine's side chain isoelectric point falls within the pH range that the yeast's cytosol

experiences during glucose starvation. To further explore differences in overall sequence

composition between S. cerevisiae and other organisms, we took a group of homologous proteins

between S. cerevisiae, H. sapiens, and A. gossypii (a fungal species closely related to yeast) and

compared their sequence compositions directly.
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Figure 2. Sequence composition for human sequences that have homologues in S. cerevisiae

(dark blue), S. cerevisiae sequences that have homologs in human (light blue), S. cerevisiae
sequences that have homologs in A. gossypi (yellow), and A. gossypi sequences that have

homologs in S. cerevisiae.

Although relatively minor differences exist within this smaller grouping of proteins, overall

frequency of charged residues is relatively consistent between the three species. However, this

grouping of homologous proteins was still predicted to have differential interaction patterns

based on the electrostatic attractiveness of putative interactions (Chapter 4 Figure 3), indicating

that sequence composition is not sufficient to explain our results. For further clarification, the

overall sequence composition for charged groupings of residues is shown below.
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Figure 3. Sequence composition for human sequences that have homologs in S. cerevisiae (red),

S. cerevisiae sequences that have homologs in human (yellow), S. cerevisiae sequences that have

homologs in A. gossypi (light blue), and A. gossypi sequences that have homologs in S.

cerevisiae (dark blue).
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The two sets of yeast sequences, one with homologs in humans and one with homologs in A.

gossypii, have very similar sequence compositions. For positively charged (K, R, and H) and

negatively charged (Y, C, D, and E) residues, homologous sequences in yeast are not distinct in

their sequence composition when compared to two other species. Since we still saw a

differential response in predicted electrostatics when comparing S. cerevisiae interactions to their

homologous protein partners in other species, these results indicate that a pattern of charge

spread across an interaction network is more likely to form the basis of our predicted behavior as

opposed to being purely an effect of overall amino acid frequencies.

Influence of abundance on charged proteins

Another important aspect in understanding protein collective behavior is by filtering

through the lens of protein abundance. The cytosol is very crowded, and protein abundance

levels can differ by several orders of magnitude. Therefore, connecting relative protein

abundance to our earlier results on collective behavior under glucose starvation could provide a

powerful future research direction.
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Figure 4. S. cerevisiae cytosolic proteins plotted with their abundance versus charge at neutral
pH on a linear (top) and log scale (bottom).

In Figure 4, proteins that have a significant degree of charge tend to be less abundant, while

proteins that are highly abundant tend to have a relatively lower charge magnitude. However,

this pattern is more consistent for outliers - proteins that are distinguished in terms of either

characteristic - than for the majority of proteins. A plot showing the distribution of isolectric

points for proteins that display either very high or very low abundance is shown in Figure 5.
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Figure 5. The distribution of isoelectric points (pI) for S. cerevisiae cytosolic proteins that fall
into either the top 10% of highly abundant proteins (blue) or the bottom 10% of low-abundance
proteins (red).

Interestingly, the high-abundance group only has 18% of its proteins in the isoelectric

point range between pH 6 and 8, while the low-abundance proteins have 38% in this range.

Future directions for this work could involve better understanding this relationship in the context

of protein collective behavior; one example could be probing whether highly abundant proteins

that form higher-order structures are more likely to do so through self-interactions or whether the

change in charge makes them more promiscuous interactors.
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Additional controls for Y2H interactions

In Chapter 4, we presented results that Y2H interactions have lower interaction scores

under both neutral and acidic conditions when compared to random interaction sets drawn from

the same group of proteins. One possible cause of this behavior at acidic pH is that interactions

that are already attractive at neutral pH - which real, Y2H-determined interactions are - might be

more likely to remain attractive at acidic pH. The distributions of the full group of 10,000

random interactions (blue stars) and the subset of that group that has interaction scores < 0 at

neutral pH (red stars) at both neutral (top) and acidic (bottom) pH are shown below.
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Figure 6 Normalized histograms showing interaction scores at neutralpH (top) and acidic pH
(bottom) for 10000 random protein pairings (blue stars) and 78 random interactions that have
very attractive interaction scores at neutral pH (blue stars). The real set of Y2H interactions are
shown by the black vertical lines.
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The subset of random interaction sets that is more attractive is pulled more towards being

attractive at acidic pH as well, as shown in the bottom plot of Figure 6. However, these results

are not sufficient to pull the distribution to the level of the real interactions, indicating that this

effect alone does not explain our real results.
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Figure 7. Distribution of change in interaction score (score atpH 5 -pH 7)for the full group of
random interactions (blue stars), the subset that are very attractive at pH 5 (red stars), and the
interaction score for the real set of Y2H interactions (black line).

I
This distinction can also be seen when we look at the change in interaction score as the pH is

lowered from pH 7 to pH 5. Using the same set of filtered random interactions that have

behavior similar to the Y2H interaction set at neutral pH, we compared the change in interaction
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score from pH 7 to pH 5 for this filtered random set to the full set of random interaction trials.

However, this filtered set is more likely to become less attractive at acidic pH than both the full

random set and the real Y2H set, as shown in Figure 7.

Another possible control is to see if the distribution of charges for real interactions is

somehow distinct from those of random pairings, which might indicate that this effect can be

explained at the individual sequence level as opposed to a collective effect arising from the

network of protein interactions. We can examine this idea qualitatively in the plot below.

Random @ pH 7
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1:1!:
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Figure 8. Distribution of charges for interacting protein pairs. The color bars represent the
fraction ofprotein interacting pairs that fall within a bin defined by charges ofproteins on the x

andy axes of each plot. Random interactions atpH 7 andpH 5 are shown on the top and bottom
left respectively, while real interactions are shown at pH 7 andpH 5 on the top right and bottom

right.

129

CI.



As expected, the higher sampling in the random set provides a smoother overall shape when

compared to the subset of real interactions. However, comparing real versus random charges at

the same pH does not reveal any striking differences, particularly in the region where the

proteins become oppositely charged at acidic pH.

Another potential test is to be more stringent in how we define random interactions. In

the results reported in Chapter 4, we presented randomized interactions that were created by

choosing two proteins randomly from the set of Y2H-involved proteins. Alternatively, we could

also place a constraint on how promiscuous different proteins are - in other words, we could

retain the degrees in the network topology by ensuring that the number of proteins that have N

interaction partners is constant between the real Y2H data set and the random samples. If the

results differed from our earlier plots, this finding would indicate that the Y2H results might be a

function of network topology as opposed to being a consequence of how specific proteins

interact with each other.
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Figure 9. Random distributions with consistent overall topology for comparison to the Y2H data
set. Distribution of random interaction networks are shown at neutral pH (top), acidic pH
(middle), and for the change in score between the two values (bottom). In all cases, the black
vertical line shows where the real Y2H interactions are located in the distribution.

These results are very similar to those obtained from naive random pairings, with the Y2H

interaction set being distinguishable in its level of attractiveness at both neutral and acidic pH.

An alternate way to examine changing protein interactions, that incorporates changes in

charge but does not use the interaction score defined in Chapter 4, is to test whether a protein

pair goes from having the same charge at pH 7 to having opposite charges at pH 5. We can

calculate the fraction of real Y2H interactions that exhibit this behavior out of the complete Y2H

set, and compare this to a random distribution of pairings drawn from the same group of proteins.
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This idea is analogous to computing a conditional probability of an interaction turning 'on'

(becoming more electrostatically attractive) at pH 5 given that it was 'off (repulsive) at pH 5.

The opposite effect, where a protein pair goes from being attractive at pH 7 to being repulsive at

pH 5 (or the conditional probability of a protein pair turning 'off at pH 5 given that it was 'on'

at pH 7), can be calculated as well as shown in Figure 10.
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Figure 10. The distribution of the fractions ofprotein pairs in randomized trials that go from
being attractive at pH 7 to repulsive at pH 5 (left) and that go from being repulsive at pH 7 to
attractive at pH 5 (right). In both cases, the black vertical line shows the location of the real set
of Y2H interactions.

For 10,000 random groups of proteins pairs, the real set of Y2H interactions is defined by its

enhanced ability to have a higher fraction of interactions be more attractive at pH 5 - either by

remaining attractive from their values at pH 7, shown by the plot on the left where 99.53% of

random trials have a higher conditional probability of turning 'off and having the same charge

sign at pH 5 compared to the real interaction set, or by going from repulsive to attractive as the
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pH shifts from pH 7 to pH 5, as shown by the plot on the right where 98.97% of trials fall below

our actual fraction of interactions that become oppositely charged when going from neutral to

acidic pH. Therefore, these results still show the same overall charge-based collective effect, but

they do not rely on our formulation of interaction score.

Charge-based analysis of Gene Ontology (GO) groups

In Chapter 4, we provided several computational results that explore the idea that pH-

based increases in electrostatic attractiveness can cause proteins to cluster together to inactivate

functional responses like metabolic pathways. This analysis was first motivated by several

experimental studies that showed general clustering and inactivation of metabolic and

functionally-related proteins, as outlined in Chapters 3 and 4. An additional test that we

performed was to look at groups of proteins that share a similar function, as defined by their

Gene Ontology (GO) characterization (Ashburner et al., 2000; Gene Ontology Consortium,

2015). We took our group of cytosolic proteins and classified them based on 100 GO Slim

categories. We then modeled each protein as interacting with every other protein within its

group, and calculated the summed group interaction score. For each GO group, we performed

many trials that either chose the same number of a random grouping of cytosolic proteins or

generated the same number of random sequences that overall shared the same amino acid

frequencies with the original GO group. We then compared the real group to both sets of

controls and, to see what their position was on that randomized distribution, we calculated a Z-

score (real value minus the random mean divided by the standard deviation of the random

distribution). Histograms of Z-scores for both control types are shown below.
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Figure 11. Distribution of GO group Z-scores compared to random cytosolic protein groupings

(left) and randomized sequences that retain the same amino acid content (right). Distributions

at neutral pH (top), acidic pH (middle), and the change in scores between pH values (bottom)

are shown.

11

For random cytosolic proteins, the fraction of GO groups that have Z-scores less than -1,

indicating that the real group of proteins is further away than one standard deviation below the

mean, jumps from 24 to 42. The results become more pronounced when we look at randomized

sequences - at neutral pH, only 3 GO groups have a summed interaction score that is at least a

standard deviation less than the random control distribution, while that number jumps to 43 at

acidic pH. The results indicate that GO groups may become more attractive within their

functional classes as the pH drops, lending evidence that functional relationships can underlie

which proteins are more likely to form higher order structures.
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