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Abstract

This thesis consists of two parts. In the first part we count antichains of interval
orders and in particular semiorders. We associate a Dyck path to each interval order,
and give a formula for the number of antichains of an interval order in terms of the
corresponding Dyck path. We then use this formula to give a generating function
for the total number of antichains of semiorders, enumerated by the sizes of the
semiorders and the antichains.

In the second part we expand the work of Liu and Stanley on Dilworth lattices.
Let L be a distributive lattice, let -(L) be the maximum number of elements covered
by a single element in L, and let K(L) be the subposet of L consisting of the elements
that cover o-(L) elements. By a result of Dilworth, K(L) is also a distributive lattice.
We compute o(L) and K(L) for various lattices L that arise as the coordinate-wise
partial ordering on certain sets of semistandard Young tableaux.

Thesis Supervisor: Richard P. Stanley
Title: Professor
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Chapter 1

Introduction

The world of partially ordered sets (or posets) is vast and varied. So much so, that

this thesis, concerned with certain enumerative aspects of posets, contains two very

different chapters. Chapter 2 deals with antichains of interval orders and semiorders,

while Chapter 3 deals with distributive lattices comprising of semistandard Young

tableaux. We give a separate introduction for each of these chapters below, but first

we start with some common basic definitions. For much more on poset theory, see

for example [6, Chapter 31.

Let (P, ) be a poset (in the rest of this thesis we usually omit the relation <

from the notation of a poset). An element x E P covers an element y E P if x > y

and there is no element z E P such that x > z > y. We represent posets graphically

by a Hasse diagram: each element of P is represented by a point, and if x covers y

we place the point representing x higher than the point representing y and draw a

line between them (see Figure 1-1 for an example).

Two elements x, y E P are called comparable if x < y or y x, and incomparable

otherwise. A chain of P is a set of elements of P in which any two elements are

comparable, while an antichain is a set of elements of P in which no two elements

are comparable.

An induced subposet of P is a poset Q whose elements are a subset of the elements

of P, and x, y E Q satisfy x < y if and only if x < y in P (in other words, the relations

among the elements of Q are precisely those inherited from P). Note that in Chapter

13



3 we use the term subposet to mean an induced subposet (this is common in the

literature but not always the case).

1.1 Antichains of Interval Orders and Semiorders

In Chapter 2 we count antichains of (finite, unlabeled) interval orders, and in par-

ticular semiorders. We start our introduction by defining these concepts, as well as

some other combinatorial concepts that will be used throughout that chapter.

An interval order is a poset P whose elements can be put in a one-to-one corre-

spondence with nonempty open intervals in the real line P -+ {IpEP such that if

4, = (ap, b,) and Iq= (aq,bq), then p < q if and only if bp <; aq.

A semiorder is an interval order P that can be represented by a set of intervals

{Ip}PP in which all intervals have the same length (by convention, we assume all the

intervals are unit intervals).

The boldface notation n signifies a chain with n elements, and if P and Q are

two posets, P + Q is their disjoint union (i.e., a poset whose elements are the disjoint

union of the elements of P and Q and the only relations are the ones inherited from

P and Q, respectively). We say a poset P avoids a poset Q if P does not contain Q

as an induced subposet.

Interval orders and semiorders can be characterized as follows (see [6, exercise

3.15]):

* A poset P is an interval order if and only if it avoids 2 + 2.

* A poset P is a semiorder if and only if it avoids 2 + 2 and 3 + 1.

Example Figure 1-1 shows an interval order (left) and a semiorder (right), both rep-

resented by a Hasse diagram and by a set of intervals (unit intervals for the semiorder).

Note that the interval order contains a 3 + 1 (highlighted) and therefore it is not a

semiorder.

A lattice path in the (x, y) plane is a path consisting of straight line segments

that start and end at points with integer coordinates. Sets of lattice paths can be

14



_ _ It--441

Figure 1-1: An interval order (left) and a semiorder (right)

described by a set of allowed steps, so that each lattice starts at some point and then

proceeds by a sequence of allowed steps.

A lattice path in the (x, y) plane from (0,0) to (2n, 0) with steps (1, 1) ("up")

and (1, -1) ("down") that does not pass below the x axis is called a Dyck path of

semilength n. An ascent (descent) of a Dyck path is a sequence of up steps (down

steps) followed and preceded by a down step (up step) or an endpoint of the path. A

peak (valley) of a Dyck path is a point where an ascent (descent) of the path ends and

a descent (ascent) begins (note that we do not consider the endpoints of a Dyck path

as valleys, and so the number of valleys of a Dyck path is one less than the number

of peaks). See Figure 1-2 for an example of a Dyck path. We will denote the set of

Dyck paths of semilength n by D,.

Let {a,}nEN be a sequence of integers (usually these are the sizes of a sequence

of sets {S,}nEN). Then the ordinary generating function of a, is the formal power

series E nOanX". Similarly, the bivariate ordinary generating function of the inte-

gers {a.,k}n,kEN is the formal power series Zn,k>O an,k tk. Since all the generating

functions we will use will be ordinary, from now on we omit the word ordinary.

Although we are not concerned with questions of convergence or divergence of

15
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Figure 1-2: A Dyck path of semilength 11

generating functions, many natural operations on power series have a combinatorial

significance, hence the usefulness of generating functions for counting combinatorial

objects. Most notably for our purposes, one can multiply two generating functions

according to the following rule:

(Eanx ( bnX = 2 cnxn
n>0 n>0 / n>0

where c, = abn-i. For more details on generating functions, see [6, Section 1.11.

The Catalari numbers C, := a-n () (Sequence A000108 of [31) are one of the

most ubiquitous sequences of numbers in mathematics (See [51, which details over

200 combinatorial objects counted by the Catalan numbers). Among the objects

counted by C,,, are both n-element semiorders (see [5, exercise 1801) and Dyck paths

of semilength n (see [5, Theorem 1.5.11). A generating function for the Catalan

numbers is given in Theorem 1.1.1. We include a (somewhat abbreviated) standard

proof of the formula, since the main ideas of the proof will be used again in the proofs

in Chapter 2.

Theorem 1.1.1. Let C(x) := Zn>O Cnxh be the generating function for the Catalan

numbers. Then 0(x) = l-14x.

Proof. We start by establishing a basic recursive relation satisfied by the Catalan

numbers {C}>o. There are many ways to prove this relation using different inter-

pretations of the Catalan numbers, and in this proof we choose to think of C, as the

size of D., the set of Dyck paths of semilength n.
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Figure 1-3: Splitting a Dyck path d into two shorter Dyck paths di and d2

Let d be a Dyck path of semilength n + 1, and suppose (2i 2, 0) is the leftmost

point where d touches the x-axis (except (0,0) of course). Clearly the first step in

d must be a step up, and the last step before reaching (2i + 2, 0) must be a step

down. Then the part of d from (1, 1) to (2i + 1, 1), shifted left and down so that it

starts at (0,0), is a Dyck path of semilength i (denote it by d1), and the part of d

from (2i + 2, 0) to (2n 2, 0), shifted left so that it starts at (0, 0), is a Dyck path of

semilength n - i (denote it by d2). See Figure 1-3 for an illustration.

The map d -+ (di, d2) is easily seen to be a bijection Dn+1 a ULU0Di x Dni so

we get that

C1= zCiCn~i (1.1)
i=O

Now multiply both sides of equation (1.1) by x" and sum over all n ;> 0. The

left-hand side becomes

.--->- C x" C 0(x) - 1-

n>O

while the right-hand side becomes

( C Cn_) xn = ( C~n) ( cox) = C(x)2.

Equating the two sides, we get the quadratic equation

xC(x)2 - C(x) + 1 = 0.

17



Solving the equation and choosing the correct sign (see [5, Section 1.31 for more

details), we get the result C(x) = - .

The main goal of Chapter 2 is to be able to compute the average number of

antichains in n-element semiorders (for all n). Along the way, we obtain more general

results that apply to all interval orders, as well as stronger results for semiorders.

Section 2.1 contains some facts regarding interval orders that will be used in the

following sections. These results appear (with some variations) in several references,

and we follow their presentation in [9J.

In Section 2.2 we present a formula (Theorem 1.1.2) to compute the number of

antichains of any given size, which is valid for any interval order P. The formula is

given in terms of a Dyck path d(P) whose construction from P is described in that

section.

Theorem 1.1.2. Let P be an n-element interval order with a corresponding dyck

path d(P). Let Peaks = {u1, u2 , ---, u.} be the set of peaks of d(P), and let Valleys =

{v1, v2, ..., v. 1} be the set of valleys of d(P). Then the number of antichains of size

k of P is equal to the coefficient of tk in

s s-1

(1 + t)h(uj) _ ] (1 + t)h(vi),
j=1 j=1

where h is the height function, i.e., h((x, y)) = y.

In Section 2.3 we proceed to use Theorem 1.1.2 to compute a bivariate generating

function for the total number of antichains of semiorders, enumerated by the size of

the semiorders and the size of the antichain:

Theorem 1.1.3. Let Sn,k be the total number of antichains of size k of all n-element

semiorders, and set So,O = 1 (clearly, S,,k = 0 for k > n). Let S(x, t) be the bivariate

generating function for the total number of antichains of semiorders, where the an-

tichains are enumerated by the size of the antichain and the size of the semiorders,

18



i.e., S(x,t) := Ek>0Sn,ktkxn. Then

S(x, t)- x)-2
x(t + 2)C(x) - 1

where C(x) is the generating function of the Catalan numbers.

Setting t = 1 in the above generating function results in a generating function

for the total number of antichains of n-element semiorders, from which the average

number of such antichains can be easily deduced if one so desires.

As an interesting byproduct of our formula, we also show in Section 2.3 that the

numbers Sfl,k are equal to a number triangle that appears in the On-Line Encyclopedia

of Integer Sequences (or OEIS, 131) as the sequence A090285, thus giving the triangle

a new interpretation. The triangle was originally contributed by Philippe Deleham,

and it is described in terms of a recursive formula as well as a certain Riordan array.

Lastly, Section 2.4 details some curious additional results concerning subsets of

minimal elements (or maximal elements) of n-element semiorders (A minimal element

of a poset P is an element p E P such that no other element q E P satisfies q < p.

Maximal elements are defined similarly).

1.2 Dilworth Lattices

In Chapter 3 we compute what we call the Dilworth lattice of certain lattices consist-

ing of semistandard Young tableaux. We start our introduction with some background

and definitions.

An order ideal of a poset P is a subset I of P such that if x E I and y < x, then

y E I. The set of all order ideals of a poset P, ordered by inclusion, is a poset (in fact,

a distributive lattice) denoted J(P). There is an easy bijection between antichains

and order ideals in P, namely, the elements of an antichain are the maximal elements

of an order ideal. In this bijection, the size of an antichain is exactly the number of

elements covered by the corresponding order ideal in the poset J(P).

Let L be a finite distributive lattice. The join-irreducibles of L are those elements

19



that cover exactly one element. Denote the subposet of join-irreducibles of L by P.

The fundamental theorem for finite distributive lattices states that L 2 J(P), and P

is unique (up to isomorphism) in that sense.

Let L - J(P) be as above. Define a(L) := maxCL #{y : x covers y}, the maxi-

mum number of elements covered by an element in L. Define K(L) to be the subposet

of elements of L that cover exactly u(L) elements. By a result of Dilworth (see exercise

3.72(a) of [61), K(L) is a distributive lattice. Using the bijection between antichains

and order ideals, a(L) is the size of the largest antichain in P, and the number of

antichains of P of size a(L) is the size of K(L).

A partition is a sequence A = (A,, A2 ,...) of integers satisfying A, A2 > - > 0

with a finite number of nonzero terms, called parts. When writing a partition we omit

its trailing zeroes and write A = (A, 2,..., Ak) if A has k parts. The Young diagram

DA of a partition A is a left-justified array of squares with Ai squares in the ith row from

the top. The conjugate partition A' of A is the partition with A = max{j : > > i}.

In terms of Young diagrams, the Young diagram Dy of the conjugate partition A' is

the Young diagram DA reflected around its main diagonal. The number of parts in

A (which is the number of rows in DA) is denoted by l(A). Therefore the number of

columns in DX is l(A').

A Semistandard Young Tableau (or SSYT) of shape A is the Young diagram DA

where each square is filled with a positive integer (called a part) such that the parts

in each row are weakly increasing and the parts in each column are strictly increasing.

For a SSYT T, we denote its entry in the ath row (from the top) and bth column (from

the left) by Ta,b (or we call it the (a, b)-entry of T). We use the term "entry" to mean

either a box in a tableau or the integer (part) in it, and the meaning will be clear from

the context. Very frequently, we use the convention To,b = 0 for all columns b and

Ta,O = a for all rows a, even though these entries are not part of T (note that with this

convention a SSYT T is weakly increasing in rows and strictly increasing in columns,

even including the 0'th row and column). For more information on partitions see for

example [6, Chapter 1, and for more information on SSYT see 17, Chapter 71.

Example

20



1. Below are the Young diagram of shape A = (7, 5, 5,4, 1) (left) and the Young

diagram of shape A' = (5,4,4,4,3, 1, 1) (right).

2. Below is an example of a SSYT of shape A = (7,5,5,4, 1).

1 1 3 4 46
2 2 5 6 6

5'8 9X9
7

In their recent paper 121, Liu and Stanley prove a conjecture of Elkies by consid-

ering M., the coordinate-wise partial ordering on SSYT of staircase shape 3 p_1 :=

(p - 2,p - 3, ... , 1) with largest part at most p - 1, which is easily seen to be a fi-

nite distributive lattice (they denote this lattice by Ma, but we denote it M, here to

avoid confusion with the rest of our notation). Elkies' conjecture can be transformed

into the question of determining the number of antichains of maximal size in a poset

QP, or equivalently, the size of the lattice K(J(Q,)). Liu and Stanley first prove

that J(Q,) -_ M, (And compute the size of M,, thus proving another conjecture

of Elkies). They then analyze the structure of SSYT in K(M,) and determine its

join-irreducibles, and this allows them to find a rank-generating function for K(M,)

and to compute its size.

A question that naturally arises from Liu and Stanley's work is to try to describe

the lattice K(L) for other distributive lattices L. In Chapter 3 we consider distributive

lattices that are the coordinate-wise partial ordering on the set of SSYT of some shape

(a staircase, a rectangle, a double staircase (2s, 2s-2, 2s-4, ... , 2) or a double staircase

with one shorter row) with various bounds on the largest part. For each such lattice

21



L we compute a(L) and describe K(L).

Suppose L is the coordinate-wise partial ordering on the set of SSYT of some

shape A with largest part at most n. In their paper 12, Section 21, Liu and Stanley

define the notion of a reducible entry: an entry Ta,b of a tableau T E L is called

reducible if by replacing Ta,b with Ta,b - 1 the result is another tableau in L. They

note that the (a, b) entry of a SSYT T is reducible if and only if Ta,b - Ta,b1 > 1 and

Ta,b - Tai, b> 2 (with the convention To,b = 0 and Ta,O = a). Moreover, the number

of elements covered by T E L is the number of reducible entries in T. It follows that

a(L) is the maximum number of reducible entries in a tableau T C L, and K(L) is

the subposet of L consisting of the tableaux with a(L) reducible entries.

Let Ln be the coordinate-wise partial ordering on SSYT of staircase shape 6 t.

(t - 1,t - 2, ... , 1) and largest part at most n. Using this notation, M, = L'It. It

turns out that Liu and Stanley's analysis of Ai, generalizes very easily to L' for any

n > t > 1. Moreover, some key ideas in Liu and Stanley's paper can be used in the

analysis of a variety of other lattices.

In Section 3.1 we state and prove some basic results based on those key ideas from

Liu and Stanley's paper. These results will be used throughout the chapter. As an

example for their use, we apply the results to the lattice L'.

In Section 3.2 we show how to use Liu and Stanley's paper to compute o(Ln) and

describe K(Ln) for any n > t > 1. Since the analysis of the general case is so similar

to that of Alp, we only quote the main results from Liu and Stanley's paper in their

more general versions, without proofs. Let m := n - (t - 1). Section 3.2 shows that:

* For m < t,

- if t + m = 21 + 1, we have u(Ln) = 12 - (?) and K(Ln) L-.,g x L;

- if t + m = 21, we have a(L') = 1(1 - 1) - ("). The description of K(Ln)

in this case is less compact, so we do not quote it here.

* For m > t we have a(Ln) = (t)'and K(Ln) e Ln.

In Section 3.3 we analyze lattices of SSYT of rectangular shape. Let L,!c be the

coordinate-wise partial ordering on SSYT of rectangular shape with r rows and c

22



columns, with largest part at most n. Let m n - r. We show that the lattice L n

has three different behaviors as follows, depending on m. It turns out that for our

purposes there is a symmetry between r and c, so we may assume r > c.

* Form <r - c +1 we have u(L'c) mc and K(Lc) n L-_c+

* For r -c+1<m<r+c-1,

- if m - (r - c + 1) = 21, then a(L~c) = mc - 2(V) and K(Lrc) contains

only one element;

- if m - (r - c + 1) = 21 - 1, then a(L'c) = mc - 2 and K(L c) is a chain

of two elements.

" For m > r + c - 1 we have u(L'c) = rc and K(L'c) 2 Ln(r+c-l)

In Section 3.4 we analyze lattices of SSYT of the double staircase shape. Let L'

be the coordinate-wise partial ordering on SSYT of shape (2s, 2s - 2, 2s - 4, ... , 2)

with largest part at most n. Let m =n - s. Analyzing the SSYT in K(L") we get

the following behaviors, again depending on m.

" For m = 1 we have o(L'+1 ) = ('+') and K(L-+1 ) - J(A,) where A, is the

poset of pairs {(x, y) C P2 IX + y < s + 1} ordered coordinate-wise.

" For 1 <m < s we have a(Ln) = 1(s - m + 1)(s + 3m - 2) + m(m - 1) and

there is exactly one element in K(Ln).

* For m > s we have -(L,') = S2 + s and K(Ln) e P", where P," is the

coordinate-wise partial ordering on reverse (nonstrict) plane partitions of shape

(2s, 2s - 2, ... , 2) with largest part at most m - s. (A reverse (nonstrict) plane

partition is a SSYT except both rows and columns are weakly increasing).

Lastly, let L'+1 be the coordinate-wise partial ordering on SSYT of shape

(2s - 1, 2s - 3,..., 2s - 2k + 1, 2s - 2k, 2s - 2k - 2,...4, 2)

23



(like a double staircase, except the kth row is one box shorter) with largest part at

most n = s + 1. In Section 3.5 we show that u(Ls+') = (S+1) and K(L' 1 ) has only

one element.
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Chapter 2

Antichains of Interval Orders and

Semiorders

2.1 Background

The following definitions and results are quoted from [91 with some changes of nota-

tion.

Let P be a poset. For an element p E P let us denote

MAI := {q E P: q < p} and Np := {q E P: q > p}.

(In poset language, MA is called the strict down-set generated by p and N, is called

the strict up-set generated by p). Moreover, let

9R = {M : p c P} U {P} and 91= {N, : p C P} U {P}.

Note that although different elements p, q E P can have Ni" = Mq or N, = Nq, 9)1

and 91 are sets, not multisets, so they contain only one copy of each possible strict

down-set or up-set. Interval orders can be characterized as follows:

Proposition 2.1.1 ([9, Theorem 11). For a poset P, the following conditions are

equivalent:
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1. (P, <) is an interval order.

2. (P, <) contains no induced 2+ 2.

3. (9), C) is a chain.

4. (T, C) is a chain.

Corollary 2.1.2 (19, Corollary 11). If P is an interval order, then 19)I = |R.

From now on, P denotes an interval order with n elements, unless otherwise stated.

Let us denote s = 19NI - 1 and assume

T = (Mo, M1 , ... M-1, M) where 0= Mo c M 1 C - C A,_1 C M, = P

and

N = (No, N1, N2,..., N.) where P= No D N, D N2 -D D - N, =0.

For every p P let l(p) c {0, 1, ... , s - 1} be the number such that Ap = M1 (p) and

let r(p) E {1, 2, ... , s} be the number such that Np = N,(p).

Corollary 2.1.3 (f9, Corollary 21). The assignment P -+ {I, = (l(p), r(p)) : p E P}

is an interval representation of P.

We call {Ip}7pp defined above the canonical representation of P.

Remark In general, a representation of an interval order by a collection of intervals

in the real line is not unique. In particular, for a finite interval order one can al-

ways shrink an interval by some small amount without changing the order relations.

Therefore, a multiset of intervals can also be considered a representation of an interval

order, with the understanding that the intervals could be slightly changed to make it a

set if one so desires. Note that the canonical representation {I = (l(p), r(p)) : p E P}

of an interval order P defined in Corollary 2.1.3 can be a multiset.

Example Figure 2-1 shows an interval order P and its canonical representation. For

the element marked by x, Mx. = {pi} and N. = {P6, P7, P8, P9, pio}. 9A and IN are of

size 7 so s = 6, and 1(x) = 1, r(x) = 3.
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Figure 2-1: An interval order and its canonical representation

In this chapter we think of P mainly in terms of the multiset of intervals {1}, and

we will use facts that follow from the validity of the construction (Corollary 2.1.3),

for example:

" 1(p) < r(p) for all p E P.

" Pi < P2 in P if and only if r(pi) < l(P2).

" p, and P2 are incomparable in P if and only if 'p, and 'P2 intersect.

2.2 Antichains of Interval Orders

Definition 2.2.1. Let P be an interval order with n. elements. For 0 < i < s - 1

define

Ej :=l{ E P : 1(p) = i} and ej:= IE I.
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4

Figure 2-2: An interval order P, its canonical representation and the corresponding
Dyck path d(P)

Forl I i < s define

F: {p E P : r(p) =1i} and f F:= I

For ease of notation, set E = FO = 0 and e = fo = 0 (clearly, by definition, no

other sets are emipty).

Let d(P) denote a lattice path in the (x, y) plane starting at (0, 0) with steps (1, 1)

("up ") and (1, -1) ("down") as follows: eo steps up, fi steps down, e1 steps up, f2

steps down, and so on.

Example Figure 2-2 shows the interval order P of Figure 2-1, its canonical construc-

tion of intervals aid the path d(P). The first ascent of d(P) is of length eo = 2 (there

are two intervals of P starting at 0), and the first descent of d(P) is of length fi 1

(there is one interval of P ending at 1).

Consider the lattice path d(P). It comprises of s ascents and s descents, therefore

it has exactly s peaks and s - 1 valleys. The heights (y values) of the peaks of d(P)

are of the form Ej e2 - j=_ fi for 0 < j < s - 1. By definition, this is equal

to E _IE - - E =0 IFjI and since the elements in U j-0 F, are contained in U-=D E

(because /(p) < r(p) for all p E P), the last expression is equal to IUi 0 F, \ Uo i ,
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which is the number of elements p E P with 1(p) j and r(p) > j. Similarly, the

heights of the valleys of d(P) are of the form j-l ej - Ej 0 fi for 1 j < s - 1,

which is the number of elements p G P with 1(p) < j and r(p) > j. The following

corollary is an easy consequence of these observations.

Corollary 2.2.2. The lattice path d(P) is a Dyck path of semilength n.

Proof. Clearly, E'-' ej = E,' 1 fi = n, so d(P) has n steps up and n steps down,

hence it is a path from (0, 0) to (2n, 0). Since the heights of the valleys of the path

are given by the numbers of elements p E P such that 1(p) < j and r(p) > j for

1 < j < s - 1, these heights are nonnegative and thus the path does not pass below

the x axis.

We are now ready to prove our first main theorem, Theorem 1.1.2:

Theorem 1.1.2. Let P be an n-element interval order with a corresponding Dyck

path d(P). Let Peaks ={ui, u2 , ... , u} be the set of peaks of d(P), and let Valleys =

{v1 , v 2, ..., V_1} be the set of valleys of d(P). Then the number of antichains of size

k of P is equal to the coefficient of tk in

S s-1

E1(1 + t)h(ui) -E~ (1 +t t)h(vj).
=1 j=1

where h is the height function, i.e., h((x, y)) = y.

Example For our running example (Figure 2-2), the heights of the peaks of d(P)

are 2, 4, 3, 3, 3, 2 and the heights of the valleys are 1, 2, 0, 2, 1. We therefore have

E (I1+ t)h(uj) _ E ( + tGh(vj) = 1 + 11t + 15t2 + 7t3 + t4

j=1 j=1

Indeed, the interval order P has one 0-size antichain (the empty antichain), 11 an-

tichains of size 1 (its 11 elements), 15 antichains of size 2, etc.

Proof. Let A C P be a nonempty antichain, and let j = maXaEAl(a). We can split

the elements of P into four types as follows.
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1. Elements p with I(p) j (recall that these elements constitute the set Ej).

2. Elements p with 1(p) > j.

3. Elements p with 1(p) < j and r(p) > j (we denote the set of these elements by

G, and set Go

4. Elements p with r(p) < j.

By the definition of j, A must contain at least one element of type (1), and no

element of type (2). Moreover, A cannot contain any element of type (4), since these

elements are less than the elements of type (1). Hence any nonempty antichain of

P gives rise to an index 0 < j 5 s - 1, a nonempty subset of E, and a (possibly

empty) subset of Gj. We claim that the converse is also true. For any choice of

0 < j s - 1, the elements of types (1) and (3) are all incomparable (as intervals in

the canonical representation of P, they all contain the segment (j, j+ 1) which means

they all intersect), so any choice of a nonempty subset of Ej and a (possibly empty)

subset of Gj results in an antichain A of P with maxaAl(a) = j.

The number of ways to choose a nonempty subset of Ej and a (possibly empty)

subset of Gj such that their sizes sun up to k is precisely the coefficient of t in

((I + t)lEjl _ 1)I+ |Gjl.

Summing up over all 0 < j < s - 1 and adding 1 for the empty antichain, we see that

for any k > 0, the number of antichains of size k in P is the coefficient of tk in

s-1 s-I

1+ ((1 + t)ej - 1)(1 + t)Gil = 1 + E(1 + t)GjI+ej _ (I + t)IGiI.
j=o j=o

Now recall our observations regarding the Dyck path d(P): for j 0, jGol = 0

and IGoI + eo = eo which is the height of the first peak u1 . For 0 < j < s - 1, the

size of Gj is precisely the height of the valley vj, and IG I + ej is the height of the

30



adjacent peak uj+1. The above sum now turns into

s-1 s-1 S s-1

1 + E (1 + t)h(ui+1) - [1+ E (1 + t)h(vj)} - + t)h(ui) - ( t)h(vi)
==0 j=11

and this completes the proof.

2.3 Antichains of Semiorders

Recall that a semiorder is an interval order P that has a representation by intervals

where all the intervals are unit intervals (although the intervals of the canonical

representation of a semiorder are not necessarily unit intervals). Equivalently, a

semiorder is an interval order that contains no induced 3+1 (or a poset that contains

no induced 2 + 2 or 3 + 1). Semiorders are Catalan objects, i.e., the number of n-

element semiorders is the Catalan number C,.

In this section we use Theorem 1.1.2 to compute a bivariate generating function

for the total number of antichains of all finite semiorders, enumerated by the size of

the semiorders and the size of the antichain. We start by proving some preliminary

results.

Lemma 2.3.1. Let P be an interval order. Then P is a semiorder if and only if the

following condition holds:

for any p, q G P, 1(p) < 1(q) => r(p) < r(q) (2.1)

Proof. Assume p, q E P satisfy l(p) < l(q) and r(p) > r(q) (see Figure 2-3). We

show that P contains an induced 3 + 1, therefore it is not a semiorder. Recall the

construction of 91 and 9R in Section 2.1: denote l(q) = i, then 0 < l(p) < i < s and

the (nonempty) set Ni must have come from at least one element x E P such that

Ni = Nx, which means r(x) = i = 1(q). Similarly, there must be at least one element

y C P such that 1(y) = r(q). Looking at the corresponding intervals in the canonical
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x y______

0 1 2 3 4 5 6

Figure 2-3: Illustration of the intervals in the first part, of the proof of Lenma 2.3.1

representation of P one sees that x < q < y is a chain of length three and all three

elements are incomparable with p because they intersect it. So these four elements

form an induced 3 + 1 in P, which implies that P is riot a semiorder.

Now suppose P is an interval order, and suppose the condition (2.1) holds. We

show that P does not contain an induced 3 + 1. Assume x, q, y, p E P are an induced

3 + 1 in P, so x < q < y and all three elements are incomparable with p. Looking at

the corresponding intervals in the canonical representation of P, we see that x < q

implies r(x) < l(q). Moreover, x and p are incomparable so they intersect, and

in particular l(p) < r(x). Hence 1(p) < 1(q). Similarly, we have r(q) < 1(y) and

1(y) < r(p), hence r(p) > r(q). But this is a contradiction to condition (2.1), so there

is no induced 3 + 1 in P, and therefore P is a semniorder. E

Proposition 2.3.2. The map P -+ d(P) is a bijection between n-element semiorders

and Dyck paths of semilength 'n.

Proof. Let d be a Dyck path of semilength n. Identifying interval orders P with their

canonical multiset of intervals {p}PE, we try to "read" from d a multiset I of n

intervals that is mapped to it via the map P -+ d(P), and is also a seriorder.

Let s be the number of peaks of d, then the intervals in I should have start aid end

points in {0, ... s}. For 1 < i < s let ei_1, fj be the length of the ith ascent or descent

of d, respectively (so eo is the length of the first ascent, fi is the length of the first

descent, arid so on). In the map P -+ d(P), we know that ej := lip E P : 1(p)

arid :=p E P : r(p) = }|. So we know how riany intervals of I should start at

each of the points {O, 1, ... , s - 1} and how many intervals should end at each of the

points {1, 2,..., s}, and all we have to decide is how to connect the start points to the
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end points. Clearly, any matching of the start points to the end points such that the

start points are less than their respective end points results in a multiset of intervals

that is the canonical representation of some interval order, and is mapped to d under

the map P -+ d(P). We show that there is exactly one matching that results in a

semiorder.

By Lemma 2.3.1, I is a multiset of intervals of a semiorder if and only if for any

0 o i < s - 2, any interval that starts at the point i ends at a point that is less than

or equal to the end point of any interval that starts at the point i + 1. In other words:

denote by R, the multiset of end points of the intervals of I that start at the point i.

Then I is the multiset of intervals of a semiorder if and only if the elements of Ri are

all less than or equal to the elements of R,+1 , for all 0 < i < s - 2. This condition

is equivalent to the following simple greedy algorithm for matching start points and

end points:

" Start by matching end points to the intervals starting at 0, then the intervals

starting at 1 and so on up to s - 1.

* When matching end points to the ej intervals starting at i, the multiset R, of

end points consists of the ej lowest "copies" of end points that haven't already

been used in RO,..., R,_1 (initially there are fj copies of the end point j, for

1 j Ks).

Note that since our posets and intervals are unlabeled, the multisets R- suffice

to define the matching of start points and end points. We give an example for the

matching algorithm below.

It is easy to see that since d does not pass below the x axis, our matching algorithm

indeed results with n valid intervals. Moreover, as discussed above, these intervals are

the canonical representation of a semiorder and this semiorder is the only semiorder

mapped to d under the map P -+ d(P). Hence the map P -+ d(P) is a bijection

between n-element semiorders and Dyck paths of semilength n. 0

Example Consider Figure 2-4. The Dyck path d at the top has eo = 2, el = 3, e2 = 1

etc. and fi = 1, f2 = 2, f3 = 3 etc. In order to build a semiorder that is mapped to d,
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we start with the two intervals starting at 0. One of them must end at 1, and since

there is only one interval ending at 1 the second interval must end at 2 (Figure a).

We now have three intervals starting at 1, only one more interval that should end at

2, and three intervals that should end at 3. So one of the intervals starting at 1 must

end at 2, and the other two must end at 3 (Figure b). Continuing in this manner, we

construct the intervals as shown in Figure c.

We can now prove the second main theorem of this chapter:

Theorem 1.1.3. Let Snk be the total number of antichains of size k of all n-element

semiorders, and set Sop 1 (clearly, Sn,k = 0 for k > n). Let S(x, t) be the bivariate

generating function for the total number of antichains of seniorders, enumerated by

the size of the antichain and the size of the semiorders, i.e., S(x, t) := E,, k> S,k tk ".

Then

S C(x) - 2

x(t + 2)C(x) - 1

where C(x) is the generating function of the Catalan numbers.

Example There are five 3-element semiorders, as shown in Figure 2-5. For n = 3, we

have S3,0 = 5 (each semiorder contributes one empty antichain), S3,1 = 15 (the total

number of elements in all semiorders), S3,2 = 7 and S3,3 = 1 (the 3-element antichain

of semiorder A).

Proof. Let Sn(t) := Ek>0 S,k tk be the total number of antichains of all n-element

semiorders enumerated by size. For a Dyck path d define:

ad(t) := (1 + t)h(u) - (1 + t)h(v)

uEPeaks(d) vEvalleys(d)

where Peaks(d), Valleys(d) are the sets of peaks and valleys of d, respectively. By

Theorem 1.1.2 and Proposition 2.3.2, for n > 0 we have S,(t) = EZdC, ad(t) where

the summation is over all Dyck paths of semilength n. By definition, So(t) = 1.
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Figure 2-4: Reading the canonical representation of a serniorder from a Dyck path



A

Figure 2-5: All 3-element semiorders
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Lemma 2.3.3. For all n > 0 we have:

Sn+1 (t) = (t + 2) E Sj(t)Cn-j - Cn+1 (2.2)
j=0

We prove the lemma below. To finish the proof of the theorem, multiply both

sides of equation (2.2) by X", and sum over n > 0. The left-hand side becomes

S ,n( ~ n>x S,+1(t)xn+1  S(x, t) - So(t) S(x, t) - 1
S'+1 (t)x - - -

n>0

while the right-hand side becomes

(t + 2) S S (t)C,_x" - n Cn+1x" = (t + 2)S(x, t)C(x ) - Cx) - 1

n>O j=0 n>0

Equating the two expressions and simplifying, we get S(x, t) C(x)-2x(t+2)C(x)-V

Proof of Lemma 2.3.3. We start by establishing a recursive relation satisfied by ad(t),

using the same idea as in the proof of Theorem 1.1.1 of splitting a Dyck path d of

semilength n + 1 into two shorter Dyck paths di and d2 whose semilengths sum to n.

Recall that we denote by (2i + 2, 0) the leftmost point where d touches the x axis,

and the paths d, and d2 are the parts of d from (1, 1) to (2i +1, 1) and from (2i + 2, 0)

to (2n, 0) (shifted appropriately), respectively (see Figure 1-3). When splitting the

Dyck path d in this manner the heights of the peaks of d are precisely the heights of

the peaks of d2 , and the heights of the peaks of d, plus 1. The heights of the valleys

of d are the heights of the valleys of d2 , the heights of the valleys of di plus 1, and

there is one additional valley of height 0: the point (2i+ 2, 0) which is not a valley of

either d, or d2 . We get the relation

ad(t) = (1 + t)ad,(t) + ad 2 (t) - 1 (2.3)

Note that when i = 0 (i = n), we get that ad, (ad2 ) is empty. Setting a4(t) = 1 for
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the empty Dyck path do makes the relation hold for all 0 < i < n, and is compatible

with the equation Sn(t) = EdCD. ad(t) since we have set So(t) = 1 (we think of Do

as containing one Dyck path, do).

For n > 0 define An(y, t) := ZdEDn yad(t). Since the partition of d into d, and d2

is a bijection Dn+1 U U' Di x Dn-j, by equation (2.3) we get:

A.+, (y, t)
n>1 y(d(t) = >E>1 >1 (+t)ad, (t) ad2 (0-1

dc~n~l =O djED1 d2ED,-i

( : > ad2(t) -
d2EDn-i

n

= Aj(y(+,t) t)- Ani (y, t) - y-
i=O

(2.4)

An(y, t) is a polynomial in y, so let A' (y, t) denote An(y, t) differentiated with

respect to y. Substituting y = 1 in these expressions we see that:

An(1,t ) = > ad(t) = IDn| = Cn
dEDn

and

A' (1, t) = (ad(t))(1ad(t) )
dEDn

= 13 ad(t) = Sn(t)
dEDn

We are now ready for the final steps of the proof of the lemma. Differentiate equation

(2.4) with respect to y to get:

An+1(y, t)

n

= (1+ t)ytA'(y(l+t), t)An-i(y, t)y 1

i=O

+ Ai(y(l+t), t)A'-i(y, t)y 1

- Ai(y(l+t), t)An-i(y, t)y-2 (2.5)

Substitute y = 1 in both sides of equation (2.5) and use the Catalan numbers' recur-
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sion C,+ 1  = -O CiCi to get:

n

Sn+ 1 (t) = >(1 + t)Si(t)Cn-i + CiSn-i(t) -CiCn_
i=0

n

= (t + 2) E Si(t)Cn-i - Cn+1-
i=O

An interesting consequence of Theorem 1.1.3 is that the numbers Snk are in fact

equal to the number triangle which is the sequence A090285 in [31 (see Table 2.1 for

the first five rows of the triangle).

Corollary 2.3.4. Let Tnk be the number triangle which is sequence A090285 in [31

dafined by:

" Tnk := 0 if k > n

" TnO:= Cn

* T2 1,k := E" T 2jJ,_1(, 11) for 1 < k < n + 1

Then Tn,k = Sn,k for all n, k > 0.

Apart from the formula for the numbers Tn,k given in Corollary 2.3.4, it is men-

tioned in entry A090285 of [3 (without reference) that this number triangle is the

Riordan array (C(x), 1XCX)2)

Let T, := Z=0 Tn,k be the sequence of row sums of the triangle Tn,k. It follows

from Corollary 2.3.4 that Tn is the total number of anticahins of n-element semiorders.

The sequence {T}n;o is the entry A090317 of [31, and other than being the row sums

of T., it is mentioned in that entry that this sequence is achieved by applying the

inverse of the Riordan array ( 1 , x1 ) to the sequence {2 };;>o. By [1, Proposition

7 and Table 21, the sequence {Tn};>o is also the inverse generalized Ballot transform of

the sequence {2 +Of};n>O = 1, 1, 2,4,8,16,32, ... (which is simply the sequence {2"} ;o

with an additional initial term 1). See [l for further information on Riordan arrays.
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n\k 0 1 2 3 4
0 1
1 1 1
2 2 4 1
3 5 15 7 1
4 14 56 37 10 1

Table 2.1: The first five rows of [3, sequence A090285]

Proof of Corollary 2.3.4. We compute a bivariate generating function for Tn,k that

turns out to be equal to the bivariate generating function for Sn,k.

Let T(x, t) := Ek>O Tn,ktkxn be the generating function for T",k. By the defini-

tion of T,,k
n

T(x, t) = > Cnx + Tfkt xn (2.6)
n>O n>1 k=1

Note that in the second sum n starts from 1 because for n = 0, TO,k is nonzero only

for k = 0.

Multiply both sides of the definition Tn+1,k := 0j= T-j,k(-1(2 ) for 1 k <

n + 1 by tk-lx and sum over all n > 0 and 1 < k < n + 1. The left-hand side

becomes:

n+1 - Tn+1 tkxn+1

Tn1ktk-lX"= n>O E 1 n+,k

n>0 k=1

n>1 k=1 T ,ktkXn T(x, t) - 0(x)

xt xt

where the last equality follows from equation (2.6). Before computing the right-hand

side of the equation, we mention the following computation of a generating function

for the sequence fn =(

2n+1)n 2n - 1 )n _ nn>o

n>0 >

( 2) Xn>O (2n)x+ - - 1 ) 1  -1 2 - C(x)
x 2x 1-4x

See [6, exercise 1.81 for details on the equalities marked with (*).
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Back to our main computation, after multiplying the definition of T+1 ,k by tk-1xn

and summing over all n > 0 and 1 < k < n + 1 the right-hand side becomes:

n 2j+1 n+1 - xn

E : j+I) 1 : Tn-,_ka1 1x
n >0 j=O k=1

2> = + 1 
T=nn- , t k x

2n + ) (zi:fn tkn

-
2 -C(x)T(t2-Q T(x, t)

I - 4x

Equating the two sides and simplifying, we get T(x, t) - Cx_1-4x). Com-

paring this generating function to the generating function S(x, t) = C(x)-2 of

Theorem 1.1.3 (and using the formula for 0(x)), one can see they are equal, which

implies that for all n, k > 0 we have Tn,k = Sn,k. L

2.4 Additional Results

Theorem 2.4.1. Let Bn,k be the total number of k-element subsets of minimal ele-

ments of n-element semiorders, and let B(x, t) be the corresponding bivariate gener-

ating function: B(x, t) := Znko Bf,ktkxn. Then B(x, t) = 1-(1+t)xC(x)-

Example Consider the 3-element semiorders shown in Figure 2-5, and let us compute

B3 ,2. Semiorder A has three minimal elements, so it has three 2-element subsets of

minimal elements. Semiorders B and C have two minimal elements each, so they

each have one 2-element subset of minimal elements. Semiorders D and E have only

one minimal element each, so they have no 2-element subsets of minimal elements.

Therefore B3,2 = 3 + 1 + 1 = 5.

Proof. This proof uses once again the idea of splitting a Dyck path d into two shorter

Dyck paths d, and d2 . An element p of a semiorder P is minimal if and only if MA = 0

(recall that M, is the set of elements less than p), which is equivalent to the condition
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l(p) = 0 or p E Eo. So the number of minimal elements of P is the height eo of

the first peak of d(P). Denote by ho(d) the height of the first peak of a Dyck path

d. Then the coefficient of tk in the expression (1 + t)ho(d(P)) equals the number of

k-element subsets of minimal elements of P. Therefore B1 ,k is equal to the coefficient

of tk in B7 (t) := EdED(1+ t)ho(d), and we have B(x, t) = EZo B,1(t)X7 .

When partitioning the Dyck path d into the paths d, and d2 , recall that ho(d) =

ho(di) + 1. If d starts with one up step and one down step so that d, is the empty

Dyck path do, we want ho(d) = 1, so we set ho(do) = 0. Recall that we think

of Do as containing the single Dyck path do, so Bo(t) = 1. Using the bijection

D U- Di x D7 1 j, we get:

Bn+1 (t) = (1 + t)ho(d) - 1: >] (1 + t) (1 + t)ho(di) (2.7)
dreDn+1  i=O d1 EDi d2ED.-i

= >3(i+ t) ( ;(1 + t)ho(di) ( (1 + t)Bi(t)Cn-i
i=O \d16i E/ d2ED,_j i=O

Multiply equation (2.7) by xn and sum over all n > 0. The left-hand side becomes

3 + B71 (t)x" = 0 o Bn (t)X 7 - 1_ B(x, t) - 1

n>O

and the right-hand side becomes

E3 3(1 + t)B,(t)Cn_1 X7 = (1 + t)B(x, t)C(x)
n>O i=O

Equating the two expressions and simplifying, we get

1
B(x,t) =

1 - (1+ t)XC(x)

Corollary 2.4.2. For n > 0, the total number of subsets of minimal elements of n-

element semiorders equals (2) = (n + 1)Cn. Since these include precisely Cn empty
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subsets of minimal elements (one for each n-element semiorder), the total number of

nonempty subsets of minimal elements of n-element semiorders is nCn.

Example The five 3-element semiorders of Figure 2-5 have five empty subsets of

minimal elements (one for each semiorder), nine 1-element subsets of minimal ele-

ments (the total number of their minimal elements), five 2-element subsets of mini-

mal elements and one 3-element subset of minimal elements. In total the 3-element

semiorders have 20 subsets of minimal elements, which is equal to (3). Subtracting

the empty subsets, the 3-element semiorders have a total of 15 nonempty subsets of

minimal elements, which is equal to 3C3.

Proof. By the definition of B(x, t), substituting t = 1 yields a generating function for

the total number of subsets of minimal elements of semiorders:

B(x, 1) = E( E B,)x = 1 - 2x(x)
n>O O<k<n

By [6, exercise 1.81, a generating function for the sequence fa = (2n) is given by

=n1

D(x) := X" =n
n>O n )1- 4x

Comparing the two expressions one sees that B(x, 1) = D(x), and therefore for all

n > 0, the total number of subsets of minimal elements of n-element semiorders equals

Remark By symmetry, Theorem 2.4.1 and corollary 2.4.2 also hold for subsets of

maximal elements of semiorders.
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Chapter 3

Dilworth lattices

3.1 Background and Main Ideas

Let L' be the coordinate-wise partial ordering on SSYT of shape 6t = (t - 1, t -2, ... , 1)

with largest part at most n. Recall that a(L') is the maximum possible number of

reducible entries in a tableau in L', and K(L') is the subposet of L' that consists of

the tableaux with o(L') reducible entries. The (a, b) entry in a SSYT T is reducible

if and only if Ta,b - Ta, b- > 1 and Ta,b - Ta- 1,b > 2. In their paper [21, Liu and Stanley

define MA, the coordinate-wise partial order on SSYT of shape 6 p-,1 with largest part

at most p - 1, which in our notation is M, = L'-1. They then determine a(L--)

and K(L,--) by analyzing the structure of tableaux in L,-I that have the maximum

possible number of reducible entries.

It turns out that the key ideas described in [2, Section 31 extend far and beyond the

case LP-I, and are useful not only for determining a(L') and K(Ln) for all n > t > 1

but also for the analysis of a and K for lattices that comprise of SSYT of other

shapes.

In this section we state and prove some general lemmas and corollaries that will

be used throughout this chapter. These results are based on results from [2, Section

31 and although Liu and Stanley only prove the "vertical" versions (the second parts

of Lemma 3.1.1, Corollary 3.1.2 and Lemma 3.1.6, as well as Lemma 3.1.8) for the

special case of the tableaux in L'_, the ideas of the proofs are evidently very similar.
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In order to exemplify the use of the general results in this section, we apply them

to the lattice L'. We leave the rest of the analysis of the lattice L' (which is more

specific) to Section 3.2.

Lemma 3.1.1 (based on [2, Lemma 3.31). Let T be a SSYT of shape A with largest

part at most n.

1. For any 1 < a < l(A),

#reducible entries in the ath row of T < min(n - a, Aa).

Therefore,

# reducible entries in T < min(n - a, Aa).
a=1

2. For any 1 < b < l(A'),

#reducible entries in the bth column of T < min(n - At, A').

Therefore,
1(A')

# reducible entries in T < Z min(n - A', A).
b=1

Proof. Clearly, the number of reducible entries in the ath row is at most the number

of entries in the ath row, which is Aa. Similarly, the number of reducible entries in

the bth column is at most A'.

1. Since the largest part of T is at most n, the last entry Ta,,a in the ath row

satisfies

n ;> TA, = Ta,O + 3(Ta,b - Ta,bi). (3.1)
b=1
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Hence,

n > Ta,o + 0 x #irreducible entries in the ath row of T +

1 x #reducible entries in the ath row of T

= a + #reducible entries in the ath row of T (3.2)

Therefore the number of reducible entries in the ath row of T is at most n - a.

2. Similarly, the last entry T),,b in the bth column satisfies

n > T',b = TO,b + (Ta,b - Ta1,b). (3.3)
a=1

Hence,

n > TO,b +1 x #irreducible entries in the bth column of T +

2 x #reducible entries in the bth column of T

= 0 + #entries in the bth column of T +

#reducible entries in the bth column of T

= A' + #reducible entries in the bth column of T (3.4)

Therefore the number of reducible entries in the bth column of T is at most

nf - b

Corollary 3.1.2 (based on [2, Corollary 3.7]). Let T be a SSYT of shape A with

largest part at most n.

1. Suppose T has IA min(n - a, Aa) reducible entries (the maximum possible

number of reducible entries by part (1) of Lemma 3.1.1). If the ath row of T

satisfies n - a < Aa, then:
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(a) for any 1 < b < A, the (a, b) entry of T is reducible if and only if Tab -

Ta,_1= 1, and irreducible if and only if Ta,b - Ta,b-1 = 0;

(b) the last entry of the ath row of T satisfies Tx = n.

If the ath row of T satisfies n - a > Aa, then all the entries of the ath row are

reducible.

2. Suppose T has b min(n - , o) reducible entries (the maximum possible

number of reducible entries by part (2) of Lemma 3.1.1). If the bth column of

T satisfies n - A' < A', then:

(a) for any 1 < a < A', the (a, b) entry of T is reducible if and only if Ta,b

Ta-1,b = 2, and irreducible if and only if Ta,b - Ta-1,b = 1;

(b) the last entry of the bth column of T satisfies T),= n.

If the bth column of T satisfies n-A > A', then all the entries of the bth column

are reducible.

Proof. It follows from the proof of Lemma 3.1.1 that in order for the ath row of T

to have n - a reducible entries, we must have equalities in both equations (3.1) and

(3.2), so (1)(a) and (1)(b) follow. The rest of part (1) is clear.

The proof for part (2) is similar to that of part (1), only using equations (3.3) and

(3.4). El

The properties of rows and columns described in Corollary 3.1.2 are a key concept

in the analysis of the various lattices in this chapter, so they deserve a definition.

Definition 3.1.3. Suppose T is a SSYT of shape A.

1. We say the ath row of T is strictly reducible if for any 1 < b < Aa, the (a, b)

entry of T is reducible if and only if Ta,b - T,b-1 = 1, and irreducible if and

only if Ta,b - Ta,b-1 = 0.

2. We say the bth column of T is strictly reducible if for any 1 a < A, the (a, b)

entry of T is reducible if and only if Ta,b - Ta-l,b = 2, and irreducible if and

only if Ta,b - Ta_1,b = 1.
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3. If T has largest part at most n, we say the ath row (bth column) of T is max-

imally reducible if it is strictly reducible and its last entry satisfies TaX = n

(T,b = n).

We now apply Lemma 3.1.1 and Corollary 3.1.2 to Li'. Let m n - (t - 1).

For A = 6t, the length of the bth column of A is A' = t - b, and n - A' < A' implies

b < .(t - m + 1). By part(2) of Lemma 3.1.1, we see that a-(L') is at most

t-1 t-1

>Zmin(n - (t - b), t - b) = min(m + b - 1, t - b)
b=1 b=1

(l -1) - (M) if t + m = 21;

12 -(2 if t + m = 21 + 1.

Let Kt be the subposet of L' consisting of the tableaux that have E-i min(m+

b-i, t-b) reducible entries. Then if Kt' is not empty, we have o(Ln) = Z~i min(m+

b - 1, t - b) and K(Ln) = Kt. The following corollary is a consequence of Lemma

3.1.1 and the above computation.

Corollary 3.1.4. Suppose T C L'. Then T C Kt if and only if the following two

conditions are satisfied.

1. For any 1 < b < . (t - m + 1), the number of reducible entries in the bth column

of T is n -(t -b) = m+b -1.

2. For any 1(t - m + 1) < b < t - 1, all the entries in the bth column of T are

reducible.

Note that if t < m, only condition (2) applies.

The following corollary now follows from Corollary 3.1.4 and part (2) of Corollary

3.1.2.

Corollary 3.1.5. Suppose T G Kt, and t > m. Then the first Lk(t -M + 1)]

columns of T are maximally reducible, and for 1 < b < [I (t - m + 1)]), the bth

column of T has m + b - 1 reducible entries.
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Therefore, among the t - b entries Ta,b in the bth column of T, there are m + b - 1

entries satisfying Ta,b - Ta-l,b = 2, and the remaining t - m - 2b + 1 entries satisfy

Ta,b - Ta l,b = 1.-

Most of the analysis in this work relies on tableaux having maximally reducible

columns or rows. Intuitively, when a column or a row are maximally reducible it

means they are "efficient" in using all the freedom given by the bound n to generate

more reducible entries. The lemmas in the rest of this section demonstrate the power

of strict and maximal reducibility, and will be used in the following sections.

Lemma 3.1.6 (based on 12, Corollary 3.81). Let T be a SSYT (of some shape).

1. Suppose 1 < a < 1 (A) - 1 and row a+ 1 of T is strictly reducible. Then for any

b such that T+1,b+1 is an entry of T we have Ta+1,b - Ta,>1 ! 1.

2. Suppose 1 < b < l(A') - 1 and column b + 1 of T is strictly reducible. Then for

any a such that Ta+i,b+1 is an entry of T we have Ta+1,b - Tab+1 < 1.

Proof. 1. If Ta+1,b 1 is reducible, then by strict reducibility Ta+1,b+1 - Ta+1,b 1

and by the property of reducible entries Ta+,i - Tab+ > 2. If Ta+1,b+1 is

irreducible, then by strict reducibility Ta+1,b+1 = Ta+1,b and by the definition of

SSYT Ta+1,b+1 - Ta,b+1 > 1. In either case we get Ta+1,b - Ta,bi > 1.

2. If Ta+i,b+1 is reducible, then by strict reducibility Ta+1,b 1 - Ta,b+1 = 2 and by

the property of reducible entries Ta+1,1b+ - Ta+1,b > 1. If Ta+1,b+1 is irreducible,

then by strict reducibility Ta+1,b+1 - T,b 1 = 1 and by the definition of SSYT

Ta+1,b+1 Ta+l,b. In either case we get Ta+1,b - T,b+1 1.

In [21 Liu and Stanley call the property in part (2) of Lemma 3.1.6 the diagonal

property. We follow their lead and call part (1) of the lemma the row diagonal property,

and part (2) the column diagonal property. We now apply Lemma 3.1.6 to L'.

Corollary 3.1.7. Suppose t > mr, and let T E Kt. Then for any 1 < b <

[(t - m + 1)J - 1 and any 0 < a < t - b - 1 we have the column diagonal property

Ta+1,b - Ta,b+1 1.
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Proof. It follows from Corollary 3.1.5 and Lemma 3.1.6 that Ta+1,b - Ta,b+1 < 1 for

any 1 < b < [I(t -m + 1)] - 1 and any 0 a < t - b - 2 (so that T has a

(a+ 1, b+1)-entry). Moreover, by Corollary 3.1.5 for any 1 < b < [(t - m + 1)] - 1

the columns b and b + 1 are maximally reducible, so the last entries in these columns

are Tb,b = T-b-1,b+1 n. Hence Ttb,b - Ttb1,b+1 = 0, and the column diagonal

property applies for a = t - b - 1 too.

The following three lemmas have very similar proofs.

Lemma 3.1.8 (generalization of [2, Corollary 3.101). Let T be a SSYT of shape A.

Suppose columns bo, bo + 1, ..., bo + k of T are all strictly reducible and satisfy A' > k

and A'~ k-i +1forall1 ik. Then

for all 0 < i < k and 0 < a < k - i we have Ta,b,+i = a. (3.5)

Proof. The proof is by induction on a. We can rewrite the indices in (3.5) as 0 < a <

k, 0 < i < k - a. The base case when a = 0 holds by our convention T,b = 0.

Suppose T,,b +i = ao for some 0 < ao < k and all 0 < i < k - ao. We want

to show that Tao+1,bo+i = ao + 1 for all 0 < i < k - ao - 1. Pick some 0 < io 5

k - ao - 1, by our assumptions on the length of the colurms of T and the induction

hypothesis, the entries Tao+1,bo+io, Tao+1,bo+io+1, Tao,bo+io, Tao,bo+io+1 are entries of T

and Tao,bo+io = Tao,bo ioi = ao. Since the columns bo + io, bo + io + 1 of T are

strictly reducible, we have the column diagonal property (part (2) of Lemma 3.1.6),

therefore Tao+i,bo+io - Tao,bo+io+1 < 1. On the other hand since T is a SSYT we have

Tao+1,bo+io - Tao,bo+io > 1, so we must have Tao+1,bo+io = Tao,bo+io +1 = Tao,bo+io+1 + 1

ao + 1.

Lemma 3.1.9. Let T be a SSYT of shape A and largest part at most n. Sup-

pose columns bo, bo + 1, ... ,b+ k of T are all maximally reducible and their lengths

A/, A/ ... , A/ k are all equal to I for some 1 > k. Then

for all 0 < i < k and l - i < a < l we have Ta,bo+i = n - I + a. (3.6)
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Proof. The proof is by induction on a going from I down to 1 - k. We can rewrite the

indices in (3.6) as l - k < a < 1, 1 - a < i < k. The base case when a = l holds by

maximal reducibility, since T,bo = T,bo+1 = - - - = T,bo+k = n.

Suppose Tao,bo+i = n - 1 + ao for some 1 - k < ao < 1 and all I - ao < i < k.

We want to show that Ta,-1,bo+i = n - l + ao - 1 for all - ao +1 i < k. Pick

some 1 - ao + 1 < io < k, by our assumptions on the length of the columns of T and

the induction hypothesis, the entries Tao-l,bo+io, Tao-l,bo+io-1, Tao,bo+io, Tao,bo+io-l are

entries of T and Tao,bo+i= bo+j-1 = n-l+ao. Since the columns bo+io-1, bo+io of

T are maximally reducible we have the column diagonal property (part (2) of Lemma

3.1.6), therefore Tao,N+io-1 - Tao-l,bo+io < 1. On the other hand since T is a SSYT

we have Tao,bo+io - Tao-,bo+io 1, so we must have Tae-1,bo+io = Tao,bo+io - 1 -

Tao,b+io1 - I = n - + ao- 1.

Lemma 3.1.10. Let T be a SSYT of shape A. Suppose rows ao, ao 1. ao + k of

T are all strictly reducible, and their lengths satisfy Aa0  k and Aao+i k - i + 1 for

all 1 <i <k. Then

for all 0 < i < k and 0 < b < k - i we have Tao+i,b = ao + i. (3.7)

Proof. The proof here is by induction on b. It is almost identical to the proof of

Lemma 3.1.8, except we are now using the row diagonal property. We can rewrite

the indices in (3.7) as 0 < b < k, 0 < i < k - b. The base case when b = 0 holds by

our convention Ta,= a.

Suppose Tao+i, = ao + i for some 0 < bo K k and all 0 K i < k - bo. We want

to show that Tao+i,bo.+ = ao + i for all 0 < i < k - bo - 1. Pick some 0 < io <

k - bo - 1, by our assumptions on the length of the rows of T and the induction

hypothesis, the entries Tao+i0 ,bo+1, Tao+io,bo, Tao+io+1,bo, Tao.io 1,bo+1 are entries of T

and Tao+io,bo = ao + io, Tao+io+1,bo = ao + io + 1. Since the rows ao + io, ao + io + 1

of T are strictly reducible we have the row diagonal property (part (1) of Lemma

3.1.6), therefore Tao+io+1,bo - Tao+io,bo+i 1. On the other hand since T is a SSYT we

have Tao+io,bo+1 Tao+io,bo, so we must have Tao+io,bo+i = Tao+io,bo = Tao+io'+1,bo - 1 -
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ao + io.

3.2 Staircase shape

In this section we complete the analysis of L' from Section 3.1 to determine 0-(Ln)

and K(Ln). In fact, the analysis of L'-1 in [21 extends perfectly to Ln including all

the proofs, so we merely quote the main results of 121 in their more general setting for

Lt. If the statement of a result requires certain definitions that we prefer to omit, we

only quote the final conclusion of the result that does not use those definitions. We

use the definition of Kt as in Section 3.1.

Proposition 3.2.1 (generalization of 12, Proposition 3.11]). Suppose T is a tableau of

shape 6 t filed with integer entries. Then T C Kt if and only if the following conditions

are satisfied. Note that if t < m, only condition (3) is relevant.

1. For any 1 b < [1(t - m 1),

(a) for any 1 <a < (t - m + 1)] - b, we have Ta,b = a;

(b) among the [(t + m)] remaining values of a, viz. [{(t - m + 1)] -b+1 <

a < t - b, we have that m+b -- 1 of them satisfy Ta,b - Ta-l,b = 2, and the

remaining L{(t + m)J - (m + b - 1) of them satisfy Ta, - Tal,b = 1.

2. For any <b [(t-m +1)] -1 and I(t-m+1)i -b+1 <a<t-b we

have the diagonal property T,b - Ta-1,b+1 < 1.

3. For any [-(t - m + 1)J +1 < b < t -1 and any 1 a < t -b, we have Ta,b K n

Ta,b - Tai_,b > 2 and Ta,b - Tab_1 > 1.

It is evident from Proposition 3.2.1 that T E Kt can be split into two parts, left

and right, each displaying a different behavior. In the case t = n = p - 1 described

in [21, these parts are two halves of 6 t. In the more general case n > t > 1 the right

part gets larger as m grows, and in fact if m > t, there is no left part and all of T is

in the right part. In the rest of this section we quote results that are relevant when

there is a left part, and we note what happens in case there is no left part.
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Let (61r)I be the shape that is the left [%(t - rn + 1)] columns of 6t. Note that

the shape of the right side of Jt is6,_ _ = 
[ r+n I

Definition 3.2.2 (generalization of [2, Definition 4.11). Let (Kr)' be the set of all

the tableaux of shape (6t)' with integer entries satisfying conditions (1) and (2) of

Proposition 3.2.1. For c = 1 or 2, let (K)l'"c be the subset of (Kfl)' consisting of all

the tableaux whose (1, [1(t - m+ 1)J)-entry is c. (Note that the (1, LI(t - m+ )J)-

entry is the last entry in the first row of any tableau in (KIt', which has to be either

1 or 2 by condition (1) of Proposition 3.2.1.)

Forc =1 or 2, let (Kt)77Rc be the set of all the tableaux of shape satisfying

the following conditions:

1. T, > c + 1.

2. Ta,b - Ta,b-1 > 1 for any 2 b < ['(t + m)] - 1, 1 < a < [-(t + m)J - b.

3. Ta,b - Tal,b > 2 for any 2 < a < [I(t +rm)] - 1, 1 < b < [I(t + m)] -a.

4. TLI(t+m)j -, n for any 1 < b < [1(t + M)] - 1.

We consider all the sets above as posets with the coordinate-wise partial ordering.

Lemma 3.2.3 (generalization of [2, Lemma 4.21).

Ktn m(Kt)n x K)RIJ) U- ((Kn),C,2 X (Ktn ,2)

Proposition 3.2.4 (generalization of [2, Proposition 4.51).

2(K K)' L L (t+rn[I(t-m)+1]

Lemma 3.2.5 (generalization of [2, Lemma 4.91). The last entry in the first row of

the unique minimal element of (Kfln is 1 if t + m is even and 2 if t + in is odd.

Lemma 3.2.6 (generalization of [2, Lemma 4.141).

1. If t + M is even, say t + m = 21, then (Kt)R l L'.
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2. Ift+m is odd, say t +m = 21 + 1, then (Kt' 2  L'.

Remark If t < m and the tableaux in Kt have no left side, we have -(Ln) = (t)
and K(Ln) = K" Lm with the same proof as part (1) of Lemma 3.2.6.

Corollary 3.2.7 (generalization of 12, Corollary 4.151). For any n > t > 1, the poset

K" is nonempty (hence K(L") = Kt).

Corollary 3.2.8 (generalization of [2, Corollary 4.161).

f(1 - 1) - (m) if t + m = 21;
o(L") = min(rn + b - 1,t - b) =

b=1 12 t + m = 21 + 1.

Corollary 3.2.8 in the case t = n = p - 1 (so m = 1) as presented in [2, Corollary

4.16] is in fact another proof of a formula previously proven by Elkies.

The next two results describe K(Ln). In their paper, Liu and Stanley use these

results to compute a rank-generating function for K(Ln) for the case t = n = p - 1

and thus compute the size of K(LPI}). This turns out to be harder in the general

case.

Theorem 3.2.9 (generalization of [2, Theorem 5.61). Suppose t + m is odd, and

denote t+m= 21+1. Then

K(L n) L'_, x L'.

Remark In their paper, Liu and Stanley analyze the case t = n (so m = 1). In that

case Theorem 3.2.9 reduces to

K(Ln) c L x L

where n = 21. Liu and Stanley compute (12, Theorem 2.121) the rank-generating

function of Ll:

F(L , q) = (1 + q)'- 1(1+ q2)-2 ... (1 + q1- 1),
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and conclude ([2, Theorem 5.61) that the rank-generating function of K(Ln) (where

n = 21) is given by

F(K(Ln), q) = ((1 + q)'~'(I + q2)1-2 ... - + q112

where F(K(L ), q) = 1.

Theorem 3.2.10 (generalization of 12, Proposition 5.101). Suppose t+,m is even and

denote t + m = 2k. Denote by Ut the poset of join-irreducibles of K(Ln). Then Ut

can be divided into two disjoint sets (Ut)I and (Uf l, each of which is divided into

two disjoint sets (Ut' (U)j'(U,), 2 and (Ul)r = (Utn)rl(Utfr,2 such that they

satisfy the following conditions:

1. (Uf)' e the poset of join-irreducibles of Lkrn+1-

2. (Ufl' t the poset of join-irreducibles of Lk.

3. (Ufl" 1 t the poset of join-irreducibles of L-.

4. (Uflj' 1 t the poset of join-irreducibles of Lk-.

5. No element in (Ufl' is comparable to any element in (Uflr.

6. No element in (Ut7)rl is comparable to any element in (Uf)'.

7. Each element of (Up)r,2 is smaller than any element in (Ut),2

Remark In the case t = n = 2k -1, m = 1 Liu and Stanley show (2, Theorem 5.111)

that the rank-generating function of K(Ln) is given by

F(K(L ), q) = ((1 + q)k-2(1 +q 2)k...(1 k-2)) 2

((1+q)(1+ q2) ... (1+ q) (i + 2) -q 2

where F(K(L3), q) = 1 + q + q2.
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3.3 Rectangular shape

Let A,,c be the rectangular partition with r rows and c columns,

Ar,c = (c, c, ... , c).

r

Let L' be the coordinate-wise partial ordering on SSYT of shape Ar,c with largest

part at most n, and denote m := n - r. The analysis of L,', reveals three different

behaviors depending on the value of m.

3.3.1 Large m

Theorem 3.3.1. Suppose m > r + c - 1 (equivalently, n > 2r + c - 1). Then

o(Lr,) = rc and K(Lrc) ' Lr, c)

Proof. Clearly -(Lnc) < rc, the total number of entries of the tableaux in Lc. Since

n - (r +c -1) > r, the poset Ln(r+c-1) contains the (minimal) tableau T' defined by

ab = a, so it is nonempty. Denote by Kc the subposet of Lrc consisting of all the

tableaux with rc reducible entries. Then it suffices to show that Kc C L(rc 1 ),

in which case K(L'c) = K" c L, n,(+c- and o-(L,,) = rc.

Consider the transformation # defined on any tableau T filled with integer entries

as follows: O(T) has the same shape as T and entries #(T)a,b = Ta,b + a + b - 1. With

our convention Tob = 0 and Ta,O = a it is easy to see that for any shape A, # transforms

SSYT of shape A into tableaux of the same shape with #(T)a,b - #(T)a1,b > 2 and

(T)a,b - (T)a,b-1 1 for all a, b such that Ta,b is an entry of T. In other words,

# transforms SSYT of shape A into SSYT of the same shape in which all entries are

reducible. Moreover, it is easy to see that # is invertible and that it preserves the

component-wise partial order on SSYT of the same shape, so it is a poset isomorphism.

In our case, we apply # to SSYT of rectangular shape A,, If T is a SSYT of

shape A,,c, all the entries of T are bounded by the entry T,,c, which is increased by

r + c - 1 under q. Hence T C Lr,c+c if and only if #(T) C K,, and we have

established the isomorphism Kr a Lccl c
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3.3.2 Northwestern Corners of Regions

In order to analyze the remaining possible values of m we take a different approach.

In the next few lemmas we translate the problem of finding -(Lnc) and describing

K(Lne) into a problem of finding certain regions in the Young diagram DA, with a

maximum number of northwestern corners.

Definition 3.3.2. Let A be a partition, and let DA be the Young diagram of shape A.

Let R be a nonempty set of entries of D,. We call R a southeast-closed (or SE-closed)

region of A if

(a, b) C R implies (a, b + 1) E R and (a + 1, b) E R

(whenever these entries are in DA).

Let R1 , R2 , ... , Rk be nonempty sets of entries of DA. We call R1 , R 2 , ... , R a

southeast-closed (or SE-closed) sequence of regions of the shape A if:

1. R 1 2 R2 2- ... D Rk .

2. For any 1 < i < k, Ba is a SE-closed region of A.

We call k the length of the sequence, and we denote by 'ZT the set of all SE-closed

sequences of regions for the shape A, including the sequence of length 0 that has no

regions.

Definition 3.3.3. Let T be a SSYT of shape A. Define a sequence of regions R1

R 2 :D ... as follows: B4 is the set of entries (a, b) for which Tb a + i (note that by

the definition of SSYT, we always have Tab > a). Since T contains a finite number

of integer entries, the sequence R1 2 R 2 2 ... has only a finite number of nonempty

regions, so we omit the empty regions and think of the sequence as a finite sequence

R1 2 R 2 D - 2 Rk (note that if T has Ta,b = a for all its entries, we get an empty

sequence). We denote the sequence of regions R1 2 R 2 2 - 2 Rk by S(T).

Lemma 3.3.4. For any SSYT T of shape A, S(T) is a SE-closed sequence of regions

for A.
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Proof. Part (1) of Definition 3.3.2 is clear from the definition of S(T). Part (2) follows

immediately from the definition of SSYT: The rows of T are weakly increasing so

Tab > a + i implies Ta,b+1 Ta,b > a + i, and the columns of T are strictly increasing

so Tab > a + i implies Ta+1,b > Ta,6 + 1 > (a + 1) + i. l

Definition 3.3.5. Let A be a partition and let R1 2 2 2 -2 Rk be a SE-closed

sequence of regions of A. By convention we let RO = DA and Rk+1 = 0 even though

they are not part of the sequence. Define a tableau T of shape A by:

Ta,b = a + i if (a, b) E R4- \ Ri+1.

We denote the tableau T by S'(RI, R 2 , ... , Rk).

Lemma 3.3.6. Let A be a partition and let R1 2 R 2 2 ... 2 Rk be a SE-closed

sequence of regions of A. Then the tableau S'(R1, R2 , ... , Rk) is a SSYT of shape A.

Proof. Clearly the entries of T = S'(R1 , R2 , ... , Rk) are positive integers, so all we

need to prove is that the rows are weakly increasing and the columns are strictly

increasing. Suppose (a, b) and (a, b+ 1) are both entries of T. Let 0 < i < k be such

that (a, b) C RI \ Ri+1, then by property (2) of Definition 3.3.2, (a, b + 1) E R, so

Ta,b+i > a + i = Ta,. Hence the rows of T are weakly increasing. Similarly, it is easy

to show that T is strictly increasing in columns. L

Lemma 3.3.7. Let A be a partition. Then the maps S and S' are inverses of one

another, so they give a bijection between SSYT of shape A and R). Under this bijec-

tion, the reducible entries of a SSYT T are precisely the northwestern corners of the

regions of S(T).

Moreover, for the shape A,,c, S and S' give a bijection between the SSYT of Lr,c

(SSYT of shape A and largest part at most n) and SE-closed sequences of regions of

Are of length at most m (where m = n - r).

Remark By a northwestern corner of a region R we mean an entry (a, b) E R such

that (a - 1, b), (a, b - 1) R.
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Proof. Lemma 3.3.4 and Lemma 3.3.6 show that S and S' are indeed maps between

SSYT of shape A and SE-closed sequences of regions of A, and it is easy to see from

their definition that they are inverses of one another.

Let T be a SSYT. Recall that the entry Ta,b is reducible if Ta,b - Ta,b_1 > 1 and

Ta,b - Ta-ib > 2. If (a, b) is a northwestern corner of some region Ri in S(T), so that

(a, b) C R, but (a, b - 1), (a - 1, b) R, this implies that Tab,> a + i, Ta,b_1 < a + i

and Tal,b < (a - 1) + i. Hence Ta,b is reducible. If (a, b) is not a northwestern corner

of any region, let i be such that (a, b) E R \ Ri+1, SO Ta,b = a + i. Since (a, b) is not

a northwestern corner, either (a, b - 1) or (a - 1, b) are in R,. If (a, b - 1) C R, then

Ta,-1 > a + i, and if (a - 1, b) C R, then Tal,b (a - 1) + i. In either case, Ta,b is

not reducible.

For A,,, we have two useful properties. First, by the monotonicity of SSYT the

entries of any T E L' are bounded by the entry Tc. Second, by property (2) of

Definition 3.3.2 any region in S(T) contains the (r, c) entry, hence if S(T) is of length

k we must have Tr,c = r + k. Therefore if T is a SSYT of shape Ar,c, T has largest

part at most n if and only if T,c <n = r + m, and that happens if and only if S(T)

has at most m regions. El

Lemma 3.3.7 implies that the problem of finding -(Lc) and K(L',) is equivalent

to the problem of finding SE-closed sequences of regions of the shape Arc with a

maximal number of distinct northwestern corners. The latter problem has a clear

symmetry around the main diagonal of , so from now on we may assume that

r > c. Note that this symmetry also holds for m > r + c - 1 (in that case it follows

from our proof of Theorem 3.3.1).

Remark For any SE-closed region R of the shape A, the boundary of R traces the

boundary of A going counterclockwise from the southwestern corner of A to the north-

eastern corner. So R can be described by the part of its boundary that goes clockwise

from the southwestern corner of A to the northeastern corner, which can be thought

of as a lattice path with steps up and right. Therefore the problem of finding o-(L,,c)

and K(Lnc) is also equivalent to the problem of finding m noncrossing lattice paths
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going from the southwestern corner of DA), to its northeastern corner with steps up

and right and with a maximal number of distinct northwestern corners.

3.3.3 Small m

Theorem 3.3.8. Suppose m < r - c + 1. Then a(Lnc) = mc and K(L c) ~

L"-_lr (or K(L', ) has exactly one element if m = r - c+ 1)

The next few lemmas prove theorem 3.3.8 in a very similar way to the proof of [2,

Proposition 4.51. SE-closed regions do not play a role in this proof (they will reappear

in the analysis of the remaining values of m). We mentioned them earlier in order to

reduce the number of cases we need to analyze, thanks to the symmetry around the

main diagonal of DA\,,.

Lemma 3.3.9. Suppose m < r - c + 1 and let T E L. Then for any 1 < b < c,

#reducible entries in the bth column of T < m.

Therefore,

# reducible entries in T < mc.

Proof. This follows easily from part (2) of Lemma 3.1.1. The length of each column

of T is equal to r, and min(n - r, r) = min(m, r) = m.

Let Kn, be the subposet of L', consisting of the tableaux that have mc reducible

entries. The following corollary easily follows from Lemma 3.3.9 and part (2) of

Corollary 3.1.2.

Corollary 3.3.10. Suppose m < r - c + 1 and T E Kge. Then all of the columns of

T are maximally reducible.

Lemma 3.3.11 (based on [2, Proposition 3.111). Suppose m < r - c + 1 and T is a

tableau of shape Arc filled with integer entries. Then T E Kr, if and only if T satisfies

the following conditions.
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1. For any 1 < b < c,

(a) for 1 K a < c - b we have Tab = a, so the entries Ta,b for 1 a < c - b

are irreducible;

(b) for r - b + 1 < a K r we have Ta,b = n - r + a = m+ a so the entries Ta,b

for r - b + 2 < a < r are irreducible;

(c) out of the remaining r - c+ 1 entries Ta,b (for c - b+1 < a K r - b+ 1),

m of them are satisfy Ta,b - Ta-l,b = 2 and r - c + 1 - m of them satisfy

Ta,b - Ta-,b 1.

2. For any 1 b <c-1 and any c-b+ 1 < a < r-b+ 1 we have the column

diagonal property T,b - Ta-1,b+1 1.

Proof. Suppose T C K,,. By Corollary 3.3.10, all the columns of T are maximally

reducible (and in particular strictly reducible). Therefore property (1) (a) follows from

Lemma 3.1.8, property (1)(b) follows from Lemma 3.1.9 and property (1)(c) follows

from Lemma 3.3.9 and maximal reducibility. Property (2) follows from part (2) of

Lemma 3.1.6.

Now suppose T is a tableau of shape A,,c filled with integer entries satisfying

properties (1) and (2). It is easy to verify that property (1) implies that the entries

of T are positive integers, the columns of T are weakly increasing and T,,b = n for all

1 < b < c. In order to prove the lemma, it suffices to show that for any 1 < a < r

and any 1 < b < c,

T,b - T-1,b = 1 implies Ta,b - Tab1 > 0

and (3.8).

Ta,b - Ta_,b = 2 implies Ta,b -Ta,_1 > 1.

We know (3.8) holds for 1 < b K c and 1 K a K c - b by property (1)(a) and for

1 K b K c and r - b + 2 < a K r by property (1)(b). Note that (3.8) holds whenever

Ta,b_1 - Ta_-,b K! 1, since then T,b - Ta,b_1 (Ta,b - Ta_1,b) - 1.
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If b = 1, we know Ta,_1 = a and Tal,b = Tj, -- T-1, > a-i, so we

have Ta,b-1 - Tal,b 1. If b > 1 and a = c - b + 1, then by property (1)(a)

Ta,b_1 = a and Tal,b = a - 1 therefore again Ta,b-1 - Tal,b < 1. If 2 < b < c and

c - b+ 2 < a < r - b+ 1, we have Ta,b_1 - Ta_1,b < 1 by property (2). I

Corollary 3.3.12. Suppose m = r - c + 1, then K,, has exactly one element.

Proof. If m = r - c + 1, the conditions of Corollary 3.3.11 define exactly one tableau

and it is easy to check that this tableau is indeed a SSYT with mc reducible entries.

See Figure 3-1 for an example of the only tableau in L' 4 with 12 reducible entries. E

1 11112
-2 2 3 4
3 4 5 6
5 6 7 7
7 8 8 8
9 9 9 9

Figure 3-1: The only element of KA4

Corollary 3.3.12 shows that if mn = r - c+ 1, K (L') = Kchseaty n lmn

and o-(L,") = mc, thus it proves Theorem 3.3.8 in that case. To prove Theorem 3.3.8

for the case mn < r - c + 1, we show that Krc (rL-c+l)1 C. Since L (-c+)im,c i

clearly not empty (e.g. it contains the minimal tableau 7' defined by V. = a), the

theorem follows.

Definition 3.3.13 (based on 12, Definition 4.3]). Let A', be the set of tableaux of

shape A,, with integer entries that satisfy condition (1) of Lemma 3.3.11.

Let Br, be the set of tableaux of shape Ar,+1,c with entries 1 or 2 where each

column has m copies of 2 and r - c +1 - m copies of 1.

Let C", be the set of tableaux of shape Ar,+1 -m,, with integer entries in {1, 2, .,r-

c + 1} where the entries in each column are strictly increasing.

Define 01 : An, -+ Brc in the following way. For any T E An"e do the following

three operations on T .

63



1. For any 1 < a < r and 1 K b < c, replace the number in the (a,b) -entry of T

with Ta,b - Ta-l,b.

2. Remove all the entries Tab with a + b < c or a + b > r + 2 (after this each

column has length r-c+1).

3. Shift all the entries up to make a rectangular shape Ar-c+,c.

Define 02 : B,' -+ Crc in the following way. For any T' E Bne we create 02 (T')

of shape Ar-c+i-m,c with entries

02(T')a,b := the row index of the ath 1 in column b of T'.

Define 0 = 02 o01 : An & Cn,

Example The following is an example of the maps 01 and 02 for r = 6, c 4, n 8

(so m = 2).

1 1 112
22 3 2
3 3 5 5 8 T121 8 0

5 56 EA6,4 _ 1 2 2 1 E_2 B14 21113 2|E C0,4

617 717, 2 2 1 2
818181814

67n

It is clear that 01 is a bijection from A' to Bre and 02 is a bijection from B, to

Ce. Hence 0 is a bijection from An to Cg. The following proposition completes the

proof of Theorem 3.3.8.

Proposition 3.3.14 (based on [2, Proposition 4.51). Suppose m < r - c+1. Consider

both Anc and C as posets with the coordinate-wise partial ordering. Then 0 is a poset

isomorphism from An to C C.

Furthermore (noting that Kn, is a subposet of A,,) the map 0 induces a poset

isomorphism from K to LC+ . Hence K L(r-c+1)-mcrc (r-c-i1)-m,c*rc (-+)r,
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In order to prove [2, Proposition 4.51, Liu and Stanley use the following definitions.

For any column 0 with entries in {1, 2} they define

#Ones(O, i) := the number of 1's in the first i entries of 0,

and

RI(O, a) := the row index of the ath 1 in 0.

With these definitions, the definition of 02 can be rewritten as

02(T')a,b := RI(column b of T', a).

Liu and Stanley then prove the following lemma.

Lemma 3.3.15 (12, Lemma 4.61). Suppose 0 and 0' are two columns of 1 entries in

{1, 2}. Then the following two conditions are equivalent.

1. For any 1 < i < 1, #Ones(0, i) < #Ones(O', i).

2. #Ones(0, 1) 5 #Ones(0', 1) and RI(0, a) > RI(O', a) for any 1 < a <

#Ones(0, 1).

Lemma 3.3.16 (based on [2, Lemma 4.7}). Suppose T , T(2 E A,,. then the fol-

lowing conditions are equivalent.

1. TO) < TK2

2. For any 1 j <c and 1 i i r - c+1,

#Ones(column j of 01(T(')),i) > #Ones(column j of 61(T (2),j).

3. O(T(1)) 0(T(2 )).

Proof. The proof is exactly the same as the proof of [2, Lemma 4.71. The equivalence

between (2) and (3) follows directly from Lemma 3.3.15. For any T C An,, any
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1 < j < c and any 1 i < r - c+ 1, we have

c-j+i

(Taj - Taj)
a=c-j+1

i

SZ 01(T)k,j = 21 - #Ones(column j of 01(T),i).
k=1

By property (1)(a) of Lemma 3.3.11, Tc-j~j = c - j. Therefore

Tc-j+ij = 2i + c - j - #Ones(column j of 01(T),i), (3.9)

and the equivalence between (1) and (2) follows. E

Lemma 3.3.17 (based on [2, Lemma 4.81). Suppose T E Arc. Then the following

conditions are equivalent.

1. T satisfies condition (2) of Lemma 3.3.11.

2. For any 1 j c - I and 1 < i r - c + 1,

#Ones(column j of 01(T),i) > #Ones(column j + 1 of O1(T),i).

3. The entries are weakly increasing in each row of 0(T).

Proof. This proof is similar to the proof of Lemma 3.3.16. The equivalence between

(2) and (3) follows from Lemma 3.3.15, and the equivalence between (1) and (2)

follows from equation (3.9). D

The first conclusion of Proposition 3.3.14 follows from Lemma 3.3.16, and the

second conclusion of Proposition 3.3.14 follows from Lemma 3.3.17.

3.3.4 Medium m

Theorem 3.3.18. Suppose r - c + 1 < m < r + c -1.
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1. If m and r - c + 1 have the same parity, write m - (r - c + 1) = 21. Then

o(L ) = mc - l(l + 1) and K(L'c) contains exactly one element.

2. Otherwise, write m - (r - c+ 1) = 21 - 1. Then -(L ) = mc - l2 and K(L nc)

is a chain of two elements.

We prove Theorem 3.3.18 by finding sequences of SE-closed regions of Arc with a

maximum number of distinct northwestern corners (recall that these are the reducible

entries of the corresponding tableaux). We will use the terms northwestern corners

and reducible entries interchangeably. We start by proving an upper bound for o (L C).

Definition 3.3.19. Let A be a partition, and let E = {(a,, bi), (a2, b2 ), ..., (ak, bk)}

be a set of entries of DX. We say E is a set of corners if b1 < b2 < - < bk and

a, > a2 > -.- > ak.

Remark We always think of a set of corners as ordered from left to right in DA. For

example, we can say that if some entry (a, b) is part of a set of corners E then the

next entry (a', b') has a' > a. Likewise, if E is a set of corners in DA,, we can say

that if a = 1 or b = c, (a, b) is the last entry of E.

Lemma 3.3.20. Let A be a partition. There is a bijection between the SE-closed

regions of A and the sets of corners of A. Under this bijection, the sets of corners are

the northwestern corners of their corresponding SE-closed regions.

Proof. Let R be a SE-closed region of A. The northeastern corners of R are the entries

(a, b) E R with (a -1, b), (a, b-1) V R. since R is SE-closed, if (a, b) is a northwestern

corner of R any entry (a', b') # (a, b) of D\ with a' > a and b' > b is in R and is not

a northwestern corner of R. It follows that the northwestern corners of R are a set of

corners of A.

For any set of corners E = {(a,, bi), (a2 , b2 ), ... , (ak, bk)} of A, define p(E) to be

the following set of entries of DA.

k

p(E) = U{(a', b') :a' > aj and b' > bi}.
i=1
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It is easy to verify that Wp(E) is a SE-closed region of A whose northwestern corners are

precisely the entries in E. It is also easy to verify that taking the northwestern corners

of a SE-closed region of A is the inverse operation of <p, and the lemma follows. E

Definition 3.3.21. Let T be a tableau of shape Ac,. We split the entries of T into c

L-shaped strips as follows. For 1 < s < c, the sth L-stip contains the entries (i, s)

for 1 < i Kr - s and the entries (c - s + 1, j) for s < j c (see Figure 3-2 for an

example of splitting a Young diagram into L-strips). The total number of entries in

the sth L-strip is therefore r + c - 2s + 1.

Figure 3-2: Splitting the boxes of the Young diagram of shape A6 ,4 into 4 L-strips

Lemma 3.3.22. Suppose T C L, Then for 1 K s < c,

#reducible entries in the sth L-strip of T < min(m, r + c - 2s + 1).

Therefore,

o-(Lr,) min(m, r + c - 2s + 1)
8==1

MC - l(l +1)

mc- 12

if m - (r - c+ 1) = 21

if m - (r - c+ 1) = 21 - I

Proof. By Lemma 3.3.7, there are at most m regions in S(T) and the reducible entries

of T are precisely the set of distinct northwestern corners of these regions. By Lemma

3.3.20, the set of northwestern corners of any region RH E S(T) is a set of corners of

Ac. Hence, R, can have at most one northwestern corner in each L-strip. Since there

are at most m regions in S(T), there are at most m distinct reducible entries in each
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L-strip. Clearly the number of reducible entries in the sth L-strip of T is at most

the number of entries in the strip r + c - 2s + 1, so the first conclusion of the lemma

follows. The second conclusion simply follows from a computation of the sum. 0

Let K,, be the subposet of L', consisting of the SSYT that have mc - l(l + 1)

reducible entries if m - (r - c+ 1) 21, or mc - 2 reducible entries if m - (r - c+ 1) =

2l - 1. In order to prove Theorem 3.3.18 it suffices to show that K,, has a single

element in the former case and is a chain of two elements in the latter case. We

denote k = c - l - 1 if m - (r - c+1) = 21 and k = c - 1 if m - (r - c+1) = 2l - 1.

Lemma 3.3.23. Suppose T E Kr, Then S(T) has m regions. Moreover,

1. for 1 < s K k, each one of the m regions of S(T) has a distinct northwestern

corner in the sth L-strip of T;

2. for k + 1 K s K c, the sth L-strip of T has less than m entries and all of them

are northwestern corners of regions in S(T).

Proof. This is an easy consequence of the proof of Lemma 3.3.22 and the observation

that m <r + c - 2s +1 implies s K k. 0

Lemma 3.3.24. Suppose m - (r - c+ 1) = 2l and T E Krn. Then for 1 < s < k +1,

the m reducible entries in the sth L-strip of T are the entries (a, b) with a > k -s+2 =

c - 1 - s + 1 and b K s + 1 (note that there are indeed m such entries).

Remark Note that when s = k + 1 Lemma 3.3.24 holds by Lemma 3.3.23. We have

included it here only as a base case for an induction.

Proof. The proof is by induction on s going from s = k + 1 down to s = 1. The base

case is the (k + 1)-st L-strip of T. It has r + c - 2(k + 1) + 1 = m entries, and by

Lemma 3.3.23 all of them are reducible. These are indeed all the entries (a, b) of the

sth L-strip with a > k - s + 2 = 1 and b K s + l = c.

Suppose the lemma holds for the sth L-strip of T, we prove it for the (s - 1)-st

strip. Recall that the reducible entries of T come from m sets of corners, and that

69



each of the m reducible entries in the sth L-strip belongs to a different set of corners,

and likewise for the m reducible entries of the (s - 1)-st strip. Hence each one of the

reducible entries in the (s - 1)-st strip must be in the same set of corners as one of

the reducible entries in the sth strip. In particular, each reducible entry (a, b) in the

(s - 1)-st strip must have some entry (a', b') in the sth strip with a' < a and b' > b.

But by the induction hypothesis all the reducible entries (a', b') in the sth strip satisfy

a' > c - 1 - s + 1 and b' < s + 1, therefore we must have a > c - 1 - (s - 1) + 1 and

b < (s - 1)+ I and the conclusion follows. l

Suppose m - (r - c + 1) = 21 and T E Kre. Lemma 3.3.24 together with Lemma

3.3.23 determine the locations of the reducible entries of T. These reducible entries

are the union of the entries of m sets of corners. In order to prove Theorem 3.3.18

(for the case m - (r - c + 1) = 2l) we need to show that there exists a unique way to

define m sets of corners E1 , E2 , ... , Em such that their union (in fact it will be a disjoint

union) is the set of reducible entries of T and R1, R 2 , ... , R, (where R, := <(Ei)) is a

SE-closed sequence of regions for Ar,c. It would then follow that R1, R2 , ... , R, define

a unique tableau To C Kr, which implies K(Ln') = Kr' has a single element and

o-(Ln') = MC - 1(1 + 1).

By Lemmas 3.3.23 and 3.3.24 the first L-strip of T contains m reducible entries,

the entries (a, b) with a > c - I and b < I + 1, and each one of these belongs to a

different set of corners. Going from (c -, 1) down to (r, 1) and then right to (r, l + 1),

denote these entries by (ai, bi), (a2 , b2 ), ... , (am, bi) and let (al, bi) belong to Ei.

Lemma 3.3.25. In the above setting we must have for any 1 < i < m,

Ei = {(ai, bi), (ai - 1, bi + 1), (ai - 2, bi + 2),1..., (1, bi + ai - 1)} (3.10)

Remark We note a few properties of equation (3.10).

1. Each of the entries in equation (3.10) is in a different L-strip of T.

2. The sets E defined in equation (3.10) are all disjoint
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3. The sets E defined in equation (3.10) are clearly sets of corners. Moreover, if

we let R, := p(Ej), it is easy to verify that R1 2 R2 2 - 2 R, and therefore

the tableau To := S'(R1, ... , Rn) is the unique element of Krc-

Proof. The proof goes by induction on 1 < s < c, and in each step we assign the

reducible entries in the sth L-strip of T to the sets E1 , ... , Em. We have already

assigned the reducible entries of the first L-strip of T. Suppose that we have assigned

the reducible entries in the (s - 1)-st strip for some 2 < s < k + 1 consistently with

equation (3.10). By Lemma 3.3.24, the reducible entries in the (s - 1)-st strip are the

m entries (a', b') with a' > c - 1 - (s - 1) + 1 and b' < (s - 1) + 1 and the reducible

entries in the sth strip are the 7a entries (a, b) with a > c - 1 - s + 1 and b K s + 1.

We need to assign each of the latter entries to a set of corners that already contains

one of the former entries. Using the property of sets of corners, it is easy to verify

(e.g. by considering the entries from top to bottom to the right) that we must assign

the entry (a, b) to the set Ej that contains the entry (a + 1, b - 1). This is consistent

with equation (3.10).

Now suppose we have assigned the reducible entries in the (s - 1)-st strip for some

k + 2 < s < c consistently with equation (3.10). By Lemma 3.3.23, all the entries in

the strips k + 1, ... , s - 1 are reducible, including one entry with a = 1 and one entry

with b = c in each strip. These entries must be the last entries in the sets of corners

they were assigned to, therefore out of the m sets of corners, 2(s - k - 1) cannot be

assigned entries from the sth strip. We are left with m - 2(s - k - 1) = r + c - 2s + 1

sets that can still be assigned reducible entries. Note that the number of (reducible)

entries in the (s - 1)-st strip is r + c - 2s + 3 and two of these entries are the last

entries in their respective sets of corners, so each of the r + c - 2s + 1 entries of the

(s - 1)-st strip with a > 1 and b < c has been assigned to one of the r + c - 2s + 1

"open" sets. The number of (reducible) entries in the sth strip is also r + c - 2s + 1,

so each of them must be assigned to an "open" set that contains one of the entries of

the (s - 1)-st strip with a > 1 and b < c. It is now easy to verify similarly to the

above case that the entry (a, b) of the sth strip must be assigned to the set Ej that

contains the entry (a + 1, b - 1) of the (s - 1)-st strip. This is again consistent with
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equation (3.10).

We are now left with proving Theorem 3.3.18 for the case m - (r - c+ 1) = 21 - 1.

Recall that in this case, k = c - 1. The kth L-strip in a tableau T E K,, then has

r + c - 2k + 1 = m + 1 entries and by Lemma 3.3.23, m of them are reducible.

Lemma 3.3.26. Suppose rn - (r - c + 1) = 21 - I and T C K ,. Then one of the

following two cases holds.

1. For 1 < s < k, the reducible entries in the sth L-strp of T are the entries (a, b)

with a> k-s+1 andb< s+l-1.

2. -For 1 < s K k, the reducible entries in the sth L-strip of T are the entries (a, b)

with a> k-s+ 2 andbK s+l.

Proof. The (k + 1)-st L-strip of T has r + c - 2(k + 1) + 1 = m - 1 entries, and by

Lemma 3.3.23 they are all reducible. Since they are all in the same L-strip, each one

of them must belong to a different set from of the m sets of corners of T. Similarly, the

kth L-strip of T has m reducible entries and each one of them belongs to a different

set of corners of T, one reducible entry for each set. Hence m - 1 of the reducible

entries of the kth strip belong to a set of corners that also contains one of the entries

of the (k + 1)-st strip. Each entry (a, b) of these m - 1 reducible entries of the kth

strip therefore has some entry (a', b') of the (k - 1)-st strip with a > a' and b < b', and

since the entries in the (k - 1)-st strip have a' > 1 and b' K c, we see that out of the

m reducible entries in the kth strip, m - 1 of them are the entries (a, b) with a> 2

and b K c - 1. The remaining reducible entry can be either (1, k) or (r - k + 1, c).

It is now left to prove the following.

1. If the reducible entries in the kth L-strip of T are the entries (a, b) with a > 1

and b K c - 1, then case (1) of Lemma 3.3.26 holds.

2. If the reducible entries in the kth L-strip of T are the entries (a, b) with a> 2

and b K c, then case (2) of Lemma 3.3.26 holds.
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The proof is by induction on the sth L-strip of T going down from s = k to s = 1,

similar to the proof of Lemma 3.3.24, with either one of the base cases s = k described

above. 0

Suppose m - (r - c + 1) = 21 - l and T E Kr, then either T satisfies condition

(1) or condition (2) of Lemma 3.3.26. In either case, denote the reducible entries of

the first L-strip of T by (ai, bi), (a2 , b 2 ), ... , (am, bm) going from top to bottom to the

right. As in the case m - (r - c + 1) = 21, we want to assign the reducible entries of

T (determined by Lemma 3.3.23 and Lemma 3.3.26) to m sets of corners E1 , ... , Em.

Let (ai, bi) belong to Ej. The following lemma shows that there is a unique way to

build El, ... , Em.

Lemma 3.3.27. In the above setting we must have for any 1 < i <in,

Ej = {(aj, bi), (a - 1, b + 1), (ai - 2, bi + 2),..., (1, bi + ai - 1)} (3.11)

Proof. The proof is the same as the proof of Lemma 3.3.25, except here there is one

set of corners ending in the kth L-strip of T, 3 sets of corners ending in the (k + 1)-st

L-strip of T, etc. 0

The sets Ej defined in Lemma 3.3.27 are clearly sets of corners. Letting Ri :=

(p(Ei) it is easy to verify that R1 2 R2 D - - - - Rm, so these regions are a sequence

of SE-closed regions for A,,c. If (a,, bi), (a2 , b2 ), ... , (am, bm) satisfy condition (1) of

Lemma 3.3.26 denote T := S'(R1, ... , Rm), and if they satisfy condition (2) of Lemma

3.3.26 denote T2 := S'(R1 , ... , R,). It follows that T and T2 are the only elements of

K'C, and it is easy to verify that Ti > T2 . Therefore K(L',) = Kc is a chain of two

elements and -(Ln'c) = Mc - 12, and this completes the proof of Theorem 3.3.18 for

the case m - (r - c + 1) = 21 - 1.

3.4 Double staircase

Let M, denote the partition (2s, 2s - 2, ... , 2). We call p,a the double staircase with s

steps. Let L' be the coordinate-wise partial ordering on the set of SSYT of shape p,
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with largest part at most n. Denote n n - s. In this section we compute o (L') and

describe K(Ln) for the various possible values of m. Note that unlike the previous

sections, in this section we will use an upper bound on the number of reducible entries

in each row (rather than column) and all of its consequences (for the shape , the

upper bound on -(Ln) given by the columns is larger than the upper bound given by

the rows).

Lemma 3.4.1. Let T E L'. Then for any 1 < a < s,

#reducible entries in the ath row of T < min(n - a, 2(s + 1 - a)).

Therefore,

S

# reducible entries in T < Zmin(n - a, 2(s + 1 - a)).
a=1

Proof. This is an easy consequence of part (1) of Lemma 3.1.1, since the length of

row a of T is 2(s + 1 - a). L

We now give a few lemmas that hold for 1 < m < s. We then move on to analyze

the cases m = 1 and 1 < m < s separately, since they display different behaviors.

Lemma 3.4.2. Suppose 1 < m K s and T E L'. Then

1S

o-(L n) < -(s- + 1)(s + 31n - 2) +im(in - 1)

(in particular, if m = 1 then o-(Ln) (8 1)

Proof. Suppose 1 K m K s and T E Ln. Applying Lemma 3.4.1, we see that the

number of reducible entries in the ath row of T is at most

min(n - a, 2(s - a + 1) = m fr a s- + (3.12)
2(s - a + 1) for s - m + 2 < a < s,
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so the total number of reducible entries in T is at most

s-m+1 s

(m+fs-a)+ 2(s-a+1)= 2(s - m + 1)(s + 3m - 2) +m(m - 1).
a=1 a=s-m+2

Let K' be the subposet of L' consisting of the tableaux with the maximum

possible number of reducible entries as described in Lemma 3.4.2.

Corollary 3.4.3. Suppose 1 < m < s and T E K,. Then T satisfies the following

conditions.

1. The first s - rn + 1 rows of T are maximally reducible.

2. For anyl a s-rn+1,

(a) for 1 b s-rn+1-a we have Ta,b = a. Thus the first s-rm+ 1 -a

entries out of the 2(s + 1 - a) entries of the ath row of T are irreducible.

(b) Out of the remaining s +m - a + 1 entries in the ath row, i.e., the entries

(a,b) for s - m - a+ 2 < b < 2(s + - a), s + rn - a entries are reducible

(and satisfy T,b - Ta,b-1 = 1) and one entry 'is irreducible (and satisfies

Ta,b - Ta,b-1 = 0)

3. For any s - rn + 2 < a s, all the entries in the ath row of T are reducible.

Proof. Property (1) follows from the proof of Lemma 3.4.2 and part (1) of Corollary

3.1.2. Property (2)(a) follows from Lemma 3.1.10. Property (2)(b) follows from the

proof of Lemma 3.4.2 and property (1). Property (3) follows from the proof of Lemma

3.4.2. 0

Definition 3.4.4. Suppose 1 < m < s and let T E K,. We define the location

function l : {1, 2, ... , s - m+1} -+ N as follows. For each row I < a < s - m+1 of T,

let 1(a) be the single value s -a -m+2 < b < 2(s -a+1) such that Ta,b -Ta,b-1 = 0.

In other words, I(a) is the location of the single irreducible entry which is not part of
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the left-aligned triangle of irreducible entries described in property (2)(a) of Corollary

3.4.3.

Lemma 3.4.5. Suppose 1 < rn < s. Suppose T E Kn has location function I and

l(a) < 2(s - a + 1) for some 2 < a < s - m + 1. Then (a - 1) l(a) + 1.

Proof. By the maximal reducibility of the first s - m + 1 rows of T, for any 1 < i <

s - m + 1 and 1 < j 2(s - i + 1), we have

Ti = T, 0 + Ti,b - Tb_1

b=1

= T,O + 1 x #reducible entries in the first j entries of row i of T +

0 x #irreducible entries in the first j entries of row i of T

= i + #reducible entries in the first j entries of row i of T. (3.13)

By our assumptions, Ta,l(a)+1 is a reducible entry of T. By Corollary 3.4.3 and

Definition 3.4.4, out of the first l(a) + 1 entries of the ath row of T, s - m - a +2 are

irreducible and the remaining 1(a) - s + m + a - 1 are reducible. Applying equation

(3.13) we see that Ta,I(a)+ = I(a) - s + m + 2a - 1.

Since Ta,l(a)+1 is reducible, we have

Ta-1,(a)+1 Ta,j(a)+1 - 2 = l(a) - s + m + 2a - 3.

Applying equation (3.13) to row a - 1, we see that

l(a) - s + m + 2a - 3 > Ta-1,(a)+l

- a - 1 + #reducible entries in the first (1(a) + 1) entries of row a - 1 of T.

It follows that in the first l(a) + 1 entries of row a - 1 of T there are at most

l(a) - s + m + a - 2 reducible entries, and at least s - m - (a - 1) + 2 irreducible

entries. But by Corollary 3.4.3 this is the total number of irreducible entries in row

a - 1 including the one denoted by l(a - 1), so we must have l(a - 1) < I(a) + 1. 0
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3.4.1 The case m = 1

We now start analyzing the case m = 1. We will break down the proof of Theorem

3.4.6 into several lemmas.

Theorem 3.4.6. Suppose n = 1, then -(Ln) = (8+1) and K(L n) e J(A,) where

A, is the poset of pairs {(x, y) c IPIx + y s + 1} with the coordinate-wise partial

ordering, and J(P) is the poset of order ideals of the poset P.

Corollary 3.4.7. Suppose m = 1, T E Kn has location function 1, and suppose

l(a) = 2(s - a + 1) for some row a of T (so the single irreducible entry is the last

entry of row a). Then l(a + 1) = 2(s - a) (the single irreducible entry of row a + 1 is

the last entry of the row).

Hence there exists some threshold 1 < t < s + 1 such that l(a) = 2(s - a+1) (+(a)

is the last entry of its row) for all a > t and l(a) < 2(s - a + 1) ((a) is not the last

entry of its row) for all a < t.

Proof. Since row a + 1 has length 2(s - a) and l(a +1) < 2(s - a), it is impossible to

have l(a) = 2(s - a + 1) < l(a + 1) + 1. Therefore Lemma 3.4.5 does not hold, which

implies l(a + 1) = 2(s - a).

Lemma 3.4.8. Let T be a tableau of shape p, filled with integer entries. Then

T E K,+1 if and only if there exists a location function 1 : {1,..., s} -+ N such that:

1. for all 1 < a < s, s - a + I1 l(a) 2(s-a+ 1);

2. if l(a) < 2(s - a + 1) then l(a - 1) < l(a) + 1;

3. for any 1 a < s and bE {1, 2,..., s - a} U {l(a)}, Ta,b - Ta,b-1 = 0 (with the

convention Ta, = a). For all other values of b such that Ta,b is an entry of T,

Ta,b - Ta,b_1 = 1.

Proof. If T E K, has location function 1, Corollary 3.4.3 and Lemma 3.4.5 prove

properties (1)-(3). Now suppose T and 1 satisfy properties (1)-(3). We need to show

that T is a SSYT with largest part at most s + 1 and that T has ( 2 ) reducible
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entries. It is clear from property (3) that the entries of T are positive integers and

the rows of T are weakly increasing. Moreover, the last entry Ta,2(s+1-a) of each row

a is
2(s+1-a)

E Ta,b-Ta,b= Ta,o+(s-a+1)-O+(s-a+1)-1=s+1
b=1

so T has largest part s + 1.

By property (3), we can split the entries of any row a into four segments and write

the entries of each segment as follows:

" Segment I: 1 <.b < s - a we have Ta,b = a.

" Segment II: s-a+ 1 b< 1(a) we have Ta,b~a+ (b- (s-a)) 2a+ b-s.

" Segment III: b = 1(a) we have Ta,t(a) = Ta,l(a)i = 2a + 1(a) - s - 1.

* Segment IV: b > 1(a) we have Tab = Tal(a) + b - 1(a) = 2a + b - s - 1.

Note that segment II may be empty (if 1(a) = s - a + 1) or segment IV may be

empty (if 1(a) = 2(s - a + 1) is the last entry of row a). In order to show that T

is strictly increasing in colunmns and has ( 21) reducible entries, it suffices to show

that for 2 < a < s we have Tab - Ta_1,b > 1 when Ta,b is in segment I or III, and

Ta,b - Ta_1,b > 2 when Ta,b is in segment II or IV (this is clearly true for a = 1 by our

convention To,b = 0).

Now compare the entries of two consecutive rows a and a - 1: when Ta,b is in

segment I, Ta_1,b is also in segment I and Ta,b - Tal,b = 1. When Ta,b is in segment

II, Tab - Ta1, b > 2 regardless of the segment of Tal,. When Ta,b is in segment III,

Ta,b - Ta_1,b > 1 regardless of the segment of Tal,b. When Ta,b is in segment IV

(which implies that 1(a) < 2(s - a + 1)), by property (2) Tal,b must be in segment

III or IV and therefore Ta,b - Tal,b = 2.

It follows from the construction described in property (3) of Lemma 3.4.8 that

there is a bijection between K," and location functions satisfying properties (1) and

(2). Clearly, such location functions exist (for example, the function 1(a) = s - a +1),

therefore K" is nonempty and we have K(L') = K,) and -(Ln) = (+). We now
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turn to analyze the structure of Kn'. The following corollary shows that if the set of

location functions is given the coordinate-wise order, the bijection between K, and

location functions is in fact a poset isomorphism.

Corollary 3.4.9. Let T, T' G Kn', and denote their location functions by 1,l' respec-

tively. Then T < T' in Kg if and only if l(a) < l'(a) for any 1 < a < s and the

equality holds only if 1 = 1'.

Proof. This is an easy consequence of the proof of Lemma 3.4.8. From the description

of the four segments of each row, it is evident that for any 1 < a < s, row a of T

is coordinate-wise less than row a of T' if and only if l(a) < l'(a), and the rows are

equal if l(a) = l'(a). 0

Proposition 3.4.10. Suppose m = 1. The join-irreducibles of K, are isomorphic

to the set A,, the poset of pairs {(x, y) c P2 Ix + y < s + 1} with the coordinate-wise

partial order. Thus Kn ~ J(A,).

Proof. The join irreducibles of K, are the tableaux that cover exactly one element of

Kr. In the rest of this proof we think of K,' in terms of location functions (functions

I that satisfy properties (1) and (2) of Lemma 3.4.8).

Consider the following scenario: suppose 1 is a location function and there exists

1 < ao s satisfying the following conditions, that we will refer to as the coverage

conditions.

1. l(ao) > s - ao +1,

2. ao = 1 or l(ao - 1) l(ao).

Then one can define a function lo by

la.(a) {l(a) - I if a = ao

l(a) otherwise.

It is easy to verify that lao is a location function, and by Corollary 3.4.9 1 covers

lao. We claim that the functions {lao : ao satisfies the coverage conditions for l} are
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precisely the location functions covered by 1. Suppose 1 covers some location function

i', then by Corollary 3.4.9 l'(a) < 1(a) for all 1 < a _ s. Let io be the minimal

row such that l'(io) < 1(io). Since 1(io) > l'(io) > s - io + 1 and either io = 1 or

l(io - 1) l'(io - 1) < l'(io) + 1 < 1(io), io satisfies the coverage conditions for 1,

so 1 covers 1j. If 1(io) - l'(io) > 1 we see that I > lio > ', so 1 cannot cover 1'. If

1(io) - l'(io) = 1 and 1 and 1' differ in another row i1 > io, then li0 and 1' also differ in

that row and we see again that 1 > lio > 1'. Hence we must have 1' = li.

It follows that K, has a unique minimal element, the location function 10 with

lo(a) = s - a + 1 for all 1 < a < s. Moreover, for any other location function 1

there exists a minimal 1 K ao <; s such that 1(a) = s - a + 1 for all a < ao and

1(ao) > s - ao + 1. This ao satisfies the coverage conditions for 1, so 1 covers 1a0. We

want to identify the location functions 1 for which this ao is the only row that satisfies

the coverage conditions.

Suppose 1 is a location function in K,, and ao is as defined above. By property

(2) of Lemma 3.4.8 1(ao) > s - ao + 1 implies 1(a) > s - a +1 for all a > ao. Therefore

the following conditions are equivalent:

1. 1 < ao < s is the only row that satisfies the coverage conditions for 1.

2. l(a - 1) > 1(a) for all a > ao.

By Corollary 3.4.7 there exists some 1 < t K s +1 such that 1(a) = 2(s - a +1) for

all a > t and 1(a) < 2(s - a + 1) for all a < t. Note that since row s of the tableaux

in K. has only two entries, either 1(s) = 1, in which case we must have 1 = lo the

unique minimal element of K,, or i(s) = 2 in which case t K s. In the former case, 1

does not have a row ao so it is excluded from our discussion (the minimal elements

of kn are not considered join-irreducibles of Kr). Therefore we must have 1 < t K s.

Clearly by the definition of ao, we must have t > ao.

The discussion so far shows the following: let 1 be a location function, 1 $ 10, and

let ao be the minimal row that satisfies the coverage conditions for 1. Then 1 covers
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only one element in K, if and only if ao < t < s and

s - a + 1 for a < ao

1(a) l(a+ 1) + 1 for ao < a < t (3.14)

2(s - a+ 1) for a > t.

It follows that the two values 1 < ao < s and ao < t < s determine the entire

function 1. On the other hand, it is easy to verify that a function I defined as in

(3.14) is indeed a location function with ao being its only row that satisfies the

coverage conditions. Therefore, the join-irreducibles of K, are in bijection with the

set D, := {(ao, t) :1 K t < s, 1 < ao < t}. Moreover, if we think of D, as a poset

with the partial ordering

(ao, t) 5 (a', t') if and only if ao > a' and t > t',

it follows from Corollary 3.4.9 and equation (3.14) that the bijection between the join-

irreducibles of K, and the set D, is in fact a poset isomorphism. Letting x = s+1- t

and y = t +1 - ao, it is now an easy exercise to verify that the poset D, is isomorphic

to the poset A,.

Let M(s) be the set of all subsets of [s], with the ordering A < B if the elements

of A are a, > a2 > . > aj and the elements of B are b, > b2 > -.. > b, where

j < k and ai < bi for 1 < i < j. M(s) is a well known poset, defined, e.g., in [4, page

681 and in [8, page 1771. As mentioned in [8, page 1771, M(s) is a distirbutive lattice

and M(s) ' J(A,). We therefore have the following corollary.

Corollary 3.4.11. We have K(L') M A(s).

3.4.2 Medium m

Theorem 3.4.12. For 1 <m K s we have

1
o- (L') = I(s -,m + 1)(s + 3m - 2) + m(m - 1
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and there is exactly one element in K(Ln).

Proof. Suppose T E Kr. By Corollary 3.4.3, for s - m + 2 < a < s all the entries in

the ath row of T are reducible. This (and the fast that the entries of T are at most

n = s + m) implies in particular:

9 T, 2 < s + m (the last entry of the sth row)

ST,1  s + m - 1;

*T,-j, < (s+rm-1)-2j for 1 <j m-1.

Thus, T-.+1,i < s -,m+1. But the columns of T are strictly increasing, so T>m+ii>

s - m + 1. Hence all of the above inequalities must be equalities, so we must have

Ts-m+ii = s - m + 1 and this entry is irreducible. Note that row s - r+ 1 satisfies

property (2) of Corollary 3.4.3, so we have l(s - m+ 1) = 1 which implies (by Lemma

3.4.5) 1(a) = (s - m + 1) - a + 1 for all 1 < a K s - m + 1. This determines all the

entries in the first s - m + 1 rows of T.

Nowfor 0 <j < m-2, row a= s-j of Tsatisfies:

" T5-*,1 = (s + - 1) -2j.

" All the entries in row a are reducible, so for any 2 K b K 2j + 2 we have

Ta,b - Ta,b_1 1.

" There are 2(j + 1) entries in row a, and Ta,2j+2 Ks + m.

These three properties show that we must have equalities Ta,b - Ta,b-1 = 1 for all

2 K b K 2j + 2, and this determines all the entries of row a.

All in all, the above discussion describes a single tableau that can be in K,, and

it is easy to verify that this tableau is indeed in K,. See Figure 3-3 for an example

of the only element of L9 with 32 reducible entries. Thus we have established that

K(L') = K, has a single element and o-(L') = !(s-rm+1)(s+3m-2)+m(n.-1) El
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S111 2 3 4 5 6 7 89

3 3 4 5 6 7 8 9
4 5 6 7 8 9

8 9

Figure 3-3: The only element of K9

3.4.3 Large m

Theorem 3.4.13. For m > s we have o(L') = s2 + s and K(L") ~ P"-, where

P , is the coordinate-wise partial ordering on reverse (nonstrict) plane partitions of

shape (2s, 2s - 2,..., 2) with largest part at most n.

Proof. Let T E L". m > s implies m + s - a > 2(s - a + 1) for any 1 a < s,

so by Lemma 3.4.1 the number of reducible entries in the ath row of T is at most

2(s - a + 1), and
s

o(L n) Z2(s - a + 1) = s2 +s.
a=1

Let K" be the subposet of Ln consisting of the tableaux with s2 + s reducible

entries. Let T E Kn, so all the entries in all the rows of T are reducible, i.e., for any

1< a < s and any 1 b < 2(s - a+ 1),

Ta,b - Ta,b-1 >1 and Ta,b - Ta-,b 2. (3.15)

For T E Kn,, let T' be the tableau of shape t, and entries T',b = Ta,b - (2a+ b - 2).

By (3.15), the rows and columns of T' are weakly increasing and T',1 = T1,1 - 1 > 1

so all the entries of T' are positive integers. The largest part of each row a of T

(T') is in the last entry Ta,2(s-a+l) (T',2(s-a+l)) and Ta,2 (s-a+l) s + m if and only if

Ta,2 (s-a+l) <s+m-2s = m - s, so T has largest part at most s+m if and only if T'

has largets part at most m - s. It is easy to see that the map T i-+ T' is invertible,

so it is a bijection between K," and P,-s. It is also clear that the map T F4 T' is

a poset isomorphism between these two sets, so we get K(Ln) = Ks ' P S and

o-(Ln) = s2 + s. F1
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3.5 Double Staircase with a Short Step

For 1 k s, let Vs, be the partition

(2s - 1, 2s - 3, ... , 2s - 2k + 1, 2s - 2k, 2s - 2k - 2, ... , 4, 2)

with s - 1 "double steps" and one shorter step (see Figure 3-4 for an example of

the Young diagram of shape v6,3 in which the third step is shorter). Let Lk be the

coordinate-wise partial ordering on SSYT of shape vs,k with largest part at most n.

For the shape V-',k we only know how to analyze the case n = s + 1.

Figure 3-4: The Young diagram of shape V6 ,3

Theorem 3.5.1. We have o-(Ls 1 ) = (s+1) and K(Ls") has only one element.

Lemma 3.5.2. Let T E L" 1 . Then for any 1 < a < s,

#reducible entries in the ath row of T < s + 1 - a.

Therefore,
S

# reducible entrmes in T s + 1-a = (s +1
a=1

Proof. This is again an easy consequence of Lemma 3.1.1, since for all 1 < a < s the

length of the ath row of T is either 2(s - a + 1) (for k + 1 < a < s) or 2(s - a + 1) - 1

(for 1 < a < k) and in any case it is not less than s + 1 - a.

Let Ks"j be the subposet of L" consisting of the tableaux with (S+1) reducible

entries.

If we take the element of K(Ls+1 ) (as defined in Section 3.4) with 1(a) = 2(s -a+1)

and remove the last entries of rows 1, 2, ... , k, the result is clearly a tableau To in L" 1 .

84



We only removed irreducible entries, so by Theorem 3.4.6, the number of reducible

entries of To is (s+1) hence To E K.,+. We claim this is the only element of Ks'.
,k sk

Corollary 3.5.3. Suppose T c K'. Then T satisfies the following conditions.

1. All the rows of T are maximally reducible.

2. For any 1 < a < s,

(a) for 1 K b < s - a we have Ta,b = a. Thus the first s - a entries of the ath

row of T are irreducible.

(b) Out of the remaining entries in the ath row, s - a + 1 entries (a, b) are

reducible and satisfy Ta,b - Ta,b-1 = 1. For 1 < a < k, these are all the

remaining entries in the ath row of T. For k + 1 < a < s, there is one

irreducible entry (a, b) that satisfies T,b - Ta,b-1 = 0 for some s - a + 1 <

b 2(s-a+ 1).

Proof. The proof is very similar to the proof of Corollary 3.4.3. We simply use the

lengths of the rows of Vs,k instead of the lengths of the rows of p,. E

Lemma 3.5.4. Suppose k < s and T c Ks'. Then for k1 < a < s, the last entry

Ta,2 (s-a+l) of the ath row of T is irreducible.

Proof. We prove by induction on 1 < i < s - k that Tk+i,2(s-(k+i)+1), the last entry of

the (k + i)-th row of T, is irreducible. The base case is for i = 1. By Corollary 3.5.3,

the last two entries of the kth row of T are Tk,2s-2k = s and Tk,2s-2k+1 = s + 1. But

Tk+1,2s-2k s + 1 so we must have Tk+1,2 8 -k = s + 1, Tk+1,2-2k - Tk,22k= 1 and

Tk+1,2s-2k is irreducible.

Now suppose the last entry of row k + i is irreducible, so Tk+i,2(-(k+i)+1) =

Tk+i,2(s-(k+i)+1)_1. By maximal reducibility in row k + i, the last two entries of the

row equal s +1. By Corollary 3.5.3, the one before last entry of row k + i is reducible,

so Tk+i,2(s-(k+i)+1)-2 = s. But just like the base case, this implies that the last entry

of row k + i + 1, Tk+i+1,2(S-(k+i+1)+1), is irreducible. E
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Corollary 3.5.3 and Leinma 3.5.4 determine all the entries of T E Ks"i, and shows,k

that To is indeed the only element of Ks,". Therefore we have o-(Ls+) = (s+1) andK(Lk sk = K) s y

K(L"') - KS+l has only one element.
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