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Abstract

This thesis examines questions related to the growth of fields of rationality of cuspidal
automorphic representations in families. Specifically, if F is a family of cuspidal
automorphic representations with fixed central character, prescribed behavior at the
Archimedean places, and such that the finite component 7r' has a F-fixed vector, we
expect the proportion of 7r E F with bounded field of rationality to be close to zero
if F is small enough. This question was first asked, and proved partially, by Serre
for families of classical cusp forms of increasing level. In this thesis, we will answer
Serre's question affirmatively by converting the question to a question about fields
of rationality in families of cuspidal automorphic GL2 (A) representations. We will
consider the analogous question for certain sequences of open compact subgroups F
in UE/F(n). A key intermediate result is an equidistribution theorem for the local
components of families of cuspidal automorphic representations.
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Chapter 1

Introduction

1.1 History and motivation

Let Sk(Fo(N)) denote the space of classical cusp forms of weight k and level N. For

each prime p f N, the Hecke operator Tp is semisimple on Sk(Fo(N)). Since the Tp

commute with one another, they are simultaneously diagonalizable. By Atkin-Lehner

theory ([AL70]), there is in fact a canonical eigenbasis for the space, which we denote

by Bk(Fo(N)).

If f E Bk(Fo(N)) then f has a Fourier expansion

f(q) = q + a2q2 + a3 q ....

We define the field of rationality Q(f) of f to be the field Q(a2 , a3 , ... ) generated by

all its Fourier coefficients. If o- E Aut(C), then the form

of(q) = q+ o-(a 2)q2 + (a3)q3 +...

is also a member of the canonical basis of Hecke eigenforms. Since this space is finite-

dimensional, we discern that Q(f) is a finite extension of Q. Let BkA(Fo(N)) be the

set of those f E Bk(Fo(N)) such that [Q(f) Q] < A.

In [Ser971, Serre examined the growth of Q(f) in level-families of Hecke eigenforms.
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Specifically, he proved the following Theorem:

Theorem 1.1.0.1. Fix A > 1 and a rational prime po. Let N, -+ oc be a sequence

of levels such that (po, NA) = 1 for all N\.

Then

m BA(Fo(NA))Jlim Jk \)I= 0.
A-+00 IBk(1o(NA))I

On page 87 of that paper, Serre posited it was possible to allow {NA} to be

an arbitrary sequence of levels, removing the necessity of the auxiliary prime. Our

primary motivation was to answer this question.

Serre used a trace formula argument to examine the asymptotic distribution of

the Hecke eigenvalues apo in families of high level (this is the part of the argument

that required the existence of the auxiliary prime). The limiting distribution is the

Plancherel measure on [-2p(k-1)/2, 2 p(k-1)/2]; this measure is absolutely continuous

with respect to the Lebesgue measure on the interval, so points have measure 0.

Moreover, if apo is the Hecke eigenvalue of a cusp form of weight k, then it is of the

form a + Z, where a is a Weil-p-integer of weight k - 1. If [Q(apo) : Q] < A then

[Q(a) : Q] 2A. However, there are finitely many Weil-po-integers of given weight

and given degree, so they occur with asymptotic density zero. This completes the

proof.

The Plancherel measure arises naturally from the representation theory of GL 2 .

There is a classical correspondence f '-* ir between Hecke eigenforms and cuspidal

automorphic GL2 (AQ) representations. If f has level coprime to po, then 7rfpo is

an unramified (tempered) principal series representation and therefore is defined by

its (unitary) Satake parameters {ao, Oo}. Since f is a Fo-level form, then lrf has

trivial central character, and so )0= o. If apo is the po'-Fourier coefficient of f, then

=pk-l)/ 2 (ao + 3o). There is a natural Plancherel measure on the subspace of

the unitary spectrum of GL2 (Q,) with trivial central character, and the Plancherel

measure on [-2pk-)/2 2 pk-1)/2] arises via the restriction of this Plancherel measure

to the unramified spectrum.

Waldspurger [Wal85I has defined an action of Aut(C) on the space of admissible
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GL2 (Qp) representations. Given irk, let Stab(7rp) = {o- E Aut(C) : O-r, iy r}; the

field of rationality Q(-rp) of 1rP is the fixed field of Stab(7rp). Under the identification

f T+ frs, Q(f) is equal to the compositum of the fields Q(7rf,p) for all finite primes p.

To relax the dependence on the auxiliary prime po, we need to work with cus-

pidal automorphic representations that are ramified at po. This requires two steps:

first, we need to prove a Plancherel equidistribution result for cuspidal automor-

phic representations. The precise definition of Plancherel equidistribution is given

in 3.3.0.9. The method of proof is by now standard (following, for instance, Shin

and Templier ([Shil2J and [ST12J) and Finis, Lapid, and Mueller (IFL13I, IFLM14],

[FL15I)) and depends on a density theorem of Sauvageot (fSau97]), and an appro-

priate version of the trace formula. This will tell us that, if we take an appropriate

family {7r} of automorphic GL 2 (A) representations, then their p-components {Ir-} are

equidistributed according the Plancherel measure on an appropriate subspace of the

spectrum of GL2 (Qp). We must then show that the subset of representations 7rp with

small field of rationality has small Plancherel measure. Via a finiteness result of Shin

and Templier (Corollary 5.7 of [ST14]), the set of representations we need to avoid

will be finite, and so in practice we need concern ourselves only with discrete series

representations, which can be examined explicitly.

1.2 Families of automorphic representations

Now let G be a connected reductive group over a number field F, and let Z denote

the center of G. Fix the following data:

" An irreducible, algebraic, finite-dimensional representation of G(F,);

" an automorphic character x : Z(F)\Z(A) -+ C' such that x, is equal to the

central character of ; and

" a compact open subgroup F of G(A"), with x trivial on F n Z(A").

We define the automorphic family Fdisc( , x, F) as the multiset of discrete auto-

morphic representations 7r such that X, = x, and where ir = 7r' 7r , occurs with
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multiplicty

aF(7r) = mdisc(7) - dim(i ) - (- 1 )q(G)XEP (iroo 0

Define Tcusp similarly, but with mcu., replacing mnisc.

We will give a precise definition of the XEP term later. For now, we make the

following assumptions. First, let K,, be a maximal compact subgroup of G(Fo,); we

assume K,, and (G/Z)(FO) have the same rank. Moreover, we assume has regular

highest weight. Under these hypotheses, there is a unique discrete-series L-packet H

of G(F,) representations such that XEP(7roo 0 V) _ (_)q(G) if 7o,, E fIC, and zero

otherwise. Moreover, there is a test function #g on G(Fo) such that tr 7r.(..) =

XEP (7roo 0 0.

As such, if we define

|I| = a.F(7),
7r

then ITI arises as the trace of a test function Oro on L'j,,(G(Q)\G(A), x); this is

what we mean when we say the families 'arise naturally in the trace formula'.

It is our goal to examine the growth of fields of rationality in families. Fix A E Z>1

and define the family F A( , x, F) as the subfamily with multiplicities

aY A(7r) - ay(r) [Q(ir) : Q] < A

0 otherwise.

In particular, we will examine the following question: let {F} be a sequence of

subgroups whose index in a fixed open compact subgroup approaches infinity. Under

what circumstances does

lim = .:A X A 0? (1.2)
A-+oo |y( , x, A)j

We will investigate this question in the following situations: let F be a totally

real field and E/F a totally imaginary quadratic extension. Let G = GL 2 over F or

U(n) = UE/F(n), the quasi-split unitary group in n2 variables with respect to E/F.
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Let IF denote either:

o The principal congruence subgroup F(nA) corresponding to an ideal nA, or

o the conductor level subgroup K,, (nA), where nA is divisible only by primes where

G splits.

In either of these situations, if N(nA) -+ oo as A -+ oo, then 1.2 holds.

We give a brief remark on our choice of algebraic group. As noted above, after

we have applied Plancherel equidistribution, we need to examine the fields of ra-

tionality of discrete series representations of G(F.). When G(F,) ' GL,,(Fp), the

discrete series representations are parameterized in terms of the supercuspidal rep-

resentations of GL,(Fp) for smaller m. Moreover, if p p > n, the supercuspidal

representations are parameterized by abelian characters of the multiplicative groups

of extensions of Fp. Moreover, Aut(C) respects these parameterizations, so it is

straightforward to determine a lower bound on the size of the field of rationality.

Moreover, the representation-theoretic properties of discrete series GL,(Fp) represen-

tations are much better understood than those of other groups. This explains our

decision to use twists of GL,.

We use G = GL 2 and U(n) because for these groups, G(Fo) has discrete-series

representation. Let be an irreducible finite dimensional algebraic representation

such that the set of -cohomological G(F,) representations is a discrete-series L-

packet H. Therefore, if 7r is a discrete automorphic representation with iro E I16,

then [Q(wr) : Q] is finite. This ensures our question is not vacuous.

1.3 Outline of the paper

In chapter 2, we will discuss the representation-theoretic basics we will need later in

our paper. In particular, we will will describe the tempered spectrum of GL.,(L) as

a countable union of compact real orbiforlds, and we will discuss the tensor decom-

position of automorphic representations.
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In chapters 3, 4, and 5, we discuss Plancherel equidistribution. In chapter 3,

we will define the fixed-central-character Plancherel measure on the set I(G(L), x)

of unitary G(L) representations with central character x. We give a definition of

Plancherel equidistribution, and reduce the proof of Plancherel equidistribution to an

asymptotic vanishing of trace formula terms using the trace formula and Sauvageot's

density theorem. In chapter 4, we prove this asympotic vanishing for sequences of

subgroups IA < G(As,') with lev(FA) -+ 00. When G = GL 2 and rA = Fo(nA), we

give an explicit upper bound on the trace formula terms using the reduced Bruhat-Tits

building for GL2 . In more generality, we appeal to the bounds of Section 5 of IFL13.

In chapter 5, we prove a refined limit multiplicity result for cuspidal automorphic

representations 7 such that the Asp1 part of 7r has conductor exactly n. This will

depend on the construction and analysis of an explicit test function enew whose trace

is zero on all generic representations whose conductor is not n.

In chapter 6, we define the field of rationality of a smooth representation and

determine an explicit lower bound for the degree of the field corresponding to super-

cuspidal, discrete-series, and tempered representations of GLU(L) which have positive

depth. In chapter 7, we will explicitly define our families of automorphic represen-

tations, and state and prove our main theorem, contingent upon some results from

p-adic representation theory. Finally, in chapter 8 we prove these representation

theoretic results.

Throughout, we fix the following notation:

9 F will be used to denote a totally real field and E will denote a totally imaginary

quadratic extension of F. U(n) = UE/F(n) will always denote the quasi-split

unitary group. On the other hand, L and L' will be used to denote p-adic fields.

9 A will denote the adele ring of F. We let F,, = F O R and Ao denote the

restricted direct product of the F. over the finite primes p of F; then A =

A' x F'. If G = U(n) or GL2 , we let Vrp denote the set of finite places of F

at which G splits and V,1, denote the places where it does not split. We let

AsPI, Ans, denote the split and nonsplit components of the finite addles, so that

16



A = Asp, x Ansp x F,.

* K, and IF will denote open compact subgroups of G(A ). Usually these sub-

groups will be contained in a fixed maximal open compact subgroup K = no Kp.

* In almost all circumstances, we will use lower-case fraktur to denote ideals in

either F or a local field. In general, n will denote an ideal of F. In either the

global or local case, o will denote the ring of integers and p will denote a prime

ideal. The only exception to this rule will be g and fj, which denote the Lie

algebras of groups G, H respectively.
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Chapter 2

Basics on Representation Theory and

Unitary Groups

2.1 Admissible representations of p-adic groups

Throughout this section, L is a p-adic field and G/L is a connected reductive algebraic

group. When the context is clear, we will identify G with its group G(L) of L points.

Definition 2.1.0.1. Let ,r be a G representation on a complex vector space V. We

say 7r is smooth if every v E V is fixed by ir(K) for some open subgroup K < G.

We say ir is admissible if it is smooth and, for every open subgroup K, the space

7rK of K-fixed vectors is finite dimensional.

Henceforth we will assume 7r is irreducible and admissible. In this situation, the

result of Schur's lemma holds, so EndG(V) -C. As such, the center Z of G acts via

a character x,; we call x, the central character of 7r.

We say ir is unitary if V admits a non-degenerate hermitian form (-, -) such that

(ir(g)vi, wr(g)v 2 ) = (vi, v2 ) for all vi, v2 E V and g E G. We write H(G) for the set

of isomorphism classes of irreducible, admissible, unitary G representations. If 7r is

unitary, its central character X, takes values in S1 < C'. For a unitary character X,

we let U(G, x) denote the subset of H(G) consisting of those representations ir with

Xr = X.

19



Let v E V, v* E V*. We define the matrix coefficient me, : G - C via

mv*,v(g) = (v*, w(g)v).

The support of a matrix coefficient is invariant under multiplication by Z.

Definition 2.1.0.2. Let wr be an irreducible unitary G representation.

" We say 7r is supercuspidal if its matrix coefficients are compactly supported

modulo Z.

" We say ir is a discrete series representation if its matrix coefficients are in

L 2 (G/Z).

" We say 7r is tempered if its matrix coefficients are in L 2
+(G/Z) for every E > 0.

Throughout this thesis, when we use the terminology supercuspidal representation

we will specifically mean a unitary supercuspidal representation, unless otherwise

noted. It is theorem of Tate that a supercuspidal representation is unitary if and only

if its central character is unitary.

We denote the set of tempered G representations as '(G); define Ht(G, x) as the

subset consisting of those representations with central character X.

Let P be- a parabolic subgroup of G with Levi factorization P = MN, so that N

is the unipotent radical of P. Let 6 p : M -+ Cx denote the modulus character of the

action of M on N by conjugation (so that PN(m-1 Am) = 6p(m)PN(A) for a Haar

measure PN on N).

Definition 2.1.0.3. We define the normalized induction functor from the Grothendieck

group of admissible M representations to the Grothendieck group of admissible G rep-

resentations as follows: given an admissible representation IrM of M, we consider the

representation rm & 6 p and extend this to a representation 7rp of P via the surjection

P - P/N =' M. Let I71FM = Indp rp.

The isomorphism class of I1 wr depends on the choice of parabolic P with Levi

component M, but its image in the Grothendieck group does not. Moreover, IG takes

20



irreducible admissible unitary representations to finite length, admissible unitary rep-

resentations (see 3.13-3.15 of [BZ76j)

Throughout, we will use I' to denote the normalized induction functor. Moreover,

to avoid the dependence upon the parabolic P = MN, we will make a consistent

choice of parabolic. In particular, when G = GLn, let P denote the minimal parabolic

consisting of upper-triangular matrices and let MO denote the minimal Levi subgroup

consisting of diagonal matrices. We say P is a standard parabolic if P > Po and M

is a standard Levi if M > Mo. Given a standard Levi subgroup M, there is a unique

standard parabolic P whose Levi component is M.

It is worth noting the following property of supercuspidal representations, which

follows from [BZ76 and [BZ77:

Proposition 2.1.0.4. Let ir be a unitary G representation. The following are equiv-

alent:

(a) r is supercuspidal;

(b) ir does not occur as a subquotient of the induced representation IGW7r for any

M $ G; and

(c) 7r does not occur as a subrepresentation of InGrM for any Al = G.

If r is any representation, there is a Levi subgroup M and a (not necessarily

unitary) supercuspidal M representation WrA such that 7r is isomorphic to a subquotient

of I1 1UrA. Moreover, the pair (M, Wrm) is unique in the following sense: if (M', 7'rpi)

is another such pair, there is a g E G with M' = gMg-', and such that g conjugates

ir into 7r'.

Therefore, the supercuspidal representations form the building blocks of the rep-

resentation theory of p-adic groups. We will only use this fact indirectly, but it is

worth noting nonetheless.
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2.2 The tempered spectrum of GLn(L)

In this section, we'll briefly describe the tempered spectrum of G = GL.,(L); let Z

denote the center of G. The classifications contained in this chapter are also stated in

[Kud9l], an extremely readable introduction to the topic and to the non-Archimedean

case of the local Langlands correspondence.

As before, let PO denote the subgroup of consisting of the upper-triangular matri-

ces; this is a minimal parabolic subgroup. We say P is an standard parabolic subgroup

if P > PO. In this case, the Levi component M of P is a standard Levi subgroup.

Let m = nd and let p be a unitary supercuspidal representation of GLmfl(L). Let

M be the standard Levi subgroup of GL,(L) isomorphic to GLm(L)d. Let pm denote

the (external) tensor product

(p 0 1 det| I 2 p 0 1 det| I3do ... 0 (p 0 1det IY .

Then

Lemma 2.2.0.5. (i) IG pm has a unique irreducible quotient module, which we call

Sp(p, d).

(ii) Sp(p, d) is a discrete series G representation.

(iii) All discrete series representations of G arise as Sp(p, d), for some d I n and

supercuspidal representation p of GLn/d(L).

(iv) Sp(p, d) - Sp(p', d') if and only if p & p' and d = d'.

Proof. (i) is Proposition 2.10 of [Zel801. (ii) follows from [BZ771. (iii) is Proposition 11

of [Rod82]. (iv) follows because p is the unique unitary supercuspidal representation

with an unramified twist occurring in the supercuspidal support of Sp(p, d). l

It is worth noting that I = Ipm is equal to the unnormalized induction IndG p®d®

1N. This will be useful when computing the field of rationality of Sp(p, d) later.
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Lemma 2.2.0.6. Let wi be a discrete series GL,,, (L) representation for i = 1, .7.., r,

with n1 +.. .+ n, = n. Let M denote the subgroup of block diagonal matrices isomor-

phic to f1t GL., (L). Let M' = H GL,!. (L).

(i) IS,(w1 0 . .. 0 Wr) is irreducible and tempered,

(ii) all tempered GLn(L) representations are of this form, and

(iiiw) Iw(w 0 Ow,) G (w', 0 ... w,,) if and only if r = r' and there is a

permutation s of {1,..., r} such that w .

Proof. (i) and (ii) are proven in [Jac77. (iii) follows by examining the supercuspidal

support of the two representations. E

In view of these facts, the tempered spectrum of GL, (L) acquires a topological

structure as a countable union of countable many compact (real) orbifolds; we invite

the reader to see the first section of IAP05I. Let M be a Levi subgroup of GLn(L)

and let X,(M) denote the group of unramified (unitary) characters of M. Then

X,(M) acts naturally on the set of discrete series M representations by twisting. Let

OM denote an orbit under this action. If we pick a basepoint wo E Om, we get a

surjective map X,(M) -+ Om given by XI '-> wo 0 Xm; we give OM the quotient

topology under this map. The stabilizer of wo is finite, so OM is isomorphic to a

principal homogeneous space under a real torus.

Let Q denote the set of pairs (M, OA), where M is a standard Levi subgroup and

OM is an X,(M) orbit of discrete series M representations. Given (M, OM) E Q, we

have a map I = IM: OM -+ ft(GLn(L)). Then the map

H O --+ -lt (GL,(L))
(M,Om)EQ

is surjective; we give the set H(GL(L)) the quotient topology. An orbit 0 in

H(GL,,(L)) is a connected component under this topology. Equivalently, 0 is the

image of some orbit OM under I"'. As a topological space, an orbit 0 has the struc-

ture of a quotient of a real torus by a finite group. It is worth noting that 0 does
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not always have the structure of a smooth manifold. For instance, if M = M0 is the

diagonal torus and Om is the orbit of unramified (one-dimensional) characters of M

and is isomorphic to (S1 )". Then 0 = jG (OM) is the principal series orbit and is

isomorphic to (S)"/E, which is not smooth along the subspaces {xi = x}

We briefly remark on the fixed-central-character case: fix a (unitary) central

character x : L' -+ C'. Let X,,(M)o denote the kernel of the restriction map

X,(M) -+ X,(Z(G)). If Xm E X,(M)o and w is an irreducible admissible M

representation, then IGw and IG(xm 0 w) have the same central character, so we

have an action of X,(M)o on the set of discrete-series representations W such that

Iw has central character x. Let OM,x denote an orbit under this action, and let

Ox C FI(GL,(L), X) denote the image of an orbit O,x.

Fix a central character x : L' -+ C' and a (non-fixed central character) orbit

0 c H(GL,(L)). Then the restriction xI,, is independent of 7r C 0. If XrIo = X2  ,

then On Hl(GL,1 (L), x) is a sub-orbifold of codimension 1 in 0, and is precisely equal

to an orbit OX C H(GL2(L), x). Otherwise, the intersection is empty.

In particular, if 7r is a discrete series GL,(L) representation, then the orbit of 7r

in H(GL,(L), x) is a finite set; this motivates the terminology 'discrete series.'

In the case where the residue characteristic of L is p > n, the supercuspidal

representations of GL,(L) have been classified by Howe ([How77J) and Moy ([Moy86]).

They parameterize the supercuspidal representations in terms of equivalence classes of

admissible pairs (L', q) where L'/L is a field extension of degree n and q : L' -+ Cx

is an 'admissible character.' Two pairs (Li, i 1 ) and (L', 712) are equivalent if there

is an isomorphism T : L' -+ L' over L with q= o T. We invite the reader to see

Section 6.1 for details.

A mental picture of the tempered representation is important since it is the sup-

port of the Plancherel measure, as defined in the next chapter. The unitary spectrum

does not admit such a nice topological characterization. Nonetheless, it is prudent to

give a characterization of the unitary spectrum.

Definition 2.2.0.7. Let T be a discrete series GLm(L) representation and fix r E Z>1.

Define u(T, r) as follows: let M - GL,.(L)' < G - GL , (L) be a standard Levi
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subgroup and let

TAu = (T 0|- 1 r2 ... 0 (TO I -| .'r

Then IMGr has a unique irreducible quotient, which we denote by u(T, r).

Moreover, given a E (0, 1/2), the representation

IGL)x GLrnr (u(T, r) 0 0 (u(T, r) 0

is irreducible and unitary. We denote it by u(T, r; a).

Proposition 2.2.0.8. [Tad86, Theorem D1. Let B denote the set of all representations

of the form u(T, r) and u(T, r; a). For any 7r1,..., 7,,, E B, the induced representation

IMG(7r1 0...7 ) is unitary. Moreover, all unitary representations arise in this way.

2.2.1 Generic representations and conductors

Throughout this section, let G = GLn(L) and let U ; G be the subgroup of strictly

upper-triangular matrices. If 4 is a nontrivial additive character of L; then we extend

to a character of U as follows: for u (up), set

()= 4,( [Ui).(n-1

Let (4, V) be a G representation. A Whittaker functional is a smooth linear func-

tional A : V -+ C such that A(ir(u)v) = 4'(u)A(v) for v E V, u E U.

A representation (7r, V) is generic if it admits a nonzero Whittaker functional. If

7r is irreducible and generic, then it admits exactly one Whittaker functional (up to

scalar multiplication). By Frobenius reprocity, 7r has a Whittaker functional if and

only if it embeds into I = IndG(Vy). The realization of 7r as a subspace of I is a

Whittaker model for 7r.

Proposition 2.2.1.1. A tempered GL,,(L) representation is generic.

Proof. This is basically Theorem 4.9 of [BZ77]; they prove that a tempered represen-

tation 7r has a Kirillov model, which implies the existence of a Whittaker model. l
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Definition 2.2.1.2. [JPS81] Let L be a p-adic group with ring of integers o. Let

Kn= K = GLj(o). The subgroup Kn(p') = K(pr) is the subgroup consisting of those

matrices

X Y

Z W

where X E Kn_ 1 , Y is an (n -1) x 1 vector of elements of o, Z is a I x (n -1) vector

of elements in p', and W E 1 + p'.

Let -r be a generic GLn(L) representation. For c E Z>I, the following are equiva-

lent:

(a) The e factor e(s, 7r, q) is equal to Cq-c for some C E C; and

(b) c > 0 is minimal so that -x has a nonzero K(pc)-fixed vector.

In this case, we say c is the conductor of 7r.

If 7r is a generic representation of conductor c, then 7r has a unique nonzero Kn(pc)-

fixed vector (up to scalar multiplication) [JPS81]. Moreover, the dimension of the

space of 7rKn(Pr) has been computed by Reeder:

Theorem 2.2.1.3 ([Ree91}, Theorem 1). Let 7r be a generic irreducible admissible

GLn(L) representation of conductor c. Then

dim7rKn) r-cn-1
n - I

2.3 The global situation: discrete and cuspidal au-

tomorphic representations

Throughout this section, F denotes a number field and A = AF its addle ring.

Let G/F be a connected reductive group. Then G(A) acts on the Hilbert space

L 2 (G(F)\G(A)) via right translation. We say 7r is an automorphic representation if

it occurs as a subrepresentation of L 2 (G(F)\G(A)).
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Let Z denote the center of G and let x Z(F)\Z(A) be an automorphic (unitary)

character. Let L2 (G(F)\G(A), x) denote the subspace of functions f E L 2 such that

f(gz) = x(z)f(g). If 7r is an automorphic representation with central character x,

we say 7r is a discrete automorphic representation if it occurs as a direct summand

of L 2 (G(F)\G(A), x). We define Li,, as the subspace of L2 spanned by the discrete

automorphic representations, and for an automorphic representation 7r, set mdiSC(r)

as the multiplicity of 7r in Ldic.

Finally, we define L 2 as the space of those f E L2 such that

IN(Q)\N(A) f(ng) dg = 0

for almost all g C G(A) and for any subgroup N which is the unipotent radical of a

proper parabolic subgroup P. A representation 7r is a cuspidal automorphic repre-

sentation if it occurs as a subrepresentation of L2 then mus8p(7r) is the multiplicity

of ir in L 2

It is a theorem of Borel and Jacquet (see page 197 of [BJ791) that Lc

the complementary subspace is called the residual spectrum.

We will need a decomposition theorem of Flath. Let 7r denote an automorphic

G(A) representation and let 7ro denote the subspace consisting of smooth functions

(with respect to the p-adic topology at the finite places of F and the standard topology

at the Archimedean places). Then 7ro is a dense subrepresentation of -r. For each finite

place p of F, fix a special maximal compact subgroup K. of G(F,), such that Kp is

hyperspecial almost everywhere.

Let 7r, be a smooth irreducible G(F,) representation for each place v. Assume

there is a finite set Sra. of places, containing the infinite places, such that 7r, has a

K,-fixed vector w, for all v Srami. We define the restricted tensor product

V
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as the subspace of (, V,, spanned by

\VES / \,gs/

for all finite sets S -D Sram.

Theorem 2.3.0.4 ([Fla79], Theorem 4). Let 7r be an automorphic G(A) representa-

tion with smooth part 7ro. Then there are irreducible, admissible, unitary representa-

tions 7r, for each place v of F such that

V

In this situation, we say that 7r decomposes as a tensor product of the 7rv. More-

over, the central character x, decomposes as a product of local characters Xv, then

7rV has central character Xv.

2.4 The groups UE/F(n); maximal special subgroups

In this section, we give a quick primer on the quasi-split unitary group UE/F(n). Let F

be a totally real number field and E/F a totally imaginary quadratic extension; then

E is a CM field and the nontrivial element in Gal(E/F) acts as complex conjugation

for every embedding E -+ C: we denote this automorphism x -+ 7.

Let 1 = , denote the matrix with entries

{(1)-1 i+j=n+1

0 otherwise

and let UE/F(n, R) be the set of g E GL,(E 0 R) with gIt = 4. This defines

an algebraic group over F. The algebraic subgroup of upper-triangular matrices is

a Borel subgroup, so that U(n) is quasi-split over F. Moreover, UE/F(n) becomes

isomorphic GL, after base-changing to E. Therefore, if v is any place of F such that
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E splits at v, then UE/F(n, F,) ' GL,(F). In this case, we say U(n) splits at v.

Let p be a finite prime of F. If U(n) splits at p then Kp = GL,(oF,p) is a

hyperspecial maximal compact subgroup of GL2(F,). Otherwise, U(n, Fp) has a

maximal hyperspecial Kp subgroup whenever E/F is unramified. If E/F is ramified,

then U(n, Fp) will only have a special maximal compact subgroup K.. In either case,

there is a group scheme 4 over oFp whose fiber over F. is isomorphic to U", and

KP = W(oFp). If E/F is unramified, (so that K. is chosen to be hyperspecial), then

the special fiber of q is a connected reductive group.

We invite the reader to see [Tit79] for the definition of special and hyperspecial

subgroups. In particular, special (resp. hyperspecial) subgroups are the stabilizers of

special (resp. hyperspecial) points in the Bruhat-Tits building; these are defined in

1.9 (resp 1.10). In the non-split case, we will not give an explicit description of the

maximal special and hyperspecial subgroups of U(n). Rather, we invite the reader to

see Section 3 of [GHY01J.

Definition 2.4.0.5. Let p be a prime of F, let KP be a maximal special subgroup of

U,(F,), and let 4 be a group scheme over oFp whose generic fiber is isomorphic to

U(n), with q(oFp) = K.. For r > 0, we define the full level subgroups F(pr) < K,

as the kernel of the canonical map W(oFp,) _+ W(OFprp.

If U(n) splits at p, we will assume K, = GL.,f(oFp). Then F(pr) is subgroup

1 + prM,(oF,p)_

If n = ] prp we set

F (n) =11 prp X fj K,;
pIn pjn

this is an open compact subgroup of G(A ).

Note that this definition is equivalent to the definition given in [ST12] (see page

65 of that paper).
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Chapter 3

Plancherel Equidsitribution

3.1 Hecke algebras and Plancherel measure

Throughout, let L denote a p-adic field. Let G/L be a connected reductive group

with center Z and let x : Z(L) -+ C' be a unitary character. Recall that JI(G(L))

is the set of irreducible, admissible, unitary G(L) representations and H(G(L), X) is

the subset consisting of those representations 7r with X, = x. Moreover, H' denotes

the subset of H consisting tempered representations.

Definition 3.1.0.1. We define the Hecke algebra )(G(L)) as the convolution algebra

of locally constant, compact supported functions G(L) -+ C.

If # E (G(L)) and ,r is an irreducible, admissible G(L) representation, then the

map

7r (#) : v - #GL (g) 7r(g) -v dg

is well-defined and of trace class. We define 0(,r) = trr(#). The map 0 + 0 is a

linear map from -(G(L)) to the set of bounded, continuous functions on H(G(L))

that are supported on a finite number of Bernstein components.

We define the fixed central character Hecke algebra 7-(G(L), x) as the convolution

algebra of locally constant functions # : G(L) -+ C such that

* # is compactly supported modulo Z(L), and
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* for g E G(L), z E Z(L), we have 4(gz) = X-1(z)O(g)

If Ox E 7(G(L), x) and 7 is an irreducible, admissible G(L) representation with

central character x, the map

7(#X) : JG(L)/Z(L) q(g) 7(g) - v dg

is well-defined and of trace class: we define ox(7) = trr(Ox). As above, this gives a

linear map from 7(G(L), x) to the space of functions on 1(G(L), x).

There is an averaging map 7-(G(L)) -+ 7(G(L), x) given by 0 '-4 Ox, where

Ox(g)= L (gz)x(z) dz.

We have stated the above definition for G(L) but will often apply the notation

more generally. Specifically, if F is a number field and G/F a connected reductive

algebraic group, we may refer to the Hecke algebras W(G(A')) and W(G(A'), x) for

a central character x. If S is a finite set of finite places of F we may moreover replace

AF by Fs = HpS F or A',S.

The following lemma is a simple application of Fubini's theorem, but will come

up often in the following chapters:

Lemma 3.1.0.2. Assume Haar measures on Z(L), G(L), G(L)/Z(L) are chosen

compatibly. Fix 0 E 7H(G(L)) and let 0.. E 71(G(L), x) be its image under the

averaging map. If 7 E H(G(L), x), then 0(ir) = OX(7).

If F < G(L) is an open compact subgroup, let er = vol(F)- 1 1r. This is an

idempotent in 7-(G(L)) (that is, er * er = er). Moreover, if 7r is an irreducible

admissible G(L)-representation, then

er(7r) = tr r(er) = dim 7r,

where 7' denotes the space of F-fixed vectors in the space of 7r. Moreover, let er,x

denote the image of er under the averaging map W(G(L)) -+ 7(G(L), x). We note
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that erx = 0 unless x is trivial on F n Z, and in this case, er,x(l) = vol(FZ/Z)~ .

Moreover, it follows immediately that if 7r has central character x, then

er,x(7r) = dim7r

Proposition 3.1.0.3. There is a unique measure RP' on H(G(L)), called the Plancherel

measure, such that, for any q E 7(G(L)) the following equality holds:

0(1) = WPI(#) := 0(7r) dWP'(7r).

Moreover, W' is supported on the tempered spectrum Ht(G(L)).

For p-adic groups, the Plancherel measure was described in [Wal031. In the case

of G = GLn, a completely explicit description of the Plancherel measure is given in

[AP05I. We will need a fixed-central-character version of the Plancherel measure:

Proposition 3.1.0.4. There is a unique measure ' on H(G(L), x) such that, for

any Ox E 7(G(L), x) the following equality holds:

q$x(1) = J x = (G(L),x) (7r) d"I (7r).

We call 'Pi the fixed central character Plancherel measure; it is supported on

the tempered spectrum nt(G(L), x). For any 7r which is not a discrete-series rep-

resentation, we have 'P'(7r) = 0. If ,r is a discrete series representation, then

Ax'(7r) = deg(-r), the formal degree of ir.

To our knowledge, the construction of the fixed central character Plancherel mea-

sure has not been written down explicitly. However, the construction follows from

abelian Fourier analysis and the non-fixed central character Plancherel measure as in

[Binl5J.
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3.2 Euler-Poincar6 functions at the Archimedean places

Let G/R be a reductive group. Throughout this chapter, we will assume that G has

a maximal torus which is anisotropic modulo the center. Let AG denote the maximal

split torus in the center of G xQ R and let AG,,, denote the connected component of

AG(R) (with respect to the real topology). Let K,, be a maximal compact subgroup

of G(R) and let K' = KOAG,,O. Fix an irreducible finite dimensional algebraic G(R)

representation and let wo denote the central character of on AG,,,. Let 7r be

an irreducible admissible representation whose central character on AG,,, is w4. Let

g = Lie G(R). The Euler-Poincard characteristic of 7r (with respect to ) is defined

as

XEP (7r -- )' dim H'(g, K',7r v
i>O

(here the cohomology term is Harish-Chandra's (g, K) cohomology).

We say 7r is -cohomological if there is an i > 0 such that

H"(g, Kc',, r 0 ®v) # 0.

More generally, if 7r is an automorphic G(A) representation such that 7r" is (-

cohomological, we also call ir -cohomological. It is clear that XEP(7OO 0 o V) = 0

if 7r is not -cohoinological.

Definition 3.2.0.5. Let be an irreducible finite dimensional algebraic representation

of G(R) and let T be a compact torus of G of maximal dimension. We recall that

' IT(R) decomposes as a direct sum of abelian characters {}. A choice of positive

roots of T determines an ordering of the roots {}, and with respect to this ordering

has a unique positive weight A . We say has regular highest weight if for every

coroot av, we have (A, av) / 0.

Proposition 3.2.0.6. Let the highest weight of be regular and let ,r be an automor-

phic, -cohomological representation. Let q(G) = - dimR G(R)/K '.

(a) If 7r is -cohomological, then 70,, is a discrete series representation, and XEP (7vr0
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V) = (- 1 )q(G). Moreover, all -cohomological representations are in the same

discrete series L-packet.

(b) i occurs in the discrete spectrum of G(A) if and only if it occurs in the cuspidal

spectrum, and mdisc(1r) = mcusp(r).

(c) For any place v of F, 7r, is tempered.

(d) The field of rationality Q(ir) is a finite extension of Q.

Proof. (a) is the second bullet point of page 44 of [ST12I. (b) is Theorem 4.3 of

[Wal84]. (c) is a statement of Corollary 4.16 of [ST12]. Finally, (d) follows from

Proposition 2.15 of [ST14], since a -cohomological discrete automorphic representa-

tion is cuspidal, in view of (b). l

Let G' be the compact inner form of G. There is a unique Haar measure on

G(R)/Z(R) such that the induced measure on G'(R)/Z'(R) has total measure 1; we

call this measure the Euler-Poincar6 measure.

In [CD901, Clozel and Delorme construct a bi-Ko-invariant function # E C (G(R))

which satisfies

#4(gz) = w,-(z)O (g) g E G(R), z E Z(R)

and such that, for any 7r with x, =XC, we have

tr(O ) = XEP( (3.7)

where the trace is taken with respect to the Euler-Poincar6 measure, on G(R).

Throughout the paper, we'll need the following two facts:

* #C is cuspidal; that is, its orbital integrals vanish off of elliptic elements in G(R)

(see, for instance, page 267 of [Art89I).

* 0 (1) = dim ; this is implicit in [Art89l and follows basically because dim is

the Plancherel measure of the L-packet of discrete-series representations which

are -cohomological.
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A priori, when the highest weight of is not regular, we have de(gz) = x -'(z)# (g)

only for z E AG,,. However, for G = GL 2 we can check that this holds whenever z E

Z(R). In the first case, the Clozel-Delorme functions have been explicitly computed

in [KL06, Section 141, and we can check explicitly that

#g(gz) = sgn(z)dim +1 (g)

as desired.

As such, we can consider O as a function in the Hecke algebra W (G(R), x(-') and

can pick a measure PEP on G(R)/Z(R) such that

XEP(7r v trGZ 06(r)

for 7r with central character x6.

3.3 Counting measures and Plancherel equidistribu-

tion

For this section, we place ourselves in the global setting. To this end, we fix a totally

real number field F and a connected reductive group G/F with center Z. We continue

to assume that the base change of G to F has a maximal torus which is compact

modulo the center. Let A = AF denote the adee ring of F. We fix moreover the

following data:

" A finite set S of finite places,

" an irreducible, finite-dimensional, algebraic representation of G(Fo),

" an automorphic character x: Z(F)\Z(A) -+ C' with Xlz(Foo) = X6, the central

character of , and

" an open compact subgroup F < G(AS) such that x is trivial on F n Z(AS).
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Let HdiSc(G, x) (resp. HUsp(G, X)) denote the set of discrete (resp. cuspidal)

automorphic G(A) representations with central character x.

Definition 3.3.0.8. Fix the above data, and define the counting measure Ar on

H(G(Fs), xs) (with respect to ) as follows: for a subset A C H(G(Fs), Xs), set

W,~'g (A) (- 1 )q(G) . VOl(FZ/Z)
rdim( ) -vol(G(Q)Z(A)\G(A))

S 3 mdisc(7r) XEP(7 ® (7 ) dim(r '0) r - 1A(7rs).

7raisc(G,x)

Define pc"P similarly, but with mcusp replacing mais.

If the highest weight of is regular then [cusp = pise by Proposition 3.2.0.6.

Definition 3.3.0.9. Let F, G, S, , x be as above, and let { F, }\o be a sequence of

open compact subgroups of G(AS). We say that {FA} satisfies Plancherel equidistri-

bution with respect to if the following hold:

* Whenever A is a bounded subset of ll(G(Fs), xs) that does not intersect the

tempered spectrum LIt(G(Fs), xs), we have

lim ~r (A) = 0.

9 Whenever A is a Jordan-measurable subset of lt(G(Fs), xs), we have

lim 'r, (A) = (A).
A-+00

It is worth noting some discrepancies between our notation (which follows that of

[Shil2i and [ST12]), and that of [FL13I, IFLM14I, [FL15I. In the latter three papers,

Finis, Lapid, and Mueller consider the limit multiplicity problem, which differs from

our definition in one important respect: instead of fixing an algebraic representation

at oo, they allow S to contain the infinite places and as such consider a more general

set of representations at oo. This makes their work more general, but forces them to
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work with more difficult versions of the trace formula, and the asymptotic vanishing of

these trace formula terms is still unproven and depends on some analytic prerequisites.

In contrast, in the formulation of Shin and Templier, we may use the trace formula

on test functions whose infinite components are Euler-Poincare functions (see 3.7),

which considerably simplifies the formula. Moreover, we are ultimately interested in

fields of rationality and an important source of discrete automorphic representations

with finite fields of rationality are those that are cohomological with respect to certain

algebraic representations. It seems reasonable that our results could be replicated in

a more general setting using more difficult versions of the trace formula after the

analytic difficulties are resolved, but we have not examined this problem.

Remark 3.3.0.10. The definitions of the Plancherel measure and our counting mea-

sures both depend on a choice of Haar measure on the group G(A); in the statement

of Plancherel equidistribution we assume that we have made the same choice of Haar

measure on each side. Throughout the remainder of the paper, we will make the fol-

lowing choice of Haar measure. At the infinite places, we use the Euler-Poincar6

measure. In the case where G = U(n) or GL.n, we'll pick Haar measures on G(Fp) so

that KZ/Z has measure 1, where K, is as defined in Subsection 2.4.

3.4 The trace formula and density theorem

In this section, we discuss two important steps that go into the proof of Plancherel

equidistribution: a density theorem of Sauvageot and Arthur's trace formula.

Let fs be an arbitrary function on II(G(Fs), Xs). Then

Pr(fS) = fs(-x) dczr(w)
JH(G(FS), xs)

(-1)q(G) . Vol(rZ/Z)

dim( ) -vol(G(Q)Z(A)\G(A))

- mdisc (70) XEPx (7 ) dim (7") -S f7s)
7rEFdisc(G, x)

and similarly ' (fs) is the integral of fs with respect to the Plancherel measure on
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H(G(Fs), xs).

The following theorem is due to Sauvageot (see Proposition 7.1 of [Sau971) in the

non-fixed central character case. The extension to the fixed-central-character case

follows using only abelian Fourier analysis, as in Lemma 11.12.7 of [Bin15l.

Theorem 3.4.0.11. [Sau97]. Let fs : f(G(Fs), Xs) -+ C be bounded, have bounded

support, and be discontinuous on a set of Plancherel measure zero. Fix e > 0. Then

there are functions Os, Os in the Hecke algebra W(G(Fs), Xs) such that

S|fs(w) - Os(r)I <V s(w) for all 7 E 1(G(Fs), xs), and

* ^'s(Os) <e.

Corollary 3.4.0.12. Fix and x. If, for every function Os E 7(G(Fs), Xs) we have

A-i0 Ar,\ (0s) = W, (0s)A-oo

then Plancherel equidistribution holds for the sequence {1FA}.

Proof. This argument is by now standard: see Proposition 1.3 of cite [Sau97], Corol-

lary 9.2 of [ST121, Section 2 of [FLM14I, or Theorem 9.0.3 of [Binl5. 0

To prove Plancherel equidistribution, we will also need the (fixed-central-character)

trace formula. Following iArt89I, we will give a user-friendly version which applies to

test functions of the form # =# #, where #' is an Euler-Poincare function. We'll

need a definition:

Definition 3.4.0.13. Let G/F be a reductive group. At each finite place, let K.

denote a special maximal compact subgroup (that is hyperspecial at all places where G

is unramified; see 3.3.0.10), and let K' = , K,. Let P be a parabolic subgroup with

Levi decomposition P = MN and let M e l. If 00 : G(A 00) - C is locally constant

and compactly-supported modulo the center, define the constant term

#M(-)= JK# N(A-) 0' (k- 1ynk) dn dk.
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Moreover, if 00 : M(A') -+ C* is locally constant and compactly supported

modulo the center, and 7 E M( A ), let AI, denote the identity component of the

centralizer of -y in M. Define the orbital integral

0,(#A1\)A=)#qm-m) din.-Y(M ~Y(A -)\M(A-)= co (niym m

Definition 3.4.0.14. Let q = O$pC, and let x: Z(A) -+ C' be such that x" = x .

The geometric expansion of the trace formula is

Igeom(40, #, x) = S ) C(M , 1) - 07(#)
M>Mo0 yEA(F)/~

Here the outer sum runs over the set of cuspidal Levi subgroups containing a fixed

minimal Levi subgroup Mo. The inner sum runs over representatives of equivalence

classes of semisimple elements of M(F), where -y - -y' if -y is conjugate to z-y' for

some z E Z(F).

We have C(G, , IG) = dim( )vol(Z(A)G(F)\G(A)). The exact values of the

other constants C(M, , -) are unnecessary for our purposes: we invite the reader to

see the explanation after (4.3) of [Shil2.

The spectral expansion Ipc GO, X) is

(- 1 )q(G) E mndisc (7) - tr O (7o) 000

= (- 1 )q(G) E mdisc(-X) ' xEP(7oo 0 000 (7O1)

X 7rx

here the sum runs over the set of discrete automorphic representations ir with central

character x.

If the highest weight of is regular, then tr #C(7r,) is zero unless 7w. is a discrete-

series representation that is 6-cohomological; in this case, tr 06(7, ) = ( 1)q(G). More-

over, in this situation, all 6-cohomological discrete automorphic representations are

cuspidal, so we may replace the ndisc with mu,, in the definition of Ispec.
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Theorem 3.4.0.15 (fArt89j, Theorem 6.1). Assume # = # 0g E -(G(A), x). Then

Igeoi(#0 #<, x) = Ispec(# #0, X)-

Proof. The non-fixed central character version of this is precisely Theorem 6.1 of

[Art89}. The fixed-central-character version can be derived using abelian Fourier

analysis. 0

Proposition 3.4.0.16. Fix G, F, S as above. Let K = Ks,o be a fixed maximal

compact subgroup of G(As,'); assume it is maximal special everywhere and hyperspe-

cial whenever Gp is unramifled. Let {Fx} be a sequence of open compact subgroups

of K. Assume I7\ decomposes as a product of local open compact subgroups FA,, and

that x is trivial on F,\ n Z(A).

Assume for any pair (M, -y) with -y E M(F), M # G, or -y # 1, we have

Q,(lm.z) -4 0 as A -+ oo.

Then Plancherel equidistribution holds for prc with respect to . If the highest

weight of 6 is regular, then it also holds for pr4-

Proof. At each finite place p 0 S, let er,p denote the idempotent corresponding to F.

in the Hecke algebra 7-(G(F,)), and let er,p,x be the image of er,p under the averaging

map W(G(Fp)) -+ W(G(Fp), x). Then er,p,x(l) = vol(FZ/Z)- 1 and 'r,p,x(7rp) dim 7r

Let # ' = Hpls erp,x.

Let Os E -(G(Fs), xs) be an arbitrary test function, and let #A denote the test

function #sO 0 . Then

vol(FZ/Z)
PX(#S) = dim( ) - vol(G(F)Z(A)\G(A)) Ispec(#SOAS' 9', X)

vol(FZ/Z) Soo

dim( ) -vol(G(F)Z(A)\G(A)) Igeom(OsOA 0 , X)
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We first note

vol(fAZ/Z)f' (g)I= ~1 g E rZ

10 otherwise

so in particular

voi(rZ/Z)Io.Y(#si,om) M: 0

Moreover, each of these functions is bounded above by Oy(1mz), and because there are

only finitely many similarity classes [y] C M(F) with 'yo elliptic, ys E supp(44'), 7'Yr5  E

KS, we have

lim vol(FAZ/Z)-Igeom(OsOA' 0 , X)

=voi(rAZ/Z) C(M, C, -) (lim at(#s) . O-Y(OM) .0 'Y ,'Os ,M)

M>Mo yEM(F)/~

= C(G, O, )s(1)#Ooo (1)

Finally, since

vol(FAZ/Z) - Ispec(#sOooS'O") vol(fAZ/Z) - Igeom(OsooS'O5)
Ar,xV(0s) = C(G, , 1)#oo(1) C(G, , 1)000(1)

we have that limAm /tr,X(s) = Os(1) = j P(Os) completing the proof. l

We will use the following theorem of Shin and Templier (see Theorem 9.16 of

[ST121).

Theorem 3.4.0.17. Fix , S, and x as above, and let {nP} be a sequence of ideals,

coprime to S, such that N(nA) -+ o. Let r(nA) be the full level subgroups defined in

2.4.0.5. Then the sequence {F(nA)} satisfies Plancherel equidistribution.

Proof. Since Shin and Templier do not fix the central character, we briefly run through

the steps of the proof (all references in this proof are to [ST12J). First assume -/ is

not of the form zu, where z E Z and u E U. Then we check, by passing to G and

using the result of Lemma 8.4, that if n is small enough, then y is not conjugate to
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any element of Z -F(n). This tells us that the contribution from any Y 7 1 eventually

vanishes, for any Levi subgroup M. When 7 C Z(F), we can assume y = 1. Then

we can bound these terms exactly as at the end of the proof of 9.16. E

In the next chapter, we will use 3.4.0.16 to prove Plancherel equidistribution in

a number of situations. First, in the case G = GL2 we will give explicit bounds on

trace formula terms in the case where F = F1 (n). We will also discuss some results

of Finis-Lapid bounding trace formula terms and apply these bounds to the situation

of U(n) and GL,.

3.5 Plancherel equidistribution for more general (

In this section, we briefly comment on the proof of Plancherel equidistribution in the

situation where G = GL2 and is not necessarily algebraic or, alternatively when its

highest weight is not regular. The first situation holds when the central character

of is non-algebraic. The second situation occurs when is one-dimensional; for

instance, if f is a holomorphic cusp form of level 2 and 7rw, is the real component

of the associated cuspidal representation. Therefore, the case when G = GL2 and

does not have regular highest weight is of particular interest to the question of fields

of rationality of cusp forms.

The first situation is particularly simple. In this case if r is an automorphic

representation that is -cohomological, then (a), (b), and (c) of 3.2.0.6 still hold; this

is because is a twist of an algebraic representation ' by an abelian character X".

As such, the rest of the argument goes through exactly as follows.

In this second situation, we have shown that a vanishing of trace formula terms

is enough to imply that

lim ' (A) = ^P(A)
A sXse t

when A is a Jordan measurable subset of the tempered spectrum, and that
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when A is disjoint from the tempered spectrum.

We wish to show the same is true that the same is true when pdisc is replaced by

cUSP. For the first inequality, we note that the residual spectrum of GL2 consists pre-

cisely of one-dimensional characters Xo o dot, which are nowhere tempered. Therefore,

if A is supported on the tempered spectrum we have

i^t C(A) = Wi"P(A).

If A is disjoint from the tempered spectrum, it's enough to show that the contri-

bution from the residual spectrum is asymptotically zero. We note that the central

character of Xo o dot is X0.

Lemma 3.5.0.18. Given an ideal n of F, let P(n) denote the number of primes

dividing n. Fix a central character x : F*\A --+ Cx'. There is a constant C,

depending only on F and X, such that the number of characters Xo of conductor n

with x2 = x is bounded above by C - 2P").

Proof. Let oFp and let C1 = I(Fx - 6)\A'I. If we fix a character x' on -6,

there are at most C1 automorphic characters of A' extending x'.

As such, it's enough to count the number of characters Xo on &X such that x=

XyJ-. We first note that, at any prime p, the set

{XO,, : O, -+ C, , = xI2,}

is finite. Let its cardinality be C2 ,1. Let C2 be the product of the C2,p at all the finite

places p such that either p 12 or x, is ramified.

Assume xp is unramified and p j 2, and assume X2,0= X. Then Xo,p must be

trivial on 1 + p since this is a pro-p-group for some p # 2. Therefore X2,P factors

through o'F/(1 + p). Since this group is cyclic, there are only two possible square

roots of X,.

Therefore, the number of square roots Xo of x with conductor n is bounded above

by C1 C2 2p"') as desired. l
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Finally, we can prove:

Proposition 3.5.0.19. Let G = GL 2 and let . be any irreducible finite-dimensional

representation of GL 2(F,). Fix a central character x : Z(Q)\Z(A) -+ C' with

x0 =x , a finite set S of finite places. Let IF be either:

* A full level subgroup P(nA\); or

* a subgroup K2 (nA).

Then Plancherel equidistnbution for the sequence of measures {ApiISC} implies it for

{p "}.

Proof. If the highest weight of is regular, the proof is already finished. Otherwise,

it's enough to show that, asymptotically, the contribution of the residual spectrum

to the family

.Fdisc(x, ', A)

is asymptotically zero. By Plancherel equidistribution, the I-Fdisc(X, ', PA) grows

as vol(ZFx/Z)- 1 , which is polynomial in N(nU). However, the residual spectrum

contribution comes from the one-dimensional characters Xo with x = x and whose

conductor divides n\. We have already shown that the number of such characters is

bounded above by C 2P(A) - o(N(nA)). For each such character we have

dim (Xo o det)r, - 1.

Finally, Xo,, takes one of two values, so the Euler characteristic of (xo o det) 0 v is

bounded. Therefore the multiplicity of Xo o det in YTdis is bounded above, completing

the proof. El
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Chapter 4

Bounds on trace formula terms

In this chapter, will give bounds on the trace formula terms for certain sequences

of subgroups in the case where G = GL, or G = U(n). We'll begin by using the

(reduced) Bruhat-Tits building for GL 2 to give very explicit computations of trace

formula terms for the subgroups Fo(pr) < GL2 (Fp); this will allow us to determine a

Plancherel equidistribution result for classical cusp forms. We will also discuss results

of Finis-Lapid that give somewhat-less-explicit bounds for open-compact subgroups

of U(n) in terms of the level of the subgroup.

We remark here that the bounds of Finis-Lapid are more general than ours and

certainly good enough to imply Plancherel equidistribution for Fo subgroups of GL2 .

We hope that our explicit bounds will not be redundant for two reasons: first, they

give an explicit bound on the trace formula terms in question. Second, the geometric

methods used may be applicable, though perhaps with some difficulty, to a larger

class of reductive groups.

4.1 Bounds on trace formula terms for jpo(pr) < GL2 (Fp)

Let T denote the diagonal torus 'of GL2 (F,); this is a minimal Levi subgroup of

GL 2 (Fp), and there are only two Levi subgroups containing it: T and GL2 (Fp). There-

fore, there are precisely two types of trace formula terms:
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* Orbital integrals

O,(f) =G-\G f(g-'g) dg

for semisimple -y E F, and

* constant terms

Q,(f =(f f k-'7 1ak kd

for diagonal elements y E T(F).

The goal of this section is to bound these terms when f is the characteristic func-

tion of an open subgroup Z -F'o(n). We will begin by computing local orbital integrals

and constant terms and then summarize the global consequences in Subsection 4.1.3.

Throughout, we will choose measures on G = GL2 (F,), T the diagonal torus,

N the subgroup of upper-triangular unipotent matrices, and K. = GL2 (OF,p) so that

maximal compact subgroups are given measure 1; this also ensures that dg = dt dn dk

under the Iwasawa decomposition G = TNKp.

The key tool will be an analysis of the Bruhat-Tits tree for SL 2. We recall a

definition:

Definition 4.1.0.1. Consider the p-adic field F.. The Bruhat-Tits tree X of SL 2 (Fp)

is a graph consisting of the following data:

9 The set of vertices is the set of equivalence classes of rank-two lattices A C F 2

with A ~ A' if they differ by a scalar multiple.

* Two equivalence classes [A], [A'] are adjacent if and only if there are lattices

A E [A], A' E [A'] such that A D A' D A.

We briefly recall some facts:

1. The degree of every vertex v E X is q + 1. To see this, fix a lattice A. If

A' C A with index q, then wA C A' C A, and so A' corresponds uniquely to

a one-dimensional subspace in A/wA ~, F2. On the other hand, if A' D A
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with index q, then A' is equivalent to WA', which is a sublattice of A of index

q. Moreover, if A 1 ~ A then all index-q sublattices of A1 are equivalent to an

index-q sublattice of A.

2. X is a tree [Ser80, Theorem 1].

The action of GL 2 (F,) on the set of lattices in F descends to an action on X by

graph automorphisms.

Let {ei, e 2 } be the standard basis of F2. X has a distinguished line Ao whose

vertices correspond to the lattices with bases {e1, zie2}; this is known as the standard

apartment. For given g E GL 2(F), A = g - AO is called an apartment. Given a vertex

w and an apartment A, let d(w, A) be the distance from w to A. Because X is a tree,

there is a unique vertex w' E A such that d(w, A) = d(w, w'); we define bA(w) = w'.

By the Iwasawa decomposition, every vertex has an associated lattice A with

basis {el, ae1 + zwse 2 }, where s E Z and a E Fp. We denote this vertex by Wa,S.

Note that was = Wa',' if and only if s = s' and a - a' C oFp, and that wa,, E Ao

if and only if a e oFp. It is elementary to check by induction that if a V oF, then

d(Wa,,, Ao) = -vp(a) and that bAo(Wa,s) = Wo,s-v(a); this follows because Wa,, is

adjacent to ww.a,s+1.

We say a set of vertices {wo,.. ., wr} is a segment (of length r) if d(wi, wj) = i -j

for all 0 < i, < r.

We have the following:

Lemma 4.1.0.2. Let -y E GL 2(F,). Then -y C Z - o(pr) if and only if Y fixes the

length-r segment S, = {wo,o, WO, 1 , ... , 'wo,,}.

Moreover, g-yg E Z _ Fo(pr) if and only if -y fixes g - Sr.

Proof. The second statement follows from the first. To prove the first, a quick com-

putation yields that -y fixes the lattice Ai if and only if -y e Z- o - Kp (1 o

The intersection of such subgroups from i = 0 to i = r is Z .Fo(pr). E
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4.1.1 Computation of constant terms

Let t =(,ti ); we wish to compute the constant term Qt(lz.r(pr)). We begin with

a lemma:

Lemma 4.1.1.1. Let t =(tj) c Kp and let w c X be a vertex. Then t fixes w if

and only if d(w, AO) v. (t1 - t 2).

Proof. Write w = Wa,,, and note that t fixes w,, if and only if

-1
ti (tl - t2)a I a ti 0 1 a K *Z

0 t2 0 zu,) 0 t2 0 o

which occurs if and only if (t 1 - t2)a c oF,p.

Since d(wa,, Ao) = -vp(a), this completes the proof. l

Proposition 4.1.1.2. Let t1 5 t2 E oFp. Then

Q,(1z.r(p)) 1 r < vP(ti - t2 )

2qvP(11-2) yol(ro(pr)) r > vp(ti - t2 ).

Proof. Fix a strictly upper-triangular matrix n and note that for any k G K, we can

only have k- 1 tnk E KP if n E Kp. Since ti $ t2 , there is a g so that g-ltng = t and

therefore the set Xtf of vectors fixed by tn is of the form g - X'. If A = g - AO, then

w E Xt' if and only if d(w, A) Vp(t 1 - t2).

Fix n E NnKp; we have k-1 tink E Z -Po(p') if and only if the segment k -S, C Xtn.

We note that the initial vertex of k - S, is wo,o; we will show that there number of

such segments contained in Xt" is at most [K, : IFo(p')] if r < v(t1 - t2 ), and is at

most 2qvP(tl - 2 ) otherwise. The first statement is clear by counting the total number

of segments of length r with a given initial point.

For the second case, we note the following: since X is a tree, if S = (wo, ... , wj)

is a segment with d(wi, A) > d(wo, A), then d(wai+, A) > d(wi, A) for all i. As

such, if k - S, is a segment contained in X", then for all 1 < i < r - vp(tl - t2),
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we have d(wi, A) d(wi_ 1 , A). As such, we claim that there are at most 2qvP(ti-t2)

segments of the form k - Sr ){w,..., w,} contained in Xt". Because k E Kp, we

have 'wG= w. For each 1 K i r - vp(tl - t2 ), if Wi- 1  A, then wi is the unique

neighbor of wi_ 1 with d(wi, A) < d(wi_ 1, A). If the wi- 1 E A and wi- 2 iZ A, then wi

must be one of the two neighbors of wi 1 in A. Finally, if wi_1, wi- 2 E A, then wi

must be the other neighbor of wi_ 1 in A. Finally, if i > r - v,(ti - t2 ), then wi can

be any of the q neighbors of ui_1 which are not equal to wi- 2. This completes the

proof of the claim.

Therefore, for any n E N n K, we have

/ lz-O(P)(k-tnk) dk < -t2) 
r < v,(ti - t2 )

K I2qvPnti-2 yol(1,(pr)) r > Vp(t1 - t2)-

and so integrating over n E N n K,, completes the proof. E

We will also need to compute the constant term Q;,(1z.ro(p,)) for a central element

z.

Proposition 4.1.1.3. Let z E Z(F,). Then

_2__g-q r = 2k + 1
Qz(lzr(pT)) -- f q2

q-k r= 2k.

In particular, Qz(lz.ro(P)) < q-/

Proof. We can assume that z = 1 and once again find the fixed subspace Xn for

n = (~ ) E K,. Let Wa,, be as in the beginning of the section. Since

-1
1 a 1 b 1 a I bw'

0 wa 0 1 0 o' 0 1

we see that Wa,, E X' if and only if s > -v(b). In particular, if bA 0 (w) = wo,S, then

d(w, wo,,) s + v(b). Alternatively, X" is the union of balls of radius s + v(b) around
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wo,, E Ao, for s > -v(b).

For fixed n, the volume of the set

{k E KP : k-'nk c Z -Fo(pr)}

is the product of vol(Fo(p')) with the number of segments {wo, .. , W} whose base-

point is wo = wo ,o and which are contained in X". Let n = (1 ). If o(b) ;> r then

all length-r segments with basepoint wo are contained in X", so the total volume is

1. If r > v,(b), then for any i < [,-,(b)1 we must have wi = woi; for each subsequent

step there are q choices, so the total number of segments contained in X" is ql2.

As such, we compute

f f 1 r-1
1z.IO(pr )(k nk) dk dn = q-' + ql(q + 1) -j-l

An elementary computation using induction shows that this is equal to the quantity

stated. l

4.1.2 Computation of orbital integrals

The goal of this section is to prove:

Proposition 4.1.2.1. Let -y be a non central, semisimple element of GL2 (F). Then

Oy(1z.ro(pr)) 5 2 _ vol(ro(pr)) - y(1Z.Kp ) 2

We'll break this into two cases: the case where - is elliptic, and the case where '

is non-elliptic.

Lemma 4.1.2.2. If y is elliptic and noncentral then the set X? is finite.

Proof. We can compute the fixed set directly, assuming -y E K, by conjugating and

multiplying by an element of the center. If -y is elliptic then it is conjugate to a matrix
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of the form

x y

ay x

where a is either a unit that is not a square, or a is a uniformizer.

If a is a unit, then the XY is the single point {wo,o}. If a is a uniformizer, then X7

consists of those vertices w with d(w, S 1 ) 5 v(y), where S1 is the length-one segment

{wo,o, woI}. In either case, X7 is finite.

We will now prove Proposition 4.1.2.1.

Proof of Proposition 4.1.2.1. Assume first that -y is elliptic, and by conjugating as-

sume -y c Fo(pr). Then 0,(1z.K,) is the cardinality of X-. As such, for a given

length r, there are at most O(1Z.K,) 2 segments of length r contained in X" since

each segment is determined uniquely by its two endpoints. For a given segment S',

the volume of the set {g E G,\ GL2 (Fp) : g Sr = S} is vol(J'o(pr)). This finishes the

proof when -y is elliptic.

If -y is diagonalizable, we can assume -y =( E KP. In this case, [van72,
0 t2

Lemma 9} tells us that

Oy(1Z.rO(pr)) = IDG(-y)|-1 12Q_(1z.ro(pr))

where DG (_y) is the determinant of 1 - Ad(y) acting on Lie(G)/ Lie(T). In our

situation we have

DG(y)= (I - ) I - = ti - 2

Along with Proposition 4.1.1.2, this proves that 0,(1Z-Kp) = It- t 2 1' 1 qV(tl -t2)

Applying these results to lz.r(pr) gives

O(1z.ro(pr)) 2 ( 2 _ O(1z.K,) 2 . Vol(po(p))

completing the proof.
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4.1.3 Summary of global consequences

We summarize the global consequences for use in subsequent sections below:

Proposition 4.1.3.1. Let y G GL 2(F) be semisimple and let n C OF be an ideal.

Then

1. If -y E Z(F), then

Qy(lZ(A-)r(n)) < N(n)-1/2

2. If = ) T(F) - Z(F), then

Q.y(1z(A-o)ro(n)) INFIQ(tl - t2)IR - 2 P() - N(n)-1

where P(n) is the number of primes dividing n.

3. If -y E GL2 (F) - Z(F) is semisimple, then

0,Y(1z(A-)r,,(n)) :! O,(K00)2 .2 2P(n) . Nn).

Proof. This follows from Propositions 4.1.1.2, 4.1.1.3, and 4.1.2.1 upon decomposing

the orbital integrals and constant terms as a product of local orbital integrals and

constant terms. 0

Because 2 p(") - N(n)- 1 decreases as o(N(n)-1 +E) for every e > 0, we have the

following

Corollary 4.1.3.2. For every semisimple, noncentral -y E GL2 (F) and every e > 0,

there is a C,, > 0 such that

Qy(1z(AO)ro(n)), 0 -y(1Z(Aco)ro(n)) < CE,,yN(n)-1+E

for all ideas n C oFp.
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4.2 General bounds for trace formula terms on U(n)

In this section, we will apply quite general computations from Section 5 of [FL15 to

trace formula terms of U(n). We first note some reductions. First, because we are

working with a fixed-central-character version of the trace formula, we can pass from

U(n) to U(n)ad - U(n)/Z. Then the adjoint representation on the Lie algebra g gives

a natural faithful embedding U(n)ad _ GL,2.

In section 2.4, we made a choice of a special maximal compact subgroup K' at

each finite prime p. For each p we may pick a Kad-stable lattice A, in the Lie algebra

s,. In our situation, we choose A, as follows: let sp, denote the group scheme over oFp

whose generic fiber is U(n) and such that W%(oF,p) = Kr'. Then there is a natural

embedding Lie(V)(oFp) <-+ Lie(?)(F) = 9p. We define A, to be the image of this

embedding, and Ap is clearly Kr-stable.

Definition 4.2.0.3 (Compare to page 37 of [FL13J). Let K' < U(n, A') be as in

Section 2.4 and let K',d denote its image in the adjoint group. Let 17(n) be the

full level subgroup defined in 2.4.0.5, with image F(n)ad < K, ad. Given a subgroup

K <K , we define the level of K to be the largest ideal n such that p(n) ad < K.

We need a second definition. Let x. E U(n)ad(F) and set

Ap(xp) = max{n E Z U {oo} : (Ad(x,) - 1)A, C pnAp}.

If x C U(n)a(F) is not the identity, then A,(x) is always finite and A,(x) = 0 for all

but finitely many p. We define

A(x) = p(x);

P

We invite the reader to compare to Definition 5.2 of [FL13J. Since U(n)ad is simple,

we avoid the extra complication of projecting to a nontrivial ideal in the Lie algebra.

Moreover, it is clear from this definition that Ap(xp) > r if and only if xp E (pr)a

for any r > 0.
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Lemma 4.2.0.4. Let P = MN be a parabolic subgroup of U(n)". Fix -y E M(F)

that is semisimple and not equal to 1. Then:

(i) For almost all primes p, the following holds: for every m E M(F.) and n E

N(Fp), we have A,(m-'ymn) = 0.

(ii) For every prime p, the quantity Ap(m--ymn) is bounded independent of m c

M(F,), n E N(Fp).

(iii) Given y e U(n, F)', there is an ideal n such that, for any m c M(A), n C

N(A ), we have A(m--mn) I n.

Proof. We invite the reader to compare to the proof of Lemma 5.26 of [FL13.

We first note that if P = MN is a Levi decomposition, m' E M(F.) and n' E

N(F,) with m'n' E Kad, then m', n' C K'. Moreover, if we look at the reduction

modulo p of K', we see that (MnKad) (NnKad) is a Levi decomposition of a parabolic

subgroup. As such, if m'n' E 17(p) then we must have m', n' E F(p). Therefore, we

can only have m-ymn E 1F(p) if m<.ym E 17(p). Moreover, if m~1
'ym c 1(p), then

the characteristic polynomial fy(T) of 'y is congruent to (T - 1)dim U(n)ad modulo p.

Since -y # 1, these polynomials are not equal, so they can only be congruent modulo

finitely many primes.

For the second statement, note that the map (Xp, up) '-+ Ap(xpup) is continuous

as a function from M(F.) x N(F.) -+ Z U {oo} (where the neighborhoods of oo are

the cofinite sets). As above, we note that Ap(xpup) ;> 1 only if x., up C K', so

we restrict to the intersection with Kd in each coordinate. Finally, if -y # 1 is a

semisimple element of M(Fp), then its conjugacy class C, is closed in M(Fp), and

therefore Cy n K is compact. As such, the image of (C, n K') x (N(Fp) n Ka)

is compact in Z U {oo}. Moreover, since y $ 1, the value oo is not attained, so the

image of Ap must be bounded, completing the proof.

Statement (iii) follows from (i) and (ii).

Proposition 4.2.0.5. Let E C U(n, F)ad be semisimple and noncentral. There are
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constants C, E > 0 (depending only on -y) such that, for any K < Kooad, we have

0,(lK) < C lev(K).

Proof. We may assume that -y E K',ad. Let k1 , ... , k, E K' be conjugate to -y such

that, if i # j then ki and k are not conjugate by an element of Ko. We can pick a

finite set of representatives since -y E U(n, F), and therefore 0,(1K) < 00.

We therefore have

r

O,(1K) vol{k E K',ad: k-1 kik E K}.

By (iii) of 4.2.0.4 and Remark 5.4 of [FL13, each of the terms in the sum is bounded

above by C lev(K)-i. This completes the proof. E-

Proposition 4.2.0.6. Let P $ U(n)da be a parabolic subgroup with Levi decomposi-

tion P = MN and let } E M(F). There are constants C, e, depending only on -y,

such that for any K < Koo*,a we have

0,(1 M) < C lev (K)~

Proof. If -y = 1 then

O,(14) 1( 00 1K'(k uk) dk du

and the result follows immediately from [FL13, Corollary 5.281.

Now assume y is noncentral. We first note that 1m is supported on KI n M, so

we can assume -y K'. Since A,(m71 -ymu) is bounded independently of u and im by

4.2.0.4, then by Theorem 5.3 and the logic of Remark 5.4 of [FL13], we have that

1k(m-1-m) = JN(AOO)nK 1K (kmymuk) du dk < C lev(K)-.
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Therefore

0,(1',) < C - lev(K)--'- Oy(1KoonM),

where the orbital integral on the right-hand side is taken in M. This completes the

proof.

As a corollary, we have

Corollary 4.2.0.7. Let G = GL 2 or U(n). Fix an automorphic character x of Z(A),

a finite set S of finite places, and a sequence {FA} of open compact subgroups of

G(Aso) such that lev(rA) -+ oo as A -+ oo. Fix a finite dimensional irreducible

representation of G(R). If G # GL 2 assume moreover that is algebraic and has

regular highest weight. Then Plancherel equidistribution holds for { r}.

Proof. This follows directly from the previous proposition and 3.4.0.16. In the case

where G = GL2 , we apply 3.5.0.19.
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Chapter 5

Refined Plancherel equidistribution

for varying conductor

Throughout this chapter, let G = U(n) or GL 2 over a totally real number field F;

throughout, L will denote a p-adic field. Let Vsp1 denote the set of finite places at

which G splits, and let Va,, denote the set of finite places at which G does not split.

Let Asp, denote the restricted direct product of the fields F., for P E Vspi; define Ansp

similarly; then A' = Asp, x Anp. As usual, fix an irreducible algebraic representation

( of G(R) whose highest weight is regular, and let X be a central character with

Xoo = X -

Since the highest weight of is regular, if 7r is an automorphic, -cuspidal G(A)

representation, then each local component Trp is tempered. In particular, if p E cspj
then 7r, is generic.

Recall the definition of K.,(p') and the conductor of a generic representation from

Definition 2.2.1.2. If we define K,(n) < GL,,(ASpI) analogously to K(p'), then 7r has

a K(p)-fixed vector if and only if c(ir) I n.

Fix a character x = Xspl : A'I -+ C'. We will define a test function en, such
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that, for any generic representation .7rsp of GL.,(Asp1 ), we have

tr7r,,i (e) {i c(n,)i) -

0 c(7rpi) 7 n.

We will then bound the trace formula terms of e" to determine a Plancherel equidis-

tribution theorem for varying conductor.

We invite the reader to compare to the results of [Binl6.

5.1 Definition of enew

Let S be a finite set of finite places, and write G(As' ) = G(AS ) x G(Asn).

Let n be an ideal of OF, coprime to S, and so that n is only divisible by primes

in V,,. Throughout, Xspi will denote a character (As 1) --+ C whose conductor f
divides n. In this section, we will construct explicit test functions e" E 7i(GL,(As1 ))

and e"w E R(GLn(AS 1), x) such that, for any generic representation GLn(AS1 )-

representation 7ry1, = Ops 1P, we have

e"*(gf1 = tr nrie"w) = 1c(7rs) - n
n, n ~ 1 )tr 7r (

0 c(7rs) n.

and similarly for e" when rK has central character Xspl.

We'll construct efew as a product of local test function e for p' n; we'll

later construct e"n" as the image of en' under the averaging map W (GL,(As 1 )) -+

W(GLn(As), x). We'll need two inputs: a theorem of Reeder and a combinatorial

identity. Recall the definition of K,(p') from 2.2.1.2.

Theorem 5.1.0.1 ([Ree9l], Theorem 1). Let 7r, be a generic irreducible admissible

representation of GL,(Fp) of conductor c = c(7r). Then

dimr-c+n-1dim =
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It's worth remarking that the genericity condition is necessary. For example, if T

is the trivial representation then dim rK-(p') = 1 for all r.

Proposition 5.1.0.2. For any n E Z>1 and k G Z, the following identity holds:

n k-i+n- 1 ifk=0
E(- 1)i .

i=O 10 otherwise.

Proof. If k = 0 then the only nonzero term of the right-hand side is the i = 0 term,

which is 1. If k < 0 then all terms of the sum are zero.

If k > 0, consider the polynomial function gk,n (X) = (X - 1)nXk-1. This polynomial

vanishes with order n at x = 1, so g7 1 ) (1) = 0. On the other hand, we may expand

gk,n as

(k,n(x) - k-1+n-i

so that

(n"-() = (n - 1)! (-1) k -1 + n - iXk-l+ni

i=O

(note that if k - 1+n - i < 0 then (-1 ) 0) and therefore

(n-1) (n-kn( + n- i0 =gk () n )! (1
i=O

completing the proof. El

This motivates the following definition:

Definition 5.1.0.3. Given a prime p and a conductor r, let

e =ew (-n) eKn(pr-i) E (GLn(F))

where eKn(pr-i) E W(GL(F)) is the idempotent function corresponding to the open

compact subgroup K.,(pr-) of GLn(Fp). (By abusing notation, if r - i < 0, we set

eKn(pr-i) = 0).
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If n =H, pr', define

enew ~ new )>(I1 )
pIn pjn

Proposition 5.1.0.4. (1) Let irp be a generic representation of GLn(Fp). Then

nrTye"w) = 1 c(7rp) = r

0 otherwise.

(2) Let 7rS , be a generic automorphic representation of GLn(A' 1 ) and let n be an

ideal coprime to S and divisible only by primes in Vpl. Then

s new) c(7rS) =
tr 7r (en )

{0 otherwise.

Proof. The first statement follows from Reeder's theorem 2.2.1.3, our combinatorial

identity 5.1.0.2, and the fact that if K < GL,(F.) is an open compact subgroup, then

tr rp(eK) = dim 7rp. The second statement follows directly from the first. LI

If XS (As 1 ) -+ C' is a character of conductor fS and fS I n we define e"new to

be the image of e"new under the averaging map 7(GL,(As 1)) -+ 74(GL (As 1), X). The

following corollary follows immediately from Proposition 5.1.0.4 and Lemma 3.1.0.2.

Corollary 5.1.0.5. Let 7rs be a generic automorphic representation of GL,(As 1)

with central character xs and let n be an ideal coprime to S, divisible only by the

primes in Vp1 , and divisible by f. Then

s new) 1 C(7r S) =natrw5r(e,,) =~ ~

{0 otherwise.

We'll need a description of e "w as a product of local functions. Recall that ep

is given by a linear combination of idempotent functions eK(pr); let eK(pr),x be their
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images in W-(GL,(FO), X) under the averaging map. Let K'(pr) be the set of matrices

X

Z
Y

) GLn(F,)
w

with X E GL_ 1 (oo), Y is an (n - 1) x 1-vector of elements of o, Z is a 1 x (n - 1)

vector of elements in p', and W E ox<.

The following lemma is an easy computation:

Lemma 5.1.0.6. (i) eK(pr),x is supported on K. * Z

(ii) K, f supp(eK(pr),x) = K'(pr)

(iii) For our choice of Haar measure,

IeK(pr),X(g)I = [Kp : K'(pr)] = q(r-1)(n.-l)
q-

for any g E K'(pr).

5.2 Analysis of trace formula terms and Plancherel

equidistribution

Let Xs be as in the previous section. Let n be an ideal of F that is divisible only by

primes in V:,i - S, and such that n is divisible by the conductor is,, of Xspl.

Let hnn,(g) = en,,,X( )/en,,(1). We have the following lemma:

Lemma 5.2.0.7. Given a prime p of norm q, n > 2 and conductor r, we have

n

Ihn,p',XI < 6 " 
q ~1ZK(pr-i),

i=0

where we take the characteristic function to be zero if r - i < 0.

Proof. By the definition of h, it's enough to show that epw(1) > 1qnl q(n-1)(r1).
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We compute

new(1) = l ( (r-1)(n-1)
e q -1 (

- q - 1 q(r-1)(rt-l)(I1
(n) q(r-

2 )(n-) + (n) q(r- 3 )(fn- 1)

\n)(n1 () 3-)

Consider the function

fn/2-1 n (i 1( -)- 
n n )g(n, q) = - )q(2-1)(n-1) = ((1 +q )" - (1 - q1-")").

By taking derivatives, we can see that g is decreasing in q and n in the region

where q, n > 2. When q = 2 and n = 3, this quantity is 1 < 5/6, and when q = 3

and n = 2 the quantity is 2/3. We'll examine the case n = q = 2 separately.

In the case r > 3 then

enew(1) = (q + 1)qr~l (1 - 2q- + q- 2 ) = (q + 1)qr-1 .
4

If r = 2 then

e"eW(1) = (q + 1)q (1 - 2q- + 1 )
q(q + 1)

1
= -(q + 1)q.

6

If r = 1 then

enew(1) = (q + 1)

Finally, if r = 0 then enew(1) = 1.

As such, for any p, n, r, x we have

e"w(1) > 1q - 1q(n-r-
V, -6 q - 1 qnl(r

1
=-eZKp-
6 ZK(r

completing the proof. l

With this in hand, we can prove the asymptotic vanishing of trace formula terms:

Proposition 5.2.0.8. Let M denote an F-rational Levi subgroup of G, let -y c M(F),
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and consider the trace formula term O7 (h" ) (where we consider h' as a function

on M (A',)). We have

O,(h) ) C(y) (6(n + 1))P(n)N(n)

where P(n) denotes the number of primes dividing n. In particular, Os(hnnX) -* 0

as N(n) -+ oo.

Proof. Fix -y C M(F) such that OY(1Ks ) is nontrivial. By conjugating and shifting

by an element of the center, we can in fact assume E E K' 1 . Now if gyg- 1 E Z -KS,

we must have gy g- C KSI by taking determinants. As such, if K < KS1 with

ZK n KS = K' then Os(1ZK) = OQs (1K')-

By the result of 5.2.0.7, we have

|ha~x|N 6P() 1ZKn(-D)

for a collection of ideals D I n, where the number of terms is bounded above by

(n + 1)P(n). Moreover, there are C and e > 0, depending only on Y, such that

im1KnD C 0lev(K'/(D))-" = CN(D)-E.

As such, Oy(h ) is bounded above by a sum of (n + I)P") terms, each of which is

bounded above by a C - (6(n + 1))P(n)N(n)-e, completing the proof. E

With this in hand, we can complete the proof of Plancherel equidistribution for

increasing conductor:

Theorem 5.2.0.9. Fix the following data:

" An algebraic group G = GL2 or U(n) over a totally real field F,

" an irreducible, finite dimensional, algebraic representation - of G(Fx),

" an automorphic character x : Z(A) -+ C'x satisfying xx = x ,
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* a finite set S of finite places,

" a compact open subgroup nsp< V1np such that x is trivial on r,, nZ(Ans,,),

" A sequence of ideals {nA}, divisible only by primes P C Vpi - S, and such that

nA is divisible by the conductor of Xsp

Define the counting measure A = n,,r on U(G(Fs), xs) as follows: for a set

A c ]7(G(Fs), Xs), set

(A nvol(Z]Fnsp/Z)
en, (1) dim( ) vol(Z(A)G(F)\G(A))

- mMisc(7r) - dim(7ra,) - XEP@7oo 0 )
7r

C(7rS )--n
,rsEA

Then Plancherel equidistribution holds for the measures p,\, in the sense of 3.3.0.9.

Proof. By Sauvageot's density theorem, it's enough to show that when Os E 'i(G(Fs), xs),

we have px(s) --+ iP (Os) = 0s. We note that pL(qs) is the spectral side of the trace

formula applied to the test function

0 = Os -hr.,, - hn,X - #4,

where hr Xnspn ernsp X n,(1)

Then for any M, -y we have

QG(#) = 0,(O' MOy(hrn..,M)O-(hn,,,).

As A -+ oo, we have Oy(hrS.,,,) -+ 0 by 5.2.0.8. This completes the proof as in

Proposition 3.4.0.16. l

Remark 5.2.0.10. We conclude with a couple of brief remarks. First, we remark

on the necessity of the open compact subgroup F.sp. If our character x were trivial

at all places p G Vnsp, then it would make sense to simply take ]F, to be the max-

imal compact subgroup group Kn,,; this will simply count representations which are
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unramified on V,,. On the other hand, since Z(Fp) is compact at all places p where

G does not split, then if Xp is nontrivial for such a p, then all representations with

central character Xp. As such, allowing representations with some fixed ramification

at the nonsplit places is necessary to achieve greater generality.

In fact, if we want, we could achieve even greater generality by allowing a varying

sequence of open-compact subgroups IF,. Then we would achieve Plancherel equidis-

tribution as long as

N(nx - lev(ZFA)) -+ oo as A -+ oo;

this is apparent from the proof.
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Chapter 6

Basics on fields of rationality; local

representations

In this section, we examine fields of rationality in the abstract. If G is a topological

group, call a G representation (7r, V) smooth if every v e V has an open stabilizer.

Definition 6.0.0.1. (See section 1.1 of [Wal851). Let G be a group and let (7r, V) be

a smooth, complex G representation. Let a E Aut(C). We define a representation '7r

as follows: let V' be a vector space and let t : V -+ V' be a a-linear isomorphism, so

that

t(cv) = c-(c)t(v)

for c E C, v E V.

Then we define 07r G -+ Aut(V') via "7r(g) = t o r(g) o t-'.

Definition 6.0.0.2. Let 7r be a smooth G representation. We define

StabAut(c)(7r) = {o- E Aut(C) : U-r ~ 7r}.

The field of rationality Q(7r) of 7r is the fixed field of StabAut(C) (7)-

It is worth going through a very simple example: let x : G -+ C be a one-

dimensional character. We claim 'x = a o x and Q(x) is the field generated by all
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values of x. To prove the first statement, identify V with C and let t : C -+ C be the

--linear map t(a) = -(a). Then

('(g))(a) =u(x(g) -a(a)) = u(x(g)) - a.

The second claim follows from the first, once we realize that 'x = x if and only if

c- fixes X(g) for all g E G.

The following are elementary but necessary:

Lemma 6.0.0.3. Let G be a group and H < G a subgroup. All representations below

are assumed to be smooth.

(i) If 7i, ,r' are G representations, then

HomG( Ur, r7r') = HomG(7l, 7r').

In particular, if 7 is a subquotient of 7r', then '7r is a subquotient of '7r'.

(ii) If p = Resi 7r, then " p = ResG or.

(iii) If Ir = IndH p, then 'p = Ind3 '7r.

(iv) If G is compact and ,f is a finite-dimensional G representation with character

cr, then ca,(g) = o-(c,(g)). In particular, Q(p) is the field generated by the

values of c,.

Proof. Statements (i), (ii), and (iii) are all clear. For statement (iv), let 7r : G -+

Aut(V) and let t : V -+ V' be a --linear map. Since G is finite, 7r(g) is semisimple and

therefore V has a basis of eigenvectors {ei} with eigenvalues Aj; let t(vi) = fi V'.

Then

Oir(g)(fj) = t(7r(g)ej) = t(Ajej) = o-(A)t(ei) = -(Aj)fj.

Thus 1ir(g) has eigenvalue -(Ai), so tro 7r(g) = -(tr r(g)), completing the first state-

ment. The second part follows because the isomorphism class of 7r is determined by

its character.
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6.1 Fields of rationality of supercuspidal representa-

tions in the tame case

Throughout this chapter, we will assume L has residue characteristic p > n; we call

this the tame situation since all supercuspidal representations of GL.n(L) arise from

Howe's construction of tame supercuspidal representations. Under this assumption,

there is a nice characterization of supercuspidal representations of GLn(L). We begin

with several definitions.

Let L be a local field and L'/L a tamely ramified extension degree n. Let G =

GL.n(L). Throughout, given an extension L'/L, we let Uj' 1 + pi, < L'". We write

U' = Ul. Let FL, FL, denote the residue fields of L, L' respectively.

Definition 6.1.0.4. Let q be a character of L'* and A < L' be a subgroup. We

say y is nondegenerate on A if there is no proper subextension L" of L' such that

ker NLI/L, n A C ker q n A. Alternatively, q IA does not factor through NL,LI for any

proper subextension L"/L.

We say q is admissible if the following two conditions hold:

(a) q is nondegenerate on L'"<, and

(b) If 77u1 = q' 0 NL'/,, where q' is nondegenerate on U", then L'/L" is unramified.

We note that if q : L' -+ C' is an admissible character that is trivial on U', then

L'/L is unramified.

Definition 6.1.0.5. An admissible pair is a pair (L', ?7), where L'/L is a field exten-

sion of degree n and q is an admissible character of L'*. We say two admissible pairs

(L', 11) and (L', 72) are equivalent if there is an isomorphism T : L'- L' (over L)

such that q1 = 72 o T

Proposition 6.1.0.6. In the tame situation, there is a bijection q 7r7, between

admissible pairs (L', TI) (up to equivalence) and supercuspidal GL(L) representations.

Proof. The construction of tame supercuspidal representations from an admissible

pair is given in [How771 (with an alternate description in [Moy86J). The fact that
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r r, if and only if (L'i, rm) and (L', q2) are equivalent is Theorem 2 of [How77].

Surjectivity is Corollary 3.4.9 of [Moy86}. E

We will recall Howe's construction in order to prove the following:

Proposition 6.1.0.7. Let (L', 27) be an admissible pair and let o- c Aut(C). Then

Moreover, the central character of 7,r is 771Lx

The construction depends on a Howe factorization of the admissible character r7:

see the Corollary on page 450 of [How77 or Lemma 2.2.4 of [Moy86.

Proposition 6.1.0.8. Let y7 be an admissible character of L'". Then there are inte-

gers j(1) > j(2) > ... > j(r) and a tower of fields L = L1 C L2 C ... C L, = L'

such that

* 77 = r71 - 712 - -- ,,

* the conductor of ma is j(a) = (l(a) - 1)e0 + 1, where ea is the ramification

degree of L'/,L

I T71- . .- 71( = r7()o NL'/L0, where 71(c) : L' -+ C' is nondegenerate on (UL.)I<a) 1.

Equivalently, there are characters q' such 77a = ro' 0 NL'/La-

The following is clear but necessary:

Lemma 6.1.0.9. If q7 has Howe factorization 77 = 71, ... 77r, then '7q has a Howe

factorization as the product of 'rj. The intermediate subfields are the same, and the

conductors of r7a and "r77 are both equal to j(a).

If j(a) is even, let i(a) = i'(a) = j(a)/2. If j(a) is odd, let i(a) = (j(a) - 1)/2

and i'(a) = (j(ce) + 1)/2.

Henceforth, assume we have fixed an admissible pair (L, a) and a Howe factor-

ization on a. We identify M,,(L) with EndL(L'), and consider the lattice flag

PL1L
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in L'.

For an intermediate subfield La let

* Al_ EndLs(L'),

* Ga =Ma ,

* Ra= {g E Ma :gp, < , for all h EZ

* Ka = Rx

. = {g E Ma :gp, D p t1 for all h E Z}.

* Ja=1 +$a+ < Ra.

We will construct an inducing subgroup K, and a representation r,, of K,7 such

that r = IndG r,.

Fix an additive character 4' L+ - Cx and let OP = o trL//L. Let r7 be a

character on LX of conductor j(a) as in the Howe factorization, so that q' is trivial on

1+ pfa) but not on 1+ pi-. Then there is a ca in L' such that 7,a(1 + x) = I(CaX)

for x E P a); we call ca a representative of qa with respect to 0; it is clear that

if ca is a representative of %i with respect to 0 then it is also a representative of

UOra with respect to ' . The construction will use a choice of additive character

and representative ca, but we will prove in Lemma 6.1.0.13 that the construction is

independent of our choices.

We now describe the construction. We'll consider two different cases: where

j(r) > 1 and where j(r) = 1.

In the first case let

K = L'" Jr1J-2 - J

and we'll construct n,, as a K,, representation Kr®. . K. 2 ® K1. We note here that

K,7 = K,,, and we'll prove that ra,,,,,, - 'Ka,,,. Throughout, we'll assume we have

taken the Howe factorization Via "77 of O*.

Following [Moy86I, the representation K1,., is q' o det, so it is clear that U81,, =

Ki, O~
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For a > 2, when j(a) = 2i(a), then Kha is a one-dimensional character. Then

there is a character r/' of La such that r = j'oNL/La. We define K, oil L' Jr-2 - - Ja

via

Ka = q/' o det . (6.10)

If ca is a representative of 77a with respect to 0, we extend Ka to Ja -... J1 via

Ka(1 + x) = 4'(tr(cax)). (6.11)

From this description, it is clear that

a a,l,,,,ca = KaU07, ,c.. (6.12)

Now assume j(a) = 2i(a) + 1. Let

Ha = L' (1 + PL)Jr-1 .. . Ja-1

and

then set

J = L'xH, J' = L'XH'.

As above, fix n' : Lx -* Cx so that qia = r' o Ny/La. Define a character r, on

J' n G(Ea) via 6.10, then extend it to 1 + via 6.11. Then the representation

IndH, Ta

is a multiple of a single representation r'. We then extend K' to a representation K,

of Ja-1 ... J1 via 6.11. It is clear once again that O"K,,,,,c, = Ka,,,,,,c..

Lemma 6.1.0.13. (a) Given V), the representation = Ka,,p,ca is independent

of the ca chosen.
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(b) The representation n, ,,,, is independent of the 40 chosen.

Proof. We begin with a sub-lemma:

Lemma 6.1.0.14. Let e be the ramification degree of L'/L and assume g F EndL(L')

satisfies gph, C ph-"+ for all h. Then tr(g) E OL-

Proof. Let f denote the degree of the extension of FL//FL, so that ef = n. Let

w1,..., Wf E OL be such that their reductions modulo PL' are linearly independent

over FL. Then the set

{'LWm : 0 < k < e - 1, 1 < m f}

is a basis for L'/L.

Fix ko, mo and assume

gzLu'fO Z ak,rnm, ak,m E L.
k m

Because {Wm} are linearly independent over modulo PL', then

VL (EakrWm = e- minVL(ak,m).

In particular, for given k,

VL1 (W , ak,mwm = k + e -minvL(ak,m).
m 

m

Since the k are distinct modulo e, all of these terms have different valuations, so that

(E L , ak,mWm = mm (k + e- vL(ak,mn)) -
k

In particular, if gpk, < PkIl- then we must have ako,mo E OL. As such, with respect

to our chosen basis, all diagonal entries of g must lie in OL, completing the proof. 0
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We now proceed to the proof of part (a) of the lemma. We can assume wlog

that 4' is trivial on OL but not On WZoL- Then 0 o trL'/L is trivial on p where

e = e(L'/L).

Let %j have conductor j (a) (recall that q, is a character on L'x), and recall that

i'(a) = [j(a)/21]; then i'(a) = i(a) if j(a) is even, and i'(a) = i(a)+1 if j(a) is odd.

and assume ci, c2 E L' are chosen so that

4'(tr(cix)) = ,%(1 + x) = V'(tr(c2x))

for x C p"( ). As such, for all such x we have 4'(tr((c1 - c2)x)) 1, whence c1 - E

p1-e-i'(a) by Lemma 6.1.0.14.

If j is even, we use co to define K(1 + x) = O(tr cx) for 1 + x E J - 1 - J 1.

For such an x, we have xp , C p ~ij") by definition of J. If ci, c2 are two such

representatives, we have (ci - c2)ph c ph+1-e-i'(a). Therefore,

(cl - c 2 )xph < ph+1-e-i'(a)+i(a) - ph+1-e

since i'(a) = i(a). Thus, tr((ci - c2 )x) c OL by Lemma 6.1.0.14, so O(tr(cix)) =

4'(tr(c2x)).

If j is odd, the proof is similar. We use ca in two steps of the construction. First,

we use it to define a character for x + 1 E 1 + a (i(a) + 1) = 1 + a). Second we use

it to define a character for x + 1 E J1 ...- Ja-2 K AutL(L'). In the first situation,

x satisfies xpL, < PI" . In the second situation, that x satisfies xpL, C pI

Moreover, since j is odd we have i'(a) < i(a - 1). Therefore, as above we have

(c1 - c2 )xph, C ph 1 -e

and therefore O(tr(c1 x)) = V'(tr(c2x)) for the x in question, proving that the charac-

ters constructed are independent of choice of c.

Having proved (a), we prove (b). Let 0), V)(2) be two nontrivial additive charac-

ters. There is a c such that 00)(x) = 4()(cx). We can pick representatives , ca
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such that na (1 + x) = O)(c( x) for x close to 0. Because the construction is in-

dependent of the representative chosen we can take c(2) = C 1)c 2 Then it is clear

that

K()(1 + x) = 0(1)(tr(c()x)) = ?( 2)(c_ tr(c2x)) - '( 2)(tr(c2)x)) = - (1 + X)

in any situation where ti, is defined in reference to .l

The construction in the case where j (r) = 1 is similar; in this case, we must have

L'/Lri unramified. Then we set

Kq = L'K,_ 1 J,-2 ... J1

and we construct a representation n = K,. ..- 2 0 ,1. As above, K. = K, for - E

Aut(C). The construction of the representations Ki,..., r,1 are entirely analogous

to the constructions above, so the claim goes through by the same argument.

The only discrepancy is in the construction of n,. Since , has conductor 1, then

L'/L,_ 1 is unramified. Therefore, 7
7r descends to a character 0 of F',, which is

the group of points of a torus in GL[IL:Lr,_I(FL,-,) which is anisotropic modulo the

center. Moreover, because q, is nondegenerate over L,_1, 9 is in 'general position'

(i.e. does not factor through the norm map NL'/, for any L" ; L'). Therefore, by

the construction of Green [Gre55] or Deligne-Luzstig [DL761, 9 determines a cuspidal

representation m- of K,_1/(1+r-1), which we lift to a representation To of K,_. We

extend this representation to a representation K, of L' K,_1 by having the scalar UL'

act as q.,(ZL').

In either case, we may now prove that the central character of 7r, is 71ILx. For each

a = 1,..., r, we see that KaILIx is a multiple of the character o' a det = y/ 0 NL/L..

The product of these characters is q by the Howe factorization.

To prove that '7r, = 7ry, we need one last lemma.

Lemma 6.1.0.15. Let F be a finite field and let F. denote the extension of F of degree

n. Let 9 : F^ -+ Cx be a character in 'general position' and let To denote the cuspidal
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representation associated to 0 via the construction of Deligne-Lusztig. If a E Aut(C)

then

TO- Tao.

Proof. We'll briefly recall the construction of Deligne and Lusztig. Let F denote the

Frobenius morphism on G and let T be a minimally-split, F-stable torus in GL.,

so that T is defined over F. Let B be a Borel containing T and let U < B be the

unipotent radical so that B = TU. Define

XTCB = {g E Gjg-'F(g) E F(U)}/(U n F(U))

XTCB = {g C Gjg-F(g) E F(U)}/(T(F) - (U n F(U)))

so that ITCB -+ XTCB is a G(F)-equivariant torsor, equipped with a right T(F)

action. Let RTCB denote the virtual representation

(--1VHjiTcB, Q)
i>O

and let RCB be the virtual sub-representation where T(F) acts via 0; this subspace

is G(F)-invariant since the actions of T(F) and G(F) commute. If 0 is in general

position, then tRTcB is irreducible and is equal to To. We therefore need to show

that if p occurs in RcB, then 'p occurs in RrcB. We note that p occurs in TcB

if and only if HomG(F)xT(F)(p 0 0, RTCB) $ 0, or alternatively if (p 0 0, RTCB) 5 0

(here we identify representations with their characters).

Because (g, t) acts via automorphism on ATcB, the trace of the associated action

on 6tale cohomology is rational, so RTCB(g, t) has rational trace. Therefore, the

character of RTCB has rational values, so we have

(p 070, RTCB) p (p 0 , O RTCB) = O-((p 0, RTCB)) = (p 0 0, RTCB) 5 0

so that Up occurs in RcB as desired. El

Therefore, for each K, = , s, we have ra, r Ka,,ar. Since r, is the tensor
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product of these representations and 7r,,,p = c- IndG K,, we have

This completes the proof of 6.1.0.7.

Recall that a GL,(L) representation 7r is said to be depth-zero if it has a nonzero

F(p)-fixed vector.

Lemma 6.1.0.16. Let (L', q) be an admissible pair. The following are equivalent:

(i) qj is trivial on 1 + PL'

(ii) L'/L is unramified and q is trivial on 1 + PL'

(iii) 7r,, is depth-zero.

Proof. (i) ==> (ii) by the definition of an admissible character. The implication

(ii) ->~ (iii) follows from the construction above: in this case, q has a Howe

factorization q = qq1 with j(1) = 1 and one checks directly that K, has a F(p)-fixed

vector.

To see that (iii) -- > (i), it follows from Lemma 3.13 of [ST14 that if ir has

depth zero, it has conductor c(wr) 5 n. By Corollary 3.4.6 of [Moy86], in this situation

we have c(7r,) = n+ f(L'/L)(j(rq) - 1), which is only less than n when j(77) < 1. But

there are no unramified admissible characters, completing the proof. L

Proposition 6.1.0.17. Let the residue characteristic of L be p > n.

(a) If (L, q) is an admissible pair, then Q(r,) ; Q(rq), and [Q(j) : Q(, 1)J < n.

(b) If r is a supercuspidal representation of nonzero depth, then [Q(7r) : Q] > .

Proof. We first prove (a). If a E Aut(C) and a stabilizes q, then o- stabilizes ir,, by

Proposition 6.1.0.7. This proves the first statement. For the second statement, let

rq = r, ..., ld denote the conjugates of q under Aut(L'/L), so that d < n. Then

01 17r if and only if ari = r/j for some i = 1, . . . , d. Therefore, the stabilizer of r in

Aut(C) is index at most d in the stabilizer of ir., completing the second statement.
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We now prove (b). Let (L', I) be an admissible pair and assume 7r., has positive

depth. Then q is nontrivial on l+PL', a pro-p-group, so 71(x) = ( for some x E l+PL'.

Therefore, we by part (a) we have

1 1 p- 1
[Q(Ir) Q] -[Q(n) Q] > -[Q(() : nn n n

completing the proof. El

Remark 6.1.0.18. In fact, we can prove something stronger. Let Go denote the set

of elements of GL,(L) with I det(g)| = 1. Then 7rIGO depends only on 77, . Therefore

we can prove that 7r is a supercuspidal representation of positive depth, then in fact

[Q(ir|Go) :Q] > -. This will be useful later when we compute the fields of rationality

of tempered representations, since it will allow us to ignore the effect of twisting by

the modulus character in the definition of normalized induction.

Remark 6.1.0.19. For more general reductive groups, we have the following analog

of the results above:

Proposition 6.1.0.20. Let GF be a connected reductive group, and let IW| denote

the cardinality of the Weyl group of a maximal torus in G x F. Let p be a prime such

that F. has sufficiently high residue characteristic p (depending only on G). If ir is a

supercuspidal representation of G(FV) of positive depth, then

[Q(ir) : Q] > .
|WI

The proof uses analogs by Kim, Murnaghan, and Yu to the results of Howe and

Moy for GL,. In particular, in [Yu01], Yu constructs a tame supercuspidal represen-

tation associated to a cuspidal datum 1 = (C, y, k, p, q) (we refer the reader to

Section 3 of [YuOl] for precise definitions). In [KimO7], Kim proves that when the

residue characteristic is large enough, this construction is exhaustive.

We'll briefly recall Yu's construction: the starting point is a datum
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where

* N = (G, ... , Gd) is a sequence of subgroups with G' < Gi+, and for each i

there is a tamely ramified extension Lj/L such that G'(Li) is a Levi subgroup

of G(Li). We assume moreover that Z(G0 ) is anisotropic modulo Z(G),

* y is a point in the building B(G, L) n A(G, L', T), where T is a maximal torus

in Go that splits over L',

* 1 is a sequence of real numbers 0 < ro < r1 < ... < rd_1 rd. If d > 0 we

insist 0 < ro,

* p is an irreducible representation of K0 , the stabilizer of y in GO(L). We assume

p is trivial on G0 (L)0 + and that the compactly induced representation indGKj p is

irreducible supercuspidal, and

-
q = kd) is a sequence of quasi-characters 4i : G(L) -+ C. We assume

0i is trivial on Gi(L),+ but not on G'(L),, for 0 K i K d - 1. If rd- < rd we

assume the same for i = d; otherwise we assume kd = 1.

The Yu constructs a supercuspidal representation 7rp from this datum.

If a C Aut(C) and = (= where

0 = (0,0..., "q0A). It needs to be checked that if D is a cuspidal datum, then

Let D be a cuspidal datum and let

d

p' = p 110($)- |KO-
i=O

It is a result of Hakim and Murnaghan that 7r, = 7rD, if and only if there is a

g E G(L) with Ad(g)K0 = K0, and such that Ad(g) takes p' to p'.

Let W(G) be the Weyl group of a maximal torus in G (after base change to the

algebraic closure): one can prove that [NG(L)(K 0 ) : K 0] < IW(G)I. Now if a E

Aut(C) fixes 7r, then 'p' must be equal to Ad(x)p' for some x c NG(L)(K 0)/K0 .

Therefore, we have Q Q(irt) < Q(p'), and [Q(4) : Q(7rj)] < IW(G)I. This
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gives an analog of Proposition 6.1.0.17 (a). To get an analog to (b), we note that

dep(ir,) = rd, and if rd 7 0 then p' is trivial on G(L)d but not on G(L)r+, and the

quotient is a p-group.

6.2 Fields of rationality of discrete series and tem-

pered representations

In this section, we will use our result on the field of rationality of supercuspidal

representations to discern similar results on the fields of rationality of discrete series

and tempered representations.

Lemma 6.2.0.21. Let n = md, let p be a supercuspidal representation of GL,(L),

and let 7r = Sp(p, d).

(i) '7r = Sp(UOp, d)

(ii) Q(7r) = Q(p)

(iii) If dep(wr) > 0 then [Q(7r) : Q] > 2. In fact, [Q(WrIGo) Q1

Proof. Let M < GLn(L) be the block-diagonal subgroup isomorphic to GLm(L)d. Let

7r = Sp(p, d), so that ir occurs as the unique irreducible quotient representation of

In particular, if P = MN is the standard parabolic with M as its Levi component,

then I is isomorphic to the unnormalized induction Ind (p~d) 0 1 N. Therefore, 'ir

occurs as the unique irreducible quotient of 0I which is the unnormalized induction

Ind (,p~d) 0 1 N. This proves '7r = Sp(ap, d), completing (i).

(ii) follows from (i) because Sp(p, d) a Sp(p', d') if and only d = d' and p a

p'. Finally, (iii) follows from (ii) once we note that dep(Sp(p, d)) = dep(p). The

claim about the restriction of ir to Go follows because ir1G, depends only on pIGO and

[Q(PIGo) : Q] 1 by Remark 6.1.0.18. 0
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Proposition 6.2.0.22. Let 7r be a tempered representation of positive depth. Then

[M(OO : (Q] >- 'n.

Proof. Since 7r is tempered, there is a Levi subgroup M r GL, 1 (L) x ... x GLnr(L)

of GLn(L) and a discrete series representation WM w 0 ... 0 Wr of M such that

7r = IWM (recall IG denotes normalized induction). Let w9 denote the restriction

of wi to GLn,(L)o.

If 7r has positive depth, then wM has positive depth, so one of the Wi has positive

depth; assume WLOG that w, has positive depth. If '7r '- r; then o permutes

the representations wo. In particular, a permutes the set {w?}. In particular, 'wo

is isomorphic to w9 for some i with ni = n1 . There are at most n/ni blocks of M

isomorphic to GL, (L), so Owo must be one of at most n/ni representations. Therefore

n,> ni p-1 p- 1

[Q(i) : QI>-{Q(w) :Q]>-- -- =
n n ni n

by (iii) of the previous lemma. E
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Chapter 7

Statements and Proofs of the Main

Theorems

7.1 Fields of rationality in families: statements of

the main theorems

Throughout this section G will be used to denote GL2 or U(n) over a totally real field

F.

Definition 7.1.0.1. Fix a finite-dimensional, irreducible, algebraic representation {

of G(Foo), a character X of Z(F)\Z(A) such that x,, = ,xy, and a subgroup r of

G(A ).

We define the automorphic family Fic(, F) as the multiset consisting of dis-

crete automorphic representations with X, = x, where a representation 7r occurs with

multiplicity

ay-(7r) = (- 1 ),(G) - rdis,(7r) -dim(7r*4) XEP(7roO

We define the family FcXu , F) similarly, but with mep replacing mdisc.

For a multiset F, let TFI = ZEay(7r).

We remark that the multiplicities arise naturally in the fixed-central-character
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trace formula. Let er E t(G(A) ) denote the idempotent element in the Hecke

algebra corresponding to the open compact subgroup F, and let er,x denote its image

in W(G(A ), x). Let #6 denote the Euler-Poincar6 function defined in 3.7. Then

ITi is the value of the geometric side of the trace formula applied to the function

(-1)q(G)er,x06. Moreover, we will assume x is trivial on F n Z(A ); otherwise _T is

empty.

We will often examine the case where the highest weight of is regular. In this

case, the formula simplifies in the following ways (see Propositon 3.2.0.6). First, all &-

cohomological G(Fo) representations 7r, are discrete series representations, all occur

in the same L-packet, and for such a representation we have XEP (r~o 0 V) = (_ 1 )q(G)

Moreover, for any such representation we have Mcusp(7) = Mdisc(w), so Tens= -dise

as multisets. Finally, if lrp occurs as a local component of a -cohomological repre-

sentation, then 7r, is tempered.

Given a multiset T, let FSA denote the subfamily of A consisting only of those

representations 7r with [Q(7r) : Q] < A.

For the rest of this thesis, we will examine sequences {FA } such that

lim J.T: A (.' , FIA)I 0.
AoI(C X, ,FA)l

Recall that Vspi is the set of finite places where G splits and V..p is the finite places

where it does not split. Let Api and An,, denote the split and nonsplit components

of the finite adeles, and let Xspl, Xnsp denote the restriction of x to Z(Aspi), Z(Ansp)

respectively. We will prove the following result:

Theorem 7.1.0.2. Assume that either G = GL 2 or the highest weight of is regular.

Let nA be a sequence of ideals, divisible by the conductor f of x of F and let IPA denote

the full level subgroup F(nA) < G(A ). If N(nA) -+ 00, then

lim =y A(, X) 0.
A-+oo f( s(, x, F i) s

Alternatively, fix rn,,p < G( A,,,p) such that xnsp is trivial on rnsp, and let nA be a

86



sequence of ideals of F that are only divisible by primes in V,,i, with N(n) -> oo as

A -+ oo.. Assume each n, is divisible by the conductor of Xsp1. Let FA = PF,,Ko(nA).

Then

lim = 0.
--+oo jF(c, x, rA)I

For the relation between this problem and Serre's question regarding fields of

rationality of classical cusp forms, see [Binl5. We give a brief explanation here.

Consider the case where F = Q and G = GL2 , so that Vpi is the set of all finite places.

Let V denote the standard representation of GL 2 (R) on C 2 and let V = V 0  det -1/2,

so that the central character of V is the sign character. Let k = Sym 2 V1. If f is a

cusp form of weight k, then lrf is G-cohomological. Given n E Z, there is a bijection

{Newforms of level n, character x, and weight k}

and

{Cuspidal automorphic representations 7r with x,- = x, conductor n, and 7r,% = 7rk}

that extends to a bijection between the standard eigenbasis of Sk(n, x) and the mul-

tiset .Fcusp(4, x, K 2 (n)). By the strong multiplicity one theorem, this bijection pre-

serves fields of rationality (see, for instance, Theorem 1.4(5) of [RT11]).

As such, a resolution to Serre's question on fields of rationality of cusp forms

follows from the F = Q, G = GL2 case of the above theorem. In fact, the result

easily generalizes to larger totally real fields.

We may also wish to count representations of a given (fixed) conductor with

multiplicity one. In particular, fix X, , and n.,p as above, and let n be an ideal of F

that is only divisible by primes in Vpi. Let

d tts ngfdisct p Fr t, n)

denote the multiset consisting of discrete automorphic representations 7r such that
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the conductor of 7rpi is precisely n, counted with multiplicity

rMdisc(7) -dimr nsp - XEP(7r0

We henceforth refer to Fnew as a conductor family. Define Fnew,cusp similarly.

Then IFI is the value of the spectral side of the trace formula applied to the test

function

e= er-xen,X"

where enew is the new-vector counting function from Chapter 5.

We have an analogous result for fields of rationality of automorphic representations

in conductor families:

Theorem 7.1.0.3. Let G = U(n) for n > 3, and let x, , Fn , as above; assume

the highest weight of is regular, so T new,disc = Fnew,cusp. Let {nx} be a sequence of

ideals, divisible only by split primes, with N(nA) -+ oo as A -+ oc. Then

im' n.Eew Xis FnSp n o 0
IFnew(, X, Fnsp, n1)

In the next two sections, we will prove these results, contingent upon some nec-

essary facts from the representation theory of GLU(L), which we prove in the next

chapter.

Remark 7.1.0.4. It is worth remarking on our stipulation that G = GL 2 or U(n).

First, our results will explicitly use the representation theory of GL,,(L). In particu-

lar, the discrete series representations of GLn(L) are well-understood in terms of the

supercuspidal representations, and in particular it is easy to compute lower bounds

on the fields of rationality of discrete-series representations. Moreover, we will be

able to show, using results of Murnghan that are specific to GL,,(L), that if pi, P2 are

supercuspidal GLm (L) representations and 7i = Sp(pi, d), then 7 1 and 72 give the

same contribution to the automorphic families above (see Proposition 8.0.0.7 for a

precise formulation). This will ensure that if F, has large enough residue character-

istic, the contribution of discrete series representations with small field of rationality
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is small. To our knowledge, analogs of Murnaghan's results have not been proved for

other p-adic groups. In view of this, our methods of proof require that our group is a

twist of GLn.

Moreover, it is necessary to use groups G such that G(R) has discrete series repre-

sentations. This ensures that if is an algebraic G(IR) representation that has regular

highest weight and -r is a c-cohomological automorphic representation, then 7r, lives

in a discrete-series L-packet and Q(wr) is actually a number field. Moreover, in this

situation, the trace formula applied to test functions whose infinite component is a

Clozel-Delorme function q5 is particularly simple; see 3.4.0.15, following Theorem 6.1

of [Art89.

These two conditions together necessitate that we use G = GL 2 or U(n). We hope

that we will be able to extend these results to, for instance, other classical groups as

their discrete series representations become better understood.

7.2 A finiteness result for local components of coho-

mological representations

Let be an irreducible, finite dimensional, algebraic representation of G(F").

Definition 7.2.0.5. Fix a finite place p of F. We say a representation 1rp of G(Fp) is

potentially -cohomological if there is a -cohomological automorphic representation

7r whose p-component is isomorphic to irv.

Given A > 1, let Z,(A, ) denote the set of potentially -cohomological G(F,)

representations ,r, with [Q(,r,) : Q] <; A. (We will drop the references to p, A, when

they are clear from context).

Proposition 7.2.0.6. Fix p, A, as above and assume the highest weight of is

regular. The set Zp(A, ) is finite.

Proof. This is Corollary 5.7 of [ST14j.

Remark 7.2.0.7. When G = GL2 and the highest weight of is not regular, the same

result holds. This can be pieced together from other results of [ST14J. In this case, if

89



ir is -cohomological, either ir is a one-dimensional representation or iroo is a discrete

series representation. In either case, we appeal to the Langlands correspondence and

go over to the Galois side; the associated WFy representation p will be pure of weight 1

(so that the eigenvalues of Frobp will be Weil-q-integers of weight 1), so there are only

finitely many possible eigenvalues of Frobenius by the argument at the end of Lemma

5.1 of [ST14]. Moreover, since the field of rationality of p is bounded, so is its depth,

and as such p|j, is one of finitely many representations, completing the proof.

Proposition 7.2.0.8. Fix A E Z> 1, e > 0, and a finite prime p of F. There is an

r E Z>1 (depending on A, e, p) such that, for any ideal n of F with pr |n, we have

<c and < 6.
IT( , x, (n))l |T( , X, K.(n))l

Remark 7.2.0.9. The reader should compare the first statement to the statement

of Theorem 6.1 (ii) of [ST14]. We believe there to be a small mistake in the proof

contained in that paper: namely, the authors forget to count representations 7r with

appropriate multiplicity. Fortunately, the proof is correct in spirit and the only missing

step is to note a bound on the growth of dim, rs" ; the proof below should correct this

minor oversight.

Proof. We'll prove the statement for full level subgroups F(n) first. By Corollary

7.2.0.6 there is a finite set Z (depending on and A) of potentially -cohomological

representations irT with [Q(7rF) : Q] < A. By Harish-Chandra's local character expan-

sion, for each lrp, there are constants C, and d,, such that dim 7r,'O ~ C~rqdp (see

Remark 8.4.0.22). Let C = vol(G(F)Z(A)\G(A)) dim(s).

Let r be large enough that

(a) each such rp has a F(pr)-fixed vector,

(b) for r' > r and rx, E Z, we have

(1 - e)Cq dpr < dim 7r{(,) < (1 + e)C, qdpr

and
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(c) for any n with pr I n, we have

Cq(1 - c) < vol(Z\F(n)Z)YT, < Q(1 + c).

(This holds for large enough r by Plancherel equidistribution).

Now let n = p' - t, with t coprime to p and r' > r. Let n' = prt, and let

Fn, = T(F(n'), fs., ). Assume 7r E Fn with 7r, E Z. Then 7r, has a F(pr)-fixed

vector (by (a)) and so 7r occurs in F,,. For such a ir we have

an(7r) < (1 + 3E) - qdP(r'-r) . an/(7r) by(b).

(Here an, an, denote the multiplicities in Fa, F, respectively).

Moreover, by (c) we have

an, (7) < IF , < (I + Q~o( ~ ~ 'Z
p EZvol(Z\F(n)Z)

so that

an(7r) <- (1ri)>, (w) < (1 + 5E)vol(Z\F(nf')Z) q
7rp EZ

We note here that dx, is bounded above by some d, the maximal dimension of a

nilpotent orbit in Lie(G), so that we have

~ a~w) <(1 +5c) C qd(r''r)an(7r) < (1 + 5E) vol(Z\I (n')Z)
rp EZ

Moreover |Fj is bounded above by (1 - e) Q z- Therefore, we have

Z~rpez an~ir) ___________*

(E Ea(r< (1 + 7 )v(Z\FeZ) qdr'-) = (1 + 7 )q(d-dim(G))(r'-r)

which can be made arbitrarily small if r' is large enough, since d < dim(G).

The case of F = K,.(n) is even easier, since dim 7rKn(p') grows polynomially in r

instead of exponentially by Reeder's theorem 2.2.1.3. E
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Remark 7.2.0.10. In fact, we can check that if p is high enough (depending on e

and A), we can take r = n + 1. This follows because, for high enough p, all GL,,(L)

representations 7r, with [Q(7rp) Q] < A have conductor at most n. The number

of Kn(pr)-fixed vectors in a given 7r increases polynomially in r, but by Plancherel

equidistribution, the total size of the family F( , x, Kn (pr D)) increases polynomially

in N(p)r, at least if N(p) is high enough. For a full exposition of this proof, at

least in the n = 2 case, we invite the reader to see Lemma 10.0.2 of [Bin15J (the

lemma is proved in the language of cusp forms but is easily adapted to the situation

of automorphic representations).

7.3 Contingent completion of the proof

Throughout this section, we will assume the following:

Proposition 7.3.0.11. Fix e > 0 and A E Z;>. There is a Po c Z>1 such that,

for a p-adic field L with residue characteristic p > Po and any unramified character

x : Lx -+ C'x, the following holds.

Let F < GLL(L) be either

" the full level subgroup J (p') when n > 2, or

" the subgroup Kn(p') when n > 3.

Then for any r

deg(7r) - dim 7r' e -vol(Z/Z)-1 . (7.12)
ir discrete series

X7r=X
[Q(7r):Q] A

Moreover, with L as above and n > 3, if e"" is the test function from Definition

5.1.0.3, then (again for any r)

deg(7r) "(r) < E - e"(1). (7.13)
(r discrete series

[Q(7r):Q]<A

92



Because the proof of the proposition involves delving more deeply into the repre-

sentation theory of GL,,(L), we have opted to prove it in the following chapter. In

this section, we will complete the proof of our main theorems, contingent upon the

proposition. As usual, F is either Few( , x, Vnsp, n) or F(6, X, F) where F = F(n)

or F = FnspKn (n).

Proof. (Of the main theorem). We consider three cases. The first case is when

F = F(n) or F = F 1,pK,(n) and n > 3, so that Proposition 7.3.0.11 holds. In

the second case, we make an analogous argument for the conductor-level families

Fnew(6, X, Frsp, n). In the third case, we handle the case n 2 and F = F,"K2 (n).

Case 1: Fix A > 1 and E > 0. We can pick a prime p such that

(a) G splits at p,

(b) x is unramified at p, and

(c) The result of Proposition 7.3.0.11 holds for all r.

Given this p, let ro be large enough that the result of Proposition 7.2.0.8 holds.

Recall that we have FA = F(nA) or FrflK,(nA) for a sequence of ideals {nX} (in the

second case, nA is only divisible by split primes). Put the ideals {n} into subsequences

so, ,..., I , rO,, such that, for i < ro, n\ goes into Si if ordp(nA) = i. Put nA

into S if ordp(nA) > rO. We will show that, for any subsequence Si, either Si is finite

or
yF(( , FA)! 7.4

lim < E. (7.14)
'X-+00 IF(6, X, FJ)nflESi

Since there are finitely many subsequences, this will complete the proof. For each

nA E Si, the p-component F of p is equal to a fixed subgroup 1,, (either F(p') or

Kn (Pi)).-

If i = ro, 7.14 follows immediately (in fact, without taking limits) by the result of

7.2.0.8. So let i < ro. Let eri,x, denote the image of er,, under the averaging map

Ji(G(F,)) --+ '(G(Fp), xp). Let Z denote the set of representations in H(G(F,), Xp)

that are potentially 6-cohomological and that satisfy [Q(ir,) : Q] <; A. By 7.2.0.6,
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this set is finite; let 1z denote its characteristic function. If nA= nA/pi, then

X7^(, IPA)) Pn/ g(lZ ry,xp)

where ' is the counting measure as defined 3.3.0.8. By the Plancherel equidistribution

theorem 4.2.0.7,

lim A i- _ ' W(1Z-er,,P) vol(F,,iZ/Z) - (
A-+oo ,P(erg,

Since the set of representations in Z that are not discrete series representation is

finite, its Plancherel measure is zero. Moreover, because we have chosen p so that the

result of 7.3.0.11 holds, we have

vol(Fp,iZ/Z) deg(ir) - dim irr < C
-7r discrete series

Therefore, for high enough A such that nA E Si we have

:^( X, P, I )
JT( , X, FA) I

finishing the proof.

Case 2: The case of conductor-level families Pick a prime p as in Case 1. In this

situation, we analyze families of the form

J'( , X, Fa, nA)

for a sequence {nx} of ideas with norm approaching oc. As above, divide the nA into

subsequences So,..., Sn, Sn+1, where nA E Sn+1 if ordp(nA) > n + 1 and nA E Si if

ordp(nA) = i. As above, we'll show that the limit is less than c for each subsequence.

For i = n + 1, we have already shown that every tempered representation of

GL,(L) with [Q(7) : Q] A < 21 has conductor at most n, so for nA in Si+1 we
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already have

The cases 0 < i < n follow exactly as in Case 1, using the second inequality of

Proposition 7.3.0.11.

Case 3: the Kn case, where n = 2. The full exposition of this argument is given

in Section 10 of [Bin15I. As above, we break our sequence {n} into So, S1, S2 , S3

and handle each subcase separately. The cases i = 0, 2, 3 are entirely analogous to

the cases i < n - 1, i = n, i > n cases above assuming we have picked a prime of

large enough norm.

For the i = 1 case, we run into the following problem: for fixed p with norm q, we

have ^P1 ( K2 (p), x,) = q +1, and we have two Steinberg representations of conductor 1,

each of which has formal degree q1. To remedy the situation, let S = {p,..., p,}

where each pj satisfies (a), (b), and (c) as in Case 1, pj has norm qj, and

-- 1

j1 qj + 1

Given a tuple t = (i,. ir) with ij = 0, 1, 2, 3, let St denote the subsequence of

nA such that ordp,(nA) = ii (unless ij = 3, in which case we include n\ if ordpj (nA) ;>

3). Since each pj is big enough, the same arguments as in Case 1 handle all the

situations except t1 = (1, ... , 1).

For this last subsequence: Let Zs denote the (finite) set of representations -s =

1r1 0 ... 0 7r, such that 7rj is potentially 6-cohomological and [Q(rj) : Q] <A. Let

es = 5,=1 EK2(pj),Xp , and let fs = 1 zs s The Plancherel measure of e is

r

]J(qj + 1).
j=1

Then the support of fs is finite, so in particular its Plancherel measure is equal to

the Plancherel measure of the set of representations 7rs such that each wi is Steinberg.
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Since the Plancherel measure of the two Steinbergs at pj is (qj - 1), then

r

fPl(fs) = (qj - 1).
j=1

As such, as n\ -+ oc for nA c St, we have

_F! ( , X, K2(n,\)| ^ (+s)
JT( , X, K2(nA))l Ip'(-s)

This completes the proof of case 3.

Remark 7.3.0.15. It is enlightening to reinterpret the proof of the GL2 case in the

language of modular forms. Then we have the following statements:

" Fix a prime p and let n, be a sequence of ideals coprime to p. Then as nA -4 Oa,

the proportion of cusp forms f of weight k, character x, and level nA such that

[Q(ap(f)) : Q] A approaches 0. This is effectively the argument of Serre in

[Ser97].

" If p I p is a prime and f is a newform of level n, with p' I n, then [Q(f)

Q] ;> P; this follows immediately from 6.2.0.22. Then the analog of Remark

7.2.0.10 follows because if p is large and p' I n, then most forms of level n arise

from newforms of level n' with p I n'.

" The argument at the end of Case 3 has a nice reinterpretation in terms of cusp

forms. Assume Xp is unramified and f is a newform of level pn', where n' is

coprime to p. Then the representaton 7rf,p is one of two Steinberg representations

with central character xp. In particular, the field of rationality of ,rfp is degree

at most 2 over Q(xp) < Q(x). Therefore, the newforms at level pn' do not have

large field of rationality, at least at p.

However, if we take the entire family of cusp forms of level pn', then (by

proportion) of these forms are newforms at some level not divisible by p. By the

argument in the first bullet point, if n' is large enough, most of these cusp forms

have large field of rationality at p. Therefore, if we take S = {p,..., p,} to be
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a large set of large primes, we can ensure that only a small proportion of the

cusp forms of level p1,.... pn' arise from newforms of level some level divisible

by pi for each i.

Using these methods, we cannot prove an analogous result for fields of rationality

for newforms. Indeed, we can see where the proof of the newform case (Theorem

7.1.0.3) breaks down in the case G = GL 2 : it is precisely when we have fixed a set

S of primes and examine a representation 7r of conductor n, where ord,(n) = 1 for

all P E S. Then 7rs is a tensor product of Steinberg representations. In particular, if

we only consider 7rs, we have an upper bound on the size of the field of rationality in

this situation.

It seems that the following question should contain all the difficulty in finishing the

'conductor family' case of GL 2 , but will nonetheless require a new piece of innovation:

Question 7.3.0.16. Let 1 denote the trivial character and let be a finite-dimensional

irreducible algebraic GL 2 (R) representation with trivial central character. Let p1, P2, ...

be an enumeration of the primes in F and let nA = P ... PA. Is is true that

lim =~new( ' 1, nA)I 0?
newo |e(6, 1, nA)|
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Chapter 8

Properties of depth-zero discrete

series representations

In this chapter, we will prove Proposition 7.3.0.11. Recall the statement:

Proposition 8.0.0.1. Fix E > 0 and A G Z>I. There is a Po c Z>1 such that,

for a p-adic field L with residue characteristic p > Po and any unramified character

x L* -+ C', the following holds.

Let F < GLn(L) be either

* the full level subgroup F(pr) when n > 2, or

* the subgroup Kn(p') when n > 3.

Then

deg(ir) - dim fr' <e vol(FZ/Z)1 . (8.2)
-7r discrete series

[Q(ix):Q]<A

Moreover, with L as above, if e"?" is the test function from Definition 5.1.0.3,

then

(8.3)deg((7r ) _ e -e"(1).
(r discrete series

We first note that it is enough to prove the following:

99



Proposition 8.0.0.4. Let L, G, e, A, F be as above and fix d I n. Then there is s a

Po such that for every p > Po and every r E Z>O, we have

S deg(7r) -dimr' < e -vol(FZ/Z)- 1 . (8.5)
ir=Sp(p, d)

X-=X
[Q(7r):Q]<A

Moreover, if n > 3, we can find PO such that, for any r and L with residue

characteristic p > P we have

deg(7r) - p(r) < e"(1). (8.6)
7r=Sp(p, d)

X=r X
[Q(7r):Q]<A

Then 7.3.0.11 follows because there are finitely many d I n and because if p > nA

and 7r is a discrete series representation with [Q(7r) : Q] < A, then ir has depth zero.

When d = n (so that 7r is a standard Steinberg representation), we will show

this statement directly. When d < n, we will not compute dim7r' directly. Rather,

we will show that if p is large enough, the proportion of representations of the form

7r= Sp(p, d) satisfying [Q(ir) : Q] < A is at most e. This is the result of the counting

argument in the next section. In the following sections, we will show:

Proposition 8.0.0.7. Fix m > 1, n = md, and assume p > 2n. Let p1, p2 be two

depth-zero supercuspidal GLm(L) representations and let 7ri = Sp(p , d). Then:

(a) deg(7r1 ) = deg(7r2);

(b) dim -r = dim ir~r; and

(c) if e' e -,E (GL(L), x) is the 'new vector' test function constructed in Chapter

4, then 1e(71) = 2pne(72).

These two facts together will be enough to prove Proposition 8.0.0.4 in the case
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n > 1, since

vol(PZ/Z) = 'I (er,x)

> Z deg(7r) dim7r"

ir=Sp(p, d)

where the second sum runs over the depth-zero supercuspidal GLn (L) representations

p (and similarly when we replace dim irr with "W(7r) and vol(FZ/Z) with "ew(1)-1).

8.1 Counting discrete series representations with small

field of rationality

In this section, we'll count the depth-zero discrete series representations of GL.,(L)

with a fixed central character, and also prove a lower bound on the number of such

representations satisfying [Q(7r) : Q] < A independent of L. Let FL denote the residue

field of L and let IFLI = q. Given A E Z>1 , let f(A) denote the number roots of unity

C with [Q(<) Q] <A; note that f(A) is finite for any A.

Proposition 8.1.0.8. Fix a central character X0 : L -+ C' that is trivial on 1+ PL,

and assume m > 2.

(a) Let /3(L, m, Xo) denote the number of depth-zero supercuspidal GL,(L) represen-

tations p with Xp Xo. Then

- (qM-1 - 1)Tn( , mXo)
m

(b) The number of depth-zero supercuspidal representations p with Xp = Xo and

[Q(p) : Q] < A is bounded above by -Lf(mA).

Proof. Let L'/L be the unique unramified extension of degree m. Every depth-zero

supercuspidal GLm (L) representation is of the form 7r where : L' -+ C' is an

admissible character trivial on 1 + PL'. Moreover, if 7r% has central character Xo, then

X0 = 7 |Lx . If a is a uniformizer of L, then Lx is generated by o , and w. Therefore,
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if we insist that ILx = X,, = Xo, then y is determined by its restriction 10 to OL'x.

An admissible character yo on ox, trivial on 1+ PL, descends to a character 6 on F'm

that does not factor through the norm map Fxm -+ F" for x # m; we say such a

character is in general position. Moreover, we note that 0IFq must be equal to a fixed

character X0. Therefore, it's enough to count the number y(L, m, Xo) of characters 0

in general position on F'm -+ C' with OIFq = Xo. If 6 is in general position, then its

orbit under Gal(Fqm/Fq) has cardinality m, so we have 7(L, m, Xo) = m#(L, m, Xo).

We handle two separate cases: where m > 2 and m = 2. In the m > 2 case, we

note that the total number of characters on F'm is q' - 1. Moreover, the restriction

map F' -+ F' is surjective, so the total number of characters on F' with fixed

restriction of F' is
qM - q _n1 +q m-2 +--q 1
q -

We note that the number that are not in general position is bounded above by

Sq.
xjm

X<m

If m > 2, x I m, and x <rm, then x < m - 1, so at most qm-2 +. . .+ q+1 characters

that are not in general position, completing the proof in the m > 2 case.

in the m = 2 case, fix a central character Xo E q ; we claim there are at most

2 characters 6 that are not in general position and such that OIFx = Xo- If 0 is

not in general position, then it is of the form 00 o NF 2/Fq for some 60 : F' -+ Cx.

On Fx, NF 2 /Fq acts as x + 2, so the induced map qx - qx is two-to-one. As

such, given a character Xo, there are at most two characters 0 on Fx such that

Xo (o /Fq Fqx ,0 0 q) completing the proof of (a).

We now prove (b). If [Q(p) : Q] < A then [Q(j) : Q] < mA, so in particular

[Q(1o) : Q] < mA. The group Fxm is cyclic: let it have generator a. If [Q(1o) : Q] <

mA, then qo(a) must be one of the f(mA) roots of unity C with [Q(() : Q] < mA.

Moreover, if 77o satisfies [Q(7o) : Q < A, then so does any of its Galois conjugates,

so the number of Galois orbits of characters qo with [Q()o) : Q] < A is at most
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' f(mA).

Corollary 8.1.0.9. Let p > n. Fix m > 2, given e > 0 and A E Z;>. There is a

Q0 > 1 such that, for any L with |FLI = q > Q0 and any character X0 : L* -+ C*

trivial on 1 + PL, the proportion of depth-zero supercuspidal representations p with

Xp = X0 that satisfy [Q(p) : Q] < A is at most E.

Proof. This follows directly from the above proposition. l

Corollary 8.1.0.10. Fix m > 2 with n = md, fix E > 0 and A E Z> 1 . Let Qo be

as in the previous corollary, and let L be satisfy |F'LI > Q0. Let X0 an unramified

character X0 : LX -+ CX The proportion of depth-zero discrete series representations

7 = Sp(p, d) satisfying [Q(ir) : Q] < A is at most E.

Proof. If ir = Sp(p, d) then x, = X . There are at most d2 characters X, with Xd = Xo,

and since p > n > d, each such Xi is trivial on 1 + PL. If we fix such a character X1,

then the proportion of p such that Xp = Xd and [Q(p) : Q] < A is at most e. Since

Q(7r) = Q(p) this completes the proof. l

We will also need the following lemma:

Lemma 8.1.0.11. Fix an unramified central character X0 of LX, where L has residue

characteristic p > n. The number of Steinberg representations St(x) of GLn(L) with

central character X0 is bounded above by n2

Proof. The central character of St(X) is x" = XO, so x(ZL) is one of the n roots of

X = Xo(w). Moreover X"Iox is trivial, so x must be trivial on 1 + PL: otherwise it

attains the value (p and (," / 1 since p > n. Therefore, xI0, factors through a cyclic

group with generator a, and we must have x(a)x = 1, s0 is one of at most n

characters. This completes the proof, since Lx = oX x WL.

8.2 Proof of 8.0.0.4 in some cases

Let n = md. In this section, we will give a proof of 8.0.0.4 in the following cases:
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* The case where m > 2 and F = K(p'), or in the 'conductor family' case. We'll

prove Proposition 8.0.0.7 in this case, and along the way we will also prove (a)

and (c) of Proposition 8.0.0.7 in the case F = F(pr).

* The case m = 1, so -r is a (standard) Steinberg representation. We will prove

this by directly computing dim 7rr and deg(wr), without appealing to 8.0.0.7

The only remaining part of the proof will be (b) of Proposition 8.0.0.7 in the case

I = f(pr). We've postponed this proof until the next sections since it will take us

deeper into the representation theory of GL,,(L).

We first prove (a) of Proposition 8.0.0.7.

Lemma 8.2.0.12. Let p be a depth-zero supercuspidal GL..(d) representation and let

7r = Sp(p, d). If Stm denote the Steinberg representation of GLm, (L), then

deg(7r) 1 d (qm - 1)d GLdm(Fq)I _2d2-d

deg(Stm)d d - m - 1 I GLm(Fq)Id q

Proof. First, if p is a depth-zero supercuspidal GLm, (F) representation, we may com-

pute the formal degree deg(p) using Theorem 2.2.8 of [CMS90. In this case, p is

associated to the admissible pair (Lm, q) where Lm/L is the unramified extension of

degree m, and q : L' -+ C' is trivial on 1+ p . Using the notation of [CMS90, we

compute a(6) = m - 1, f = m, e = 1, so

deg(p) = m - deg(St).

We now use this to compute deg Ir; in view of Theorem 6.3 of [AP05] we have

deg(ir) md-1 . d
2 _(f(pVxp)+r-2M2) (qr - I)d GLdm(Fq)I

-q Idrdeg(p)d rd-id qd - 1 GLm(Fq)|d

Here r is the number of unramified characters x : Lx -+ CX such that po(Xodet) p;

(or the torsion number of p0), and f(p x pv) is the conductor of the pair p x p'.

We first prove r = m. Let x : L x C x be an unramified character. We note that

p = -x, where 1j is a depth-zero character of Lx and Lm. is the unramified extension
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of L of degree m. Moreover (x o det) 0 r x If X7,L)" 1, then

X 0 NLm/L = 1, so the torsion number is at least m. To see it is exactly m, the central

character of r 0 (x o det) is x, - Xr. Thus, we must have Xmf(ZL)' = 1, and there

are m such unramified characters.

To prove that f(p x pv) = m2 - m, we use the local Langlands correspondence.

Let Y(p) denote the associated Weil-Deligne representation; since p is supercuspidal,

Y(p) is irreducible, and since the monodromy is trivial and so we need only consider

(p) as a representation of the Weil group WL. Since f(p x pV) f(Y(p) 0 Y(p)v),

it's enough to compute the conductor of the Weil representation f(V 0 Vv) when V

is an irreducible, depth-zero Weil representation.

Since the Langlands correspondence preserves depth, Y(p) I I is trivial on the

ramification subgroup IL. Since IL/IL is abelian, then V decomposes as a direct

sum of abelian characters 01, ... , 0,,. Because V is irreducible, the characters 6O are

pairwise distinct. Therefore (V 0 VV) is trivial on I, and the subspace of IL-fixed

vectors has dimension m (corresponding to the spaces 6O 0 9). From the definition,

we discern

f (V 0 Vv) = codim((V 0 Vv)IL)N=o + j(V 0 VV)IL dj = m 2  
2 n

as desired.

Now the proof is complete once we plug f = m'2 -m, r = m into Aubert-Plymen's

formula. l

Lemma 8.2.0.13. Let F = K,(pr). Let pi be a supercuspidal GL.(L) representation

and 7ri = Sp(pi, d). For any r, we have

dim7r K(p) = dim 7r K(pr)

and

e,(zr) = e(7r2).

Proof. It follows from Corollary 3.4.6 of {Moy86] that the conductor c(ri) of 7r is n.
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Then

dim irnp) (r-

n - 1

by Reeder's Theorem 2.2.1.3.

Moreover, ep,"w(-r) = 1 if r = n and zero otherwise by the construction of e"w. D

This proves Proposition 8.0.0.7 in the case F = K(pr) and also in the 'new

vector' case when m > 1; therefore, we have completed the proof of 7.3.0.11 in the

case m > 1, F = K,(pr).

We will also prove Equation 8.6 of Proposition 8.0.0.4 in the case m = 1:

Lemma 8.2.0.14. Fix e > 0. There is a Qo E Z> 1 such that the following holds: Let

F Kn(p') for n > 3 or F = F(pr) for n > 2, as subgroups of GL,(L). Assume the

residue field FL of L has cardinality q > Qo. Then

E deg(ir) - dim7r' < c - vol(FZ/Z)- 1 .
7r=St(Xo)

X7r=X

and

deg(7r)' "rw (7) r e",(1).
7r=St(xo)

x-=x

Proof. Let Xo be a character of Lx trivial on 1 + PL. By (2.2.2') of [CMS90], we have

1n-1
deg(St(x)) = - f(q - 1) < -q(-)/ 2

k= n

Again using (3.4.6) of [Moy86] we have that

c(St(xo)) = n -1 Xo unramified

n otherwise

Therefore, using Reeder's formula, we have

dim St(XO)Kn(pr) r
\n -2)
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Since there are at most n2 Steinberg representations with given central character,

deg(St(xo)) dim St(XO)K(pr) < - ) qn(n-l)/ 2

xg~x

whereas vol(K,(pr)Z/Z)-l > cq (n- 1 ), completing the proof in this case (since we

assume n > 3).

This proves the first equation in the case F = Kn(pr). We now prove the second

equality. We proved in Lemma 5.2.0.7 that

2,,?,() 6 vol(Kn(P')Z/Z)- > q(-.

Since Z 'rw(7r) = 1 or 0 for a tempered representation 7r, this completes the proof of

the second equality.

To prove the result in the case where F is the full level subgroup F(p'), we will

need the following sublemma:

Lemma 8.2.0.15. There is a C > 0 such that, for all L with IFLI q and all

characters Xo : L* -+ Cx of conductor at most 1, we have

dim St(XO)F(pr) < Cqrn("-1 )/ 2 .

Proof. Since X has conductor 1 and r > 0, it is clear that St(X) and St(1) have

the same dimension of p(pr)-fixed vectors. Let I denote the (unnormalized) induc-

tion IndG 1, where 1 is the trivial representation of the Borel subgroup B. Then

dim St F(pr) < dim IF since St is a quotient of I (for admissible representations,

dim7rr = tr lr(er), so the function 7r , dim tr is additive in exact sequences).

Let V be the space of I. Using Mackey's Theorem, we have

Vr V CBngrg-1

gEB\G/F

gEB\Gr
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so it suffices to find the cardinality of B\G/F. Since BK = G and F is normal in K,

we have

B\G/F = (B n K)\K/F = ((B n K)F)\K.

The group (B n K) -F(pr) consists of those matrices in K such that the elements

below the diagonal are in pr. As such, there is a fixed C such that ((BnK)-F(p'r))\K <

Cqr(n-l)n/2 , completing the proof. E

This completes the proof in the F = F(p') case, since

S deg(St(xo)) dim St(xo)r(p) < nCq(r+l)n(n-l)/
2

x0

but vol(F(p)Z/Z)-l > cqr(n2 _1) for all r, completing the proof.

At this point, we have proved Proposition 8.0.0.4 in all cases except for the case

where m > 2 and F is the full level subgroup F(pr). In this case, we still need to

show that if 7ri = Sp(pi, d) we have dim 71, = dim 72 . We will complete this

final case over the next sections. In fact, we will prove something stronger. Let E),
denote the Harish-Chandra character of iri. Then

dim7ri = vol(F) 1 tr wri(1r) = vol(F)- i O(g) dg.

The proof therefore reduces to the following lemma, which we prove in the next

sections:

Lemma 8.2.0.16. Let 7ri = Sp(pi , d) for pi a depth-zero supercuspidal representation

of GL,n(L). Then we can choose characters ei for ri such that 0,,(g) = e12 (g) for

g C F(p).

We note that, a priori, a character is only defined up to equality outside a set of

measure zero.

It is possible that the fixed dimension dim7rr(P) imay be computed directly as

well by computing orbital integrals in the Lie algebra g of GLn(L). We have not

considered this question here.
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8.3 Hecke algebra isomorphisms

In this section we give a quick exposition of spherical Hecke algebras and Hecke

algebra isomorphisms; the information in this section is taken from [How85J. Let L

be a p-adic field and G,. = GL,(L).

Definition 8.3.0.17. Let K ; G = GL,(L) be a compact open subgroup and let

(T, W) be a finite-dimensional, irreducible K representation. The r-spherical Hecke

algebra -(G / / K, T) is the convolution algebra of functions f : G -+ End(W) satis-

fying

f(kigk 2)= r(ki)f(g)r(k 2 ) ki, k2 E K, g E G.

There is a correspondence rK,, between

((nonzero) irreducible representations of 7-t(G / / K, r))

and

(irreducible representations (7, V) of G with HomK(W*, V) = 0)

where W* is the dual of W equipped with the contragredient representation T*.

Let eK,, E J(G / / K, T) be supported on K, with e(k) = r(k) for k E K. If the

Haar measure of G is normalized so that K has measure 1, then eK,, is the identity

of W(G / / K, r).

Let (7r, V) be a G representation, and let vo denote the standard action of End(W)

on W. Then we get an action of Cc(G; End(W)) = Cc(G) 0 End(W) on V 0 W via

r 0 vo. Under the identification V O W = Hom(W*, V), we see that the image of eK,,

are those T C Hom(W*, V) with ir(k)T = Tr*(k). In particular, we get an action of

W(G / / K, T) = eK,, * GC(G; End(W)) * eK,,

on HomK(W*, V). Let rK,,(lr) be the corresponding representation of W(G / /K, T)

on HomK(T*, 7)-

Proposition 8.3.0.18. The map rK,, is a bijection.
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Now let 7 = Sp(p, d) be a depth-zero discrete series G representation, where p

is a depth-zero supercuspidal representation of GLm(L). Let Gm = GLm(L) with

center Zm and let Km = GLm,(OL). Then p = Indmz T , where To is a depth-zero

representation of KmZm.; in particular, TO is trivial on F(p). Let T = r0 IKm. Since

T is trivial on F(p), we can consider T as a representation of GLm(FL), and then we

can consider rd as a representation of GLm(FL)d. Consider GLrn(FL)d = M(FL) as

a Levi subgroup of GLR(FL), and let P(FL) be the standard be parabolic subgroup

with Levi component M(FL). Then we may inflate TOm to a representation of P(FL)

via the surjection P(FL) -+ M(FL). Finally, let P be the inverse image of P(FL)

under the reduction map K, -+ GLn(FL); this is a parahoric subgroup of G,. We

consider Tod as a P-representation. Then Homp(T, 7r) $ 0, so 7r corresponds to a

representation of the spherical Hecke algebra 7(G / / P, (T*)*d). In this situation,

the pair (P, -rd) is a refined minimal K-type and we say 7r contains (P, Td).

Proposition 8.3.0.19. Let G, = GLn(L) with n = md, Let p, rd be as in the

previous paragraph. Let Lm denote the unramified extension of L of degree M, and

let Go = GLd(Lm), considered as a subgroup of Gn, and let B' denote an Iwahori

subgroup of G'. Then there is an isomorphism

Ton|Prd) ~-- -H(GO |Bd, 1).

This yields a correspondence between irreducible G, representations such that

Homp(T®D, i7) 4 0 and Go representations with a nonzero Iwahori-fixed vector. Un-

der this correspondence, Sp(p, d) corresponds to the Steinberg representation of Go.

Proof. The first statement is [How85, Theorem 1.2]. The second statement is fol-

lows because the isomorphism of Hecke algebras preserves Plancherel measure, and

therefore takes discrete series representations to discrete series representations. D
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8.4 The local character expansion

Let G be a reductive group over a p-adic field L, and let g = Lie(G(L)). Let greg, Greg

denote the set of regular semisimple elements in g, G(L) respectively.

Fix once and for all an additive character 4 on L, and let (-, -) be the bilinear form

(X, Y) ='i(tr(XY)). Assume the Haar measure dX on g is self-dual with respect to

. Given an Ad(G)-orbit 0 C g, let po(f) denote the integral of f over the orbit 0.

If f is the Fourier transform of f with respect to 41, we define the distribution po via

PO(f) = PO(f).

The distribution po is representable by a locally integrable function on g, which

by abuse of notation we also call '0. In particular,

OW = POM = f (X)p-0 (X) dX.

Given a semisimple element s E g, let QG(s) denote the set of Ad(G)-orbits in g

that contain s in their closure. In particular, QG(O) denotes the set of nilpotent orbits

in g.

We will henceforth restrict our analysis to the case of G = GL,, and assume

moreover that L has residue characteristic p > 2n. In this situation the map X i

1+ X gives a bijection from go+ = PLMn(OL) 5 g to F(p) G. We'll assume we have

picked Haar measures on g, G so that this bijection is measure-preserving.

Let ir be an irreducible admissible G(L)-representation with character E,, let s E g

be a semisimple element. and let V < go+ be a neighborhood of 0 in g. Following

[Mur031, we say the germ of E, is s-asymptotic on V if there are constants co(ir) for

0 E Qg(s) such that, for any XE V n greg, we have

Rx (I + X) = co (-r) PO (X).
OE~g(s)

Remark 8.4.0.20. In the classical formulation the exponential map was used in

place of X '-+ 1+ X; however, in Murnaghan's situation the map X " 1+ X suffices,

following Remark 5.3.3 of [KM03]. This has the advantage that it is defined on all of
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P -An f(oL), whereas the exponential map might not be, depending on the ramification of

L/Qp. In the larger context of our proof, we are picking the residue characteristic to

be 'large enough' from the outset, but it is nice to know that this result holds whenever

p > 2n.

It is a classical theorem of Howe [How74 (in the case of GL,) and Harish-Chandra

[Har99 (for connected reductive groups) that for any representation 7r, the germ of

e, is 0-asymptotic on some neighborhood of 0. It is moreover a theorem of DeBacker

[DeB021 and Waldspurger [Wal95 that if -K has depth d and p is large enough then the

local character expansion is valid on g+ (here g+ is the Moy-Prasad lattice defined

in [MP94, Section 31).

In our situation, however, an asymptotic expansion result around some s , 0 from

[Mur03] is necessary.

Theorem 8.4.0.21. [Mur03j Assume p > 2n. Let w be an irreducible admissible G

representation. Then there is s, C greg such that the germ of e, is- s-asymptotic on

gep(,)+. Let H be centralizer of s in G. Then there is a correspondence QHM(0) -+

QG(s) given by OH '-+ OG = Ad(G) -(s -OH). There is a representation 7rH of H and

a constant A > 0, depending only on choices of Haar measure on G and H such that

cOH (xH) - Aco0(ii). In the situation where 7r = Sp(p, d), then s may be chosen as

follows: s is an element of o' whose reduction modulo PL generates FLm over FL.

Then H = CG(s) = GLd(Lm) <; GLn(L) and lFH is the H representation correspond-

ing to w under the Hecke algebra isomorphism 7(G / / P, rd) e WH(H / / B, 1).

Proof. All statements in the theorem are derived from [Mur03j. The first and second

statements are the content of Theorem 14.5. The last statement is the content of The-

orem 14.1, and the fact that s, may be chosen as stated follows from the computation

of sr,h for the depth-zero case in Lemma 10.9. El

Now let P1, P2 denote depth-zero supercuspidal representations of G,, and let

as = Sp(p, d). Then we may choose s, = s7, and both E, = E, 12 have s-asymptotic
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expansions on go+ = P - MI(oL). Moreover, under the Hecke algebra isomorphisms

'W(G1//P, W1d '(Go Bo, 1) W'(G / P, r")

both 7r, and Ir2 correspond to the Steinberg representation on Go. Therefore, the

constants occurring in the s, asymptotic expansions are the same. In particular,

6, = 672 on F(p). This completes the proof of Lemma 8.2.0.16, and therefore the

proof of Proposition 7.3.0.11.

Remark 8.4.0.22. It is worth noting another application of Harish-Chandra's char-

acter expansion to the growth of the number of I-(pr)-fixed vectors. Assume G = GL",

so that P(pr) is the image of prM,(oL) under the map X '-+ 1 + X. Then we have

dim 7r (pr) = vol(P(pr))- 1 j )-,p (g) dg

= vol(prAMn(oL))- j n E(1 + X) dX

=vol(P'Mf(OL))- >1 Co()7r)J piO0o(X) dX

-~n j(p0l P pr y o

= VOl(prMf(OL)) co(r)p'o(JI&fn(oL))
OEQG(O)

= C E PO(lpro-rMn(OL))

OEQG(O)

where the constants C and ro depend on the Haar measure and additive character V).

We note that po(pro-rA'fl(OL)) grows as qrim aO. As such, for large r, dim r(Pr) is

polynomial in q' with degree at most the maximal dimension d of any nilpotent orbit.
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