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Abstract

We develop an analog of the harmonic replacement technique of Colding and Minicozzi
in the gauge theory context. The idea behind harmonic replacement dates back to
Schwarz and Perron, and the technique involves taking a function v: ¥ — M defined
on a surface ¥ and replacing its values on a small ball B> C ¥ with a harmonic
function u that has the same values as v on the boundary B2. The resulting function
on ¥ has lower energy, and repeating this process on balls covering X, one can obtain
a global harmonic map in the limit. We develop the analogous procedure in the
gauge theory context. We take a connection B on a bundle over a four-manifold X,
and replace it on a small ball B* C X with a Yang-Mills connection A that has the
same restriction to the boundary 0B* as B, and we obtain bounds on the difference
|B — A||igf (4 10 terms of the drop in energy. Throughout, we work with connections
of the lowest possible regularity L?(X), the natural choice for this context, and so our
gauge transformations are in L3(X) and therefore almost but not quite continuous,
leading to more delicate arguments than are available in higher regularity.
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Chapter 1

Introduction

The goal of this thesis is to adapt the harmonic replacement technique of Colding
and Minicozzi [2] to the gauge theory context. In the classical harmonic replacement
techniques of Schwarz [16] and Perron [12], given a real-valued function v on a domain
Q and a ball B™ C §2, a function u on €2 is constructed by replacing v on B™ with
a harmonic function with the same values on the boundary of B™. In other words,
outside of B™, u is equal to v, and on B™, u is equal to the solution of the Dirichlet
problem for the Laplacian with boundary value v|sg». This procedure decreases
energy, and, repeating this process for balls covering 2, one can obtain a harmonic
function on all of Q. In [2], Colding and Minicozzi adapt this technique to the
nonlinear context of maps v: ¥ — M from a two-dimensional surface ¥ to a manifold
M, where they replace v on a small ball B2 C ¥ with a harmonic map u. In this
thesis, we do the analogous construction for connections on a principal G-bundle over
a compact four-manifold X, where G is compact. Given such a connection B and
a four-ball B* C X, we construct a connection A by replacing B with a Yang-Mills
connection on B* whose restriction to the boundary dB* matches that of B. More

precisely, we prove the following theorem, presented as Corollary 4.5.

Theorem 1.1. Let P — X be a principal G-bundle over compact 4-manifold X
with compact gauge group G, and let B* C X be a 4-ball. Let C be the space of

L%(X) connections modulo L}(X) gauge transformations, and let C z+ be those gauge
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equivalence classes of connections [B] with small energy on B*, that is, ||Fy|| 2By <
e. Then for small enough ¢ there is an energy-decreasing continuous map C. g1 —
C.,p+ sending [B] to an equivalence class of connections [A], where A is Yang-Mills

on B* and gauge equivalent to B outside B*.

Note that we work with connections in the borderline L#(X) regularity, which
is the natural choice in four dimensions, but leads to more delicate arguments than
for smooth connections. In particular, in the borderline regularity, we do not have
a Sobolev embedding L3(X) < C°(X), as a result of which the group of L2(X)
gauge transformations is not a Hilbert Lie group. However, working with smooth
connections would be insufficient for our purposes, because, after replacing a smooth
connection with a Yang-Mills connection on a ball B* C X, the resulting connection
is not smooth across the boundary 9B%.

We can also express the Yang-Mills replacement map above as a homotopy, at

least on compact families of connections, presented as Corollary 4.6.

Theorem 1.2. Let P — X be a principal G-bundle over compact 4-manifold X
with compact gauge group G, and let C be the space of L3(X) connections modulo
Li(X) gauge transformations. Let K be a compact family in C. Then around any
point x € X there ezists a ball x € B* C X and homotopy h,: K — C such that
hy is the identity, ho sends K .to connections that are Yang-Mills on B*, h,([B])
has monotone nondecreasing energy, and resiricting to the complement of B* the

homotopy is constant h,([B]) = [B].

One should think of K as representing a homology or homotopy class. Applying
harmonic replacement to a compact family of maps is a key step in [2], where Cold-
ing and Minicozzi apply harmonic replacement to a one-parameter family of maps
vy: 2 — M3 representing a sweep-out of M? in order to prove finite extinction time
of Ricci flow on homotopy 3-spheres. In the gauge theory context, mapping compact
families of connections to compact families of Yang-Mills connections is a way to relate
the topology of the moduli space of anti-self-dual Yang-Mills connections to the much

better understood space of all connections modulo gauge, as seen in work of Taubes
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[19, 20, 21] and Donaldson [4]. In turn, the topology of the moduli space of anti-self-
dual Yang-Mills connections gives rise to Donaldson invariants, which have myriad
applications and have been used to show that a topological manifold has no smooth
structures [3] or infinitely many smooth structures [9]. In addition, recent work of
Feehan and Leness [7] connects Donaldson invariants to the newer Seiberg-Witten
invariants [25].

Another potential source of applications of Yang-Mills replacement arises from its
similarity to Yang-Mills gradient flow, in that both give energy-decreasing paths of
connections. Yang-Mills gradient flow has been extensively studied recently [6, 18],
and perhaps the local nature of each replacement step and the greater control afforded
by the choice of the balls B* C X will lead to the use of Yang-Mills replacement as
an alternative to or in conjunction with Yang-Mills gradient flow.

In this thesis, we perform Yang-Mills replacement on a single ball B* C X, but
we can repeat this process on balls covering the compact manifold X. Repeating this
process indefinitely, one would like to pass to the limit to obtain a global Yang-Mills
connection, but doing so is a delicate matter and is the natural direction in which
to continue this work. The difficulty arises because, although energy is decreasing, it
may concentrate around finitely many points. Because the Yang-Mills replacement
theorems above require there to be small energy on the ball B*, to continue the re-
placement process indefinitely, we would need to choose balls whose radii shrink to
zero. This bubbling behavior is a common feature of all of the nonlinear contexts
discussed and has been studied for sequences of maps on surfaces [15], for general
sequences of connections [17], and for Yang-Mills gradient flow [6]. Based on Sed-
lacek’s work [17], one expects a weak limit of the sequence of connections to exist,
but potentially on a different bundle, and it is natural to ask if one can say more
about the bubbling behavior for Yang-Mills replacement.

The key ideas of this thesis are in Chapters 3 and 4. In Chapter 3, we discuss the
local question of finding a Yang-Mills connection on a ball B%. More precisely, we

prove the following theorem, presented more fully as Theorem 3.1.
Theorem 1.3. Let B* be a smoolh 4-ball with arbitrary metric, let i: 0B* — B* be
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the inclusion, and let P — B* be a principal G-bundle with trivializing connection d.
There exists an e > 0 such that if Ap = d+ap is an L} ,(0B* g ® T*OB*) connection
with ||ag| 12 084 < & then Ay extends to an L3(B*; g ® T* B*) Yang-Mills connection
A with i*A = Ap, and A depends smoothly on Aj.

Then, using the gauge fixing results of Chapter 5, in Theorems 3.5 and 3.6, we
broaden the hypotheses of this theorem and prove a uniqueness result for the solutions.
Along the way, we prove the following energy convexity result, presented in greater

generality as Proposition 3.4.

Proposition 1.4. Let A = d+a and B = d+b be L?(B*; g ® T* B*) connections with
bounds on energy, in Coulomb gauge d*a = d*b = 0, and with bounds on ||a|| 1A(B4)
and ||bl| ,a(psy- If A and B have the same restrictions to the boundary i*A = i*B and

A is Yang-Mills, then

2 2 2
1B = Allfa < € (1Fsliaer) — 1 Fallfan ) -

This problem has been discussed by Marini [11] and Riviére [14], but instead of
a direct energy minimization method used in their work, we use the inverse func-
tion theorem, allowing us to conclude smooth dependence of the solution A on the
boundary value As. The inverse function theorem method motivates the definition
of L%}(B* A\*T*B*) in Chapter 2 as the dual of those forms in L2 (B‘i; N\"T*B*) that
are normal to the boundary B*. This space is a more appropriate codomain of the
Yang-Mills operator A — d%F, on L3(B* g ® T*B*) connections than the standard
space L?,(B*; A"T* B*), which is the dual of L?(B* A\*T*B*) forms that vanish on
the boundary. We finish Chapter 3 by constructing the local version of the energy-
decreasing homotopy in Theorem 1.2.

As we pass to the global question in Chapter 4, the main issue to be addressed
is that in Theorem 1.3, we are able to prescribe the tangential component i*A of A
on the boundary 9B*, but not the normal component. As a result, when we take
a global L§(X) connection B and construct a connection A that is Yang-Mills on

the ball B* and equal to B outside the ball, the tangential components of A and
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B match on the boundary dB*, but the normal components might not, and so the
resulting piecewise-defined global connection is not L?(X). This motivates the defini-
tion of L2(X; \"T*X), a space between L*(X; A"T*X) and L}(X; A"T* X) defined in
Chapter 2 as those forms « such that o € L*(X; A"T*X) and da € L*(X; A"T* X).
However, unlike forms in L(X; A*"T*X), d*a is not necessarily in L*(X; A*T* X).
We show that the resulting connection A is an LZ(X) connection. However, losing
regularity after a Yang-Mills replacement step is unsatisfactory because it prevents us
from repeating the Yang-Mills replacement process on an overlapping ball. Because
L%(X) connections have well-defined L?(X) curvatures, one might ask if a gauge fix-
ing argument could show that they are gauge equivalent to L?(X) connections. We
answer this question in the affirmative, proving the following theorem, presented as

Corollary 4.4.

Theorem 1.5. The space of L3(X) connections modulo L} (X) gauge éransformations
is homeomorphic to the space of L?(X) connections modulo L%(X) gauge transforma-

tions.

To prove this theorem locally, we show that Uhlenbeck’s gauge fixing results extend
to the L3(X) regularity, so, locally, an L2(X) connection is gauge equivalent to an
L3(X) connection. However, patching together these local gauge transformations
to obtain the global result is a delicate matter because L(X) and L3(X) gauge
transformations are at the borderline regularity and hence are not continuous and do
not have a smooth exponential map, so naive cutoff function methods fail.

Finally, in Chapter 5, we develop the gauge fixing machinery that powers the
results in Chapters 3 and 4, building off of results by Uhlenbeck [23, 24] and Marini
[11]. For all of these results, we start with an L?(B*) connection A on a ball B* with
small energy || Fall2(psy < €, and we find an L3(B* G) gauge transformation g that
sends A to a connection A = d + & satisfying the Coulomb condition d*a = 0 and a
bound on [|a||;3(s)- However, there are two natural boundary conditions to impose
on the connection, either the Neumann conditions i**@ = 0 or the Dirichlet conditions

d}pai*a, where ¢* is the restriction to the boundary. Uhlenbeck [23] provides a full
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treatment for the Neumann boundary conditions, but her treatment of the problem
with Dirichlet boundary conditions in [24] and the later improvement by Marini [11]
have additional regularity assumptions on A. We prove the result without these
assumptions. Along the way, we also prove the Coulomb gauge fixing result where we
impose Dirichlet boundary conditions on the gauge transformation instead of on the
connection. Finally, we extend these results to L2(B*) connections A, and we improve
the weak L2(B*;g ® T" B*) convergence of the Coulomb gauge representatives in [23]
to strong L3(B*;g ® T*B*) convergence.
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Chapter 2

Preliminaries

2.1 Yang-Mills Connections

Following the standard references [10, 5|, we introduce the notation we will use for
principal G-bundles and connections. Let G be a compact Lie group. We fix a
unitary representation G — Uy C My, where My denotes the vector space of N by

N complex matrices.

Definition 2.1. Let P — X be a principal G-bundle over a compact manifold X,
and let ad P denote the associated bundle P x¢ g. Let A be an L?(X) connection,
and let Fy € L3(X;ad P ® A\*T*X) be its curvature. The energy of A is

£(A) =1 /X IFal? = LIF Al -

Definition 2.2. A Yang-Mills connection A is a critical point of the functional £. If
X has boundary, then we require A to be a critical point with respect to variations
A; such that i* A, is gauge equivalent to i*A on the boundary, where i: 0X — X is

the inclusion.

Using variations that are fixed on the boundary, we see that a Yang-Mills connec-

tion A satisfies the Yang-Mills equations

(FA’ dAC)LQ(X) = O
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for all c € L3(X;ad P ® T*X) with i*c = 0 on X. When we are working over a local
trivialization d of P over B* C X, we will also make use of the projected Yang-Mills
equations, where we only require that (Fa,dac) 2 g1y = 0 for ¢ € L3(B* g ® T*B*)
satisfying d*c = 0 on B* in addition to i*c = 0 on OB

We now review gauge transformations and their action on connections.

Definition 2.3. A gauge transformation is an automorphism of P. A gauge trans-
formation can be represented by a section of the associated bundle AdP = P xoG C
P X g My with the conjugation action of G on G C My. By an L? gauge transforma-
tion we mean an L} section g of the vector bundle P xg My such that g(z) € Ad P

a.e. on X.

With respect to a local trivialization of P over B* C X, a gauge transformation is
a G-valued function, and we can write down how explicitly how it acts on a connection

A expressed in this trivialization as d + a, where a is a g-valued one-form. We have
9(A) = d + gag™" — (dg)g™".
Writing g(A) = B = d + b, we can rewrite the above equation as
dg = ga — bg,

where the terms in the equation are M y-valued one-forms.

When (k + 1)p > dim X, it is well-known [8, 23| that the group of L}, gauge
transformations has smooth multiplication and inversion and acts smoothly on L%
connections, using the multiplication map L., x L}, , — L}, and the Sobolev
embedding L}, — C°.

In the borderline case (k + 1)p = dim X, the matter is more delicate. Because
gauge transformations are G-valued and G is compact, they are uniformly bounded
in L*. As a result, multiplication of borderline L}, gauge transformations is still
well-defined, as is their action on I% connections. However, these maps are only

smooth with the L}, N L® topology on gauge transformations. With just the L},
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topology, the situation is more subtle. With just the L}, , topology, multiplication of
gauge transformations and the action of gauge transformations on connections are no
longer smooth maps, but nonetheless they are continuous. We will prove this claim
for L2 gauge transformations on a 4-manifold, but the argument works for general
borderline groups. The key idea that gives us just enough power to prove continuity

is that G-valued functions act as isometries on L” spaces.

Proposition 2.4. Let P be a principal G-bundle over a compact 4-manifold X with
compact group G — Uy C My. The group of L3(X) gauge transformations has
continuous multiplication and inversion maps, and L%(X) gauge transformations act

continuously on L3(X) connections.

Proof. We work over a closed ball in a local trivialization B* ¢ X. Consider a
sequence of L2(B*; G) gauge transformations g; and h; converging in LZ(B* G) to g
and h, respectively. We aim to show that g;h; converges to gh in L2(B%; G). By the
Sobolev multiplication maps, we know that g;h; converges to gh in any weaker space,
such as L*(B%; G).

We compute that

Vz(gih,-) = (Vzgi)hi + 2(ng)(th) + g,-(Vzhi).

The middle term is straightforward. We know that the sequences Vg; and Vh;
converge in L#(B*; My ® T*B*), and we have a Sobolev multiplication map L? x
L? — L?. The other two terms are more subtle. We know that VZg; converges in
L?*(B% My ® T*B* ® T*B*) to V?g, and to avoid repeating the argument later, we
instead consider a general sequence ¢; converging in L?(B* My ® T*B* ® T*B*) to
¢, with ¢; = V2g; in this particular case.

We show that the ¢;h; converge in L?(B* My @ T*B* ® T*B*) to ¢h by show-
ing that every subsequence of the ¢;h; has a further subsequence that converges to
¢h. We begin by passing to a subsequence of the ¢;h;. The h;, being G-valued
a.e., are uniformly bounded in L*(B*; My). As a result, the ¢;h; are uniformly
bounded in L?(B* My ® T*B* ® T*B*), and hence after passing to a further sub-
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sequence the ¢;h; converge weakly in L%(B%; My ® T*B* ® T*B*). This weak limit
must be ¢h because we know that ¢;h; converges to ¢h in any weaker norm, such
as L'(B* My ® T*B* ® T* B*). To upgrade this weak convergence to strong conver-
gence, we note that multiplication by an element of G is an isometry of My, and

hence

shall ny = 194l sy = I8l zqarty = 6Bl e

For L?, and in general for L? spaces with 1 < p < oo [13], weak convergence along with
convergence of the sequence of norms to the norm of the limit implies strong conver-
gence. We conclude then that this further subsequence of the ¢;h; converges strongly
in L?(B*; My ® T*B* ® T*B*) to ¢h, and hence so does the original sequence. Simi-
larly, the sequence g;(V2h;) converges to g(V2h) in L?(B*; My ® T*B* ® T*B*), and
so V3(g;h;) converges to V2(gh) in L?(B* My ® T*B* ® T*B*) as desired.

Inversion is continuous by a much simpler argument. Because we have chosen a
representation G — Uy, inversion is the same as the conjugate transpose, which is
a linear, and hence smooth, map Li(B* My) — L%(B* My). Using this fact, we
can show that the action of gauge transformations on connections is continuous by

an analogous argument to the above.

We would like to show that the map g(a) defined by

LA(B%G) x I3(B% g ® T*B*) — L3(B% g @ T*B*)

(g,a) — gag™ — (dg)g~*

is continuous. Again, we choose sequences g; and a; that converge in L2(B% G)
and L}(B* g ® T*B*) to g and a, respectively, and we aim to show that the g:(a;)
converge to g(a) in L?(B*; g ® T*B*). From the Sobolev multiplication theorems, we
have convergence of the g;(a;) to g(a) in any weaker space, such as L?(B*; g ® T*B%).

We compute

V(gi(a:)) = (Vgi)aig; ' + g:(Va)g; ' + g:a;(Vg;") — (Vdg:)g; ' — dgi(Vg; ).
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Using the Sobolev multiplication theorems, we know that (Vg;)a;, Va;, a;Vg; !, Vdg;,
and dg;(Vg; ') all converge in L?(B*; My ® T*B* @ T*B*) to the expected limits. As
a result, to prove convergence of the V(g;(a;)) in L?(B*; My ® T*B* ® T*B*), it suf-
fices to prove the statement that if ¢; converges to ¢ in L?(B* My ® T*B* ® T* BY),
then g;¢; and ¢;g;' converge to g¢ and ¢g~' in L?*(B*; My ® T*B* ® T*B*). Since
the g;! converge in LZ(B*; G) to g™, we proved this statement for ¢;g; above, and

the statement for g;¢; is analogous. O

2.2 The Hodge Decomposition Theorem with Bound-

ary Conditions

In this section, we summarize the treatment in [22, Section 5.9]. Let X be a smooth

manifold with boundary 08X, and let i: X — X be the inclusion.

Definition 2.5. Let L"(X; A*T*X) denote the L?(X) differential forms o that are
normal to the boundary, that is, they satisfy the Dirichlet boundary condition i*a = 0.
Likewise, let L>*(X; A*T*X) denote the L?(X) differential forms « that are tangent
to the boundary, that is, they satisfy the Neumann boundary condition i*xa = 0,

where * is Hodge star operator.

Definition 2.6. Let 2" denote the harmonic forms in L>"(X; A*T*X). That is,
H® contains those L?(X; AT X) forms « such that i*a = 0, da = 0, and d*a = 0.
Likewise, let H* denote those L2(X; A*T*X) forms « such that i*xa = 0, da = 0,
and d*a = 0.

Proposition 2.7 ([22, 5.9.36,5.9.38]). The forms in H" and H' are smooth.

Proposition 2.8 ([22, 5.9.9]). The natural map from the Dirichlet harmonic forms
into the cohomology of X rel boundary is an isomorphism. That is, H" = H*(X, 0X).
Likewise, H* = H*(X).
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Proposition 2.9 ([22, 5.9.8|). There exists Green’s functions

G": LA(X; N'T*X) = LAX, N'T*X), and
Gt: LA(X; N'T*X) — L2(X; N'T*X)
such that:
1. For all I*(X; N"T*X) differential forms a,

o = dd*G o + d*dG e + 1o,

a =dd*G'a + d*dG'a + 7ya,
where 7%, and 7k, denote the L*(X) projections to the finite-dimensional spaces
H™ and H*, respectively.

2. The operators dd*G®, d*dG™, and =3, are L*(X)-projections whose ranges are
L*(X)-orthogonal to each other. Likewise, the operators dd*G*, d*dG", and =%,

are L*(X)-projections whose ranges are L*(X)-orthogonal to each other.
3. The range of G™ satisfies the boundary conditions i*G™a = 0 and i*d*G™a = 0.
4. The range of G* satisfies the boundary conditions i*xG*o = 0 and i*d*+*Gta = (.
5. Forany k >0, G*,G*: LY X; N'T*X) — L} (X; N"T*X).

Corollary 2.10. Let X be a smooth manifold with smooth boundary, and let k > 0.
Let Li’jjl (X; N'T*X) denote those L} (X; \"T*X) forms o such that i*a = 0 on
0X. Then

d+d*: L (XGNT'X) = LEXGNTX)

has kernel and cokernel H™.

Likewise, let L7} (X; N*T*X) denote those L}, (X; N"T*X) forms a such that
"xa =0 on 0X. Then

d+d: Lyt (X N'T*X) — LIUXGN'TX)
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has kernel and cokernel ‘H*.

Proof. Assume that o € L7 (X; A*T*X) is in the kernel of d + d*. The condition

1*a = 0 implies that

(da,d*a) 2 (x) = (a, d*d*a>Li(x) + /axa A xd*o = 0.

Hence, (d + d*)a = 0 implies do = 0 and d*a = 0, so a € H" by definition.

Next, we show that the range has trivial intersection with H". Let (d+ d*)a = ¢
and i*a = 0, where ¢ € H". Then

||¢“ig(X) = (da, §) 13 (x) + (d"a, ) 2 x

= {0, d*) 2y + (@ dd) 2 ) + /a aAxp— ¢ Axa=0.
X

Finally, we show that the range of d+d”* contains all 3 € LZ(X; A*T* X) where (3 is
L%-orthogonal to H". Proposition 2.9 gives us G*: Li(X; A"T*X) — Li(X; N'T*X)
such that AG"8 = g if § is orthogonal to H". Hence, our desired preimage is
a = (d + d*)G"B. By Proposition 2.9, we have boundary conditions ¢*G" = 0 and
*d*G"3 = 0. Hence,

i*a = *dG"B + *d*GPB = di*G™ = 0,

so @ € Ly} (X; N'T*X), as desired.

The second claim is analogous, or, alternatively, it follows from the identity
d+d = (_1)n(p—-1)+1*(d + d*)*,

where (—1)*®=D+! acts on A*T* X by (—1)"®~1+! on the degree p component of the
exterior algebra, along with the facts that the isometry x sends Li’fl(X N T*X) to

Li’_tl(X s N"T*X) and vice versa, and x sends H" to H* and vice versa. (]
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2.3 The space L*}(X; \*T*X)

The Yang-Mills operator A — d% F, is a second-order operator, so if our connection
Aisin L}(X;ad P® T*X), then d4F, € L?,(X;ad P ® T*X). However, the space
L?,(X) ends up being insufficient for our purposes. By definition, L2 ,(X; A*T*X) is
the dual of L (X; A"T* X),, that is, L3(X; A"T* X) forms that vanish on the bound-
ary 9X. We need to instead define a larger space, L(X; A\*T*X), as the dual of
LP(X; N*T*X), that is, L2(X; A*T”X) forms whose tangential components vanish
on the boundary 0X. In the remainder of the section, we prove basic results about the
space L7 (X; A"T*X) needed to show that d,F, and wgd’ F, remain well-defined
when their target is Li’ftX; ad P ® T* X) instead of L? (X;ad P ® T*X).

Definition 2.11. Let L} (X; A*T*X) denote the dual Hilbert space of L>™(X; A*T*X).
(See Definition 2.5.)

Proposition 2.12. The space L™ (X; N*T*X) is reflezive, and smooth functions are
dense in L¥}(X: \*T*X).

Proof. Since L¥"(X; \"T*X) is a closed subspace of L2(X; A*T*X), the reflexivity
of L?™(X; A*T*X) follows from [1, 1.21] and the reflexivity of L2(X; A*T*X) [1, 3.5].
Meanwhile, using the reflexivity of L3"(X; A*T*X), an argument like in [1, 3.12]
shows that L2(X; A*T*X) is dense in L>}(X; A"T*X), and so C*°(X) is dense in
L X; A*T*X) also. 0

Lemma 2.13. The operators

d: LI(X NT*X) = LA(XG N T X), and
d: D3(X, N'T*X) = LAH(X; N'T*X)

have closed ranges.
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Proof. The operators

dd*G*: L*(X; N'T*X) = L*(X; N'T*X), and
d*dG™: LA X; N'T*X) — LA*(XGN'T*X)

are projections and hence have closed ranges, so we proceed by showing that range(d) =
range(dd*G"*) and range(d*) = range(d*dG™).

To show that range(d) C range(dd*G"), consider da for a € L2(X; A"T*X). By
Proposition 2.9, since do € L%(X; A*T*X), we have an orthogonal decomposition
da = dd*Gtda + d*dGtda + ©5,c. 1 claim that, in fact, da = dd*G'da. Because the
decomposition is orthogonal, we simply check that

da, d*dG"do
(

— t t _
LN ey = (dder dGrdar) o pvp ) = /6 da A +dG'da =0,

(da,w%da)Lz(x;/\*T*x) = (e, d*W;LdQ>L2(X;/\*T*X) + ./ax a A xmhda = 0.

Here, we used the boundary conditions i**xdG*da = +i*d**xG*da = 0 and **7%,da =
0, along with the fact that i*(da) is well-defined even though da € L2(X; A"T*X)
because of the identity i*da = di*«a. Hence, range(d) = range(dd*G").

Likewise, for d*, we have

(d*ar, dd* G d" a) 2y = (d"d"cr, "G ") o ) + /a ACTansda=0,

(A, myd" ) 2 x) = (@, dryd”a) o x) — / mhd o A xa =0,
X

using *d*G™ = 0 and *(H") = 0, along with the fact that i*xd*« is well-defined in
L%, ,(0X; N"'T*0X) by the equation i*+d*a = +4i"d * @ = tdi*+a. Hence d*a =
d*dG"a, so range(d*) = range(d*dG™). O

Proposition 2.14. The operator d*: C°(X; N*'T*X) — L>}(X; N'T*X) extends to
a bounded operator d*: L*(X; N\*T*X) — L>}(X; N"T*X) with closed range.

Proof. Let f € C°(X; N'T*X), and let ¢ € L™(X; N*T*X). Because i*¢ = 0, we
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have

(d*f, ¢>L2(X) = <f> d¢>L2(X) - -/E}Y PN *f = <fv dqb)L?(X) .

Hence,

(@1, 20| < 120 1810y

50 [|d*fll 2o (xy < IS llz2(x)- Because C* is dense in L*(X; N°T*X), we conclude
that d* extends to a bounded operator d*: L2(X; A"T*X) — L>(X; N'T*X), de-
fined by the equation

(d"f, ) 2y = (f, 49} 12 x)

for f € L2(X; A"T*X) and ¢ € L™ (X; A"T*X).

By the closed range theorem, d*: L?(X; A*T*X) — L*?(X; A*T*X) having closed
range is equivalent to its transpose d: L*"(X; A*T*X) — L*(X; \"T*X) having
closed range. On a larger domain, we know that d: L}(X; A"T*X) — L*(X; N'T*X)
has closed range by Lemma 2.13. Because L3(X; AT X) is a Hilbert space, ker d has
a closed complement (ker d)!, so d: (ker d)* — range(d) is an isomorphism of Banach
spaces. Therefore, the image under d of the closed space (ker d)* N keri* is closed.
Summing with kerd N keri*, we see that d(keri*) = d((ker d)* N ker:*), so d also
has closed range as an operator L>"(X; A"T*X) — L*(X; N*T*X). Therefore, by
the closed range theorem, d*: L2(X; AN*T*X) — L*}(X; A*T*X) has closed range,

as desired. O

Proposition 2.15. The operator
Tge = d*dG™: L¥(X; N'T*X) = L2(X; N'T*X) = L2 (OGN T X)

extends to a bounded operator mg-: L*(X; N"T*X) — LY X;\N'T*X), and this
operator is a projection to the range of d*: L*(X; N*T*X) — L>7(X; N*T* X).

Proof. Let y € L3(X; N*T*X), and let ¢ € L?(X; A"T*X). Because 7y« is a pro-

jection operator to a factor in the Hodge decomposition, we have

(g, ¢>1;2(X) =y, 7Td*¢>L2(X) :
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By Proposition 2.9, ¢ € L3(X; A*T*X) implies mg¢p € LI(X; A"T*X). Furthermore,
I claim that ¢ € L>™(X; A*T*X) implies 74 ¢ € L3"(X; A*T*X). Indeed,

0 =i*p = *(dd*G ¢ + d*dG ¢ + Tynd) = di*d*GPp + " Tgep = i Tgep
because i*(H™) = 0 by definition and :*d*G™ = 0 by Proposition 2.9. Hence,

(may, ¢>L2(X) < “3/”1,"2{‘()() ””d*qb”Lf(x) < ”y”L'i;‘(X) ”‘MIL%(X) )

for some constant C', so

7 yllpznxy < C lyll 2o, -

Since L%(X; A\"T*X) is dense in L*}(X; A*T*X), we sce that 74 extends to a
bounded operator L*}(X; A*T*X) — L*}(X; A"T*X), defined by the equation

<7l'd*y, ¢>L2(X) = <y’7rd‘¢)>L2(X) .

To show that mg : LZ}(X; A\*T*X) — L>?(X; AT X) is a projection to the range
of d*: LA(X; N*T*X) — L¥}(X; \*T*X), first recall that in the proof of Lemma
2.13 we showed that the range of d*: L3(X; A*T*X) — L?*(X; A*T*X) is equal to
the range of the projection mg-: LZ(X; A"T*X) — L*(X; \'T*X). Hence, if y €
d*(L3(X; \'T* X)), then y = mgy. Since L#(X; A*T*X) is dense in L?(X; A"T*X)
and d*: L*(X; N"T"X) — L>}(X; A*T*X) is bounded, we know that d*(L3(X; A*T* X))
is dense in d*(L2(X; A'T* X)) € L¥3(X; N'T"X). Because 7g: L2(X; A"T*X) —
L*(X; N*T*X) is continuous, the equation y = 7y remains true for all y €

d*(L*(X; A*T*X)). Thus, d*(L3(X; A*T* X)) C mae (L2}(X; AT X)).

Conversely, for all y € L?(X; A"T*X), we know that mg.y € d*(L3(X; A*T* X)) C
d*(L2(X; A\*T*X)). We know that L2(X; A*T*X) is dense in L>}(X; A*T*X), that
mge: L2N(X; N'T*X) — L¥}(X; N'T*X) is continuous, and that d*(L*(X; \*T* X))
is closed in L¥}(X; A*T*X) by Lemma 2.14, so gy € d*(L*(X; A"T* X)) remains
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true for ally € L>}(X; A"T*X). Hence, wg (LY} (X; N'T*X)) = d*(LA(X; N"T* X)),
and the above fact that y = w4y for all y € d*(L*(X; A*T* X)) now implies that 7y

is a projection, as desired. (|

Corollary 2.16. The operator A — wgdy F', is well-defined and smooth as an oper-

ator L3(X;ad P ® T*X) — L*}(X;ad P ® T*X) N range(d*).
Proof. We know that A — F4 is smooth as an operator
L3(X;ad PR T*X) — LY X;ad P @ N°T* X).

By Proposition 2.14, d*: L?(X;ad P ® A*T*X) — L**(X;ad P ® T*X) is a bounded
linear operator, and hence smooth. The multiplication map L3(X)x L?(X)x L7™(X) —
LX) x L*(X) x L*(X) — L'(X) — R is bounded, and hence by duality so is the bi-
linear multiplication map L3(X) x L*(X) — L*}(X), so A > [aA]*Fy is smooth as a
map L3(X;ad P @ T*X) — L*)(X;ad P ® T*X). Thus A — dF, = d*Fa +[aA]"Fa
is smooth as a map L?(X;ad PR T*X) — L%T(X;adP ® T*X). Finally, by Propo-
sition 2.15, mg: LN X;ad P T*X) — L*(X;ad P® T*X) is a bounded linear

operator, and hence smooth, and its range is range(d*). O

2.4 The space L3(X; \N'T*X)

Given an Li(X;ad P ® T*X) connection A on X and a ball B* in X, we will re-
place A with a L(B* g ® T*B*) Yang-Mills connection B on B* whose tangen-
tial components match A on @B*. The resulting piecewise-defined global connec-
tion A’ is in L*(X;ad P ® T*X), but because the normal component of B does
not match that of A on @B*, the new connection A’ is not in L#(X;ad P ® T*X).
However, the fact that the tangential components match still gives us more reg-
ularity than L*(X;ad P ® T*X), In fact, A’ still has enough regularity to define
curvature Fy € L?(X;ad P® A*T*X). This leads us to define a space inbetween
LY(X;ad P® T*X) and L}(X;ad P ® T*X) which we call L2(X;ad P @ T*X).
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Definition 2.17. Let X be a compact smooth manifold, and let L3(X; A"T*X) be

the completion of smooth forms o under the norm

lallpaxy + ”dd”LQ(X) .

Proposition 2.18. Let X be a compact smooth manifold that decomposes as the
union Y U Z, where Y N Z = S is a component of the boundary of Y and Z, and
leti: S — X be the inclusion. Let 8 € LEY;\N'T*Y) and v € L3(Z; N'T*Z) such
that i*B = i*y. Let a be the L* form on X defined piecewise by S and v. Then
a € LA X; N'T*X).

Proof. The key idea is that we have a discontinuity in the normal component as
we cross S, but when taking d we never take the normal derivative of the normal
component, so we never see the discontinuity.

The question is local, and the operator d commutes with diffeomorphisms, so,
taking a chart around a neighborhood of a point x € S, we can work on R x R*™!, with
B and ~y compactly supported L? forms on R>q X R™! and R<y x R"™!, respectively,
such that the tangential components of 8 and v match on the interface {0} x R™~!.
Moreover, we can assume without loss of generality that v = 0. Indeed, we can
extend v to an L? form 4 on all of R®, and subtract it from «, 8, and 7. Since
Li(R™; A*"T*R™) is contained in LZ(R™; A*T*R"™), o is in LZ(R™; A*T*R") if and only
if o — 4 is.

Hence, we have reduced our problem to the situation of a compactly supported
B € L3(Rso x R*1; A*T*R") such that the tangential component *( is zero, where
i: {0} x R*! — R" is the inclusion, and we aim to show that if « is the extension
of 8 by zero to all of R, then a € L3(R™; A*T*R"). Our goal now is to construct
smooth forms o; on R™ that converge to o in L3(R™; A"T*R"). That is, we need
a; = B in LA(Rsp x R* 5 A'T*R™), ; — 0 in L*(R<o x R™ ! A*T*R™), and do; to
converge in L2(R™; A\*T*R™).

We can decompose § into tangential and normal components 8 = 87 4 . That

is, if z, is the first coordinate of R", we can decompose A*T*R" into the subbundle
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of normal forms generated by the standard basis elements that contain dry and the
subbundle of tangential forms generated by the standard basis elements that do not
contain dzy. By assumption, 37 is zero on {0} x R*!, and there is no condition on
Bt. For BT, by [1, 7.54], the fact that 87 is zero on the boundary lets us choose a
smooth sequence of tangential forms 8, converging to 87 in L2(R>o x R*~1; A*T*R™)
such that each B3 is compactly supported away from the boundary. Then we can
extend B, by zero to obtain a smooth form «; on all of R™.

For the normal component, extend 3+ arbitrarily to a compactly supported L?
normal form Bl on all of R®. Then, construct a smooth approximating sequence of
normal forms 8;* converging to #* in L2(R™; A*T*R™). Finally, let 0 < ¢(zo) < 1 bea
cutoff function supported on zy > —1 with ¢(zy) = 1 for zo > 0. Let o q&(ixo)[g’f',
and let o; = o + af. It remains to show that the sequence «; has the desired
properties.

On R>o xR™!, we have oy = o] 4+t = 7 + 57, which converges to 87 + 8+ = 8
in Z2(R>p x R*™1; A*T*R"™), and hence also in L*(R> x R*}; A*T*R™). Meanwhile,

-1
on R§0 x R™ ’

Nloagin y AL
Hellaaosoy = || #Cz)BTY ,
Y By T
< {|p(izo)B L4(m030)+ P(izo) (B — B) L4(00)
< |1g+ - 0.
LA(~1/i<z0<0) LA(z0<0)

Finally, we compute

(iz0)B})

Blers

_dek/\———+¢ 1$0)dek/\ .

The key fact here is that because ﬁf already contains a dxy term, we never take
the derivative in the z; direction of the cutoff function ¢(izy), and so that term

remains bounded. We can test L?(R") convergence piccewise. First, on Rsg x R™™!,
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T T . T
we have %: = %iz;, which converges in L?2(Rs5o x R*™1; A*T*R™) to %% because the

B converge to 87 in L}(Rso x R"!; A*T*R™). Likewise, on R>o x R""!, we have
Hizmo) Lo = 2=, which converges to %= in L2(Rso x R A"T*"R"). Meanwhile,

on Rey x R*"!, we show convergence to zero. Because the ] are supported away

from R<g x R™*™1, the %%Z*— are simply zero on R<y X R""!. Finally,

OB} NG . ap;  opt

I < i i S A

‘ d)(ZIO) 8$k =~ (b(l.l'o) axk + ¢(1$0) aﬂ:k axk

L2(z0<0) L2(z0<0) L2(z0<0)
a1 L QL
< % 0B; — gﬂ__ 0.
Oxy Oz org
L2(—1/i<x0<0) L2 (20 <0)

Hence, the do; converge in L*(R™; A*T*R™) to the L*(R™; A"T*R") function defined
by dB on R>p x R*! and 0 on Ry x R™™!, as desired. O

Proposition 2.19. Let X be a compact smooth manifold with a principal G-bundle P,
and let A be an L2 connection on P. Then Fy is in L*(X;ad P x A\*T*X). Moreover,

if g is a L4(X; Ad P) gauge transformation, then g(A) is once again a L? connection.

Proof. The question is local, so we work on a compact subset K of a trivialization.
Let A =d+a,so Fyx =da+ 3[aAa]. Since a € L(K;9QT*K), we know that
da € LF2K, and a € [4(K;9 @ T*K), so LfaAa] € L*(K;9® A\’T*K). Thus F4 €
L3(K; g ® N°T*K), as desired. Likewise, for g € L(K;G), let g(A) = B = d +b.
Then

b=gag™' — (dg)g~".

We have a € L*(K;g® T*K), g € L{(K;G), and, since g is a gauge transformation,
g € L°(K;G). We can compute that then b € L*(K; g ® T*K). It remains to show
that db € L*(K; g ® A’T*K). We compute

db=Fp—ibAbl=gFag™' — 1[bAY.

Since F4 € LA*(K;g® A\°T*K) and g € L*(K;G), we know that gF4g~"' is in
L*(K;g® N’T*K). Likewise, we showed that b € LYK;g®T*K), so 1bAb] €
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L3(K;g @ N*’T*K), and so db € L3(K;9 ® N°T*K), as desired.
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Chapter 3

The Dirichlet problem

In this chapter, we solve the Yang-Mills equation on B* with prescribed small bound-
ary data in L} ,(0B* g ® T*9B") using the inverse function theorem. Using gauge
fixing, we then extend this result to a more general class of boundary values in The-
orem 3.5. In addition, the inverse function theorem gives us local uniqueness of the
solution, which we strengthen in Theorem 3.6. Along the way, in Proposition 3.4, we
prove strict convexity in Coulomb gauge of the energy functional near small-energy
Yang—Mﬂls connections. Earlier work on this problem includes a paper by Marini
[11] thatsolves the Dirichlet problem with boundary data assumed to be smooth on
general compact manifolds, as well as lecture notes of Riviére [14] which solve the
Dirichlet problem on the ball in the critical L},,(0B* g ® T*0B*) regularity using
direct minimization methods of Sedlacek [17]. An advantage of the inverse function
theorem method is that it gives smooth dependence of the Yang-Mills solution on
the boundary data. Finally, in Section 3.1 we show energy monotonicity of the linear
path between an a connection and the Yang-Mills replacement that matches it on the

boundary.

Theorem 3.1. Let B* be a smooth 4-ball with arbitrary metric, let i: 8B* — B* be
the inclusion, and let P — B* be a principal G-bundle with trivializing connection d.
There exist an € > 0 and § > 0 such that if Ay =d + ap is an Lf/2(8B4; g ® T*0B*)

connection with ||as|| 12,089 < & then A, extends to a unique L3(B* g ® T*B*)
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connection A = d -+ a such that
1. lall gy <5,
2. A satisfies the Yang-Mills equation d,F, = 0 on B*,
3. i*A= Ay, and
4. A satisfies the Coulomb condition d*a = 0.
Moreover, A depends smoothly on Ay.

We first prove the theorem replacing the Yang-Mills equation d%F, = 0 with
a weaker projected Yang-Mills equation m4d%F, = 0 (see Section 2.3), and then
prove that in this situation the weaker equation nzd*% F4 = 0 actually implies the full

equation d% Fy = 0.

Proposition 3.2. There ezxist an € > 0 and § > 0 such that if Ap = d + as is an
L3 /2(834; g ® T*OB*) connection with ||a|| 12 ,(08%) < g, then Ay extends to a unique

L}(B* g ® T*B*) connection A = d + a such that
1. |lall 20y <6,
2. A satisfies the projected Yang-Mills equation ng-d’yF, = 0 on B*,
3. i*A = Ay, and
4. A satisfies the Coulomb condition d*a = 0.
Moreover, A depends smoothly on Ay.

Proof. We consider the projected Yang-Mills operator

pYM: L}(B* g ® T*B*) Nkerd*
— L>}(B* g ® T"B*) Nrange(d") x L3 ,(0B*; g ® T*9B")

defined by
PYM(a) = (rg-d3Fy,i"a).
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We have that A — m4d F', is smooth by Corollary 2.16 and i*: L3(B* g ® T*B*) —
L3},,(0B*% g ® T*0B*) is a bounded linear operator and hence smooth.

Proving the proposition amounts to showing that pY M is an isomorphism on a
neighborhood of a = 0, for our desired L?(B*;g ® T*B*) extension a is the inverse
image of (0, ap). We do so using the inverse function theorem. The linearization of

pYM at a =0 is

d*d,i*): L*(B* g @ T*B*) Nker d*
1

— L*}(B* g ® T*B*) Nrange(d") x L ,(0B* g ® T*0B*)

It remains to show that this operator is an isomorphism of Banach spaces.
Let a € L}(B* g ® T*B*) Nkerd*, and assume that d*da = 0 and i*a = 0. Thus
a € L?"(B% g ® T*B*), and so Proposition 2.14 tells us that

Since d*da = 0, we conclude that da = 0. Since d*a = 0 and i*a = 0, we conclude
that a € H". But H'(B* 8B*) =0, so a = 0. Hence (d*d, ") is injective.

We first prove surjectivity onto L>}(B* g ® T*B*) Nrange(d*) x 0. Let y = d*f
for f € L?(B% g ® A*T*B*). Then

y=d'f = d*(dd*G™f + d*"dG™f + myn f) = d*d(d*G™ ).

Clearly, d*G™f € kerd*. Moreover, i*(d*G" f) = 0 by Proposition 2.9. Hence, d*G"f
is our desired preimage of (y,0) under the map (d*d,*).

Now, given ag € L? /2(834; g ® T*0B*), the inverse trace map [1, Theorem 7.53]
gives us an a; € L3(B* g®7T*B*) such that i*a; = as. Then d*da, is in the
space L”}(B* g ® T*B*) N range(d*), so the previous paragraph gives us an a, €
L3(B* g ® T*B*) Nker d* such that d*day; = d*da, and i*a; = 0. Hence (d*d,i*)(a; —
az) = (0,a5), giving us surjectivity onto the other factor 0 x L3 /2(634; g ® T*0B*)

also.
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We conclude that

(d*d,i*): L3(B% g ® T*B*) Nker d*

— L*}(B* g ® T*B*) Nrange(d*) x L3 ,(0B"; g ® T*0B")

is an isomorphism of Banach spaces. Hence, by the inverse function theorem, the

projected Yang-Mills operator

pYM: Li(B* g ® T*B*) Nkerd*

— L*%(B%; g ® T* B*) N range(d*) x L%/z(aB"‘; g® T*0B*)

is a diffeomorphism between a neighborhood of a = 0 in L}(B*; g ® T*B*) N ker d*
and a neighborhood of (y,as) = (0,0) in

L>"(B* g ® T*B*) N range(d*) x L%/2(8B4; g ® T*oBY).

In particular, for ag small in L3 /2(8B4; g ® T*0B*), we can solve pY M (a) = (0, ap) for
a € L3(B* g ® T*B*) Nker d*, giving us our desired small a satisfying wg-d F, = 0,
i*a = ag, and d*a = 0.

More precisely, choose § and € such that the §-ball around a = 0 and the e-ball
around (y,as) = (0,0) are contained in the above neighborhoods between which pY M
is a diffeomorphism, and such that the e-ball is contained in the image of the §-ball
under pY M. Given ay with ||as|| 12,089 < & let a be the preimage under pY' M
of (0,as), so a depends smoothly on ay. In addition, |lal;2(gs) < 6, Ta-d4Fy = 0,
i*a = ay, and d*a = 0, as desired. Moreover, a is uniquely determined by these

conditions because pY M is injective on the é-ball around a = 0. O
To complete the proof of Theorem 3.1, it remains to prove the following.

Proposition 3.3. There ezists an ¢ > 0 such that for any L?(B*; g ® T*B*) connec-
lion A=d+ a, if

1. lall 2 sy < e
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2. A satisfies the projected Yang-Mills condition ngdy Fy =0, and
3. A salisfies the Coulomb condition d*a = 0,
then A satisfies the full Yang-Mills equation dyF, = 0 on B*.

In higher regularity, this proposition can be proved using bounds on d% F,, but at
the critical regularity, we must proceed directly by showing that A locally minimizes
energy. We prove an inequality similar to one used by Colding and Minicozzi for

harmonic maps [2, Theorem 3.1].

Proposition 3.4. Let B* be a smooth 4-ball with arbitrary metric, let i: 9B* — B*
be the inclusion, and let P — B* be a principal G-bundle with trivializing connection
d. There exist constants €4, and C with the following significance. Let A=d+ a

and B = d + b be L}(B* g ® T*B*) connections such that
1. |la|| gy < €4 and ||b]] s pay < €4,
2. ||Fall g2y <é€r,
3. A satisfies the projected Yang-Mills equation ngd}F4 =0,
4. A and B match on the boundary, that is, i*A = i*B, and
5. we have a Coulomb condition d*a = d*b.

Then
1B = Al < C (1Fslagony = 1 FallZagas)) -
In particular,

||FA“L2(B4) < ”FB”L2(34) :

Proof. The projected Yang-Mills equation ngd% Fy = 0 can be restated as the con-
dition that (Fa,dac)iz2pey = 0 for all ¢ € L}(B* g ® T*B*) with i*c = 0 and
d*c = 0. In particular, let ¢c = B — A = b — @, so i*c = i*B —i*A = 0 and
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d*c = d*b — d*a = 0. Hence, taking the square of the L*(B*) norm of the curvature

equation Fg = F4 + dac + %[c A c], we obtain

2 2 2 2
HFB”L2(34) = IIFA||L2(34) + “dAC"L2(B4) + H%[C/\ C]HL2(B4)

+2 <FA, %[C/\ C]>L2(B4) + 2 <dAC7 %[C A C]>L2(B4) -

We then have the inequality

2 2 2 2
||dAC“L2(B4) < ||FB||L2(B4) - ||FA||L2(B4) - “%[C/\ C”|L2(B4)

2 Eall g ll3le A elll ey + 2 lldaclliasay 13l A clll 2,
< ”FB”i2(34) - ”FA“i2(B4) - ”%[‘3/\ C]”i"’(B“)

+ 2[|Fall 2 (59 Izle A d] HL2(34) +3 ”dAC”i%B“) +2]|3len C”Ii?(m) :

Rearranging,

2 2 2
dacloy <2 (1Fslagme — 1Falas
- (20Fallagan, + e Adllagan ) e A dlllagsn
<2 (1Pl ) — I1Fal o)

2 2
+ (20Fall 2y + 5Cs leliiasn ) CoCE ez

(3.1)

where (¢ is the operator norm of the Lie bracket g x g — g, and Cg is the operator

norm of the Sobolev embedding L?(B*) < L*(B*).

The next step is to bound ||c||;2(gsy in terms of ||dac]| ,2(gs)- Since H'(B*,B*) =
0, by Corollary 2.10, d + d*: LY™(B% N*T*B*) — L*(B* \"T*B%) is a Fredholm
operator with no kernel on one-forms. Thus, we have the estimate [|c||,2psy <

Ca

(d+ d)el| y2pay for some constant Cg independent of ¢ € L2"(B% g ® T*BY).
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Recalling that d*c = 0, we can compute

lellzaqany < Co lldell 2 ey = C lidae = [a A lll 2y
< Co (lldacll o) + Ce llallagan el o)

<Cgq “dAC||L2(B4) +CaCeCs “‘1”1,4(34) “C“Lf(m)

Requiring &4 < 3(CcCeCs)™", we obtain llell 2gay < Ca lldacl| 2y +1 ||c||L%(B4).

Rearranging, we obtain our desired bound

||C||L§(B4) <2Cq ||dAC||L2(B4) .

Combining the above inequality with (3.1), we have

2 2 2
lelliacpey < 803; [ FallL2 BY — ||FB||L2(B4
1(BY) ( )

+ (802:0203 ||FB||L2(B4) +2CECEC3 ||C||i4(34)) ||C||ig(34)- (32)

Requiring, for example, that ep < ;(8CCeC3)™" and (264)? < 3(2CECECE)7", and

noting that ||c|| 4 psy < 2€4, the above inequality becomes

lelzceny < 8CE (1Al zgany — I FsllFagan) + 3 el zian -

Rearranging, we obtain

2 2 2
lelZzny < 1662 (IFalZ a0y — 1 Falagsn )

so our desired inequality is true with C' = 16C%. O

Under the assumptions of Propositon 3.3, Proposition 3.4 tells us that A has
smaller energy than any nearby connection B that matches A on the boundary and
satisfies the Coulomb condition d*b = 0. It remains to remove this last condition. To

do so, we use gauge fixing results that we will prove in the Chapter 5.
Proof of Proposition 3.8. Let B be any L?(B*; g ® T*B*) connection satisfying the

37



bound ||b]| r2(pyy < € and the boundary condition "B = i*A. We will prove that
£

L2(BY) < ||FB“L2(B4)'
Let ey and Cy be the constants from Proposition 5.4. Require € < g, so we
can apply Proposition 5.4 to B to give us a gauge equivalent connection B satisfying

d*b=0,%B =B =4*A, and

1820y < Co (1 Fallyaqany + 1i%blliz om ) -

Let €4 and ep be the corresponding constants from Proposition 3.4. We have the
continuity of the trace map L}(B*) — L}/,(0B*) and Sobolev maps L? 2(0B*) —
L3(dB*) and L}(B*) — L*(B*). Using these along with the continuiuty of F, we
can choose & small enough so that ||al| ;z gy < € implies [|al|ja(gey < €4, [[Fall 21y <
er. Likewise, the inequality [|b]| j2psy < Cu ([IFB||L2(B4) + ||i*b||Lg/2(aB4)) and the
continuity of b — Fp and b — 1"b let us choose ¢ small enough so that ||b| 254y < €
implies [|B]] ,a pay < €.

Since i*A = i*B, we can apply Proposition 3.4 to A and B, since d*a = 0 by
assumption and d*b = 0 by Theorem 5.4. We conclude that

”FA“L2(B4) < “FE”L?(B‘i) = “FB“L2(84) )

as desired. Hence, A locally minimzes energy among connections whose restrictions
to OB* is i* A.

However, in our definition of a Yang-Mills connection, we required that A be a
critical point of the energy functional with respect to variations whose restrictions
to the boundary are gauge equivalent to i*A, not necessarily equal to i*A. Hence,
we must show furthermore that A has smaller energy that any connection B in a
neighborhood of A such that ¢* A is gauge equivalent to i* B. They key fact here is that,
unlike the projected Yang-Mills condition, the condition that A locally minimizes
energy among connections whose restriction to the boundary is equal to i*A is a
gauge-invariant condition.

Hence, we require ¢ be small enough so that |al| 2 ga) , |8l 2 (gey < € implies that
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N Fallj2(pay and ||Fpll 2(gs) are small enough so that we can apply Theorem 5.10,
giving us connections A and B gauge equivalent to A and B, respectively, such that
d*a = d*b = 0 and dypaita = d384i*5 = 0, along with bounds on ”&"Lf(B") and
1]l 12(54)- Choosing e small enough, we can bound l*all 13 ppey and ||3*bl| 350y and
apply Proposition 5.17 to find that the gauge transformation g sending i* A to i*B
is constant. We can apply this constant gauge transformation to A on all of B*
without affecting the Dirichlet Coulomb conditions d*a = 0 and d}g.i*a = 0, so we
can assume without loss of generality that ¢ = | and i*A = i*B. Since A locally
minimzes energy among connections whose restrictions match it on the boundary, so

does A, so | Fall 20y = ”FA”L2(34) < “FB||L2(B4) = |Fll 2(p4, as desired. ol

Using gauge fixing, we can strengthen Theorem 3.1 to solve the Yang-Mills equa-
tion for a larger class of boundary values, namely restrictions to the boundary of
small-energy connections on the ball. This result is exactly what we need for replac-

ing a global connection on a small ball with a Yang-Mills connection.

Theorem 3.5. There exists an ¢ > 0 with the following significance. Let B be
an L}(B*) connection with ||Fp| ,2p1y < €. Then we can construct a Yang-Mills

connection A that depends continuously on B such that i*A = i*B.

Proof. The idea is to apply a gauge fixing result to B in order to make the boundary
value small enough to apply Theorem 3.1. We will use Theorem 5.19, the gauge
fixing result with Neumann boundary conditions, though Theorem 5.10 with Dirichlet
boundary conditions would work equally well. Let ¢y and C be the constants from
Theorem 5.19, and let €5 be the bound on the boundary value in Theorem 3.1.
Require € < ey and CpCe < €y, where Cr is the norm of the trace map i*: Li(B*) —
12 (05,

We can thus apply Theorem 5.19 to obtain a LZ(B*; G) gauge transformation g
sending B to B = d + b in Coulomb gauge with ”I;”Lg(m) < C||Fp|lz2(pay, 50

17012 omty < Cr Ibll (e < CrC 1Bl 2y < €o-
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Thus we can apply Theorem 3.1 to i*B to obtain an L2(B*) Yang-Mills connection
A such that i*A = *B. We let A = g~'(A), so i*A = i*B, as desired.

It remains to show that this construction is continuous, which is made more com-
plex by the fact that g is not uniquely determined by B and hence might not depend
contiuously on B. However, at least with appropriately chosen ¢, g is unique up to a
constant gauge transformation c. We show that A does not depend on the choice of g,
solet ¢’ = cg, let B = ¢ (B) = ¢(B), and let A’ be the Yang-Mills connection given
by applying Theorem 3.1 to i*B’. I claim that A’ = c¢(A). Indeed, i*(c(A)) = i*B,
and the other conditions of Theorem 3.1 are preserved under constant gauge trans-
formations and hence are true of C(A) Since the connection given by Theorem 3.1
is unique, we conclude that A’ = c(A), and so A’ = (¢') Y (A") = g7 '(A) = 4, as
desired.

We can use this uniqueness to show that this construction is continuous. Indeed,
let B; — B be a sequence of connections converging in L}(B*; g ® T*B*). Let A;
and A be the corresponding Yang-Mills connections constructed above. We will show
that A; converges to A by showing that any subsequence of the A; has a further

subsequence that converges to A.

Hence, we begin by passing to a subsequence of the B;, which, of course, still
converges to B, and so from Proposition 5.22 we know that, after passing to a fur-
ther subsequence, we can have the Coulomb gauge representatives B; converging to
a Coulomb gauge representative B of B. However, B is only determined up to a
constant gauge transformation and may depend on our initial choice of subsequence.
In addition, Lemma 5.3 gives us that, after passing to a subsequence, the gauge trans-
formations g; sending B; to B; converge in LZ(B*;G) to the gauge transformation g
sending B to B. Theorem 3.1 gives us that the A; depend smoothly on the i* B;, which
depend linearly on the B;, so we know that the A; converge to A. Finally, because
the g; converge strongly to g in L3(B*; G), we know that the A; = g;'(4;) converge
strongly to A in L}(B*; g ® T*B*). By our previous argument, even though B might
depend up to a constant gauge transformation on our initial choice of subsequence,

A is unique and thus is independent of the initial choice of subsequence of the B;.
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Thus, A depends continuously on B, as desired. O

We now use gauge fixing to prove a stronger uniqueness result for the Yang-Mills

solution.

Theorem 3.6. There exists an ¢ > 0 such that if A and B are L}(B* g @ T*B*)

Yang-Mills connections with
1. energy bounds ||Fa|l 2(pay, | FBll12(pey <€, and
2. gauge equivalent boundary values t*A and i*B,
then A is gauge equivalent to B.

Proof. Choose € small enough so that we can apply Theorem 5.10, giving us con-
nections A and B gauge equivalent to A and B, respectively, satisfying the Dirichlet
Coulomb conditions d*a@ = d*b = 0 and dypai*a = dygai*a = 0, as well as the bounds
lall ,2(pay < C || Fall2(p4) and ”B”L'{(B‘l) < C||Fpll 2(ps)- Because i*A and B are
gauge equivalent, i* A and ¢*B are gauge equivalent. Require that € be small enough
so that the bounds ||a|| L3(B4) ) ol 3y < Ce suffice to apply Proposition 5.17 to i*A
and i*B using the Sobolev and trace maps L3(B*) Z L},(0B*) — L3(0BY). We
conclude that a constant gauge transformation ¢ € G sends i* A to i* B. Now viewing
¢ as a gauge transformation on all of B*, apply c to A, and note that c(A) satisfies
all of the properties above required of A. Hence, we may, without loss of generality
replace A by ¢(A), or, in other words, assume that ¢ = 1, so i*A=1B.

Next, we require € be small enough so that our bounds || F;|| L2(B4) - I Fxl Ly <€
and ||| ;2(pa) , 113 134y < Ce suffice to give us the bounds needed for Proposition 3.4
via the Sobolev embedding L%(B*) < L*(B*). The Yang-Mills condition is gauge-
invariant, so Ais Yang-Mills, and, in particular, also satisfies the projected Yang-
Mills equation. Hence, we can apply Proposition 3.4 to A and B to conclude that
I Fall t2(ey < 1F5ll 12(ps)- However, since B is Yang-Mills, we can also apply Propo-
sition 3.4 to B and A to conclude that I F5ll 2gay < I1F4llL2(pay, concluding that
1 F4llp2(ay = 15l 12(pay- The main inequality of Proposition 3.4 then gives us that
A = B, so A and B are gauge equivalent, as desired. 0
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3.1 Linear interpolation

We know that a small Yang-Mills A connection on B* locally minimizes energy among
connections B with the same restriction to the boundary. We go further by showing
that, in Coulomb gauge, the linear interpolation from B to A is an energy-decreasing
path. As before, for small connections in Coulomb gauge it suffices to assume only that

A satisfies the projected Yang-Mills equation instead of the full Yang-Mills equaiton.

Proposition 3.7. There exist constants €4 and e with the following significance.

Let A=d+aand B=d+b be L?3(B* g® T*B*) connections such that

1 “a“L‘l(B4) ’ ||b”L4(B4) < &4,
2. |Fall om0y <er,
3. A satisfies the projected Yang-Mills equation wgd%F, = 0.

4. "A=19B, and
5. d*a = d*b.

Let B, = tA+ (1 —1t)A be the linear interpolation between By = A and B, = B. Then
|1 Fllp2may < ”FBt”L2(B4) if s <t, with equality only if A= B.

Proof. Since B, satisfies all of the conditions above required of B; = B, in order to

prove the general statement it suffices to show that % —1 ”FBt”iz 1y > 0.

Let ¢ = B — A. Using the equations

Fg = Fp+dac+ L[c Ac], and

Fp = Fg+dg(—c) + 3[(—c) A (=c)] = Fg —dpc+ 3[c A d],

42



along with the Yang-Mills condition (F4,dac) L2y = U, we compute

3 s e Za 0 = (Fo,ds &1,y Be) o g
= (Fp, dBC) [2(p4)
= (Fp,Fg— Fa+ 3le A C]>L2(B4)
= 1 Fsllz2(pe) + (Fa, 5le A ) 120y
— (Fa+dac+gle A d, FA>L2(B4)

2 2
= |Fpll12(5e) — I Fallz2pey + (Fg — Fa,glenc >L2(B4)

We bound the last term:

|<FB - FA;%[C/\ C]>L2(B4)

[(de+ A8 = Sl Ad, 2o A d) o

IA

2 2
(lellasey + 2Ce 1Bl agaey + 3Ce lallfagan ) 3Ce llellfaan)

< (ACECHNal3aqay + 160 agse)) + 3CeCsllellaamy ) lelzqen

Since |c|| apey < llallpapey + 18/l agps), We can choose &4 small enough so that

lall La¢pay » 1Bl La(pay < €4 guarantees that

‘<FB FA’2CAC>L2(B4)

IC_I ||C||L2(B4) ’

where C is the constant in Proposition 3.4. Choosing €4 and ¢ small enough so that

we can apply Proposition 3.4, we have ||c|li%(34) <C (”FB|Ii2(B4) — IlFA||iz(B4)), S0

2 2 2 - 2
% %ltzl IlFBtI|L2(84) = “FB||L2(B4) - ||FA“L2(B4) - %C ! ||C||L§(B4)

> L (IFs 13200y — IFalagem ) >0,

with equality only if | F5 |72 g4y — | Fall72(4) = 0, in which case B = A by Proposition
3.4. O

Again, we can use gauge fixing to prove this energy monotonicity result for a wider
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class of connections.

Theorem 3.8. There exists a constant ¢ with the following significance. Let B be
an L}(B*) connection with ||Fp| 2 gy < €, and let A be the Yang-Mills connection
with i*A = i*B constructed in Theorem 3.5. Let B, = tA + (1 — t)A be the linear
interpolation between By = A and B, = B. Then ||FBS||L2(34) < ”FBz”L2(B4) if s <1,
with equality only if A = B.

Proof. From the construction in Theorem 3.5, there exists a gauge transformation g
sending A and B to A = d+ @ and B = d+ b, respectively, such that d*b = 0, and we
know that d*a@ = 0 because we obtained it from Theorem 3.1. Finally, the construction
in Theorem 3.5 gives us a bound ||b|| (s < C || Fgll 12(p4), and with the Sobolev
inequalities we know that a small enough ¢ we can bound b in L*(B%,g ® T*B%).
Since A depends continuously on B, this lets us also bound a in L*(B% g ® T*BY).
Finally, A is Yang-Mills, so A is Yang-Mills and in particular satisfies the projected
Yang-Mills equation. Hence we can apply Proposition 3.7 to Aand B , giving us that
the linear interpolation between A and B has monotone energy. But both energy and
afline combinations are preserved after applying a gauge transformation, so the linear

interpolation between A and B also has monotone energy, as desired. O
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Chapter 4

Yang-Mills replacement for global

connections

In this chapter, we consider an arbitrary compact 4-manifold X and use the solution
to the Dirichlet problem for Yang-Mills connections on the ball in order to construct
an energy-decreasing map on global L#(X) connections modulo LZ(X) gauge trans-
formations. Namely, given a connection B on X and a ball B* C X on which B
has small energy, we will replace B on B* with a Yang-Mills connection that has the
same restriction to the boundary B*, thereby constructing a piecewise connection
A that is Yang-Mills on the ball and equal to B outside the ball. However, only the
tangential components of A and B match on the boundary 8B4, and the normal com-
ponents may disagree. As a result, this new connection A is no longer in L?(X), but
it is still in the space L2(X) defined in Section 2.4. However, we will show that this
piecewise-defined connection is nonetheless gauge equivalent to an L#(X) connection.

More generally, we prove that any L2(X) connection is gauge equivalent via a
L1(X) gauge transformation to a L}(X) connection, so, the space of LZ(X) connec-
tions up to L}(X) gauge transformations is actually the same as the space of L?(X)
connections up to L2(X) gauge transformations. Theorem 5.20 tells us that, locally,
every L3(B*) connection is gauge equivalent via an L1(B*) gauge transformation to
an L3(B*) connection. However, patching these local gauge transformations to a

global transformation is a delicate matter because in the critical regularity L(B*)
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gauge transformations need not be continuous. A crucial lemma for dealing with this

issue is due to Taubes.

Lemma 4.1 ([19, Lemma A.1]). Let U be an open ball in a Riemannian 4-manifold.
. Let § be the set of triples (g,a,b) € L3(U; My) x L2(U;9®@ T*U) x L3(U; g ® T*U)
such that g is a gauge transformation sending A =d +a to B=d+ b and d*a =
d*b = 0. Then the projection to the first factor § — L3(U; My) sending (g,a,b) to g
factors continuously through CL_(U; My).

loc

The next lemma we need is due to Uhlenbeck, and states that if two bundles over
a compact X are described by transition functions g, s and h, g that are sufficiently

close to each other in C°, then the two bundles are isomorphic.

Lemma 4.2 (|23, Proposition 3.2]). Let X be a compact manifold with principal
G-bundles P and Q and a finite cover by local trivializations {U,} with continuous
transition maps gop,hap: Us NUg — G, respectively. There ezists an € depending
on the cover but not on the transition maps such that if, for all & and B, ¢o p¥pa 18

a neighborhood of the identity on which exp™ is defined and

”exp‘l(d)a,ﬂ’/’ﬂ,a) ”cﬂ(UaﬂUa) <&

then there ezists a cover {V,} of X with V,, C U, and an isomorphism between P

and Q defined by p,: Vo, = G satisfying Yo gpa = ppdap-

With these tools in hand, we can extend Uhlenbeck’s techniques in [23, Theorem
3.6] to the critical regularity.

Theorem 4.3. Let P be a principal G-bundle over a compact manifold X. Let A
be a L3(X) connection on P. Then there ezists an L}(X) gauge transformation on
P sending A to an L2(X) connection B. Moreover, the gauge equivalence class of B

modulo L2(X) gauge transformations depends continuously on A.

Proof. Let A; be a sequence of smooth connections converging to A in L%(X). Let

{U.} be a finite cover of X by balls contained inside smooth trivializations of P and
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small enough so that, for all a, || Fa|| 12w, <€ for the e in Proposition 5.22. A priori,
the ¢ required depends on the metric of the ball B*. However, as discussed in Uh-
lenbeck [23], we can note that the energy of connections is invariant under conformal
changes of metric, and dilations in particular. Thus, we can rescale small exponential
neighborhoods to balls of unit size with metric close to that of the standard unit
ball, and choose an ¢ uniformly for all of the balls. Take a tail of the sequence to
guarantee that ||Fa,|l 2., < € also. For a fixed U,, pass to a subsequence of A;
given by Proposition 5.22, giving us gauge transformations g¢; ., and g, on U, sending
A; to /L-,a and A to A,, respectively, such that the fL-,a are in Coulomb gauge on
U, and converge to A, strongly in L}(U,; 9 ® T*U,), and the g; o converge to g, in
L}(Uqs; G). Repeat this construction for the other U,, taking further subsequences.
By the smoothness and uniqueness claim for the gauge transformation doing the
gauge fixing in [5, Theorem 2.3.7], we know that the g;, are smooth because the A;

are smooth.

Let ¢ 5: UsNUp — G be the transition functions for P. Since the g; , are smooth,
we define new transition functions by v; o s = gi sba.p9;, 1 for a bundle Q; over X, so

the g; o define a bundle isomorphism between P and @Q; sending A; to the connection

defined by the A;, on Q;.

We would like to pass to the limit bundle @ defined by 1 5 = ggda g, ', where
the g, define an L} bundle isdmorphism between P and @ sending to A to the
L? connection on Q defined by the A,. However, the issue is that the g, are not
necessarily continuous, so we do not yet know that the i,s3 define a continuous

bundle @, nor do we know that P and @ are isomorphic as continuous bundles.

However, we know that, on U, N Up, ¥, is a gauge transformation between A,
and A~ﬂ, that is,
Ao p = Ya,pla — Agta,p-
Since d, and ag are L3 (U, NUp; 9 ® T*U, NUg), by Lemma 5.1, for any compact
K C U, N U, we have o5 € L3(K;G). By Lemma 4.1, for any open ball V
contained in K, ¥,5 € CO.(V;@G). Consequently, by slightly shrinking the U, to
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open balls U/ C U, that still cover X, we can guarantee that the transition maps

ap are continuous on U], N Uy, so, indeed the bundle @ is continuous.

Moreover, since the ;.3 are gauge transformations between A;, and the A, 4.
Since the A; , and the fiw converge strongly in L¥(U, N Ug; g ® T*U, N Up) to A, and
/1,3, by Lemma 5.3, after passing to a subsequence, the v); , 5 converge in LZ(K;G).
Again, the limit must be 1, g because the v; , g converge to 1, 5 in a weaker norm.
For example, in the formula 9.3 = ¢ipdapg;a, we know that the g;5 and g;,
converge strongly in LY(K;G) to gg and g,, S0 ;. p converges strongly to Ya,p D
L*(K;G). Consequently, by Lemma 4.1, the 1; o 5 converge to 1,4 in C2_(V;G), so
they converge in C°(K’;G) for compact subsets K’ of V. Hence, we can choose the
U, such that the t; , 3 converge to ¥,z in C(U, NU}; G).

Hence, we can choose a sufficiently large ¢ so that v, , g is sufficiently close in
C°(U,,NUp; G) t0 o, in order to satisfy the conditions of Lemma 4.2. Applying this
lemma, we conclude that there is a continuous bundle isomorphism p between. Q and
Qi, which in turn is smoothly isomorphic to P via g;_ 1. Moreover, the argument in
[23, Corollary 3.3] applies also to L3N C°(U,NUj; G), so pis in fact an LZ(X) bundle
map that depends continuously on ;a4 and ¢as in L3 N C*(U, NU; G). The gq
define an L}(X) bundle map between P and Q sending A to an L%(X) connection
defined by the A,, so 9gi. 1o pog,is an L}(X) bundle isomorphism from P to itself
sending A to an L?(X) connection B on P, as desired.

To prove continuity, note that we can choose sufficiently large 7 so that for j > i,
we can construct an L3 N C°(X) bundle isomorphism p; between Q; and Q; just like
we constructed p above. Because the construction of p; depends continuously on the
transition maps and we have chosen a the cover U], so that the v; , 3 converge to ¥, g
in L3NC°(U,NUg; G), we have that the p; o also converge in LZNCO(U,NUL; G) to pa.
The A, converge in L3(U.; g ® T*U.), so the p;(A;) converge in L2(U': g @ T*U.,)
to p(A,) as connections on the same bundle Q;. Applying the smooth bundle map
iw> let B; be the connection on P defined on trivializations by (gia © pi)(Aja) =
(g:; © pj © gja)(A;). We see that the B; converge as L? connections on the bundle

P to (g,:; 0 p)(As) = (gim © po ga)(A) = B. That is, we have constructed L2(X)
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connections B; and B gauge equivalent to A; and A, respectively, such that the B;
converge in L#(X) to B.

The first issue to complete the proof of continuity is that we passed to subse-
quences in the proof, and our choice of B may depend on our choice of subsequence.
However, the gauge equivalence class of B modulo LZ(X) gauge transformations does
not depend on this choice. Indeed, if A is gauge equivalent by L}(X) gauge trans-
formations to L2(X) connections B and B’, then B and B’ are gauge equivalent via
an L}(X) gauge transformation g. But by Lemma 5.1, on every trivialization, g is in
L%, so0 it is in fact an LZ(X) gauge transformation, and so [B] = [B’]. Hence, for any
subsequence of the A;, our argument above shows that after passing to a further sub-
sequence, the [A4;] = [B;] converge to [B] in the space of L(X) connections modulo
L2(X) gauge transformations. Thus the original sequence also converges to [B].

The second issue is that we assumed that the A; are smooth, but to show continuity
we need a general sequence of L2(X) connections on P. Now let A; be an L%(X)
sequence of connections converging in L2(X) to A, and let [B;] and [B] be the gauge
equivalence class of L?(X) connections constructed above. To show that the [B;]
converge to [B], we consider sequences of smooth connections A;; that converge to
A;, so from the above argument we know that the [A; ;] converge to [B;]. We then
use a diagonalization argument, constructing j(i) such that A; ;i) converges to A and
such that [A; ;)] is within 1/7 of [B;]. Because the A; ;;) are smooth, the argument
above gives us that the [A; ;)] converge to [B], and so the [B;] must also converge to

[B]. |

Corollary 4.4. The space of L%(X) connections modulo L}(X) gauge transformations
is homeomorphic to the space of L3(X) connections modulo L%(X) gauge transforma-

tions.
Our Yang-Mills replacement results follow.

Corollary 4.5. Let P — X be a principal G-bundle over compact 4-manifold X
with compact gauge group G, and let B* C X be a 4-ball. Let C be the space of

L3(X) connections modulo L%(X) gauge transformations, and let C. pa be those gauge
1 2 ,
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equivalence classes of connections [B] with small energy on B, that is, ||F5|| 2Bty <
€. Then for small enough € there is an energy-decreasing continuous map C.ps —
C.p+ sending [B] to an equivalence class of connections [A], where A is Yang-Mills

on B* and gauge equivalent to B outside B*.

Proof. On B*, we construct A continuously by Theorem 3.5, and outside B* we set
it equal to B. By Proposition 2.18, the result is an L%(X) connection that depends
continuously on B, and by Theorem 3.8, ||FA”L2(B4) < ||F5ll 12(ps)- By Theorem 4.3,
A is gauge equivalent to an L2(X) connection A, so [A] depends continuously on

B. O

Corollary 4.6. Let P — X be a principal G-bundle over compact 4-manifold X
with compact gauge group G, and let C be the space of L¥(X) connections modulo
L%(X) gauge transformations. Let K be a compact family in C. Then around any
point x € X there exists a ball z € B* C X and homotopy h,: K — C such that
hy is the identily, hy sends K to connections that are Yang-Mills on B*, h,([B))
has monotone nondecreasing energy, and restricting to the complement of B* the

homotopy is constant h,([B]) = [B].

Proof. Since K is compact, we can choose a ball B* around z small enough so that for
all [B] € K, ||Fsll;2(psy < €- Then, for each B, inside B* we construct A and B, as
in Theorems 3.5 and 3.8. By Theorem 3.5, A and B; depend continuously on B, and
from the construction it is clear that if we choose a different representative B’ = g(B)
of [B], then the resulting A" and B; satisfy A’ = g(A) and so B} = g(B,), so [By] is
independent of our choice of B € [B]. Outside B*, we set B, equal to B. Again, by
Proposition 2.18, the resulting B, is an L2(X) connection that depends continuously
on B, and by Theorem 4.3, B, is gauge equivalent to an L?(X) connection B, so we

can set hy([B]) = [By]. O
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Chapter 5
Gauge fixing

In this chapter, we prove several gauge fixing results which are used to prove the main

results. We begin with a few general lemmas.

Lemma 5.1. Let K be a compact 4-manifold with a trivial principal G-bundle P,
where G is compact. Let A and B be two L2(K; g ® T*K) connections that are gauge

equivalent via a gauge transformation g. Then g € L2(K;G).

Proof. We have the equation

dg = ga — bg.

Since G is compact, we know that ¢ € L°(K; G). Using the Sobolev embedding theo-
rems, we know that a,b € L*(K;9® T*K). Thus, dg = ga—bg € L*(K; My ® T*K),
so g € L}(K; G). Next,

V(dg) = (Vg)a—b(Vg)+g(Va)—(Vb)ge L*-L* —~ L* - L*+ L®-L*— [*- L™ C L~

Hence, dg € L}(K; My ® T*K), so g € L3(K; G). O

Lemma 5.2. Let K be a compact 4-manifold with a trivial principal G-bundle P.
Consider two sequences of L?*(K;g ® T*K) connections A; and B; converging weakly
to A and B in L3(K; g ® T*K), respectively, such that A; and B; are gauge equivalent
via a gauge transformation g;. Then a subsequence of the g; converges weakly in

Li(K;@G) to a gauge transformation g sending A to B.
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If the connections are only L*(K; g ® T*K) and converge weakly in L*(K; g @ T*K),

then a subsequence of the gauge transformations converges weakly in L(K;G).

Proof. The gauge transformations give us equations
bi = giaig; ' — (dgi)g; ",

which we can rewrite as

dg; = gia; — b;g;. (5.1)

The gauge transformations are assumed to be unitary and hence uniformly bounded
in L°°(K;Mpy). Since a; and b; in L*(K; 9 ® T*K), we know that g;a; — b;g; = dg;
is bounded in L*(K;g ® T*K), and hence the sequence g; is bounded in L}(K; My).
Passing to a subsequence, we can assume that g; has a weak limit g in L}(K; My).
In particular, g; converges strongly to g in L*(K; My), so we know that g is in G a.e.
because a subsequence of the g; converges pointwise a.e. to g.

It remains to show that g sends A to B. We would like to take the limit of the
equation dg; = g;a; — b;g;, but the issue is that the product of sequences that converge
weakly need not converge, even weakly. However, because the g; converge weakly to
g in L}(K;My), we know that the g; converge strongly to g in L*(K; My), and
hence using the multiplication map L*(K) x L3(K) — L?(K), we know that the g;a;
converges weakly to ga in L?(K; My), and, similarly, b;g; converges weakly to bg in
L?(K; My). The weak convergence of dg; follows from the linearity of d. Therefore,
we can take the weak limit of (5.1) in L?(K; My ® T*K) to find that

dg = ga — bg,

so ¢ indeed sends A to B.
Moreover, if the a; and b; are bounded in L?(K;g® T*K), because the g; are
bounded in L{(K; My) and L>*(K; My), we see that

V(dg:) = (Vgi)ai — b:i(Vgi) + g:(Va;) — (Vb;)g;
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is bounded in L*-L* + L*- L*+ L™ - L? + L?- L>* C L?. Hence, the g; are bounded in
L%(K; My), so, after passing to a subsequence, they converge weakly in LZ(K; My),
and the limit is g, because the weak LZ(K;Mpy) limit must agree with the weak
LA(K; My) limit. O

In both the preceding and the following lemma, the reason we need to take a sub-
sequence is that the limit connection might have a nontrivial, but compact, stabilizer,
so we might even have constant sequences A; = A and B; = A such that the sequence
of gauge transformations fails to converge. However, in a situation where there is
no stabilizer and we have a unique gauge transformation between A and B, we can
eliminate the need for taking a subsequence, using the fact that if every subsequence
of the g; has a further subsequence that converges to g, then the original sequence g;

converges to g also.

Lemma 5.3. Let K be a compact 4-manifold with a trivial principal G-bundle P.
Consider two sequences of L?(K; g @ T*K) connections A; and B; converging strongly
to A and B in L2(K; g ® T*K), respectively, such that A; and B; are gauge equivalent
via a gauge transformation g;. Then a subseguence of the g; converges strongly in
Li(K;G) to a gauge transformation g sending to A and B.

If the connections are only L*(K; g ® T*K) and converge strongly in L*(K ;g ® T*K),

then a subsequence of the gauge transformations converges strongly in L}(K; G).

Proof. By Lemma 5.2, after passing to a subsequence, the g; converge weakly in
L}(K;G) to a gauge transformation g sending to A to B. The main difficulty in
promoting weak convergence to strong convergence is that even though the g; are
bounded in L*(K;G), in the borderline regularity we cannot get strong convergence

in L*(K; Q). As before, we use the equations

dg; = g;a; — bigi,

dg = ga — bg.

The key tool that lets us promote weak convergence of the terms in this equation to
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strong convergence is that, for L? spaces with 1 < p < oo, weak convergence along
with convergence of the sequence of norms to the norm of the limit implies strong
convergence [13]. In order to get the convergence of the sequence of norms, we use

the fact that gauge transformations are isometries of L?(K; My).

We begin by showing that, after passing to a subsequence, the g; converge strongly
to g in L{(K;G). Since L} < L* is compact, we know that the g; converge strongly
to g in L*(K;QG), so it remains to show that the dg; converge strongly to dg in
LY(K; My ® T*K). As before, the g;a; are bounded in L*(K; My ® T*K), so, after
passing to a subsequence, the g;a; converge weakly in L*(K; My ® T*K). Moreover,
their limit is ga because the g; converge strongly in L*(K; G) to g and the a; converge
strongly in L*(K; g ® T*K) to a, so the g;a; converge strongly in L?(K; My ® T*K)
to ga, and the weak L*(K; My ® T* K ) limit must agree with the L?(K; My ® T*K)
limit.

We now promote the weak convergence of the g;a; to strong convergence by show-
ing that the sequence of norms converges to the norm of the limit. Indeed, because
gauge transformations are isometries, [|g;ail| 4xy = llaill jaxy, Which converges to
lall sy = llgallpagx)- Hence, we have weak convergence and convergence of the
sequence of norms to the norm of the limit, implying strong L*(K; My ® T*K) con-
vergence of g;a; to ga. Likewise, b;g; converges strongly in L*(K; My ® T*K) to bg,
so dg; converges strongly in L*(K; My ® T*K) to dg, as desired.

Next, we improve the strong L}(K; G) convergence of the g; to strong L3(K;G)
convergence. Strong L}(K;G) convergence implies strong L3(K; G) convergence, so
it remains to show that Vdg; converges to Vdg in L(K; My @ T*K @ T*K ). We
compute

Vdgz- = dg,- &K a; + giVai - Vbigi - bi X dg,-.

Because the dg; converge to dg in LY(K; My @ T*K) and the a; converge to a
in LY(K;9g®T*K), we know that the dg; ® a; converge to dg ® a in the space
L*(K; My @ T*K @ T*K). Likewise, the b; ® dg; converge to b ® dg in the space
L*(K; My ® T*K @ T*K). For the ¢;Va; term, we use a similar argument to the

54



above. This sequence is bounded in L?(K; My @ T*K ® T*K), so after passing to a
subsequence it converges weakly in L?(K; My ® T*K ® T*K). Moreover, the limit
is gVa because the g; converge to g in L?(K;G) and the Va; converge to Va in
L*(K; My ® T*K ® T*K), so the g;Va; converge to gVa in L'(K; My  T*K  T*K),
and the weak limit in L?(K; My ® T*K @ T*K) must agree with the strong limit in
LY K;My®@T*K @T*K). As for.the sequence of norms, since gauge transforma-
tions are isometries, ||g;Vaill 125y = [Vaill j2(x), Which converges to [|Vall 2k =
||gVa||L2(K). Hence, the g;Va; converge strongly in L?(K; My @ T*K  T*K) to
gVa. Likewise, the Vb;g; converge strongly in L*(K; My @ T*K @ T*K) to Vbg.
Thus, the Vdg; converge to Vdg in L*(K; My @ T*K ® T*K), so the g; converge to
g in L2(K;G), as desired. O

5.1 Coulomb gauge with fixed boundary

In this section, we prove a gauge fixing result where the gauge transformation is fixed
to be the identity on the boundary 0B, as a prelude to proving the gauge fixing result
with Dirichlet boundary conditions on the connection in Section 5.2. This result is
present in Uhlenbeck’s paper [24] but with L bounds on the connection. Here, our
connection is in L}(B* g ® T*B*) and may be unbounded in L*. In our result in
this section, we require bounds on the connection itself rather than its curvature as in
[23] and Section 5.2. Indeed, because the boundary value of the connection A =d+a
is fixed under the gauge transformation, curvature bounds alone are insufficient, and

we also need to control the L7 ,(0B* g ® T*0B*) norm of the boundary value i*a.

Proposition 5.4. There exists constanits ¢ and C such that if A = d + a is any
L3(B* g ® T*B*) connection with lall2(gey < €, then there egists an L2(B*; My)

gauge transformation g sending A to A =d+a such that
1. i*g is the identity gauge transformation on OB*,
2. A= g(A) is in Coulomb gauge, that is, d*a = 0, and
3. Nall gy < € (IFall ooy + 17alz o)
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Moreover, if A is actually in L2(B*; g @ T*B*), then g is in Lg(B‘l; My).

We would like to find g using the implicit function theorem. However, doing so
requires the gauge group to have a differentiable exponential map, which is only true
in higher regularity. Hence, we proceed similarly to the proof of Uhlenbeck’s gauge
fixing theorem with Neumann boundary conditions in [23]: We show that the space
of LZ(B* g ® T* B*) connections satisfying Proposition 5.4 is both open and closed
in L3(B* g ® T*B*), and that the space of L?(B*; g ® T*B*) connections satisfying
Proposition 5.4 is closed in LI(B*; g ® T*B*).

We first prove a priori bounds on connections in Coulomb gauge.

Lemma 5.5. There ezist constants € and C, such that if A = d + a is an L3(B*)

connection with |lal| 4z < € in Coulomb gauge d*a = 0, then

||‘1HL§(B4) <C (||FA||L2(B4) + ||i*a“L’f/2(aB4)) .

Furthermore, if A is an L3(B*; g ® T*B*) connection, then
2 .

||a”Lg(B4) <C (lIVAFAI|L2(34) + ||FA”L2(B4) + ”i*anLg/Q(aB‘l)) :

Proof. Because H'(B,9B*) = 0, Corollary 2.10 tells us that d+d*: L}"(B%; A*T*B*) —
L?(B* A*T*B*) is injective on one-forms. Because the trace map *: L}(B*) —

L?,,(0B*) is surjective, we conclude that
(d+d,i*): L3(B4S N'T*BY) — L3(B N"T*B*) x L3 ,(0B* \N"T*9B*)

is also a Fredholm operator that is injective on one-forms. Indeed, the kernel of
(d+d*,i*) on LZ(B*; N\*T* B*) is the same as the kernel of d-+d* on L3"(B*; \*T*B%).
Moreover, Corollary 2.10 tells us that range(d + d*,7*) ® (H™ x {0}) contains all
of L*(B* N"T*B*) x {0}, and the surjectivity of i* tells us that, for any oy €
L2 /2(834; N'T*9B*), the image contains a (83, ap) for some 8. Hence, range(d +
d*,5*)®(H" x{0}) contains all of L*(B*; A"T*B*)x L ,(0B*; N"T*9B*), so (d+d*, ")
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is Fredholm. Likewise, because d + d*: L2™(B% A\*T*B*) — L3(B*% \*T*B*) is an
Fredholm and injective on one-forms and 3*: L3(B* A*T*B*) — L3 ,(0B*; N'T*9B*)

is surjective, we know that
(d+d*,i%): L3(BY AN'T*B*) — LI(BS N'T*B*) x L3 ,(0B* N'T*0B*)
is Fredholm and injective on one-forms. Hence, using d*a = 0, we have bounds

lall 2oy < Co (1dallpagony + I allzz o)) (5:2)

||a||Lg(B4) < Cq (”da“[:{(m) + ”i*a’”Lgﬂ(c‘)B“)) . (5.3)
It remains to bound da in terms of F4. Using da = F4 — 1[a A a], we compute
”da”L2(B4) < ||FA||L2(B4) + %CECS ||a“L4(B4) “a”Lf(B‘i) )

where C; is the operator norm of the Lie bracket and Cy is the operator norm of the
Sobolev embedding L?(B*) — L*(B*). Hence, requiring ¢ < (CeCsCq)™!, we have

that ||al| 4 gsy < € implies

”da”m(m) < ”FA”L2(B4) + %Cal ”a”Lf(B‘l) .

Combining with (5.2), we see that

lall z2(pa) < Ca (IIFA|IL2(B4) + “i*a||L';‘/2(aB4)) + 3 llall z2zs) -

Hence,
lallzqan) < 2C6 (I1Fall sy + 5%alliz comm)

as desired.

We now proceed to the higher regularity. We have

Vda=VF4—3Vaha] =V Fs—[a® F4] — [VaAa).
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Hence,

“Vda||L2(B4) < HVAFAI|L2(B4) +Ce “a”u(m) ||FA||L4(B4) +Ce ”V‘1”L4(34) ”a”L4(34)~

We have [|Val| j4(psy < Cs ||Va||L%(B4) < Cs ”a”Lg(my However, to obtain a similar

bound for F4, we first need to prove an inequality

e A alllzgpay < Cs llall Lz gs) llall sy

for some constant C,, which does not immediately follow from the Sobolev multipli-
cation theorems because LZ is the critical level of regularity in four dimensions. We

compute

l[a A af “23(34) = [|[V[a A q] “22(34) +[l[a A a]||iz(34)
= [12[Va A a]|l2ge) + lla A ]l 72z
< AC I Vall g lalZasy + CF lall gy
< ACECE llall3s9) lallzasey + CECE llallzzme) lall facas)

2 2
< 5CECE llall iz a9 llallagm »

as desired. From here, we can bound Fy:

||FA“L4(B4) <Cs ”da”Lg(m) +3Cs||[a Aa]”L%(B“)

< Cs |lall ;3(ps) + 3CsCs llall z(gay llall 1a¢ps) -

Hence,

||Vda“L2(B4) < ||VAFA”L2(B4) + CeCs ”‘1“1,4(84) ”a”Lg(m)

2
+ %CSCSCs ”a||L4(B4) ”a“Lg(Bd) +CeCs ||a||Lg(B4) “a||L4(B4) :
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By requiring ¢ < 15(CeCsCq)™" and €? < (CeCsC,Cg)™", we have
|IVda”L2(B4) < ”vAFA”L2(B4) + iCEI ||‘1”L§(B4) .

Hence,

2 2
“da”L%(B‘l) = \/||Vda”L2(B4) + "da“L2(B4) < ||Vda||L2(B4) + ||da||L2(B4)
<NIVaFall gy + 1Fall caggey + 206" Nlallziesy + 3CG" lall zae

< NVaFallr2psy + | Fall 2gay + $Cs' lall 3y -

Combining with 5.3, we have

lollzisn < Co (IVaFall s + Il gy + 186l o) + % lall iz -

Thus,

“‘1”1,3(34) <4Cq (”vAFA”L?(B“) + ”FA“L2(B4) + “i*a”Lg/z(c’)B“)) :

O
Now, we prove that the space of connections satisfying Proposition 5.4 is open.

Lemma 5.6. There exists an € with the following significance. Let A = d + a be
an L3(B* 9 ® T*B*) connection with ||a|| 4gey < € and d*a = 0. Then there ezists
an open Li(B* g® T*B*) neighborhood of A such that any connection B in this
neighborhood has an L%(B*; My) gauge transformation g with i*g the identity that
sends B to a connection B satisfying the Coulomb condition d*b = 0. Moreover, g

depends smoothly on B.

Proof. We search for a g of the form €™, where v is a g-valued L%(B*) function. For

a small in L(B* g ® T*B*), we want a solution -y to the equation

d*(e7"(a+ a)e? — (de™)e”) = 0, (5.4
iy = 0.

59



Letting L2"(B%; g) denote L2(B%; g ® T* B*) functions ~y satisfying the boundary con-

dition i*y = 0, we consider the map

Ly"(B%9) x Ly(B4; 9 ® T*B*) - L}(B"; g)

(7, 0) = d*(e7(a + a)e” — (de™)e?)

Because we are above the critical regularity, the exponential map is smooth, as are
the relevant multiplication maps and linear maps in the above formula. To apply the
implicit function theorem, we must show that the derivative of this map with respect

to the «y variable at (v, @) = (0,0) is an isomorphism. This derivative map is
Y = da,¥] + ddy

Call this map T: L3"(B*g) — L?}(B*g). By Propositions 2.8 and 2.9 and the
fact that H°(B* dB*) = 0, we know that 7 — d*dy’ is an isomorphism as a map
L3"(B% 9) — Li(B* g).

Next, we show that the other term, d*[a,7], is a compact operator as a map

L3"(B%g) — IL3(B%g), so T is a compact perturbation of d*d, and hence is a

Fredholm operator of index zero. We compute

d*la, 7] = — xd x[a,7] = — xd[*a,7'] = — x [d* a,7'] + *[xa A d]

= [d*a,7'] + *[xa A dy'] = *[xa A dY'],
We can view this term as a composition
L3"(B'59) & LY(B% g & T"B') = Ljy(BY g @ T*BY) T L3(B' ).

The Sobolev multiplication and embedding theorems tell us that that the above maps

are continuous and the second inclusion is compact, so the composition is comapct.

Thus T is Fredholm of index zero, so to show that 7T is an isomorphism, it will

suffice to prove that 7' is injective. Working in one less degree of regularity, since
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d*d: L2"(B*;g) — L*(B%;g) is an isomoprhism, we know that there is a constant

such that ||d*dv'{| ;2 sy = €a ||| 135+ On the other hand, we know that
[*[xa A dY']ll12gey < CeCsClallall pagpay 17 | L3y »

where C¢ is the operator norm of the Lie bracket bilinear form, Cs is the operator
norm of the Sobolev embedding L(B*) — L*(B*), and Cj is the operator norm of
d: L3(B* g) — L?(B* g ® T*B*). Hence, by requiring that £ < ex(CeCsCyq)™!, we

see that ||al| 4 gy < € implies that |x[xa A dv']|| j2(psy < €a |V [l r3(pa)s 5O
”T7/||L2(B4) 2 “d*d')"”z,?(m) = |[x[xa A d’Y']“m(m) > 0.

Thus, T is injective, and hehce an isomorphism. Thus, the implicit function theorem
gives us a solution g = e~ to (5.4) depending smoothly on « in a neighborhood of
a = 0. That is, we have a gauge transformation that is the identity on the boundary
sending a connection in an L2(B*; g ® T* B*) neighborhood of A into Coulomb gauge,
as desired. O

Corollary 5.7. The space of L3(B* g ® T*B") connections A = d-+a with ||al| ;3 g4 <
€ satisfying Proposition 5.4 is open in Li(B*; g ® T*B*).

Proof. Let &4 be the smaller of the constants in Lemmas 5.5 and 5.6, and let C' be the
constant from Lemma 5.5. Because A — F is continuous as a map L?(B*; g ® T*B*) —
L2(B% g ® N°T*B*%), and a — i*a is continuous as a map L3(B%g®T*B*) —
L2 /2(3B4; g ® T*0B*), we can require that the ¢ in Proposition 5.4 be small enough
so that ||al| ;2(gs) < € implies || Fal| 254y + ||i*a“L§/2(aB4) < £4(CsC)™Y, where Cy is
the norm of the Sobolev embedding LZ(B*) — L*(B*).

Let A be a connection with ||al| 12(p1y < € satisfying Proposition 5.4, so there is a
gauge transformation g sending A to A such that i*g is the identity and d*@ = 0. We
will show that a neighborhood of A satisfies Proposition 5.4, and then pull it back to
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a neighborhood of A. The final condition of Proposition 5.4 implies that

”&“L“(B‘l) < Cs ||&||L§(B4) < CsC (HFA“L2(B4) + ”i*a“Lf/z(aB")) < &a.

Hence, we can apply Lemma 5.6 to A and find an open L2(B* g ® T*B*) neighbor-
hood of A such that for any connection B in the neighborhood, there is a L3(B*; My)
gauge transformation that is the identity on the boundary and sends B to a con-
nection B in Coulomb gauge. Moreover, the implicit funcion theorem tells us that
g depends continously on B. Hence, by shrinking the neighborhood of A, we can
guarantee that g is close to the identity in L2(B* My), and hence that B is close
to B and hence to A in L2(B* g ® T*B*). In particular, since L*(B*) is a weaker
norm than LZ(B*), we can choose the neighborhood of A small enough so that B also

satisfies ||b|| rasty < €4. Then, we can apply Lemma 5.5 to B, to find that

182y < € (Il aaey + 15%Blz ) = € (1Fellagany + 178l 2 ) ) »

because |Fp|| 2(p is invariant under gauge transformations, and i*g = 1 implies
that i*b = i*b.

We conclude that Proposition 5.4 holds on an open L2(B*;g ® T*B*) neighbor-
hood of A. Since the conclusion of Proposition 5.4 is invariant under L3(B*; My)
gauge transformations g with *g = 1, we can pull back this open neighborhood of A

via ¢~! to a neighborhood of A satisfying Proposition 5.4, as desired. O
Finally, we prove that the set of connections satisfying Proposition 5.4 is closed.

Lemma 5.8. The space of L?(B*;g ® T*B*) connections satisfying Proposition 5.4
is closed in L?(B*; g ® T*B*). Likewsse, the space of Li(B*; g ® T*B*) connections
with satisfying Proposition 5.4 is closed in L3(B*; g ® T*B*).

Proof. Let A; — A be a sequence of connections converging in L?(B*; g ® T*B*)
with [|ai|l 25y < € and [lal| 254y < e, such that there exist L3(B* My) gauge

transformations g; sending A; to A; satisfying i*g; = 1, d*a; = 0, and ||a,| L2y <
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¢ (I1Fa,

also satisfies these conditions.

2y ||i*ai||1,§/2(634))' Our goal is to find a limit g sending A to A that

Because the A; converge in L?(B* g ® T*B*), we know that the Fj4, converge
and are hence bounded in L2(B*%; g ® A’T*B*), and the i*a; converge and are hence
bounded in L? /2(8B4; g ® T*0B*). Hence, the above inequality tells us that the a; are
bounded in L%(B*;g ® T* B*), so we can pass to a subsequence where the &; converge
weakly in L?(B* g®T*B*). Let @ be the limit. By Lemma 5.2, after passing to
a subsequence, the g; converge weakly in L3(B*; My) to a gauge transformation g

sending A to A.

Finally, since i*: L{(B* My) = L3,,(0B* My) is continuous and linear, the g;
converging weakly to g in L}(B* My) implies that the i*g; = 1 converge weakly to
i*g, hence i*g = 1. Likewise, because d*: L}(B*;g ® T*B*) — L?*(B* g® T*B*) is
continuous and linear, the @; converging weakly to a in L?(B*; g ® T*B*) imply that
the d*a; = 0 converge weakly to d*d, so d*a = 0. Finally, for the inequality, we use
the lower semicontinuity of norms under weak limits and the strong convergence of

F4, and i*a; to compute

”&”Lg(m) < lim inf ||di”L‘;’(B4) <C (lim inf ”FAi"L2(B4) + lim inf ”’i*ai“z,gﬂ(aB‘l))

= C (IFall sz + liallzz ome) -

We now proceed to prove closedness in higher regularity. Let A; — A be a sequence
of connections converging in L(B* g ® T*B*) with laill 2¢pay < € and [lall 2(ge) <€,
such that there exist L2(B*; My) gauge transformations g; sending A; to A; satisfying
i*gi =1, d'a; = 0, and ||dil|;3(gsy < C (||FA.~ l22ey + ”i*az‘||z,§/2(aB4))~

As in the proof of Corollary 5.7, this inequality, along with a small enough ¢,

guarantess that ||a;|| ;4 ps) is small enough to apply Lemma 5.5, giving us

”&i”Lg(Bf:) <C ('IVA5F25’|L2(B4) + |IFA~1‘

=C (”vAiFAi”L?(m) + || Fa, ”L2(B4) + ||i*ai”[,g/2(ag4)> )

SRS e PPy
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because || Fa|| p2(gay and IV aFall L2(4) A€ gauge invariant quantities, and i*a; = 7*a;.
Since A; converges to A in L2(B% g ® T*B*), we conclude that the right-hand side
of the inequality is bounded, and hence a subsequence of the a; converges weakly
in L2(B* g®T*B*). Let a be its limit. The above argument for L?(B*; g ® T*B*)
connections gives us a gauge transformation g € L3(B*; My) sending A to A satisfying
all of the conditions of Proposition 5.4, so it only remains to show that g is actually
in L3(B*). We prove this claim in two steps from the equation dg = ga — ag. First,
note that the multiplication L3(B*) x L2(B*) — L3(B*) is continuous. Hence, since
g,a,a € LZ(B*), we know that dg € L3(B*; My ® T*B*), so g € L3(B*; My). Next,
since the multiplication L3(B*) x Li(B*) —» L2(B*) is continuous, we have that

dg € L3(B* My ® T*B*), so g € L3(B*; My), as desired. O
These lemmas complete the proof of Proposition 5.4.

Proof of 5.4. The space of L3(B*; g ® T*B*) connections A with [|a|| ;2 (g, < € is con-
nected, and by Corollary 5.7 and Lemma 5.8 the space of connections with ||a|| L2y <
¢ satisfying Proposition 5.4 is both open and closed, and hence contains all con-
nections with ||a||;2(psy < €. Meanwhile, any L(B% g ® T*B*) connection A with
lall L2sey < € is the limit in L{(B% g ® T*B*) of sequence A; of L3(B* g ® T*B*)
connections with ||al| 12(%y < € Because the A; satisfy Proposition 5.4, Lemma 5.8

tells us that so does A. O

We also prove that the gauge transformation constructed by Proposition 5.4 is
unique, at least with an appropriate choice of constants. We require L*(B*; g ® T* B*)
bounds on the Coulomb gauge representatives, but note that these follow from the
condition [|a];2(gs) < C (“FA||L2(B4) + I\z’*aIIL%/2(aB4)> and the bounds on |lal| ;254
in Proposition 5.4. In addition, for use in the future, we will assume that i*g is a

constant gauge transformation on 3B* but not necessarily the identity.

Proposition 5.9. There exists a constant € such that if A=d+aand B=d+b

are two L}(B*; g ® T*B*) connections gauge equivalent via a gauge iransformation

g € L%(BY G) satisfying
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1. bounds ||al| a4y, |Ib||L4(B4) <g,
2. the boundary condition that i*g is equal to a constant c € G on 9B*, and
8. the Coulomb condition d*a = d*b =0,

then g is the constant gauge transformation c on B*.

Proof. We have the gauge equivalence equation
dg = ga — bg.

Thus, using d*a = d*b = 0, we have

d*dg = —xd(gxa) + *d(xbg) = —x(dg A *a + gd(*a)) + x(d(*b)g — *b A dg)

— —+(dg A +a + *b A dg). (5.5)

Hence,

I dgll 2oty < (llallzagany + 1Bll s ) gl oy

<Cs (”a'”L"(B“) + ||b||L4(B4)) ”dg”Lf(B“)'
On the other hand, since H'(B*,dB*) = 0, Corollary 2.10 tells us that
*, r2n 4. *rx 4 2 4. *rmx 4
d+d: L7" (B, My @ N"T”*B*) = L*(B*; My ® \"T*B?)

is a Fredholm operator with no kernel on one-forms. The boundary condition on g
implies that i*dg = dgpii*g = dgpac = 0, so dg is indeed in L>"(B*; My @ T*B*).
Thus, there is a constant Cg independent of g such that

“dQHLf(m) < Celi(d+ d*)dg"Li’(B“) =Ce ”d*dg”L'Z(B“) :
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Combining these inequalities, we have

ldgll sz < CaCs (Nallaqany + 1Bl Laqen ) 1ol 2y -

Thus, requiring € < 3(CeCs) ™", the condition |al| 4y , [l a¢pey < € implies that

1
”d9“1,§(34) < 5 “dg"L‘;’(B‘l) J

so dg = 0. Thus g is constant on B*. Since i*g = c on dB*, we conclude that ¢ = ¢

on all of B*, as desired. O

5.2 Coulomb gauge with Coulomb gauge on the bound-
ary

In this section, we prove a second gauge fixing result, where we show that if a con-
nection has small energy, then it is gauge equivalent to a connection A = d -+ @ that
satisfies the Coulomb condition d*@ = 0 on B* and whose restriction to the boundary
i*a satisfies the the Coulomb condition d,,(i*a) = 0 on OB*, where d},;, denotes the

adjoint of the differential dyga on 9B* with respect to the metric on §B*.

Theorem 5.10. There exist constants € and C such that if A is any L?(B*; g ® T*B*)
connection with || Fa|| ;2(gay < €, then there ezists an L}(B*; g ® T*B*) connection A

gauge equivalent to A by an L2(B*;G) gauge transformation such that

1. A is in Dirichlet Coulomb gauge, that is, d*a = 0 on B* and dipa(i*a) =0 on
OB, and

2. ||&||L%(B4) S C I|FA”L2(B4)'
Moreover, if A is in L}(B*; g ® T*B*), then g € L3(B%;G).

Gauge fixing with the Dirichlet Coulomb condition d*a = 0 and d}jg.i*a = 0 is

shown in Uhlenbeck’s paper [24, Theorem 2.7], but again with L bounds. Marini
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[11] improves this result to L? connections, but with the additional assumption that,
on the boundary, ||i*Fal| 12084 < € We remove this condition, so ||e* Fal| 12(0B%)
need not even be finite. As in the previous section and [23], we first work in higher
regularity and prove that the space of L(B*; g ® T*B*) connections satisfying The-
orem 5.10 is both open and closed in LZ(B*;g ® T*B*), and then prove the result for
L}(B*; g ® T*B*) connections by showing that the space of L{(B*; g ® T* B*) connec-
tions satisfying 5.10 is closed in L?(B*;g ® T*B*). We begin by strenghtening the a

priori bounds in Lemma 5.5 in this setting.

Lemma 5.11. There erist constants ¢ and C, such that if A= d+ a is an L}(B*)
connection with |||l 4(gsy < € in Dirichlet Coulomb gauge d*a =0 and djpii*a = 0,

then

”a”Lif(B‘l) <C ||FA||L2(B4) :

Furthermore, if A is an L3(B*; g ® T*B*) connection, then
”a”Lg(B‘i) <C (HVAFA||L2(B4) + ”FA||L2(B4)) .
Proof. Recall (5.2) and (5.3).
lall 3z < Co (ldallagan, + 1i*alliz ,om)
lall 354 < Co (”da“Lg(m) + ”i*a‘”L§/2(aB4)) :

The key idea is to absorb the i*a terms by proving that d}g.i*a = 0 implies that
||i*a“L§/2(aB4) < Cr ||dal| 254y and ||i*a”L§/2(aB4) < Cr ||dal| 2(psy for some constant
Cp. Since dpps + djyp is elliptic and H'(0B*) = 0, we know that dyg, + djp, is a
Fredholm operator with no kernel on one forms. Thus, there is a constant Cy such

that

|li*a||Lg/2(aB4) < Cygll(dppa + d?)B“)(i*a’)”Lf/z(BB“) =C, ||daB4i*a||Lf/2(aB4)

=Cy ”i*(da)”L"l’ﬂ(&B“) < CyCr ”da”z,f(m),
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where Cy is the operator norm of the trace map L{(B*) — L3 ,(0B"). We could do the
same argument in lower regularity, except that the trace map L*(B*) — L2 ,(0B") is
unbounded. However, we can still get the inequality [|dspei*al| ;2 (@B < Cr ||dal| 2 54y
using the Hodge decomposition, as we show in Lemma 5.12. For now, we continue

with this assumption. Thus, by the same argument,

|[i*a||L%/2(aB4) < Cyll(dpps + d334)(i*a)||1,2_1/2(034)

=G ||d834i*a||L2_1/2(aB4) < CyCr ||da”L2(B4)'

Hence, we have

Ha”Lf(B‘l) < Ca(CyCr+1) ”da’”L2(B4) ) (5.6)

lallizey < Ca(CoCr + 1) lldall 24 - (5.7)

At this point, we can follow the argument of Lemma 5.5 with Ce(Cy,Cr + 1) in

place of Cg. By choosing € small enough, we can have [|al| ;4 g4y < € to imply
ldall 12(pay < 1 Fallz2gey + 3C6" (CoCr + D)7 lall sz sy -
Combing with (5.6) and rearranging, we have
lall L1y < 2Ca(CyCr + 1) || Fall 12(s1 »
as desired.
Likewise, in higher regularity, we can modify the argument in Lemma 5.5 to choose
¢ small enough to guarantee

||da”z,'i’(34) < HVAFA”L?(B“) + ||FA”L2(B4) + %C(_;I(CgCT + 1)_1 ||a||L§(B4) :
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Combining with (5.7) and rearranging, we have

lallzggsn < 4Ca(CoCr+1) (IVaFall ey + 1Fall o)

as desired. . 0

Lemma 5.12. Let X be a compact smooth manifold with boundary, and let « be a
differential form in L3(X; N"T*X). There is a constant Cr independent of a such
that

”daXi*a”LQ_I/Q(BX) < CT “da||L2(X) -

Proof. It suffices to consider smooth o because smooth forms are dense in L(X; A"T*X)
and the linear map dox 0 4*: L{(X; A'T*X) — L?, ,(0X; A"T*0X) and the linear
map d: L2(X; N"T*X) — L?(X; \’T*X) are continuous. By Proposition 2.9,

a =dd*"G'a + &*dG*a + Tia.

Let 8 = d*dG*'a, which is smooth by Proposition 2.9 because « is smooth, so both

i*a and i*( are well-defined. By the above equation, we see that

da = dj,

doxi*a = i*"da = i*df = daxi*B.

Hence, it suffices to prove our lemma, for 3.
It is clear that d*3 = 0. Moreover, by the boundary conditions on the range of

G"* in Proposition 2.9, we see that
%0 = i**+d*"dG'a = Li*dxdG'a = tdyxi**dG'a = Ldyxi*d**G'a = 0.

Hence, we can apply Corollary 2.10, noting that Proposition 2.9 gives us that g is

orthogonal to #*. In other words, we have a Fredholm operator

d+d: LYXN'T'X) = LAXG N T X),

69



and S is orthogonal to its kernel, so there is a constant Cy independent of S such

that
||:3”L§(X) < Cg||(d+ d*)BHL2(X) =Cq ”dﬂ“L?(x) .

At this point, proving the claim for g is straightforward. Let C be the operator norm
of dyx oi*: L2 (X; N'T*X) — L2_1/2(8X; N T*0X). We have

”daxi*ﬁuL‘il/Q(ax) < CBllexy < CCq lldBll L2xy »

as desired, letting Cr = CCq. Since do = df and dyxi*a = dyxi*3, we also have
||d0X77*0||L2_1/2(ax) <Cr ”da”m(){)

for smooth «, and the aforementioned density argument gives us the inequality for

all o € LA(X; N'T*X). |

As for the fixed boundary gauge fixing, our next step is to prove openness in

higher regularity.

Lemma 5.13. There ezist constants €4 and ¢3 with the following significance. Let
A =d+a be an L3(B*;g ® T*B*) connection with |lal| apey < €1, [ all 395 < €3,
d*a = 0, and d}jgi*a = 0. Then there exists an open L3(B* g ® T*B*) neighbor-
hood of A such that any connection B in this neighborhood has an L3(B*;G) gauge
transformation g that sends B to a connection B satisfying the Dirichlet Coulomb

conditions d*b = 0 and d(’;B4z'*13 = 0. Moreover, g depends smoothly on B.
Proof. We adapt the proof of Lemma 5.6. Again, we search for a g of the form e~ for

v € L3(B* g). For a small in LZ(B*; g ® T*B*), we want a solution 7 to the system

d*(e”(a+ a)e” — (de™7)e”) =0, (5:8)
i’ (e (a+ a)e” — (de™)e?) = 0.

This time, we need to deal with the fact that Dirichlet Coulomb representatives

are unique only up to constant gauge transformations, so in order to obtain an iso-
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morphism, we need to make sure that our spaces of infinitesimal gauge transforma-
tions do not contain nonzero constant gauge transformations. Let Li’_ll /2(634;9)
denote those L} _, ,(0B* g) functions that are L?(9B*)-orthogonal to H°(9B*), that
is, orthogonal to the constant functions on the 3-sphere. Let L} (B%g) denote
the inverse image of the closed subspace Li’_ll /2(834; g) under the restriction map
i*: Li(B*% 9) = Li_,/,(0B* g). We consider the map

L3 (B% g) x L3(B%; 9 ® T"B*) = L3(B% g) x L}};(0B% g),

(v, @) = (@ (e (a + a)e” — (de")e?), dypai* (e (a + a)e” — (de™7)e")). |

Again, this map is smooth because we are above the critical regularity. Moreover, the

range of the second component is indeed in Lf/é (0B*; g) because it is in the range

of dj 4, and it is easy to verify that if ¢ is a constant map, then <d534ﬁ, ¢>L2(B y =
(/Bv daB4¢>L2(B4) = 0 for all :3°

To apply the implicit function theorem, we show that the derivative of this map
with respect to the -y variable at (y,a) = (0,0) is an isomorphism. Call this map 7.
This map is

T: Ly"(B*g) — LI(B% 9) x L;(8B% 9),
T:~ — (d&*[a, 7] + d&*'dY, dygst*[a, '] + dhgai*dy’) .

As in the proof of Lemma 5.6, our goal is to show that T is a Fredholm operator of

index zero by decomposing T" as a sum 7' = T + K where

To: v = (d*dY, &ypai*dy')),

K: ' (d*[a,v], dygat*[a,7]) -
We then show that 7j is an isomorphism and K is compact. Note that d} .i*dy’ =
dpadypai™y'. Hence, Ty: Ly (B%g) — Li(B%g) x Lf’/é(aB‘*;g) is the composition
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of the maps
(A,i%): L3 (B* g) = Li(B* g) x Lyj5(dB% g),

(Id, Agps): L3(B% 9) x L5 (0B% g) — L}(B* g) x L1};(8B"% 9).

The fact that Apga: L} s /2(8B4,g) - LY /2(6‘34;9) is an isomorphism follows
from the usual Hodge decomposition on closed manifolds, since, by definition, we
restrict the domain and range to the orthogonal complement of the harmonic func-

tions H°(OB*), that is, the constant functions.

As for (A, *), as before, we know from Propositions 2.8 and 2.9 and the fact that
HO(B*,0BY) = 0 that A: Li7,(B%g) — Li(B%g) is an isomorphism for k > 0,
where L7, (B g) = L},,(B%g) Nkeri* = Ly, (B% g) Nkeri*. The injectivity of
(A, i) follows. For surjectivity, we use a standard argument using the surjectiv-
ity of i*. Indeed, the inverse trace map [1, Theorem 7.53] gives us surjectivity of
i*: L3 42(B%8) = Li,3,,(0B%g) for k > —1. Since L5 (BY; g) is defined as in the
inverse image of L. a /2((9B4; g) under this map, we know that i*: Ly,,(B%g) —
Lif:;/z(@B“;g) is also surjective. Given (8,7s) € Li(B*g) x Lk+3/2(aB4;g), let
71 € LY (B%g) be such that i*y; = 7. Meanwhile, we use the surjectivity of
A Lii}(B“,g) — L%(B%g) to find a v, € Lk+2(B4;g) such that Ay, = Ay, — 8.
Then, v —m € Lk’+2(B4; g), and we have A(y, — 1) = 8 and *(v1 — 12) = i*11 = 7o,
as desired. Setting k = 1 gives us that Ty: Ly (B%g) — L}(B%g) x L1/2(8B4,g)
is an isomorphism.

Next, we show that K is compact. In the proof of Lemma 5.6, we computed that
if d*a = 0, then

d*[a, ] = x[xa A dv'].

The same argument shows that if d}z,i*a = 0, then
dypai*a, Y] = dhpali*a, iy = xgpa[*apai*a A dopai™y'],

where sygs denotes the Hodge star operator on the sphere 9B*. As before, we view
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v — d*[a,'] as the composition

*[*aA|
—

Ly (BY 9) 5 LB 9@ T*BY) < L2,,(B% g ® T*B*) 13(B%g),

and the Sobolev multiplication and embedding theorems, along with the smoothness
of * and a € LZ(B%g), tells us that the maps above are continuous, and the second
one is compact, so the composition is compact. Likewise, 7' — d}g.i*[a,7'] is the

composition of the maps

dypa

L3 (B 9) = Ly (0B% 9) =% L35(0B* g ® T*9B*)

— L?(aBél; g T*BB‘L) *ap4 I*aB4i*a—)A'] L§/2(BB4§ g).

Again, the inclusion is compact, so the composition is compact.

We conclude that K is compact, so T is indeed a Fredholm operator of index zero.
Hence, to show that T is an isomorphism, it suffices to show that T is injective. We
show that this is indeed the case, assuming [|a[| ;4 gsy < €4 and ||i*al| 3554y < €3 for
€4 and e3 small enough. Now setting £ = 0 in the above argument gives us that, in

one degree lower regularity, Ty: Ly (B%g) — L*(B%g) x Lz_’ll/Q(aB“; g) is also an

isomorphism, so there exists an £ such that

“TO’Y'||L2(B4)><L2_1/2(334) > En ||’Y'“Lg(34) :
Next we bound || K[| j2(gayur2 208 from above. Since * is an isometry, we have
ll&* [a:7,]||L2(B4) = ||*[xa A d’Y']||L2(B4)
< Cg ||a||L4(B4) I|d7’||L4(B4) < CeCsCy ”a“L4(34) ”’Y'“L§(B4) ’

where Cy is the operator norm of the Lie bracket [-, -], Cs is the operator norm of the

Sobolev embedding L?(B*) — L*(B*), and Cj is the operator norm of d: L(B*; g) —
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L?(B*% g ® T*B*). Likewise,

“d534i* [a, 7’] ”L2_1/2(834) < Cs ”*(934 [*334@'*(1 AN d(?B‘li*fy’] ||L3/2(aB4)

< CCe ”i*a“L3(aB4) ”daB‘li*’Y,”L:’(aB“) < C’fC’sC('iCT ||i*a“L3(aB4) ”’7,”1,3(34)7

where C, denotes the operator norms of the embeddings L*2(8B*%) — L?, 12(0BY)
and L}, (0B*) < L*(0B*), Cj denotes the operator norm of dgga: L3 ,,(0B*; 9) —
L},,(0B*% g ® T*0B"), and Cy is the norm of the trace operator i*: L3(B*; g) —
L§ /2(334; g9). Hence, by choosing ¢4 and 3 small enough, we can guarantee that

llall jagpsy < €4 and ||i*al 3 (pp4y < €3 imlies that

“K7'||L2(B4)><L2_1/2(aa4) < %EA ”’Y'“Lg(m) :
As a consequence, since T' = Ty + K, we know that

HT?"“L2(B4)><L2_1/2(634) > %% ||7'”Lg(34) )
so T is injective. Since T has Fredholm index zero, we know that 7' is an isomorphism,
so the implicit function theorem gives us a solution g = e~ to the system (5.8) that
depends smoothly on « in a neighborhood of @ = 0. That is, for any connection
in a neighborhood of A, we have a gauge transformation sending it to a connection

satisfying the Dirichlet Coulomb conditions, as desired. O

Note that if instead of using the multiplication map L3(0B*) x L3(dB*) —
L?,,,(0B*) above we had used the multiplication map L%, ,(9B*) x L3 ,(9B*) —
L?,,,(0B*) we could weaken the condition that ||i*a|| 3554y be small to the condi-
tion that ||z*a|| L8, (084 be small. Conversely, because of the continuity of the maps
LY(B%) — L4(B*) and L3(BY) 5 L3/,(0B*) — L*(0B*), we can replace the condi-
tions [|al| ja(psy < €14 and [|i*al| 3pp4) < €3 in the above lemma with [|a]| 2ps) < en

for a suitable £;.

Corollary 5.14. The space of L(B*;g ® T*B*) connections A with | Fall 2gpay < €
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satisfying Theorem 5.10 is open in L3(B*; g ® T* B*).

Proof. We let 4 be the smaller of the constants in Lemma 5.13 and Lemma 5.11, let
€3 be the constant in Lemma 5.13, and let C be the constant in 5.11. We can choose ¢
small enough such that ||a||;>gs) < Ce implies ||@]| 4 ey < €4 and ||i*a| 3 op4) < €3

Let A be an L3(B* g ® T*B*) connection with ||Fal|2(ps) < € satisfying Theorem
5.10. Then there exists an L2(B*;G) gauge transformation g sending A to A such
that d*a = 0, d}g.i*a = 0, and ||d||L%(B4) < C||Fallj2(psy < Ce. As discussed earlier,
this implies that @ is small enough to apply Lemmas 5.11 and Lemma 5.13. Hence,
we apply Lemma 5.13 to A to find an open LZ(B* g ® T*B*) neighborhood of A
such that for any connection B in the neighborhood has a gauge transformation g
that sends B to a connection B satisfying the Dirichlet Coulomb conditions d*b = 0
and d384z'*1~) = 0. Since g, and hence B, depends smoothly on B, by shrinking the
neighborhood of A we can guarantee that B is close to A in L2(B*; g ® T*B*). Hence,
we can guarantee that B also satisfies the bounds ||E||L4( p4y < €1, SO we can apply

Lemma 5.11 to b to get

”b“L';'(B‘l) < “FB“L2(B4) = ”FB”LQ(B‘l)'

Hence, Theorem 5.10 holds for B in this neighborhood of A. Since Theorem 5.10
is gauge invariant, we can pull back this neighborhood of A via ¢g~! to an open

neighborhood of A that satisfies Theorem 5.10, as desired. a

Lemma 5.15. The space of L}(B* g ® T* B*) connections satisfying Theorem 5.10 is
closed. Likewise, the space of L2(B*; g ® T*B*) connections satisfying Theorem 5.10
is closed in LZ(B* g ® T*B*).

Proof. Let A; — A be a sequence of connections converging in L?(B*; g ® T* B*) with
| Fll 21y < €, such that there exist L3(B*; G) gauge transformations g; sending A;

to Az =d -+ Az such that d*di B O, dBB“i*&’i = O, and “a‘i"L%(B“) < C”FAz

|L2(B4)'

Because the A; and hence the F4, converge, we know that the a; are bounded in

L}(B* g ® T*B*). Hence, after passing to a subsequence, the a; converge weakly in
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L}(B% g®T*B*) to a. Applying Lemma 5.2, there exists a gauge transformation
g € L2(B% G) sending A to A =d + a.

The operators d* and d}.i" are continuous and linear, so the conditions d*a; = 0
and d,i*a; are preserved in the weak L3(B*; g ® T*B*) limit d*a = 0 and d}.a = 0.

Finally, because norms are lower semicontinuous under weak limits, we have
”&”L'{’(B“) < lim inf ”dz‘”Lf(m) < Clim IIFAz‘IlL?(B“) = ”FAHL2(B4)-

Hence, A indeed satisfies Theorem 5.10.

Meanwhile, for the higher regularity claim, let A; — A be a sequence of connec-
tions converging in L3(B* g ® T*B*) with ||Fa,|| 251y < € and || Fall;2(sy < €, such
that there exist L3(B*; G) gauge transformations g; sending A; to A; = d + @; with

d*a; = 0, djpei*d; = 0, and [ail] pps) < C || Fa,

sy < Ce. Again, let ¢4 be the
constant from Lemma 5.11, and require € to be small enough so that ||a;|| gy < Ce

guarantees that ||a;|[a psy < €4. Then, applying Lemma 5.11, we have

‘l&iIIL%(B4) <C (llvAiFfiiHL?(B“) + ”F;L

) = C (VA Fallaan + 1Pl aan) -

The convergence of the A; in L3(B* g ® T*B*) guarantees the convergence of the
right-hand side, so the @; are bounded in L%(B*;g ® T*B*), and hence, after passing
to a subsequence, they have a weak limit a. In particular, the A; converge to A in
L%(B* g ® T*B*), so we can apply the above argument to conclude that there is a
L2(B* G) gauge transformation g sending A to A and A satisfies the conditions of
Theorem 5.10. Finally, the same argument as in Lemma 5.8 shows that because 4 and

A are in L2(B*; g ® T*B*), the gauge transformation g is in fact in L2(B%G). O

Unlike for Proposition 5.4, for Theorem 5.10 we need one more ingredient, which
is to show that the space of L3(B*; g ® T*B*) connections A satisfying || Falf 2z < €

is connected. We use an argument like in [23].

Lemma 5.16. Lel ¢ be a constant, and let k > 1. Let P be a trivialized princi-

pal G-bundle over B:. The set of L3(B* g ® T*B") connections A on P such that
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[ Fall 2pay < € s connected.

Proof. Let Abean L(B* g ® T*B*) connection with || Fal| ;2(gsy < €. For0 <A <1,
let fy: B* — B* be the scaling map f\(r) = Az. Using the fixed trivialization of
the principal bundle P, we have a bundle map f\: P — P over fi: B* — B
which identifies f{P with P. Let Ay = fyA. Note that A; = A, and that Ay = d,
since f; identifies every fiber with the fiber at x = 0 via the trivialization. Moreover,
| Fall L2(B4) 1S conformally invariant, so, viewing f» as an conformal isomorphism B* —

) - B* we have
”Ff;A”LQ(Bq) = “FA“LQ(XB“) < ||FA“L2(B4) <E.

I claim that A, is a continuous path of LZ(B*;g ® T*B*) connections. Let A =
d+a and Ay = d + ay. Then ay(z) = A - a()-z). We have that

[Vl = [ W7 (000 do

B4

— x| dnea)
2B

= A%~ llvjalliz(,\.m) <A ||Vja||ig(34)-

Hence, a, is indeed in LZ(B* g ® T*B*). We now prove continuity of this path of
connections at A = 0. When j > 1, it is clear that ||Vja,\||2L2(B4) — 0as A = 0. When
§ =1, we note that [|Vay || j2pe) = ||Va||22(/\‘34), which also approaches zero as A — 0.

Finally, note that, by assumption, a € L}(B* g ® T*B*) C L*(B* g ® T*B*), so

IIGA||L2(B4) =X ”a||L2(A-B4) <A™ ”0“1,4(,\.34) ”1”1,4(,\‘34)

_ 1/4 1/4
=71 ||a’”L4(A~B4) (A4 VOl(B4)) = vol (34) / ||a”L4(,\-B4)-

Hence, |lax || 2(ga) — 0 as A — 0, completing the proof that ”‘lf\nz,i(m) —0as A —0.

We now use standard arguments to prove continuity at 0 < A < 1. Let h be such
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that 0 < A | h < 1. We compute that

”vj (aA+h - aA)||L2(B4) = ||(}‘ + il)j+l(vja)(f:\+hl‘) - )‘j+l(vja)(fz\$)||L2(B4)
< A+ B |[(VIa) (fasne) = (P @) ()| o

A+ R =N [Va(H2)]| 20, -

The second term approaches zero as h — 0, so it suffices to prove that

[I(Vja)(f,\+hz) - (Vja)(f’\x)“p(m) 0

as h — 0. Let § > 0. Approximate V’a in L? by a continuous function o so that
[V7a — all 2(g1y < §(3)?- Since «a is continuous on a compact domain, it is uniformly
continuous, so we can guarantee that [|a((A + &) - z) — (A - 2)|| 12 pay < ¢ as long as
h - z is sufficiently small. Since |z| < 1, we can simply choose h sufficiently small.

Finally, note that

[Via(X-z) — a(X- :1:)“;(34) = /34 |Via(A - z) — a(A- )| A\ - )

2

=\ ”Vja,(a;) — a(a:)”LQ(XBl,) .

Hence,

[Via(A-z) —a(A -z <ATE(3)P < g

Wiz <275

Likewise,
HVja((/\ +h)-z)—a((A+h)- $)||L2(B,,) < (A+ h)_2%(%)2 < g
provided that we choose h > —4. Hence,

[V7a((A+ h) - z) — Via(X- I)”LQ(B“) <9

for h sufficiently small, completing the proof of continuity at \. O
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We can now put together these lemmas to prove Theorem 5.10.

Proof of Theorem 5.10. The space of L3(B*; g ® T*B*) connections A with || Fa| 2(pay <

€ is connected by Lemma 5.16, and by Corollary 5.14 and Lemma 5.15 the space

of connections satisfying Theorem 5.10 is both open and closed in the space of
L3(B* g ® T* B*) connections with || F4|| ;2(gs) < €, and hence contains all L3(B*; g ® T*B*)
connections with || Fal| 24y < €. |

Meanwhile, because A — F, is continuous as a map
L}(B%g®T'BY) = L}(B% g® N*T*BY),

any L3(B*; g ® T*B") connection with || Fa|| 2 pey < € is the L}(B*; g ® T* B*) limit of
L3(B* g ® T*B*) connections A; with ||Fa||;2(gsy < €. These connections A; satisfy
Theorem 5.10, so by Lemma 5.15 so does A. O

Again, we finish by proving that the gauge transformation constructed by Theo-
rem 5.10 is unique up to a constant gauge transformation. To do so, we first prove

uniqueness up to constants on the boundary.

Proposition 5.17. There ezists a constant € such that if A= d+a and B = d+b are
two L3? /2(834; g ® T*OB*) connections gauge equivalent via a gauge transformation

geL? /2(8B4; G) satisfying
1. bounds |lal| ;3 (ap1): [1bll 3oy < €, and
2. the Coulomb conditions djg.a = djp.b =0,

then g is constant on OB*.
Proof. Equation (5.5) is also valid on 0B* given d}g.a = d})g.b = 0, so we have

dypadypig = — *aps (dapag A *ppaa + xppab A dapag).
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Then,

|1d534d3349||1,2_1/2(334) <Cs ”d534‘16349”m/2(334)
< Cs (llallxom + ¥l scom)) Idasgllsome,

< € (llallsomny + 19 5(0m0) Ndomsgllzz oy

where Cs is the operator norm of the Sobolev embeddings L%2(8B*) — L2 12(0B%)
and L} ,(9B*) — L*9B*).

Here, the standard theory of elliptic operators on closed manifolds tells us that

the operator
dogs + dyga: L3 (0BY My ® N'T*0B*) — L2, ,(0B*; My ® \N'T*9B")
is Fredholm. Moreover, it has no kernel on exact forms because

((dgps + d:934)(d8349),9>_L2(aB4) = (dspg, daB4Q>L2(aB4) .

We conclude that there is a constant Cg such that

dos19ll 2 om0 < Ca |(dops + dop+)(dos)gll 2 081 = Co dppidopagllLz ,om4)-
Putting these inequalities together, we have
||daB49||Lg/2(aB4) < CGC§ (”a||La(aB4) + ”b||L3(aB4)) ||d6849||L‘;’/2(aB4)-
Hence, requiring that ¢ < 1(CcC%)~! gives
”daB“g“Lf/z(aB‘l) < ‘é‘ "daB“g”Lf/Q(aB“) ’

50 dppeg = 0 and g is constant on 9B*, as desired. |

We can now prove the uniqueness up to constants of the gauge transformation
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constructed in Theorem 5.10 on all of B*. Again, we assume L*(B* g ® T*B*) and
L3(0B* g ® T*0B*) bounds, but these are implied by the L?(B*;g ® T* B*) bound
given to us by Theorem 5.10.

Corollary 5.18. There erists constants €4 and €3 such that if A=d+a and B =
d+ b are two L3(B*;g ® T*B*) connections connections gauge equivalent via a gauge

transformation g € L2(B*; G) satisfying

1. bounds ||a||L4(B4) M0l apey < €4 and ||z'*a||L3(aB4) , ”i*b“m(am) < €3, and

2. the Dirichlet Coulomb conditions d*a = d*b = 0 and d}jz,i"a = dp.i"b = 0,
then g is constant on B*.

Proof. Choose ¢35 small enough to apply Proposition 5.17. Then #*g is a constant
gauge transformation ¢ € G on dB*. Then choose ¢, small enough to apply Proposi-

tion 5.9, giving us that g is the constant gauge transformation c on all of B*. O

5.3 Convergence of Coulomb gauge representatives

In this section, we extend Uhlenbeck’s gauge fixing result with Neumann bound-
ary conditions [23] to L3(B*) connections. Moreover, we show that if a sequence of
small-energy connections converges in LZ(B*; g ® T*B*), then a subsequence of the
Coulomb gauge representatives converges strongly in L2(B*). Analogous results can
also be proved for the gauge fixing result with Dirichlet boundary conditions in Theo-
rem 5.10. Either boundary condition will suffice for our purposes, so we only present
the results for gauge fixing with Neumann boundary conditions, but the proofs for
the Dirichlet case are analogous. We begin by presenting Uhlenbeck’s gauge fixing

theorem.

Theorem 5.19 ([23, Theorem 2.1]). There ezist constants € and C such that if A
is an L3(B*) connection with ||Fal| 2gsy < €, then there ezists an L3(B*; My) gauge

transformation sending A to a connection A = d + a satisfying
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1. the Coulomb condition d*a = 0 on B,

2. the boundary condition i*xa = 0 on 0B*,

3. the bound ||a|| 2 g4y < C'l|Fall12(pa)-

We aim to extend this theorem to L2(B*) connections.

Theorem 5.20. There exist constants € and C such that if A is an L%(B*) connection
with || Fallj2(gsy < €, then there ezists an Li(B*; M) gauge transformation sending

A to an L}(B*) connection A = d + a satisfying
1. the Coulomb condition d*a = 0 on B*,
2. the boundary condition i*xa = 0 on 0B*,
3. the bound ||(1||L§(B4) < Cl|Fall 2 (g4y-

Theorem 5.19 tells us that Theorem 5.20 holds for LZ(B*) connections, so we use
a closedness argument analogous to [23, Lemma 2.4] and Lemma 5.8 to extend the

result to L3(B*) connections.

Proposition 5.21. Let A; be a sequence of L(B*; g ® T*B*) connections with the
bound || Fa,|| 2(gay < € that satisfy Theorem 5.20 and converge in L3(B*; g ® T*B*)

to a connection A. Then A also satisfies Theorem 5.20.

Proof. Let g; and A; be the gauge transformations and connections given to us
by Theorem 5.20. We know that the Fj4, converge to F4 in L?(B*; g ® A\*T*BY).
Hence, the || F4,

| £2(p4) are bounded, and, thus, by the assumption that [|a,|| ey <
C||Fall 2(pay, s0 are the [|a;]| 554y Hence, passing to a subsequence, the a; have a,
weak limit, which we call @. The conditions d*@; = 0 and i*xa; = 0 are linear, and
so are preserved under weak limits, giving us d*a = 0 and i**a = 0. Meanwhile, the

L(B* g ® T*B*) norm is lower semicontinuous under weak limits, and || F,

LQ(B4)
converges to || Fall »(ps), so the inequality [|@l| 2pay < C'||Fa;ll12(pay is preserved
under weak limits, giving us ||al;2gay < C || Fal|2(ps)- Finally, since, in particular,

both the a; and a; converge weakly in L*(B*; g ® T*B*), we can apply Lemma 5.2
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to show that there exists an L{(B*; g ® T*B*) gauge transformation g sending A to
A. D
Proof of Theorem 5.20. Let A be an L3(B*) connection with ||Fal| gy < £. Con-
sider a sequence of smooth connections A; that converge to A in L%(B*) and also have

|FallL2(gy < €. The connections A; satisfy Theorem 5.19, and hence also Theorem

5.20. Then A satisfies Theorem 5.20 by Proposition 5.21. O

In addition, we show that the weak subsequence convergence of the Coulomb gauge
representatives above can be strengthened to strong subsequence convergence. Note,
however, that taking a subsequence is necessary because Coulomb gauge is invariant
under constant gauge transformations. By applying constant gauge transformations
to a fixed connection in Coulomb gauge, we can construct a sequence of gauge equiv-
alent connections in Coulomb gauge that nonetheless does not converge. However,
because the gauge group is compact, we still expect convergence of a subsequence. In
higher regularity, we can resolve this issue by considering infinitesimal gauge transfor-
mations that are orthogonal to the constant gauge transformations, but in the critical
regularity infinitemsimal gauge transformations are not so well-behaved, so a more
delicate argument would be necessary. Subsequence convergence will suffice for our

purposes, however.

Proposition 5.22. There exist constants € and C such that if A; is a sequence of
L%(B*) connections converging strongly in L3(B*; 9 ® T*B*) to A with ||Fa, || 2(p4y <
€ and ||Fa|l 251y < €, then there ezist L1(B*) gauge transformations g; and g sending

A; and A to L?(B*) connections A; and A respectively, such that
1. d*a; =d*a =0,
2. i*xd; = i*%a = 0,
3. ”‘ii“L%(B‘l) < C||Fall2(pry and ”d”z,f(B‘l) < Cl|Fall 24y,

and, after passing to a subsequence, the g; converge strongly to g in L(B*; My) and

the A; converge strongly in L? (B%g® T*B*) to A.
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Proof. We construct the g; using Theorem 5.20. We construct g as in the proof of
Proposition 5.21, so, after passing to a subsequence we have g; weakly converging
to g in L}(B* My) and a; weakly converging to d in L?(B%; g ® T*B*). Hence, the
three conditions of the proposition are satisfied, and it remains to show that the

convergence of the a; to a is strong, at least after passing to a subsequence.

First, note that IIFA,»” sy = | Fa;ll 2(4y- Since the Fa, converge strongly in
L3(B* g ® N*T*B*) to F4, we know that the F; arebounded in L*(B* g ® N’T*BY),
and hence converge weakly in L2(B% g ® A\°T*B*) after passing to a subsequence.

Moreover, “F‘Ai converges, and weak L? convergence and convergence of L2

2 s
norms implies stro(ng) L? convergence. Thus, after passing to a subsequence, we
have that the F;, converge strongly in L?(B*;g ® A*T*B%), but we do not yet know
that the limit is ;. Because the g; converge to g weakly in L}(B*; My), we know
that the g; converge strongly to g in L*(B* My). Using the multiplication map
L*x [? x L* — L', we have that F; = g;Fa,g; ' converges strongly to gFsg~' = F;
in L'(B%; g ® A*T*B"). Since the L2(B* g ® A*T*B*) limit of the Fj. must be the
same as the L'(B*; g ® A’T*B*) limit, we know that the Fj, converge strongly to F;
in L2(B*%; g ® N*T"BY).

The next step is to show that convergence of curvature and Coulomb gauge implies
convergence of the connections. Since H'(B*) = 0, Corollary 2.10 tells us that
d-+d: L¥(B4 \N*T*BY) — L3*(B* A\*T*B*) is a Fredholm operator with no kernel

on one-forms. Hence, for some constant Cg, we have the inequality
18]l L2 (1) < Cali(d + d)bll 2(pa)
for all b € L?'(B*% g ® T*B*). In particular, noting that d*a; = d*a = 0, we have

”di - 6“L§(34) < CG ”d(di - &)”LQ(B“)

= ||Fa, — Fi— (@ Aai] = [ana]]| 2,
<Pz, = Fall yagey + 3 11@ +@) A (@ = @)l 20,
<||F4, — FA||L2(B4) +35CeCs [la; + all acpay 18 — @llp2pay »
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where Cg is the operator norm of the Lie bracket [-,:] and Cy is the operator norm
of the Sobolev embedding L3(B*) <+ L*(B*). Using the inequalities ||| ;2(ps) <
CFallj2(pay and ||all 25sy < Cl|Fallj2(pey and the Sobolev embeding L¥B*) —
L*(B*), by shrinking ¢ we can guarantee that ”FAiHLz(B“) < e and ||Fill oy <€
imply that [|@| 1 gsy < §(CeCs)™" and ||a]| a(psy < 3(CeCs)™". Hence, with a small

enough choice of ¢, the above inequality becomes

ll@; — &“Lf(B‘l) < “F~i - FA~||L2(B4) +3llai - (3“1,';’(34) .
Rearranging,
;= @l < 201 Fa, = Fall sy -

Hence, because the ;. converge strongly to Fz in L*(B* g ® A’T*B*), the d; con-
verge storngly to a in L#(B* g ® T*B*), as desired. Finally, by Lemma 5.3, after
passing to a subsequence, the g; converge strongly to g in L}(B*; My). O
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