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Abstract

We develop an analog of the harmonic replacement technique of Colding and Minicozzi
in the gauge theory context. The idea behind harmonic replacement dates back to
Schwarz and Perron, and the technique involves taking a function v: E -+ M defined
on a surface E and replacing its values on a small ball B2 C E with a harmonic
function u that has the same values as v on the boundary &B2 . The resulting function
on E has lower energy, and repeating this process on balls covering E, one can obtain
a global harmonic map in the limit. We develop the analogous procedure in the
gauge theory context. We take a connection B on a bundle over a four-manifold X,
and replace it on a small ball B4 C X with a Yang-Mills connection A that has the
same restriction to the boundary &B4 as B, and we obtain bounds on the difference

lB - A I 2(B4) in terms of the drop in energy. Throughout, we work with connections

of the lowest possible regularity L 2(X), the natural choice for this context, and so our
gauge transformations are in L2(X) and therefore almost but not quite continuous,
leading to more delicate arguments than are available in higher regularity.

Thesis Supervisor: Tomasz Mrowka
Title: Singer Professor of Mathematics
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Chapter 1

Introduction

The goal of this thesis is to adapt the harmonic replacement technique of Colding

and Minicozzi [21 to the gauge theory context. In the classical harmonic replacement

techniques of Schwarz [161 and Perron [121, given a real-valued function v on a domain

Q and a ball B" C , a function u on Q is constructed by replacing v on B" with

a harmonic function with the same values on the boundary of B'. In other words,

outside of B', u is equal to v, and on B", u is equal to the solution of the Dirichlet

problem for the Laplacian with boundary value v laB". This procedure decreases

energy, and, repeating this process for balls covering Q, one can obtain a harmonic

function on all of Q. In [21, Colding and Minicozzi adapt this technique to the

nonlinear context of maps v: E -+ M from a two-dimensional surface E to a manifold

M, where they replace v on a small ball B2 C E with a harmonic map u. In this

thesis, we do the analogous construction for connections on a principal G-bundle over

a compact four-manifold X, where G is compact. Given such a connection B and

a four-ball B' C X, we construct a connection A by replacing B with a Yang-Mills

connection on B" whose restriction to the boundary dB matches that of B. More

precisely, we prove the following theorem, presented as Corollary 4.5.

Theorem 1.1. Let P -+ X be a principal G-bundle over compact 4-manifold X

with compact gauge group G, and let B4 c X be a 4-ball. Let C be the space of

L2(X) connections modulo L12(X) gauge transformations, and let C,,B4 be those gauge
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equivalence classes of connections [B] with small energy on B4 , that is, IFBII [,
2
(B

4
) <

E. Then for small enough E there is an energy-decreasing continuous map CE,B4 -+

CB4 sending [B] to an equivalence class of connections [A], where A is Yang-Mills

on B' and gauge equivalent to B outside B4 .

Note that we work with connections in the borderline L'(X) regularity, which

is the natural choice in four dimensions, but leads to more delicate arguments than

for smooth connections. In particular, in the borderline regularity, we do not have

a Sobolev embedding L'(X) c+ C0 (X), as a result of which the group of L'(X)

gauge transformations is not a Hilbert Lie group. However, working with smooth

connections would be insufficient for our purposes, because, after replacing a smooth

connection with a Yang-Mills connection on a ball B4 c X, the resulting connection

is not smooth across the boundary &B4 .

We can also express the Yang-Mills replacement map above as a homotopy, at

least on compact families of connections, presented as Corollary 4.6.

Theorem 1.2. Let P -+ X be a principal G-bundle over compact 4-manifold X

with compact gauge group G, and let C be the space of Li(X) connections modulo

L (X) gauge transformations. Let IC be a compact family in C. Then around any

point x E X there exists a ball x E B4 c X and homotopy ht: IC -+ C such that

h1 is the identity, ho sends IC to connections that are Yang-Mills on B4 , ht([B])

has monotone nondecreasing energy, and restricting to the complement of B4 the

homotopy is constant ht([B]) = [B].

One should think of IC as representing a homology or homotopy class. Applying

harmonic replacement to a compact family of maps is a key step in [21, where Cold-

ing and Minicozzi apply harmonic replacement to a one-parameter family of maps

Vt: E 2 -+ M3 representing a sweep-out of M3 in order to prove finite extinction time

of Ricci flow on homotopy 3-spheres. In the gauge theory context, mapping compact

families of connections to compact families of Yang-Mills connections is a way to relate

the topology of the moduli space of anti-self-dual Yang-Mills connections to the much

better understood space of all connections modulo gauge, as seen in work of Taubes
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[19, 20, 211 and Donaldson [4]. In turn, the topology of the moduli space of anti-self-

dual Yang-Mills connections gives rise to Donaldson invariants, which have myriad

applications and have been used to show that a topological manifold has no smooth

structures [31 or infinitely many smooth structures [9]. In addition, recent work of

Feehan and Leness [71 connects Donaldson invariants to the newer Seiberg-Witten

invariants [251.

Another potential source of applications of Yang-Mills replacement arises from its

similarity to Yang-Mills gradient flow, in that both give energy-decreasing paths of

connections. Yang-Mills gradient flow has been extensively studied recently [6, 181,

and perhaps the local nature of each replacement step and the greater control afforded

by the choice of the balls B4 c X will lead to the use of Yang-Mills replacement as

an alternative to or in conjunction with Yang-Mills gradient flow.

In this thesis, we perform Yang-Mills replacement on a single ball B4 c X, but

we can repeat this process on balls covering the compact manifold X. Repeating this

process indefinitely, one would like to pass to the limit to obtain a global Yang-Mills

connection, but doing so is a delicate matter and is the natural direction in which

to continue this work. The difficulty arises because, although energy is decreasing, it

may concentrate around finitely many points. Because the Yang-Mills replacement

theorems above require there to be small energy on the ball B4 , to continue the re-

placement process indefinitely, we would need to choose balls whose radii shrink to

zero. This bubbling behavior is a common feature of all of the nonlinear contexts

discussed and has been studied for sequences of maps on surfaces [151, for general

sequences of connections [171, and for Yang-Mills gradient flow [6]. Based on Sed-

lacek's work [17], one expects a weak limit of the sequence of connections to exist,

but potentially on a different bundle, and it is natural to ask if one can say more

about the bubbling behavior for Yang-Mills replacement.

The key ideas of this thesis are in Chapters 3 and 4. In Chapter 3, we discuss the

local question of finding a Yang-Mills connection on a ball B4 . More precisely, we

prove the following theorem, presented more fully as Theorem 3.1.

Theorem 1.3. Let B4 be a smooth 4-ball with arbitrary metric, let i: 0B 4 - B4 be

11



the inclusion, and let P -- B4 be a principal G-bundle with trivializing connection d.

There exists an E > 0 such that if Aa = d + a is an L' 2(DB 4; g T*&B4 ) connection

with |ao||L2 (aB
4 ) < E, then A9 extends to an Li Bg 0 T* Bl) Yang-Mills connection

A with i*A = A0 , and A depends smoothly on AO.

Then, using the gauge fixing results of Chapter 5, in Theorems 3.5 and 3.6, we

broaden the hypotheses of this theorem and prove a uniqueness result for the solutions.

Along the way, we prove the following energy convexity result, presented in greater

generality as Proposition 3.4.

Proposition 1.4. Let A = d+a and B = d+b be L'(B4 ; g 0 T*B4) connections with

bounds on energy, in Coulomb gauge d*a = d*b = 0, and with bounds on ||a|IL4(B)
and IbIIL4|(B4). If A and B have the same restrictions to the boundary i*A = i*B and

A is Yang-Mills, then

|lB - A||2(B4) < C (IIFB 1 2(.B 4 ) - |FA11 2 (B4))

This problem has been discussed by Marini [111 and Riviere [141, but instead of

a direct energy minimization method used in their work, we use the inverse func-

tion theorem, allowing us to conclude smooth dependence of the solution A on the

boundary value AO. The inverse function theorem method motivates the definition

of L2n(B4; A*T*B 4) in Chapter 2 as the dual of those forms in L2(B4; A*T*B 4) that

are normal to the boundary &B4. This space is a more appropriate codomain of the

Yang-Mills operator A h-4 d*FA on L 2(B4; 9 0 T*B4) connections than the standard

space L2I(B4; A*T*B 4), which is the dual of L2(B 4; A*T*B 4 ) forms that vanish on

the boundary. We finish Chapter 3 by constructing the local version of the energy-

decreasing homotopy in Theorem 1.2.

As we pass to the global question in Chapter 4, the main issue to be addressed

is that in Theorem 1.3, we are able to prescribe the tangential component i*A of A

on the boundary O9B4, but not the normal component. As a result, when we take

a global Lj (X) connection B and construct a connection A that is Yang-Mills on

the ball B4 and equal to B outside the ball, the tangential components of A and

12



B match on the boundary 9B 4 , but the normal components might not, and so the

resulting piecewise-defined global connection is not L'(X). This motivates the defini-

tion of L'(X; A*T*X), a space between L4(X; A*T*X) and L'(X; A*T*X) defined in

Chapter 2 as those forms a such that a E L4(X; A*T*X) and da E L2 (X; A*T*X).

However, unlike forms in L2(X; A*T*X), d*a is not necessarily in L 2 (X; A*T*X).

We show that the resulting connection A is an L2(X) connection. However, losing

regularity after a Yang-Mills replacement step is unsatisfactory because it prevents us

from repeating the Yang-Mills replacement process on an overlapping ball. Because

L2(X) connections have well-defined L2 (X) curvatures, one might ask if a gauge fix-

ing argument could show that they are gauge equivalent to L'(X) connections. We

answer this question in the affirmative, proving the following theorem, presented as

Corollary 4.4.

Theorem 1.5. The space of L 2 (X) connections modulo L (X) gauge transformations

is homeomorphic to the space of L'(X) connections modulo L'(X) gauge transforma-

tions.

To prove this theorem locally, we show that Uhlenbeck's gauge fixing results extend

to the L2(X) regularity, so, locally, an L (X) connection is gauge equivalent to an

L (X) connection. However, patching together these local gauge transformations

to obtain the global result is a delicate matter because L4(X) and L2(X) gauge

transformations are at the borderline regularity and hence are not continuous and do

not have a smooth exponential map, so naive cutoff function methods fail.

Finally, in Chapter 5, we develop the gauge fixing machinery that powers the

results in Chapters 3 and 4, building off of results by Uhlenbeck [23, 241 and Marini

[111. For all of these results, we start with an L2(B4 ) connection A on a ball B4 with

small energy IFAlIL2(B4) < E, and we find an L'(B4 ; G) gauge transformation g that

sends A to a connection A = d + d satisfying the Coulomb condition d*& = 0 and a

bound on I|iIIL 2 (B4). However, there are two natural boundary conditions to impose

on the connection, either the Neumann conditions i**d = 0 or the Dirichlet conditions

d*B4i*, where i* is the restriction to the boundary. Uhlenbeck [231 provides a full
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treatment for the Neumann boundary conditions, but her treatment of the problem

with Dirichlet boundary conditions in [241 and the later improvement by Marini [111

have additional regularity assumptions on A. We prove the result without these

assumptions. Along the way, we also prove the Coulomb gauge fixing result where we

impose Dirichlet boundary conditions on the gauge transformation instead of on the

connection. Finally, we extend these results to L'(B4 ) connections A, and we improve

the weak L2(B4 ; g 0 T*B4 ) convergence of the Coulomb gauge representatives in [231

to strong L2(B4 ; 8 0 T*B4 ) convergence.

14



Chapter 2

Preliminaries

2.1 Yang-Mills Connections

Following the standard references [10, 51, we introduce the notation we will use for

principal G-bundles and connections. Let G be a compact Lie group. We fix a

unitary representation G <- UN C MN, where MN denotes the vector space of N by

N complex matrices.

Definition 2.1. Let P -+ X be a principal G-bundle over a compact manifold X,

and let ad P denote the associated bundle P xG g. Let A be an Lj (X) connection,

and let FA E L2 (X; ad P 0 A2T*X) be its curvature. The energy of A is

S(A) = . 1F1j2 (X.

Definition 2.2. A Yang-Mills connection A is a critical point of the functional S. If

X has boundary, then we require A to be a critical point with respect to variations

At such that i*At is gauge equivalent to i*A on the boundary, where i: OX - X is

the inclusion.

Using variations that are fixed on the boundary, we see that a Yang-Mills connec-

tion A satisfies the Yang-Mills equations

(FA,dAc L2(X) = 0

15



for all c c L(X; ad P 0 T*X) with i c = 0 on DX. When we are working over a local

trivialization d of P over B4 C X, we will also make use of the projected Yang-Mills

equations, where we only require that (FA, dAc)L2(134) 0 for c E L2(B 4 ; g 0 T*B 4)

satisfying d*c = 0 on B4 in addition to i*c = 0 on DB4 .

We now review gauge transformations and their action on connections.

Definition 2.3. A gauge transformation is an automorphism of P. A gauge trans-

formation can be represented by a section of the associated bundle Ad P = P x G G c

P x ~MN with the conjugation action of G on G c MN. By an L' gauge transforma-

tion we mean an Lk section g of the vector bundle P X G MN such that g(x) E Ad P

a.e. on X.

With respect to a local trivialization of P over B4 c X, a gauge transformation is

a G-valued function, and we can write down how explicitly how it acts on a connection

A expressed in this trivialization as d + a, where a is a g-valued one-form. We have

g(A) = d + gag-' - (dg)g-'.

Writing g(A) = B = d + b, we can rewrite the above equation as

dg = ga - bg,

where the terms in the equation are MN-valued one-forms.

When (k + l)p > dim X, it is well-known [8, 231 that the group of Lik 1 gauge

transformations has smooth multiplication and inversion and acts smoothly on LP

connections, using the multiplication map Li 1 x L s Li 1 and the Sobolev

embedding Lk 1 -+ Co.

In the borderline case (k + l)p = dim X, the matter is more delicate. Because

gauge transformations are G-valued and G is compact, they are uniformly bounded

in L'. As a result, multiplication of borderline Lk+ 1 gauge transformations is still

well-defined, as is their action on Lk connections. However, these maps are only

smooth with the L'e n L' topology on gauge transformations. With just the LPe
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topology, the situation is more subtle. With just the L'k 1 topology, multiplication of

gauge transformations and the action of gauge transformations on connections are no

longer smooth maps, but nonetheless they are continuous. We will prove this claim

for L2 gauge transformations on a 4-manifold, but the argument works for general

borderline groups. The key idea that gives us just enough power to prove continuity

is that G-valued functions act as isometries on L spaces.

Proposition 2.4. Let P be a principal G-bundle over a compact 4-manifold X with

compact group G -+ UN C MN. The group of L 2(X) gauge transformations has

continuous multiplication and inversion maps, and L2(X) gauge transformations act

continuously on L2(X) connections.

Proof. We work over a closed ball in a local trivialization B4 c X. Consider a

sequence of L2(B4 ; G) gauge transformations gi and hi converging in L2(B4; G) to g

and h, respectively. We aim to show that gihi converges to gh in L2(B4 ; G). By the

Sobolev multiplication maps, we know that gihi converges to gh in any weaker space,

such as L 2 (B4; G).

We compute that

V 2 (g hi) = (V 2gi)hi + 2(Vgi)(Vhi) + gi(V 2 hi).

The middle term is straightforward. We know that the sequences Vgi and Vhi

converge in L 2(B4 ; MN 0 T*B 4 ), and we have a Sobolev multiplication map L2 x

I -+ L 2. The other two terms are more subtle. We know that V 2 gi converges in

L2 (B 4 ; MN 0 T*B 4 0 T*B4 ) to V 2 g, and to avoid repeating the argument later, we

instead consider a general sequence #i converging in L 2 (B4 ; MN 0 T*B 4 0 T*B 4) to

q, with #, = V 2g, in this particular case.

We show that the #ihi converge in L 2 (B4 ; MN 0 T*B4 0 T*B4 ) to Oh by show-

ing that every subsequence of the #ihi has a further subsequence that converges to

Oh. We begin by passing to a subsequence of the #ihi. The hi, being G-valued

a.e., are uniformly bounded in L*(B4 ; MN). As a result, the #ihi are uniformly

bounded in L 2 (B4 ; MN T*B4 0 T*B 4 ), and hence after passing to a further sub-
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sequence the #ihi converge weakly in L2 (B4 ; MN 0 T*B4 0 T*B 4). This weak limit

must be Oh because we know that #ihi converges to Oh in any weaker norm, such

as L'(B4 ; MN 0 T*B 4 0 T*B4 ). To upgrade this weak convergence to strong conver-

gence, we note that multiplication by an element of G is an isometry of MN, and

hence

|#0ihi||IL2(B4) =J iJL2{B4) _ 1 IL2(B4) = || h|l2,(BM)

For L2 , and in general for I? spaces with 1 < p < oo [13], weak convergence along with

convergence of the sequence of norms to the norm of the limit implies strong conver-

gence. We conclude then that this further subsequence of the #ihi converges strongly

in L2 (B4 ; MN 0 T*B 4 0 T*B 4 ) to Oh, and hence so does the original sequence. Simi-

larly, the sequence g,(V 2hi) converges to g(V 2 h) in L 2 (B4 ; MN 0 T*B4 0 T*B4 ), and

so V 2 (gshi) converges to V 2 (gh) in L2 (B4; MN 0 T*B4 0 T*B4 ) as desired.

Inversion is continuous by a much simpler argument. Because we have chosen a

representation G " UN, inversion is the same as the conjugate transpose, which is

a linear, and hence smooth, map L 2(B
4 ; MN) - L 2(B

4 ; MN). Using this fact, we

can show that the action of gauge transformations on connections is continuous by

an analogous argument to the above.

We would like to show that the map g(a) defined by

L|(B4 ; G) x L2(B 4 ; g 0 T*B4) - L2(B4 ; gT*B4)

(g, a) -4 gag-1 - (dg)g-1

is continuous. Again, we choose sequences gi and a that converge in L2(B4 ; G)

and L2(B4 ; g 0 T*B 4 ) to g and a, respectively, and we aim to show that the gi(ai)

converge to g(a) in L 2(B4 ; g 0 T*B4 ). From the Sobolev multiplication theorems, we

have convergence of the gi(ai) to g(a) in any weaker space, such as L2 (B4 ; g 0 T*B4 ).

We compute

V(gi(ai)) = (Vgi)aigq[ gi(Vai)g + ga(Vgi) - (Vdgi)g - dgj(Vgi1).

18



Using the Sobolev multiplication theorems, we know that (Vgi)ai, Va, aiVg[', Vdgi,

and dgi (Vg. 1 ) all converge in L2 (B4 ; MN 0 T*B4 0 T*B 4) to the expected limits. As

a result, to prove convergence of the V(g (a2 )) in L 2(B4 ; MN 9 T*B 4 0 T*B 4 ), it suf-

fices to prove the statement that if qi converges to # in L2 (B4 ; MN 0 T*B 4 0 T*B4 ),

then giqi and Oig- 1 converge to go and /g- 1 in L 2 (B 4 ; MN 0 T*B 4 0 T*B4 ). Since

the g- 1 converge in Lj (B4 ; G) to g-1 , we proved this statement for #igi' above, and

the statement for gi4; is analogous.

2.2 The Hodge Decomposition Theorem with Bound-

ary Conditions

In this section, we summarize the treatment in [22, Section 5.91. Let X be a smooth

manifold with boundary OX, and let i: aX -+ X be the inclusion.

Definition 2.5. Let L 2'"(X; A*T*X) denote the L 2(X) differential forms a that are

normal to the boundary, that is, they satisfy the Dirichlet boundary condition i*a = 0.

Likewise, let L 't(X; A*T*X) denote the L2(X) differential forms a that are tangent

to the boundary, that is, they satisfy the Neumann boundary condition i**a = 0,

where * is Hodge star operator.

Definition 2.6. Let R" denote the harmonic forms in L2'"(X; A*T*X). That is,

Wn contains those L2(X; A*T*X) forms a such that i*a = 0, da = 0, and d*a = 0.

Likewise, let 71 denote those L2(X; A*T*X) forms a such that i**a = 0, da = 0,

and d*a = 0.

Proposition 2.7 ([22, 5.9.36,5.9.381). The forms in 'H' and Wt are smooth.

Proposition 2.8 ([22, 5.9.91). The natural map from the Dirichlet harmonic forms

into the cohomology of X rel boundary is an isomorphism. That is, 7" ' H* (X, DX).

Likewise, V = H*(X).
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Proposition 2.9 ([22, 5.9.81). There exists Green's functions

G": L 2 (X; A*T*X) L2(X; A*T*X), and

Gt : L 2 (X; A*T*X) -* L|(X; A*T*X)

such that:

1. For all L2 (X; A*T*X) differential forms a,

a = dd*Gfa + d*dGna + xcia,

a = dd*Gta + d*dGta + Al&a,

where ir and 4t denote the L 2 (X) projections to the finite-dimensional spaces

R' and Wt, respectively.

2. The operators dd*Gn, d*dGn, and 7r' are L 2 (X) -projections whose ranges are

L 2 (X) -orthogonal to each other. Likewise, the operators dd*Gt, d*dGt, and 4t
are L 2 (X)-projections whose ranges are L 2 (X)-orthogonal to each other.

3. The range of G' satisfies the boundary conditions 1i*Gna 0 and i*d*Gna = 0.

4. The range of Gt satisfies the boundary conditions i**Gta = 0 and i*d**Gta = 0.

5. For any k > 0, G", Gt : L2(X; A*T*X) -÷ L +2 (X; A*T*X).

Corollary 2.10. Let X be a smooth manifold with smooth boundary, and let k > 0.

Let Lk'+i1(X; A*T*X) denote those Ll 1 (X; A*T*X) forms a such that i*a = 0 on

OX. Then

d+d*: Ln(X; A*T*X) -4 L (X;A*T*X)

has kernel and cokernel 1".

Likewise, let L j 1 (X; A*T*X) denote those LY+ 1 (X; A*T*X) forms a such that

i * *a = 0 on &X. Then

d+d*: L (X;A*T*X) -4 L (X; A*T*X)
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has kernel and cokernel 71'.

Proof. Assume that a c L '+,1(X; A*T*X) is in the kernel of d + d*. The condition

i*a = 0 implies that

(da, d*a)L2(X) (a, d*d*a)L 2(X) J A *d*= 0.

Hence, (d + d*)a = 0 implies da = 0 and d*a = 0, so a E 7' by definition.

Next, we show that the range has trivial intersection with 71". Let (d + d*)a

and i*a = 0, where W E 7f'. Then

I#2(x) =(da, )L 2 (X) + (d*a, 4)L 2 x)

(d*q$)L2(X) + (o, do5 )L2(X) + oeA *q5- 4fbA *oi 0.

Finally, we show that the range of d+d* contains all E E Lk(X; A*T*X) where # is
L2-orthogonal to W". Proposition 2.9 gives us G': L (X; A*T*X) -+ L(X; /\*T*X)

such that AG"/ = / if / is orthogonal to 7-". Hence, our desired preimage is

a = (d + d*)Gn/. By Proposition 2.9, we have boundary conditions i*G"f = 0 and

i*d*G"# = 0. Hence,

i*a = i*dGno + i*d*Gno = di*G no = 0,

so a E L' 1 (X; /*T*X), as desired.

The second claim is analogous, or, alternatively, it follows from the identity

d + d* = (-1)"(p-0+1*(d + d*)*,

where (-1)n(p-)+ acts on A*T*X by (-l1)'(P-)+1 on the degree p component of the

exterior algebra, along with the facts that the isometry * sends L '+"1 (X; A*T*X) to

Lk',(X; A*T*X) and vice versa, and * sends W" to 7Vi and vice versa. 0
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2.3 The space L 2(X; A*T*X)

The Yang-Mills operator A H-> d* FA is a second-order operator, so if our connection

A is in L 2(X; ad P & T*X), then d* FA E L_1(X; ad P 0 T*X). However, the space

L2 1 (X) ends up being insufficient for our purposes. By definition, L21 (X; A*T*X) is

the dual of L2(X; A*T*X)o, that is, L2(X; A*T*X) forms that vanish on the bound-

ary OX. We need to instead define a larger space, L_i(X; A*T*X), as the dual of

L"'"(X; A*T*X), that is, L (X; A*T*X) forms whose tangential components vanish

on the boundary OX. In the remainder of the section, we prove basic results about the

space L 2,,(X; A*T*X) needed to show that d* FA and rd*dAFA remain well-defined

when their target is L2,(X; ad P ® T*X) instead of L2 1 (X; ad P ® T*X).

Definition 2.11. Let L2,,(X; A*T*X) denote the dual Hilbert space of L2'"(X; A*T*X).

(See Definition 2.5.)

Proposition 2.12. The space L'",(X; A*T*X) is reflexive, and smooth functions are

dense in L2,,(X; A*T*X).

Prvof. Since Li'"(X; A*T*X) is a closed subspace of LI(X; A*T*X), the reflexivity

of L2'"(X; A*T*X) follows from [1, 1.211 and the reflexivity of L 2(X; A*T*X) [1, 3.5J.

Meanwhile, using the reflexivity of Li'"(X; A*T*X), an argument like in [1, 3.121

shows that L2 (X; A*T*X) is dense in L2'"(X; A*T*X), and so C (X) is dense in

L12,, (X; A*T*X) also. l

Lemma 2.13. The operators

d: L(X; A*T*X) - L2 (X; A*T*X), and

d*: L2(X ; A*T*X) -+ L2 (X; A*T*X)

have closed ranges.
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Proof. The operators

dd*Gt : L 2 (X; A*T*X) - L2 (X; A*T*X), and

d*dGn: L 2 (X; A*T*X) L L2 (X; A*T*X)

are projections and hence have closed ranges, so we proceed by showing that range(d) =

range(dd*G t ) and range(d*) = range(d*dG n).

To show that range(d) C range(dd*G t ), consider da for a E L1(X; A*T*X). By

Proposition 2.9, since da E L2 (X; A*T*X), we have an orthogonal decomposition

da = dd*Gtdo + d*dGtda -+ 4a. I claim that, in fact, da = dd*Gtdo. Because the

decomposition is orthogonal, we simply check that

(do, d*dGt doz)L=(X(A*T*X) (ddo, dGt da)L2(XA*T*X) - j do A *dGtdo =0,

(do, rzda) A = (o, d*rIda) *T*X) + a A *7rrda = 0.

Here, we used the boundary conditions i**dGtda = i*d**Gtda = 0 and i**-tda =

0, along with the fact that i*(da) is well-defined even though da E L2 (X; A*T*X)

because of the identity i*da = di*o. Hence, range(d) = range(dd*Gt ).

Likewise, for d*, we have

(d*a, dd*Gnd*a)L2(X) = (d*d*a, d*Gnd*a) L2 (X) + j d*Gnd*a A *d*a = 0,

(d*a,7rZ d*a) =(X) (o, dwrd*a)L2(X) - fx rd*v A *0 = 0,

using i*d*G" = 0 and i*(Ii") = 0, along with the fact that i**d*a is well-defined in

L 2 1/2 (X; A*T*aX) by the equation i**d*a = i*d * a = di**a. Hence d*a =

d*dGna, so range(d*) = range(d*dGn ). El

Proposition 2.14. The operator d*: C (X; A*T*X) -> L2,n(X; A*T*X) extends to

a bounded operator d*: L 2 (X; A*T*X) -+ L2,n(X; A*T*X) with closed range.

Proof. Let f E C'(X; A*T*X), and let L L2'"(X; A*T*X). Because i*0 = 0, we
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have

d*f, )L2(X) = (f, d0(X) - A *f = (f, d)L2(x).

Hence,

(~d*f,#) ( () 2(X),

so I|d*fIIL2,-(y) < IflL(X). Because Co is dense in L2"(X; A*T*X), we conclude

that d* extends to a bounded operator d*: L 2 (X; A*T*X) -+ L2,(X; /\*T*X), de-

fined by the equation

(d*f,#)L2(X) = (fd#)L2(X)

for f E L 2 (X; A*T*X) and # E L'"(X; /\*T*X).

By the closed range theorem, d*: L2 (X; A*T*X) -- L2,n(X; A*T*X) having closed

range is equivalent to its transpose d: L'"(X; A*T*X) -+ L2 (X; A*T*X) having

closed range. On a larger domain, we know that d: L2(X; A*T*X) -+ L2 (X; A*T*X)

has closed range by Lemma 2.13. Because L1(X; A*T*X) is a Hilbert space, ker d has

a closed complement (ker d)', so d: (ker d)' -- range(d) is an isomorphism of Banach

spaces. Therefore, the image under d of the closed space (ker d)' n ker i* is closed.

Summing with ker d n ker i*, we see that d(ker i*) = d((ker d)' n ker i*), so d also

has closed range as an operator L '"(X; A*T*X) - L 2 (X; A*T*X). Therefore, by

the closed range theorem, d*: L2 (X; A*T*X) -* L2,,(X; A*T*X) has closed range,

as desired.

Proposition 2.15. The operator

IFd* =d*dG": L2 (X; A*T*X) -+ L2 (X; A*T*X) -+ L2,n(X; A*T*X)

extends to a bounded operator lrd*: L(X; /\*T*X) -+ L2,n(X; *T*X), and this

operator is a projection to the range of d*: L2 (X; A*T*X) -+ L (X; A*T*X).

Proof. Let y E L 2 (X; A*T*X), and let # E LI'"(X; A*T*X). Because -d* is a pro-

jection operator to a factor in the Hodge decomposition, we have

(wrd*y, O/i1J2(X) (yd*O) [2(X)
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By Proposition 2.9, # E L (X; A*T*X) implies Wd.* E L(X; /\*T*X). Furthermore,

I claim that L L2"(X; A*T*X) implies Wd*(. E L2'"(X; A*T*X). Indeed,

0 = i*= i*(dd*G"O + d*dG"o + -x-Hq) = di*d*Gq + Zi*d* a. = i*xa-O

because i*(7") = 0 by definition and i*d*G" = 0 by Proposition 2.9. Hence,

(r-d-y, AL2(X) 1IYjL2,n(X) Id y 012kiL 2(X) < C |YL2,(X) ,1011L2(X)

for some constant C, so

IId*YIIL 2,n(X) < C 1y11L2.X)

Since L2 (X; A*T*X) is dense in L2 "(X; A*T*X), we see that 7Fd* extends to a

bounded operator L2,n(X; A*T*X) - L2,n(X; A*T*X), defined by the equation

(7d*y, 0)L2(x) = (ywd*q) L2(x).

To show that l-d*: L,(X; /*T*X) -+ L,(X; /*T*X) is a projection to the range

of d*: L 2 (X; A*T*X) -+ L2,(X; A*T*X), first recall that in the proof of Lemma

2.13 we showed that the range of d*: L2(X; A*T*X) -+ L 2 (X; A*T*X) is equal to

the range of the projection l-d*: L 2 (X; A*T*X) -+ L2 (X; A*T*X). Hence, if y E

d*(L2(X; A*T*X)), then y = rd*y. Since L2(X; A*T*X) is dense in L2 (X; A*T*X)

and d*: L 2 (X; A*T*X) -+ L2,n(X; A*T*X) is bounded, we know that d*(L2(X; A*T*X))

is dense in d*(L 2 (X; A*T*X)) c L "(X ; A*T*X). Because ird*: L2,n(X; A*T*X) -+

L- 2 (X; /\*T*X) is continuous, the equation y = xd*y remains true for all y E

d*(L 2 (X; A*T*X)). Thus, d*( L2 (X; A*T*X)) C 'rd. (L 2(X; A*T*X)).

Conversely, for all y E L2 (X; A*T*X), we know that xd*y E d*(L2(X; A*T*X)) C

d*(L 2 (X; A*T*X)). We know that L 2 (X; A*T*X) is dense in L "(X; A*T*X), that

rd* : L2 '"(X; A*T*X) -+ L,(X; /*T*X) is continuous, and that d*(L 2 (X; A*T*X))

is closed in L2,"(X; A*T*X) by Lemma 2.14, so rd*y E d*( 2 (X; /\*T*X)) remains
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true for all y E L2"(X;A*T*X). Hence, Wd. (L2 ,(X; *T*X)) = d*(L 2 (X; A*T*X)),

and the above fact that y = d*y for all y E d*(L 2 (X; A*T*X)) now implies that 7rd*

is a projection, as desired.

Corollary 2.16. The operator A h-+ ,rd*d FA is well-defined and smooth as an oper-

ator L (X; ad P 0 T*X) -+ L2,n(X; ad P 0 T*X) n range(d*).

Proof. We know that A - FA is smooth as an operator

L|(X; ad P 0 T*X) -+ L2 (X; ad P 0 A 2T*X).

By Proposition 2.14, d*: L 2 (X; ad P 0 A 2T*X) -+ L2,n(X; ad P 0 T*X) is a bounded

linear operator, and hence smooth. The multiplication map Li (X) x L 2 (X) x L2'"(X) L

L4(X) x L2 (X) x L4 (X) -* L'(X) -+ R is bounded, and hence by duality so is the bi-

linear multiplication map L2(X) x L 2 (X) -+ L2"(X), so A 1-4 [aA]*FA is smooth as a

map L,(X;adP0T*X) -+ L"(X;adP 0&T*X). Thus A d* FA = d*FA+[aA*FA

is smooth as a map L 2(X; ad P 0 T*X) -+ L2,,(X; ad P 0 T*X). Finally, by Propo-

sition 2.15, qrd*: L2"(X; ad P 0 T*X) -+ L2'"(X; ad P 0 T*X) is a bounded linear

operator, and hence smooth, and its range is range(d*). l

2.4 The space L(X; /\*T*X)

Given an L 2(X; ad P 0 T*X) connection A on X and a ball B4 in X, we will re-

place A with a L2(B4 ; g 0 T*B 4 ) Yang-Mills connection B on B4 whose tangen-

tial components match A on &B4 . The resulting piecewise-defined global connec-

tion A' is in L4(X; ad P 0 T*X), but because the normal component of B does

not match that of A on &B4 , the new connection A' is not in L 2(X; ad P 0 T*X).

However, the fact that the tangential components match still gives us more reg-

ularity than L4 (X; ad P 0 T*X), In fact, A' still has enough regularity to define

curvature FA, e L 2 (X; ad P 0 A 2T*X). This leads us to define a space inbetween

L4 (X; ad P ® T*X) and L2(X; ad P 0 T*X) which we call L 2(X; ad P 0 T*X).
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Definition 2.17. Let X be a compact smooth manifold, and let L2(X; A*T*X) be

the completion of smooth forms a under the norm

\\a|IL4(X) +| Ida|IL2(x)

Proposition 2.18. Let X be a compact smooth manifold that decomposes as the

union Y U Z, where Y n Z = S is a component of the boundary of Y and Z, and

let i: S - X be the inclusion. Let # E L 2 (Y; A*T*Y) and -y E L (Z; A*T*Z) such

that i*3 i*>. Let a be the L' form on X defined piecewise by 3 and -y. Then

a E Ld(X; A*T*X).

Proof. The key idea is that we have a discontinuity in the normal component as

we cross S, but when taking d we never take the normal derivative of the normal

component, so we never see the discontinuity.

The question is local, and the operator d commutes with diffeomorphisms, so,

taking a chart around a neighborhood of a point x E S, we can work on R x R"- 1 , with

/3 and -y compactly supported L2 forms on R> x Rn- 1 and Rso X R"- 1 , respectively,

such that the tangential components of 3 and -y match on the interface {0} x R"-1.

Moreover, we can assume without loss of generality that -y = 0. Indeed, we can

extend -y to an L2 form ' on all of Rn, and subtract it from a, 3, and -y. Since

L'(R"; A*T*R") is contained in L 2(R"; A*T*Rn), a is in L2(R"; A*T*R) if and only

if a - ' is.

Hence, we have reduced our problem to the situation of a compactly supported

,3 E L2(R>o x R" 1 ; A*T*Rn) such that the tangential component i*#3 is zero, where

i: {0} x Rn-1 " Rn is the inclusion, and we aim to show that if a is the extension

of # by zero to all of R", then a E Ld(R"; A*T*Rn). Our goal now is to construct

smooth forms ai on Rn that converge to a in L'(Rn; A*T*Rn). That is, we need

-+ /3 in L4 (R>o x R" 1 ; A*T*Rn), as -+ 0 in L4 (R.o x R"- 1; A*T*Rn), and dai to

converge in L2 (R; A*T*R").

We can decompose / into tangential and normal components '8 = '3T + /31. That

is, if xo is the first coordinate of R', we can decompose A*T*Rn into the subbundle
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of normal forms generated by the standard basis elements that contain dxo and the

subbundle of tangential forms generated by the standard basis elements that do not

contain dxo. By assumption, OT is zero on {O} x R'-1 , and there is no condition on

/3'. For #6T, by [1, 7.541, the fact that #T is zero on the boundary lets us choose a

smooth sequence of tangential forms #T converging to #T in L 2(R>o x Rn-1; A*T*Rn)

such that each 3T is compactly supported away from the boundary. Then we can

extend /7 by zero to obtain a smooth form aT on all of R".

For the normal component, extend 0' arbitrarily to a compactly supported Ll

normal form /1 on all of Rn. Then, construct a smooth approximating sequence of

normal forms /3, converging to 0' in L'(R; A*T*Rn). Finally, let 0 < #(xo) < 1 be a

cutoff function supported on x0 > -1 with q(xo) = 1 for xo > 0. Let c4 = 0(ixo)/3,

and let oi = aT + C4. It remains to show that the sequence ai has the desired

properties.

On R>0 x R'-1 , we have a.i aaL= /37 +-, which converges to 3T +31 = 3

in L2(R>0 x Rn- 1; A*T*Rn), and hence also in L4 (R>0 x R-; A*T*Rn). Meanwhile,

on R<0 x R"-,

11 (X) 7 L4 (_o<)

S o L4(oO (x)( -) LaoO)

L4(--1/i<xoO) L L4(o<;O)

Finally, we compute

n-1 n-

dai =Y dxk A - + Z dxXA ($(ixo)#)
k=O OXk k=1 (Xk

n-1 Tn-1 a4
= dx A 7<+ #(ixo)Z dxk A .

k=O k=1

The key fact here is that because 47 already contains a dxo term, we never take

the derivative in the x0 direction of the cutoff function 0(ixo), and so that term

remains bounded. We can test L2 (R") convergence piecewise. First, on R>o x Rn-1,
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we have oc- - 8 3 , which converges in L2 (Ryo x R'- 1; A*T*R") to T because the

#f converge to nT L'(Ryo x R"-n; A*T*R). Likewise, on R>o x R'-1 , we have

#(ixo)> = , which converges to 2 in L 2 (R>O x Rn-1; A*T*Rn). Meanwhile,

on R<o x R'-', we show convergence to zero. Because the ac are supported away

from R<O x R'- 1, the 9- are simply zero on R<O x R"-. Finally,

#(q) (ixo) + #)(ixo) ~ _~4(O) Xk \O k L2 09 O Xk &Xk/
L2(XO<OL2 ((O<O)+ L2 (Xo<o)

< + 40.
L

2
(-1/i<xo<o) 

L2(O <)

Hence, the dac converge in L2 (Rn; A*T*Rn) to the L2 (Rn; A*T*Rn) function defined

by d/ on R>o x Rn- 1 and 0 on R<O x R'-', as desired. u

Proposition 2.19. Let X be a compact smooth manifold with a principal G-bundle P,

and let A be an L2 connection on P. Then FA is in L 2 (X; ad P x A 2 T*X). Moreover,

if g is a L'(X; Ad P) gauge transformation, then g(A) is once again a L2 connection.

Proof. The question is local, so we work on a compact subset K of a trivialization.

Let A = d+a, so FA = da+ [a A a]. Since a E Ld(K;g 0 T*K), we know that

da c LF2K, and a C L 4(K; g 9 T*K), so -[a A a] E L 2 (K; 9 0 A 2T*K). Thus FA E

L2(K; g A 2 T*K), as desired. Likewise, for g E LI(K; G), let g(A) = B = d + b.

Then

b = gag-1 - (dg)g-'.

We have a E L4 (K; g 0 T*K), g E L'(K; G), and, since g is a gauge transformation,

g E L (K; G). We can compute that then b E L4 (K; g 0 T*K). It remains to show

that db E L2 (K; g 0 A 2T*K). We compute

db = FB- 1[b A b] =gFAg-1 - 1[b A b].

Since FA c L2 (K; 9 0 A 2T*K) and g E L'(K; G), we know that gFAg-i is in

L2 (K; go A 2 T*K). Likewise, we showed that b E L4 (K;g 0 T*K), so }[b A b] c
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L20(K; A OA\ 2T* K), and so db C L2(K; g 0 \2T* K), as desired. LI
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Chapter 3

The Dirichlet problem

In this chapter, we solve the Yang-Mills equation on B4 with prescribed small bound-

ary data in L 1 2(aB4 ; g 0 T*&B4 ) using the inverse function theorem. Using gauge

fixing, we then extend this result to a more general class of boundary values in The-

orem 3.5. In addition, the inverse function theorem gives us local uniqueness of the

solution, which we strengthen in Theorem 3.6. Along the way, in Proposition 3.4, we

prove strict convexity in Coulomb gauge of the energy functional near small-energy

Yang-Mills connections. Earlier work on this problem includes a paper by Marini

[111 thatsolves the Dirichlet problem with boundary data assumed to be smooth on

general compact manifolds, as well as lecture notes of Riviere [141 which solve the

Dirichlet problem on the ball in the critical L/ 2 (B
4 ;g 0 T*0B4 ) regularity using

direct minimization methods of Sedlacek [171. An advantage of the inverse function

theorem method is that it gives smooth dependence of the Yang-Mills solution on

the boundary data. Finally, in Section 3.1 we show energy monotonicity of the linear

path between an a connection and the Yang-Mills replacement that matches it on the

boundary.

Theorem 3.1. Let B' be a smooth 4-ball with arbitrary metric, let i: dB4 -+ B 4 be

the inclusion, and let P -+ B4 be a principal G-bundle with trivializing connection d.

There exist an E > 0 and 6 > 0 such that if AV = d + a0 is an L 1 2 (DB4 ; g 0 T*aB4 )

connection with ||aoII| (0 < E, then A9 extends to a unique L2(B4 ; g 0 T*B4 )

31



connection A = d + a such that

1. Ila|2(13 4) < 6,

2. A satisfies the Yang-Mills equation d* FA= 0 on B4 ,

3. %* A = AO, and

4. A satisfies the Coulomb condition d*a = 0.

Moreover, A depends smoothly on Aa.

We first prove the theorem replacing the Yang-Mills equation d* FA = 0 with

a weaker projected Yang-Mills equation w-d*FA = 0 (see Section 2.3), and then

prove that in this situation the weaker equation 7rd*FA= 0 actually implies the full

equation d* FA = 0.

Proposition 3.2. There exist an e > 0 and 6 > 0 such that if AO = d + aa is an

L 2 (OB4 ; g 0 T*OB4 ) connection with I|aII L|2|(OB4
) < e, then A, extends to a unique

L2( B '; g 0 T*B4 ) connection A = d + a such that

1. ||a 1f 3(4) < 6,

2. A satisfies the projected Yang-Mills equation ,rd* dFA= 0 on B4 ,

3. i*A = AO, and

4. A satisfies the Coulomb condition d*a = 0.

Moreover, A depends smoothly on A0 .

Proof. We consider the projected Yang-Mills operator

pYM: L (B4 ; g0 T*B 4 ) n ker d*

-+ L (B ; g 0 T*B4 ) n range(d*) x L 12 ( B4; g 0 T*B 4 )

defined by

pYM(a) = (7rd*d*FA,i*a).
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We have that A H-+ lrd*adFA is smooth by Corollary 2.16 and i*: L'(B 4 ; g 0 T*B4 ) -+

L2 4;/2(B;g 0 T*o9B4 ) is a bounded linear operator and hence smooth.

Proving the proposition amounts to showing that pYM is an isomorphism on a

neighborhood of a = 0, for our desired L2(B4 ; g 0 T*B4 ) extension a is the inverse

image of (0, aa). We do so using the inverse function theorem. The linearization of

pYM at a =0 is

(d*di*): L2(B 4 ; g0 T*B 4) n kerd*

2, 0(B4; T* B 4) n range(d*) x L 0 T*2B4)

It remains to show that this operator is an isomorphism of Banach spaces.

Let a E L 2(B
4 ; g 9 T*B 4) n ker d*, and assume that d*da = 0 and i*a = 0. Thus

a (B; g T*B ), and so Proposition 2.14 tells us that

(d*da, a)L2(X) = (da, da)L2(X) .

Since d*da = 0, we conclude that da = 0. Since d*a = 0 and i*a = 0, we conclude

that a E W'. But H1(B4 , B 4 ) = 0, so a = 0. Hence (d*d, Z*) is injective.

We first prove surjectivity onto L2,n(B4; g 0 T*B4) n range(d*) x 0. Let y = d*f

for f E L2 (B 4 ; g OA A2 T*B4). Then

y = d* f = d*(dd*Gff + d*dGff + Irnf ) = d*d(d*Gnf).

Clearly, d*Gfnf E ker d*. Moreover, i*(d*Gnf) = 0 by Proposition 2.9. Hence, d*Gnf

is our desired preimage of (y, 0) under the map (d*d, i*).

Now, given aa E Lg 0 T*0B 4), the inverse trace map [1, Theorem 7.53]

gives us an a1 E L 2(B
4 ; g 0 T*B4 ) such that i*al = a0 . Then d*dai is in the

space L2,(B4; g 0 T*B4) n range(d*), so the previous paragraph gives us an a2 E

L (B4; g 9 T*B4) n ker d* such that d*da 2 = d*dai and i*a2 = 0. Hence (d*d, i*)(ai -

a2 ) = (0, aa), giving us surjectivity onto the other factor 0 x L / 2 ( B 4 ; g 0 T*&B 4 )

also.
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We conclude that

(d*d, i*): L2(B4 ; g 0 T*B4 ) n ker d*

-+1 g 0 T*B4 ) n range(d*) x Lg T*B 4 )

is an isomorphism of Banach spaces. Hence, by the inverse function theorem, the

projected Yang-Mills operator

pYM: L (B4 ; g 0 T*B4 ) n ker d*

, L (B4; 0 0 T*B4) n range(d*) x L T*B4)

is a diffeomorphism between a neighborhood of a = 0 in L2(B4 ; g 0 T*B 4 ) n ker d*

and a neighborhood of (y, aa) (0, 0) in

L Bg 0 T*B ) n range(d*) x LS/2(B g 0 T*OB4 ).

In particular, for a0 small in L 0 T*4B4 ), we can solve pYM(a) (0, ao) for

a E L (B4; g 0 T*B4 ) n ker d*, giving us our desired small a satisfying rd*d*FA = 0,

i*a = a,, and d*a = 0.

More precisely, choose 6 and E such that the 6-ball around a = 0 and the C-ball

around (y, aa) = (0, 0) are contained in the above neighborhoods between which pYM

is a diffeomorphism, and such that the E-ball is contained in the image of the 6-ball

under pYM. Given a0 with I|aaIIL2 B(O
4 ) < -, let a be the preimage under pYM

of (0, aa), so a depends smoothly on aa. In addition, ||atIL2(B4) < 6, 7wd*dAFA = 0,

i*a = a0 , and d*a = 0, as desired. Moreover, a is uniquely determined by these

conditions because pYM is injective on the 6-ball around a = 0. l

To complete the proof of Theorem 3.1, it remains to prove the following.

Proposition 3.3. There exists an e > 0 such that for any L 0(B4; 9 T*B 4 ) connec-

tion A = d + a, if

1. a l | (|L B4) < E
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2. A satisfies the projected Yang-Mills condition 7rd*d FA = 0, and

3. A satisfies the Coulomb condition d*a = 0,

then A satisfies the full Yang-Mills equation d* FA 0 on B4 .

In higher regularity, this proposition can be proved using bounds on d* FA, but at

the critical regularity, we must proceed directly by showing that A locally minimizes

energy. We prove an inequality similar to one used by Colding and Minicozzi for

harmonic maps [2, Theorem 3.11.

Proposition 3.4. Let B' be a smooth 4-ball with arbitrary metric, let i: 0B' -+ B'

be the inclusion, and let P -+ B4 be a principal G-bundle with trivializing connection

d. There exist constants E4, EF and C with the following significance. Let A d + a

and B = d + b be L{ 2(B'; g 0 T*B 4 ) connections such that

1. J|a||L4(B4) < E4 and IbIIL4(B4) < E4,

2. ||FAIIL2(B4) < EF,

3. A satisfies the projected Yang-Mills equation 1r.d*FA = 0,

4. A and B match on the boundary, that is, i*A = i*B, and

5. we have a Coulomb condition d*a = d*b.

Then

||B - A|I 2( 4 ) < C (IIFB||1 2(B4 ) - ||FA1L2 (B4))

In particular,

IIFA||L2(B4) < IIFBIIL2(B4)

Proof. The projected Yang-Mills equation lra.d*FA = 0 can be restated as the con-

dition that (FA, dAc)L2(B4) = 0 for all c E LI(B4;g D T*B4 ) with i*c = 0 and

d*c = 0. In particular, let c = B - A = b - a, so i*c = i*B - i*A = 0 and
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d*c = d*b - d*a = 0. Hence, taking the square of the L2 (B4 ) norm of the curvature

equation FB = FA + dAc + 1[c A c], we obtain

FB|L2(B4) = |IFAiIL2(B4) + I dAcIL2(B + [cA L2(B)

2 (FA, -[c A C2(B4+ 2 (dAC, [c A CI )L2(B4)

We then have the inequality

I|dAcL2(B4) Ac || |FB|i2B4) - ||FAJI2(B4) 2 L2(B4)

+ 2 IIFAIL2(B4) [c L2(B4) + 2 Id [c A

| B B -||IFAII 2(B4 ) [ CIIL2(B2L)

+2|IFAIL2(B) [[ L2(BA) AcI2(B4 C IL2(B)

Rearranging,

||dAcIL2 (B4 ) < 2 (IIFBII 2B4) - |FA1L2 (B4)

+ (2 IFAIL2(B4) + 1 I1[c A C11L2(B4)) Ic A cIL2(B)

2 II 2 L(B4)(3.1)

2 (||FBIL2(B4) - ||A L2(B4)

+ (2 IFAIL2(B4) 2  L4(B4) CL2 (B4),

where Cz is the operator norm of the Lie bracket g x g - g, and Cs is the operator

norm of the Sobolev embedding LI (B4) e L4 (B4).

The next step is to bound IICIIL2(B4) in terms of IdAcIIL2(B4). Since 1l(B4, 4B 4) =

0, by Corollary 2.10, d + d*: LI' (B; A*T*B4) - L2 (B4; A*T*B4) is a Fredholm

operator with no kernel on one-forms. Thus, we have the estimate IICIIL2(B4) <

CG 1 (d + d*)CI L2(B4) for some constant CG independent of c E L,'"(B4; 0 0 T*B4).
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Recalling that d*c = 0, we can compute

IICIIL2(B4) < C G IldclIL2(B4) = CG 1 dAc - [a A c] IL2(B4)

CG (IldAC IL2(B4) CP IlaIIL4(B4) IlCIL4(B4)

CG ldACIIL2(B4) + CGCCS Ila 2CL2(B4)

Requiring E4 < (CGCPCS) we obtain IICIIL2(B4) CG IIdAcIIL2(B4) + { C B4)-

Rearranging, we obtain our desired bound

IICIIL2(R4) < 2CG IIdAcIIL2(B4)

Combining the above inequality with (3.1), we have

L2(B4) < 8CG (|IFAII 2 (B4 ) - |FBI 2 (B1))

+ (8CGCSC IIFBIIL2(B4) + 2CGCrC.2 III4(B4)) IICII22(B4)- (3.2)

Requiring, for example, that EF <1(8CGCSC)-' and (2E4)2 < !(2CG2Cp2Cc2)-l, and

noting that IICIIL4(B4) < 2E4, the above inequality becomes

L(B4) < 8CG (IIFII L2 (B4 ) - |FB1 2(B4 ) IICI1B2

Rearranging, we obtain

||c|(B4) < 16CG (IFAIIL 2(B4) - IFB 2 (B4 )

so our desired inequality is true with C = 16CG.

Under the assumptions of Propositon 3.3, Proposition 3.4 tells us that A has

smaller energy than any nearby connection B that matches A on the boundary and

satisfies the Coulomb condition d*b = 0. It remains to remove this last condition. To

do so, we use gauge fixing results that we will prove in the Chapter 5.

Proof of Proposition 3.3. Let B be any L'(B4; g 0 T*B 4 ) connection satisfying the
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bound I|bIIL2(B4) < e and the boundary condition i*B = i*A. We will prove that

||FAlIL B4) _< ||FB 1112 (134

Let eu and Cu be the constants from Proposition 5.4. Require E < Eu, so we

can apply Proposition 5.4 to B to give us a gauge equivalent connection b satisfying

d*b = 0, i*B = i*B i*A, and

IIbIIL(B4) 5 C (IFBIIL2(B4) + l*bI 2 (OB4))

Let E4 and EF be the corresponding constants from Proposition 3.4. We have the

continuity of the trace map L2(B4) -+ L'/2 (&B4 ) and Sobolev maps Li/2 (&B 4 ) -

L3 (&B4 ) and L 2(B4 ) -+ L4(B4 ). Using these along with the continuiuty of FA, we

can choose E small enough so that IlaIIL2(B4) < E implies IlaIL4(B4) < E4, IIFAIL2(B4) <

EF. Likewise, the inequality Ib|L2(B4) 5 CU (IFBI2(B4) L,(B and the

continuity of b F- FB and b -+ i*b let us choose E small enough so that IIbtIL2(B4) <E

implies IIblIL4(B4) < E4.

Since i*A = j*5, we can apply Proposition 3.4 to A and B, since d*a = 0 by

assumption and d*b = 0 by Theorem 5.4. We conclude that

IFAIL2(B4) 5 IIFIL2(B4) = IIFBIIL2(B4),

as desired. Hence, A locally minimzes energy among connections whose restrictions

to OB4 is i*A.

However, in our definition of a Yang-Mills connection, we required that A be a

critical point of the energy functional with respect to variations whose restrictions

to the boundary are gauge equivalent to i*A, not necessarily equal to i*A. Hence,

we must show furthermore that A has smaller energy that any connection B in a

neighborhood of A such that i*A is gauge equivalent to i*B. They key fact here is that,

unlike the projected Yang-Mills condition, the condition that A locally minimizes

energy among connections whose restriction to the boundary is equal to i*A is a

gauge-invariant condition.

Hence, we require e be small enough so that IaiL 2(B4) , IbII (B4) < E implies that
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IIFAlIL2(B4) and IIFB IL2(B4) are small enough so that we can apply Theorem 5.10,

giving us connections A and B gauge equivalent to A and B, respectively, such that

d*& = d*b = 0 and dB4 i* = dB4 i*b = 0, along with bounds on I1aIIL,(B4) and

|bIIL 2(B4). Choosing E small enough, we can bound I|i*dI|L3(9B4) and L3(B4) and

apply Proposition 5.17 to find that the gauge transformation g sending i*A to i*b

is constant. We can apply this constant gauge transformation to A on all of B4

without affecting the Dirichlet Coulomb conditions d*d = 0 and d* 4 i*a = 0, so we

can assume without loss of generality that g = 1 and i*A = i*b. Since A locally

minimzes energy among connections whose restrictions match it on the boundary, so

does A, so IIFAIL2(B4) =JFAIL2(B4) 5 IIFjIL2(B4) = IIFB jL2(B4), as desired. l

Using gauge fixing, we can strengthen Theorem 3.1 to solve the Yang-Mills equa-

tion for a larger class of boundary values, namely restrictions to the boundary of

small-energy connections on the ball. This result is exactly what we need for replac-

ing a global connection on a small ball with a Yang-Mills connection.

Theorem 3.5. There exists an e > 0 with the following significance. Let B be

an L2(B4) connection with IIFBIIL2(B4) < e. Then we can construct a Yang-Mills

connection A that depends continuously on B such that i*A = i*B.

Proof. The idea is to apply a gauge fixing result to B in order to make the boundary

value small enough to apply Theorem 3.1. We will use Theorem 5.19, the gauge

fixing result with Neumann boundary conditions, though Theorem 5.10 with Dirichlet

boundary conditions would work equally well. Let eu and C be the constants from

Theorem 5.19, and let Ea be the bound on the boundary value in Theorem 3.1.

Require E < eu and CTCe < Ea, where CT is the norm of the trace map i*: L 2(B
4) -+

L 1/2(B4).

We can thus apply Theorem 5.19 to obtain a L2(B4 ; G) gauge transformation g

sending B to B = d + I in Coulomb gauge with II6IIL2(B4) < CIIFBIIL2(B4), S0

||i*bIIL2 (J(B) < C L2(B
4 ) < CTC IFBIIL2(B4) < EO6
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Thus we can apply Theorem 3.1 to i*B to obtain an L j(B4 ) Yang-Mills connection

A such that i*A = i*B. We let A = g- 1 (A), so i*A =i*B, as desired.

It remains to show that this construction is continuous, which is made more com-

plex by the fact that g is not uniquely determined by B and hence might not depend

contiuously on B. However, at least with appropriately chosen e, g is unique up to a

constant gauge transformation c. We show that A does not depend on the choice of g,

so let g' = cg, let B' = g'(B) = c(b), and let A' be the Yang-Mills connection given

by applying Theorem 3.1 to i*B'. I claim that A' = c(A). Indeed, i*(c(A)) = i*5',

and the other conditions of Theorem 3.1 are preserved under constant gauge trans-

formations and hence are true of c(A). Since the connection given by Theorem 3.1

is unique, we conclude that A' = c(A), and so A' = (g') 1 (A') = g-(A) = A, as

desired.

We can use this uniqueness to show that this construction is continuous. Indeed,

let Bi -+ B be a sequence of connections converging in L'(B4 ; g 0 T*B4 ). Let Ai

and A be the corresponding Yang-Mills connections constructed above. We will show

that Ai converges to A by showing that any subsequence of the Ai has a further

subsequence that converges to A.

Hence, we begin by passing to a subsequence of the Bi, which, of course, still

converges to B, and so from Proposition 5.22 we know that, after passing to a fur-

ther subsequence, we can have the Coulomb gauge representatives 5i converging to

a Coulomb gauge representative b of B. However, B is only determined up to a

constant gauge transformation and may depend on our initial choice of subsequence.

In addition, Lemma 5.3 gives us that, after passing to a subsequence, the gauge trans-

formations gi sending Bi to 53 converge in L| (B4 ; G) to the gauge transformation g

sending B to B. Theorem 3.1 gives us that the Ai depend smoothly on the i*B5, which

depend linearly on the B3, so we know that the Aj converge to A. Finally, because

the gi converge strongly to g in L2(B4 ; G), we know that the Ai = g- (Ai) converge

strongly to A in L2(B4 ; g 0 T*B4 ). By our previous argument, even though B might

depend up to a constant gauge transformation on our initial choice of subsequence,

A is unique and thus is independent of the initial choice of subsequence of the Bi.
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Thus, A depends continuously on B, as desired.

We now use gauge fixing to prove a stronger uniqueness result for the Yang-Mills

solution.

Theorem 3.6. There exists an e > 0 such that if A and B are L2(B'; g 0 T*B4 )

Yang-Mills connections with

1. energy bounds |IFAIIL2(B4), IIFBIIL2(B4) < E, and

2. gauge equivalent boundary values i*A and i*B,

then A is gauge equivalent to B.

Proof. Choose E small enough so that we can apply Theorem 5.10, giving us con-

nections A and b gauge equivalent to A and B, respectively, satisfying the Dirichlet

Coulomb conditions d*d = d*b 0 and d*4i*& = d*4i*d = 0, as well as the bounds

||IIL2(B4) < C IIFAILN2(B) and IbJIL (B4) < C IIFBIIL2(B4). Because i*A and i*B are

gauge equivalent, i*A and i*B are gauge equivalent. Require that e be small enough

so that the bounds IIIIL2(4) ,|bIIL2(B4) < Ce suffice to apply Proposition 5.17 to %*

and i*B using the Sobolev and trace maps L (B4 ) L 1 2 (&B4 ) (-+ L3(&B 4). We

conclude that a constant gauge transformation c E G sends i*A to i*b. Now viewing

c as a gauge transformation on all of B4 , apply c to A, and note that c(A) satisfies

all of the properties above required of A. Hence, we may, without loss of generality

replace A by c(A), or, in other words, assume that c = 1, so i*A = i*B.

Next, we require e be small enough so that our bounds IIFAIIL2(B4), IIFbIIL2(B4) < E

and IIdIIL2(B4) , IbIL2(B4) < Ce suffice to give us the bounds needed for Proposition 3.4

via the Sobolev embedding L'(B4 ) -+ L4 (B4 ). The Yang-Mills condition is gauge-

invariant, so A is Yang-Mills, and, in particular, also satisfies the projected Yang-

Mills equation. Hence, we can apply Proposition 3.4 to Aand B to conclude that

IIFAIIL2(B4) < IIFIIL2(B4). However, since B is Yang-Mills, we can also apply Propo-

sition 3.4 to B andA to conclude that IIFAIL2(B4) < IIFAIIL2(B4), concluding that

IIFAI2(B4) =IF-I|L2(B4). The main inequality of Proposition 3.4 then gives us that

A = B, so A and B are gauge equivalent, as desired.
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3.1 Linear interpolation

We know that a small Yang-Mills A connection on B' locally minimizes energy among

connections B with the same restriction to the boundary. We go further by showing

that, in Coulomb gauge, the linear interpolation from B to A is an energy-decreasing

path. As before, for small connections in Coulomb gauge it suffices to assume only that

A satisfies the projected Yang-Mills equation instead of the full Yang-Mills equaiton.

Proposition 3.7. There exist constants E4 and EF with the following significance.

Let A = d + a and B = d + b be L'(B4 ; g 0 T*B4 ) connections such that

1. I|aIIL4(B4) , |b||L4(B4) < E4,

2. IIFAIL2(B4) < EF,

3. A satisfies the projected Yang-Mills equation -rxd*FA = 0.

4. i* A = i*B, and

5. d*a = d*b.

Let Bt = t + (1 - t)A be the linear interpolation between BO A and B1  B. Then

I|FBS L2(B4) < |FBtI L2(B4) f s < t, with equality only if A = B.

Proof. Since Bt satisfies all of the conditions above required of B1 = B, in order to

prove the general statement it suffices to show that A| t= IFBt IIL2(B4) > 0-

Let c = B - A. Using the equations

FB = FA +dAc+ [cAcl, and

FA = FB + dB(-c) + [(-c) A (-c)]= FB - dBc + 1[c A c],
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along with the Yang-Mills condition (FA, dAc)L2(B4) = 0, we compute

Tt F~i L2(B) =( FB, dB d I Bt

= (FB, dBc)L2(B4)

= (FB, FB - FA + C A c])L2(B4)

= IIFIIL(B4) + (FB, .[c A cl)L(B4)

- (FA + dAc + [c A ci, FA)L2(B4)

=||IFB L2(B4) ||FA112(B4) + (FB - FA, 1[c A CI)2(B4)-

We bound the last term:

(FB - FA, 1[c A c])L2(B4

=(dc+}[bAb] - 1[aAa],[cAc])L 2 (B4 )

(IIcIL,(B4) + !C Ilb|I4(B4) + 7CI IaIIB4)) iC2 IICI1L1IB4p

< (1C2C2(IaiIB2( 4 ) +|| Ib14(B4)) + CCS Ic|IL4(B4)) IICII2B4)

Since I|C|IL4(B4) < IalIL4(B4) + I1bIL4(B4), we can choose E4 small enough so that

|IaIIL4(B4) IIbIL4(B4) < E4 guarantees that

( FB -- FA, -1[c A c]) <2B ICB-) III1

where C is the constant in Proposition 3.4. Choosing E4 and EF small enough so that

we can apply Proposition 3.4, we have 2ICI(B4) < C (IIFBIIL2(B4) - 11A2I2(B4) , so

{ jL_1 IFBt 2 (B 4) > B - |FAIIL2 (B4 ) -- C 1 IICI1IB4)
T> |FBL 22BB4 -- |2FL2 2BB)-1 ( -IIFtI 2(B4) 1 B) > 0,

with equality only if IIFB I2(B4) - 1FA II2(B4) = 0, in which case B = A by Proposition

3.4. 0

Again, we can use gauge fixing to prove this energy monotonicity result for a wider
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class of connections.

Theorem 3.8. There exists a constant e with the following significance. Let B be

an L2(B 4) connection with IIFB|1L2(B4) < E, and let A be the Yang-Mills connection

with i*A = i*B constructed in Theorem 3.5. Let Bt = tA + (1 - t)A be the linear

interpolation between BO = A and B1 = B. Then IIFBIIL2(B4) IIFBtIIL2(B4) if s < t,

with equality only if A = B.

Proof. From the construction in Theorem 3.5, there exists a gauge transformation g

sending A and B to A = d + and B = d+ b, respectively, such that d*b = 0, and we

know that d*d = 0 because we obtained it from Theorem 3.1. Finally, the construction

in Theorem 3.5 gives us a bound I||I|Lb(i4) 5 C IIFBIIL2(B4) and with the Sobolev

inequalities we know that a small enough e we can bound b in L4 (B4; g 0 T*B 4).

Since A depends continuously on b, this lets us also bound L in L4(B4; g 0 T*B 4).

Finally, A is Yang-Mills, so A is Yang-Mills and in particular satisfies the projected

Yang-Mills equation. Hence we can apply Proposition 3.7 to A and B, giving us that

the linear interpolation between A and b has monotone energy. But both energy and

affine combinations are preserved after applying a gauge transformation, so the linear

interpolation between A and B also has monotone energy, as desired. 0
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Chapter 4

Yang-Mills replacement for global

connections

In this chapter, we consider an arbitrary compact 4-manifold X and use the solution

to the Dirichlet problem for Yang-Mills connections on the ball in order to construct

an energy-decreasing map on global L'(X) connections modulo L'(X) gauge trans-

formations. Namely, given a connection B on X and a ball B4 C X on which B

has small energy, we will replace B on B4 with a Yang-Mills connection that has the

same restriction to the boundary OB4 , thereby constructing a piecewise connection

A that is Yang-Mills on the ball and equal to B outside the ball. However, only the

tangential components of A and B match on the boundary 4B4 , and the normal com-

ponents may disagree. As a result, this new connection A is no longer in L'(X), but

it is still in the space L'(X) defined in Section 2.4. However, we will show that this

piecewise-defined connection is nonetheless gauge equivalent to an L'(X) connection.

More generally, we prove that any L2(X) connection is gauge equivalent via a

Lj(X) gauge transformation to a Ll(X) connection, so, the space of L'(X) connec-

tions up to L4(X) gauge transformations is actually the same as the space of L'(X)

connections up to L2(X) gauge transformations. Theorem 5.20 tells us that, locally,

every Ld(B4 ) connection is gauge equivalent via an LI(B4 ) gauge transformation to

an L2(B 4) connection. However, patching these local gauge transformations to a

global transformation is a delicate matter because in the critical regularity Lj (B4 )
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gauge transformations need not be continuous. A crucial lemma for dealing with this

issue is due to Taubes.

Lemma 4.1 ([19, Lemma A.11). Let U be an open ball in a Riemannian 4-manifold.

Let a be the set of triples (g,a,b) G L'(U; MN) x L'(U; g D T*U) x L'(U; g 9 T*U)

such that g is a gauge transformation sending A = d + a to B = d + b and d*a =

d*b = 0. Then the projection to the first factor a -+ L2(U; MN) sending (g, a, b) to g

factors continuously through Cc(U; MN) -

The next lemma we need is due to Uhlenbeck, and states that if two bundles over

a compact X are described by transition functions go,, and ha, that are sufficiently

close to each other in CO, then the two bundles are isomorphic.

Lemma 4.2 ([23, Proposition 3.21). Let X be a compact manifold with principal

G-bundles P and Q and a finite cover by local trivializations {Ua} with continuous

transition maps gaL, h,1: U, n U3 -* G, respectively. There exists an e depending

on the cover but not on the transition maps such that if, for all a and 3, 0,p,3 is

a neighborhood of the identity on which exp- 1 is defined and

Iexp-'(#,0,a Co(unua) E)

then there exists a cover {Va} of X with Va c Uc, and an isornorphism between P

and Q defined by p,: Va -+ G satisfying =aPa p/30baj.

With these tools in hand, we can extend Uhlenbeck's techniques in [23, Theorem

3.61 to the critical regularity.

Theorem 4.3. Let P be a principal G-bundle over a compact manifold X. Let A

be a L2(X) connection on P. Then there exists an L4(X) gauge transformation on

P sending A to an Li(X) connection B. Moreover, the gauge equivalence class of B

modulo L2(X) gauge transformations depends continuously on A.

Proof. Let Ai be a sequence of smooth connections converging to A in L2(X). Let

{Ua} be a finite cover of X by balls contained inside smooth trivializations of P and
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small enough so that, for all , I IFA IIL2(u) < E for the e in Proposition 5.22. A priori,

the e required depends on the metric of the ball B4 . However, as discussed in Uh-

lenbeck [231, we can note that the energy of connections is invariant under conformal

changes of metric, and dilations in particular. Thus, we can rescale small exponential

neighborhoods to balls of unit size with metric close to that of the standard unit

ball, and choose an e uniformly for all of the balls. Take a tail of the sequence to

guarantee that IIFA IIL2(U.) < E also. For a fixed Ua, pass to a subsequence of Ai

given by Proposition 5.22, giving us gauge transformations gi,,. and g, on U,, sending

Ai to Ai,, and A to A,, respectively, such that the Ai,a are in Coulomb gauge on

U, and converge to A, strongly in L2(U'; g 0 T*Uc.), and the gi,0 converge to g0, in

L'(U.; G). Repeat this construction for the other U,, taking further subsequences.

By the smoothness and uniqueness claim for the gauge transformation doing the

gauge fixing in [5, Theorem 2.3.71, we know that the gi,, are smooth because the Ai

are smooth.

Let #,,: U n U8 -+ G be the transition functions for P. Since the gi,0 are smooth,

we define new transition functions by g13o, = gi .g1 for a bundle Qj over X, so

the gi,a define a bundle isomorphism between P and Qj sending Ai to the connection

defined by the Ai,, on Qj.

We would like to pass to the limit bundle Q defined by , = g ,g 1 , where

the g, define an L' bundle isomorphism between P and Q sending to A to the

Li connection on Q defined by the A,. However, the issue is that the g. are not

necessarily continuous, so we do not yet know that the #ikp define a continuous

bundle Q, nor do we know that P and Q are isomorphic as continuous bundles.

However, we know that, on U., n Up, 6/~r is a gauge transformation between A,

and Afi, that is,

do = V500do - do~a3

Since d,4 and d, are LJ(U, n U3;g 0 T*U. n U6), by Lemma 5.1, for any compact

K C Un 0 Up, we have 0,,p E L 2(K; G). By Lemma 4.1, for any open ball V

contained in K, V,, E C',(V; G). Consequently, by slightly shrinking the U, to
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open balls U' C U, that still cover X, we can guarantee that the transition maps

V),3 are continuous on U'0n Un , so, indeed the bundle Q is continuous.

Moreover, since the O$i,,f3 are gauge transformations between Ai, and the Ai,fl.

Since the Ai,, and the Ai,p converge strongly in L'(UQ n U,3 ; g ® T*U n Uy) to A, and

Ap, by Lemma 5.3, after passing to a subsequence, the 4'j~ converge in L'(K; G).

Again, the limit must be 0b,,6 because the ?/2, converge to 0,,13 in a weaker norm.

For example, in the formula Oi,,j = gj,/3 0,/g ,,, we know that the gi,13 and gi,a

converge strongly in L4 (K; G) to g13 and g0 , so Oi,a,, converges strongly to 0', in

L 2 (K; G). Consequently, by Lemma 4.1, the ,i,ap converge to 0,,j3 in CO, (V; G), so

they converge in C0 (K'; G) for compact subsets K' of V. Hence, we can choose the

U', such that the 'ja converge to V),j in C0 (U' n U,; G).

Hence, we can choose a sufficiently large i so that , is sufficiently close in

CO(U' n UJ; G) to Oj in order to satisfy the conditions of Lemma 4.2. Applying this

lemma, we conclude that there is a continuous bundle isomorphism p between. Q and

Qi, which in turn is smoothly isomorphic to P via g-. Moreover, the argument in

[23, Corollary 3.31 applies also to L2 n C0 (U' n Uh; G), so p is in fact an L2(X) bundle

map that depends continuously on , and 0,, in L2 n C0 (U' n U; G). The g"

define an L'(X) bundle map between P and Q sending A to an L,(X) connection

defined by the A, so gi-' o p o g0 is an L'(X) bundle isomorphism from P to itself

sending A to an L2(X) connection B on P, as desired.

To prove continuity, note that we can choose sufficiently large i so that for j > i,

we can construct an L 2 n C0 (X) bundle isomorphism pj between Qj and Qi just like

we constructed p above. Because the construction of p1 depends continuously on the

transition maps and we have chosen a the cover U' so that the Ojaj converge to 'Vwp

in L n C0 (U' n Uj; G), we have that the pja also converge in L nC0 (U' n U; G) to p,.

The Aj, converge in Li(U'; , 0 T*U'),so the p(Ay, 0) converge in Li(U'; g 0 T*U')

to p(A0 ) as connections on the same bundle Qi. Applying the smooth bundle map

gj- , let Bi be the connection on P defined on trivializations by (g - o pj)(Aj,,)

(g7' o pj o gjo) (A). We see that the Bi converge as Li connections on the bundle

P to (gi-j o p)(A() = (g7. o p o g0 )(A) = B. That is, we have constructed L2(X)
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connections Bi and B gauge equivalent to Ai and A, respectively, such that the Bi

converge in L'(X) to B.

The first issue to complete the proof of continuity is that we passed to subse-

quences in the proof, and our choice of B may depend on our choice of subsequence.

However, the gauge equivalence class of B modulo L' (X) gauge transformations does

not depend on this choice. Indeed, if A is gauge equivalent by L'(X) gauge trans-

formations to L2(X) connections B and B', then B and B' are gauge equivalent via

an L'(X) gauge transformation g. But by Lemma 5.1, on every trivialization, g is in

so it is in fact an L2(X) gauge transformation, and so [B] = [B']. Hence, for any

subsequence of the Aj, our argument above shows that after passing to a further sub-

sequence, the [Aj] = [Bi] converge to [B] in the space of L2(X) connections modulo

L (X) gauge transformations. Thus the original sequence also converges to [B].

The second issue is that we assumed that the A are smooth, but to show continuity

we need a general sequence of L2(X) connections on P. Now let A be an L2(X)

sequence of connections converging in L2(X) to A, and let [B] and [B] be the gauge

equivalence class of L2(X) connections constructed above. To show that the [Bi]

converge to [B], we consider sequences of smooth connections Aij that converge to

Aj, so from the above argument we know that the [Aij] converge to [Bi]. We then

use a diagonalization argument, constructing j(i) such that Ai~j(j) converges to A and

such that [Aij(j)] is within 1/i of [Bi]. Because the Ajj(j) are smooth, the argument

above gives us that the [Aij(j)] converge to [B], and so the [Bi] must also converge to

[B]. 1

Corollary 4.4. The space of Ly 2(X) connections modulo L (X) gauge transformations

is homeomorphic to the space of L! (X) connections modulo L| (X) gauge transforma-

tions.

Our Yang-Mills replacement results follow.

Corollary 4.5. Let P -+ X be a principal G-bundle over compact 4-manifold X

with compact gauge group G, and let B4 c X be a 4-ball. Let C be the space of

L{(X ) connections modulo L2(X) gauge transformations, and let Ce,B4 be those gauge
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equivalence classes of connections [B] with small energy on B4 , that is, IIFBIIL2(B4) <

E. Then for small enough e there is an energy-decreasing continuous map CE,B4 -4

Cs,B4 sending [B] to an equivalence class of connections [A], where A is Yang-Mills

on B4 and gauge equivalent to B outside B4 .

Proof. On B4 , we construct A continuously by Theorem 3.5, and outside B4 we set

it equal to B. By Proposition 2.18, the result is an L2(X) connection that depends

continuously on B, and by Theorem 3.8, IIFAIIL2(B4) < IIFBIIL2(B4). By Theorem 4.3,

A is gauge equivalent to an Lj (X) connection A, so [A] depends continuously on

B. E

Corollary 4.6. Let P -+ X be a principal G-bundle over compact 4-manifold X

with compact gauge group G, and let C be the space of L2(X) connections modulo

L2(X) gauge transformations. Let K be a compact family in C. Then around any

point x E X there exists a ball x E B4 C X and homotopy ht: K --+ C such that

h1 is the identity, ho sends I to connections that are Yang-Mills on B4 , ht([B])

has monotone nondecreasing energy, and restricting to the complement of B4 the

homotopy is constant ht([B]) = [B].

Proof. Since IC is compact, we can choose a ball B4 around x small enough so that for

all [B] c K, IIFBI,2(B4) < E. Then, for each B, inside B4 we construct A and Bt as

in Theorems 3.5 and 3.8. By Theorem 3.5, A and Bt depend continuously on B, and

from the construction it is clear that if we choose a different representative B' = g(B)

of [B], then the resulting A' and B' satisfy A' = g(A) and so B' = g(Bt), so [Bt] is

independent of our choice of B E [B]. Outside B4 , we set Bt equal to B. Again, by

Proposition 2.18, the resulting Bt is an L2(X) connection that depends continuously

on B, and by Theorem 4.3, Bt is gauge equivalent to an L,(X) connection B1 , so we

can set ht([B]) [ 1]. u
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Chapter 5

Gauge fixing

In this chapter, we prove several gauge fixing results which are used to prove the main

results. We begin with a few general lemmas.

Lemma 5.1. Let K be a compact 4-manifold with a trivial principal G-bundle P,

where G is compact. Let A and B be two L'(K; g 0 T*K) connections that are gauge

equivalent via a gauge transformation g. Then g E L'2(K; G).

Proof. We have the equation

dg = ga - bg.

Since G is compact, we know that g E L (K; G). Using the Sobolev embedding theo-

rems, we know that a, b E L4 (K; g 0 T*K). Thus, dg = ga - bg E L 4(K; MN 0 T*K),

so g E L',(K; G). Next,

V(dg) = (Vg)a - b(Vg) + g(Va) - (Vb)g E L -L - L -L+ L - L2 - L c L2

Hence, dg E L2(K; MN 0 T*K), so g E L2(K; G). El

Lemma 5.2. Let K be a compact 4-manifold with a trivial principal G-bundle P.

Consider two sequences of L2(K; g 0 T*K) connections Ai and Bi converging weakly

to A and B in L! (K; 9 & T* K), respectively, such that Ai and Bi are gauge equivalent

via a gauge transformation gi. Then a subsequence of the gi converges weakly in

L2(K; G) to a gauge transformation g sending A to B.
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If the connections are only L4 (K; g 0 T*K) and converge weakly in L4(K; g T* K),

then a subsequence of the gauge transformations converges weakly in L 4(K; G).

Proof. The gauge transformations give us equations

bi = giaig 1 - (dgi)g- 1 ,

which we can rewrite as

dgi = gjaj - bigi. (5.1)

The gauge transformations are assumed to be unitary and hence uniformly bounded

in L (K; MN). Since ai and bi in L 4 (K; g & T*K), we know that gai - bigi = dgi

is bounded in L4 (K; g 0 T*K), and hence the sequence gi is bounded in L'(K; MN).

Passing to a subsequence, we can assume that gi has a weak limit g in L4(K; MN).

In particular, gi converges strongly to g in L4 (K; MN), so we know that g is in G a.e.

because a subsequence of the gi converges pointwise a.e. to g.

It remains to show that g sends A to B. We would like to take the limit of the

equation dgi = gjaj - bigi, but the issue is that the product of sequences that converge

weakly need not converge, even weakly. However, because the gi converge weakly to

g in L' (K; MN), we know that the gi converge strongly to g in L4 (K; MN), and

hence using the multiplication map L4 (K) x L'(K) -+ L 2 (K), we know that the giai

converges weakly to ga in L2 (K; MN), and, similarly, bigi converges weakly to bg in

L2 (K; MN). The weak convergence of dgi follows from the linearity of d. Therefore,

we can take the weak limit of (5.1) in L2 (K; MN 0 T*K) to find that

dg = ga - bg,

so g indeed sends A to B.

Moreover, if the a, and bi are bounded in L 2(K; g 0 T*K), because the gi are

bounded in L'(K; MN) and L (K; MN), we see that

V(dgi) = (Vgi)aj - bi(Vgi) + g,(Vaj) - (Vbi)gi
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is bounded in L4 -L4 + L4 -L 4 + L -L 2 + L2 - L C L2 . Hence, the gi are bounded in

L|(K; MN), so, after passing to a subsequence, they converge weakly in L2(K; MN),

and the limit is g, because the weak L2(K; MN) limit must agree with the weak

L (K; MN) limit.

In both the preceding and the following lemma, the reason we need to take a sub-

sequence is that the limit connection might have a nontrivial, but compact, stabilizer,

so we might even have constant sequences Ai = A and Bi = A such that the sequence

of gauge transformations fails to converge. However, in a situation where there is

no stabilizer and we have a unique gauge transformation between A and B, we can

eliminate the need for taking a subsequence, using the fact that if every subsequence

of the gi has a further subsequence that converges to g, then the original sequence gi

converges to g also.

Lemma 5.3. Let K be a compact 4-manifold with a trivial principal G-bundle P.

Consider two sequences of L'(K; g 0 T*K) connections Ai and Bi converging strongly

to A and B in L 2(K; g 0 T*K), respectively, such that Ai and Bi are gauge equivalent

via a gauge transformation gi. Then a subsequence of the gj converges strongly in

L2(K; G) to a gauge transformation g sending to A and B.

If the connections are only L 4 (K; g 0 T*K) and converge strongly in L4 (K; 9 0 T*K),

then a subsequence of the gauge transformations converges strongly in L4(K; G).

Proof. By Lemma 5.2, after passing to a subsequence, the gi converge weakly in

Lj(K; G) to a gauge transformation g sending to A to B. The main difficulty in

promoting weak convergence to strong convergence is that even though the gi are

bounded in L) (K; G), in the borderline regularity we cannot get strong convergence

in L (K; G). As before, we use the equations

dgi = giai - bigi,

dg = ga - bg.

The key tool that lets us promote weak convergence of the terms in this equation to
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strong convergence is that, for LP spaces with 1 < p < oc, weak convergence along

with convergence of the sequence of norms to the norm of the limit implies strong

convergence [131. In order to get the convergence of the sequence of norms, we use

the fact that gauge transformations are isometries of LP(K; MN).

We begin by showing that, after passing to a subsequence, the gi converge strongly

to g in L'(K; G). Since L' -+ L4 is compact, we know that the gj converge strongly

to g in L 4(K; G), so it remains to show that the dgi converge strongly to dg in

L4 (K; MN 0 T*K). As before, the giai are bounded in L4 (K; MN 0 T*K), so, after

passing to a subsequence, the giai converge weakly in L4 (K; MN 0 T*K). Moreover,

their limit is ga because the gi converge strongly in L4 (K; G) to g and the ai converge

strongly in L4 (K; g 0 T*K) to a, so the giai converge strongly in L2 (K; MN 0 T*K)

to ga, and the weak L 4 (K; MN 0 T*K) limit must agree with the L 2 (K; MN 0 T*K)

limit.

We now promote the weak convergence of the gja, to strong convergence by show-

ing that the sequence of norms converges to the norm of the limit. Indeed, because

gauge transformations are isometries, Jjgiaj IL4(K) Ija 1L4(K), which converges to

||a||L4(K) = jgallL 4(K). Hence, we have weak convergence and convergence of the

sequence of norms to the norm of the limit, implying strong L4 (K; MN 0 T*K) con-

vergence of g a to ga. Likewise, bigi converges strongly in L4 (K; MN 0 T*K) to bg,

so dgi converges strongly in L 4(K; MN 0 T*K) to dg, as desired.

Next, we improve the'strong L'(K; G) convergence of the gi to strong L'(K; G)

convergence. Strong Li(K; G) convergence implies strong L,(K; G) convergence, so

it remains to show that Vdgi converges to Vdg in L 2 (K; MN 0 T*K 0 T*K). We

compute

Vdg, = dg, 0 ai + giVai - Vbgi - bi 0 dgi.

Because the dgi converge to dg in L4 (K; MN 0 T*K) and the a, converge to a

in L4 (K; g 0 T*K), we know that the dgi 0 a, converge to dg 0 a in the space

L2 (K; MN 0 T*K 0 T*K). Likewise, the bi 0 dgi converge to b 0 dg in the space

L2 (K; MN 0 T*K 0 T*K). For the giVai term, we use a similar argument to the
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above. This sequence is bounded in L 2(K; MN 0 T*K 0 T*K), so after passing to a

subsequence it converges weakly in L2 (K; MN 0 T*K 0 T*K). Moreover, the limit

is gVa because the gi converge to g in L2(K; G) and the Vai converge to Va in

L 2(K; MN 0 T*K 0 T*K), so the giVai converge to gVa in L1 (K; MN 0 T*K 0 T*K),

and the weak limit in L2(K; MN 0 T*K 0 T*K) must agree with the strong limit in

L1 (K; MN 0 T*K 0 T*K). As for the sequence of norms, since gauge transforma-

tions are isometries, IjgjVajIIL2(K) = IIVa IL2(K), which converges to IIVaIIL2(K) =

IjgVa|L2(K). Hence, the giVai converge strongly in L2 (K; MN 0 T*K 0 T*K) to

gVa. Likewise, the Vbigi converge strongly in L2 (K; MN 0 T*K 0 T*K) to Vbg.

Thus, the Vdgy converge to Vdg in L 2 (K; MN 0 T*K 0 T*K), so the gi converge to

g in L2(K; G), as desired. l

5.1 Coulomb gauge with fixed boundary

In this section, we prove a gauge fixing result where the gauge transformation is fixed

to be the identity on the boundary 0B4 , as a prelude to proving the gauge fixing result

with Dirichlet boundary conditions on the connection in Section 5.2. This result is

present in Uhlenbeck's paper [241 but with LO bounds on the connection. Here, our

connection is in L2(B4 ; g 0 T*B4 ) and may be unbounded in L'. In our result in

this section, we require bounds on the connection itself rather than its curvature as in

[231 and Section 5.2. Indeed, because the boundary value of the connection A = d+ a

is fixed under the gauge transformation, curvature bounds alone are insufficient, and

we also need to control the L/ 2 (OR 4; g 0 T*0B 4) norm of the boundary value i*a.

Proposition 5.4. There exists constants e and C such that if A = d + a is any

L( B4- ;& T*B 4) connection with ||a|L 2(B4) < e, then there exists an L2(B4 ; MN)

gauge transformation g sending A to A = d + d such that

1. j*g is the identity gauge transformation on cB4,

2. A = g(A) is in Coulomb gauge, that is, d*d = 0, and

3. 1112(B4) < C (IJFAIL2(H4) + ji&aiIL2 (aB4))
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Moreover, if A is actually in L (B4 ; g 0 T*B'), then g is in L (B'; MN).

We would like to find g using the implicit function theorem. However, doing so

requires the gauge group to have a differentiable exponential map, which is only true

in higher regularity. Hence, we proceed similarly to the proof of Uhlenbeck's gauge

fixing theorem with Neumann boundary conditions in [231: We show that the space

of L2(B4; g 0 T*B4 ) connections satisfying Proposition 5.4 is both open and closed

in L2(B4 ; g 0 T*B 4 ), and that the space of L2(B4 ; g 0 T*B4 ) connections satisfying

Proposition 5.4 is closed in L 2(B4 ; g T*B4).

We first prove a priori bounds on connections in Coulomb gauge.

Lemma 5.5. There exist constants e and C, such that if A = d + a is an L2(B4 )

connection with |Ia|I|L (B) < e in Coulomb gauge d*a = 0, then

IlaII2 (B4) < C (IAIL2(B4) + li aIl.2 (93)

Furthermore, if A is an L2(B'; g 0 T*B4 ) connection, then

Ia IIL2(B4) C (|IVAFAIL2(B4) + IIFAIL2(B4) + 112 aIIL2 (B4))

Proof. Because H1(B, B4 ) = 0, Corollary 2.10 tells us that d+d*: L2'"(B4; A*T*B 4 ) -+

L2 (B4; A*T*B 4 ) is injective on one-forms. Because the trace map i*: L2(B") 4

L 1/ 2 (&B4) is surjective, we conclude that

(d + d*, j*): Li(B4 ; A*T*B4) -+ L2 (B4 ; A*T*B4) x L 1 2(OB4; A*T*&B4 )

is also a Fredholm operator that is injective on one-forms. Indeed, the kernel of

(d~d*, i*) on L2(B 4; A*T*B 4) is the same as the kernel of d+d* on L2'"(B4; A*T*B 4).

Moreover, Corollary 2.10 tells us that range(d + d*, i*) (D (7 n x {0}) contains all

of L2 (B4; A*T*B 4 ) x {0}, and the surjectivity of i* tells us that, for any aa E

L 1/ 2 (&B4 ; A*T*&B 4 ), the image contains a (/, aa) for some /. Hence, range(d +

d*, i*)P(N" x {0}) contains all of L2 (B4; A*T*B 4) xL 1/ 2 (OB4 ; A*T*0B4 ), so (d+d*, z*)
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is Fredholm. Likewise, because d + d*: L2'"(B4; A*T*B 4) -+ L2(B4; A*T*B 4) is an

Fredholm and injective on one-forms and i*: L2(B4; A*T*B4 ) -+ L/ 2 (OB4 ; /\*T*aB4 )

is surjective, we know that

(d + d*,i* ): L2(B4 ; A*T* B4) -- L2(B4 ; A*T* B4) x L 12 ( B4; A*T*0B 4 )

is Fredholm and injective on one-forms. Hence, using d*a = 0, we have bounds

|Ia IL2(B4) < CG (I daIL2(B4) + I yL2*aIL(B) , (5.2)

I1aIIL2(B4) 5 CG (Idc' 2(B4) + Ii aIILS/2 (aB4)) (5.3)

It remains to bound da in terms of FA. Using da = FA - ![a A a], we compute

I|daIL2(B4) IIFAIL2(B4) +C 2zC IjaIIL4 (B4) jaIIL2 (B4),

where Cc is the operator norm of the Lie bracket and CS is the operator norm of the

Sobolev embedding Lj(B") <-+ L4(B4). Hence, requiring E < (CrCSCG) 1 , we have

that |Ia1IL4(B4) < E implies

||daIL2(B4) < ||FAI|L2(B4) + CG |aIIL2 (B4).

Combining with (5.2), we see that

\\a||L2(B4) _< CG (\IFAIL2(B4) i ahIL2 (B4) . hja11L2 (B4)

Hence,

||a||L2(B4) 2CG (|FAIL2(B4) + ji aIL 2 (OB4)

as desired.

We now proceed to the higher regularity. We have

Vda = VFA - !V[a A a] = VAFA - [aO FA] - [Va A a].
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Hence,

|lVda|IL2(B4) < |IVAFAIL2(B4) + Cz lalIL4(B4) IIFAIIL4(B4) + C I|VaIIL4(B4) IlaliL4(B4)

We have IIVaIIL4(B4) < CS IIVaIIL2(B4) < Cs Ia IIL2(B4). However, to obtain a similar

bound for FA, we first need to prove an inequality

li[a A a] L2(B4) < Cs IIaIIL2(B4) IaiL4(B4)

for some constant C., which does not immediately follow from the Sobolev multipli-

cation theorems because L2 is the critical level of regularity in four dimensions. We

compute

l[a A a]1122(B4) = i V[a A a]I122(B4) + 11[a A a]IIL2(B4)

= 12[Va A a]|122(B4) + l1[a A a]I12(4

< 4C IIValI 4(B4) IL4(B4) L4(B4)

<4C2C 2Ia 1122(B4) Ial 124(B4) + C C I|a 11(B4) IlalIL4(B4)

< 5CSC Ila 11 (4) l ||14(

as desired. From here, we can bound FA:

IIFACIL4(B4) C| I|daIIL(B4) + 1Cs| 1[a A a]iiL2(B4)

Cs| IlaIL2(B4) + !CsCs IalIL2(B4) Ila { 4(B4)

Hence,

|IVda IL2(B4) 5 |IVAFAIL2(B4)+ CPCs Ia| IL4(B4) IaIIL2(B4)

+ CCsCs IlaI4(B4) I|a +IL2(B4) CCs| Ia|IL2(B4) Ia|IL|(B).
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By requiring e < (CICSCG and E2 < -!(CtCSCG)', we have

II'daIL2(B4) < IIVAFAIL2(B4) + 4C I|aIIL2(B4).

Hence,

Ida||L ) VdaI2(B4) +|da 122 B4 IVdaIL2(B4) + IldaIL2(B4)

IVAFAIL2(Ba) + I|FAIIL2(B4) 4 CG IIaIIL2(B4) LC halB4)

FAL2(B4) + |IFAI|L2(B4) !C6 IL B).

Combining with 5.3, we have

Ia|IL2(B4) 5 CG (IVAFA IL2(B4) + IIFAIIL2(B4) +IiiaIIL2 (OB4) 4 IIL2(B4)

Thus,

I|a|IL2(B4) < 4CG (i VAFAIL2(B4) + IIFAIL2(B4) + hlia L 12 (OR4)

Now, we prove that the space of connections satisfying Proposition 5.4 is open.

Lemma 5.6. There exists an e with the following significance. Let A = d + a be

an L2(B4 ; g 0 T*B4 ) connection with |iaIIL4(B4) < E and d*a = 0. Then there exists

an open L2(B'; g 0 T*B4 ) neighborhood of A such that any connection B in this

neighborhood has an L2(B'; MN) gauge transformation g with i*g the identity that

sends B to a connection B satisfying the Coulomb condition d*b = 0. Moreover, g

depends smoothly on B.

Proof. We search for a g of the form e-r, where -y is a g-valued L2(B4 ) function. For

a small in L'(B4 ; g 0 T*B4 ), we want a solution -y to the equation

d*(e-7(a a)e- - (de-7)e) = 0, (5.4)

i*= 0.
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Letting L '"(B; 9) denote L2(B4 ; g 0 T*B4 ) functions -y satisfying the boundary con-

dition i*y = 0, we consider the map

L'"(B 4;) x L (B4;g ®T*B4 )-+ L 2(B4;

(7, a) p-4 d*(e- (a + a)e" - (de 7)e7 )

Because we are above the critical regularity, the exponential map is smooth, as are

the relevant multiplication maps and linear maps in the above formula. To apply the

implicit function theorem, we must show that the derivative of this map with respect

to the y variable at (-, a) = (0, 0) is an isomorphism. This derivative map is

-y 1 d*[a, y'] + d*d'.

Call this map T: L2'"(B4;g) -+ L2(B4 ;g). By Propositions 2.8 and 2.9 and the

fact that HO(B4 , B 4 ) = 0, we know that -y' -+ d*d-y' is an isomorphism as a map

L3'"(B'; 9) -+ LI (B4; g).

Next, we show that the other term, d*[a,-y'J, is a compact operator as a map

L2'"(B4 ; g) -÷ L2(B4 ; g), so T is a compact perturbation of d*d, and hence is a

Fredholm operator of index zero. We compute

d*[a, y] = - *d* [a, -y'] = - * d[*a,y'] [d * a, y'] + *[*a A dy']

= [d*a, y'] + *[*a A dy'] = *[*a A dy'],

We can view this term as a composition

L2'"(B4 ;) L (B 4; T*B 4 ) --- > L 2B4; T*B 4) L2 B4; ).

The Sobolev multiplication and embedding theorems tell us that that the above maps

are continuous and the second inclusion is compact, so the composition is comapct.

Thus T is Fredholm of index zero, so to show that T is an isomorphism, it will

suffice to prove that T is injective. Working in one less degree of regularity, since
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d*d: L 2"(B ; g) -4 L 2(B4 ; g) is an isomoprhism, we know that there is a constant EA

such that |Id*dyIIL2(B4) > EA IIIL 2(B4). On the other hand, we know that

II*[*a A dy'1IL2(B4) < CCsC| IlaIIL4(B4) 1'IIL 2(B4) ,

where Ce is the operator norm of the Lie bracket bilinear form, Cs is the operator

norm of the Sobolev embedding L2(B4 ) " L4 (B4 ), and Cd is the operator norm of

d: L'2(B4;g) -+ L2(B4 ; g T*B4 ). Hence, by requiring that e < eA(CcCsCd)- 1 , we

see that IlaIIL4(B4) < - implies that II*[*a A d-y']|IL2(B4) < EA IVy IIL2(B4), SO

IT-'|IL2(B4) > Ild*dy'IIL2(B4) - I*[*a A d-y'11L2(B4) > 0.

Thus, T is injective, and hence an isomorphism. Thus, the implicit function theorem

gives us a solution g = eY to (5.4) depending smoothly on a in a neighborhood of

a = 0. That is, we have a gauge transformation that is the identity on the boundary

sending a connection in an L 2(B4 ; g O T*B4 ) neighborhood of A into Coulomb gauge,

as desired.

Corollary 5.7. The space of L (B4 ; g 0 T* B4 ) connections A = d+a withI a IIL2(B4)

s satisfying Proposition 5.4 is open in L2(B4 ; g 0 T*B4 ).

Proof. Let E4 be the smaller of the constants in Lemmas 5.5 and 5.6, and let C be the

constant from Lemma 5.5. Because A - FA is continuous as a map L2(B 4 ; g 0 T*B 4 ) -+

L2(B4; g OA 2 T*B4), and a F-4 i*a is continuous as a map L2(B 4 ; g 0 T*B4 ) -+

L1/2(B; 0 T*aB), we can require that the e in Proposition 5.4 be small enough

so that I|a IIL24) < E implies IIFAIIL2(B4) + Ili*aII B< 4 (CsC)-, where CS is

the norm of the Sobolev embedding L (B4) - L4 (B4).

Let A be a connection with I|aIIL2(B4)< e satisfying Proposition 5.4, so there is a

gauge transformation g sending A to A such that i*g is the identity and d*d = 0. We

will show that a neighborhood of A satisfies Proposition 5.4, and then pull it back to

61



a neighborhood of A. The final condition of Proposition 5.4 implies that

|I11L4 (B4) Cs III|L2(B4) < CsC (IIFA|IIL2(B4) + Ilia 2 (OB4) < E4.

Hence, we can apply Lemma 5.6 to A and find an open L2(B4 ; g 0 T*B 4) neighbor-

hood of A such that for any connection B in the neighborhood, there is a L2(B4 ; MN)

gauge transformation that is the identity on the boundary and sends B to a con-

nection b in Coulomb gauge. Moreover, the implicit funcion theorem tells us that

g depends continously on B. Hence, by shrinking the neighborhood of A, we can

guarantee that g is close to the identity in L2(B 4; MN), and hence that b is close

to B and hence to A in L2(B4 ; g 0 T*B4 ). In particular, since L 4(B4 ) is a weaker

norm than L2(B4 ), we can choose the neighborhood of A small enough so that B also

satisfies IbIIL4(B4) < E4. Then, we can apply Lemma 5.5 to b, to find that

jib12(B4) < C (jjFbIIL2(B4) + I* IIL(B4)) c C ((BF)BIL2(B4) + 11i*bL12

because IIFIIL 2
(B

4
) is invariant under gauge transformations, and j*g = 1 implies

that i*b = i*b.

We conclude that Proposition 5.4 holds on an open L (B'; g 0 T*B 4 ) neighbor-

hood of A. Since the conclusion of Proposition 5.4 is invariant under L2(B4 ; MN)

gauge transformations g with j*g = 1, we can pull back this open neighborhood of A

via g- 1 to a neighborhood of A satisfying Proposition 5.4, as desired. El

Finally, we prove that the set of connections satisfying Proposition 5.4 is closed.

Lemma 5.8. The space of Li(B4 ; g 0 T*B4 ) connections satisfying Proposition 5.4

is closed in L2(B4 ; g 0 T*B4 ). Likewise, the space of L 2(B
4 ; g 0 T*B4 ) connections

with satisfying Proposition 5.4 is closed in L2(B 4 ; g 0 T*B4 ).

Proof. Let Ai -+ A be a sequence of connections converging in L2(B 4 ; g 0 T*B4 )

with IjajIIL2(B4) < 6 and I1aIl2Q(4) < E, such that there exist L2(B 4 ; MN) gauge

transformations gi sending Ai to Ai satisfying j*gi 1, d*di = 0, and I|diIIL2(B4)
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C (IIFAi IL2(B4) + Jjj*aiIIL22 (B4) . Our goal is to find a limit g sending A to A that

also satisfies these conditions.

Because the Ai converge in L2(B4 ; 9 0 T*B4 ), we know that the FAj converge

and are hence bounded in L2 (B4 ; 9 0 A 2T*B4), and the i*ai converge and are hence

bounded in 2(B g 0 T*&B4 ). Hence, the above inequality tells us that the di are

bounded in L2(B4 ; g 0 T*B 4 ), so we can pass to a subsequence where the di converge

weakly in L2(B4 ; g 0 T*B 4). Let d be the limit. By Lemma 5.2, after passing to

a subsequence, the gi converge weakly in L 2(B4 ; MN) to a gauge transformation g

sending A to A.

Finally, since i*: L'4(B 4 ; MN) - L/ 4 (B 4 ; MN) is continuous and linear, the gi

converging weakly to g in LI (B4 ; MN) implies that the j*g2  1 converge weakly to

i*g, hence j*g = 1. Likewise, because d*: L 2(B4 ; g 0 T*B 4 ) -+ g 0 T*B 4 ) is

continuous and linear, the di converging weakly to d in L2(B4 ; g 0 T*B 4 ) imply that

the d*di = 0 converge weakly to d*d, so d*d = 0. Finally, for the inequality, we use

the lower semicontinuity of norms under weak limits and the strong convergence of

FA, and i*aj to compute

||IIL2(B4) K liminf IIdiIlL2(B4) C liminf |IFAIIL2(B4)+ liminf ia IL2 (B4)

= C (|FAIL2(B4) + Ij aIIL2(B4))

We now proceed to prove closedness in higher regularity. Let Ai -+ A be a sequence

of connections converging in L 2(B 4 ; gO T*B4 ) with lai1IL2(B4) < E and IlaIIL2(B4) <E,

such that there exist L (B4 ; MN) gauge transformations gi sending Ai to Ai satisfying

i*gi = 1, d*di = 0, and ||4A|IL2(B4) 5 C (IIFAIL2(B4) + Iiai0L/ 2(B4))*

As in the proof of Corollary 5.7, this inequality, along with a small enough e,

guarantess that II"iIIL4(B4) is small enough to apply Lemma 5.5, giving us

|||IL2B4) (I F ||L2(B4) + IIFA||L2(B4) + IIiaIIL/ 2 (8B4)

= C (|VA FA IIL2(B4) + IFAI1 L2(B4) 11 ajIIL2 (OB4)
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because IIFAIIL2(B4) and IIVAFAIIL2(B4) are gauge invariant quantities, and i*aj = i*dj.

Since Ai converges to A in L2(B4; g 0 T*B4 ), we conclude that the right-hand side

of the inequality is bounded, and hence a subsequence of the di converges weakly

in L2(B4; g 0 T*B 4 ). Let d be its limit. The above argument for L'(B4; g 0 T*B4 )

connections gives us a gauge transformation g E L (B4 ; MN) sending A to A satisfying

all of the conditions of Proposition 5.4, so it only remains to show that g is actually

in L2(B4 ). We prove this claim in two steps from the equation dg = ga - &g. First,

note that the multiplication L2(B4 ) x L2(B4 ) -+ L3(B4 ) is continuous. Hence, since

g,a, E L'(B4), we know that dg E L,(B4;MN OT*B4 ), so g E L (B4 ; MN). Next,

since the multiplication L3(B4 ) x L 2(B4 ) -+ L2(B4 ) is continuous, we have that

dg E L2(B4 ; MN 0 T*B4 ), so g E L2(B4 ; MN), as desired. E

These lemmas complete the proof of Proposition 5.4.

Proof of 5.4. The space of L2(B 4 ; g 0 T*B4 ) connections A with IIaIIL2(B4) < E is cOn-

nected, and by Corollary 5.7 and Lemma 5.8 the space of connections with IIaIIL2(B4) <

e satisfying Proposition 5.4 is both open and closed, and hence contains all con-

nections with IjaIIL2(B4) < E. Meanwhile, any L2(B4; g 0 T*B4 ) connection A with

IjaIIL2(B4) < E is the limit in L (B4 ; g O T*B4 ) of sequence Ai of L 2(B4 ; g 0 T*B4 )

connections with ||a|IL2(B4) < E. Because the Ai satisfy Proposition 5.4, Lemma 5.8

tells us that so does A. El

We also prove that the gauge transformation constructed by Proposition 5.4 is

unique, at least with an appropriate choice of constants. We require L4 (B4 ; g 0 T*B4 )

bounds on the Coulomb gauge representatives, but note that these follow from the

condition II&11L2(B4) ; C (IFAjjL2(B4) + ji*aIL2 (OB4) and the bounds on IaIIL2( B4)

in Proposition 5.4. In addition, for use in the future, we will assume that i*g is a

constant gauge transformation on B 4 but not necessarily the identity. -

Proposition 5.9. There exists a constant E such that if A = d + a and B = d + b

are two L2(B4 ; g 0 T*B 4 ) connections gauge equivalent via a gauge transformation

g E L (B4 ; G) satisfying
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1. bounds ||a||L(B4), 'lb IL4(B4) < E,

2. the boundary condition that i*g is equal to a constant c E G on &B , and

3. the Coulomb condition d*a = d*b = 0,

then g is the constant gauge transformation c on B4 .

Proof. We have the gauge equivalence equation

dg = ga - bg.

Thus, using d*a = d*b = 0, we have

d*dg = -*d(g*a) + *d(*bg) = -*(dg A *a + gd(*a)) + *(d(*b)g - *b A dy)

-*(dg A *a + *b A dg). (5.5)

Hence,

||d*dgj|L2(B4) (iiaIi4 IIL4 (B4)) ldglL4 (B4)

SCs (a|L4 (B4) +lblIL4(B4)) dgllL (B4)

On the other hand, since H1 (B4, dB 4) = 0, Corollary 2.10 tells us that

d + d*: L '"(B4 ; MN 0 A*T*B4 ) -+ L 2 (B4 ; MN 0 A*T*B 4 )

is a Fredholm operator with no kernel on one-forms. The boundary condition on g

implies that i*dg = dOB4o*g = dOB4c = 0, so dg is indeed in L2'"(B ; MN 0 T*B 4).

Thus, there is a constant CG independent of g such that

Idg||IL(B4) < CG 11(d + d*)dg9jL2(B4) = CG Id*dgIL2(B4).
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Combining these inequalities, we have

Idg|IL(B4) CGCS (|alL4(B4) + ||b||L4(B4)) ||dgI|L (B).

Thus, requiring e (CGCS) , the condition aL4(B4) L4(B4) <E implies that

1
IldgIL2(B4) < - IldgllL2(B4),

so dg = 0. Thus 9 is constant on B4 . Since i*g = c on &B4 , we conclude that g = c

on all of B4 , as desired. 0

5.2 Coulomb gauge with Coulomb gauge on the bound-

ary

In this section, we prove a second gauge fixing result, where we show that if a con-

nection has small energy, then it is gauge equivalent to a connection A = d + d that

satisfies the Coulomb condition d*d = 0 on B4 and whose restriction to the boundary

j*d satisfies the the Coulomb condition daB4(i*d) = 0 on 0B4 , where d*B4 denotes the

adjoint of the differential daB4 on 0B4 with respect to the metric on OB4 .

Theorem 5.10. There exist constants e and C such that if A is any LI(B4 ; g 0 T*B4 )

connection with I|FAIIL2(B4) < E, then there exists an Lj(B4 ; g 0 T*B4 ) connection

gauge equivalent to A by an L (B4 ; G) gauge transformation such that

1. Ais in Dirichlet Coulomb gauge, that is, d*& = 0 on B4 and d*OB4(i*a) 0 on

&B4 , and

2. |lI|IL2(B4) < CIIFAIL2(B4).

Moreover, if A is in L2(B4 ; g 0 T*B4 ), then g c L2(B ; G).

Gauge fixing with the Dirichlet Coulomb condition d*d = 0 and d*B4i*& = 0 is

shown in Uhlenbeck's paper [24, Theorem 2.71, but again with L" bounds. Marini
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[111 improves this result to L' connections, but with the additional assumption that,

on the boundary, Ili*FA IL2(OB4) < E. We remove this condition, so Ili*FA|IL2(OB4)

need not even be finite. As in the previous section and [231, we first work in higher

regularity and prove that the space of L2(B 4;!g 9 T*B4 ) connections satisfying The-

orem 5.10 is both open and closed in L2(B4; g 0 T*B4 ), and then prove the result for

(B g 0 T*B4) connections by showing that the space of L 2(B4; g 0 T*B4) connec-

tions satisfying 5.10 is closed in L2(B4 ; g 0 T*B 4 ). We begin by strenghtening the a

priori bounds in Lemma 5.5 in this setting.

Lemma 5.11. There exist constants e and C, such that if A = d + a is an L2(B4 )

connection with IaIIL4 (B4) < E in Dirichlet Coulomb gauge d*a = 0 and d*B4,i*a 0,

then

IlaIL 2(B4) C IIFAIIL2(B4)'

Furthermore, if A is an L2(B';g 0 T*B4 ) connection, then

Ia IIL2(B4) <C (IIVAFAIL2(B4) + lFA 11L2(B4))

Proof. Recall (5.2) and (5.3).

IlaIIL2(B4) CG (IIdaIIL2(B4) + 11i*allL2 (9B4))

Ia IIL2(B4) CG (IldaIL (B4) + 1i aIIL2 (OB4))

The key idea is to absorb the i*a terms by proving that d*B i*a = 0 implies that

l|i*a|l|2(.B) < CF Ida IIL2(B4) and IIi*aII CF IldalL 2(B4) for some constant

CF. Since dOB4 d*B4 is elliptic and H1 (OB 4) = 0, we know that dOB4 + dB4i

Fredholm operator with no kernel on one forms. Thus, there is a constant C such

that

Ii*a||I 1L(OB 4 ) 5 C9 II(dOB4 + d4)( i*a)IIL 2 (B 4) =Cg IldB4i*aI L/(.9B4)

Cg Ii* (da)IIL 2 (49B4) < CgCT Ida|L 2 (B4),
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where CT is the operator norm of the trace map L'(B4 ) -+ L' (B'). We could do the

same argument in lower regularity, except that the trace map L 2 (B4) -+ 21/2(B) is

unbounded. However, we can still get the inequality IIdaB4i*aIL 21/2 (O
4

) < CT IldaIL2(B4)

using the Hodge decomposition, as we show in Lemma 5.12. For now, we continue.

with this assumption. Thus, by the same argument,

|ia|L|2(OB4) < C9 I(dOB4+ B -))L2- (B 4)

= Cg I|d8B4i*aIIL2 1/2(B4) CgCT I|daIIL2(4).

Hence, we have

Ia|L 2B) 5 CG(CgCT + 1) IdalIL2(B4) , (5.6)

Ia|IIL2(B4) < CG(CgGT + 1) Ida 2L(B4) (5.7)

At this point, we can follow the argument of Lemma 5.5 with CG(GgCT + 1) in

place of CG. By choosing e small enough, we can have IaIIL4(B4) < E to imply

I|da IL2(B4) 5 |IFAIIL2(B4) + !C 1 (CgCT +1)-i I|aIIL2(4)

Combing with (5.6) and rearranging, we have

|Ia|L2 (B) 2CG(CgCT + 1) IIFAIIL2(B4),

as desired.

Likewise, in higher regularity, we can modify the argument in Lemma 5.5 to choose

e small enough to guarantee

||da|e(B4) ||VAFAIIL2(B4) + ||FA|L,2(B4) + !C j(CgCT + 1)-1 IaIIL2(B4).
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Combining with (5.7) and rearranging, we have

Ia IIL2(B4) 4CG(CgCT + )(IvAFAIL2(B4) +IIFAIL2(B4))

as desired.

Lemma 5.12. Let X be a compact smooth manifold with boundary, and let a be a

differential form in L(X ; A*T*X). There is a constant CT independent of a such

that

||doxi*a|| < CT Ida|IIL2(X)

Proof. It suffices to consider smooth a because smooth forms are dense in L 2(X; A*T*X)

and the linear map dox o i*: L (X; A*T*X) -4 L2-11 2 (X; A*T*OX) and the linear

map d: Ll(X; A*T*X) - L2 (X; A*T*X) are continuous. By Proposition 2.9,

a = dd*Gta + d*dGta + 'r-ta.

Let / d*dGta, which is smooth by Proposition 2.9 because a is smooth, so both

%*a and i*f3 are well-defined. By the above equation, we see that

da = d3,

doxi*a = i*da = i*d#3 = daxi*#.

Hence, it suffices to prove our lemma for /3.

It is clear that d*/ = 0. Moreover, by the boundary conditions on the range of

Gt in Proposition 2.9, we see that

* = i**d*dGta = ki*dsdGta = daxi**dGta = daxi*d**Gta = 0.

Hence, we can apply Corollary 2.10, noting that Proposition 2.9 gives us that # is

orthogonal to V. In other words, we have a Fredholm operator

d +d*: L 2 t (X; A*T*X) -+ L2 (X; A*T*X),

69



and 3 is orthogonal to its kernel, so there is a constant CG independent of # such

that

III|L2(X) < CG II(d + d*)/L2(x) = CG Ijd/31L2(X).

At this point, proving the claim for # is straightforward. Let C be the operator norm

of dox o i*: L'(X; A*T*X) -4 L2
1 2 (DX A*T*&X). We have

||doxi*11L2/OX) C IIOIIL 2(X) CG Id/ 3 L2(X),

as desired, letting CT = CCG. Since da = do and doxi*a = doxi*3, we also have

I|doxi*o||L2 112(OX) < CT ||da||L2(x)

for smooth a, and the aforementioned density argument gives us the inequality for

all a E L 2(X; A*T*X). E

As for the fixed boundary gauge fixing, our next step is to prove openness in

higher regularity.

Lemma 5.13. There exist constants E4 and E3 with the following significance. Let

A =d a be an L (B ; 0 T*B4 ) connection with I|aIILI(B4) < E4, IiaIIL3( 9B4) < E3,

d*a = 0, and d*i*a = 0. Then there exists an open L (B'; g 0 T*B4 ) neighbor-

hood of A such that any connection B in this neighborhood has an L2(B4 ; G) gauge

transformation g that sends B to a connection b satisfying the Dirichlet Coulomb

conditions d*b = 0 and d*Bi*b = 0. Moreover, g depends smoothly on B.

Proof. We adapt the proof of Lemma 5.6. Again, we search for a g of the form e-7 for

y E L3(B4 ; g). For a small in L2(B4 ; g 0 T*B4 ), we want a solution -y to the system

d*(e-(a + a)e-' - (de67)e) = 0, (5.8)

d*4i*(e Y(a + a)e- - (de&^)e") = 0.

This time, we need to deal with the fact that Dirichlet Coulomb representatives

are unique only up to constant gauge transformations, so in order to obtain an iso-
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morphism, we need to make sure that our spaces of infinitesimal gauge transforma-

tions do not contain nonzero constant gauge transformations. Let L2'1 2 (OB4; g)

denote those LZ-/ 2 (&B4 ; g) functions that are L2 (B 4 )-orthogonal to V 0 (B 4 ), that

is, orthogonal to the constant functions on the 3-sphere. Let L ' (B4; g) denote

the inverse image of the closed subspace L2 '1 /2 (B4; g) under the restriction map

i*: L2(B4 ; g) -+ L- 1 2 (_ B 4 ; g). We consider the map

L2' (B4; g) x L 2(B4; gT*B4) -+ L2(B4 ; 0) x L (B4; 0),

(aca) -+ (d*(e-Y(a -+ ov)e? - (de-I)O), d*B4i*(e~Y(a + a)e" - (de-)e0))

Again, this map is smooth because we are above the critical regularity. Moreover, the

range of the second component is indeed in L2j (B 4 ; g) because it is in the range

of d*B4, and it is easy to verify that if 4 is a constant map, then (d;B4/, 4)L2(B4)

(, daB40) L2(B4) = 0 for all 3.

To apply the implicit function theorem, we show that the derivative of this map

with respect to the y variable at (-y, a) = (0, 0) is an isomorphism. Call this map T.

This map is

T: L " (B4 ;g) L (B4 ; g) x L (B4; ),

T: -y' -+ (d* [a, '] + d*dy', d*B4i*[a, y'] + d*34i*dy') .

As in the proof of Lemma 5.6, our goal is to show that T is a Fredholm operator of

index zero by decomposing T as a sum T = To + K where

TO: -y' - (d*dy', dB4i*d y) ,

K: -y' (d*[a,-'], d4i*[a, y']) .

We then show that To is an isomorphism and K is compact. Note that d*B4i*d?' =

d*4A Hence, TO: L ', (B4; L) Li(B4 ; ) x L 2j (OB4; g) is the composition
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of the maps

(Ai*): L "(B 4 ;g) -+ L2(B 4;g) x L (B4; ),

(Id, AB4): L2(B4; p) x L2,1 (B 4;g) -4 L2(B4 ; g) x L (B4; 0).

The fact that AB4 : L 1+3/ 2 (OB4 ; g) - L'_112(9B4 ; g) is an isomorphism follows

from the usual Hodge decomposition on closed manifolds, since, by definition, we

restrict the domain and range to the orthogonal complement of the harmonic func-

tions 't(OB 4 ), that is, the constant functions.

As for (A, j*), as before, we know from Propositions 2.8 and 2.9 and the fact that

'W0(B4 , B 4 ) = 0 that A: L 2 (B 4 ; g) -+ L2(B4 ; g) is an isomorphism for k > 0,

where Lk' 2 (B
4 ; g) (B4 ; g) n ker i* L'+2 (B

4 ; g) n ker i*. The injectivity of

(A, *) follows. For surjectivity, we use a standard argument using the surjectiv-

ity of i*. Indeed, the inverse trace map [1, Theorem 7.531 gives us surjectivity of

i*: L+2(B4 ; ) - Lk+3/ 2 (OB 4;g) for k > -1. Since Lk'E2 (B'; g) is defined as in the

inverse image of L'+3/2 (OB; q) under this map, we know that i*: Lk< 2 (B4 ; ) -+

Lk3/ 2 (OB; g) is also surjective. Given (3, 7yO) E Lk(B4 ; g) x L'+3/2(BB; ), let

k1 E L 2 (B
4 ; g) be such that i*y1 = 7y. Meanwhile, we use the surjectivity of

A: L 2 2 (B4; g) -+ L(B4 ; g) to find a -y2 E L '+n2(B'; p) such that A7y 2 = A71 - 8.

Then, Y2 -1 E L 2 (B ; g), and we have A(>1 - 72) =6 and i*(1 - Y2) = i*71 =

as desired. Setting k = 1 gives us that To: L3 (B;g) L(B4;g) x L (B

is an isomorphism.

Next, we show that K is compact. In the proof of Lemma 5.6, we computed that

if d*a = 0, then

d*[a, y'] = *[*a A d'y'I.

The same argument shows that if d* 4i*a = 0, then

d'B4i [, -- = B4Ia = *B4 [*OB4i a A doB4 *Y],

where *0B4 denotes the Hodge star operator on the sphere &B4 . As before, we view
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'-y' F- d* [a, '] as the composition

L '(B; g) + L2(B4 ; g 0 T*B) - L 3/2(B4 ; g 0 T*B4 ) k[*aA> L(B4 ; g),

and the Sobolev multiplication and embedding theorems, along with the smoothness

of * and a E L 2(B
4; g), tells us that the maps above are continuous, and the second

one is compact, so the composition is compact. Likewise, -y' -+ d*4i* [ay'] is the

composition of the maps

L3 (B4 ;g) - L'(BB;) 5/2 L/2(OB; 0 T*&B4)

-+ L 4(9B4 ; g 0 T*B 4 ) *8B41*aB4iaA L 12(&B4 ; g ).

Again, the inclusion is compact, so the composition is compact.

We conclude that K is compact, so T is indeed a Fredholn operator of index zero.

Hence, to show that T is an isomorphism, it suffices to show that T is injective. We

show that this is indeed the case, assuming |IaIIL4(B4) < E4 and |li*a|ILa(OB4) < E3 for

E4 and E3 small enough. Now setting k = 0 in the above argument gives us that, in

one degree lower regularity, TO: L '1(B4; g) -+ L2 (B4 ; g) x L2 , / 2 (&B4; g) is also an

isomorphism, so there exists an -A such that

ITo'Y' 1 12(B4)xL212(OB4) > EA (I II L2(B 4)

Next we bound IIK-y'IIL2(B4)xL2 (aB 4 ) from above. Since * is an isometry, we have

I|d*[a,Y'IL2(B4) = I*[*a A dy']IL2(B4)

C2 Ila|IL4(B4) Ld-y IL4(B4) C2CSCd IlaIIL4(B4) hi IL2(B4)'

where C2 is the operator norm of the Lie bracket [-, -J, Cs is the operator norm of the

Sobolev embedding L 2(B') - L'(B4 ), and Cd is the operator norm of d: L (B4; g) -+

73



2(B 4; T*B 4). Likewise,

|B42Ii* [a,']||I2 (aB4 ) s C *B4 [*B4i*a A dB4i*fL3(B)

< CSC2 ||i*a|| I I doBi *YlL3( 0B4) 2 < CsC T Ii allL3(aB4) IVY IL2(B4)

where C, denotes the operator norms of the embeddings L3/ 2 (B 4 ) " L21 1 2 (B
4 )

and LY/ 2 (OB4 ) e L3 (DB4 ), Cd denotes the operator norm of dOB4: L3/ 2 (&B4 ; g) -+

L1/2(B T*DB ), and CT is the norm of the trace operator i*: L2(B4 ; g) +

L3/ 2 (OB4 ; ). Hence, by choosing E4 and 3 small enough, we can guarantee that

llallL4(B4) < E4 and liialL 3( B4) < E3 imlies that

lKf'|L2 (B4)XL2 (B 4) L 2 2(B)

As a consequence, since T = To + K, we know that

IITy'll2(B4)XL 2 (OB4
) > E1A 7L1 L2 (B4)'

so T is injective. Since T has Fredholm index zero, we know that T is an isomorphism,

so the implicit function theorem gives us a solution g = e-Y to the system (5.8) that

depends smoothly on a in a neighborhood of a = 0. That is, for any connection

in a neighborhood of A, we have a gauge transformation sending it to a connection

satisfying the Dirichlet Coulomb conditions, as desired. l

Note that if instead of using the multiplication map L3 (OB4) x L 3 (B 4 ) -

L-1/2(oB) above we had used the multiplication map L' 1 / 2 (OB4 ) x L (B

L 2 1/2 (OB4) we could weaken the condition that IIi*aIL3(OB4) be small to the condi-

tion that IIi*aIIL6 (OB
4

) be small. Conversely, because of the continuity of the maps

L j(B4) e L4 (B4 ) and L I(B4 ) L / 2 (B 4) 12 L3(&B 4), we can replace the condi-

tions ||alIL4(B4) < E4 and liz*aI|L3(B4) < E3 in the above lemma with IjaI!L2(B4) < E21

for a suitable 621.

Corollary 5.14. The space of L2(B 4 ; OT*B4 ) connections A with ||FA||y(4 <C
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satisfying Theorem 5.10 is open in L (B4 ; g 0 T*B4 ).

Proof. We let E4 be the smaller of the constants in Lemma 5.13 and Lemma 5.11, let

63 be the constant in Lemma 5.13, and let C be the constant in 5.11. We can choose e

small enough such that I|I|IL(B4) < Ce implies II|IIL4(B4) < e4 and |i *aIL3(OB4) < E3-

Let A be an L2(B4; g 0 T*B4 ) connection with |IFAIIL2(B4) < E satisfying Theorem

5.10. Then there exists an L2(B4; G) gauge transformation g sending A to A such

that d*d = 0, dOB4i*i = 0, and hIIL 2(B4) < C IIFAIIL2(B4) < CE. As discussed earlier,

this implies that d is small enough to apply Lemmas 5.11 and Lemma 5.13. Hence,

we apply Lemma 5.13 to A to find an open L2(B 4; g 0 T*B 4) neighborhood of A

such that for any connection B in the neighborhood has a gauge transformation g

that sends B to a connection B satisfying the Dirichlet Coulomb conditions d*b = 0

and dBZ4i*b = 0. Since g, and hence B, depends smoothly on B, by shrinking the

neighborhood of A we can guarantee that b is close to A in L2(B4; g 0 T*B 4 ). Hence,

we can guarantee that B also satisfies the bounds 11616L4(4) < E4, so we can apply

Lemma 5.11 to b to get

|b |L||(B4) < IFg3iIL2(B4) = IIFBIIL2(B4)'

Hence, Theorem 5.10 holds for B in this neighborhood of A. Since Theorem 5.10

is gauge invariant, we can pull back this neighborhood of A via g- 1 to an open

neighborhood of A that satisfies Theorem 5.10, as desired. [

Lemma 5.15. The space of L2(B4 ; g 0 T* B4) connections satisfying Theorem 5.10 is

closed. Likewise, the space of L2(B4; g 0 T*B 4) connections satisfying Theorem 5.10

is closed in L2(B4; g 0 T*B 4).

Proof. Let Ai -+ A be a sequence of connections converging in L 2(B4; g 0 T*B4) with

IIFAIIL2(B4) < E, such that there exist L2(B4; G) gauge transformations gi sending A2

to Ai = d+ Ai such that d*di = 0, d*B4i*&i = 0, and |IahlL2(4) C IFAIL2(B4)-

Because the A2 and hence the FAj converge, we know that the di are bounded in

L (B;g 0 T*B4 ). Hence, after passing to a subsequence, the di converge weakly in
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7(B4;g 0 T*B 4 ) to d. Applying Lemma 5.2, there exists a gauge transformation

g E L'(B 4; G) sending A to A= d + d.

The operators d* and d*4i* are continuous and linear, so the conditions d*di= 0

and d*4i*d- are preserved in the weak L 2(B4 ; g 0 T*B4 ) limit d*& = 0 and d* 4 = 0.

Finally, because norms are lower semicontinuous under weak limits, we have

l1aIIL2(B4) < liminf ICil 2(B4) < C lim IIFA 1L2(B4) = IFAIIL2(B4)

Hence, A indeed satisfies Theorem 5.10.

Meanwhile, for the higher regularity claim, let Ai -+ A be a sequence of connec-

tions converging in L2(B4 ; g 9 T*B4 ) with IIFAlL2(B4) < E and IIFAIIL2(B4) < E, such

that there exist L2(B4 ; G) gauge transformations gi sending A to Ai= d + di with

d*di = 0, d*34i = 0, and I|aZIIL(B4) < C I|FAAIL2(B4) < C_. Again, let e4 be the

constant from Lemma 5.11, and require e to be small enough so that IIiIL 2(B4) < Ce

guarantees that ||5iI|L4(B4) < e 4 . Then, applying Lemma 5.11, we have

||5'iIL|(B4) < C (||VAjFAjIL2(B4) + I =I IL2(B4) C (||VA FA. I L2(B4) + IFA IIL2(B4)

The convergence of the Ai in L'(B4 ; g 0 T*B4 ) guarantees the convergence of the

right-hand side, so the di are bounded in L (B4 ; g 0 T*B 4 ), and hence, after passing

to a subsequence, they have a weak limit d. In particular, the A2 converge toA in

LI(B;g 0 T*B 4 ), so we can apply the above argument to conclude that there is a

L2(B4 ; G) gauge transformation g sending A to Aand A satisfies the conditions of

Theorem 5.10. Finally, the same argument as in Lemma 5.8 shows that because A and

A are in L2(B 4 ; g 0 T*B4 ), the gauge transformation g is in fact in L 2(B4; G). El

Unlike for Proposition 5.4, for Theorem 5.10 we need one more ingredient, which

is to show that the space of L2(B4; g 0 T*B4 ) connections A satisfying IIFAIL2(B4) < E

is connected. We use an argument like in [231.

Lemma 5.16. Let - be a constant, and let k > 1. Let P be a trivialized princi-

pal G-bundle over B 4 . The set of L (B 4 ; 9 0 T*B4 ) connections A on P such that
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IFAIIL2B4) < E is connected.

Proof. Let A be an L2(B4 ; p 0 T*B4) connection with IIFA|IL2(B4) <E. For 0 < A < 1,

let f\: B4 -* B4 be the scaling map f,(x) = Ax. Using the fixed trivialization of

the principal bundle P, we have a bundle map fA: P -+ P over f.\: B4 -+ B4 ,

which identifies f,\P with P. Let AA = fA. Note that A1 = A, and that AO = d,

since jo identifies every fiber with the fiber at x = 0 via the trivialization. Moreover,

I|F B L2(B4) is conformally invariant, so, viewing fx as an conformal isomorphism B4 -+

A - B4, we have

IF5A||B4 =||FAng2(A-B4) < |IIFAI2(Ba) < 6.

I claim that AA is a continuous path of L2(B 4 ; g 0 T*B 4) connections. Let A =

d + a and A, = d + a. Then a (x)= A -a(A x). We have that

j lA+1(Via)(A .x)12 dxLI'AI2 (B4) =dxB

= A2(j+ 1 A- 4  (Via)(A . x)1 2 d(A - x)
A.-B4

= A 2(j-1) JI i 112 2(AB4 < A 2(j-1) J sa 112(B)

Hence, a, is indeed in L2(B 4 ; g 0 T*B4). We now prove continuity of this path of

connections at A = 0. When j> 1, it is clear that IIVia, 1122(B4) -+ 0 as A - 0. When

j = 1, we note that II Va,1IL2(B4) = IIVaI12 2(.-B
4
), which also approaches zero as A -+ 0.

Finally, note that, by assumption, a E L 2(B4; g 0 T*B4) C L4 (B4 ; g 0 T*B4 ), so

Ila,\1L2(B4)= A-' IIaIIL2(A-B4) < A1 IlaIIL4(.\-B4) II1IIL4(A.B4)

= A-' IlaIIL4(,.B4) (A4 vol(B4))114 - vol (B4)114 IIaIIL4(.\.B4).

Hence, Ila.IIL2(B4) - 0 as A -+ 0, completing the proof that IIa,\IL2(B4) -+ 0 as A - 0.

We now use standard arguments to prove continuity at 0 < A < 1. Let h be such
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that 0 < A I h < 1. We compute that

V(aA+h - a,) IL2(B4) +(A +- h)j(Va)(fA+hX) - A+1 (Via)(f\x) IL2 (B 4 )

< (A + h)+ 1 (Via)(f\+hX) - (Va)fAx) I 2 (B4 )

+ ((A + h)+1- Ai ) IjVa(fx)IL
2 (B4 )

The second term approaches zero as h -> 0, so it suffices to prove that

I(Via)(f\+hX) - (Via)(fAx) IL2(B4) -4 0

as h -÷ 0. Let 6 > 0. Approximate Via in L2 by a continuous function a so that

I Via - a1IL2(B4) < (A)2. Since a is continuous on a compact domain, it is uniformly

continuous, so we can guarantee that ||a((A + h) - x) - a(A - )IILz(4) < A as long as

h - x is sufficiently small. Since IxI < 1, we can simply choose h sufficiently small.

Finally, note that

IVia(A - x) - a(A. X)1I12(B4) j IVia(A x) - a(A. X)1 2 _V 4 d(A - x)

A IIVia(x) - a(x) B4)

Hence,

IVia(A - x) - a(A )L2(B4) A-A)2 <

Likewise,

IVia((A + h) - x) - a((A + h) )I B < (A + h) 2 6() 2 <

provided that we choose h > -A. Hence,

IlVia((A + h) -x) - Via(A - X)IIL2(M) <

for h sufficiently small, completing the proof of continuity at A. L1
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We can now put together these lemmas to prove Theorem 5.10.

Proof of Theorem 5.10. The space of L'(B4 ; g 0 T* B4 ) connections A with IFA L L2(BI) <

e is connected by Lemma 5.16, and by Corollary 5.14 and Lemma 5.15 the space

of connections satisfying Theorem 5.10 is both open and closed in the space of

L2(B'; p 0 T*B4 ) connections with IIFAIIL2(B4) < E, and hence contains all L 2(B4 ; g 0 T*B4 )

connections with |IFAIIL2(B4) <

Meanwhile, because A -+ FA is continuous as a map

L1(B4 ; g0T*B 4) -+ L2(B4; 0 OA\2T*B4),

any L 2(B4; g 0 T*B4 ) connection with IIFAIIL2(B4) < e is the L2(B 4; g 0 T*B 4) limit of

L (B';g 0 T*B4 ) connections Ai with IIFAIIL2(B4) < E. These connections Ai satisfy

Theorem 5.10, so by Lemma 5.15 so does A. l

Again, we finish by proving that the gauge transformation constructed by Theo-

rem 5.10 is unique up to a constant gauge transformation. To do so, we first prove

uniqueness up to constants on the boundary.

Proposition 5.17. There exists a constant e such that if A = d + a and B = d + b are

two LS/ 2 (1B 4 ; g 0 T*&B 4 ) connections gauge equivalent via a gauge transformation

g E L31 2 ( &B4 ; G) satisfying

1. bounds Ia||IL3(,B4) ,I|b|IL3(aB4) < 6, and

2. the Coulomb conditions d*Oa = d*B4 b = 0,

then g is constant on aB4 .

Proof. Equation (5.5) is also valid on B 4 given d*4a = d*B4 b = 0, so we have

d*dog= - *0B4 (dOB4g A *aB4a + *OB4b A d8B4g).
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Then,

dBadaB4Y IL2 (OB4) s al B4 q lL3/2(aB4)

< Cs (|a|L3( B4) + |bIIL3(OB4)) jldaB4 0L3(OB4)

< C2 (||all + IbIIL3(OB4)) ||dOB4 L 4).

where Cs is the operator norm of the Sobolev embeddings L3/ 2 (OB4 ) " L2-1/2(B4)

and L 1 2(aB4 ) -+ L (aB

Here, the standard theory of elliptic operators on closed manifolds tells us that

the operator

doB4 B4 : L 2 ( B4; MN 04*T*0B4 ) - L 2
1 2 (&B4 ; MN 04*T*&B4 )

is Fredholm. Moreover, it has no kernel on exact forms because

((dOB4 d*B4)(d&B4g), 9).L2(aB4) (dOB g, aB4 9gL2(0B4).

We conclude that there is a constant CG such that

lldOB4 IIL2/(OB4) CG I1(daB4 + B4) (dB4 )9IL2 (B4) - CG Ild*B4doB4gL2( 0 B4).

Putting these inequalities together, we have

||daB4g IL2 (OB) < CGCS (llajlL3(aB4) + llbIL3(OB4)) ljdOB4g IIL2(B)

Hence, requiring that E < (CG Z)- 1 gives

||d1B4/lL2(OB) 2 1 B4 L(OB4),

so dOB4g =0 and g is constant on &B4 , as desired. l

We can now prove the uniqueness up to constants of the gauge transformation
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constructed in Theorem 5.10 on all of B4 . Again, we assume L'(B'; 0 S T*B 4) and

L 3(B4;g 0 T*&B4) bounds, but these are implied by the L'(B4; 0 0 T*B') bound

given to us by Theorem 5.10.

Corollary 5.18. There exists constants e4 and E3 such that if A= d + a and B =

d + b are two L (B4 ; g 0 T*B 4) connections connections gauge equivalent via a gauge

transformation g E L2(B4 ; G) satisfying

1. bounds I|aIIL4(B4) , bL4(B4) <E4 and Iji*aIIL3(aB4) ibL(B4) < E3, and

2. the Dirichlet Coulomb conditions d*a = d*b = 0 and d*i*a = d*,i*b 0,

then g is constant on B4.

Proof. Choose 63 small enough to apply Proposition 5.17. Then j*g is a constant

gauge transformation c E G on OB4. Then choose E4 small enough to apply Proposi-

tion 5.9, giving us that g is the constant gauge transformation c on all of B4. L

5.3 Convergence of Coulomb gauge representatives

In this section, we extend Uhlenbeck's gauge fixing result with Neumann bound-

ary conditions [23] to L2(B4 ) connections. Moreover, we show that if a sequence of

small-energy connections converges in L2(B4 ; g 0 T*B4), then a subsequence of the

Coulomb gauge representatives converges strongly in L2(B4 ). Analogous results can

also be proved for the gauge fixing result with Dirichlet boundary conditions in Theo-

rem 5.10. Either boundary condition will suffice for our purposes, so we only present

the results for gauge fixing with Neumann boundary conditions, but the proofs for

the Dirichlet case are analogous. We begin by presenting Uhlenbeck's gauge fixing

theorem.

Theorem 5.19 ([23, Theorem 2.11). There exist constants E and C such that if A

is an L2(B4 ) connection with I|FA|IL2(B4) < E, then there exists an L2(B4 ; MN) gauge

transformation sending A to a connection A= d + d satisfying
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1. the Coulomb condition d*a = 0 on B ,

2. the boundary condition iZ** = 0 on OB

3. the bound IIIIL2(B4) C IIFAIL2(B4).

We aim to extend this theorem to L2(B4) connections.

Theorem 5.20. There exist constants e and C such that if A is an L2(B4 ) connection

with IIFAIIL2(B4) < e, then there exists an L4(B'; MN) gauge transformation sending

A to an L2(B 4 ) connection A = d + d satisfying

1. the Coulomb condition d*d = 0 on B4 ,

2. the boundary condition i**h = 0 on OB

3. the bound IIIIL2(B4) < C ||F A L2(B4)'

Theorem 5.19 tells us that Theorem 5.20 holds for L 2(B
4 ) connections, so we use

a closedness argument analogous to [23, Lemma 2.41 and Lemma 5.8 to extend the

result to L2(B4) connections.

Proposition 5.21. Let Ai be a sequence of L2(B4 ; g 0 T*B4 ) connections with the

bound ||FAIL2(B4) < e that satisfy Theorem 5.20 and converge in L (B'; 0 9 T*B4 )

to a connection A. Then A also satisfies Theorem 5.20.

Proof. Let gi and Ai be the gauge transformations and connections given to us

by Theorem 5.20. We know that the FA, converge to FA in L2 (B4 ; 9 0 A 2 T*B4).

Hence, the IIFA IIL2(B4) are bounded, and, thus, by the assumption that I|IJL2(B4) <

C IIFAI2(B4), so are the |tiIIL2(B4). Hence, passing to a subsequence, the di have a

weak limit, which we call d. The conditions d*hi = 0 and i**&j = 0 are linear, and

so are preserved under weak limits, giving us d*h = 0 and i**d = 0. Meanwhile, the

L2 (B';g 0 T*B4) norm is lower semicontinuous under weak limits, and IiFA1 IIL2(B4)

converges to IIFAIIL2(B4), so the inequality IIdiII2 (B4) 5 C I FAiIL2(B4) is preserved

under weak limits, giving us |I5I2 (B4) 5 C IIFAIIL2(B4). Finally, since, in particular,

both the ai and 6i converge weakly in L4(B4 ; 0 T*B4 ), we can apply Lemma 5.2
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to show that there exists an L'(B4 ; g & T*B4 ) gauge transformation g sending A to

A. El

Proof of Theorem 5.20. Let A be an L'(B4 ) connection with IIFAIIL2(B4) <g. Con-

sider a sequence of smooth connections Ai that converge to A in L2(B4 ) and also have

||FAIL2(B4) < e. The connections Ai satisfy Theorem 5.19, and hence also Theorem

5.20. Then A satisfies Theorem 5.20 by Proposition 5.21. E

In addition, we show that the weak subsequence convergence of the Coulomb gauge

representatives above can be strengthened to strong subsequence convergence. Note,

however, that taking a subsequence is necessary because Coulomb gauge is invariant

under constant gauge transformations. By applying constant gauge transformations

to a fixed connection in Coulomb gauge, we can construct a sequence of gauge equiv-

alent connections in Coulomb gauge that nonetheless does not converge. However,

because the gauge group is compact, we still expect convergence of a subsequence. In

higher regularity, we can resolve this issue by considering infinitesimal gauge transfor-

mations that are orthogonal to the constant gauge transformations, but in the critical

regularity infinitemsimal gauge transformations are not so well-behaved, so a more

delicate argument would be necessary. Subsequence convergence will suffice for our

purposes, however.

Proposition 5.22. There exist constants e and C such that if Ai is a sequence of

L2(B') connections converging strongly in L'(B4 ; g 0 T*B) to A with I|FAI L2 (B4) <

E and ||FAIIL2(B4) < E, then there exist L'(B 4 ) gauge transformations gi and g sending

Ai and A to L2 (B4 ) connections Ai and A respectively, such that

1. d*di= d*d = 0,

2. i**54 = i**d = 0,

3- 11II 2(BM) < C FA IL2 (B4) and IIL2 (4) < C IIFAIL2(B4)1

and, after passing to a subsequence, the gi converge strongly to g in L'(B4 ; MN) and

the Ai converge strongly in L2(B 4; g 0 T*B 4 ) to A.
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Proof. We construct the gi using Theorem 5.20. We construct g as in the proof of

Proposition 5.21, so, after passing to a subsequence we have gi weakly converging

to g in L'(B4 ; IN) and di weakly converging to d in L2(B 4; g 0 T*B4 ). Hence, the

three conditions of the proposition are satisfied, and it remains to show that the

convergence of the di to d is strong, at least after passing to a subsequence.

First, note that IIFl I2(B4) = IFA II2(B4). Since the FA, converge strongly in

L2 (B4 ; 0 O A 2T*B4) to FA, we know that the FA, are bounded in L2 (B4 ; g 0 A 2 T*B4),

and hence converge weakly in L2 (B4 ; g O A 2T*B4) after passing to a subsequence.

Moreover, IFAI L2(B4) converges, and weak L2 convergence and convergence of L2

norms implies strong L 2 convergence. Thus, after passing to a subsequence, we

have that the FA converge strongly in L 2 (B4 ; 0 0 A 2T*B4), but we do not yet know

that the limit is FA. Because the gi converge to g weakly in L4(B4 ; MN), we know

that the gi converge strongly to g in L4(B4 ; MN). Using the multiplication map

L4 x L2 x L-4 L1, we have that FA = _qjFA J 1 converges strongly to gFAg- 1 = FA

in L'(B4;g 0 A 2 T*B4). Since the L2 (B4 ;g 0 A 2T*B4) limit of the FA must be the

same as the L1 (B4; g0 A 2T*B4) limit, we know that the FA, converge strongly to FA

in L2 (B4; g 0 A 2T*B4).

The next step is to show that convergence of curvature and Coulomb gauge implies

convergence of the connections. Since H1 (B4 ) = 0, Corollary 2.10 tells us that

d d*: L 't (B4 ; A*T*B 4 ) -+ L 2 (B4 ; A*T*B 4 ) is a Fredholm operator with no kernel

on one-forms. Hence, for some constant CG, we have the inequality

|1bIIL2(B4) < CG 1+(d d*)bIIL2(B4)

for all b E L,'t(B4; g 0 T*B4) In particular, noting that d*di = d*d = 0, we have

||di - 11L2 (B4 ) < CG Ild(di - a)IIL2(B4)

1FA- FA - 1([&j A di] - [d A )|L(4

FA- FAIl L2
(B4

) + |111 [(di + d) A (i - )] 1 L2
(B4 )

1 - FA L2(B4) + ICCS 11i + aIL4(B4) Ia - aL(B4)

84



where C5 is the operator norm of the Lie bracket [-, -] and CS is the operator norm

of the Sobolev embedding L'(B4 ) -+ L4 (B4 ). Using the inequalities Idil2(B4) <

C 11FA1 1I1 2(B4) and IIL(B4) < C IIFAIIL2(B4) and the Sobolev embeding L (B4) <-

L 4 (B4 ), by shrinking E we can guarantee that IIF I(B4 < E and IIFAIIL2(B4) < *

imply that I|ai||L4(B4) < !(CPCs)- and 1I"IIL4 (B4) < 1(CcCs)-. Hence, with a small

enough choice of E, the above inequality becomes

I|di - dIIL2(B4) < IIF~i - FAIIL2(B4) + I Ii - IL2(B4).

Rearranging,

Idi - cIIL2(B4) < 2 FA - FAI2(B4)

Hence, because the Fj. converge strongly to FA in L2 (B4 ; O 2 2T*B 4), the di con-

verge storngly to i in L 2(B4 ; g 0 T*B4 ), as desired. Finally, by Lemma 5.3, after

passing to a subsequence, the gi converge strongly to g in L'(B"; MN).
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