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i.

ABSTRACT

The problem of rotational or shear flow about thin airfoils has been

investigated theoretically and experimentally.

The theoretical approach is based on the concept of a lifting line in a

bounded shear flow whose primary flow velocity profile may be expressed in

terms of elementary linear, hyperbolic, and / or circular functions. The

solution of the linearized equations of motion is reduced to the solution of

a characteristic value problem whose form is dependent on the geometry of the

primary flow. The characteristic value problem is solved for four different

velocity profiles including that of a monotonic-matched linear profile ( a

layer of constant vorticity fluid bounded by layers of uniform flow ) which

serves as a model for the experimental shear flows.

The experimental work includes the measurement of local lift coefficients

and spanwise lift distributions on thin symmetrical airfoils in monotonic

shear flows for three values of the ratio of airfoil chord to shear layer

thickness. The results of the lifting line theory show good agreement with

the experimental data within the range of applicability, i.e. within the

linear region of the CL, a relationship and for flow geometries where the

distortion ( spanwise convection ) of the surfaces of constant stagnation

pressure is negligible.

The assumption that the local lift coefficient is a function only of

the local angle of attack and the two-dimensional characteristic of the air-

foil section ( a fundamental assumption of lifting line theory ) is invest-

igated experimentally through a consideration of local pressure coefficient

distributions. An approximate correction to the lifting line theory is

suggested for flows in which the distortion of surfaces of constant stag-

nation pressure cannot be neglected.
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iv.

NOMENCLATURE

P = P(x, y, z) = pressure

p = density

= total velocity vector = u'l + v'3 + WI

ut = u'(x, y, z) = total velocity in x direction

= v'(x, y, z) = total velocity in y direction

t  = w'(x, y, z) = total velocity in z direction

= perturbation velocity vector = ui + vS + wi

u = u(x, y, z) = perturbation velocity in x direction

v = v(x, y, z) = perturbation velocity in y direction

w = w(x, y, z) = perturbation velocity in z direction

U = U(y) primary flow in x direction

U' = U(y)dy

* = *(x, y, z) = F(y) G(x, z) = Hawthorne's 'potential' function

F =F(y) = separated function of y, Hawthorne's theory

G = G(x, z) = separated function of x and z, Hawthorne's theory

Y = Y(y) = F(y) U(y) separated function of y, Honda's theory

d: Y(y) = d (FU) ;stream function
dy dy

A A(x, y, z) = 'non-potential' component of u perturbation
velocity, Hawthorne's theory

PKT = PKT (y, z; k) = separated function of y and z, von Karman and
Tsien's theory

A = AKT,( KT (y, z; 0) = von Karmgn and Tsien's potential
function

PH = P H(x, z) = separated function of x and z, Honda's theory

= total vorticity vector = C1 + nj + Ci

= x component of vorticity

i = y component of vorticity

= z component of vorticity

= span of airfoil = width of channel = 2t



b shear layer thickness = 2s

d = depth of channel = 2D

t =1/2

s = b/2 = shear layer half thickness

D d/2

h = reference dimension in y direction

c = chord of airfoil

L = lift per unit span

a9 0 = geometrical angle of attack with respect to axis of zero lift

CL = lift coefficient

C = two dimensional lift coefficient (onstant) a0

AR = aspect ratio = 1/c

Xk, = eigenvalues, separation constants

Q = constant in series representation of *
p, q, r = coefficients in general Sturm-Liouville problem,

r = weighting function

C = pressure coefficient
p

C = pressure coefficient on pressure side of airfoil
pp

C = pressure coefficient on suction side of airfoil
ps

r = circulation

U = reference velocity at y = 0

n9 = slope of velocity profile at y 0

K = parameter in velocity profile expression

k = constant in series representation of U'

Special Mathematical Symbols

U' = U(y)
dy

* d Y(y) = d (FU)
dy = y

n n

it s/t = b/t; 1/y*



y*

I ( n)

a(n)

(n)

y(n)

6(n)

Subscrip
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2

= lifting line x = 0, z = 0

= plane of lifting line x = 0

= reference

= Trefftz plane x = + am

= trailing

= trailing edge-pressure side

= trailing edge- suction side

= integer index

= summation index, eigenvalue index

= reference, origin y = 0

= (0) region of shear flow

= (1) region of shear flow

= (2) region of shear flow

vi,

mw/'IL = degenerate eigenvalue

= y/(b/2)

b/2
= U' (Q) d

-b /2 (y-q)

= JcosP sin n 4 d $
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ts
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THIN AIRFOILS IN ROTATIONAL FLOW

by

Donald R. Kotansky

1. INTRODUCTION

Many problems of aerodynamic design of turbo-machinery arise due to the

lack of understanding of the complex three-dimensional flows found in these

machines. The design engineer's approach to the problem is guided by exten-

sive literature in the field of fluid mechanics in general and by more spec-

ialized information closely related to the turbo-design problem. Much use-

ful information can be found in applications of boundary layer theory, inves-

tigations of separation and stall phenomena, studies of skewed boundary layer

effects and other problems peculiar to the turbo-machine, but in many cases

past experience and 'rules of thumb' are the deciding design factors. The

theoretical methods of attack are sometimes limited because serious restri.c-

tions or over-simplifications are required to yield solutions at all, and it

follows that the practica usefulness of such analyses is sometimes limited.

A somewhat closer approach to the actual situation can sometimes be made

by the general theory of secondary flows. Applications of this theory to the

problems of flow in turbo-machinery require simplifications, as with other

theoretical approaches, but the 'three-dimensionality' of this approach suits

it well to some of these problems.

A particular problem of interest in this area is that of the effects of

vorticity or 'shear' on the flows about lifting airfoils. Flows of this type

are characteristic of axial turbo-machinery since in these machines the velo-

city profile often develops a gradient of stagnation pressure through the

action of viscous forces or the non-uniformity of work distributions. The

study of rotational flows about airfoils is not intended to model the actual

internal flow in a turbo-machine (where a cascade would be a more appropriate

model) but to gain a fundamental understanding of the nature of the three-
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dimensional flow involved. Work in this area has been undertaken by previous

investigators in various forms, the bulk of this being of an analytical nat-

ure on the theory of shear flows in general and not always directly applic-

able to the airfoil problem. One of the earliest, and perhaps one of the

most enlightening contributions to the airfoil problem is the theoretical

vork of T. von Karmn and H. S. Tsien(l)in which Prandtl's lifting line theory

(a three-dimensional theory for a wing of finite span in a uniform flow) was

extended to the more general case of a rotational primary flow. The fruits

of this work have remained more or less unharvested probably because Vf the

relative simplicity of the lifting line concept as opposed to the more soph-

isticated approach offered through thin airfoil or lifting surface theories.

An important contribution in the realm of thin airfoil theory is that of M.

Honda(2)who succeeded in obtaining theoretical results for the case of a thin

airfoil in a linear shear flow bounded by two parallel walls. As might be

expected, the two approaches are related through the assumption of a known

rotational primary flow and the linearization of the equations of motion in

accordance with the assumption of small disturbances.

The fundamental motivation for this research may be described through

two primary objectives.

1) To synthesize from existing fundamental contributions and addi-

tional theoretical work a useful theory that can be applied to the prob-

lem of a thin airfoil in a shear flow without exhaustive mathematical

complications.

2) To obtain experimental data on the performance of a thin airfoil

in a shear flow that can be modeled analytically with a minimum of com-

plications due to real fluid effects, i.e. viscous shear forces, separ-

ation, and stall.

A third implied objective is that of reasonable agreement of theory with

experiment.

To illustrate the complicated nature of this shear flow problem, the
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three-dimensional effects resulting from the rotational flow of a fluid (in

this case atmospheric air) about a circular cylinder are shown on the follow-

ing page. The flow is from left to right, the velocity variation approxim-

ately 1.5 to 1 across a shear layer bounded by two uniform layers adjacent

to the boundary walls of the duct. The first photograph shows the pronounced

vertical displacement of the streamline in the plane of symmetry of the cyl-

inder. and, in addition, the warping of the surfaces of constant stagnation

pressure or 'Bernoulli surfaces' in the flow about the cylinder. The second

photograph indicates the magnitude of the displacement effect in the veigh-

borhood of the disturbance. The secondary flows in this case are prodfced

by pressure gradients in the essentially inviscid regions of the flow, i.e.

away from solid boundaries. The secondary flows are not confined to 'bound-

ary layer regions' although the shear flows required to produce them may have

been formed as a result of the action of viscous forces upstream of the reg-

ion of the disturbance. Of course, there are boundary layer interactions

with the secondary flows and significant viscous effects, especially in the

case of a cylinder where downstream separation is present. The remainder of

this work will be concerned for the most part with small disturbances to para-

llel shear flows - not of the relative magnitudes indicated in the photographs.

The 'large disturbance' in this case indicates the qualitative behaviour of

these secondary flows,

The term secondary flow, as usually associated with rotational flows,

is here interpreted to consist of those first and higher order corrections

to a selected primary flow (which may or may not be rotational) as described

mathematically through an appropriate approximation technique. The develop-

ment of the inviscid theory of secondary flows has followed two general anil-

ytical approaches:

1) disturbances are small and the equations of motion may be linear-

ized with respect to a known primary flow
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2) vorticity is small and is convected by an associated primary

flow

Various methods of approximation and means for their solution are discussed

(3)
in detail by Hawthorne

The general problem of shear flow has received considerable attention

in the past, beginning largely with the work of Squire and Winter who de-

rived analytical results for the development of streamwise vorticity when an

inviscid fluid with an initial velocity gradient is turned in a bend. Squire

and Winter's work was directed at shear flow in cascades through a 'bend'

or 'passage' approach.

A theoretical approach to secondary flows was developed by Hawthorne(5)

who derived an integral expression for the development of streamwise vortic-

ity along a streamline in a rotational flow. Experimental work on secondary

flows in bends was carried out by Eichenberger which showed agreement with

Hawthorne's theory. Hawthorne's theory was later applied to a cascade of

(7,)airfoils and the theory verified experimentally in the work of Hawthorne

and Armstrong An inviscid theory for shear flows about non-lifting struts

and airfoils was developed by Hawthorne and the theory investigated experi-

mentally by Ling(10 ) In this approach, the amount of distortion of the Ber-

noulli surfaces is assumed to be negligibly small and the primary flow con-

sidered is a two-dimensional potential flow.

Some exact solutions of the incompressible and inviscid equations of

motion for rotational flows about bodies have been obtained for the two-dim-

ensional case, but these solutions are somewhat restrictive in that a part-

icular distribution of vorticity or constant vorticity is required in the

undisturbed flow. Examples of solutions of this type are given by Tsien

(1)(13) (14)
James(.2) Jones3, and Murray and Mitchell

It is easy to verify that in a two-dimensional flow with only one compo-

nent of vorticity that this vorticity C is given by



6.

2= - (1-1)

where 0 is the familiar stream function. From the Helmholtz equation for

steady flow

( .v) =( v)V (1-2)

we see that in the two-dimensional case, C is constant along any streamline.

If we then require that the undisturbed flow be of uniform vorticity, i.e.

C does not change from streamline to streamline, then C is everywhere con-

stant, and we require a solution of Poisson's equation.

V2 (1-3)

Let the velocity in the x direction far from the disturbance be expressed by

l' = U - C y (1-4)

Then * of the undisturbed flow is given by

0 = U y- C y2/2 (1-5)

Let = + , (1-6)

and substituting in (1-3),

jv 2
1 = 0 (1-7)

Therefore any solution of Laplace's equation and (1-5) will satisfy equation

(1-3). Tsien(ll)used this method to study the shear flow about Joukowski

airfoils.

Another exact solution, but not one of constant vorticity, is that of

(14)
Murray and Mitchell . With equations (1-1) and (1-2), if it is assumed

that C, which is constant along a streamline, is a function of *, which is

also constant along a streamline, then from (1-1)

V2 * = - f(*) (1-8)

Murray and Mitchell then assumed f($) - */a2 , where a is an arbitrary

dimension of the disturbance. They then let * = *0 + $p where $ vanishes

far from the disturbance. The undisturbed stream function 'p then resulted

in sinusoidal or hyperbolic velocity distributions in the undisturbed flow
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depending on the sign of f; the disturbance stream function $h was determined

by the equation

1= + fp/a2  
(1-9)

The fundamental differences between the above solutions and so-called secon-

dary flow solutions are that no stretching of deformation of the vortex lines

appears in the two-dimensional solutions although in a mathematical sense

they are not approximations.

The initial work of Hawthorne was extended to the case of compressible

flows which introduces the effects of density stratification and instability

(see Hawthorne ). Smith ( extended Hawthorne's work on the generation

of streamwise vorticity in an incompressible and frictionless fluid to that

of a rotating passage for application to flows in rotating turbomachinery.

(17)Other theoretical contributions are those of Smith , who considers secon-

dary flows in cascades with special application to turbomachinery, and the

work of Deanl, who investigates the behavior of secondary flows in axial

compressors. Dean's work was based in part on the experimental work of Van

(19)Le . Van Le approached the problem theoretically through the linearization

technique which he then applied to cascades with small turning. A rather com-

prehensive study of secondary flow and associated losses in a compressor cas-

(20)cade is given by Soderberg , who confirmed his theoretical work with exper-

imental findings.

Another interesting approach to the theory of secondary flow from the

'convection' standpoint is that of Lighthill (21), who utilized a theory of

Darwin (22), concerning the permanent deformation of fluid lines or surfaces

in the irrotational flow of a frictionless fluid past an obstacle. Lighthill

proposed that vortex lines, which are known to be identified with particular

fluid particles, are stretched in the flow about the body in the same manner

as Darwin's 'drift' surfaces. Using this concept and the supposition that

the vorticity is weak, such that the resulting secondary flows themselves do
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not stretch these lines of vorticity to a significant amount, Lighthill

studied the flow about cylindrical bodies and a sphere in weakly sheared flow.

Hall (23)analyzed the shear flow about a sphere in a study of the pitot

tube displacement effect and showed that the three-dimensional theory pre-

dicted the correct order of displacement based on experimental data where it

is known that the two-dimensional theory falls short of this. The discrep-

ancy between the two theories is attributed to the inadequacy of the two-

dimensional theory to model the physical situation in which the stretching

of vortex lines must be taken into consideration. Hall's analysis deter-

mines the displacement effect in the plane of symmetry of the flow assuming

that the shear is small. The stretching of the vortex lines is determined

by successive approximations to include the additional stretching caused by

the induced secondary velocitibs. Lighthill (24)analyzed the displacement

effect problem in a later paper through the use of his earlier work (Light-

hill (21))and compares his findings with those of Hall.

Lighthill (25)analyzed the effect of a small disturbance on a weakly

sheared flow utilizing the small disturbance-linearization technique. The

'disturbance in this case was a 'weak' source. Lighthill concludes that the

small disturbance approximation is valid far from the disturbance while the

convection solution is valid near it.

The results of the above investigation have been applied, for the most

part, to the solution of three classes of problems

1) the secondary flows in bends, channels,and cascades

2) the secondary flows about struts and airfoils

3) the pitot tube displacement effect

The last of these refers to the correction necessary for the measurement of

total pressure when a pitot tube is inserted in a shear layer.

The theoretical approach followed in this investigation is based on the

fundamental analysis of Hawthorne which is dependent on the solution of a



9.

second order partial differential equation of the form

V2 (x, y, z) + [ - 2(L )2 *(x, y, z) = 0 (1-10)

The solution of this equation for 4 is, of course, largely dependent on the

distribution of velocity in the primary flow U(y), and, in addition, the

geometry of the disturbance, although geometry (especially thickness) is not

considered directly in the lifting line approach. The equation for $ reduces

to the familiar Laplace equation for the case of uniform flow and indicates

the existence of potential perturbations in this case. The solution of the

equation in the case of a rotational primary flow results in 'rotational per-

turbations. In addition to Hawthorne's work, the analysis draws on the work

(1 (2)
of von Kgrmdn and Tsien and to a lesser degree on that of Honda

The essentials of the resulting analysis, hereafter referred to as the

lifting line theory, and a comparison of the theoretical results with sel-

ected experimental data are given in Section 2.

Section 3 contains a detailed exposition of the lifting line theory in

which the analytical solutions for four different shear velocity profiles

are obtained. These velocity profiles are shown in the following sketch.

(A) (B) (C) (D)

Perhaps the most useful and interesting of these velocity profiles in a prac-

tical sense is that of case D) which is intended to model a region of uni-

form flow bounded by shear layers representing wall boundary layers. Pro-

file (C) was selected to model the experimental shear layer in which the

layer of rotational flow was bounded by two layers of uniform flow.

Section 4 is devoted to what is termed 'a first theoretical approxim-

ation' which is related in concept to ordinary lifting line theory. In this
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approximation, no attempt is made to satisfy the complete system of linear-

ized equations of motion; the induced secondary flows are determined through

a consideration of the strength of the trailing vortex sheet in the 'wake'

of the airfoil alone.

Section 5 consists of a presentation of the experimental work which con-

sists largely of measured values of local lift coefficients and spanwise

distributions of lift for thin symmetrical airfoils (NACA 0012) in what may

be termed monotonic shear flows of the type described above (profile (C)).

The tests were performed for three different ratios of airfoil chord to shear

layer thickness (c/2s) in a low speed wind tunnel. The artificial shear

flows were generated through the use of a honeycomb structure inserted in

the tunnel upstream of the test section.

A comparison of theoretical results with experimental data and the dis-

cussion of this and other aspects of the work is presented in Section 6.

This section also contains the conclusions and recommendations for further

study.

The curves indicating the comparison between the lifting line theory,

as well as the first theoretical approximation,with the experimental results

are presented in Appendix I. Included in the comparison is the data of Men-

delsohn and Polhamus(26). A spectrum of analytical results computed for

shear velocity profiles of the types (A), (B), and (D) is presented in Appen-

dix III. Appendix IV is devoted to a discussion of the design of the honey-

comb used for the generation of the shear flows in the experimental work.
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2. ESSENTIALS OF ANALYSIS

The purpose of this section is to present the lifting line theory in

condensed form. A comparison of the results of the theory with experimental

data on the predicted and measured distributions of lift on a thin symmetri-

cal airfoil in a monotonic shear flow is included. The analysis is based

on the fundamental works of T. von Kfrmgn and H. S. Tsien , M. Honda ,

(3)
and W. R. Hawthorne

The problem considered is that of a thin airfoil in a steady, friction-

less, and incompressible shear flow. The flow is bounded in the spanwise or

Y' direction by parallel walls and provision is made for bounding in the

'z' direction normal to the plane of the airfoil.

4-c-b
U( y)

x trailing.
vortex
sheet

The theory is based on the concept of a lifting line and is restricted here

to the case of airfoils of fixed chord and constant geometrical angle of

attack.

2.1 Hawthorne's Linearized Theory

Hawthorne has investigated the solution of the linearized equations

of motion for small disturbances to a parallel shear flow which is selected

as the primary flow U(y). The results of the linearization and the assump-

tion of a particular form to represent the perturbation velocity vector iL

a second order partial differential equation in $(x, y, z) where $ represents

a type of 'potential' function for rotational flows. The Euler equations of
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motion may be expressed in vector form as follows:

[(U(y) I + V) 0 V (U(y) i + V) = - V P (2-1)
p

If U is taken to be of order 1 and the disturbance velocities to be of order

6, the terms of order 62 may be assumed negligible, i.e.

(V 0 v)v 0 (62) 0 (2-2)

Using equation (2-2) and taking the curl of equation (2-1) to eliminate pres-

sure, the following result is obtained

LVx(UI = [ Y- 3 ( U' v) (2-3)

where U' denotes U(y)). Hawthorne selects the following form for the per-
dy

turbation velocity vector

Uv = V(U,) + I U A(x, y, z) (2-4)

For this choice of Uv, equations (2-3) become simply

DA Ut(2-5)

ax U

The corresponding perturbation velocity components from (2-4) are

u = + A (2-6)ax

ay U

v = - (2-8)

If equations (2-6) through (2-8) are substituted into the continuity equa-

tion

V (U I + V) =0 (2-9)

we have the desired result ( using equation (2-5))

E2 U-- 2( )2 0 (2-10)

We note that the above results are dependent on the requirement that

ui << IU; therefore, the magnitude of U cannot approach zero, nor can

there be any stagnation points in the flow about the disturbance. The use-

fulness of the result (2-10) is evidenced through the ease by which the per-
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turbation velocity components may be derived from * and the scalars U

and A.

2.2 Von Kgrmgn and Tsien's Lifting Line Theory

In their analysis of the lifting line theory for a wing in a non-

uniform flow, von Karmgn and Tsien(W worked with the linearized pressure

equation and noted that the fundamental solutions of that equation for the

boundary conditions of undisturbed pressure at x = - M require that P be

an even function of x. The relation

x

*(x, y, z) =- f P(x, y, z) dx

which relates Hawthorne's * function to the static pressure indicates,

in turn, that * is an odd function of x. We can then conclude from equations

(2-7) and (2-8) that the perturbation velocity components v(x, y, z) and

w(x, y, z) which are required to vanish at x = - a are themselves odd

functions of x and we can write the following:

v(O, y, z) = 1/2 v(oo, y, z) = 1/2 vT(y, z) (2-11)

w(0, y, z) = 1/2 w(co, y, z) = 1/2 wT(y, z) (2-12)

The above equations, relating the magnitudes of the perturbation velocities

downstream of the disturbance at x = += (the Trefftz plane) to those at the

disturbance x = 0 constitute the 'Trefftz plane approximation' for a rota-

tional flow of this type.

2.3 Fundamental Solutions of the f Equation

To facilitate the solution of equation (2-10) the following variables

are introduced:

$(x, y, z) = F(y) G(x, z) (2-13)

*(y) = - (FU) (2-13b)
dy

We then consider a higher order form of equation (2-10)
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a { UV2. + U$ - 2 ( )2

which is , in terms of the v perturbation velocity component,

UV2v = U''v (2-14)

The fundamental solutions of equation (2-14) include those of equation (2-10)

plus an additional solution introduced by the additional differentiation.

We have from equations (2-7), (2-13a), and (2-13b)

v = G(x, z) IU

Substituting this for v into equation (2-14) and choosing X2 as the separ-

ation constant for the function G(x, z), we have the following result:

d2  (1) + (*) X2 _ U = 0 (2-15)
dy5 2  U 'U' Uj

and 72 G(x, z) = A2G(x, z) (216)

We can now write the solutions of (2-15) for velocity profiles in which

U' /U = $2 = constant.

= C 1 sin ay + C 2 cos a y

where we define a = /X2-0 for real values only. The desired fundamental

solutions for F(y) are then, using (2-13b),

C 1 f U sin a y dy C2 f U cos a y d (2-17)
F(y) U + U

We have eliminated a third solution F(y) = C 3 /U in order to satisfy the *
equation (2-10). The requirement adopted here that U''/U = 0

2 limits the

solution (2-17) to shear velocity profiles expressible as elementary linear,

hyperbolic, and circular functions of 'y', but this is not a serious restric-

tion, since a variety of useful shear profiles can be selected satisfying

this requirement.

In a lifting line approach to this rotational flow problem, the desired

quantity is the w component of velocity at the lifting line. Through the

use of the Trefftz plane approximation we are able to consider solutions of

equation (2-16) downstream of the disturbance at x = + w. We then define
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x

GT(z) = - Jim f P(x, y, z) dx

and equation (2-16) becomes

d2 G(z) = X2GT(z)

whose general solutions are simply

G (z) = C cosh Xz + C sinh Xz (2-18)
T 12

2.4 General Lifting Line Solution

The general solution for $(x, y, z) may be expressed as the infinite

sum of the eigensolutions F (y) G (x, z). We now consider the limiting case
n n

of *T(y, z) which may be expressed, in the following form

Ty, z) = Q(Xn) Fn(y) G (z) (2-19)
n=1

The F (y) are linear combinations of the appropriate fundamental solutions
n

of equation (2-15). The eigenvalues X are determined in accordance with
n

the boundary conditions that v = 0 at the boundary walls in the 'y' direction

and. the requirement that v and P be continuous in y throughout the flow.

The functions G (z) in equation (2-19) are of the form given in equation

(2-18) with the boundary condition that the w component of velocity be zero

at the boundaries in the 'z' direction.

To determine the unique solution, we must relate T(y, z) to the

strength of the disturbance at the lifting line. In accordance with the

assumptions of von Kfrmln and Tsienl, the spanwise velocities which con-

stitude the trailing vortex sheet at z = 0t are equal and opposite. We then

relate the strength of the trailing vortex sheet to the spanwise gradient

of lift on the lifting line, i.e.

1 dLy) = ( 0+) - vT(y, 0-)PU dy

From this and the relationship between the spanwise velocities, we have the

result

(y ) = 1 - dL(y) (2-20)
T *2 pU dy
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We then write L(y) in terms of the usual thin airfoil notation

L(y) = 1 pU2cCL = wpcU2(a + wLL/U) (2-21)

where c is the chord of the airfoil, and a is the geometrical angle of

attack. The relationship between L(y), U2(y), and the corrected angle of

attack (a + w /U) assumes that the lift on a thin airfoil in a shear flow

at a geometrical angle of attack a is the same as the lift that would be

experienced by the airfoil in a correspcnding uniform flow U at an angle of

attack (a + w /U). This is a reasonable assumption in accordance with the

small disturbance approximation provided that the secondary flows do not dis-

tort the surfaces of constant stagnation pressure to any significant amount.

The 14mit of the applicability of this approximation is, of course, depen-

dent on the specific geometry of the problem considered, but, in a general

sense, this effect is related to a parameter a cU'/U which will here be as-

sumed sufficiently small to render the distortion of the Bernoulli surfaces

negligible.

We can, after manipulation of the above equations, arrive at the fol-

lowing expression for Q(X n) in equation (2-19):

) 
((UF (y)) G (0 ) c G(O ) = wa cU'/U n= Un(2-22 )

The solution of equation (2-22) requires the use of the orthogonal properties

of the functions d (F U) with respect to the weighting function 1/U2. It
dy n

can be established that if U(y) is continuous and the eigenfunctions Fn (y)

are determined in accordance with the appropriate boundary conditions, the

following result is valid:

(A2 .x2) (2 d (F U) L (F U) U- 2 dy = 0 (2-23)
m n t1 dy m dy n

We have purposely allowed for discontinuities in U' and higher derivatives

of U in that primary flows in which these derivatives are not continuous may

be treated by matching the eigenfunctions F (y) in corresponding regions of

the flow. The limits of the integral in equation (2-23) are the ordinates
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of the bounded region in the 'y' direction.

Using the result (2-23), equation (2-22) may be solved for the constant

Q(Xn ). For convenience, a change in the two-dimensional lift coefficient

CLo is here denoted by ACLo, and we can write

AC UcC 10 T 1 a (y , 0 0) (2-2 4 )

using equations (2-8) and (2-12).

2.5 Solution for Arbitray U(y)

If we now consider the flow to be bounded in the 'z' direction by para-

llel walls at z = *D, the requirement that w vanish at the walls is, from

equation (2-8),

d G(D) = 0 (2-25)
dz Tn

Using this requirement and equation (2-18) we have the result

G (c) nG (0* tanh XnD (2-26)

The final form of the desired solution for AC /CLo may be written from

equations (2-18), (2-19), (2-24), and (2-25)

AC - CO
= +1 )F (y) X tanh X D (2-27)

C 2Uao L n n n n
Lo on1l

If equation (2-22) is solved for Q*(X ) using (2-23) and (2-26), and the

result is substituted into equation (2-27), the following result is obtained:

ACLo 2 -2 (FnU) dy

-2 n1 2 [ (FU) dy 1 +
dy n ?r n c tanh XnDI

Equation (2-28) is the general form of the lifting line solution for an arb-

itrary primary flow U(y). The above result is valid for all velocity pro-

files in which U(y) is continuous and sufficiently greater than zero. The

evaluation of the integrals in equation (2-28) is greatly simplified when
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the eigenfunctions are forms of equation (2-17)

The form of equation (2-28) for shear flows unbounded in the 'z' direc-

tion is obtained by setting the term tanh X D =

2.6 Comparison of Theory with Experiment

The results of the lifting line theory will be compared with experi-

mental measurements of spanwise distributions of lift on -a thin symmetrical

airfoil in an artificial shear flow. The measurements were performed in a

low speed wind tunnel with a 20" x 30" test section. The airfoil used was

NACA 0012 with a 3" chord and a span of 30". Trip wires (o.006" diam.) were

attached to the airfoil at 10% chord to assure the formation of turbulent

boundary layers because of the low Reynolds number of the experiments.

The experimental shear flow was modeled theoretically by a layer of

constant vorticity flow between two layers of uniform flow all bounded by

the walls of the test section. The velocity variation across the shear layer

was from 69 ft/sec to 109 ft/sec in a spanwise distance of approximately 4

inches. The geometry of the flow is indicated in the following sketch:

y +=

U2 U= 0

-. L.._+s

- y-=-. - U(y) Ulf 0

Ul UV =0

The eigenfunctions, from equation (2-17) with 82 = 0 since U = 0 in

this case, are of the following forms:

F(y) = C Cos Xy - U' n y + C2 [sin y + U cs Xy

for the constant vorticity layer, and

F(y) = CI cos Xy + C2 sin Ay
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for the uniform layers wharC U' = 0. The matching of the above eigenfunctions

at the boundaries of the three regions of the flow and the boundary conditions

at the walls (y = t) constitute a system of six algebraic equations whose

solution determines the constants in the eigenfunctions (in terms of an arbit-

rary constant) and the characteristic equation for the determination of the

eigenvalues Xn. The characteristic equation is of the following form:

2sin ( (U2 - U1)2  en(cos 1, -cos2 )+

(2-29)
sin 2 0n sin2( 1

where en Xs and = t

The above equation can be shown to have degenerate solutions for which the

corresponding eigenfunctions change form, but, in general, this difficulty

presents no major problem since in many cases, the degenerate solutions of

equation (2-28) are trivial. The number of eigensolutions required for

reasonable convergence is dependent on the ratio s/t; no solution of this

form exists for the limiting case of s/t = 0.

The integrals in equation (2-28) may be evaluated through the use of the

appropriate eigenfunctions and corresponding U(y) for the three regions of

the flow. The limits of the integral in the numerator of (2-28) become

simply (-s) to (+s) in this case since U' = 0 outside of this region.

The comparison of the theoretical results for the first 30 eigenvalues

with the experimental distributions of U2 CL for two different geometrical

angles of attack is presented in Figure 2 on page 20. The theoretical result

is obtained by calculating U2 (1 + ACLo CLo) from the theoretical model of

the shear velocity profile and equation (2-28) and multiplying this by CL

as determined from experimental data on the performance of the airfoil in a

uniform flow. The dotted curves in Figure 2 are theoretical values of U2

multiplied by the experimental value of C which forms the basis of a crude

'two-dimensional' approximation.
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3. LIFTING LINE THEORY FOR A THIN -AIRFOIL

IN A STEADY BOUNDED SHEAR FLOW

The following development provides a method of determining the lift on

a thin airfoil in a steady shear flow bounded by a rectangular channel. The

desired result is achieved through the application of fundamental theoretical

results obtained by T. von Karman and H. S. Tsien (1), M. Honda (2), and W. R.

(3)
Hawthorne . The fundamental notation is conventional and applies to a

major portion of the above works, but in some cases the original notation

has been changed to avoid ambiguity.

The geometry of the flow is described in the following sketch:

y t
U 2

- U

~ -, z

3.1 Hawthorne's Linearized Theory

If we write the vector velocity of a fluid in a Cartesian system in

the form

V u'i + v'3 + w'R (3-1)

the Euler equations of motion for a frictionless and incompressible fluid

become

u Iu' + V, au' + w, _ _ 1 P (3-2)
ax ay az p ax

au'x v' 1P ()

u' a-- + v' + wt  - - -a (3-4)

ax ay az p az

and the continuity equation becomes
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V 0 al- - + - -+ --- = 0 (3-5)ax ay az

Consider a parallel shear flow far from a small disturbance which is located

at the origin of our coordinate system. Let the direction of the flow be in

the positive x direction and the velocity gradient of the shear flow be in

the y direction parallel to the axis of the disturbance. The vorticity vec-

tors then lie in the z direction perpendicular to the axis of the disturbance.

Since V is directed in the x direction and varies only with y far from the

disturbance, we can write

V I = -0 U(y)f (3-6)

Now if the disturbance is small, we can write

V (x, y, z) = U(y) i + :(x, y, z)

where

v(x, y, z) = u(x, y, z) I + v(x, y, z) 3 + w(x, y, z) 1 (3-8)

It is seen that v is considered to be a small perturbation on the undisturbed

primary flow U(y) 1. (Refer to sketch of flow system and disturbance on the

following page.)

If we compare equations (3-1) and (3-7) we see that

u' = U(y) + u, v' = v, w' = w (3-9)

Substituting (3-9) into (3-2), (3-3), (3-4), and (3-5) and noting

U 0 (1) u, v, w 0 (6)

we can neglect terms of the form

U. a 0 (62)

for i j = 1, 2, 3 with the following result

au +1 P
U + vU)'=-- p ax

U =x - a
ax p ay

aw l1ap
U =7 -

V 0 a= + av-+ =w 0
ax ay 3z

(3-10)

(3-11)

(3-12)

(3-13)

(3-7)
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where U' denotes d/dy U(y). We note that the above forms are linear in the

perturbation velocity v. Following Hawthorne's procedure, we eliminate P

between (3-11) and (3-12) with the resit

, [I (U w) - 2- (U v) = 0

and since v = w = 0 at x =-oo

a (U w) - (U v) = 0 (3-14)

In a similar manner, from equations (3-10) and (3-11)

(U v) - i (U u)] = I(U' v) (3-15)

and from equations (3-10) and (3-12)

(U u) - (U w) = - (U' v) (3-16)

Hawthorne notes that if a vector U v is defined, then the above equations

become the following (in order)

(V x (U v)) 0 = 0 (3-17)

(V x (U v)) ok =- (u' v) (3-18)

- (V X (U v)) o ] = (U' v) (3-19)

and if U v is of the form

U v = V (U $) + I U A (x, y, z) (3-20)

then (3-17) is satisfied identically. The corresponding forms of (3-18) and

(3-19) are

'- [- ' (U A) = (U v) (3-21a)

and [ UA = (U' v) (3-21b)

An integration of equations (3-21) shows that

3A Ut f(x)
x U U (3-22)

From equation (3-20) the velocity components can be written as

u = " + A (3-23)
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V= + ( (3-24)ay U U ay

w = (3-25)

The corresponding vorticity components are

, = -U(3-26) Uaz

= (3-27)

= -t -D U' (3-28)U ax ay

where 9 = , + n 3 + .

If we now substitute the velocity components given by equations (3-23),(3-24),

and (3-25) into the continuity equation (3-13) and use the result (3-22) with

f(x) = 0, we obtain

V 0 V = V2 + -U 2 = 0 (3-29)

We note that the above equations are dependent on the condition that

ul |< < U ; therefore, the value of U cannot approach zero, no can there

be any stagnation points in the flow about the disturbance. It is convenient

at this point to deduce the linearized form of the pressure equation. The

(1)linearized equations in this form were used by von Kgrman and Tsien and

Honda(2). If we differentiate equations (3-10), (3-11), and (3-12) with re-

spect to x, y, and z respectively and add the results, we obtain

1 V2 P = 2 Uav + U u av + aw
P ax ax Ltu 3y azj

The last term is zero from continuity. Substituting from (3-11) we obtain

v2 P = 2 U' aP (3-30)
U ay

3.2 Von Kfirmdn and Tsien's Lifting Line Theory

Von Kdrmgn and Tsien(l)worked with the equation for pressure (eq. 3-30)

and noted that the fundamental solutions of that equation may be written

P (y, z; k) cos kx, P (y, z; k) sin kx

For the boundary conditions at x = m, P = 0, an even function of x is re-

quired. P(x, y, z) may then be written as the Fourier cosine integral
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P(x, y, z) = PK(y, z; k) cos kx dk (3-31)

Substituting equation (3-31) into equations (3-11) and (3-12) and integrating

with respect to x the following expressions for the velocity components v and

w are obtained:

1 O sin kx
w(x, y, z) = w(O, y, z) - -PKT (y, z; k) k.1) irpU 0 azKT('k C

Von Kgrmin and Tsien note that because the above integrals are odd functions

of x and at x = - co the perturbation velocities v and w are zero, the follow-

ing relations hold:

v(O, y, z) = V(00, y, z) = VT(y' z) (3-34)

w(o, y, z) = 1w(c, y, z) = wT(y, z) (3-35)

The above equations define the relationships between the v and w velocities

at the plane of the lifting line (x = 0) and the 'Trefftz' plane (x = + cO).

Expanding P KT(y, z; k) in a Taylor series in k
KTP

PKT (y z; k) = P (y, z; 0) + k + k2 (3-36)[ 2 Kk=Q (
~KTi
3k2  k=0+ - - -

Substituting equations (3-34), (3-35), and (3-36) into equations (3-32) and

(3-33) and taking the limit as x -+ + co the following relations are obtained:

v T a (y z;0), wT - z; 0)

For convenience, a potential function is defined

AKT(y, Z) = - PKT(y' z; 0) (3-37)

and the velocities in the Trefftz plane become the following:

= _ KT _1 3 KT (3-38)
T pU 3y ' T pU 3z

The differential equation to be satisfied by AKT is obtained by substituting

-A T(y, z) for P(x, y, z) in equation (3-30) since this is the form of the

fundamental solution for k = 0.
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V2  A =2--A (3-39)
Sy,z KT U 3y KT

3.3 Solutions of the Perturbation Potential Equation

It is convenient at this point to consider an alternative higher order

form of equation (3-29)

U V2 + U U?- 2 2] = 0 (3-4oa)

which is, in terms of the usual form of the continuity equation (3-13)

U (V o V) =0 (3-40b)

An equivalent form of equations (3-40a) and (3-40b) is

UV 2 v = U''v (3-40c)

which is that used by Lighthill The fundamental solutions to equations

(3-40) include those of equation (3-29) plus a third solution introduced by

the additional differentiation.

We now apply the familiar procedure of separation of variables to equa-

tions (3-40). Let

(x, y, x) = F(y) G(x, z) (3-41)

and V 2  G(x, z) = X2 G(x, z) (3-42)
x,z

We then have the third order equations for F(y)

U + F + - 2] 0 (3-43a)

which may be written in the equivalent form

d Y'' - 2 Uy + A2 Y = 0 (3-43b)
dy IU

where Y(y) = F(y) U(y) (3-44)

The corresponding forms of (3-43a) and (3-43b) representing the separation

of the lower order equation (3-29) are

F'' + F 2 +U - 2 =0 (3-45a)

and Y'' - 2 Y' + X2 y = 0 (3-45b)
U

Equation (3-45b) is that used by Honda(2)who assumed the solution of equation

(3-30) to be of the form P(x, y, z) = p Y(y) P (x, z). The fundamental solu-H'
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tions to equations (3-40) are most easily obtained by expressing the separ-

ated form of equation (3-40c) as a second order equation in the variable

=' = (FU)' (3-46)

We have from equations (3-24), (3-41), and (3-46)

v G(x, z)-
U

Substituting this for v in equation (3-40c) and using (3-42) we have the

result:

+ [2 U j 0 (3-47)
dy U U U

The form of the fundamental solutions of equation (3-47) for velocity pro-

files in which = 2is

= C1 sin y + C2 cos Az _ gZ y (3-48a)

The corresponding form of the solution for Y is then

Y = C1 f U sin A2 _ $2 y dy + C 2 f U cos A7 - $Z y dy + C 3  (3-48b)

and the desired fundamental solutions for F are

F Cy = I U sin A- ydy+C Ucos Az-6y dy +E
F(y) + + 9.3.~

U U, U
(3-48c)

The constant C3 is taken to be zero to satisfy the lower order continuity

equation (3-29) or equations (3-45). We now consider possible solutions of

the following cases:

1) U'' = $ = 0 U(y) = U3 + U'y

2) UJ''/U = $2 U(y) = UR(e (y-h); sinh, cosh a(y-h))

3) U''/U = 2 U(y) = UR(sin, cos a(y-h))

Case 1) U(y) = UR + U'y

F(y) C f U sin A y dy + C2 U cos Xy dy
U U

Because of the linear form of U(y) in this case, carrying out the indicated

integrations we have

nCo y y 1X
F(y) = C1  OS X y - U' y +C2 sin Xy+ (3-49)

L s i Ji 2 i yh XU(y)
The first fundamental solution in equation (3-49) is that used by Honda(2
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who considered a linear model of a boundary shear layer at the edges of a

uniform layer (U(y) = constant) confined by two parallel walls.

Case 2) U(y) = UR exp(B(y-h))

F(y) = C, exp(O(y-h)) sin /XzW zy dy
exp(O(y-h))

+ C2 I exp(8(y-h)) cos Az 7zy dy
exp(B(y-h))

performing the indicated integrations:

F(y) = C1 sin + C 2 cos AZ - 8z y (3-50)

Case 3) U(y) = UR cos 0(y-h)

F(y) = C1 I cos 8(y-h) sin /A77 Y dy
cos 8(y-h)

+ C,2 f cos S(y-h) cos y+

cos O(y-h)

performing the indicated integrations:

F(y) = C [cos VX + BZ y+ 8 sin =T:X tan 0(y-h)
,'Z+

+ C2 sin Az + -z Cosy an 0(y-h) (3-51)

In addition to the above fundamental solutions, we have for U constant the

solutions
F(y) = C1 sin X y + C2 cos X y (3-52)

which is obtained by setting 8 = 0 in equations (3-50) or (3-51). Through

the use of the above fundamental solutions for various velocity distributions

U(y) a wide variety of flow situations may be investigated.

In a lifting line approach to this rotational flow problem, as in the

usual application, the desired quantity is the w component of velocity at the

lifting line. We are then able to consider solutions of equations (3-29) or

(3-40) at the Trefftz plane (x = + co) where there is no x dependence through

the use of the relations between vT' VT and v0L9 w0L given by equations (3-34)

and (3-35). We then desire solutions of equation (3-42) in the Trefftz plane

GT(Z) = A2GT(z) (3-53)T-7 G T T
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The general solutions of (3-53) are the following:

GT(z) = C, cosh X z + C2 sinh I z (3-54)

The fundamental solutions obtained for F(y) are valid for all x and are not

restricted to use in the Trefftz plane.

It is instructive to note the relationship between the form of the per-

turbation potential in the Trefftz plane and the potential function used by

von Kirmin and Tsien, A (y, z).

A (y, z) = PU T(y, z) = PFUGTz) (3-55)

3.4 General Lifting Line. Solution

We can now express the form of the perturbation potential in the Trefftz

plane from equation (3-41)

T (y, z) = Q(X n) Fn(y) G Th(z) (3-56)
n=1

The F (y) are the eigenfunctions of equations s-45)which are linear combin-
n

ations of the fundamental solutions given by equations (3-49), (3-50), (3-51),

or (3-52) or other appropriate solutions of equation (3-47) depending on the

form of the shear velocity profile U(y). The eigenvalues 'n are determined

in accordance with the imposed boundary conditions on Fn(7). These boundary

conditions shall be that v = 0 at the walls (y = 1 /2) and that v and P be

continuous in y throughout the flow. These conditions are equivalent to the

requirements

d- (FU) = 0 y = /2 (3-57a)
dy

(FU) and (FU) are continuous (3-57b)

These relations follow from the equations

v(x, y, z) = G(x, z) U(3-57c)

and P(x, y, z) = - p 2- G(x, z) (FU) (3-57d)

which are consistent with equation (3-11). Equation (3-57d) indieutes the

relationship between Honda's (2)expression for the pressure and the perturb-

ation potential
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P(x, y, z)= -P - G(x, z)(FU) = + P PH(x, z)(FU)

therefore a
PH(X, z) = - a G(x, z) (3-58)

Also, from equation(3-57d) we have the useful result

f(Xy, z) = - f. P(x, y, z) dx (3-59)
PU

Therefore lim z) P , y z)

- lim P(x, dx (3-60)

From equation (3-59) and the results of von Kirman and Tsien l)we note that

$(x, y, z) is an odd function of x and also that *(O, y, z) = (W y, Z)2 T~'y

which is consistent with equations (3-34) and (3-35).

The functions G (z) in equation (3-56) are of the form given in equa-

tion (3-54) with the boundary condition that the w component of velocity be

zero at the side walls of the channel:

dzdG(z) =0 z t=*d/2 (3-61)

To determine the unique solution for *T(y, z) we require a relationship

between the lift on the lifting line and the induced velocities in the Trefftz

plane far downstream of the lifting line. In accordance with von Krmgn and

Tsien the assumption of equal and opposite pressure forces on the lifting

line at Z = 0* and the requirement that f(x, y, z) be an odd function of x

frm equation (3-59) we have the following relation for $ y, z)

T(y, +) = - *TY, 0~) (3-62a)

Therefore, from equation (3-24)

VT(y, 0+) vT(y, 0~) (3-62b)

We then relate the trailing circulation in the "wake" of the airfoil or

lifting line to the spanwise or v velocity conponents in the Trefftz plane

using the chosen sign convention.

1 dy = vT(y, 0 + vT(y, 0~) (3-63a)

Then using equation (3-62b) we have the following:

d (y, O*) (3-63b)
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We then srite L(y) in terms of the usual thin airfoil notation

L(y) = p U2c CL = IFPcU2 (a 0 + V fg) (3-64a)

where c is the chord of the airfoil and a is the geometrical angle of attack.

Differentiating equation (3-6 4 a) we have

dL(y) = 2wP c a UU' +wP c d(UwLL) (3-64b)

We can now write from equations (3-14) and (3-34)

dy (UvLL) = (UVLL) = U VT(y' (3-65)

We then have from (3-63b), (3-64b), and (3-65)

VT(y, 0*) = I Wca U' W VT( 0 (3-66a)

and, from equation (3-24)

vT(Y, 0,) = a UT(y, Ot (3-66b)

Substituting (3-66b) into (3-66a) we have

U$ (y, 0*) j c U.T(Y, 0)] *Wca UU' (3-67)

We can now write from equation (3-56)

4T(y, Ot) Q(X ) Fn(y) Gm(0 ) (3-68)
neel

Substituting this expression for $T(y, 0 ) in equation (3-67) yields the

following

Q'(A (y)) G ( ) ;F G (01) = iraUU' (3-69

Equation (3-69) is the desired relation for the determination of the con-

stant Q'(X ).n

We can define, for convenience, a change in the two dimensional lift

coefficient as AC , and from equations (3-64a),(3-35), and (3.,25) we have

the result

I ) -rpCU2a + VLL
L(y) pU 2 c (C + ACL) wpcU 2 (a +

Therefore

ACIO wLL wT(y, 0) a
C Ua 2Ua 2Ua 3z .Ty, 0) (3-70)

LO 0 0 0
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3.5 Orthogonality of Eigenfunctions (FU) and

Their Derivatives (FU)'

To solve equation (3-69) we must establish the orthogonality of the

function 47(FU) in the interval + ). It is convenient to demonstrate

the orthogonality of these functions for the most general case in which the

shear velocity profile U(y) is continuous but U'(y) and higher derivatives

are not continuous. This permits the shear velocity profile to consist of

matched individual profiles for which the fundamental solutions of equation

(3-47) are known.

We will now consider the general case of a shear flow consisting of

three matched continuous profiles U,(y), U1 (y) and U 2(y) as shown in the fol-

lowing sketch:

y t 1/2

U2(y) REGION (2)

-- x - U6(y) REGION (0)Z-F-q. ~ rl/ _ -.* -0oh" - - - -

U Ut(y) 1MG-N (1)
y = -t =.-L/2

Corresponding to the velocity profiles in region (0), (1), and (2) we have

the respective solutions F0, F, F2 Y0 1 Y 2 ; and *$,*1, *2 of equations

(3-45a), (3-45b), and (3-47). The boundary conditions from equations (3-57a)

and (3-57b) are

1) y = t = 1/2 (F2u2) 2 *2 = 0

2) y = s (F2U2 )9 = (F0U0  2 = Y 0  *2 = U0

3) y =s F2 = F0 ; Y2 = Y 0

4) y - S F0 = Fi; Yo = Y (3-71)

5) y = - S (F0U0 )' = (F U )'; Y1 = * 

6) y = - t = - Z/2 (F1U1)' = ' * = =

We can now consider a general Sturm-Liouville problem of the form:
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p + + q$ + A2r = 0 (3-72)
d2 dy dy

Let *m and *n be two eigenfunctions of this equation for corresponding eigen-

values AM and A . The requirement that
+t -s

(M2 _ n2) r m n = f . ) r, *1M *indy

+s +t
+ (AM 2 - 2) s r0 $Om 'On dy + (Xm 2 - A 2 ) f r2 2m 2 n d * 0-S +S

is the following

P2(*2m *in - *2n *21m) L/2 - p m n V lI n .42

+ [P( 0 'M *n - *On *0m - P2 ('2m 2 '2n *2k s (3-T3)

+ Pl(*1m *'n - *in ym O o m On On 0in -s = 0

We now consider the two differential equations

y', - y' + A2 y = 0 (3-45b)
U

and (i)" + I X2 -U 0 (3-47)

for equation (3-45b): p = r = q =0
1 tU2  2U't

for equation (3-47): p= r =U, q- = , 2U'-

It can be easily shown that equation (3-73) with ' replaced by Y is sat-

isfied exactly through the use of the boundary conditions in terms of Y in

equation (3-71) and the fact that at y = s, U 0 = U2 and at y = - s, U0 = U 1 .

This confirms the result that

(A 2 . 2) fL12 Y Ydy =0 (3-T4)in n L/2 iT m n

which was used by Honda(.

We now consider equation (3-73) in ' with the boundary conditions of

equation (3-71) in terms of #. Using these boundary conditions and the fact

that at y = s, U0 = U2 and at y = - s, U0 = U, equation (3-73) becomes

:2 [om(*On - *2n) -0n#0m ~ J2mJ s

+ ( - Cn) - *(n - *) -s = 0 (3-75a)
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We now write equation (3-45b) in the equivalent form

= X_'. , 2 Y (3-75b)
U

Therefore, at y = s

= 2U A 2 Y
on U on n On

2n U2 2n n 2n

and * - 211' 2=74. * (3-75c)
on 2p U0  On 2U n U0  U2 1

since YOn 2n and *0. 2n

In the same menner, at y = s

___ U 2U1
m - *m = 2 U0* Om m ft 2 ( Om - (3-75d)

Using equations (3-75c) and (3-75d) we note that the first term of equation

(3-75a) is identically zero. In the same manner, the second term of equation

(3-75a) can be shown to be zero. We have now established that

(X2  X2 ) j/2 d/dy (F U) d/dy (FnU)
m n -1/2 U& dy = 0 (3-76)

provided that the boundary conditions specified by equations (3-57a) and

(3-57b) are satisfied and U(y) is continuous.

Using (3-76) we can now solve equation (3-69) for the tcmstant Q*(Xn).

Multiplying equation (3-69) through by F (Fn(y)U) and integrating the

result from (-Z/2) to (9/2) we have the result
*lfcC J1/2 U'/U a/dy(r U) dy

G///G /) d/dy(F)2 720Q*(A)=[G~(ot-: i'rc/4 a/azG, o*'J f X1 [2 c(~) 2 ud

(3-77)

It is interesting to note that the functions 4' = (F))" are continuous at

the match points (y = * s) if, in addition to U(y) being continuous ,U'(y)

is continuous at y = s a. This can be seen from equations (3-T5c) and

(3-T5d).

3.6 General Solution for Arbitrary 0(y)

It is convenient to determine the required solutions,"bf-A ii7 3-5&)

with the boundary condition given by equation (3-61) at this point since these
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solutions are independent of the choice of U(y).

GT(z) = C1 cosh X z + C2 sinh X z (3-54)

d GT(tD) = 0 (3-61)
dzT

The required solutions are

G T(z+) = (cosh X z - tenh X D sinh X z)

GT(z-) = (cosh X % + tanh X D sinh X z) (3-78a)

Using equation (3-T8a) we have the result

[ - ircw Xn tanh ) D
Grc ( + w Xn tanh =n D (3-78b)

Substituting equation (3-78b) into equation (3-47) for Q*t(X)

=WcC f L/2 U (FnU) dy

n [lTcx~hD nfJL,2  [( U2~
1+ tanh xnD (Fn 2

The corresponding form of Qt(x n for the case of a floy uhbounded in the z

direction is obtained by setting tanh A nD = 1.

We can now write the final form of the desired solution for AC /C

using equations (3-68), (3-70) ,and (3-78).

AC --

C Q*(An) F n tanh A D (3-80)
Lo 0 n=1

Equations (3-79) and (3-80) constitute the general solutioc of the lifting

line problem for any properly chosen shear velocity distribution U(y). It

is probable that most realistic shear velocity profiles can be fabricated

from matched U(y) for which the solutions of equation (3-47) are so-called

elementary solutions of the forms in equation (3-49) through (3-52). We will

investigate particular solutions for selected U(y) in the following section.

Combining equations (3-79) and (3-80) we have

1/2 U' ( )
AC f /2  -(FU) dy Un]

-0 2 1 /2 dy n (3-41)
Lo Del 4 (F U) dy

c/V 
c tanh XnDdy~ n)2 izd [+1
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It is worthwhile to note that the integrals in the numerator and the denom-

inator of equation (3-81) are of the forms (using 4 = (FU)')

f UI'( ) dy and f d)

which from equation (3-48a) are the following

f U'(sin, cos /Vz y)dy and f (sin, cos /T_ y) 2 dy

These integrals are evaluated easily.

We have, therefore, reduced the solution of a rather complicated bounded

shear flow problem to one of the determination of eigenfunctions and the eval-

uations of integrals, all of elementary forms. The most difficult part of

the solution is the determination of the eigenvalues A for matched velocity
n

profiles where the derivatives of U(y) are continuous only in two or more

finite regions.

It is instructive to express the general solution for ACLo C (equation

3-81) in non-dimensional form. If we non-dimensionalize according to the

following scheme:

length* =lenth velocity* = velocity
c UR

=( ) FG L*= L 1U*2 C
URc UR U cL

we have the result

ACL (U*) (F U*) dy* F

CLo =- A(FnU*] 2 1 +
-r- * tanh X D

where F is dimensionless and X * L c
n AR I

3.7 Particular Solution for Continuous- Profile with U'' = 0

We first consider velocity profiles of the form U(y) = UR + U'y for which

the eigenfunctions Fn(y) will be of the form (3-49). The simplest and yet

still interesting example of this is the continuous - constant vorticity

profile described in the following sketch:



y= 112
U2

UT(y) = UptU'ly

For this flow geometry, only one continuous eigenfunction F n(y) is required.

U' cos A y
F (Y) = sin A y + n (3-82a)
n n x n U(y)-

and d (F U) = x U cos A y (3-82b)
dy n n n

The boundary condition (3-57a) determines the eigenvalues in this case:

An = nn/A for n odd (3-82c)

The requirement of continuity of pressure and velocity as given by equation

d
(3-57b) is satisfied since (UF ) and -(UF ) are continuous in this case.n dy n

Substituting equations (3-82) into equation (3-81) and simplifying, we

have the result:

(Co)n-1/2 (U2 -U sin + (U2-U 2cos

nC no [8. U(Y) U n ( 3-83)
CLo n=1 n2 [1 + nr

- (}) tanh (f)

3.8 Particular Solution for Matched Profile with U'' = 0

The second problem to be solved is that of a shear flow consisting of

a velocity profile with a constant vorticity layer in the center region which

is bounded by two regions of uniform flow between confining walls. The geom-

etry of this flow is shown in the sketch following. The boundary conditions

for the solution of this problem are those given in equation (3-71). The

eigenfunctions given in equation (3-84) are denoted by Fo, Fland F2 corres-

ponding to regions (0), (1), and (2) and are forms of equations (3-49) or

(3-52).
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y= t

U2 = constant PGION (2)

---s

- - - - U0 = U 0 (y) REGION (0)

U1  const. REGION (1-) C-

F(y) Fsin X(s-t) cOB +(s t) + 0 sin 2 X(s-t) cos X(y-t)
0 Ut 0 xU O()

+ sin2 X(s-t) - rU( 2 + sin X(s-t) cos X(s-t sin X(y-t)

(3-84a)

= xU sin X~( s+t)I
F7(y) = sin 2Xs + U9 cos x(y+t)

xU
F2 (y) = 2os X(y-t)

The characteristic equation to be satisfied for the determination of

acteristic values Xn is the following:

20 (U _U )2 2e
e sin ( = 2 e(cos - cos 2e) + sin 2 0n sin 2

(3-84b)

(3-84c)

the char-

(L') ]

(3-85a)

where e xs and V =
n nT=I

It can be shown that the characteristic equation (3-85a) has an infinite

number of special eigenvalues which are integer multiples of We shall call

these 'degenerate eigenvalues' and denote them by the subscript (T). The

degenerate eigenvalues are given as follows:

T (3-85b)

where (m) and () are both eugn or both odd integers. The eigenfunctions

(3-84) corresponding to the degenerate eigenvalues require special consider-

ation in that they assume a different form for these particular eigenvalues.

As a result of this, it can be shown that the solution (equation 3-81) cor-

responding to even degenerate eigenvalues is trivial; i.e. ACO/C (y; )(m )

= 0,(m) even. For odd values of (i), the corresponding degenerate solutions
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must be considered in the total solution.

If the implications of this degeneracy are taken into account, equation

(3-85a) is valid for 0 < U :. 1. For the limiting case of V= 1, i.e. when the

shear profile is continuous across the duct, Xn = nw/L; the even values of

n are excluded since they are trivial. This is then the same result as ob-

tained in equation (3-82c). The final solution for the limiting case is

simply equation (3-83).

For the non-degenerate case, equations (3-84), (3-85a) and (3-81) con-

stitute the solution. The integrals of the functions -(F U) in equationdy n

(3-81) although simple in form, are algebraically complex, and an efficient

evaluation of the solution requires the use of a digital computer.

Refer to Appendix II for further discussion of this problem and the

listing of a digital computer program which has been used successfully to

obtain final solutions for the non-degenerate case.

3.9 Particular Solution for Continuous Cosine Velocity Profile

In this problem we choose the case in which the velocity profile is of

the form U(y) = U cos By. This is 4 symmetrical profile about the axis y = 0
R

which is bounded in the y direction at y = . The geometry of the flow is

shown in the following sketch:

y = 1/2

U)R Y= 0 4

y =-L/2

It is apparent that B < to exclude zero and negative U(y). We note that

through the consideration of velocity profiles of this form, we are approach-

ing the familiar developed profiles found in internal flow situations.

The eigenfunctions of this problem are forms of the first fundamental

solution given in equation (3-51) which can be written in the equivalent form
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Az+z cs (-7z-My Cos (S/zS)Y
F(y) = 0 _o _ y c-4os (+Z+BZ (3-86a) 2 cos By L=) (BA+/ )

from which

-(FU) = /c UR Cos By sin / + y (3-86b)

The eigenvalues Xn are determined by the boundary condition at the walls

n

+or n 2 (3-86c)

Substituting equations (3-86) into equation (3-81) we have the following

solution:

AC o 20 cos(0+2nw/t)y 
- cos 8-2nw/t)y1

Lo n= I (0+2nw) 0L-2nir)j

sin(Bt/2+nw) sin(Ot/2-nw)
+2nw) (s -2n) (3-87)

1+
(j) /nz2_z.zt tanh [rnzz1r_-z.ZLz

We note that 0 can be chosen arbitrarily provided that the condition B < -

is satisfied.

3.10 Particular Solution for Matched Cosine-Uniform Profile

For this last problem, we consider velocity profiles characteristic of

those of boundary (shear) layers at the edge of a layer of uniform flow.

The geometry of the flow is described in the following sketch:

y = 1/2 = t

U1 = constant C

S REGION (1)

U0= U8(y) REGION (0)
Y. 0

where U0 (y) = U1 cos B(y - s) for B < w/2s.

The eigenfunctions for this problem are forms of equations (3-51) and (3-52).

F0 (y) = cos y Az + zy tan 8(y-s) (3-88a)

= Xsin Z s cos X(y-t) (3-88b)
/V,+F sin X(s-t)
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The characteristic equation to be satisfied for the determination of the char-

acteristic values n is the following:
n

tan _77-+ 7s tan X(s-t)

/"Az + Sz X .

Equations (3-88), (3-89),and (3-81) constitute the solution for this problem

provided that the limits of integration of the integrals in (3-81) are *aken

to be 0 to 1/2.

Particular examples of solutions for ACLo /CL, , using the equations

developed in Sections 3.7 through 3.10, are presented in Appendices I and III.
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4. FIRST THEORETICAL APPROXIMATION

The following development provides a relatively simple method for the

calculation of lift on a thin untwisted airfoil of infinite span in a some-

what idealized shear flow. The main purpose of developing such a solution

is to determine the general behavior and the order of magnitude of the ef-

fects on lift caused by the induced secondary flows, and to investigate the

usefulness of a linearized inviscid approach to the solution of the general

problem. The analysis is approximate in that first order effects dependent

on the secondary flows themselves are neglected.

The geometry of the flow is described in the following sketch:

c

(1 + K) U

0 +b2

U
0

(1 - K) U

A

y = 0

400
b

.1

F- y

t
~-F-t-t -

=.dq

q

u' x

The velocity profile representing the primary flow approaching the airfoil

upstream from infinity is given by:

U(y) = (1+K) U b/2 < y < (4-la

U(y) = U + 0 y+ Ay3 + By +-- -b/2 < y . b/2 (4-lb
0 0

U(y) = (1-K) U - < y s -b/2 (4-lc

)

)

)

4.1 Theoretical Development

We begin the analysis with the following result from Prandtl's lifting

line theory:



dr TR(q)

L(y) = (y-q)

where wLL(y) is the velocity normal to the plane of the airfoil at the lift-

ing line induced by the circulation drTR(q) trailing behind the airfoil. We

then take

drTR [TEP EvS()] dq

where vTEP is the spanwise velocity along the trailing edge of the airfoil

on the pressure side, and VTES is the spanwise velocity along the trailing

edge of the airfoil on the suction side.

Then

1 [V TEPq -
[ TES (q)I dq

w LL -(y - q)

The Euler equation of motion for the 'Y' velocity component in frictionless

and incompressible flow is the following:

uav + V',v + w v aP (3-3)ax ay az p ay(3:)

taking u' = U(y) + u v' = V w' = w (3-9)

where u, v, w are assumed small compared to U(y), the following linearized

equation is obtained

U(y) = - (3-11)TX Pay

or v(x) = -Uy a dx + v(x = 0)

where x = 0 is taken as the leading edge of the airfoil. For thin airfoils

with sharp leading edges v(x = 0) V 0

and v(x) = - Uy dx

As a first approximation to the actual pressure distribution, we assume that

the static pressure distribution about the airfoil can be written in terms of

the familiar pressure coefficient as determined from two-dimensional airfoil

section data, i.e.

P(x, y) = PO + p C (x) U2 (y)

and
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= p C (x) UU'
3y p

we then have

-(x) = P C (x) UU' dx = - U' C (x) dx
pU(y) 0 P 0 p

c c
VTEP = Ut o C (x) dx; vTES= -u' f0 C (x) dx

where C is the pressure side C and C is the suction side C
pp p ps p

then c
C (x) - C (x) dx +00 ,

VLL(y) = - 1O [p~ -s UC( C
LL 4v - i y-q)

but 1[ C (x) - C (x) dx = c CLo = c

therefore

w(y) ca 0 +02 U(q)d
2LL - (y-q)

where C is the two-dimensional lift coefficient and a is the geometrical

angle of attack. In accordance with the usual lifting line approximation

based on the induced angle of attack

AC LL (3-70)C a U

where ACLo is defined as the change in the two-.dimensional lift coefficient

as before. We then have the result

.CLo -c +0U'(q)dq -c I(y) (4-2)% 2U(y) -M ( 2U(y)

where Iy)U(q)dq (4-3)
-- (y-q)

4.2 Solution of the Integral I(y)

The solution of the integral I(y) is determined in two regions - the

inner solution within the shear layer - 1 y - and the outer solution
2 - 2

outside the shear layer. We first require that U'(q) = 0 at the edges of the

shear layer and that U'(q) is finite and continuous within the shear layer.

Since U'(q) = 0 outside the shear layer, the integral becomes
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(Y) f b/2 U'(q)d (4-4)

-b/2 (y-q)

Inner Solution

In this region, the principal value of the integral is required. This

can be readily evaluated if the following changes in variables are made:

y bCos e 0 < e < (4-5a)
2

q =- cos~ 0 5 r (4-5b)

and if U'(q) is expressed as a series in sin n 0, i.e.

U'(q) = n + 3Aq2 + 3Bq4 + 7C6 + - n sin n. (4-6)
n

the integral then becomes

irk sin n *1sin $ d 4
1=1f Ln n

0 cos $ - cos e

It can then be shown that

I=- I kn cos n e (4-7)
n

The solution will now be carried through for a general 7th. degree polynomial

in y

U(y) = U + na y + Ay 3 + ByS + Cy 7  (4-8)

Changing variables (substituting equation (4-5b)) in equation (4-6)

U'() = 0 + A' cos 2  + B' cos4 $ + C' cos6  = kn sin n f
n

where

A 3Ab2  B' = 5Bb4  C' = 76 (4-9)
4 66

Solving for kn

kn 0 [ + A' cos 2 * + B' cos4 * + C' cos 6  sin n * d *

or

k = (n I +AI + B'I +C'I ) (4-1o)
Tho(o) (2) (4 ) (6)

where

I (P) fo cos $ sin n $ d O (p even) (4-11)
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The integral I exists only for n odd and is given by the following

expression

,=-n+1/2 coP+l n-1/2 (_)k

k=1 (4-12)

fn2_1] [n2 _9] - - -fl2(2k-) 2  2k + p + 1

(2k)! (k + p + 0

Outer Solution

The outer solution may be evaluated easily by the substitution

y-q y y y y

since in this regioi

For a 7th. degree polynomial in y (equation (4-8)) equation (4-4) becomes

Iz 2  ~0 +3Aq2 + 5Bq4 + Tcq6 dq

This, after integration, becomes

I(y) = 2 [ 1/y* + 1/3y* 3 + 1/5y* 5 + - - -

+ 6A (b)[ 1/3y* + 1/5y*3 + 1/7y*5 +

b 4 (4-13)

+ 10B ( ) [/5y* + l/7y* 3 + 1/9y*5 + -- (1

+ 14C ( )6 1/7y* + 1/9y* 3 + 1/ly*5 + -
I2

vhere y* = y/() (4-14)

4.3 Solutij-for Two Parameter 5th. Degree Polynomial

A two pa meter, 5th. degree polynomial in y satisfying the boundary

conditions at y = i and meeting the desired velocity profile requirements

d*uati**, (4-,l) is as follows:

5KU3 Ab 3KU s
Ury? U U + soy + 2 -b + -2 (4-15)

t7 r~~~f o +[ ~ 2] [ 2 2i

*here K and 10 are arbitrary.

Substituting the appropriate constants from equation (4-15) as defined

in,.eqiations (4-8) and (4-9) into equation (4-10)
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r -~~ l5KUr 1

k = (O)(n) - 61 (n) + 51 4 (n) + b L(K
W L0 L1() (2)(4b I2n)-(O l

or k 2 [ [0a(n) + b 0 8(n) (4-16)

where a(n) = I (0)(n) - 6I(2)(n) + 5I(4) (n) (4-iTa)

O(n) = I(2)(n) - I(4) (n) (4-17b)

Tabulated values of a(n) and S(n) for the first 10 values of n are as follows:

n a(n) O(n) n a(n) O(n)

1 0 +0.26667 11 +0.01425 -0.00347

3 -1.21905 +0.19047 13 +0.00807 -0.00199

5 +0.40630 -0.08888 15 +0.00531 -0.00130

7 +0.07384 -0.01731 17 +0.00343 -0.00085

9 +0.02837 -0.00683 19 +0.00228 -0.00058

The complete inner solution is then given by

AC LoKU

SU(y) [noan + bSo(n cos nO
Lo n

where O=cos- y < 4-
b 2 ~2

After substitution of the required constants into equation (4-13) and simpli-

fication, the complete outer solution becomes the following:

LO n (n+14)

AC0 n 1 n(4-19)

60KUo n

+ b, (n+2)(n+4)

for u < 1 where (b = ()/y| = |l/y*|

Note that the sign of AC /C is negative for y positive. The inner and

outer solutions are equivalent at y = *( ) (y* = *1) as can be verified by
2

numetical substitution. The form of the outer solution at these shear layer

boundary points is the following:

ACLo C 1oKU0 40

CLo 2U(*b/2) L b ~ ~
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4.4 Solution for Two Parameter, Tth. Degree Polynomial

Using equations (4-2) and (4-4), we can, after differentiating, obtain

the result

b/2

2Uy b/2 U -q ) 2U y) -b/

The last term in this equation may be integrated by parts, and, through the

use of the boundary condition U'( t) = 0, the equation becomes

d t'CLo ACLo U' Y) c b/2 U'(qdq.
dy C U(y) - -b/2 (y-q)Lo TI ULo

or d -AC C b/2 U' '
dy U CLo / 2 -b/2 (y-q) dq

It is then possible to assure continuity of the slope of C LO if U''
CLo

(- , + b) = 0.

A two parameter, 7th. degree polynomial in y satisfying the required

boundary conditions at y = 1(b) with the additional requirement that U'' = 0
2

at y =(-) and meeting the desired velocity profile requirements from2

equation (4-1) is as follows:

y +y[35KUo 3[42KUO + 3N 0 b s
U(y) = U 0 + Qy + (b 8 -2 +b)

2 2

+ l5 0 ~ o 2--].-i (4-20)
( .)

where K and S0 are arbitrary as before.

Substituting the appropriate constants from equation (4-20) as defined

in equations (4-8) and (4-9) into equation (4-10)

k a A (0 )n - 91 (2)(n) + 1514)(n) - 7I(6)(n) +

105KU0

4b (2)(n) - 21 (4)(n) + I (6)(n)

or k = [Sly(n) + 1!O. 6(n) (4-21)

where

Y(n) = I(0)(n) - 9I(2) (n) + 151 (n) - 7I ()(n) (4-22a)
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Tabulated

= (2)(n) - 214)(n) + 6 (n)

values of y(n) and 6(n) for the
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(4-22b)

first 10 values of n are as follows:

n y(n) 6(n)

1 0 +0.15238

3 -0.81259 +0.05078

5 +0.66482 -0.08772

7 -0.10236 +0.01528

9 -0.01288 +0.00199

coplete inner solution is

ACL c

= U y) 0y(n) +
Lo

e e = cos 1

.11 y(n)

11 -0.00292

13 -0.00125

15 -0 000*

17 -0.000*

19 -0.000*

then given by

105KU

4b 6(n)cos n

_b b
22

After substitution of the required constants into equation (4-13) and simpli-

fication, the complete outer solution becomes the following:

ACLo c rll (l) piy(n 2+12n+92)

C 2U'y) 2T 2 ln - (n+2)(n+4)(n+6)

420KU c n
+ * 0 (4-24)

b (n+2)(n+)(

for U <1 where U =1( )/yi= |1/y*I The sign convention is as before.

The inner and outer solutions are equivalent at the edges of the shear layer

where the outer solution becomes the following:

AC - TKU 8 1
LO +c __ - __0

CLo 2U( ) b 15 J

This procedure may be extended to include velocity profiles for any

degree odd polynomial in y with the appropriate boundary conditions.

The form of the outer solution for I(y) is particularly amenable to

superposition for the calculation of images. In this manner, the effects of

plane boundaries in the 'irrotational' region of the flow may be considered.

In the physical sense these boundaries would represent wind tunnel walls or

internal passage boundaries.

The

wher

6(n)

+0.00047

+0.00020

+0.000**

+0 .000**

+0.000**

(4-23)

2

9

*

0

I
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It is also interesting to note that the above solutions for I(y) may be

superimposed to include symmetrical shear velocity profiles such as wakes or

jets.

Tabulated values of I (0)(n), 1(2) (n), 1(4 )(n) and I (6 )(n) for the first

10 values of n will be found at the end of this section. The requirements

that the inner and outer solutions must match at y =(b) yields the follow-

ing relations which may be used to check the accuracy and the convergence of

the numerical values:

(0 (n) - I (n)) = 1 (n odd)

1( (2n) - (n)) = 1/3 (n odd)

(I4 (n) - I (6)(n)) = 1/5 (n odd)
n=l

4.5 Relation to Lifting Line Theory for Wings of Finite Span

To investigate the relationship between this approximation and the clas-

sical lifting line theory for wings of finite span, we can write as a general

expression for the strength of the trailing vortex sheet

dr TR 1 U2 C ( +A Lo
dy pU dy 2 U dyL Lo C LO

therefore,

V 1 0'/2 d c COU21 dQ
wLLY 6- fc/2C U2 ( CLo U(q3 (y-q)

and AC /2 rCn ) LO1/2 -1c C 2( + ACLO (4-25)

zO 4CO (,f-112 dq CLo + Lo U~)y-q)

Equation (4-25) may be thought of as a modified lifting line equation (for

variable c, CLo, and U) for shear flows.

For the case in which C and c are constant, equation (4-25) becomes

LC _ -c /2 d [U2(1 + ) (4-26)
C 4U(y) -L/2 dq CLo U(q (y-q)
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AC
For airfoils of infinite span , if we neglect C as being small compared

0Lo
to 1, equation (4-26) becomes

CLO -c d (4-2)
Lo 2U(y)- y-

This is the original result obtained in the theoretical development of Section

(4.1). We now consider in greater detail the term (from equation (4-26))

d[U2(,+ oC
de CLo

This can be written in the equivalent form

2U2  1 +AC L) + 1 AC )L 1
o LO AC

For airfoils of infinite span, the assumpt ion that is small compared

to 1 is acceptable, but neglect of the term (A Lo /CLo) compared to U'1/U

is questionable since, in general, these terms may be of the same order.

For wings of finite span, neither of these approximations is acceptable since

both ACLO/CLo and d/dq(AC L/Co) are large, in particular at the wing tips

AC LO/CLo = -1.

It is instructive tp verify that the general equation (4-25) becomes the

classical lifting line integro-differential equation for the case where U

constant:

ACLo -1 d ACO dQ

CLo 4cLO dq cZCLo( + CLo

which becomes

r(y) = Lo / dr(q)4 (-27)
2 h -1/2

using the substitution

cUC9 AC
r(y) = 2U L (1 + AC L

Lo

It is of fundamental importance to note that in this approximate anal-

ysis no consideration is given to vorticity in the flow other than that of

the usual trailing vortex sheet resulting from the variation of L(y) along

the span. There is, therefore, an incompleteness in the description of the

true kinematics of the flow.
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Theoretical results obtained through the use of this first theoretical

approximation are presented in Appendix I.

TABLE

n

1

3

5

7

9

11

13

15

17

19

I(0) (n) 1(2) (n)

I ( (n)

(4)(n) I(6)(n)
-I S 4

2.00000

0.66667

0.40000

0.28571

0.22222

0.18182

0.15385

0.13452

0.11765

0.10526

0.66667

0.93333

0.43810

0.29842

0.22800

0.18492

0.15573

0.13452

0.11847

0.10588,

0.4oooo

0.74286

0.52698

0.31573

0.23483

0.18839

0.15772

0.13582

0.11932

0.1o646

0.28571

0.60317

0.52814

0.34832

0.24365

0.19233

0.15991

0.13717

0.12024

0.10710

19

1 (1(0 )(n) - I(2 )(n)) = 1.00247
n=l

19

1 (I(2)(n) - I (n)) = 0.33593
n=l

19

1 (I(4)(n) - I(6)(n)) = 0.20237
n=l
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5. EXPERIMENTAL PROGRAM

The experimental phase of this investigation was initiated with experi-

ments on shear flows about a circular cylinder. These experiments were per-

formed in a very low speed 'smoke flow' tunnel, and, largely because of flow

separation problems, the results obtained consisted of visual observations

of a qualitative nature which were recorded on photographs. The main part

of the experimental program consisted of measurements of local lift coeffi-

cients and spanwise distributions of lift on thin symmetrical airfoils in

monotonic shear flows consisting of a layer of rotational flow bounded by

two layers of relatively uniform flow. Data was obtained for three differ-

ent geometries based on the ratio of the airfoil chord to the shear layer

thickness (c/2s).

5.1 Smoke Flow Experiments

The smoke flow experiments were carried out in a very low speed wind

tunnel (velocities of the order of 1 ft/sec) which was designed specifically

for this type of work by R. G. Schwind(27), The test section for the shear

flow experiments was moved upstream of Schwind's ofriginal test section, and

a canvas enclosure was placed over it to reduce extraneous light and reflec-

tion on the Plexiglas walls and roof of the 8" by 16" rectangular duct for

photographic purposes. The photographs were taken with a Polaroid camera;

the illumination was supplied by two stage lights which were positioned above

and on the side of the test section.

The smoke was produced in a 'smoke generator' described by Schwind(27)

in which vacuum pump oil is heated to approximately 2500C in an electrically

heated stainless steel tube. The temperature of the smoke is essentially

that of the surrounding air at the injection point, and, as reported by

Schwind, the density of the smoke is within 1% of the density of the air at

the same pressure and temperature. The probes used to introduce the smoke

into the shear flow consisted of a horizontal rake that could be traversed
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across the duct vertically, and a vertical rake that- could be traversed

across the duct horizontally. The disturbance of the rakes which were of

small diameter tubing was negligible in comparison to the disturbance of the

2" diameter cylinder. The shear flow was produced by inserting a non-uniform

thickness of honeycomb (varying in thickness from 3" to 6") upstream of the

tst section and downstream of the turbulence reducing screens in the tunnel.

The velocity profile produced varied from approximately 1.0 ft/sec to 1.5

ft/sec over a shear layer thickness of apprxomately 3". The shear layer was

bounded above and below by layers of relatively uniform flow. (Refer to

sketch of velocity profile on page 39).

Velocity measurements were made with a portable hot-wire set; the vel-

ocity profile measurements indicated a decay in the ratio of maximum to min-

imum velocities in the shear flow of about 10% in a streanwise flow length

of approximately 3'. The observed downward displacement of a streamline on

the high velocity side of the shear layer in the vertical plane of symmetry

of the flow was approximately 1/2 cylinder diameter, and the observed origin

of the downward motion of this streamline was approximately 3 cylinder diam-

eters upstream of the disturbance. The complex nature of shear flows about

cylindrical bodies where viscous effects must be taken into consideration

both in the boundary layers of the body and in the separated flow downstream

(28)of it is discussed by Toomre (

A photograph of the apparatus and the smoke generator is shown in Fig-

ure 41 in Appendix VI. A close-up of the aluminum honeycomb and the test

cylinder is shown in the second photograph of Figure 41. The two photo-

graphs in Figure 42 show the horizontal and the vertical smoke rakes in

place in the test section. The warping of the Bernoulli surfaces can be

seen clearly in the first photograph.

The photographs in Figure 43 indicate the displacement effect in the

plane of symmetry of the cylinder and the extent of the separation of the
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flow downstream of the cylinder. The upwards flow of fluid in the separated

region is due in part to the pressure gradient caused by the disturbance of

the cylinder and wake in the shear flow, but there is some contribution from

buoyancy effects resulting from a change in density of the fluid in the- wake

The change in density arises from the heating of the cylinder and the rela-

tively stagnant fluid in the separated region by the lights used to illumin-

ate the test section. This 'thermal convection effect' was predominant in

convecting boundary layer fluid upwards in smoke flow experiments about thin

airfoils at zero angle of attack when no separation was present. The second

photograph in Figure 43 indicates that the displacement effect is propagated

into the layer of low velocity uniform flow from the shear layer above.

The streamline patterns in the surfaces of constant stagnation predsure

(disregarding the unsteadiness near the separated regions) are shown in the

two photographs in Figure 44. The smoke filaments in the first photograph

originate in the high velocity uniform layer above the shear layer. The

smoke filaments in the second photograph originate within, but on the low

velocity side of the shear layer.

5.2 Low Speed Wind Tunnel Experiments

The low speed wind tunnel used for the thin airfoil experiments was

designed by S. R. Montgomery The wind tunnel is fitted with a special

test section designed originally for cascade work although this equipment

was not used in the shear flow experiments. A rectangular fibreboard chan-

nel was inserted into the test section, and a flow by-pass (a feature of the

original test section design) was sealed off with a hinged flap. The side

walls of the channel were fitted with circular inserts which supported the

airfoils and enabled the angle of attack to be varied. Felt bearings be-

tween the airfoil surface and the fibreboard inserts enabled the airfoils

to be traversed across the test section in a spanwise direction. An overall
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view of the experimental apparatus with the large chord airfoil in position

in the test section is shown in Figure 45 in Appendix VI.

The honeycomb structure used to produce the sheared velocity profile

was inserted upstream of the test section and was supported from the down-

stream side by the rectangular channel. The problems encountered in the

design and the mechanical shaping of the honeycomb and a suggested design

procedure are discussed in detail in Appendix IV. The frontal area of the

honeycombs used was 20" by 30" (the inside dimensions of the test section),

and the streamwise thickness varied from approximately 4" to 16". During

the course of this investigation, two honeycombs were used - the first to

produce a shear layer approximately 10" thick which will be referred to as

the 'large shear layer', and the second to produce a shear layer approxim-

ately 4" thick referred to as the 'small shear layer'. The two honeycombs

are shown in the photographs in Figure 46 . No appreciable decay of the

shear profiles was noted in the flow length of the test section which is

(30)consistent with the observations of Owen and Zienkiewicz .

The airfoils used were NACA 0012 symmetrical profiles with chords of

3" and 6" and spans in excess of 5' which enabled the 30" test section to

be traversed with one chordwise distribution of static pressure taps. The

pressure taps were located on both surfaces of the airfoils, the 3" chord

airfoil having a total of 29 taps and the 6" chord airfoil having a total

of 26 taps. The geometry of the airfoils affected the positioning of the

pressure taps; the first tap was located at about 4% chord on the 3" chord

airfoil and at about 2% chord on the 6" chord airfoil. The pressure taps

were staggered on opposite sides of the trailing edges because of the thin-

ness of the section in this region. The pressure taps were drilled from the

finished surfaces of the airfoils into tubes that had been inserted into

milled spanwsie slots.

The 3" chord airfoil was fabricated by butt soldering four brass sec-
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tions end to end after the individual sections had been machined on a blade

profiler. The 6" chord airfoil was assembled from 4 leading edge and 4

trailing edge aluminum sections which were attached to a steel center sup-

port. These sections were staggered along the span of the airfoil. In both

cases, the pressure tube slots were milled after the airfoils were assembled

to eliminate alignment problems. The coordinates of the blade profile are

tabulated in Reference 31. A full size sketch of the 6" chord profile is

shown below.

NACA 0012

The two airfoils are shown in the first photograph in Figure 47.

The second photograph in Figure 47 shown the probes that were used in

the experimental work (in addition to the airfoils). A triple pronged total

pressure probe with a direction sensitive yaw probe in the center was used

to measure the total pressure distribution in the undisturbed flow. The

three total pressure readings gave an indication of the local departure

from the desired two-dimensional flow. This non-uniformity of total pres-

sure in planes normal to the span of the airfoil was negligibly small in the

small shear layer experiments, but of a greater magnitude in the large shear

layer experiment. The largest value measured being approximately 10% of the

local average total pressure. The local non-uniformities of total pressure

in this case were attributed to the particular type of honeycomb used (refer

to Appendix IV).

A single yaw probe was positioned downstream of the airfoil and was

used to measure local total pressures in planes normal to the span of the
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airfoil when the airfoil was in position at zero angle of attack (excluding

the region of the thin wake behind the airfoil). These measurements of total

pressure were used in the calculation of the local pressure coefficient and

agreed well with the measurements of total pressure in the undisturbed flow.

The angular position of the airfoil with respect to the tunnel axis was

measured through the use of a protractor (see Figure 47) which was fitted

over the chord of the airfoil and layed flat along the tunnel wall. This

device had a least count of 1/4h and readings could be taken to within one

half of this magnitude.

The large shear layer experiment was complicated somewhat by axial swirl

in the flow, but the amount of swirl was reduced by about a factor of four

in the small shear layer experiments. The airfoil itself was used to meas-

ure the swirl in terms of the location of the local spanvise zero lift angle

with respect to a selected reference position. The results of these measure-

ments for both the large and small shear layers are presented in Figure 4

on the following page.

Because of the local non-uniformities in total pressure and the axial

swirl, and, in addition, to reduce the magnitude of the effects of extran-

eous error, all pressure distributions were measured in both clockwise and

counter-clockwise directions from the local zero lift position. The agree-

ment between the clockwise and counter-clockwise lift coefficient data will

be shown in the figures following.

Before beginning the shear flow experiments, measurements of the char-

acteristics of the airfoils in a uniform flow downstream of a uniform piece

of 4" thick honeycomb were made. It was found that to achieve a linear rela-

tion between C and a , the airfoils required trip wires which were instaled

at the 10% chord position on both surfaces. The uniform flow experiments

were performed for two Reynolds numbers for the 3" chord airfoil since in a

shear flow of the type considered here there is a change in local Reynolds
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number of a factor of approximately 1.5 along the span of the airfoil. The

results of the uniform flow experiments are presented in Figure 5. Because

Reynolds number effects were found to be small as a result of the use of the

trip wires, the average curves (shown as the dotted lines in Figure 5) were

used as the reference curves for the shear flow experiments. The average

curves are represented approximately by the relation

C = (0.91) 2w a0

The data shown in Figure 5 includes the stall region (beyond the relatively

linear portion of the C , a curve), and, although this region was investi-

gated in some of the shear flow experiments, for the most part, data was

taken in the range of from 20 to 80 angle of attack inclusively.

5.3 Large Shear Layer - Small Chord Experiment

The experimental velocity profile for the large shear layer experiment

is shown in Figure 6. The velocity variation is from approximately 57 ft/

see to 95 ft/sec over ashear layer thickness of about 10". Various analy-

tical approximations were used to describe the velocity profile, and these

are indicated also in Figure 6. The linear fits for two values of the shear

layer thickness (2s) were approximations for use with the lifting line the-

ory, and the polynomial fit was used in conjunction with the first theoret-

ical approximation. The magnitudes of the local non-uniformities are clearly

indicated in Figure 6, and it is apparent that some uncertainly is involved

in establishing definite regions of shear and uniform flow.

Measurements of local lift coefficients were made at various spanwise

stations excluding the regions of flow near the tunnel walls. The averaged

results from the clockwise and counter-clockwise measurements are presented

in Figure 7 and Figure 8. The measurements were made with respect to the

local spanwise zero lift angle. The experimental results indicate a maximum

local lift coefficient at the low velocity edge of the shear layer (9" sta-

tion) and a minimum local lift coefficient at the high velocity edge of the

shear layer (19" station). The local lift coefficient decreased monotonic-
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ally across the shear layer from the 9" station to the 19" station except

for some irregularity at high angles of attack as shown in Figure 7. The

uniform flow characteristics were not observed at the center of the shear

layer, but are found on the low velocity side of it indicating that the in-

duced angle of attack is not zero at the center of the shear layer. This

effect is confirmed by the results of the lifting line theory. The data in

Figure 8 indicates a consistent variation in local lift coefficient towards

the uniform flow value with increasing distance from the shear layer in the

regions of relatively uniform flow.

As an indication of the appearance of the clockwise and counter-clock-

wise data before averaging, four sets of original data are shown in Figure

9, The solid curves indicate the averaged results for each spanwise station.

The data is representative of the entire set of measurements for this experi-

ment. It is worthwhile to note that although the gradient of'the local lift

coefficient changes sign between the regions of sheared and uniform flow,

the lift itself varies monotonically from a maximum in the high velocity uni-

form region to a minimum in the low velociiy uniform region. This is, of

course, excluding the regions of flow adjacent to the tunnel walls where the

wall boundary layer effects are dominant.

5.4 Small Shear Layer - Small Chord Experiment

The velocity profile for the small shear layer - small chord experiment

is shown in Figure 10. A comparison of Figure 10 with Figure 6 shows a reduc-

tion of local non-uniformities in this shear profile. The velocity profile

was approximated well by the linear fit used in conjunction with the lifting

line theory. The velocity variation is from approximately 69 ft/sec to 109

ft/sec over a shear layer thickness of about 4". This results, in an approx-

imate increase of 250% in U' at the center of the shear layer as compared

with the large shear layer velocity profile.
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The results of the measurements of local lift coefficients are presented

in Figure 11 and Figure 12 for the regions inside the shear layer and outside

the shear layer respectively. The variation of CL with spanwise position

is more consistent here than in the previous set of data for the large shear

layer; this is attributed to the reduction of axial swirl in the flow and

the production of a more homogeneous shear profile in this case. The data

in Figure 11 indicates again that the uniform flow characteristics were ap-

proached on the low velocity side of the center of the shear layer. The uni-

form flow result was closely approached in the uniform flow regions at the

5" and 25" spanwise stations as shown in Figure 12.

A set of sample data for four spanwise stations showing both clockwise

and counter-clockwise readings is presented in Figure 13.

5.5 Small Shear Layer - Large Chord Experiment

The experimental velocity profile for this experiment is'shown in Fig-

ure 10. It is essentially of the same form as that of the small chord experi-

ment. The results of the measurements of local lift coefficients are shown

in Figure 14 and Figure 15 for the regions inside the shear layer and outside

of the shear layer respectively. The magnitudes of the changes in local

lift coefficient as a function of spanwise position are greater in this case

than for the small chord experiment. A set of sample data indicating the

clockwise and counter-clockwise readings for four spanwise stations is pre-

sented in Figure 16.

The experimental results presented here and in Sections 5.3 and 5.4 are

compared with theoretical results in Section 6.1.

5.6 Pressure Coefficient Distributions

A fundamental assumption of the lifting line theory is that the local

lift coefficient is dependent only on the local angle of attack and the two-

dimensional characteristic of the airfoil section, i.e.
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CL CO (l + )
0

If the above assumption is valid, pressure coefficient distributions are a

function of the local value of C Therefore, ideally, pressure coefficient

distributions at any position in the shear flow having the same value of

local lift coefficient should be comparable with each other and these, in

turn, should be comparable with the pressure coefficient distribution at the

same CL in a uniform flow.

The above supposition is not expected to be valid in all cases since

we cannot postulate that the stall characteristics are related ig such an

elementary manner to the local value of CL9 i.e the onset of stall in a

shear flow does not necessarily occur when the local value of CL reaches the

value of C at the onset of stall in a uniform flow. In addition to stall

phenomena, local Reynolds number effects might affect the comparison of pres-

sure coefficient distributions in some cases. A departure from a 'two-dimen-

sional' pressure coefficient distribution as a result of the distortion of

Bernoulli surfaces in a shear flow might affect the comparison - especially

the comparison with uniform flow data, but this effect may not be apparent

for small distortion effects since the areas under the pressure coefficient

curves are necessarily the same for equivalent C However, distortion ef-

fects might be detected by local anomalies in the Cp distribution, but the

detection of such effects would be dependent on the accuracy and definition

of the experimental measurements.

The data presented in Figure 17 shows the pressure coefficient distri-

butions for two angles of attack on the 3" chord airfoil in uniform flow.

These two curves constitute the data necessary for two corresponding points

on the uniform flow curve shown in Figure 5 for a Reynolds number of 1.45

x 105. The lift coefficients are obtained by integration of the area under

the C curves. The local low pressure readings due to the trip wire separ-
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ation bubbles may be seen in Figure 17 just beyond the 10% chord position.

Figures 18 and 19 show the comparison of C distributions for the same

CL at different spanwise stations in the large shear layer for two different

cases. Figure 20 shows a similar comparison for data taken in the small

shear layer with the 3" chord airfoil. The discrepancies between the two

C distributions shown in each of these three figures are seen to be small.
p

To extend the C comparison to the uniform flow case, the C distribution
p p

corresponding to a CL of 0.492 in Figure 17 may be compared with the shear

flow data of Figure 18, and the uniform flow data corresponding to a CL of

0.670 may be compared to the shear flow data of Figure 20.

The above pressure coefficient comparisons are indications of the val-

idity of the lifting line assumption concerning the relation between the

local lift coefficient and the local angle of attack.

5.7 Separation and Stall Phenomena

Although no direct attempt was made to investigate separation and stall

effects in this investigation, comments on a few general observations are

in order.

The first is in relation to the onset of stall in the shear flows con-

sidered. Figure 5, page 62, indicates that the 3" chord airfoil stalls in

a uniform flow at a lift coefficient of about 0.80 which corresponds to an

angle of attack in the range of from 8 to 9 degrees. The term 'stall' is

here taken to signify a considerable departure from the linear CL, a curve.

The data presented in Figure 7, page 64 , and Figure 12, page 71, indicates

that local lift coefficients in excess of 0.80 were achieved without any

obvious indication of stall. This phenomena is attributed to the thinning

of the boundary layer on the suction side of the airfoil by spanwise flows

in the boundary layer. As evidence of this effect, Figure 48, Appendix Vi,

shows photographs of oil traces taken at different spanwise stations on the

3" chord airfoil in the small shear layer at a geometrical angle of attack
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of 8'. (The airfoil is shown with the leading edge up in the photographs.)

The photographs, with reference to the velocity profile in Figure .10, page

68, indicate the spanwise flow of boundary layer fluid along the suction sur-

face of the airfoil in the direction of.increasing velocity U(y). This ef-

fect is clearly visible at the 17" and 15" spanwise stations, but it is small

if not negligible at the 19" and 13" stations. The divergence between the

oil traces at the 19" and 17" positions illustrates the thinning effect.

The last photograph in Figure 48 indicates the existence of a region

of backflow (the oil was deposited at the trailing edge on the left side of

the photograph) at the 17" position at a geometrical angle of attack of 100.

The oil droplet moved in a backward direction along the chord to a position

near the leading edge (approximately 15% chord) and then reversed direction

to flow forward and upward to the trailing edge.
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6. CLOSURE

6.1 Comparison of Theory with Experiment

The experimental data presented in Sections 5.3, 5.4, and 5.5 may be

categorized in a general way by the ratio of airfoil chord to shear layer

thickness in each experiment, i.e. c/2s = c/b = 3/10, 3/4, and 3/2 approxi-

mately. The theoretical results of the lifting line theory are compared with

the experimental data by two methods. The first is a comparison of the change

in the local lift coefficient which is represented by the local value of

AC LO /Cand the second is a comparison of the spanwise distribution of

U2CL = U2CLo (1 + AC /C ) which is, of course, proportional to the local

lift for an airfoil of fixed chord. The comparison of AC /C between

theory and experiment is very sensitive to local non-uniformities in the

shear flow, and, in a sense, is a comparison based largely on the secondary

flows themselves. The comparison of U2CL distributions, however, is more

directly dependent on the entire flow, and the perturbations may be thought

of as a form of correction to a primary U2C distribution. The result of

this is that the effects of local non-uniformities in the flow are much mbre

apparent in the comparisons of ACLo/CLO than in comparisons of U2CL'

The comparison of theory with experiment for the large shear layer

(c/2s = 3/10) is shown in Figure 21 and Figure 22 of Appendix I. The two

theoretical curves in Figure 21 correspond to the two linear velocity profile

models of the experimental shear layer shown in Figure 6, page 63. The com-

parison of U2 CL distributions for three geometrical angles of attack in

Figure 22 are based on theoretical results for the 8" thick shear layer model.

A similar set of results for the small shear layer - small chord experi-

ment (c/2s = 3/4) is shown in Figures 23 and 24. Here the theoretical results

are based on the theoretical model of the velocity profile shown in Figure 10,

page 68. The overall agreement between theory and experiment in this case
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indicates an improvement over the comparison of results for the large shear

layer; this is attributed to an improved shear flow (refer to Sections 5.3

and 5.4) and better agreement between the theoretical model and the experi-

mental velocity profile. In view of the neglect of viscous effects and the

linearization of the equations of motion as fundamental approximations in

the lifting line theory, the agreement between the experimental data and the

theoretical results in both of the above cases is good.

The comparison of theory with experiment for the small shear layer -

large chord experiment (c/2s = 3/2) is shown in Figures 25 and 26. The

results in Figure 25 indicate that the theory is consistently on the low side

in the prediction of local lift coefficients. This same trend is evident in

the results shown in Figure 26 especially within the region of the shear

layer (from the 13" to the 17" spanwise stations). Some of this discrepancy

can be attributed to local non-uniformities in the experimental shear flow,

in particular, the local depression in stagnation pressure in the region of

the 17" to 18" spanwise stations (refer to Figure 10) causes a local increase

in AC /C and a local decrease in U2C in this region. These local effects
Lo Lo L

are apparent in Figures 25 and 26, but, of course, cannot account for the

consistent underestimation of lift by the theory.

We shall now attempt to show that the underestimation of lift as shown

in Figure 26 is due to the distortion of the Bernoulli surfaces in the flow

about the airfoil. Through a consideration of the linearized equations of

motion and an integration of the pressure forces over the chord of the air-

foil, we can arrive at the following result (refer to Appendix I, page I-11):

L(y) = LLL(y) + pU' fc [fx (V+ - v-)dx] dx (6-1)
0 -Z = 0

where L(y) is the 'true' lift, Ly) is the contribution of the lifting line

theory, and the last term is the correction due to the distortion of the
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Bernoulli surfaces. The integrals in equation (6-1) may be evaluated in an

approximate manner (see Appendix I) to yield the result

L ) + ' d ln L (Y) (6-2)
1LL;_UdyI L

Equation (6-2) constitutes an approximate correction to the results of the

lifting line theory. The lift correction in the region of the shear layer

is shown by the dotted lines in Figure 26 and amounts to about 7% to 8% of

the lift as calculated from the lifting line theory. The same correction,

if applied to the theoretical results for the 3" chord experiments would

result in an increase of lift of approximately 1% to 2% which can be consid-

ered negligible. In effect then, the results shown in Figure 25 are of

academic interest only since the local lift coefficient has no significance

in a shear flow where distortion effects are considerable.

The comparison of the lifting line theory with the experimental data of

Mendelsohn and Polhamus (26) is shown in Figure 27. In this case, the theo-

retical model is based on the matched cosine - uniform velocity profile

(refer to Section 3.10 and Appendix III). The 'wall boundary layer' in this

case was modeled by two theoretical velocity profiles indicated in Figure-

27. The agreement between theory and experiment is good considering the

large chord to boundary layer thickness ratio in the experiment. The "

Bernoulli surface distortion effects that would certainly become significant

in a 'free' shear layer with this chord to shear layer thickness ratio are

substantially reduced by the presence of the wall, i.e. at the wall, the

lift correction is necessarily zero (equation (6-1)) even though U' is large

and U is small (assuming a slip velocity). The experimental results of

Mendelsohn and Polhamus indicate a reduction of lift at the wall of about

11% based on the 'free stream' lift; the results of the lifting line theory

predict reductions of approximately 10% for the boundary layer model with
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U1/UWALL = 2.0 and 7% for the model with Uj/UWALL = 1.54. It should be

noted that the experimental data in this case is obtained from measurements

on a NACA 651-012 airfoil at an angle of attack of 3.10 and a Reynolds number

of 3.66 x 106. Other theoretical works that have been used to approximate

the experimental results of Mendelsohn and Polhamus are those of Preston(32)

(33)
and Wilson

The comparisons of theoretical results based on the first theoretical

approximation (Section 4) with experimental data for the 3" chord airfoil

in both the large and the small shear layers are shown in Figures 28 and 29

respectively.

6.2 Conclusions

The results of the experimental program have shown that significant

corrections to the 'two dimensional' lift are induced by the flow of a

rotational fluid about thin airfoils. In general, a smoothing of the lift

distribution is obtained in which the local lift is increased in areas of

low stagnation pressure and decreased in areas of relatively high stagnation

pressure. The induced effects on local lift are characterized by changes in

the local angle of attack, and the assumption that L(y) = 1/2 pU 2 cC (1 +

wLL/Ua ) is valid in shear flows where Bernoulli 
surface distortion effects

are negligible.

For large values of (cU'/U) in shear flows where spanwise flows are not

prevented by geometry (the presence of boundary walls or symmetry), Bernoulli

surface distortion effects may be considerable. The possibility of stall in

areas of the flow where the induced angle of attack is large is diminished by

thinning of the boundary layer on the suction side of the airfoil by spanwise

flows, if, again, these spanwise flows are geometrically possible.

The theoretical results indicate good agreement between the lifting line

theory and the experimental results where Bernoulli surface distortion
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effects are negligible. The application of the theory is straightforward in

that for the shear velocity profiles considered, the solutions are obtained

in the form of elementary functions. It is here proposed that most practical

shear velocity profiles can be modeled by matching the fundamental solutions

presented in Section 3. The effect of Bernoulli surface distortion may be

estimated by the approximate correction, and the results of the lifting line

theory may be adjusted if necessary.

6.3 Recommendations for Further Study

Theoretical Work

1) Extension of the lifting line theory for a single lifting air-

foil to that of a cascade of airfoils.

2) Modification of the lifting line theory to include the effects of

variable chord and variable geometrical angle of attack.

3) Further theoretical work on the Bernoulli surface distortion

effect.

4) The extension of the lifting line solution to the case of unbound-

ed shear flows ( uniform flow at infinity ).

5) The development and programming of a general numerical solution

based on the lifting line theory for bounded shear flows of any arbitrary

velocity profile.

Experimental Work

1) Further investigation of the Bernoulli surface distortion effect

and its interaction with boundary walls.

2) Investigation of the shear flow stall phenomena in free shear

layers and in regions near boundary walls ( a complicated three-dimension-

al boundary layer problem ).

3)Extension of the experimental work in this investigation to de-

veloped shear flows ( cosine profile ) and boundary shear layers ( cosine

- uniform profile ) for which theoretical results are readily available.
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APPENDIX I

Comparison of Theory with Experiment

For a discussion of the theoretical and experimental results presented

in the following figures, refer to Section 6. The theoretical results were

obtained from computations based on the analyses presented in Section 3 and

Section 4. The experimental data presented, except for the data of Mendel-

sohn and Polhamus in Figure 27, was obtained during the course of this inves-

tigation.

Figures 21 through 29
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Distortion of Bernoulli Surfaces

The lifting line theory as presented in Sections 2 and 3 does not con-

sider the effects of spanwise displacements of the surfaces of constant stag-

nation pressure or 'Bernoulli surfaces'. Since there is evidence in the com-

parison of theory with experiment for the 6" chord airfoil that the limit of

the range of applicability of this theoretical approach has been exceeded,

a method of correcting the lifting line theory to take this effect into ac-

count will now be presented.

The fundamental relationship between the lift on an airfoil and the

equations of ideal fluid motion is simply that the lift is the integral of

the pressume forces over the chord of the airfoil. Using the sign convention

of Figure 3, page 23, we can write

L(y) = Ic P(x, y, 0~) - P(x, y, 0+) dx (I-1)

From equation (3-10), after integration with respect to x from (-M.) to (x),

we have the following expression for P(x, y, z)

P(x, y, z) = - pUu - pU' /x v dx (1-2)

where P(-co) is taken as zero and u(-co) vanishes in accordance with the assump-

tion of undisturbed flow at x = - o. Substituting equation (1-2) into (I-1)

we have the following:

L(y) = p fc U(u+ - u~) + U9 J (v+ - v) dx dx (1-3)

The first term in equation (1-3) is simply the lift due to the circulation

about the profile at a corrected angle of attack (a 0 + wLL/U) in a flow U(y)

and represents the contribution of the lifting line theory. Denoting this

portion of the total lift by LLL we have the result

L(y) = L + i (v+ - v) dx] dx (-4)

Equation (I-4 ) represents the lift correction due to the distortion of the

Bernoulli surfaces. With reference to the sign convention adopted in Figure
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3, we note that the 'true' lift is underestimated by the lifting line theory

when the effect of displacement of the Bernoulli surfaces becomes significant.

Equation (1-4) also indicates that the lift correction is necessarily zero

at bounding walls where v(y) = 0 and in uniform regions of the flow where

U' = 0.

Unfortunately, equation (1-4) cannot be evaluated from the lifting line

analysis since the Trefftz plane approximation does not consider x dependence

in a continuous algebraic sense. However, we can evaluate the equation in

an approximate manner by relating the term in the integral to the spanwise

gradient of lift through the use of equation (3-63a).

We first assume that the spanwise velocities are zero upstream of the

disturbance except very close to the airfoil and that they vary linearly with

x along the chord of the airfoil to the magnitude of vT at the trailing edge.

Then for x < c

f (v+ -V) dx (v - vT~) dx= (v -vT 2

Using the above approximation and equation (3-63a) we have from equation (1-4)

L(y) t LLL(y) + C 2Li..d (LLL(y)) (1-5)

We note here the dependence on the square of the chord which, in effect,

quadrupled the magnitude of the correction between the 3" chord and the 6"

chord experiments tor the small shear layer in this investigation.

A more useful form of equation (1-5) may be obtained from the use of

the relation

LLL(y) = U2C + o Lo

2 U' U' (AC /CLo
L- E I + 2- + ACLo/C) (1-6)

Equations (I-6) and (3-81) may then be used to compute the lift correction

directly.

The theoretical results as corrected through the use of equation (1-5)
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are indicated by the dotted curves in Figure 26 for the 6" chord airfoil.

A difficulty in the application of this correction is apparent for ve4-

ocity profiles where U'(y) is not continuous. Physically, the corrected

lift distribution must be continuous through the requirement of continuity

of pressure, therefore, a smoothing of the correction is suggested in regions

where U' is not continuous. The lift correction may be applied directly

through the use of equations (1-5) or (1-6) for the shear flow solutions pre-

sented in Sections 3.7, 3.9, and 3.10 since U'(y) is continuous for all of

these velocity profiles.

The order of the lift correction within the shear layer may be estimated

from equation (1-6) by the observation that for the matched linear shear pro-

files investigated here

(- C /C - U/U |yl < |s|

Using this, and neglecting the term AC Lo/CLo in comparison to 1, equation

(1-6) becomes

L(y)= 1 + cU'/U) 2
LL

Equation (1-7) indicates the relationship between the Bernoulli surface dis-

tortion effects and the parameter (cU'/U).
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Details of Solution for Matched Linear Profile

The complete solution of the eigenvalue problem for the non-degenerate

case requires the evaluation of the integrals in equation (3-81). We write,

for convenience, the following form for equation (3-81):

AC C (A) LFn(y)/U(y) I sin2 A(s-t)
- 2 (11-1)

CLO n=1 C (A) C (X) + C (X) + C (X)
2 3 4 5

where 
+s U '

C(A) = sin2 X(s-t) f d (F U ) dy

1 -s 0 D

C2 = 1 + c 1 (11-2).,.'n tazih'k D

C3( ) = sin6 A(s-t) L/[ (F1) 2 d

+s d(F U
C (A) = sin6 A(s-t) f y 0

4 -s dy
0

C() = sin6 A(s-t) I [ (F) dy

Performing the indicated integration, we have the following results:

C (x) = U ' sin3 X(s-t) + U 'sin 2 A(s-t) sin A(s+t) +
1 0 0 (11-3)

XU + U0 ' sin A(s-t) cos A(s-t) [cosA(s-t) -cos X(s+t)

xU2
C ) sin 2A(s-t) -2A(s-t) Sin, A(s-t) sin 2 As + 12sin X(S)

C (A) = sin6 A(s-t) 4As + sin 2A(s-t,) + sin 2A(s+t)]

- )fAU sin (s-t) + sin2 A(s-t) cos A(s-t) ][- 1 Xs + sin 2A(s-t)

0

+ sin 2A(s+t) A[ sin4 A(s-t) + sin5 A(s-t) cos X(s-t) (II-5)
0

[sin2 A(s-t)-- sin2 A(s+t)

Cx() = -[-.sin X(s-t)] [sin 2 A(s-t) - 2A(s-t] (I1-6)
0

equations (3-84) ,(II-1) through (11-6) and the characteristic solutions of

equation (3-85a) constitute the complete solution. The number of eigenvaluesw

required for reasonable convergence is dependent on the ratio v = s/t. For
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small values of ,i, as many as 30 eigenvalues may be required. The conver-

gence characteristics are indicated for a sample problem in Figure 30 on the

following page.

To facilitate the calculation of AC /C the necessary equations were

programmed for computation on an IBM 7094 digital computer. The computer

program was written in two sections, the first to compute the eigenvalues, X

and the second to compute the desired values of ACLo/CLo for various posi-

tions along the span of the airfoil. The computer program Fortran Statements

are given on the following pages.

We shall now consider the form of the solution for the degenerate case

in which X X' where (m) and ( ) are both even or both odd integers.

For these degenerate eigenvalues, ; and sin A (s I t) = 0.

As can be seen from equations (II-1) through (11-6), equatirn (3-81) becomes

indeterminate (0/0) when sin X(s i t) = 0.

This difficulty may be resolved by rederiving the eigenfunctions FYn

taking into account the requirement that sin X(s k t) = 0. The degenerate

forms of the eigenfunctions in this case then becomes:

U sin X(y - t)

F (y) = cos X(y - t) - _n AU (y (II-7a)
0

F (y) =Cos Xs + t) cos X(y + t) (II-7b)
1 Cos ) s -t)

F 2(y) = Cos X(y - t) (II-7c)

We can now proceed to evaluate the integrals Ki(X) in equation (3-81)

for the degenerate case. Let

K (A = i/2U' d( )d
1 -L/2 Ut dy

It can then be shown that

K = 0 if (m) and () are both even

K 2U ' sin ( ) sin m ) if (m) and (m) are both odd
1 2 2!~ (U

The coefficient K is simply C $;ven by equation (11-2). We then define
2 2
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LINEARIZED SHEAR FLOW MATCHED LINEAR PROFILE EIGENVALUES

READ 700,M1,L1,L2
700 FORMAT (3110)

READ 701,THODTHUlU2

READ 701,ST
701 FORMAT (4F15.7)

RAT=S/T
UP=(U2-Ul)/(2.U*S)
UPR=1.0/UP
DIMENSION EGV(100),TH(2),SIGN(2)
PRINT 7u0,M1,L1,L2
PRINT 7U1,THODTHU1,U2
PRINT 7J1,ST
DO 10U 12=1Ml
TH(1)=THO
TH(2)=THO+DTH

5 DO 1 K=1,2
1 SIGN(K)=(TH(K)**2)*SINF(2.0*TH(K
1(TH(K)*(COSF(2.0*TH(K)/RAT)-COSF
2(SINF((1.0/RAT-1.0)*TH(K)))**2)
IF(STGN(1)*SIGN(2)) 3,392

2 TH(1)=TH(2)
TH(2)=TH(2)+DTH
GO TO 5

3 TH(2)=TH(1)+0.1*DTH

)/RAT)-(((U2-Ul)**2)/(4.0*U2*Ul))*
(2.0*TH(K)))+(SINF(2.0*TH(K)))*

8 DO 4 K=192
4 SIGN(K)=(TH(K)**2)*SINF(2.0*TH(K)/RAT)-(((U2-Ul)**2)/(4.0*U2*Ul))*
1(TH(K)*(COSF(2.0*TH(K)/RAT)-COSF(2.0*TH(K)))+(SINF(2.0*TH(K)))*
2(SINF((1.0/RAT-1.0)*TH(K)))**2)
IF(SIGN(1)*SIGN(2)) 7,7,6

6 TH(1)=TH(?)
TH(2)=TH(2)+0.1*DTH
GO TO 8

7 TH(2)=TH(1)+U.o1*DTH
12 DO 9 K=192
9 SIGN(K)=(TH(K)**2)*SINF(2.O*TH(K)/RAT)-(((U2-Ul)**2)/(4.0*U2*Ul))*
1(TH(K)*(COSF(2.0 *TH(K)/RAT)-COSF(2.0 *TH(K)))+(SINF(2.0*TH(K)))*

2(SINFC(1.O/RAT-1.O)*TH(K)))**2)
IF(SIGN(1)*SIGN(2)) 11,11,10

10 TH(1)=TH(2)
TH(2)=TH(2)+0.01*DTH
GO TO 12

11 TH(2)=TH(1)+0.001*nTH
16 DO 13 K=1,2
13 SIGN(K)=(TH(K)**2)*SINF(2.0 *TH(K)/RAT)-(((U2-Ul)**2)/(4.0*U2*Ul))*

1(TH(K)*(COSF(2.0*TH(K)/RAT)-COSF(2.0*TH(K)))+(SINF(2.O*TH(K)))*
2(SINF((1.0/RAT-1.0)*TH(K)))**2)
IF(SIGN(1)*SIGN(2)) 15,15,14

14 TH(1)=TH(2)
TH(2)=TH(2)+O.01*DTH
GO TO 16

15 TH(2)=TH(1)+U*u0U1*DTH

20 DO 17 K=1,2
17 SIGN(K)=(TH(K)**2)*SINF(2.0*TH(K)/RAT)-(((U2-Ul)**2)/(4.0*U2*Ul))*

1(TH(K)*(COSF(2.0*TH(K)/RAT)-COSF(2.0*TH(K)))+(SINF(2.0*TH(K)))*
2(SINF((1.0/RAT-1.0)*TH(K)))**2)
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IF(SIGN(1)*SIGN(2)) 19,19,18
18 TH(1)=TH(2)

TH(2)=TH(2)+J.001*DTH
GO TO 2U

19 TH(2)=TH(1)+G.00UU1*DTH
IF(Ll) 27,27,24

24 DO 21 K=1,2
21 SIGN(K)=(TH(K)**2)*SINF(2.O*TH(K)/RAT)-(((U2-Ul)**2)/(4.0*U2*Ul))*

1(TH(K)*(COSF(2.0*TH(K)/RAT)-COSF(2.0*TH(K)))+(SINF(2.0*TH(K)))*
2(SINFC(1.U/RAT-1.U)*TH(K)))**2)
IF(SIGN(1)*SIGN(2)) 23,23,22

22 TH(1)=TH(2)
TH(2)=TH(2)+.0001*DTH
GO TO 24

23 TH(2)=TH(1)+U.*00O01*DTH
IF(L2) 27,27,28

28 DO 25 K=1,2
25 SIGN(K)=(TH(K)**2)*SINF(2.O*TH(K)/RAT)-(((U2-Ul)**2)/(4.0*U2*Ul))*

1(TH(K)*(COSF(2.O*TH(K)/RAT)-COSF(2.O*TH(K)))+(SINF(2.0*TH(K)))*
2(SINF((1.0/RAT-1.0)*TH(K)))**2)
IF(SIGN(1)*SIGN(2)) 27,27,26

26 TH(1)=TH(2)
TH(2)=TH(2)+0.000001*DTH
GO TO 28

27 FGV(T)=TH(1)/S
THO=TH(1)+DTH

100 CONTINUE
PRINT 750,(EGV(JJ),JJ=1,M1)

750 FORMAT(4F18.10)
END

EXPLANATION OF INPUT QUANTITIES
Ml = NUMBER OF FIGENVALUES TO BE COMPUTED
L1,L2 = ITFRATION DELETION OPTION

IF ( L19L2 I POSITIVE# CONTINUE ITERATION
IF ( L1.L2 ) NEGATIVE-OR ZERO, DELETE ITERATION

THO = INITIAL VALUE OF THETA
DTH = INCREMENT OF THETA
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LINEARIZED SHEAR FLOW MATCHED LINEAR PROFILE DELTA CLO / CLO

DIMENSION FGV(10U),TOP(100),DCLCL1(101),DCLCLO(101),DCLCL2(101),
lF (100),Fl(100) ,F2( 100),BOT1(100) ,BOT2(100),BOT3(100),BOTT(100)9
2BOTC(100) ,Yl(101),Y0(101) Y2(101)
RFAD 700,LDATA
DO 80U L=1,LDATA
READ 70 0 ,M1,NLN1,N2

700 FORMAT (4110)
READ 7U1,U1,U2
READ 7.1,S,T,C,D

7n1 FORMAT (4F15.7)
RFAD 75C,(FGV(JJ),JJ=1,M1)

750 FORMAT (4F18.10)
PRINT 7U ,M1,N0,N1,N2
PRINT 701,UlU2
PRINT 7u1,5,T,C,D
PRINT 750,(EGV(JJ),JJ=1,M1)
RAT=S/T
UP=(U2-Ul)/(2.U*S)
UPR=1.o/UP
DO 15. J=1.M1
EV=EGV(J)
SI=SINF(EV*(S-T))
S?=(SINF(FV*(S-T)))**2
53=(STNF(FV*(S-T)))**l
S4=(SINF(FV*(S-T)))**4
S5=(SINF(EV*(S-T)))**5
S6=(SINF(EV*(S-T)))**6
TOP(J)=S3+S2*SINF(EV*(S+T))+(EV*U2*UPR+S1*COSF(EV*(S-T)))*(COSF(EV

1*(S-T))-COSF(EV*(S+T)))
BOT1(J)=0.25*EV*(SINF(2.0*EV*(S-T))-2.,*EV*( -T))*((S1*SINF(2.0*EV

1*S)+EV*U2*UPR*SINF(EV*(S+T)))**2)
BOT2(J)=0.25*EV*S6*(4.U*EV*S+SINF(2.0*EV*(S-T))+SINF(2.0*EV*(S+T))
1)-0.25*EV*((EV*U2*UJPR*S1+S2*COSF(EV*(S-T)))**2)*(-4.0*EV*S+SINF(2.
20*EV*(S-T))+SINF(2.0*EV*(S+T)))-EV*(EV*U2*UPR*S4+S5*COSF(EV*(S-T))
3)*(S2-((STNF(FV*(S+T)))**2))
BOT3(J)=0.25*EV*((FV*U2*UPR*S1)**2)*(SINF(2.0*EV*(S-T))-2.0*EV*(S-
1 T ) )
BOTT(J)=BOT1(J)+BOT2(J)+ROT3(J)

150 BOTC(J)=3.14159*C*0.25+1.0/(EGV(J)*TANHF(EGV(J)*D))
Nll=N1+1

DO 300 Kl=1,Nll
AA=Kl-1
AAA=N1
Yl(K1)=-(T-AA*((T-S)/AAA))
DO 325 I1=1,M1
FI(Il)=(((SINF(EGV(Il)*(S-T)))**2)*SINF(2.0*EGV( Il)*S)+EGV(Il)*U2

1*UPR*STNF(EGV(Il)*(S-T))*SINF(EGV(I1)*(S+T)))*COSF(EGV(Il)*(Y1(K1)
2+T))
Fl.(Tl)=(Fl(TI)*TOP(I]))/(POTT(I1)*ROTC( I ))

325 CONTINUF
SUMF1=0.0

DO 350 I11=1,M1
350 SUMF1=SUMF1+Fl(Ill)
'0! DCLCL1(K1)=((-3.14159*C*UP)/(2.0*U1))*SUMF1

Nul=N,+1
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DO 400 K2=1,NO1
BR=K2-1
RPR=N-
Y0(K2)=-S+BB*(2.u*S/BBB)
DO 425 I2=1qM1
EV=EGV(I2)
S1=SINF(FV*(S-T))
S2=(SINF(EV*(S-T)))**2
S3=(SINF(EV*(S-T)))**3
S4=(SINF(FV*(S-T)))**4
F-(I2)=(S3*COSF(Ev*(S-T))+EV*U2*UPR*S2+(S4*UP)/(EV*((U2+Ul)/2.0+

1UP*Y .(K2))))*COSF(EV*(YO(K2)-T))+(S4-(UP/(EV*((U2+Ul)/2.0+UP*YO(K2
2))))*(EV*U2*UPR*S2+S3*COSF(EV*(S-T))))*SINF(EV*(YO(K2)-T))
FO(I2)= (FU (12)*TOP( 12))/(ROTT (12)*POTC(12))

425 CONTINUF
SUMFO=0.0
DO 45- 122=1,M1

490 SUMF0=SUMF0+F0(122)
400 DCLCLL(K2)=((-3.14159*C*UP)/(2.0*((U2+Ul)/2.U+UP*YU(K2))))*SUMFO

N21=N2+1
DO 500 K3=1,N21
CC=K3-1
CCC=N2
Y2(K3)=S+CC*((T-S)/CCC)
DO 525 13=1,M1
F2(I3)=EGV(13)*U2*UPR*((SINF(EGV(I3)*(S-T)))**2)*COSF(EGV(13)*

1(Y2(K3)-T))
F2(I3)= (F2(13)*TOP(13))/(CBOTT(13)*ROTC (13))

525 CONTINUF
StIMF2=0
DO 55 - 133=1,M1

55' SUMF2=SUMF2+F2(I33)
50C DCLCL2(K3)=((-3.14159*C*UP)/(2.0*U2))*SUMF2

PRINT 751,(Yl(JJ) ,CLCL1(JJ),JJ=1,N11)
PRINT 751,(YU(JJ),DCLCLO(JJ),JJ=1,NO1)
PRINT 751,(Y2(JJ),DCLCL2(JJ),JJ=1,N21)

751 FORMAT (6F12.6)
8)0 CONTINUE

END

EXPLANATION OF INPUT QUANTITIES
LDATA = NUMBER OF DATA SETS TO BE PROCESSED
Ml = NUMBER OF FIGFNVALUFS IN INPUT
NU = NUMBER Oh INCREMENTS OF Y IN REGiON (0)
Ni = NUMBER OF INCREMENTS OF Y IN REGION (1)
N2 = NUMBER OF INCREMENTS OF Y IN REGION (2)
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K 3 as the following:

K3 (X) =f- (F) ]2

K and K are defined in a similar manner for Regions (0) and (2). Carrying
4 5

out the indicated integrations, we have the result

K + K + K = X 2t
3 4 5 n

We have now established that the denominator in equation (3-81) is non-

zero for the degenerate case, and since the numerator is zero (K = 0) when
1

(m) and ( ) are both even, we have the result that the eigensolutions cor-

responding to even degenerate eigenvalues are trivial.

The comrplete solution for the odd degenerate case must include the de-

generate solutions as well as the solution given by equation (II-1). For a

given value of U, the spectrum of eigenvalues may include either or both

types of degeneracy. For example,for X = , (3, 6, 9 - - -) are degenerate:

for = ,(30, 60, 90 - - -) are degenerate but trivial.

A Table of Eigenvalues for Three Matched Linear Velocity Profiles is

given on the following page. (The corresponding solutions are given in Ap-

pendix I.) For a given velocity ratio U /U , the eigenvalues are relatively
2 1

insensitive to p for the first three decimal places, and for purposes of ap-

proximation, A = nw/t. A number of degenerate eigenvalues, whose exactn

values are integer multiples of w/t were computed correctly to T decimal

places as a test of the proper functioning of the eigenvalue computer program.
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TABLE: EIGENVALUES FOR MATCHED LINEAR PROFILES

1

2

3
4

5
6

T

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Case 2Case 1

x
n

0.105148 in.~1

0.211899

0.315005

0.422468

0.524085

0.631431

0.733063

0.839709

0.942685

1.048196

1.152753

1.257030

1.362590

1.466125

1.571923

1.675565

1.T809T8

1.885322

1.990023

2.095096

2.199187

2.304613

2.408563

2.513874

2.618177

2.723040

2.827878

2.932247

3.037450

3.141593

in.~1

n

0.105629

0.213903

0.314415

0.421304

0.524240

0.628809

0 .734586

0.837819

0.943147

1.048077

1.151928

1.257387

1.361757

1.466194

1.571503

1.675632

1.780495

1.885510

1.989682

2.094TT2

2.199464

2.303855

2.408986

2.513434

2.618095

Case 1: s= 2 in., t = 15 in., U = 109 ft/Sec., U 69 ft/sec.
2 =

Case 2: s = 4 in., t = 15 in., U = 95 ft/sec., U 57 ft/sec.

Case 3: s = 5.5 in., t = 15 in., U * 95 ft/sec., U = 57 ft/sec.
21

Case 3
x
n

0.105757 in.-

0.213578

0.314228

0.419701

0.525160

0.628452

0.733419

0.838732

0.942669

1.047375

1.152610

1.256875

1.361429

1.466590

1.571069

1.675536
1.780617

1.885249

1.989676

2.094613

2.199417

2.303838

2.408749

2.513571

2.618015
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APPENDIX III

Analytical Results for Linear, Cosine, and Matched

Cosine-Uniform Velocity Profiles

The results of the solution of equation (3-81) for linear, cosine, and

matched cosine-uniform velocity profiles are presented in the Figures fol-

lowing. The intent here is to investigate the magnitudes of the theoretical

results for different geometries, and to demonstrate the usefulness and the

behavior of the various solutions.

The results for the linear and the cosine velocity profiles are straight-

forward evaluations of the respective solutions given in equations (3-83) Ond

(3-87). The results for the matched cosine-uniform velocity profiles are

obtained through the use of the eigenfunctions given in equations (3-88) and

the corresponding characteristic equation (3-89). The algebraic details of

the matched cosine-uniform solution are not given, but the Fortran state-

ments in the computer program used to evaluate the solution are presented

at the end of this Appendix.

Figures 31, 32, and 33 present the results for the linear velocity pro-

file shoving the effects of changes in aspect ratio and other- parameters on

the solution. Figures 34, 35, and 36 present similar results for the cosine

velocity profile. The analytical results for the matched cosine-uniform

velocity profiles are shown in Figures 37, 38, and 39 for three values of

the ratio of shear layer to bounded flow thickness (s/t). The effects of

aspect ratio are indicated also. Because of the small value of s/t for the

results shown in Figure 39, the sum of the first 45 eigensolutions was cal-

culated. All cafculations were performed on an IBM 7094 digital computer.
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LINEARIZED SHEAR FLOW COSINE-UNIFORM PROFILE EIGENVALUES

RFAD 700,M1,LLL2
700 FORMAT (3110)

RFAD 701sTHOrTHPrFTA
RFAD) 701,ST

701 FORMAT (4F15.7)
RAT=S/T
DIMENSION FGV(100),TH(2),SIGN(2),AS(2)
PRINT 700,M1,L1,L2
PRINT 701,THO,DTHRETA

PRINT 701,ST
DO 10- I=1,M1
TH(1)=THO
TH(2)=THO+DTH

5 DO 1 K=1,?
AS(K)=S*SORTF((TH(K)/S)**2+BETA**2)

1 SIGN(K)=TH(K)*COSF(TH(K)*(1.0-1.O/RAT))*SINF(AS(K))
1-AS( K)*COSF( AS(K ) )*SINF( TH(K)*( 1.0-1.0/RAT))
IF(SIGN(1)*SIGN(2)) 3,3,2

2 TH(1)=TH(2)
TH(2)=TH(2)+DTH
GO TO 5

3 TH(2)=TH(1)+O.1*DTH
8 DO 4 K=1,2

AS(K)=S*SORTF((TH(K)/S)**2+BETA**2)
4 SIGN(K)=TH(K)*COSF(TH(K)*(1.0-1.0/RAT))*SINF(AS(K))
1-AS(K)*COSF(A '(K))*STNF(TH(K)*(1.0-1.0/RAT))
IF(STrN(1)*STGN(2)) 7,7,6

6 Twil)= TH(P)
TH(2)=TH(2)+U.l*DTH
GO TO 8

7 TH(2)=TH(1)+U.01*DTH
12 DO 9 K=1,2

AS(K)=S*SQRTF((TH(K)/S)**2+BETA**2)

9 SIGN(K)=TH(K)*COSF(TH(K)*(1.0-1.0/RAT))*SINF(AS(K))
1-AS(K)*COSF(AS(K))*SINF(TH(K)*(1.0-1.0/RAT)
IF(SIGN(1)*STGN(2)) 11,11,10

10 TH(1)=TH(?)
TH(?)=TH( )+(. *DTH
GO TO 12

11 TH(2)=TH(U)+.0o1*nTH
16 DO 13 K=1,2

AS(K)=S*SORTF( (TH(K)/S)**?+PFTA**2)
13 SIGN(K)=TH(K)*COSF(TH(K)*(1.0-1.0/RAT))*SINF(AS(K))
1-AS(K)*COSF( AS(K) )*SINF( TH(K)*(1.0-1.0/RAT))
IF(SIGN(1)*SIGN(2)) 15,15,14

14 TH(1)=TH(2)
TH(2)=TH(2)+U.001*DTH
GO TO 16

15 TH(2)=TH(1)+J.0001*DTH
?n DO 17 K=1,?

AC (K)=S*SORTF((TH(K) /S)**2+RFTA**2)
17 SIGN(K)=TH(K)*COSF(TH(K)*(1.0-1.0/RAT))*SINF(AS(K))

1-AS(K)*COSF(AS(K))*STNF(TH(K)*(1.0-1.C/RAT))
IF(STCN(1)*S IN(2)) 19,19,18

18 TH(1)=TH(?)
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TH(2)=TH(2)+J.0001*DTH

GO TO 20
19 TH(2)=TH(1)+0.00001*DTH

IF(Ll) 27,27,24
24 DO 21 K=1,2

AS(K)=S*SQRTF((TH(K)/S)**2+BETA**2)
21 SIGN(K)=TH(K)*COSF(TH(K)*(1.0-1.0/RAT))*SINF(AS(K))

1-AS(K)*COSF(AS(K))*SINF(TH(K)*(1.0-1.0/RAT))
IF(SIGN(1)*SIGN(2)) 23,23,22

22 TH(1)=TH(2)
TH(2)=TH(2)+0.00001*DTH
GO TO 24

23 TH(2)=TH(1)+0.000001*DTH
IF(L2) 27,27,28

28 DO 25 K=1,2
AS(K)=S*SQRTF((TH(K)/S)**2+BETA**2)

25 SIGN(K)=TH(K)*COSF(TH(K)*(1.0-1.0/RAT))*SINF(AS(K))
I-AS(K)*COSF(AS(K))*SINF(TH(K)*(1.0-1.0/RAT))
IF(SI ,N(1)*STN( 2)) 27,27,26

26 TH(1)=TH(2)
TH(2)=TH(2)+0.C0000l*DTH
GiO TO 28

27 FGV(I)=TH(1)/S
THO=TH(1)+DTH

1J CONTINUE
PRINT 750,(EGV(JJ),JJ=1.M1)

750 FORMAT(4F18.1)
END

FXPLANATION OF INPUT OUANTITIFS
Ml = NUMBER OF FIGENVALUES TO BE COMPUTED
L1,L2 = ITERATION DELETION OPTION

IF ( L1,L2 ) POSITIVE, CONTINUE ITERATION

IF ( L1,L2 ) NEGATIVE OR ZERO, DELETE ITERATION

THO = INITIAL VALUE OF THETA
DTH = INCREMENT OF THET.A
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LINEARIZED SHEAR FLOW COSINE-UNIFORM PROFILE DELTA CLO / CLO

DTMENSION FGV(100),A(1O),C1(100),C2(1OO),C3(1OO),C4(100)
RFAD 29 LDATA
DO 100 LL=1,LDATA
READ 2,MNCN1

2 FORMAT(3I10)
RFAD i,(FGV(JJ)gJJ=1M)

1 FORMAT(4F1.i0)
RCAD 3,P,C.,T,C,D

3 FORMAT(5Fi4.7)

PPINT 1,(FrV(JJ),Jj=1,M)
PRINT 2,MN0,NI
PRTNT 3,PSTCD
DO 4 I=1,M
A(I)=SQRTF((EGV(I)**2)+B**2)
C1(I)=B*((B**2)/A(I)-A(I))*(COSF(B*S)*(SINF((A(I)-B)*S)/(A(I)-B)-

1SINF((A(I)+B)*S)/(A(I)+B))-SINF(B*S)*((1.0-COSF((A(I)-B)*S))/(A(I)
2-B)+(1.0-COSF((A(T)+B)*S))/(A(I)+B)))
C2(I)=(((B**2)/A(I)-A(I))**2)*(S/2.0-SINF(2.0*S*A(I))/(4.0*A(I)))*

1((STNF(F(V( )*(S-T)))**2)
C3(I)=-((EGV(I)**3)/(2*0*(A(I)**2)))*((SINF(A(I)*$))**2)*(EGV(I)*

1(S-T)-STNF(2.* G*FCV(I)*(S-T))/2.0)
4 C4(T)= .e-+1. /(1.1415P *(/4.0*FGV(T)*TANHF(EGV(I)*D))

AA=NO +
N01=N0+1
DFLYO=S/AA
Y=0.0
DO 5 K=1,NOI
SUMY=0.0
DO 6 L=1.M

6 SUMY=SUMY+(Cl(L)/((C2(L)+C3(L))*C4(L)))*(((SINF(EGV(L)*(S-T)))**2
1)/COSF(B*(Y-S)))*(COSF(A(L)*Y)+B/A(L)*SINF(A(L)*Y)*SINF(B*(Y-S))/
?COrF(p*(Y-S)))
PRTNT 1,YSUMY

5 Y=Y+DFLYu

Ni .=NI + 1
DELYiC=(T-S)/8B
Y=S
DO 7 K=iN1l
SUMY=0.
DO 8 L=1,M

8 SUMY=SUMY+(C1(L)/((C2(L)+C3(L))*C4(L)))*EGV(L)/A(L)*SINF(A(L)*S)*

1ISTNF(F V(L)*(S-T))*COSF(FGV(L)*(Y-T))
PPTNT oYS.MY

7 Y=Y+DFLYl
100 CONTINUF

FND

EXPLANATION OF INPUT QUANTITIES
LDATA = NUMBER OF DATA SETS TO BE PROCESSED
M = NUMBER OF EIGENVALUES IN INPUT
N(= NUMBER OF TNCREMENTS OF Y IN REGION (u)
NI = NUMBER OF INCREMENTS OF Y IN REGION (1)
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APPENDIX IV

Design of Honeycomb for Shear Flow Generation

The generation of an artificial shear flow may be accomplished in a

number of ways, the most straightforward being the introduction of a disturb-

ance into an otherwise uniform flow. Previous experimenters have used

(3)4) (35)screens and lattices of plates or bars to produce shear profiles.

(36)Mair used the wake of a single flat plate to produce a symmetrical shear

profile at the center of a uniform flow. The requirements for an artificial

shear flow should include the following:

a) steady flow

b) smooth variation of velocity with a minimum of local small
scale non-uniformities

c) negligible diffusion of the shear layer through the length
of the test section.

The total pressure loss through the device and its effect on the operating

characteristics of the wind tunnel and air supply must also be taken into

consideration.

For the type of shear flow experiment encountered in this investigation,

the use of a honeycomb structure (the type commonly used in aircraft con-

struction) was found to be very satisfactory. The actual material used was

3/16" cell aluminum honeycomb which was supplied by two manufactureres. The

use of this material, except for relatively thin sections, eliminates most

of the structural and support problems encountered with screens and lattices.

The honeycomb may be shaped as desired to provide a wide range of flow geom-

etries, and because of its cellular structure, provides a built-in straight-

ener for the flow if the cells are aligned properly. Because of the uniform-

ity of the disturbance caused by the honeycomb, the structure of the flow

downstream is relatively homogeneous compared to that downstream of lattices

of plates or bars where local non-uniformities and even separated regions

may be found.
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The most difficult problem encountered with the use of honeycomb was that of

shaping the uncut blocks as supplied by the manufacturer to a predetermined

shape to produce the desired shear profile. The recent development of a

special band saw blade designed specifically for cutting this type of mat-

erial greatly simplified the shaping problem. Close-up photographs of the

burring of surfaces cut by three different methods are shown in Figure 40

on the following page. The first photograph shows the severe burring as the

result of using an ordinary band saw blade. The second and third photographs

indicate the improvement obtained through the use of the special honeycomb

blade and a newly perfected electrical cutting process respectively. The

first and second photographs are of curved surfaces and do not indicate cell

distortion. The special saw blade is shown in the fourth photograph. The

electrical cutting process, which produces a remarkably smooth cut, is not

easily adaptable to the cutting of curved profiles and requires the use of

specialized equipment.

Other methods of shaping include machining of the honeycomb before ex-

pansion if it is of the expandable type, and machining of block honeycomb

which has been filled with low melting point filler material. The most econ-

omical and flexible method is that of the use of the special honeycomb band

saw blade which yields an acceptable cut with a minimum of effort. Of the

two types of honeycomb obtained from manufacturers, that which is fabricated

by gluing corrogated sheets together is less satisfactory than the expanded

type because of the non-uniform accumulation of glue within the cells. The

use of stacked thicknesses of honeycomb sheets to build up a desired profile

is not recommended because cell misalignment will result in poor velocity

profiles unless local non-uniformities can be allowed to smooth through dif-

fusion.

The calculation of the honeycomb profile to produce a desired shear flow

profile was based largely on measured values of the friction coefficient
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defined as follows:

4fL / D = Ap / pU2

The experimental values of friction coefficient for Reynolds numbers in the

range of from 6000 to 8000 were f = 0.012 for the glued material and f = 0.008

for the relatively clean expanded material. To simplify the calculation, the

flow in the honeycomb cells was assumed to be fully developed, and therefore

f was taken as constant for the range of Reynolds numbers considered. In add-

ition to the 'pipe' friction loss, additional losses are encountered at the

entrance region of the honeycomb because of the angle of the incident stream-

lines with respect to the axes of the honeycomb cells. We can estimate this

loss as the loss of the component of velocity head normal to the cell axes.

Since, in most wind tunnels, a uniform velocity profile i1 desii'ed at the

test section, the flow upstream of the honeycomb, excluding wall boundary

layers, may be taken as potential. The two-dimensional flow upstream of the

honeycomb may be calculated from potential flow theory with the boundary

conditions of undisturbed parallel flow upstream at infinity, a prescribed

component of axial velocity at the honeycomb, and the condition of no flow

normal to the boundary walls of the channel. The geometry of such a flow is

given in the following sketch. We assume that the rotational flow downstream

of the honeycomb is parallel and that VP =0.

y=L LU~y

V2 *00P40

-x x0C

X=-0-x
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We have, from potential flow theory,V 2 * = 0 where $ is the familiar two-

dimensional stream function.

Also u' = v' = - (IV-l)ay ax
We select for *(x, y) the solution

= c y + (a sin ky + a cos ky) (b exp kx + b exp - kx)1 12 2

Through consideration of the imposed boundary conditions at the walls y = 0,1

and at x= we have the result:

*(x, y) U y + an sinnwy exp n (IV-2)
n=1

At the entrance to the honeycomb (x = 0) we have the condition

U -cosU' = U(y) = 3*= U. + ae an cos nfay am n1 n IL
or

= a cos = U(y) - U (IV-3a)
n=1 nL

We then solve equation (IV-3a) through the usual Fourier methods with the

result I

an cos U(y) - U dy (Iv-3b)

The pressure drop through the honeycomb may be written

P(0,y) - P = AP(y) = U2(y) (IV-4)

from the Bernoulli equation in the potential flow region, we have the result:

P(O, y) = P + pU 2- pU2(y) p ,2 (0, y) (IV-5)

Combining equations (IV-4) and (IV-5)

U2(y) 1+ + = constant (IV-6)

For a given velocity distribution downstream of the honeycomb (U(y)) equations

(IV-l) through (IV-3) may be solved for v'(0, y), and the honeycomb thickness

L(y) may be obtained from (IV-6).

It is of interest to determine the angle of incidence at the entrance

to the honeycomb

e = tan- 1 (V'/u') (IV-7)

To illustrate the order of the incidence effect consider the shear velocity

profile
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U(y) = U - cos
3 C

For this velocity profile, we have the result

I sin r
= tan e =

u 3-cos 7

The maximum value of v'/ut is approximately 0.35 with a corresponding 9 of

about 190. If we consider the relative magnitudes of the friction and incid-

ence terms from equation (IV-6), for the geometries considered in this inves-

tigation, the incidence term is of the order of 10% of the friction term.

This is, of course, dependent on the particular flow geometry selected.

The above analysis could be refined further to include an incidence

loss coefficient (assumed here to be 1) which could be related to the angle

(37)of incidence 9 and variable friction factor f = f(y) for L/D < 20 . The

incidence effects should be taken into account, at least in this approximate

manner, if the cut surface of the honeycomb is clean and uniform, but, for

relatively rough and burred surfaces, non-uniformities resulting from the

poor surface condition may outweigh the incidence effects.
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APPENDIX V

Note on the Solution of Certain Sturm-Liouville Equationls

From the results of Section 3.3, differential equations of the form

F'' + F X2 + - 2 (U,)2 0 (V-1)

I '
and Y'' - 2 Y' + X2 Y = 0 (V-2)U

may be reduced to the higher order equation

(A) + ( ) 2 - 0 (V-3)

by the substitution

= = (FU) (V-4)

The corresponding solutions of (V-1) and (V-2) when U''/U =2 are the fol-

lowing (taking y as the independent variable)

C 1 f U sin a y dy C U cos a y dy
F(y) U + U (V-5)

and Y(y)= C, f U in a y dy + C2  U cos a y dy (V-6)

where a =

For example, particular forms of equation (V-1) that may be solved by

this method eLre the following:

for U = a + b y

F'' + F A2 - 2b 2 /(a + b y)2 = 0

for U = cosh 0(y - h)

F'' + F [ 2 + 02(1 - 2 tanh2 0(y - h)) = 0

for U = cos 0(y - h)

F'' + F [A2 - 02(1 + 2 tan2 0(y - h)) = 0

To the above, the corresponding forms of equation (V-1) for U = sinho(y-h)

and U = sin8(y-h) may be added.
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APPENDIX VI

Photographs

Figures 41 through 48
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SMOKE FLOW APPARATUS

HONEYCOMB AND CYLINDER

FIGURE 41 SMOKE FLOW

EXPERIMENTAL EQUIPMENT



HORIZONTAL SMOKE RAKE

VERTICAL SMOKE RAKE

FIGURE 42 SMOKE FLOW
TEST SECTION



FIGURE 43 SMOKE FLOW VERTICAL

RAKE CLOSE -UPS

MI-4.
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HIGH VELOCITY REGION

LOW VELOCITY REGION

FIGURE 44 SMOKE FLOW HORIZONTAL

RAKE CLOSE -UPS
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SHEAR FLOW EXPERIMENTAL APPARAT-US
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LARGE SHEAR LAYER

SMALL SHEAR LAYER

FIGURE 46
SHEAR

HONEYCOMBS FOR
FLOW GENERATION
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AIRFOILS

PROBES

FIGURE 47
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19" FROM WALL 17" FROM WALL

15"FROM WALL 13"FROM WALL

BACK FLOW REGION

FIGURE 48 OIL TRACES ON 3 IN.

CHORD AIRFOIL




