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i.

ABSTRACT

A comprehensive experimental and analytical study specifically designed

to investigate upstream history and apparent stresses in incompressible,

two-dimensional, turbulent boundary layers has been conducted. Hot-wire

measurements of turbulent shear stress and longitudinal turbulence intens-

ity, as well as velocity profiles and wall shear stress measurements, were

made for six different pressure distributions.

It was found that the turbulent shear stress is dependent upon the up-

stream history of the flow and not a unique function of the local velocity

profile. A simple equation for the dissipation integral,

dCD
0 C = K(C -C)

dx D . D
equi

with a constant K was found to represent the data well. This expression

was used with the mean-flow energy integral equaiton to obtain a practical

method for predic ing turbulent boundary layer behavior which accounts for

upstream history. The predictions made with this method for the six pres-

sure distributions of this study and for others extracted from the liter-

ature agreed well with the experimental data.
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UPSTREAM HISTORY AND APPARENT STRESS

IN TURBULENT BOUNDARY LAYERS

Perry Goldberg

I. INTRODUCTION

A. General. Review

The fundamental diffice!1tv n bur nc w

is relating the turbulent exchange of momentum (apparent or turbulent shear

stress) to the mean-flow. Due to limited understanding of the turbulent

process, and also because of limited analytical and experimental methods,

this difficulty cannot be completely avoided at the present time.

Most previous attempts at solving the turbulent boundary layer problem

were based on knowledge concerning the behavior of laminar boundary layers

where the shear stress is proportional to the derivative of velocity pro-

file. These attempts centered around the assumption that the turbulent

fluctuations were only a functior of the local velocity profile. Based

upon this assumption and experimental data the turbulent shear stress was

expressed by means of an eddy viscosity or mixing length which was Corre-

lated in terms of local properties. These empirical correlations along with

integral methods allowed prediction of turbulent boundary layer behavior.

Recently, as more experimental turbulent boundary layer data has be-

come available, more people have begun to question the hypothesis that the

turbulent shear stress is uniquely defined by the local velocity profile.

From hot-wire measurements, it appears as though the upstream development

of the flow (history), as well as mean velocity profile, plays a role in

determining the turbulent shear stress.

In 1960 Stewart(l)published the results of a study of six turbulent

boundary layer prediction methods, all of which used the local property hy-

pothesis. He found that the methods worked moderately well when applied to
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conditions that were similar to those from which the methods themsevS, eV-

olved. But, when these conditions were somrwhat different, the methods failed

rather badly.

Rotta (2)presented an excellent review of turbulent boundary layers in

1962. He concluded that the problem is far from being solved and that the

central problem is that of relating the shear stress distributions to the mean

flow and other characterizing parameters. In regard to this problem he states,

"Atua1l1y th. shear stress distribution is also affected by the previous his-

tory. No proposals for the shape parameter equation which make proper allow-

ance for this circumstance have yet been made. But, at least one knows now

for certain that the insufficiency of the present calculation methods,

originate here, and any attempts at a positive improvement must start at

this point."

In January of 1964, Moses (3)reported on a study of the behavior of tur-

bulent boundary layers in adverse pressure gradients. After a review of the

pertinent literature and an extensive experimental program he concludes that

the turbulent shear stress within the boundary layer is the most critical

part of any prediction method and that "A more reliable correlation and per-

haps a better understanding of the turbulent shear stress is definitely

needed."

The most recent review of existing turbulent boundary layer methods was

published by Thompson in August of 1964. Thompson concludes, after a crit-

ical review of existing methods, that there is need for some precise, two-

dimensional, turbulent boundary layer measurements and also that the exist-

ing methods give widely differing and often inaccurate results.

The four reviewers mentioned above, as well as most other workers in the

field, including Clauser(5), Tetervin and Lin , Schubauer and Tchen ,

etc., agree that much more work needs to be done before an adequate method
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for predicting turbulent boundary layer behavior can be obtained. In general,

the problem is one of understanding and describing quantitatively the turbulent

processes that occur in turbulent shear flow.

The purpose of th p mort in to rresent be results a an exTper-

imnt i~an"! analytical study of the effects of upstream history on two-dimen-

sional, incompressible, turbulent boundary layers.

B. The Problem of U!pstream History

The fact that the existing calculation methods which are based upon the

local property hypothesis do not work well in general could mean one of three

things:

i) It could simply mean that we do not understand the processes

well enough to be able to specify the correct dependence of shear stress upon

local conditions.

ii) It could mean that other approximations and empirical correl-

ations such as velocity profiles and wall shear stress required for a solution

are not well enough known. For example, when using integral methods the vel-

ocity profiles which may actually form a two or three parameter family are

generally assumed to form a one parameter family.

iii) Or perhaps it means that the failure of the existing methods is

due to the lack of proper accounting for the upstream history of the flow.

Intuitively, the turbulent fluctuations and hence turbulent shear stress must

lag behind the local velocity profile changes since these fluctuations have

inertia associated with them and are produced by the mean flow.

Due to the uncertaintit s involved in the turbulent shear stress few

attempts have been made to solve the boundary layer equations exactly. Rather,

the interae approach is taken, wherhby t'het ationships of continuity and

momentum are satisfied on the average and not necessarily at every point

within the boundary layer. The integral approach allows one to calculate
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parameters such as displacement thickness, momentum thickness, shape factor,

and wall shear stress which in turn can be used to predict airfoil drag,

diffuser performance, heat and mass transfer rates, etc.

The usual approach to the integral method is to assume a one, or at most

a two, parameter family for the velocity profile.

= f(H, s or f(H, Re, Y)(1

where H is a shape factor which defines the velocity profile, not necessarily

6*/6 (although this is the most frequent definition of H). The momentum equa-

tion integrated across the boundary layer

d C fWdU0
d - 7- (H + 2) k (Ref. 8) (2)
dx 2 U,x U co dx

is then solved simultaneously with one auxiliary shape factor equation. The

normal stress corrections to the momentum integral equation are not shown in

Eq. (2) because they are generally neglected.

Auxiliary equations have generally been obtained in one of four ways:

i) By pure empiricism,

ii) By integrating the momentum equation across a part of the

boundary layer,

iii) By making use of the moment of momentum equation,

iv) By making use of the energy equation.

Any auxiliary equation must imply something concerning the turbulent shear

stress. Therefore, methods (ii) to (iv), as well as (i) above, require

empirical correlations. Method (ii) requires the value of T at some point

in the boundary layer, method (iii) requires the value of fTdy, and method

(iv) requires the value of fT -- dy.

Most auxiliary equations based only on local velocity profile parameters

can be written in the following general way:



dU
o dH= f (H H ) s- + f (H, R ) (Reference 2) (3)

dx 1 0U dx 2 0

We can now see that mean flow history is accounted for in the boundary

layer calculations through the initial values of e and H. However, we also

see that the auxiliary equation, Equation (3), implies that the turbulent

shear stress which is usually incorporated in the function f2 is a function

of local properties only and hence is not dependent upon history directly.

Some significant experimental evidence that this situation cannot be true

is available in Reference (3). Figure 1 shows the variation of free stream

pressure, 0, and H for three different pressure distributions reproduced

from Reference (3) (distribution 1 was not included in the original report).

Each of these pressure distributions is characterized by an initial adverse

gradient section followed by a zero gradient section. In the zero gradient

section 0 d- varies with H as shown in Figure 2. Based upon Equation (3)
dx

and the results shown in Figures land 2, one must conclude that either f2 is

a strong function of R or that something is missing in Equation (3). The
dU

former is not likely to be true since many studies of flat plate (zero -0)

boundary layers indicate that f2 is a very weak function of R Therefore,

it appears that something is missing. A plausible argument which can explain

the behavior illustrated in Figures 1 and 2 is that in the adverse gradient

sections the turbulent levels, and hence turbulent shear stresses grow; when

the pressure gradient is removed the turbulence decays toward equilibrium at

a rate which is slower than the rate of decay of the mean velocity profile;

since the turbulence would be expected to grow faster in the steeper pressure

gradients, the shear stress at the location at which the pressure gradient is

removed would be larger for pressure distribution #3 than for #2. Hence, the

initial rate of decay of H would be expected to be greater for #3 than for #2,

as indeed it is.
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The boundary layer behavior after a sudden removel of the pressure grad-

ient has been studied by Bradshaw and Ferriss In their report they

concluded that the shear stress profile cannot be a unique function of velocity

profile. They also made some observations which tend to support the argument

used above to explain the data from Reference (3), "The response of a boundary

layer to a change in pressure gradient is slow: .... the earlier stages of the

response to a sudden perturbation are much nearer that which would occur if

the turbulence was unaffected by the perturbation than the response calculated

by assuming any sort of local equilibrium or a universal eddy viscosity."t

Two methods for calculating turbulent boundary layers which attempt to

include the effect of the upstream history on the shear stress have appeared

in the literature after the present study had started. The first of these by

McDonald and Stoddart(10) makes use of the moment-oi-momentum equation and

Coles (11) universal velocity profiles. The authors were able to get reason-

able agreement with data by a trial and error selection of one initial cond-

ition. The method appears to have some limitations, since it prevents the

boundary layer from ever reaching equilibrium. The second of these methods,

by Bradshaw, et al(12) makes use of the energy equation for the turbulent

fluctuations. This method is in the early stages of its development and

requires specifying three empirical relationships between the turbulent int-

ensities and the turbulent shear stress.

The present study was initiated with the following objectives in mind:

i) To establish whether more upstream history than simply the

initial values of e and H was ever required to predict turbulent boundary

layer behavior accurately,

ii) To determine when this additional information is important,

iii) To develop a practical and simple calculation method which

will correctly account for the additional upstream history required.
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In the main, these objectives have been achieved. In addition, based

upon the particular data generated in this study, it was possible to confirm

the conclusions that (a) Reynolds normal stresses sometimes contribute

significantly to the two-dimensional, momentum, integral equation, and (b)

that in a limited Reynolds number range the velocity profiles form a one

parameter family.
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II. EXPERIMENTAL PROGRAM

The experimental investigation carried out during this study was designed

to obtain precise measurements of turbulence quantities as well as mean flow

quantities in two-dimensional, incompressible, turbulent, boundary layers for

a number of different pressure distributions. The test section used was sim-

(3)
ilar to that used by Moses . With this test section, boundary layers free

of three-dimensional effects could be generated for various pressure distrib-

utions with relative ease. The working fluid used was air. A relatively

simple and efficient air supply system was constructed for these experiments.

A. Apparatus

Figure 3 presents a schematic of the test apparatus. An axial flow fan,

rated at 16,000 cfr at 3 inches of water static, fitted with a radial inlet,

supplies air to the system. Downstream of the fan are flow straightening

vanes, a screen, motor fairing, and diffuser all of which serve the purpose

of reducing losses and steadying the flow. The air which leaves the diffuser

enters an aluminum settling chamber 6 feet in diameter and 10 feet long. The

settling chamber contains a honeycomb flow straightener, a center tube which

is held in place by a vertically mounted airfoil strut, and an 86 mesh silk

screen with approximately 46% free flow area for reducing turbulence. The

center tube provides support for the upstream end of the test section, as well

as for the honeycomb. To prevent blower vibrations from reaching the settling

chamber a flexible coupling, actually a piece of heavy fabric, is used to

seal the gap between blower and diffuser (the diffuser being rigidly attached

to the settling chamber). The flow leaving the settling chamber is accelerated

to approximately 85 ft/sec by a 9 to 1 area contraction which further reduces

the turbulence levels and also reduces any longitudinal velocity variations

which might be present. The free stream turbulence intensity measured at the

exit of the contraction is approximately 0.2%.
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The test boundary layer was grown on a central, 10 inch diameter, Plexi-

glas cylinder 6 feet in length. This cylinder is concentric with a 4 foot

long, 24 inch diameter outer porous metal cylinder. An adjustable end plate

causes the annulus pressure to be greater than ambient. Thus, flow diffuses

out through the porous metal and creates an adverse pressure gradient. The

end plate can be removed for generating zero pressure gradient. The pressure

distribution was adjusted as desired by controlling the flow diffusing through

the porous cylinder. This was accomplished with cloth bands which were wrapped

around the outer cylinder. The outer cylinder had been provided with a long-

itudinal slot and guides for making boundary layer traverses.

Figure 4 presents a number of photographs of the test apparatus: Figure

ha shows the fan with its radial inlet, exit cone and exit screen; Figure 4b,

the settling chamber with its diffuser and contraction section; Figure 4c, the

center tube, airfoil strut and honeycomb flow straightener; Figure 4d, the test

section - inner Plexiglas cylinder fitted with contoured nose piece, outer

porous metal cylinder with traversing slot and guides, center support tube, and

adjustable back-up plate.

B. Instrumentation

Static pressure and wall shear stress measurements made with a Preston

tube and sub-layer fences were recorded by hand. All measurements of quantit-

ies distributed across the boundary layer were recorded on a Moseley Autograph

X-Y Plotter. The y-axis of the plotter was driven by a signal proportional

to distance from the wall and the x-axis by the particular quantity being

measured.

B.1 Traversing Mechanism

A micrometer with 2 inch maximum travel was used to traverse probes

across the boundary layer. The micrometer barrel was connected to a ten turn
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Micro-pot by means of a friction reduction drive. The Micro-pot was supplied

with a fixed DC exicitation of 6 volts, thus giving as output a DC voltage

proportional to probe displacement, which was then used to drive the y-axis

of the X-Y recorder.

B.2 Pressure Measurements

Static pressure distribution: the inner Plexiglas cylinder was fitted

with static pressure taps spaced 2 inches apart along a line parallel to the

cylinder center line. Also, at 12 inch intervals, 3 additional taps were

installed symmetrically around the cylinder to allow a quick check of the

lateral static pressure variation. The inner cylinder could also be rotated

to more precisely check the transverse pressure variation. The static taps

were .025 inches in diameter, and were machined from 1/8 inch brass plugs which

were pressed into the Plexiglas cylinder then ground flush to the surface.

The static pressures were read on a 26 tube manometer board inclined

at approximately 8.50 to the horizontal. This manometer board allowed the

pressure distribution to be observed directly, thus facilitating the establish-

ment of desired test conditions.

Wall shear stress: wall shear stress was measured with a Preston tube and

with sub-layer fences. The Preston tube used was .050 inches in diameter.

Seventeen sub-layer fences were located on the test cylinder along a line

parallel to the row of static pressure taps. The sub-layer fences were offset

laterally about 2 inches from the static pressure taps. Each of the sub-layer

fences shown in the following sketch was machineO

.02"

44rf .188" 11 7

.4 .01" .006"

out of a brass plug 3/16 of an inch in diameter, which was pressed into the
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Plexiglas cylinder and then ground flush with the surface on either side of

the fence. The fences are approximately .010 inches thick and .006 inches

high. Two .020 inch diameter static pressure holes are placed in each plug

on either side of the fence.

The Preston tube and sub-layer fence pressures were read on inclined

manometer boards. The fence pressures were displayed on a board similar to

the one used for the static pressure distribution. Thus, the wall shear

stress distribution could also be observed directly.

Velocity profiles: the mean velocity measurements were made with a

flattened total head tube having an outside height of .014 inches. A

Statham AP pressure transducer with a maximum range of .05 psi was used

to transduce the velocity pressure to a DC voltage which then was used to

drive the x-axis of the X-Y recorder.

B.3 Hot-Wire Measurements

The constant temperature system for hot-wire measurements was used in

this study. Power was supplied to a transistorized, constant temperature

amplifier and linearizer, manufactured by Leslie T. Miller of Baltimore,

Maryland, by two 6 volt wet-cell batteries. The DC component of the linear-

izer output was monitored on a Heathkit VTVM and the AC or fluctuating comp-

onent on a Hewlett-Packared Model #3400A RMS Meter. The linearizer output

was also displayed on a Tektronik Type 535 Oscilloscope and recorded on the

X-Y recorder. The output of the RMS meter was also recorded on the X-Y

plotter. A General Radio Sound and Vibration Meter was used to obtain the

energy spectrum measurements.

The hot-wires used were tungsten, .00015 inches in diameter, copper

plated on each end of a bare section, and soft soldered to two supporting

needles. The mounted wire resistance was normally between 8 and 12 ohms.

Turbulent shear stress Distributions: these measure-
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ments were made with the single wire probe sketched below and show+ in Figure 5

along with the micrometer traversing mechanism.

C)
<-+Pivot

Traversing
Drive Supporting Needles

Flexible Shaft
Shaft
Drive

Arectioi-

Bearlng Support- Hot-Wire
ing tube

The single wire was aligned at approximately 45' to the center line of the

supporting tube which was free to rotate 180' in a bearing fixed to the trav-

ersing drive shaft. A flexible shaft drive allowed the wire to be rotated from

above. The axis of rotation of the probe could be aligned with the flow dir-

ection by tilting the whole probe about the pivot provided by the micrometer

traversing unit.

Figure 6 shows the various probes used in this study, and Figure 7 the

major instrumentation.

C. Experimental Procedure

Before making any quantitative measurements the boundary layer flow was

checked for axi-symmetry as follows: First, the lateral static pressure var-

iations were checked; second, the lateral variation of the wall shear stress,

as idicated by the sub-layer fences, was checked; finally, the movement of

the ,oparation line, as indicated by tufts and sub-layer fences as the cylinder

,,ated, was checked. No evidence of any three-dimensional flow was found.

';er it was established that there was no three-dimensional flow present,

a e .ressure gradient case was set-up to verify that the instrumentation

_ad measurement schemes were working properly and also, to obtain calibration

curves for the sub-layer fences. A complete set of pressure and hot-wire
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measurements was then taken. This data, when reduced, agreed with the meas-

urements presented by Kleban:ff(13). In addition, the wall shear stresses,

1) measured with a Preston tube, 2) calculated from the momentum integral

equation and velocity profile data, 3) obtained by extrapolating the measured

shear stress distributions to the wall, and 4) estimated by the two Ludwig-

ilmann(1) correlations

L.-T. 1 Cf-w =167 (4)
2 (log1 0 R 0 )1-

8

.-T. 2 C = .246 (5)
w .268 .678HR~ 10

showed very good agreement as seen in Figure 8.

The sub-layer fence Ap's were calibrated against a Preston t bc Ap in

zero pressure gradient. Four experimental points, in addition to the origin,

were used to generate calibration curves. These points were obtained by vary-

ing the test section flow. Figure 9 shows 3 typical calibration curves. A

separate curve was required for each fence, due to variations in dimensions,

as well as variations in orientation (with respect to the flow direction) of

the installed fences.

Five additional pressure distributions were then established and studied.

The experimental data for each pressure distribution was obtained in the foll-

owing sequence: 1) wall static pressure, 2) sub-layer fence Ap, 3) Preston

tube Ap, 4) total head tube velocity profiles, 5) mean velocity from hot-wire,

6) longitudinal turbulence intensity, 7) longitudinal turbulence energy spec-

trum, 8) mean readings of the shear stress wire in both the 00 and the 1800

positions, 9) RMS readings of the shear stress wire in both positions.

D. Data Ppduction

Some typical raw data is shown in Figure 10. The X-Y recorder traces of

velocity pressure, longitudinal turbulence intensity, antd shear s:1e'" ' r-
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shown in Figure 10a, b, and c, respectively.

In reducing the recorder data a mean line was first drawn through each

trace. Then, values taken from the mean line were tabulated at appropriate

intervals. The tabulated data was punched on IBM cards and a 7094 IBM Digital

Computer was used to reduce the data further.

Three computer programs were utilized in reducing the data. The first

of these evaluated mean flow parameters from the pressure measurement. The

values of displacement thickness, momentum thickness, energy thickness, shape

factor, and energy shape factor were calculated for both their two-dimensional

and axi-symmetric definitions:

Two-Dimensional Axi-Sy metric

00 00

Displacement Thickness f (1 - u )dy f(1 - )(1 + )dy
0 0 0 R

6*

00 00

Momentum Thickness f (1- (- u--dy j uL (1 -- dL)(
0 JO U0 U0 U0 R

o002 00 02
00 000

62

Energy Thickness f u (1 - !!L-)dy u(l -- )(1 + y)dy

6**000 u00  U00

Shape Factor 6* 6*

H 0

Energy Shape Factor 6**

The maximum difference between the axi-symmetric and two-dimensional values

of 6*, 0, and 6** was found to be about 10%, whereas the maximum difference

for H and H was found to be only about 2%. Throughout the remainder of this

report the axi-symmetric definitions will be implied unless specifically

mentioned otherwise. With these values the momentum integral equation, as

presented in Equation (2), need not be changed. Had the two-dimensional
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definitions been used this equation would have had to be corrected for trans-

verse curvature.

The second program was used to compute the values of u'
2 /u,,

- 2u'v O/U 2 , and v'2/U from the hot-wire data.

The third program was used to compute the longitudinal energy spectrum

E(k)/u' 2 and wave number k from hot-wire data.

The correlation of Patel(15) was used to obtain estimates of wall shear

stress from the Preston tube data. The sub-layer fence data was reduced by

first finding the equivalent Preston tube reading from the fence zero pressure

gradient calibration curve, and then using Patel's(15) correlation. No corr-

ections for pressure gradient were made for either set of wall shear stress

data.

E. Accurac_

The static pressure distribution could be determined to better than .5%.

A few static taps read consistently high or low. These taps were generally

neglected in reducing the data.

No corrections to the total pressure readings were made for the effects

of turbulence, streamline displacement, or the wall. The linearity of the

transducer used to record the velocity pressures is illustrated in Figure 11,

where transducer Ap ratios are plotted against manometer board Ap ratios.

The overall accuracy of the velocity measurements is estimated to be better

than 5% except for measurements within 2 or 3 probe heights (.014") from the

wall where due to the wall effect the accuracy should be somewhat poorer.

The pressure measurements presented no particular problem. The hot-

wire measuremients were more difficult due to such problems as linearity,

drift, and orientatior for the shear stress wire. The linearity problem

was overcome by frequent calibration of the electronic equipment.

Drift was minimized by the effective filtering of large dust particles.
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This was done by two fine mesh silk screens, (1) the main turbulence reduction

se'ren in the settling chamber, and (2) a piece of the same material that was

placed across the inlet of the fan. Another factor which greatly reduced the

drift problem was the speed at which boundary layer traverses could be made.

The use of the X-Y recorder made it possible to make a boundary layer traverse

in about a minute.

Accurate shear stress measurements require accurate alignment of the shear

stress measuring wire or wires with the mean flow. With a single wire probe,

the axis of rotation of the probe must be aligned with the local mean flow

direction so that the angle between the wire and the local mean velocity will

ohange in sign only when the probe is rotated 1800. To have done this at every

measurement point would have required a prohibitive amount of time. Instead,

some accuracy was sacrificed in the outer part of the layer where the shear

stresses are generally small and the probe orientation was fixed for each

traverse by the conditions existing near the wall at each longitudinal station.

The Appendix presents a simplified analysis of shear stress errors due to mis-

alignment of the measuring wire or wires.

A consideration of the errors entering the hot-wire measurements, along

with cross checks made on the data, indicates the maximum error for the measure-

ments presented is of the order of 5% for the u' measurements and 15% for the

u'v' measurements, except in the outer 20% of the boundary layer were the u'v'

measurements may be somewhat larger.

F. Experimental Results

Typical experimental results are shown in Figures 12 to 17. The mean flow

quantities shown in Figures 12 and 13 include the pressure distribution in terms

of the free stream velocity and the usual integral parameters, 0 and H, wtaic.

were determined from the measured velocity profiles. These values are shown as

a function of x, the distance along the cylinder starting from the first pressure
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tap, which was approximately the point of minimum pressure.

The three pressure distributions chosen to study the effects of upstream

history are shown in Figure 12. Each consists of an initially adverse pressure

gradient section followed by a zero pressure gradient section. Since the equi-

librium boundary layer behavior in zero pressure gradient has been well docum-

ented, these pressure distributions allowed a study of the non-equilibrium zero

pressure gradient behavior induced by the upstream history (initial adverse

pressure gradient section). From this figure it is seen that the mean flow,

as typified by the shape factor, appears to return to equilibrium at a rate

which is proportional to the departure from equilibrium. Also apparent from

Figure 12 is that it takes the mean flow on the order of 100 momentum thicknes-

ses to return to equilibrium.

Two linear pressure distributions are shown in Figure 13. Pressure

Distribution #5 is a linear gradient starting at x = 0 where the boundary layer

is very thin and continuing on to separation. Pressure Distribution #6 is zero

pressure gradient, followed by an adverse gradient driving the boundary layer

to separation. Distribution #6 is much more severe than #5 for two reasons;

first, the rate of pressure rise is faster and, second, the momentum thickness

at the initiation of the adverse gradient is some three times larger. These

two distributions were included in the study in an attempt to define the

upstream history effect more thoroughly.

Figures lha and b show a comparison of the various methods used to obtain

wall shear stress for Pressure Distributions #3 and #5, respectively. Preston

tube and sub-layer fence measurements are plotted as a function of longitudinal

distance x along with values obtained from (a) a Clauser(5) type determination

based upon the law of the wall and measured velocity profiles and (b) the

Ludwig-Tillmann correlation, Equation (5). In general, the agreement is

good. For all of the pressure distributions studied, the Ludwig-Tillmann
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correlation predicted values about 10% higher than those measured when the

Reynolds number R was about 1,000, but gave values much closer to those

measured as R increased. The sub-layer fences used in this study do not

seem to give any better results than the simple, relatively large, Preston

tube.

Measured longitudinal turbulence intensities for Pressure Distributions

#3 and #5 are presented in Figures 15a and b, respectively. From this figure

it is seen that in an adverse pressure gradient the distribution of u' across

the boundary layer develops a maximum which grows and moves away from the wall

as the boundary layer progresses downstream. Also apparent from Figure 15a

is that when the pressure gradient is removed this maximum decreases in the

downstream direction and eventually disappears as the boundary layer approach-

es equilibrium (althouth the test cylinder was not long enough for the bound-

ary layer of Pressure Distribution #3 to return fully to equilibrium, this

last remark was verified by measurements made for Pressure Distribution #1).

From a comparison of Figure 12 and Figure 15a it can be seen that H returns to

equilibrium faster then u'.

Typical hot-wire shear stress measurements are shown in Figures 16a and

b again for Pressure Distributions #3 and #5, respectively. To complete the

shar stress distributions, the shear stress at the wall, as determined from

the Preston tube and sub-layer fence measurements, has been added.

The shear stress behavior is similar to the longitudinal turbulence

intensity behavior in that in the adverse gradient section a maximum divelops

and moves away from the wall and when the adverse gradient is removed this

maximum decays. Since the equilibrium shear stress distribution for zero

pressure gradient has a maximum at the wall only, it is apparent from Figure

16a that the shear stress distribution cannot be characterised by pressure

gradient alone.
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Energy spectra for the longitudinal turbulence intensity are shown in

Figures 17a, b, and c. Figures lTa and b present rectangular coordinate

plots of normalized energy spectrum versus wave number for Pressure Dist-

ributions #3 and #5, respectively. These spectrum measurements were made

with a hot-wire that was within .010 inch of the wall. The measurements

indicate that in an adverse pressure gradient there is a substantial shift

of energy from high to low frequency near the wall. Additional spectrum

measurements indicate that this shift of energy from high to low frequency

also occurs in the outer region of the boundary layer, but to a lesser

extent. In Figure 17c some energy spectrum measurements for Pressure Dist-

ribution #5 are presented in the form which is generally found in the liter-

ature.
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III. PRESENTATION AND DISCUSSION OF FINDINGS

A. Normal Stresses

A calculation of momentum thickness from the von Karman momentum int-

egral equation, Equation (2), was carried out for all six pressure distrib-

utions considered in this study, (Pressure Distribution #1 was the case of

zero pressure gradient used to verify measurements). In this calculation

the experimental values of wall shear stress, shape factor, and pressure

distribution were used. The results of this calculation, along with the

experimental data are shown in Figure 18. A significant difference between

the calculated values and the experimental values can be noted. Since this

difference is larger than would be expected, due to experimental errors, a

further study of the momentum integral equation was made.

The von Karman momentum integral equation, Equation (2), has within it

the assumption that the Reynolds normal stresses can be neglected, a fact

which has been disputed by a number of authors. In References 16 thru 20

the validity of this assumption, especially near separation, has been quest-

ioned. Without this assumption the momentum integral equation can be written

as

de C dU -- -dO Cfw 0 UC 1 00a 2- -- (H + 2) --- + -- (u'v2 _ '2)dy (6)
U x U2 0 x

00

The term containing I comes directly from the x momentum equation. The

v'2 term enters the equation through a static pressure variation across the

boundary layer.

In order to investigate the importance of these Reynolds normal stress-

es, the momentum thickness calculations were repeated. Estimates of the

first correction term
00

1 3- u2 dy
U 2 0 ax
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evaluated directly from the experimental data were included.

An estimate of the second correction term

Ul J~ vt2 dy
u 2 0 x

was also made from the experimental data. It was found that in general

00 00

f V'2 dy = a- u' 2 dy (7)
0 ax 2 a 3

Based upon this approximation the momentum thickness calculations were

repeated, this time using the full equation as presented in Equation (6).

The results of these additional calculations are also shown in Figure

18. As can be seen, particularly in Figure 18c, the Reynolds normal stresses

make a noticeable contribution to the calculated momentum thicknesses.

However, the normal stresses do not fully account for the momentum

thickness behavior. The effects of longitudinal streamline curvature could

explain the discrepancies shown in Figure 18. In a decelerating boundary

layer the streamline curvature causes a pressure rise across the boundary

dP
layer (-- < 0) which increases in the downstream direction causing the bound-

dy

ary layer to grow faster than would be predicted by assuming no static press-

ure variation across the boundary layer.

One possible reason why more experimenters have been unable to reach a

definite conclusion regarding the importance of normal stresses is evident

from Figures 18c and d: when the boundary layer is driven rapidly to separ-

ation the effect of normal stresses is not nearly as noticeable as when the

boundary layer is driven close to separation and then allowed to return to

some equilibrium condition away from separation.

Based upon the data generated in this study and the data presented in

References 18, 21, and 22, a correlation for a normal stress correction

(N.S.C.) to the von Karman momentum integral equation (Equation (2)) has
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been generated. The correlation is as follows,

d6 *
N.S.C. = .0365 (H - 1) - (8)

dx

A comparison of the experimental data points and the correlation is shown in

Figure 19. The scatter is rather large, but is to be expected since x deriv-

atives of the data must be taken to determine the N.S.C. The results of

using the correlation to predict 0 are shown in Figure 18.

The correlation as proposed is somewhat similar to that suggested by

Ross(19)

N.S.C. = o d(6*U 2 )
2 dx

in that the correction depends upon the derivative of 6* and leads to a

singularity in the momentum integral equation. This can easily be seen if

6* is replaced by OH in Equation (8) and if this equation is added to

Equation (2)
C fWWU d

f (H + 2) - + .0365(H - 1)e $
_= 2 U10) dx

dx 1 - .0365 H(H - 1)

When H is approximately 5.7 goes to infinity. This singularity should

not be a practical limitation since separation occurs well below H = 5.7.

B. Velocity Profiles

Reduced total head tube data for Pressure Distribution #3 is chosen

to illustrate the behavior of the velocity profiles in an adverse pressure

gradient and also in the relaxing region (zero pressure gradient region

where initially disturbed boundary layer is returning to equilibrium). The

u
velocity profile data is presented in two ways. First, Figure 20 shows

00

plotted as a function of y at various longitudinal stations. Typically, in

the adverse pressure gradient the defect in the velocity profile grows with

the velocity being reduced rapidly in the vicinity of the wall and two

apparent inflection points becoming evident in the profile at x = 16". In
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the relaxing region the defect is slowly reduced and as equilibrium is

approached the velocity profile takes on a shape characterized by two regions:

one close to the wall where U- increases rapidly and another covering most of

the boundary layer where increases slowly toward 1.

The second method for presenting the velocity profiles is shown in Figure

isplttdyu
21 where - is plotted as a function of --. Also shown in the figure is aU V

T

curve representing the laminar sub-layer velocity profile

yu (iiI

U V

for yu less than about 10 and a line representing the "universal" law of
V

the wall

u log yuT + C (12)
u B v

T

(11)
where constants B and C have been assumed to be those used by Coles . All

of the velocity profiles can be divided into a sub-layer region, a law of the

wall region, and a wake region. In the former two regions, the expressions

represented by Equations (11) and (12) fit all of the data reasonably well

with the exception of the data for x = 24 inches which for some unknown reason

falls somewhat low. The wake region grows in the pressure gradient as the

wall shear stress decreases and then decays in the relaxing region.

Evidence that the velocity profile can be well represented by a single

parameter family in a relatively small R8 range, as suggested by von Doenhoff

and Tetervin(32) , Coles (11), and others, is given by Figure 22. In this

figure the energy shape factor H is plotted as a function of H. All of the

data taken in this study can be well represented by a single line. No dist-

inction could be made between data points for the same shape factor in

regions of rising or falling H (adverse pressure gradient or relaxing zero

pressure gradient sections). The curve shown in Figure 22 which fits the

data reasonably well
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.= H (13)2.78 H - 1

was obtained by juggling the constants in the expression for H vs H from

power law velocity profiles. Another expression proposed by Nicoll & Escud-

ier (23)

H = 1.431 -09 + .773 1.25 < H < 2.8 (14)
H H2

yields results within about 2% of Equation (13) and hence would fit the data

in Figure 22 equally well.

The Reynolds number effect upon velocity profiles cannot be established

from this study since the total range of R covered was only

1,000 < R < 10,000

with most of the data falling below R = 5,000. Using some form of logarith-

mic velocity profile, such as that proposed by Coles (11), there would be a

slight downward shift of the curve of H vs H as Reynolds number increased.

C. Turbulent Shear Stress

To solve any turbulent boundary layer problem an assumption about the

turbulent shear stress based upon empirical information must be made. Three

basic approaches are usual.

dHi
First, correlate 0 - empirically and directly, thus allowing a solution

dx

of the integral equations and hence implying something about the shear stress.

Second, utilize empirical data to specify the shear stress distribution

either (a) directly, (b) in terms of an eddy viscosity, or (c) in terms of

a mixing length. Then either:

i) attempt a direct numerical solution of the partial differen-

tial equations

ii) use the shear stress distribution to evaluate the shear stress

at some point in the boundary layer and solve integral equations as described

in Reference (3).
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iii) evaluate shear stress integrals required for a solution. Most

frequently, either the moment-of-momentum equation or mean-flow energy equa-

tions are used. For power-law mean velocity profiles the moment-of-momentum

equation takes the form

dUC
d _ H(H + 1)(H 2-_) 0 + (H2 - fw

dx 2 U dx H 2

- (H + 1) f T dy (Reference 6) (15)

0pU 2  0

requiring f T dy. The mean-flow energy equation, Reference 8,

-Td dUC HC f
= (H -1) H -- dU - + C (16)

dlldxU dx 2 D

requires CD which is defined as
Du

2 f (17)
C = T -- dy
D pl 2  f

Third, use empirical information to correlate directly either the shear

stress at some specified location in the boundary layer or one of the

shear stress integrals.

Needless to say the first approach above is the poorest in terms of

generality and in terms of providing some understanding of the turbulent

process and hence will not be considered further. The second and third

approaches, however, will be discussed in some detail in light of the data

obtained in this study.

Before continuing with the discussion a result presented in an earlier

section regarding the wall shear stress is repeated. Based upon all of the

wall shear stress measurements made in this study the Ludweig-Tillmann(1h)

correlation

.246
CN .268 .678H (5)

appears to be perfectly adequate for Reynolds numbers based upon momentum
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thickness between 2 and 10 thousand.

C.1 Polynomial Representation

A number of attempts have been made to represent the turbulent shear

stress distribution by a polynomial in terms of y/6. Perhaps the first of

these attempts was made by Fediaevsky who, following the Pohlhausen

method for laminar flow, expresses T/T in terms of a fourth order polynom-

ial in y/6 and evaluates the coefficients to satisfy appropriate boundary

conditions at the wall and at the free stream. Another attempt somewhat

similar to Fediaevsky's was made by Ross and Robertson(25) who tried to

include some upstream history in their shear stress distribution by making

d T
the boundary condition on - (-) at y = 6, a function of the initial value

dy T
T w

of . The basic shortcomings of both of these attempts are discussed by

Rotta (2) who finds poor agreement between calculated shear stress distrib-

utions and the data of Schubauer and Klebanoff(22)

Another approach which utilizes a polynomial representation for shear

stress is that described by Libby, et al(25) for equilibrium boundary layers.

In this approach, the boundary layer was broken up into (a) an inner region

where the shear stress was obtained by integrating a law of the wall type

logarithmic velocity profile and (b) an outer region where the shear stress

was represented by a polynomial in y/6. At the boundary between the two

regions the velocity profile and the shear stress profile and its derivat-

ive were forced to be continuous. In addition, the eddy viscosity c defin-

ed as

E - u'v'

ay

was assumed to be constant in the outer region. With experimental data for

equilibrium boundary layers such as Clauser's(5) the emirical functions

required in this approach were evaluated. This approach is not applicable
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in the present situation since these authors were dealing only with equil-

ibrium boundary layers which, in essence, have no history.

Based upon the results of these previous studies, several unsuccessful

attempts were made to express the shear stress distributions in the relaxing

region of Pressure Distributions #2, #3, and #, with polynomials.

C.2 Eddy Viscosity

The eddy viscosity as defined in Equation (18) has been used very often

to relate the turbulent shear stress to the mean velocity profile. Rotta(2)

presents a summary of eddy viscosity relations employed in the region near

the wall. Clauser suggested that the eddy viscosity away from the wall

region can be assumed constant and also that

= .018. (19)
U060

Based upon Clauser's work, Libby et al (25) and Mellor and Gibson(27) have

formulated methods for calculating equilibrium boundary layer behavior.

However, Bradshaw and Ferriss 9 have questioned the assumption of constant

eddy viscosity away from the wall and distributions evaluated from hot-wire

shear stress data do not usually exhibit this behavior.

Eddy viscosity distributions for Pressure Distributions #3 and #5 are

shown in Figs. (23) and (24), where U 6* is plotted against y with x as a

parameter. The eddy viscosity is zero at the wall, reaches a maximum some-

where near the middle of the boundary layer, and returns to zero at y = 6.

The variations of U E* at fixed y/6 are large particularly for Pressure

Distribution #3. In an adverse pressure gradient U66* decreases. When the

pressure gradient is removed it then increases rapidly. This behavior was

found to be typical for all of the pressure distributions considered in this

study.

An attempt was made to determine a more appropriate normalization for
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eddy viscosity. For this attempt a mean value of eddy viscosity in the

central portion of the boundary layer was estimated from the data at each

measurement station. The results of these calculations are summarized in

Table I which presents the maximum and minimum values for four different

normalizations of eddy viscosity. In all cases the distribution of values

between the maximum and minimum was fairly uniform.

Table I Eddy Viscosity Variations

E - C C

U 6* U 6* U 0 U 6
0 T 0 T

Maximum Value .028 .79 .039 1.4

Minimum Value .0048 .26 .014 .51

The parameter U 6* suggested by Clauser shows a somewhat larger variation

than the other three parameters. Clauser was primarily concerned with equil-

ibrium boundary layers, whereas the boundary layers in this study were gener-

ally not in equilibrium. However, even the best of these four has a ratio

of about 3 between the maximum and minimum values.

C.3 Mixing Length

The mixing length as defined by Prandtl

1/2

T (20)

also has been used to relate the turbulent shear stress to the mean velocity

profile. Rotta(2) once again presents a summary of expressions for mixing

lengths proposed for use in regions close to the wall. Escudier and Spald-

ing have recently published an approximate expression for the mixing

length distribution which says that the mixing length is constant in the

outer 81% of the boundary layer and equal to .075 6.

Figures 25 and 26 show mixing length distributions for Pressure Dist-

ributions #3 and #5, evaluated from experimental shear stress and velocity
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data. In general, the shape of the distributions agrees reasonably well with

the Escudier and Spalding(28) assumption of constant mixing length over most

of the boundary layer. However, the magnitude of this constant level varies

considerably. In the adverse pressure gradient decreases. When the

pressure gradient is removed grows rapidly. A study of the variations of

j, , and for the data of this study indicates that - shows somewhat less

variation than either * or T. Similar to the variations found for the

eddy viscosity, the maximum and minimum values of differed by a factor of

approximately three. Table II presents the limiting values of the mean

mixing length over the outer portion of the boundary layers for Pressure

Distributions #3 and #5. Once again the values were fairly well distributed

between the maximum and minimum values.

Table II Mixing Length Variations

6*0 6

Maximum Value .55 .75 .10

Minimum Value .10 .22 .04

C.4 Shear Stress Integrals

The shear stress integrals required in the moment-of-momentum and the

mean-flow energy integral equations have been evaluated from the hot-wire

shear stress data. These are presented in Table III along with the Reynolds

number based upon momentum thickness and the shape factor. As seen the

variations of these integrals over the range of test conditions is not large.

Some of this variation is undoubtedly due to experimental errors and some

to real variations. The effects of variations in the shear stress integrals

are magnified in the equations for 8 d (for example, at H = 1.5 a 10% change
dx

in either integral produces more than a 30% change in 0 d, and at higher

shape factors even greater changes). The difficulty of obtaining a valid corr-
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Table III Shear Stress Integrals Based Upon

Hot-Wire Shear Stress Measurements

6*

f dj 00
0 pU

2  5*

.79

.58

Pressure
Distrib-
ution

1

2

3

4.

5

20
42

4
8

12
16
20
24
28
32
36
40

4
8

12
14
16
18
20
22
24
28
32
36

4
8

12
16
20
24
28
32
36

4
8

12
16
20
24
28

x10-
3

2.5
4.1

1.2
1.9
2.8
3.9
4.4
4.6
4.7
4.8
4.9
5.0

1.2
1.8
2.9
3..5
4.3
4.7
5.0
5.2
5.4
5.6
5.7
5.8

1.2
1.8
2.3
2.8
3.1
3.3
3.5
3.7
3.8

1.2
1.6
2.1
2.6
3.2
4.0
5.0

f6r
j 0

U

2 dy
pU 2

x10
3

1.71
1.56

.82

.80

.85

.90

.83
.97
.79
.82
.88
.84

x
in

H

1.33
1.33

1.41
1.147
1.61
1.78
1.72
1.58
1.49
1.43
1.36
1.35

1.42
1.47
1.72
1.98
2.15
2.25
2.15
1.93
1.80
1.60
1.48
1.42

1.45
1.44
1.46
1.46
1.42
1.39
1.37
1.36
1.34

1.39
1.42
1.42
1.44
1.48
1.54
1.63

.68

.51

.36

.46

.50

.60
.63
.77
.85
.90

1.02
.97

41
.41
.38
.53
.53
.47
.52
.50
.50

.45

.37

.65

.54

.59

.52

.52

2.08
1.85
1.85
1.85
1.76
1.93
1.58
1.58
1.52
1.41

1.91
1.41
1.0
1.54
1.84
2.25
2.37
2.05
1.74
1.67
1.56
1.46

1.69
1.33
1.48
1.52
1.43
1.39
1.44
1.46
1.41

1.86
1.79
1.80
1.66
1.60
1.35
1.37
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5

6

Continued...

32
36
40

8
12
16
20
24
32
34
36
38

6.3
7.9

10.0

1.5
1.8
2.1
2.4
2.8
3.8
4.6
6.0
7.6

31.

1.75
1.84
2.17

1.38
1.36
1.34
1.34
1.37
1.43
1.54
1.76
2.22

.52

.51

.34

.78

.78

.72

.70

.6o

.49

.55

.47
.60

1.46
1.58
1.44

2.20
2.07
1.85
1.82
1.71
1.30
1.44
1.42
2.35
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elation of the data can be seen. What might normally be accepted as a reason-

able correlation for the experimental data may actually mask important

behavior.

Several attempts were made to determine the uncertainties in the values

presented in Table III. The first of these was to evaluate the shear stress

integrals from Equations (15) and (16) and also from
u

d 6** T 3  a a-
=0__ 2 f - - dy (21)

U 03 dx 0 pU 2  ay

(another form of the mean flow energy equation) using velocity profile data.

This attempt was not very successful since it was found that uncertainties

in the x derivatives were such that almost any level of agreement could be

obtained between the values in Table III and those calculated from velocity

profile data.

For the second attempt the energy thickness 6** was calculated from Equ-

ation (21) using the dissipation integrals (shear stress integral required

for the mean-flow energy equation) listed in Table III and then compared with

those values obtained from velocity profile data. This comparison is shown

in Figure 27. The differences shown in this figure can be explained in part

by normal stresses which were shown to be of some importance in an earlier

section but which are neglected in Equation (21). Although these calculations

do not allow a quantitative statement concerning the accuracy of the integrals

listed in Table III, they do imply that on the average at least the values

are reasonable.

D. Evidence of Upstream History

Once again the effects of upstream development are demonstrated by the

behavior of the shape factor H. The normalized rate of decay of H with dist-

dHi
ance, - 0- is plotted in Figure 28 as a function of H for the relaxing

dx

regions of Pressure Distributions #2, #3, and Ah. From this figure it is
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seen that at the same shape factor the decay rate is larger for #3 which was

driven closer to separation before being allowed to relax than it is for #2.

A similar comparison can be made for #2 with respect to #4. Therefore, it

follows that the mean turbulent shear stress at the same shape factor must

also be larger for #3 than for #2 and likewise for #2 with respect to #4.

It was shown in the previous section that the mean velocity profiles are a

function of H alone (within this limited Reynolds number range). Therefore,

the mean velocity profile at any station is not sufficient to determine the

turbulent shear stress at that station. Hence the local mean velocity profile

is not sufficient to fully determine the downstream behavior of the boundary

layer. More information is needed concerning what has gone before, i.e.

concerning the upstream history of the flow.

The intuitive argument used earlier in this report, whereby the

turbulent fluctuations are built up in the adverse pressure gradient section

and then decay slowly when the pressure gradient is removed, would still

seem to be pertinent. By specifying, in addition to the mean velocity profile

at some station, some measure of the initial turbulence level (actually the

initial turbulent shear stress) and of its subsequent rate of decay, it should

be possible to calculate the downstream development of the boundary layer.

For the usual integral parameter methods the shape factor behavior is

described by Equation (3), which for zero pressure gradient simply becomes

Q = f (HR ) (22)dx 2 '0

It has been clearly shown with the data of Moses and the data generated in

this study that this description (Eq. (3) or Eq. (22)) is not adequate. In

addition, it has been indicated that the reason for this inadequacy is the

failure to account fully for the upstream history of the boundary layer.

Therefore, the conclusions reached by Rotta(2) and by Bradshaw and Ferriss
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concerning the need to account for more upstream history than that implied by

the mean velocity profile in boundary layer calculations are substantiated.

E. Proposed Calculation Method

Based upon (a) the conclusion that the apparent or turbulent shear stress

is not uniquely determined by the local velocity profile and (b) the

realization that an accurate specification of the complete shear stress

distribution is extreemly difficult, attention was focused upon the problem

of including more upstream history in an integral method for predicting

downstream boundary layer behavior. The mean-flow energy integral equation

was chosen over the moment-of-momentum integral equation because of its

somewhat simpler form. The moment-of-momentum equation with a set of

velocity profiles somewhat more appropriate than power law profiles, such as

Cole's (11) universal profiles, becomes rather complicated. Therefore, a

study of the behavior of the dissipation integral CD was made. The relaxing

regions for Pressure Distributions #2, #3, and #4 were chosen for the initial

study since 1) this eliminated consideration of the pressure gradient and,

2) equilibrium behavior in zero pressure gradient is well documented.

It was found that a relatively simple diffusion type equation,

SdCD = K (C - C ) (23)
dx D D

F.P.

could be used to represent the data. The value of CDF.P. was assumed to be

the equilibrium value of the zero pressure gradient dissipation integral, as

given by Truckenbrodt's(29) correlation

C = .0112 (24)
D =R61/_6

which represents flat plate data well. In order to use Equation (23) to

calculate CD at any down stream station the initial value of CD which reflects

the effect of the upstream history on the turbulent fluctuations must be

specified.
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The results of using Equation (23) along with the mean-flow energy int-

egral equation to calculate the shape factors in the relaxing regions of

Pressure Distributions #2 and #3 are shown in Figure 29 for K = .009. The

initial values of CD used for these calculations were estimated from the

integrated hot-wire data. Wall shear stresses were calculated from the

Ludwieg-Tillmann correlation Equation (5). Pressures and momentum thick-

nesses were taken from the data, and a 2 step Runge-Kutta(30) method was used

to march the solution downstream. Also shown in Figure 29 are predictions

made using the equilibrium value for CD CD , throughout the relaxing
F.P. (28)

region, and those made with the method of Escudier and Spalding . The

predictions made with Equation (23) give much better agreement with the data

than either of the other two. However, this was to be expected here since

Equation (23) was derived from the data with which it is compared.

Although the results of only two other methods are shown in Figure 29,

a host of other methods were considered in the study, including the following:

Head's(31) method

Von Doenhoff and Tetervin(32) method

Garner method

Rubert and Persh(16) method

Schuh method

Spence(35) method

Moses method.

For all of the pressure distributions considered in the study and in

particular for distributions #2 and #3 the method of Escudier and Spalding(2
8 )

gave the best agreement with the data. Therefore, this method has been used

in Figure 29 and will be used for comparisons between the "best" method based

upon the local velocity profile hypothesis (shear stress distribution

dependent upon local velocity profile only) and the proposed method which
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attempts to account for an upstream history effect upon the shear stress

distribution.

Extension of the proposed behavior of CD, Equation (23), to pressure

gradient regions was simply made by changing CD to the equilibrium value
F.D.

of CD based upon the local conditions. Thus,

D = K (C -C) (25)
dx D . D

equi

This simple approach preserves the intuitive diffusive type behavior of the

integrated turbulent fluctuations and also insures that at least at equilibrium

the correct value of CD will be obtained.

In order to obtain estimates for CD . the equilibrium data of Clauser(5)

(36) Dequi (7
and Herring and Norbury , as well as Townsend's zero wall shear stress

estimate and flat plate data were used to calculate C from the mean-flow

energy equation. The values of CD . calculated in this way are shown

equi
plotted in Figure 30 as a function of normalized pressure gradient. The

ordinate has been divided by C D ., Equation (24), to approximately account

F.D.
for Reynolds number effects. Using these data points, various relationships

dU
were assumed between CD /C D and C , four of which are represented

equi F.D. e
in Figure 30. These functions were then used to calculate the shape factors

from the mean-flow energy integral equations for the following pressure

distributions:

(a) Pressure Distributions #2, #3, #4, #5 and #6 of this study,

(b) The three pressure distributions of Moses shown in Figure 1,

(c) Bradshaw and Ferriss pressure distribution which has a relaxing

region.

In these calculations, the experimental pressure and momentum thicknesses as

well as Ludwieg Tillmann 4 ) wall shear stresses were used. The initial values

of CD were assumed to be the equilibrium values for the pressure distributions
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indicated in (a) and (b) above. Since these boundary layers were very thin

at the start of the calculations the initial values of CD chosen were not very

important since these boundary layers returned to equilibrium very quickly.

For the Bradshaw and Ferriss calculation the initial value of CD was

estimated from the hot-wire data presented in Reference 9. Once again a two

step Runge-Kutta method was used to march the solutions downstream. Various

constant values of K were used in these calculations.

The results obtained for K = .009 and for

C = [1 - 2.5 x 10(1 - 102 11.0112 (26)
D equi U00 cx U l/61

gave the best overall agreement with the data. These results are presented

in Figure 31 along with the predictions made with a similar calculation using

the Escudier and Spalding(28) correlation for CD. In general, the calculations

made using Equation (25) give a better fit with the data.

Based on these very encouraging results, the following integral equations

are proposed for the prediction of turbulent boundary layer behavior:

Momentum integral equations

dO C dU
d = - - (H + 2) ---- + N.S.C. (27)

2 Uoa+X

Mean-flow energy integral equation

6 d= [(H 1)R -W Cfw + C ]dH (16) U 2 D d

And dissipation integral diffusion equation

6 dCD= K(C -C ) (25)
dx D D

equi
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Best estimates for the normal stress correction (N.S.C.), K, and CDq.
equi

are at present

cd6* 9
N.S.C. = .0365 (H - 1) 

(

K = .009 (28Y

and

dU0 3 2 0 dU0 2
C = [1 - 2.5 x 107(e- 10 1----][ 0112 (26)

D eqiU. dx U. dx R01/6
equi B0R

Although reasonable results were achieved with Equations (28) and (26) for

the limited number of cases considered, these equations can be revised as

more experimental data is examined. One possibility that has been considered

but not investigated to any extent is that K may not be a constant but some

function of local conditions.

Specification of initial values for CD, which is required for the

proposed method, may be a problem. Unless the calculation is started at a

station in the flow where the boundary layer is at or near equilibrium,

measurements or guesses based upon past experience will have to be used to

establish the initial CD*

The proposed method adds little complication to the boundary layer

calculations and appears to describe the mean turbulence behavior correctly.

The diffusive nature of Equation (25) is very satisfying to the intuition and

given the correct values of CD . will always give the correct solution at

equi
equilibrium. A failing which is inherent in some of the proposed prediction

methods is thus avoided.

When a computer is available for the boundary layer calculations,

inclusion of Equation (25) into the calculation is simple and adds only slightly

to the time required to obtain a solution. If the calculations are being made

by hand then it may be desirable to use the following approximate criterion
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for deciding whether or not Equation (25) need be included in the calculation:

For

d (0 dU05
) < 7 x 10-

Equation (25) can probably be neglected and the Escudier and Spalding(2
8 )

correlation

C = .547 C + .004214 H - .004572 (29)D fw

used to determine C This criterion was only investigated for adverse

pressure gradients and needs verification in accelerating pressure gradients.

Also, the limiting value was established somewhat arbitrarily since no

quantitative statement of the required prediction accuracy was made.
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IV. CONCLUSIONS

Based upon the experimental and analytic programs described in the

preceding sections, the following is a summary of the significant conclusions

reached. Conclusions #2 and #3 are not new but add additional support to

previous conclusions and provide alternate correlations of experimental data.

Conclusion #5 is by far the most significant.

1. In zero and adverse pressure gradients Preston tubes are as good as

sub-layer fences for measuring wall shear stress.

2. The Reynolds normal stresses which are usually neglected in turbulent

boundary layer calculations do have a significant effect upon momentum

thickness calculations for rapidly growing boundary layers. An approximate

correction for normal stresses can be made in the two-dimensional, incompress-

ible, momentum integral equation with the following correlation:

N.S.C. = .0365 (H - 1) --- (9)
dx

3. In the Reynolds number range

1000 < R < 10,000

the velocity profiles in two-dimensional, incompressible, turbulent boundary

layers can be represented by a one parameter family. A characteristic of this

family is that H, the energy thickness factor, can be related to H, the shape

factor 6*/e, in the range

1.3 < H < 2.3

by one of the following expressions

H = 3.6 _ (13)
2.78 H- 1

or

H = 1.431 -097 + .775 (Reference 23) (14)HH 2



41.

4. The turbulent shear stress is not uniquely related to the local

velocity profile but also depends upon upstream history. The eddy viscosity

and mixing length vary considerably in non-equilibrium boundary layers and-

cannot be well represented by the available correlations.

5. The behavior of the dissipation integral C defined as

2 T U

CD = 2 T y dy (17)

can be well represented with a simple diffusion-like equation,

dC
6 = K (CD . - CD) (25)

equi

This equation can be used in conjunction with the mean-flow energy and momentum

integral equations to obtain a practical method for predicting the behavior of

two-dimensional, incompressible, turbulent boundary layers which accounts for

upstream history.

rest estimates for K and CD . at the present time are
equi

K = .009 (28)

and

d U d U
C = [1 - 2.5 x 10 ( d U T 3  2 0 00 0112 (26)D . U dx U dx 1/6equi R
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V. RECOMMENDATIONS FOR FURTHER WORK

Due to the necessity for using empirical correlations in turbulent boundary

layer calculations, the generality of any calculation method must be suspect

until many successful comparisons have been made between predicted and

measured behavior. Therefore, the proposed method should be tested and the

suggested empirical correlations modified whenever additional two-dimensional,

turbulent boundary-layer data is generated.

Because of the limited amount of equilibrium data available the

validity of any correlations for equilibrium shear stress distributions or

integrals cannot be established. More experimental data including hot-wire

measurement of turbulence quantities for equilibrium turbulent boundary

layers would be highly desirable.
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APPENDIX

Effect of Hot-Wire Misalignment on Shear

Stress Measurements

Two cases are considered: The first of these is sketched below.

2
450 + a V

Flow

Direction 50 u
7U

In position 1 the wire is at 45 plus a degrees to the mean flow direction and

in position 2, 45 minus a degrees. Assuming a to be small and neglecting the

cooling effect of flow parallel to the wires, the linearized fluctuating out-

put voltages for the two positions are

e 1= K [u'(1 + a)+v' -)

and

e2 = K ru (1 -a) - V(1 + a)] (A.2)

where K is a proportionality constant. The turbulent shear stress coeffic-

icnt is normally obtained by dividing the difference between the squared RMS

Valw's nf e and c, bv the averaged mean-squared free stream reading e, of

the two wires,

-2 u'v' e1 2 (A.3)
U 2  2 e 2

00 00

For the case depicted in the sketch the usual approach would give, according

to Equations (A.1) and (A.2),

e 2 2 
e -2~~-

2 u'v' e1 ~ 2  '_ 2
- =_ - -1 2 + 2 a - (A.4)

U 2 2 2  U 2
00 00 CO
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Therefore, the error which results from not correcting for the misalignment

is

% ERROR = 100 a ( -t _ ) (A.5)
- U'V'

2
where a has been neglected with respect to 1. For typical values

uW 2  = .01 (A.6)
U,

C2

v = .0025 (A.7)
U

and

- uv = .002 (A.8)
Uf 2

which could be expected in turbulent boundary layers, a 1 degree misalignment

(a = 1*) produces about a 6.5% error in shear stress coefficient. Thus ind-

icating one of the reasons why accurate shear stress measurements are diff-

icult to obtain.

The second case to be considered is sketched below.

2

Flow 450 + a

Direction 450 + a

Following a procedure similar to that described above, the error in shear

stress coefficient produced by neglecting a is found to be

% ERROR 200a (A.9)
1 + a

Therefore, for this case a 1 degree error (a = 1*) produces a 3.4% error in

shear stress coefficient.



L J

2 .6

U.2
u20

.2-

2

. > I I I I

p 16 24 32 40

x (in)

igure L i xperimental Values of Free Stream Velocity, Momentum Thickness,and
shape Factor from Reference 3



16

14

12

10

dH- d li 15

K

I I 3

2

-~OO~O 1
I I I

1.3

I I I I I

1.5 1.7

Nigure 2 Shape Factor Decay Rate in
Reference 3

H

Relaxing Region for Experimental Data of

I I

1 .- 11



Cyli idrical

Ciam7er
-Cnrac t

Plex lass
Bat - ip e st
Plate CJ lider

____--------____ __- 1 ,
V - _ _ I

U .-- ---------
J

Perforated
Outer
Cylinder

A
Main
Turbulence
Reducing
Screen

Honeycomb
Flow Straighten

C(reens

Cone
Blower -

Diffuser
Radial

E~r

i ure 3 Scnematic )-f' Tes t pparatus

Airfoil
StU

Center
Support
Tube



4 ograh f Test Apparntus



C iter im, :A~crcxc.rnb



IUSILT ti ~OUT~aA'al a;)qaOhXOTp

p ;qo.x~ SS~J~3xcaq -aTt-4jHZ~fl~LLL



Probe

T 1 Pressure Preston Tube

Sub-Layer Fence

WI ire 6. Probes



s 44

*e
S_
 

to

03(~)



I I I I I I I I I I I I

5.0

4.0

160 24
x (in)

figure Wall Shear Stress in Zero Pressure Gradient

ireston Tube P tel Correlation
Clquser ethod.55)
Shear. "tress- xtrapolated to Wall

---- 2-D Momentum Eq.'2
V Ludwiec Tillmann 1
a Ludwier; Tillmann 2

I I I I. I

C x '
fw

3.0

2.0

1.0

a
0
A

M, .11 1.1 11 loon



Station No.
x = 32"

L~ ~ I

17

I I I I I

Station No. 16
x = 30"

1.2

Afence

Figure 9 Sub-Layer Fence Calibration

0
4-3
U)

Station No. 18
x = 34".

I I I I I

3

2

1

0

5

14

3

2

1

0
0 .4 1.6



-ICure .1 Typical Raw Data
Pressure Distributi n No.3

(a) AP Transducer Output
Velocity Pressure

T

I
7. ---

.. .. .4..
ow

Station No. 17

LPU

Station No. 1R

9

St

~1

Station No.
ation No. 1

20 -7 Station No. 21

V k-v-~

I II
tj*j

K
I---

j~ ~-

t -

Fill
v



7igure 10 (b) Normal Hot wire Output
iMean Velo-ity and RMS of
Lomritudinal 7luctuati:2s

Station No. 10

RIS VoltageIL

u

Mean Voltage

u047

I 4~-i

ii.

iF-

I ~ I

T

U

.1)

= -t-4---

7-

=i L ---ummm-

u 2
'Ir'

u

I

t



Shear Stress Probf, Output Positicm ')0 f7
Mean and PM9 Position lr")o

im Mean VoltaFP .... ... ... ...

. .... .... ....

......... ....
............ ........ --- ---- ---- ---

.... .... . . 4;w

... ...... .
... ........................... . ......

FES VoltaGe --- ----

Station No.
.... rZ , . ... .... ..

.... .... .... .

...........
I Amu . .... .... .... ....

Ositiorl Positirm 10

... .... ... ... .... -- ---- ----- ---
... .... ..... . .. .... . ........... ... .... .... .....

4

.... ... . .... .. . ..... .... .... ..

---- ------
... . .... .... ... ... .. .. ... ... . ..

. .... .... .

.. .... .... .... ......... .... . ... .. .. . . .........
...... .. ...

.... .... .... .. .. . ....

... ... 77 7 7 7 .

+

... .... .... .. .... .. .... ....

... ... .... .. ..

77 -7:

-7

A-



1.0

.9

.8

.7

.6

A PC.

Tr p...

Transducer

.5

.4

.3

.2

.1

0
.2

0

0
- 0

0 .14 .6 .8

Manometer

Figure 11 AP Traasducer Linearity Pressure Distribution No. 6
Station No. 17 x = 32"

1.0



Figure 12 Experimental Values of Free Stream Velocity,Momentum Thickness,
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Figure 13 Experimental Values of Free Stream Velocity, Momentum Thickness,
and Shape Factor - Pressure Distributions 5 and 6
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