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ABSTRACT

The three-dimensional compressible vortex theory of an axial

compressor rotor or ducted fan is extended by relating blade loading

to blade geometry in the lifting-line approximation. The resulting

integral equation, which is valid up to high subsonic Mach numbers,

is solved for both design and off-design problems. It is shown that

three-dimensional effects must be taken into account, for rotors with

non-uniform spanwise loading, in order to obtain accurate predictions

of flow angles and other performance parameters.
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INTRODUCTION

The inviscid, three-dimensional compressible flow through an axial

compressor rotor or ducted fan can be described in terms of the perturbation

of the incoming flow by the rotor and its wake. If the incoming flow is

sufficiently uniform and regular, and if the stator interference can be

neglected as a first approximation, then the flow is steady in coordinates

fixed in the rotor. If, moreover, there is negligible upstream swirl and

the perturbations induced by the rotor are "small", they can be described

by a velocity potential which satisfies the convected wave equation.

A useful model of the three-dimensional flow through an axial compressor

blade row can be obtained by treating the duct as an infinite annulus

extending upstream and downstream of the rotor. In this case,

particular solutions for the potential can be found corresponding to two

main types: acoustic duct modes, representing pressure and velocity

fluctuations upstream and downstream of the rotor, and "far wake" solutions,

analogous to those of Reissner [1], and representing wakes of shed vorticity

downstream of lifting blades of variable circulation. These particular

solutions can be superposed in such a way as to generate the appropriate

"Green's functions" - sources, bound and shed vortices, etc. - which in

turn can be used in the classical manner to develop the airfoil theory of

rotor blading.

This approach to the compressible, three-dimensional aerodynamics

of ducted rotors has been developed in Refs. [2]-[5]. In Refs. [2] and

[3] the "thickness problem" was treated, yielding,for given blade thickness

distribution, an assessment of the importance of three-dimensional effects
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(as opposed to quasi-two-dimensional cascade theory), as well as a

method of evaluating the wave drag of rotors in transonic operation.

More recently, the lifting case has been treated [4,5], solutions for the

pressure field and induced velocities being obtained for a prescribed

blade loading (the "indirect" or "design" problem). It was suggested

in Ref. [4] and confirmed in [5] that many features of the rotor flow

field - except in the blade passages - do not depend on the details of the

chordwise loading distribution but rather on its integral F(r), the total

blade circulation at each spanwise station. Thus, in [4], attention

was focused on calculating rotor performance for specified F(r), with

the blades represented by B radial "spikes" of concentrated bound

vorticity. Among the useful three-dimensional results of that theory

is the ability to calculate the induced velocities at the blades - or

lifting lines - arising both from the induction effects of the wakes

of shed vorticity and from mean streamsurface shifts associated with

variable work done along the blade span. However, no attempt was made

in Ref. [4] to relate blade loading to blade geometry.

In the lifting surface theory of Ref. [5], for which the known

bound vorticity is spread over helical surfaces representing the blades,

these induced velocities were used to compute the blade camber lines

associated with a specified (chordwise and spanwise) loading distribution.

This is the rotor design problem, treated within the framework of linear,

three-dimensional lifting surface theory. The "direct," or off-design

problem, on the other hand, requires for that case the solution of a

difficult multi-dimensional integral equation. An ingenious method for

solution of this problem, and some preliminary results including the

transonic off-design case have been given recently by Namba [6].
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It is the purpose of this paper to present results for the off-

design lifting problem in a framework analogous to the Prandtl lifting-

line approximation of classical wing theory. As in the classical case,

the idea is to modify two-dimensional theory (in this case, cascade theory)

by including the induced velocities due to three-dimensional effects,

insofar as they modify the local effective angle of incidence of the

blading. The results obtained provide useful insight into important

three-dimensional effects and their implications for rotor performance

up to high subsonic relative Mach numbers. A similar (lifting-line)

approach was taken by Falcao [7], for incompressible flow.

The lifting-line approximation in classical wing theory is applicable

for wings of large aspect ratio. Its applicability for rotor blading

in annular ducts, when typical aspect ratios (except for fans) are as

low as 2 or 3, might be brought into some question. But, because of the

images in the shroud and hub of the bound vorticity on the blades, the

effective aspect ratio is much larger than the ratio of the actual span

to chord, and the lifting-line approximation should hold quite well in

subsonic flow through ducted rotors. In fact, as pointed out in a

later section, we are able to check the validity of the lifting-line

equation up to relative Mach numbers of 0.9 by direct comparison with

the lifting-surface theory of Ref. [5].

The off-design lifting problem in the Prandtl approximation is

simply stated: given the air inlet angles and blade incidence along the

span, determine the spanwise distribution of blade circulation, F(r).

In the present development we use the two-dimensional results of Weinig [8],

corrected for compressibility effects, to relate P(r) to the local

(effective) incidence angles - modified by the induced angles mentioned above.
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The results are limited to subsonic relative Mach numbers at the rotor

tips through the fact that there exists no (linear) two-dimensional theory

applicable in the transonic regime. The full three-dimensional lifting surface

theory [5,61 must be used in the transonic case.

The coordinate system we use in this paper is fixed in the rotor

(Fig. 1); w is the angular velocity of the rotor, U the axial velocity

far upstream and r the radius. x is the axial coordinate, 6 the azimuthal.

The corresponding dimensionless coordinates are (z, 0, c)-(wx/U, 6, wr/U).

THE PRANDTL-TYPE LIFTING LINE EQUATION

In what follows, our primary concern is to modify the actual incidence

angles used in two-dimensional cascade theory to account for the induced

velocities due both to streamsurface shifts and wakes of shed vorticity

as predicted by the three-dimensional theory of Ref. [4]. We assume that

the local lift curve slope, dCL/di, is the same as that given by two-

dimensional cascade theory; only the effective value of the incidence

angle is assumed to be modified by three-dimensional effects. In the

linearized approximation, in the absence of three-dimensional and com-

pressibility effects, we would have

- 2(r) = C (r) = 2ff K (y, c/L)- i
U c(r) L(1
r

(Fig. 2). Here, K, as obtained for incompressible flow by Weinig [8],

is defined as the ratio, for the same value of i, of the lift on a blade

in cascade (c/L finite) to that of the same blade in isolated flow

(c/L -+ 0). Since the lift coefficient for the latter is 27i, Eq. (1)

follows in the linearized, incompressible case. Note, further, that i,
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as defined by Weinig, is the incidence angle (measured from zero lift)

relative to the vector mean of the upstream and downstream relative flow

vectors (Fig. 2). We refer to i as the mean incidence.

Before modifying i for three-dimensional effects, we consider the

effects of compressibility. For linearized, subsonic, compressible flow

we can use the Prandtl-GBthert-Glauert rule, which states that the actual

compressible flow (with geometry specified by y and c/L, Fig. 2) is

inc
related to an equivalent incompressible flow such that Ur = U and

r r

1 inc inc inc .
L r r (2)

inc 1
tan(y ) - tan y (3)

r

inc L inc. L
sin y nc) = sin Y(-)

where 2 1 - M2 = 1 - M 2 /cos2P(r). Then Eq. (1) becomes
r r

- 2' (r) = C = 2T K(y, ,8 ) i
Urc(r) L L r (5)

with

K 1", r) = Kinc[Yinc c inc
L r r (6)

where K in is Weinig's result evaluated at y in and (c/L)inc as obtained

from (3) and (4). Typical values of Kinc are shown in Fig. 3.

As already suggestedin order to include three-dimensional effects,

we consider that i in Eq. (5) must be modified to allow for the flow

angles induced by downstream vorticity and streamsurface shifts. These

flow angles can be obtained, as functions of F(r) , from the theory of
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Ref. [4]. Before this can be done consistently, however, we must note

some differences in the reference system used in the three-dimensional

theory as opposed to that of standard two-dimensional cascade theory.

Linearized cascade theory is formulated by superposing on an

"undisturbed" two-dimensional flow an infinite row of evenly spaced

staggered vortices (local spacing = L) and then distributing these over

the chord of each blade. The result is that the cascade, so described,

produces as much upwash (or turning) upstream as downwash downstream;

the disturbance field is antisymmetric about the cascade. Then the

originally defined "undisturbed" reference flow direction is really the

vector mean, at each spanwise station, between the (relative) flow

vectors far upstream and downstream. [This is, of course, the reason

that the angle i, rather than a (Fig. 2), appears in Weinig's theory.]

Specifically, in terms of the circulation, F(r), on each blade, the

induced flow angles at infinity, relative to the cascade reference flow

are

(V ,) 22 cos 4 F(r)

U ~ 20z U L(r)
r r (7)

(The sign convention for r is such that it is negative for positive

turning, Fig. 2.) In the above expressions Ur = U/cos 4 and 32= 1 - M2,

where M is the axial Mach number.

By contrast, in the three-dimensional vortex theory of Refs. [ 4 1 and

[5], the mean upstream flow is truly undisturbed from the (relative)

reference flow, Ur = U/cos $(r). The flow angles corresponding to (7)

from the three-dimensional theory [4] are:
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<V ,>

U (x + ) = 0
r

(8)
<V> 2 COS

Y (x + ) ' r F(r) - i 2
UUL (r) + ( -UL- ) sin
r r

where T is a weighted average over the span of the local circulation,

proportional to the torque required to drive the rotor:

- 2
1' = -jz dn F (r 11)

h T (9)

and n = r/rT, h = rH/r . In Eq. (8), <> denotes an azimuthal average.

There are two main differences between the two- and three-dimensional

results given by (7) and (8). The first is that, as we expect, the

reference flow directions of the two theories differ by an amount

62 cos 2D

o = -2 F(r) -
r (10)

To obtain a common reference for the two theories, one must add this angle

to any flow angle, (V ,/U r), computed from the three-dimensional theory.

The second difference is that the net turning of the flow in the three-

dimensional theory differs from that of cascade theory by an amount

proportioned to [r(r) - T]. This effect has been shown [9] to be due to

the mean streamsurface displacement associated with adjustments in the

mean (azimuthally averaged) pressure field as the flow moves through the

rotor. One-half of this incremental turning angle appears in the

induced flow angle at the blades [see Eq. (14)], and this result

corresponds to actuator disc theory.
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We are now in a position to modify Eq. (5) to allow for three-

dimensional effects. We replace i in (5) by i ff where

Seff + t1()

and

V ind
a=(Y) +ea

i U -0 (12)
r

Here, (V y /Ur ind s the induced flow angle computed from the three-

dimensional vortex theory directly, in a manner sketched briefly below,

and the addition to a i of the correction angle, a_0, is in accordance with

the rule stated below Eq. (10).

The quantity (V , /Ud ind is obtained from the theory of Ref. [4]

as follows. Computing the velocity component normal to the relative

wind (V , = Vacos - V sin P; tan $ = wr/U), we find its values, at each

radial station, immediately upstream and downstream of a given bound vortex

"spike" and take the mean of the two. (Taking the mean removes the

singularity due to the bound vortex itself.) For purely subsonic flow

the result is, on dividing by Ur = U/cos (r),

V , ind 1 [p

2UL(r) [F(r)- - 2 X XnQY)
r n=- (13)

where L(r) = 2Trr/B, = r/U = tan P Here, the Xn ) XnB(nBa) are

the "wake functions" of Ref. [4], obtained by a generalization of the

method introduced by Reissner [1]. These functions represent the effect

of the downstream wakes of shed vorticity and involve weighted integrals

over the blade span of dP/dr; each y() vanishes identically when
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F = constant = F. The exact definition of the Xn's and a means of

evaluating their contribution to the induced flow angle are discussed

briefly in the Appendix.

Adding cx 00 to (13) in accordance with (12), we obtain the induced

flow angle at the vortex lifting lines, in a reference frame consistent

with cascade theory:

sin 2 (r) F(r) -2 (1
2T- = 2 - r Y X(a)]

n=1 (1-4)

where we have used the identity 2cos 2 + sin 24 = 2 Finally, using
r

(5) in its modified form, CL = 2'TKi , we obtain the Prandtl-type

lifting line equation for F(r):

U2(r) = 2TrK [ i + six7r r)jc_}
U c(r) 2UL(r) S sin (r n=-l (15)

(Note that the case of a constant-work rotor reduces to the two-dimensional

result, since a . vanishes in that case. For F = const. there is no shed

vorticity and no streamsurface shift in the linear theory.)

Before discussing this equation it is useful for our purposes to

rewrite it in terms of the actual incidence angle, ot (r) (Fig. 2), between

the unperturbed relative flow far upstream of the blade row and the blade

zero lift line at each radius. In terms of the air inlet angle, 9(r) , and

the blade stagger angle y(r), we have

a = 4(r) - y(r) (16)

On the other hand, i differs from a , by definition, by half the turning

angle of the two-dimensional theory:
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2D + 2 cos 2 P(r)

g 2 g 2ULV (17)

Then, in terms of a (r), the lifting line equation takes the form

[g 2 cos 2 r(r)

U (r) 27K(, ,S + r L
r

+ sin2 (r)-r 2 2
+2UL 2 Y 2 n(a n=1 (18)

An equation similar to this was proposed by Falcao [7], for incompressible

flow. Given the air inlet angles :(r) = tan-1 (r/U) and the stagger

angles, y(r), machined into the blading, this equation determines F(r) in

the lifting-line approximation. Conversely, as in the design problem,

given $(r) and P(r) it becomes an (implicit) equation for the stagger

angles, y(r), required to achieve the desired F(r).

As a result of the inclusion of three-dimensional effects, Eq. (18)

is an integral equation, both through the presence of the non-local

quantity 1 and the integrals over dF/dr occurring in the Xn Qc)(see Appendix).

In the following sections we discuss its application to the design and

off-design problems of subsonic compressor theory.

SOLUTION OF THE LIFTING LINE EQUATION

Design Problem

When the axial Mach number, M, and the relative Mach number at the

tips, MT = M/cosT are specified, the air inlet angles along the blade

span are fixed: a = tan 4(r) =(r/rT)tan $T nT ' aT = -T M /M.

Similarly, the local blade spacing L(r) = LT , and, given the blade
I s

planform, c(r), and the blade spacing at the tips, L T2 the local solidity
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is determined. A frequent choice for the planform is such that

Cax = c cos y(r) = const., and this will be used in the specific

examples treated below.

If, in addition to the above quantities, the blade loading, F(r),

is specified along the span, Eq. (18) can be used to determine the

blade incidence angles required to produce the desired loading at the

design condition. Note, too, that specifying $(r) and F(r) determines,

through Eq. (8), the net turning of the flow through the blade row:

A rcos2P (r) + sin F(r)-

Z T a ULT (19)

and similarly for A2D (r), Eq. (10). Thus, on determining a9 (r) from

(18), we also find the blade stagger angles, y(r) = #(r) - aci (r), the

2D
mean (cascade) incidence angles, i(r) = o - A /2 , and (given the blade

g

camber distribution) the flow deviation angles.

Even in the design problem Eq. (18) is not an explicit equation

for ct . For example, the "lift curve slope," 2nK, depends not on ( but
g

on y = ( - ci. , one of the quantities to be determined in the design;

similarly, c(r) = cax/cos y . A simple iterative procedure can be

devised, however, to overcome this difficulty. For the first iterate,

one may replace y by ( in c(r) and K(y,-,r ) and use (18) to calculate
L r'

a. . One then uses this result to calculate a new set of values for
g

y(=# - a ) to be used in c and K, recalculates a from (18), and so on,

iteratively, until convergence is obtained. In practice, convergence

occurs in three to four steps.

We recognize, of course, that within the framework of a strictly

linear theory no a priori justification of the iteration suggested above
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can be given. To the same formal first-order accuracy of the theory as

a whole, K(y) could be replaced by K($) and, similarly, (c ax/cos y) by

(c /cos $), since aY. is a perturbation quantity. (For that matter,
ax g

P could be replaced by y in Eqs. (7) and (10) with only a second-order

error.) However, we seek here an approach to the design problem which

is at least intuitely consistent with the off-design cases. In the latter,

we hold y(r) fixed and, in certain instances, vary 4(r) by varying the

Mach numbers. In going from design to off-design we wish to hold

c(r) = c /cos y fixed, and include in K(y,-, ) only the variations due
ax L r

to changes in relative Mach number (compressibility effects). To treat

K as an explicit function of $ in the off-design problem would be to

introduce unrealistic effects. But, then, to be consistent between the

design and off-design problems, we need solutions evaluated with K = K(y)

for both cases.

The blade angles used in the above discussion are "equivalent flat

plate" angles. One of the effects of blade camber appears through the

choice of the zero-lift reference line. For cambered blades in cascade,

a good choice for the local zero lift line is that suggested by

Wislicenus [10], in which the line joining the blade trailing edge to the

point of maximum camber is taken as the zero lift reference. Fig. 4

illustrates the relationship between the various equivalent flat plate

angles of the present theory and those used (in a reasonably standard

notation) for circular-arc blades with camber angles 6(r) = K 1 - K2

With the help of Wislicenus' rule, we have from Fig. 4

K + K2

2
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Hence, specification of 0(r), together with knowledge of y(r), determines

both K 1 and K 2 . The blade incidence i', normally used for cambered blades,

is related to a9 (r) by
g i' = -a

g 2

In the results presented in the following we will use for simplicity a

flow deviation angle 6 = A - a as defined for a flat plate cascade.
g

However, given 0(r) and using Wislicenus' rule, we can relate this angle

to the flow deviation angle commonly used for cambered blades. The result

is simply a

2

With the help of Fig. 4, any of the equivalent flat plate angles of the

present lifting-line theory can be related simply to the standard angles

of a cambered blade with given 0(r), provided 0(r) is not so large as to

violate a priori the assumptions of the linear theory.

In what follows, we use the design problem as a starting point, to

determine a set of geometrical blade angles to be used later in the

specification of the off-design problem. But the design problem can also

be used here in another way. It has been treated in Ref. [5] with a

lifting surface theory, which obviates several of the assumptions

inherent in the lifting-line approximation. Therefore, the design

problem, applied to (18), can be used to check the validity of the lifting-

line equation. Such a check is illustrated in Fig. 5 for M = 0.5 ,

M T= 0.9, c ax/L T= 1.06, B = 40, h = 0.8, and a constant-work rotor. The

cambered blade profiles are those computed from Ref. [5] for an assumed

chordwise blade pressure loading proportional to x'(c - x')F(r) . The

equivalent flat plate angles computed from (18) for this case [F(r) = T]

are indicated by the straight lines. If one adopts Wislicenus' rule for
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the equivalent flat plate angles of cambered blades the agreement is good;

this is especially reassuring in view of the large compressibility

corrections [Eqs. (2)-(4)] required at this large relative tip Mach

number in obtaining the lifting-line results.

We turn now to a specific design problem, the results of which will

be used to fix the blade angles used in the off-design solutions of (18)

to be discussed subsequently. To illustrate, we choose h = 0.8, B = 40,

c a/L = 1.06, M = 0.5, MT = 0.75, and require that F = T (constant work)

at this operating condition. For this case, Eq. (18) was solved

iteratively for a. (r) in the manner already described and the other angles

of interest computed. Results are shown in Figs. 6, 7 and 8 for F/UL T= - 0.2,

corresponding to a total pressure ratio across the rotor of about 1.075.

[Most of the results - ag , A, 6, for example - scale (approximately)

linearly with the chosen value of f/UL ] Results for a particular type

of off-design problem are also shown on these Figures; these will be

discussed in the next section. It will be noted for the constant-work

design case that both the required a and the net turning, A, decrease
g

from root to tip. The latter result is due both to the free-vortex

nature of the induced swirl and the increased compressibility effects

[4] as the relative Mach number increases toward the tip. Because of

our choice of constant work for this illustration of the design problem,

the deviation angles shown in Fig. 8 for MT = 0.75 are the same as those

of two-dimensional (flat plate) cascade theory. As we shall see, they

begin to differ substantially from two-dimensional theory as non-

uniformities in F(r) develop.

If in the specification of the design problem we were to choose
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other than 1 = const., it would be necessary to take account of three-

dimensional effects in the design. This can be done straightforwardly

with the help of the last two terms on the right hand side of (18). It

is important to note in this connection, however, that whatever choice

is made for F(r), it must be such that dF/dr = 0 at rH and rT (see

Appendix) in order to obtain a finite contribution from the wake term,

X (c) . This can lead to important differences between the required

n
blade angles computed according to two-dimensional theory and those

obtained including three-dimensional effects [Eq. (18)]. In addition,

the flow angles, e.g. A(r) and 6(r), will show considerably more structure

than the two-dimensional predictions would indicate, not unlike the

structure seen in the off-design cases discussed below.

Off-Design

An important feature of the lifting-line equation lies in its

applicability to the off-design case. With the blade geometry fixed -

c(r)/L(r) and y(r) specified from the design conditions - we seek to

determine the variation in blade loading, P(r), as well as the corresponding

changes in the turning and deviation angles, as the axial and/or tip Mach

numbers are changed away from the design state.

For the purposes of the present discussion, we use the design case

defined above (M = 0.5, MT= 0.75, 1 = T) as our point of departure. The

corresponding blade stagger angles, y(r), are given in Fig. 6, and the

local solidity is determined as before: cax const., c ax/LT = 1.06 .

The condition that the blade stagger angles remain fixed in going

from design to off-design conditions determines the new a (r) to be used

in (18): D D OD OD
y(r) = (9 ) (r) -a (r)] (20)
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or OtD(r) = () r) - y(r), where the superscripts "D" and "OD" denote
g

design and off-design values, respectively. The new (off-design) values

of )D (r) are determined from the new values of M and MT.

Variation in Wheel Speed at Fixed U

An off-design problem that is particularly simple conceptually is

to investigate the effect of changing wheel speed at fixed axial speed

(M fixed, MT varying). While this does not correspond to moving along

the normal operating line of an axial compressor, it serves to illus-

trate the importance of three-dimensional effects away from the design

point.

Even if, as above, the design condition yields constant work U = r)

we cannot expect that 1(r) will remain constant at any other operating

condition. This being so, the three-dimensional effects included in (18)--

the terms in curly brackets-- become important. Solution of the re-

sulting integral equation is facilitated by recognizing the role played

by the various terms. The two dimensional (cascade)theory is contained

in the first two terms on the right hand side of (18). The term Xn (a)
n

is associated with the downstream shed vorticity; interpreted as an

integral operator on r it yields a singular kernel such that no solution

of (18) is possible unless dP/dr = 0 at the hub and the tip (see Appendix).

Physically, this is a result of the images, in the hub and shroud, of

the shed vortices. This mirroring of vortices is necessary to satisfy

the boundary conditions at the hub and shroud; as a result,infinite

induced velocities would occur at r H and rT unless the strength of the

shed vorticity-- proportional to -- vanishes there. On the other
dr

hand, for large B, the X n are exponentially small over the entire spani
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except very near the hub and tip (see Appendix), and this suggests that

their effect can be neglected, as a first approximation, over nearly

the whole span. The remaining term, involving F = F, corresponds [9]

to "actuator disc" theory (i.e., axisymmetric throughflow theory) and

produces a gross effect over the whole span which is relatively easy to

handle.

Since we are interested in solutions of (18) for relatively large

B, an iterative procedure suggests itself. Neglecting the singular

S'Xn (a) term, one may solve (18) straightforwardly (as indicated
n
below), obtaining an approximate ("actuator disc") result for P(r),

valid except near the hub and tip. We refer to this result as F (r).

However, since this solution will not generally yield zero derivatives

at rH and rT, it cannot be used directly to iterate in the 1 ()
n

term. Instead, one must first introduce a slight modification of r (r)

so as to force the required zero derivatives, and then iterate. For

example, one may take

dFA0 dF

(da a= cosh{B(T da = H
F 0 (r) =F (r) + dc =H TT(d

AD 
B sinh {B(G -a

which meets the requirements that dP0 /d7 = 0 at (aH, 0T) and r0(r) is

exponentially close to r (r) over virtually the whole center span.

When r0 (r) is used to iterate in the . X (a) item, convergence to a
n

complete solution of (18) is quite rapid provided B-> 10. The result

co-ifirms that the main effect of the wake terms is to flatten out F(r)

near rH and rT*
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To illustrate the method of solution of (18) without the wake

term, we note that when Xn(a) is neglected we can solve for
n

P(r) - r (r) in terms of a (r) and 1 to obtain
AD g

rAD (r) = A(r)c (r) + B(r) -AD (21)

where A(r) and B(r) involve K, c /L, /V (r) and y(r). Then

a 

=A(r)c (r) + B(r) FAD

where (~) = [2/(l-h2)]fdr1 ( ), i = r/rT . Thus,

h

AD -(22)

and, from (21),

F (r) =A(r)a (r) + B(r)23)

This solution, corresponding to an "actuator disc" approximation,

is shown in Fig. 6 for the off-design Mach numbers MT = 0.7, 0.8 and

0.9. For comparison, we also show the results corresponding to two-

dimensional cascade theory (F2D), obtained from (18) by neglecting all

three-dimensional effects.

As MT is increased at fixed M, the blade incidence increases and

the magnitude of F/ULT increases markedly from the design value (taken

in this example as -0.2). At the same time, a definite slope, dF/dr,

develops, leading to significant three-dimensional effects. In particular,

it will be noted that, at MT = 0.9, the three-dimensional effects,



-19-

which are themselves due to a non-uniformity in r, act in such a way

as to reduce that non-uniformity. Thus, they provide a sort of relieving

effect as one departs from design conditions.

The full three-dimensional results, including wake effects calcu-

lated by the iterative method outlined above, are also shown in Fig. 6.

As expected, they differ from r (r) primarily in their vanishing

derivatives at rH and rT. It will be noted that the wake terms have

very little effect on I and hence [4] on the pressure ratio of the rotor.

On the other hand, as shown in Figs. 7 and 8, the wake effects have

significant implications for the flow turning angles. In the "actuator

disc" results, at MT = 0.9, rA - YI increases from hub to tip suffi-

ciently rapidly to completely reverse the trend of the turning angles

(hub to tip) from that predicted by two-dimensional theory. A similar

result was noted in Ref. [5]. The wake terms provide a significant

relieving of this effect near the hub and tip, but in the center of the

span the full three-dimensional results are still well approximated by

those derived from r (r).

The relieving effect of the wake terms, relative to "actuator disc"

flow angles, can also be seen in Fig. 8. At MT = 0.9 there is, for

example, much less overturning of the flow at the tips than would be pre-

dicted from "actuator disc" theory alone. This effect can be understood

by realizing that between each pair of discrete wakes of shed vorticity

there is a cell of circulating potential flow which strongly modifies

the mean flow angle distribution. This can be thought of as a sort of

"secondary flow."
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Change in Wheel Speed at Constant Air Inlet Angle

In normal operation of an axial compressor an increase in wheel

speed is accompanied by an increase in the axial throughflow in such a

way that the air inlet angles-- and consequently, the blade incidence

angles-- remain approximately constant. We use this condition to define

a second off-design problem which is perhaps more realistic than the

one just discussed. Starting from the same design point (MT = 0.75,

M = 0.5), we consider the effect of varying MT at fixed $T'

In this case the solutions of (18) would remain unchanged from

those of the design ( = 'F) but for the effects of compressibility which

enter through a and a . The method of solution in the off-design case

is exactly the same as that just discussed, and we turn directly to a

discussion of the solutions.

Results for r(r) as obtained from (18) in the various approximations

indicated are shown in Fig. 9. On comparison of the two dimensional

and full three dimensional results for MT = 0.6 and 0.9 we see once

again that the effects of both the streamsurface shifts and induced

velocities due to the wakes is to reduce the non-uniformities which cause

them. Indeed, in this case the actual fractional deviation across the

span, (P3D(rT 3D (rH 3D ,' is only about 15% at MT = 0.9 as compared

with just over 40% according to two-dimensional theory. At the same

time, r2D 3D

These results have an interesting implication for the turning angles

[see Eq. (19)] for this particular off-design case. Since (r - ) remains

small in the three-dimensional result, and r2D =3D, the turning angles
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predicted by the two theories will be approximately the same. This

is confirmed in Fig. 10. In contrast to the results shown in Fig. 7,

the trend, hub-to-tip, for the turning angles in Fig. 10 is similar in

two-dimensional and three-dimensional theory.

There are some noticeable differences, however, in the details of

the turning angle distribution, as one must expect from the large

difference between r2D(r) and r3D(r) at MT = 0.9 (Fig. 9). These are

displayed more clearly in the deviation angles, 6(r) = A(r) - a (r),

plotted in Fig. 11. We notice, at MT = 0.9, that the "actuator disc"

results predict increased underturning over the inner semi-span and

considerable overturning at the outer radii. Once again, the effect

of the wake terms is to relieve these effects, both at the tips and

at the hub.

SUMMARY AND CONCLUSIONS

The three-dimensional compressible vortex theory of an axial com-

pressor rotor [4] has been extended by relating the blade loading to

blade geometry in a lifting-line approximation valid up to high subsonic

Mach numbers. The resulting Prandtl-type lifting-line equation can be

used either to determine blade angles required to produce a given

loading (the design problem), or to calculate the rotor loading and

performance parameters for a given geometry over a variety of operating

conditions (the off-design problem). Within the limitations of linear

inviscid theory, the lifting-line method offers a unified, self-consistent

procedure for including in design and performance calculations not

only the effects predicted by cascade and by axisymmetric throughflow
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theories but also those predictable only from a full three-dimensional

approach to the problem.

Specifically, we have found that the lifting-line theory describes

two important non-local effects not included in two-dimensional cascade

theory. The first such effect corresponds to "actuator disc" theory

and involves mean streamsurface shifts which affect both the mean flow

angles and the effective incidence of the blades by changing the mean

value of the axial component of velocity. The second effect is

associated with the discrete wakes of vorticity shed from blades of

variable circulation. These wakes set up cells of circulating potential

flow between them which also significantly modify both the effective

blade incidence and the flow turning angles.

Both of these effects operate so as to reduce any non-uniformities

in the spanwise distribution of circulation which may develop as

operating conditions change. The streamsurface deflections, at the

higher tip Mach numbers, produce a tendency toward overturning over the

outer half span and underturning in the inner region. The discrete wake

effect, on the other hand, strongly counteracts this tendency, reducing

the turning in the immediate vicinity of the tips and increasing it at

the hub. For rotors operating with variable work it appears to be impor-

tant to include the wake effect in order to obtain an accurate prediction

of the flow angles.
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APPENDIX

The complete expression for each wake function, X (a), is given in
n

Ref. [4] as

K' (a )K()-K' (aT) K' ( )I(a) T
X (Y) (na) d&rI ()X (aX(nBa)= K'(a )I'(cY )-K'(aH TI"( )d '(

n 'ff)II(a)-'( c nB T H H T J C
a dH

I'(aT)K'(aH(a)CT'(aH)I'(a )K (a) aT d
TK'()T(H)K (a ) T &d&K' (a)-

a

+ i(a) d K' () -K(a) I' ()

ddc (24)

a H

where I(a) E I nB(nBa) , K(a) K nB(nBG) are the modified Bessel functions

of the first and second kind, and we have used the notation

I'(a) - (d/da)I nB(nBa) , K'(a) E (d/da) K nB(nBa) .

Each X (a) depends on the blade number B through its appearance both in
n

the order and the argument of the Bessel functions.

For B ' 10 advantage can be taken of the approximate expressions for

the modified Bessel functions of large order due to Nicholson [11].

Using Nicholson's formulas,introducing the variable T ,=1 + and

neglecting terms of order (nBT3 )-' compared to unity, we find we can
00

carry out the complete sum X n(a) occurring in (18) to obtain
n=l1



-24-

00 ~ ^Y 1/2 dr
X (nBa) d- d() d

n=l nB

CYH

r1 T 1/2 d
+ 2 fd(f ) 

aH

1 1/2 d
+ d4(-)

l 1/2 dr

~ d8 () 7d

T B T-B /2 B/2 -2B(T - )
(-T_ B 

- T 2 T-1 T+l

T

T )B B2 B/2 2B (

H+ B T-1 T1T

H~ Bt+ B/2?+ B/ --

T T+1 q - )

T-1 B/2 B/2 -2B(- T
H_ B T+l iT+l 2

He

B/2 +1B/2 B(T-t 2)
1 -( )(ny) e

T+1 B/2 +lB/2 -B(T-)
T-1 (tl /

-) e

T+l B/2 Tl B/2 -B(T-T) (25)
l- (-) (-) e

The singularities at ? - T in the two incomplete integrals, when

added together, form a Cauchy principal value analogous to that occurring

in classical lifting line theory and thus present no problems when due

care is taken in the computational work. On the other hand, if T = TT

(a = aT), the first complete integral is genuinely singular and a finite

value for Y X (a) is possible only if dP/da vanishes as c + a .
n

Similarly, the second complete integral is singular if T = TH, and this

requires (dr/do) = 0 for a finite contribution from the wake terms.

These requirements are reflected in the solutions discussed in the text.
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