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ABSTRACT

A practical design method for highly-loaded blades in an isolated
cascade is presented in this thesis. The flow is assumed to be
incompressible and inviscid. The upstream inlet flow condition is taken

to be uniform. The present goals of this research are to provide a

practical numerical code for the design problem, and a non-linear theory

which can be easily expanded to three-dimensions. The theory is based in
part on the Clebsh formulation. The blade profile is determined
iteratively through the blade boundary conditions using a "smoothing"

technique. A practical numerical code is presented for the design problem

using "partial smoothing". The program gives very fast convergence
solutions with satisfactory accuracy for practical solidity range.
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Chapter 1 : Introduction

This thesis presents a technique for solving the design problem (the

inverse problem) for highly loaded blades in an isolated cascade. In the

present study, the flow is treated as if it were incompressible and inviscid, and

the upstream inlet flow condition is assumed to be uniform.

Historically, there have been several approaches to the design problem.

In one approach, for example, the velocity distributions on both surfaces of the

blade are specified, and the resulting blade shape is calculated. The advantage

of this technique is that the designer can prescribe surface pressure

distributions which minimize the chance of flow separation. However, the

resulting blade geometry is not guaranteed to have a realistic configuration:

the blade may be wavy, or even have negative thickness.

In a second approach, the velocity distribution on one surface and the

profile thickness distribution are specified, and the resulting blade shape is

calculated. This formulation does not guarantee obtaining an acceptable

pressure distribution on the second blade surface. Moreover, the resulting

loading distribution may not be structurally favorable: for example, the

loading may be maximum where the blade is thinnest.

In a third approach, the loading and thickness (or 'blockage') distributions

are specified, and the resulting blade shape is calculated. This formulation

does not guarantee giving acceptable pressure distributions on either of the

blade surfaces, but the resulting blade shape can be guaranteed to be at least

structurally sound.
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In applying classical aerodynamics methods to these problems, the

presence of the blades and their effects on the flow can be modeled by

distributing singularities (vortices, sources and sinks) on the blade camber or

blade surfaces. Lewis [1] carried out the design problem using the first two

approaches mentioned above. His analysis is based on Martensen's method [2]:

vortices are distributed on each of the blade surfaces, and the induced flow

field in the cascade plane is calculated using the Biot-Savart law.

Kashiwabara [31 carried out the design problem using the first of the

above approaches by arranging vortices, sources and sinks along the blade

camber. This theory also attempts to take into account some three-

dimensional effects, and can be used for designing blades in axial, mixed and

radial turbomachines.

These design theories, based in part on the Biot-Savart law, are simple

for cascade calculation only. Until recently [41, only linearized theories have

been developed to design three-dimensional blades [5], [6].

One goal of the present project is to provide a practical numerical code

for the design problem which can give good accuracy and fast convergence

solutions. An equally important goal is to provide a non-linear theory which

can be practically expanded to three-dimensions. The present theory is based

in part on the Clebsh formulation which has been successfully investigated by

Tan, Wang, Hawthorne and McCune [41 in their study of a three-dimensionel

design method for highly-loaded but infinitely thin blades.

In the present study, the blade profile is determined iteratively through

the blade boundary conditions using a "smoothing" technique: the velocity

potential is expressed in a series of "smoothing" functions developed by
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McCune [Appendix C]. The "smoothing" technique represents an asymptotic

expansion (in the blade spacing) of the Green's function for blade rows, and

can be applied in both 2D and 3D.

In the first example, the blades are assumed to be infinitely thin (the

'Zero-Thickness' problem) to show the power of the "smoothing" technique:

the blade shape is solved iteratively through a set of algebriac equations. The

results compare very well with the "exact" method [4]. Then, a similar

approach is used to solve the inverse problem (in the third formulation,

outlined above) for high swirl blades having prescribed finite thickness (the

'Finite-Thickness' problem). A set of numerical examples are presented, which

in part use "partial smoothing", i.e. a practical truncation of the smoothing

series. Blades shapes with prescribed thickness (or blockage) distributions are

obtained for prescribed swirl schedules or loading distributions. To confirm

the results a 'direct' method , developed by McFarland [10], is used to

compute both the circulation and the pressure coefficients on the blade

obtained from the indirect method. The results show that the blade does in

fact produce the desired circulation and loading distribution. Moreover, the

pressure distributions on each surface agree well, at least away from the

leading and trailing edges.

Finally, a practical design procedure is presented which allows for rapid

exploration of various blade loading and thickness distributions, so as to be

able to select favorable individual-surface pressure distributions as well.
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Chapter 2 : Theoretical approach

2.1 Cascade geometry

CASCADE GEOMETRY

0.9

6.0

C .

4.0

Sol

V(-) T(X)

X- AXIS

The cascade geometry is shown in the above figure. The flow direction

is from left to right. All lengths are non-dimensionalized to the axial chord

length.

The blade camber lines are located at:

V(+ 00)6..1
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where = 0,1,2,3, ...

spacing between blade cambers

f =location of the camber line n = 0

If we define c( as

then blade cambers lie on surfaces of O( = 4 0/ , 1 7.

Consider the blade located at 0 = 0 . The blockage distribution

T (x) is defined such that:

-the blade upper surface is located at f (X) + T (X)

- the blade lower surface is located at . (() . T (x)

Physically, .T'(X.) can be interpreted as the axial blockage

distribution. We note that T(X) is not the blade thickness as defined in

classical aerodynamics, where the thickness is defined as the perpendicular

distance from the blade camber to the blade surface.

The far upstream flow condition is assumed to be uniform. All velocities

are non-dimensionalized to the upstream inlet x-component velocity. The inlet

flow angle is denoted by o(i . Likewise, the outlet flow angle is denoted by

0<2 -
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2.2 Fluid mechanics background

As mentioned in the introduction, we have chosen to model the presence

of the blade shape by distributing singularities on the blade camber. In this

section, we will derive the governing equation for the velocity field in the

"Zero-Thickness" problem. In chapter 4, we will extend this theory to the

"Finite-Thickness" problem.

In the case of infinitely thin blades, the presence of each blade is

modeled by arranging vortices along the blade camber. In the design problem

the swirl schedule Vg (X) is given. It can be shown that the swirl schedule

is proportional to the pressure difference (i.e. the loading) accross the blade

[Appendix A].

The velocity is divided into two parts: an average velocity V (X)
and a perturbed velocity A (X,) ,i.e

CX~ V, (X (2.2-1)

where the average velocity is here taken to be the pitch average defined by:

and thus, by the definition of equation (2.2-1), we must have

4+A

The above equation suggests that if we are to represent -t as a series

of smooth functions, perhaps we should choose functions which possess this
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zero pitch average property. In chapter 3, we will show that the "smoothing"

functions used to represent ' possess this property.

Consider the vorticity field. Given the assumption of incompressible,

inviscid and uniform inlet condition, then by Kelvin's theorem, the vortices

must lie on the blade camber, and the flow must be irrotational everywhere

else.

It can be shown that the vorticity is related to the blade surface

O( and the y-component of the pitch average velocity Y(0 by [Appendix

B]:

-IA (g ) 4 (04) k M X 7
(2.2-2)

where () is the "periodic delta" function [Appendix B]

Further, Vr-('X) . (X)

The pitch average vorticity 41. is defined as:

-f (2.2-3)

7K X ZxG

The vorticity ..C.. is defined as:

and thus, the perturbed vorticity -L is

(X;9 = 4 (4)- '. ?oc x VG-
OV

we VS(x) xVC. (2.2-4)

where S5(o() is the "sawtooth" function [Appendix B].
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We are now in the position to write down the governing equation for the

velocity field V . From equation (2.2-4), we can write

Vx = VSx VG (2.2-5)

The Clebsh formulation says that, to satisfy (2.2-5), write the perturbed

velocity &r as the sum of a potential part and a rotational part:

^j~ (2.2-6)

Note that the curl of A- gives SL back.

If the flow is incompressible, then V.\V = 0 = 7. V = 7. I. Thus,

from equation (2.2-6),

(2.-7

VS. VG 5721%- (2.2-7)

This gives a Poisson equation to be solved for with appropriate

boundary conditions (e.g. on the blades).

Finally, the velocity field in the cascade region is of the form:

(Xj) = (X) + (X, 4 S(K)76 r)3 (2.2-8)

In the design problem, V is given and we seek the solution for

V which satisfies all necessary boundary conditions. In chapter 3, we

present a design method for infinitely thin blades using the above theory. In

chapter 4, we present a design method for blades having finite thickness based

in part on the above approach. In this case, the gap average velocity is given

instead of the pitch average velocity, and the above theory needs to be

modified.
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Chapter 3 : The 'Zero-Thickness' problem

The "Zero-Thickness" problem refers to the design problem of infinitely

thin blades. The blades are represented by a distributed bound vorticity

which is related to the y-component of the pitch average velocity by equation

(2.2-2). We seek the velocity field which must satisfy equation (2.2-8) in the

cascade region and appropriate boundary conditions. The blade camber lines

are solved iteratively using the blade boundary conditions. The flow is

assumed to be incompressible and inviscid. The upstream flow condition is

assumed to be uniform.

3.1 Flow regions

The flow field is divided into three regions (figure 1).

(1) Region 1

Region 1 is defined in the interval - co < X < 0. In this region,

the flow is irrotational everywhere. We may write

where V(- ) is the inlet flow condition.

The boundary conditions in this region are:
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- far upstream,

- at the leading edge, V
4V

(2) Region 2

Region 2 is defined in the interval 0 < X < 1. In this region, the

flow is rotational and must satisfy equation (2.2-8), i.e.

whereV

(3.1-2)

is the prescribed pitch average velocity.

The boundary conditions in this region are:

- matching conditions at the leading and trailing edges

- no flow-through conditions at the blade surfaces

(3) Region 3

Region 3 is defined in the interval 1 < ( < + o

the flow is irrotational. We may write

where V(- a) is the outlet flow condition.

In this region,

(3.1-3)

The boundary condtions in this region are:
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- far downstream, 4 = -22

- at the trailing edge, \ V

3.2 Solution of the velocity field

In this section, we present our method of solving the velocity fields in

the three regions. At the same time, we try to give reasons for our choice of

such a method.

The solution for the perturbed velocities A 4 are assumed to be of the

form of series of smooth functions: Fourier series and "smoothing" series

[Appendix C]. In choosing these series solutions, we note that by our

definitions of V , equation (2.2-1), we must satisfy the condition of zero
IV,

pitch average for xr . One way of satisfying this condition is to choose

functions in the series having zero pitch average. This is one of the property

of "smoothing" functions. In addition, these "smoothing" functions have other

properties which are ideal for our applications, i.e.

1. they are periodic in the y-direction. Thus, they can be used to
represent the periodicity of the velocity field in the cascade.

2. they are derivatives and integrals of one another. This is a useful
property for analysis purpose.

3. they are proportional to o6 where n = 1,2,3,... .. This
property is desired in the case of highly-loaded blade where the
solidity is high (or A is less than 1).

4. they have amplitudes which decrease very fast with increasing
order "smoothing" functions. Because of this property, very few
terms in the smoothing series are needed to represent a smooth
function while high accuracy can still be achieved.
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In the case of infinitely thin blades, we expand part of the velocity

potential 5 in region 2 as a series of these "smoothing" functions. This is

the "smoothing" technique. It turns out that by using this technique, the

expressions for the velocity fields are very simple to compute.

Refer to equation (3.1-2), we assume the velocity potential in region

2 of the form

(3.2-1)

where A (X)T{s4) -I + (ZT ) + C(x)K ) +

The coefficients A(x) , &(K) , C(X) , ... are chosen such that the blade
1i,

boundary conditions are satisfied. This form gives Z to have zero pitch

average and curl free.

The "homogeneous part" of the velocity potential h is chosen so as

to satisfy V Z. = 0, to have zero pitch average, and to match the

velocities at the leading and trailing edges with those in regions 1 and 3.

The velocity field in the cascade region can then be written as

V+ 

)W (3. 2-2)

3.2.1 Smoothing series

For incompressible, continuity requires

V7 v \o (3.2-3)
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but V= 1 (by continuity of the pitch average flow), and equation (3.2-3)

implies

(3.2-4)
47,

or =-1 S V&)

Now, from equation (3.2-1), we can write

A AJrK (p4\[AV X

4Vz

4-T~1)Lv

LB~

-#-2 A. ot+ 9V ]

+ 2-VS1 s --- CvuajJ
+i C V20C +~ 2 VC tVo'c 4- ' ~/ V J

0

To satisfy (3.2-4), we choose

A )70(7 =

B \VoC \=

C IV-4'=

- '7s, VG-

... (7& +.t o27A , 7

.f (V A

+- A \%|O )

+ 2V5V. 4--+ 6 I7')

*

and the pattern for all the coefficients is apparent.

VIA

(3.2-5)
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3.2'.2 Matching conditions

As mentioned earlier, the velocity potentials 1 4 are used solely

to satisfy the far upstream and far downstream flow conditions, and the

matching conditions of the velocities at the leading and trailing edges. We

have chosen / A to satisfy Laplace equation: therefore

we assume % A of the forms:

CX1

These assumed forms for A satisfy

- Laplace equation

- The far upstream and far downstream flow conditions

- The periodicity condition in the y-direction of the flow field

The unknowns coefficients, 4 , and C , are

determined using the matching conditions of the velocities at the leading and

trailing edges:
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= VZX (x = 0, !)

== V5

(x= o,'~j,)

!~ )

(~(i, ~ )

Now, the velocities in the three regions are the following.

For region 1,

For region 2,

VV = V1)+75
^d 6.

+ S~~)V--A Vd)

+ +(e (V74< O ()

0

For region 3,

The "sawtooth" function S(e-) has a finite jump across any constant

o( lines. At the leading and trailing edges, we assume that the flow comes

and leaves smoothly (zero-incidence and Kutta conditions respectively). Thus,

from (3.2-7), we require at X = 0 and X = 1,

(3.2-6)

(3.2-7)

VIX (x= osl)

V' X =0, vzl
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or

A(~o i) =(3.2-8)

C C) =

From equation (3.2-5), by choosing a loading distribution with the condition

G- (X - 0, i) = 0, we automatically satisfy the condition

A (x = O) ) = 0.

Substituting equation (3.2-7) into equation (3.2-6) using equation (3.2-8),

we can show that, in region 2

m 1o - x-I

+ (4 ) s;-i~) -L [AJ~f 4  ()f'7 cojA,, CO 5

(3.2-9)

where 2

A

3.2.3 Blade boundary conditions

The blade boundary conditions are used to generate the blade camber.

By adding the blade boundary conditions together, we obtain



< V>
'V

Ve~O

Define

VS

Vx
represents the meam streamline.Then,

If we define the blade camber line as

f fa ~

then, we can show that equation (3.2-10) is a perfect derivative in

Af and reduces to

AA f X) T() C&,Aj') -K (0)(9 /.- cf) - 4'0011
't=O n=1

+ (-) Ow - s{-). C() f ) 1 ca l[ (x ) #()

(3.2-11)

3.3 Iteration process for the blade camber line

We are now in the position to compute the blade shape using equation

(3.2-11). We call this equation the "camber generator". The beauty of the

-28-

(3.2-10)
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"smoothing" technique is that the blade shape and the velocity field can be

obtained by solving a set of algebriac equations, i.e. equations (3.2-5) and

(3.2-11):

A(x)

C(x? =

/t C 
l

-G +2. A- + A

// / / //
-- A" + + J+ f'

S

0

Thus, we have (n+1)

unknowns are: n coefficients

C (X ) ... , plus the blade

+ Af ()
(3.3-2)

equations and (n+1) unknowns.

in the smoothing series A (()

camber line +(, ) .

The (n+1)

S(X ) ,

We choose to solve the blade camber line by an iteration process. We

expect that the blade camber line - is not very different from the mean

streamline f , especially in the case where the spacing A is small. Thus

we can use -4 as the initial guess for f and go through the following

iteration process:

1. Compute 4 , 6 , C , ... (with the guessing value of
as at the first iteration) using equations (3.3-1)

(3.3-1)
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2. Update + by solving equation (3.3-2)

3. Go back to step 1 to update A , S , C
... with the new value of . computed in step 2.

Continue this process until convergence in is achieved.

The whole flow field and the pressure coefficients at the blade surfaces

can be computed using equations (3.2-7) and Bernoulli's equations.

3.4 "Partial smoothing"

The proposed iteration process for the camber line in section 3.3 shows

that we can get infinite accuracy for + by keeping an infinite number of

terms in the smoothing series. From the engineering point of view, however,

we want to take the least number of terms in the smoothing series for a given

required accuracy criteria. "Partial smoothing" refers to the truncation of the

smoothing series.

In the inverse poblem, we are most interested in three quantities: the

blade camber line and the pressure coefficients at the blade upper and lower

surfaces. Since \ A V , we see that f has the same order of accuracy

as 0 . Similarly, since C F .i V , we see that C also has the same

order of accuracy as 0 . We now construct a table showing the truncation

errors in and C as a function of the number of terms used in the

smoothing series '
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Number of terms kept Truncation
in the smoothing series errors

. K(dO)

3.5 Numerical method

As an example of the design problem, we write a program to compute

the blade camber line by keeping two terms in the smoothing series. In this

case, the smoothing series ; is of the form:

= T + (X) T&C

Let's investigate the order of magnitude of the truncation error in

when the above "partial smoothing" form is used. From equation

(3.2-11), we see that the truncation error in is of the order of k< (o)

or [Appendix C]:

error in + (') PO -
'720

Therefore, for the above example, the truncation error in + is about three

orders of magnitude less than A . By keeping only two terms in

the smoothing series, we can still maintain very high accuracy (accurate to

, 0014. ,4 ). Moreover, the numerical calculation is very simple. Given the

loading distribution (x) as an analytical form, the blade camber can be

calculated through a set of algebriac equation. No numerical technique is

needed to compute derivatives or integrals.
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parameters:

1. Guess

f(/

f (X

-32-

involves calculating the following

and its derivatives as:

f(c)

IL

)z
A-fl)

for simplicity, we set
iteration process # 00F (L through

2. Compute

A(x)

/A(x)

- G + ZA/ + A '
( 1 4 f/-) I

3. Update

(34) IL Af'#) - - (JOM)

dx

out the

24 6

=

-f I C-T-

(+ I"-)
'C' T/)

Cr Af
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f(j) f 00 ~ (&Af') -5*
(Z..

where

F50UM C4 f (+X~.o -M -+.

+ [A'(+)- ())jsin~ Ic~~

4. Go back to step 2 and repeat the calculations until convergence in
-f is achieved.

The convergence criteria used in the calculation is, at each location

Xj ,

f( ') - f(x ) ( ERROR

i.e. if the difference between the present value of and the previous value

of at all locations XY is less than ERROR (the convergence criteria),

then convergence in is achieved.

3.4 Numerical results

Numerical results shows that comvergence in can be achieved fast,

depending on the spacing to chord ratio 4 . In this section, we present a

numerical example. The results are compared with the "exact" solution (using

the Biot-Savart law) [4].
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We have taken the case of an inlet guide vane with the following inputs:

- spacing to chord ratio A = 0.75

- inlet angle C< = 00

- outlet angle 02 = 450

- loading distribution A P - x (i -

Calculations are made at 21 points and the convergence criteria ERROR

is I .

17 iterations are required for F to converge. The computer program

output is shown in table 1. Figure 2 show the plots of the blade camber line

and the mean streamline. Note that there is reverse curvature of the blade

near the trailing edge. This observation is also found in the results performed

by Tan, Wang, Hawthorne and McCune [4]. The computational time for this

example is around 7 seconds CPU time on the Digital VAX-11 computer.

Table 2 shows a comparason of the blade camber obtained from the

"smoothing" technique and the "exact" method. The results compare well.

This preliminary study of the "smoothing" technique shows that it is

indeed a very powerful engineering tool for the design problem in terms of

computational time and accuracy (if desired).
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Chapter 4 : The "Finite-Thickness" Problem

In this chapter, we will present a method to solve the inverse problem

for blades having finite thickness. The method will be similar to the one

presented in the "Zero-Thickness" problem, except that we now have to

differentiate the average flow quantities. In the case of blades having finite

thickness, we can define two average quantities:

1. The pitch average velocity which is defined as:

- A ' V

The pitch average velocity has no physical representation of the
flow since there is no flow in the blade. However, if we are to
model the presence of the blades by distributing singularities on
the blade camber lines, then V does exist in this sense.

2. The gap average velocity which is defined as:

i2 V(X,,)
Obviously, the gap average velocity does represent the average of
the actual flow.

In the design problem of blades having finite thickness, as mentioned in

the introduction, we choose to model the presence of the blades by distributing

vortices, sources and sinks on the blade camber lines. In our method, the two
-- I

main given quantities are: the loading distribution V , and the blockage

distribution T .

Given these two quantities, the gap average velocity is known.

defined by:

It is
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.- A 7 . A

=; % ) Q. + V,

where VT (X) is found using continuity, i.e.

By distributing vortices on the blade camber lines, we have shown that

the strength of the vorticity is related to the y-component of the pitch

average velocity through equation (2.2-2). Therefore, in the "Finite-Thickness"

problem, we no longer know the strength of the vorticity. Equation (2.2-8) is

still valid in describing the flow field in region 2, however, we now choose a

different way to describe it.

4.1 Flow regions

Using the same general approach as in the "Zero-Thickness" problem, we

again divide the flow field into three regions. The velocity potentials

are used to satisfy the far upstream and far downstream flow

conditions, and the matching conditions of the velocities- at the leading and

trailing edges. We again make use of the "smoothing" functions to satisfy the

blade boundary conditions.

The three flow regions are:

(1) Region 1

Region 1 is defined in the interval - oo < )( < 0. In this region,

the flow is irrotational everywhere. We may write
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V(~ c

(4.1-1)
2V

where -.o) is the inlet flow condition. The boundary conditions are:

- far upstream V

- at the leading edge

'Ev

\4 01

(2) Region 2

Region 2 is defined in the interval 0 < )4 < 1. We choose to analyze

the flow in a region between the blade camber lines. The flow in this region

is divergence free and curl free. We may write

(4.1-2)

The boundary conditions in this region are:

- matching conditions at the leading and trailing edges

- no flow-through condition at the blade surfaces

(3) Region 3

Region 3 is defined in the interval 1 < X < + oo . In this region,

the flow is irrotational. We may write

S1(X,)

'4

(4.1-3)

where V(,.&o) is the oulet flow condition. The boundary conditions in this

region are:

Ad
4- A74A/
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- far downstream V43

- at the trailing edge

=o

Vz -vPi 3,

4.2 Solution of the velocity field

Consider the flow between the two camber lines (excluding these camber

lines) located at = and + j . In this region, we can

write V as a velocity potential satisfying Laplace equation:
A)LZ

= OX9

Let's assume 0 to be of the form

= 5(ee%) G-TCx)

+ ;-s X 0-)

(X06)

+ 5PL c, )i
where the smoothing series OTS is assumed to be of the form

0,S (x) + S (X) S (e)

+ A,(x ) x () + s- '1 (00

and thus, 0 can be written as

+ ,I ,

- D~4KS) +~- +TS# +7

3r UT)- + ---

Combining equation (4.2-1) , (4.2-2) along with the choice

we obtain

- 7S7C- + 2. VGV - ,9

(4.2-1)

(4.2-2)

(4.2-3)

(4.2-4)

= 0,

(4.2-5)

,Y.. 1. (X 11)

O(X1 )

Ors (X) )

O(Xj )

AT r. ~(CO +

17 t .
.- ILV
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Based on the experience from the "Zero-Thickness" problem, there are a

few motivations in choosing 9 of the above form:

- in the smoothing series 9Zrs is the additional amount of
vorticity needed to represent the total amount of vorticity
distributed on the blade camber lines.

- ~and -rs represent some average in the potential velocity
which we have the freedom to choose at our convenience.

- E is chosen to satisfy the matching conditions at the leading
and trailing edges.

- AT , fy , Cr , ... are chosen to satisfy the blade boundary
conditions.

We are now in the position to solve for the velocity field in region 2.

Our tasks are to:

1. relate some of the unknowns in the assumed form of (25 to the
given gap average velocity Vr

2. satisfy the Poisson equation (4.2-5)

3. satisfy the blade boundary conditions

.- = o (4.2-6)

. +(4.2-7)

4.2.1 Relation between the gap average velocity and the
unknowns

In this subsection, we relate some of the unknowns in the velocity

potential defined in equation (4.2-4) to the gap average velocity.

By definition of the gap average velocity,
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-Fe T

Ir+ V
fi

Evaluating the above integral using equation (4.2-4), we obtain

=-Vr
We now choose the coefficients in such that

Therefore, we require

and

4

V/g

= 0Eqto rs + .. e

Equation (4.2-8) requires

-5/ V-Tx /

Equation (4.2-9), a vector quantity, can be satisfied by choosing

T L (T)

+ a
andT

A / / STBf
7 + (c-/ /

(C OT

(4.2-8)

(4.2.9)

(4.2-10)

(4.2-11)

Sf / (4.2-12)

= 2. S Tr).

.0-

V.117(- &T )

&,)I-
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Define

C~(A) +_ Cr)

We will show later that (/ relates to the source/sink strength.

4.2.2 Satisfaction of the Poisson equation

We now choose the coefficients in the smoothing series so that the

Poisson equation (4.2-5) can be satisfied.

From the assumed form of the smoothing series $.rs , equation (4.2-3),

we can write

= .. .. v - A-r A7 )

+ S() (? + % Vo + V41 .V + /1.4")

+ z~x { A7. e -T Vo< + c4 W~ - + Cr|Ve|

- 7(o() V + Cr V 4 9Cr Vt.v + 3T 117)<

Substituting the above equation into equation (4.2-5) using equations (4.2-10)

through (4.2-12), we obtain, in scalar form

(4.2-13)
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ArI I V I .- '

= 5&c) T(c"+'")-Ar .A'F+ Br/71"7ejJ

+ 1(- ( I"
/1

+ Trc) T ; cr-
lci'f'+2-. /' /'+

Ci IVx cPJ

.% / 9PC PJ
+

The above equation is of the form

C , (.V) = ji (7(X1 ) CL 4 (X ) 4 9 2.(X) ) q (-%) I+- 0

One way to satisfy the above equation is to choose

ci *(7) 7- 0

0

. (;C) = 0

Using the choices suggested above, we obtain

/r/(C,'+ S'/)
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ST IV.1I.
%2C /~~

-~~~A fG-S)~ A~"÷+4'4!! r T

= .. A-. + I;.r-f + .2 S..

- A- + CTf' C/~ S' +-r"oCr'

0

(4.2-14)

By choosing AT , Sr , CT , ... of the above forms, it turns out that

one of the blade boundary conditions is satisfied. This fact will be discussed

in section (4.2.4).

4.2.3 Matching conditions

As in the infinitely thin blade case, the velocity potential A are

used to satisfy the matching conditions of the velocities at the leading and

trailing edges, and the far upstream and far downstream flow conditions.

Again, 4 are chosen to satisfy Laplace equation. A similar analysis

for as in the "Zero-Thickness" problem gives:

(L):Z
'4bi

1
~~~(Br(+) ~ ~ ~ ~ C. ~ ~~() ~["(i ~~-~ o2~.(+)]

- ~ .CT1(t~j~AL~-.46)o

.. . .0 . (4.2-15)+
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where 2. -ff
A

With the analysis done so far, we can now write down the velocity in

region 2:

+ rc17LAT~x M 7c)7e

+ T~~)j $7-%)1-Cr(~)l7j + (4.2-16)

Again, we require

AT at X =0,1

/ /

for the flow to come and leave smoothly leading and trailing edges (the zero-

incidence and the Kutta conditions respectively). Using the definition of

.A.r in equation (4.2-14), the above conditions become:

il
at X =0,1

4.2.4 Blade boundary conditions

So far, we have chosen all the coefficients in the expression for .

We must now satisfy the two blade boundary conditions, i.e. equations (4.2-6)

and (4.2-7). It turns out that one boundary condition is automatically satisfied

-- /
(4.2-17)

Of E. (%/ )
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through the choices of A. , , , , ... in equation (4.2-14) while the

other blade boundary condition is used to generate the blade camber line.

By adding and subtracting equations (4.2-6) and

boundary conditions become:

AT (v5) . '7 .. < Vy >T . 7 T

Evaluating V/) at the upper and lower sufaces

substituting them into the above equations, we obtain:

(4.2-7), the blade

- 0

= 0

of the blade and

+ L:(i-) [ 9AT&O Zf

+ K(-) [7C. V C +2)rI1?q(I' ] -4-- 0 0

=AT (7(l,). 7T-

(4.2-18)

+ Cr()L. rT CT Vc. Vr +

and

< Vs >,. . 74 .o A., (7#). VT
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+~- 5(-r) L(&T- ) ,~ + A, I 7.4'j

4 ~J(-r) '7-r , 14 +- CT / VI] -t-

= -T 170C .<VT 4- 70 + iir,

4-< vC/ , . , T

+ A)%.VT + -y

+ K(T) VC , IVT + lT

By substituting the choices of AT- > r ,

into equation (4.2-19) and along with the identity

4s(T) J( 7fyAoM

VK , VT (4.2-19)

VO yv I + . . .

C-r ... in equations (4.2-14)

we can show that the blade boundary condition (4.2-19) is automatically

satisfied.

Finally, the other blade boundary condition, equation (4.2-18), is satisfied

by choosing the blade camber line f appropriately. We will call equation

(4.2-18) the "camber generator".

Substituting the choices of the coefficients Ar, 0.7, Cr ... into

the blade boundary conditions (4.2-18), we obtain

. . .

..- <' ..> V7T
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s(-r) V., : = S (T)( / Vo

+5(r) (A:v).7r . < V e

11COJ.- r) { S.,- -Af

+ f - (4.2-20)

This is a differential equation relating f and the coefficients A-r,
S-r , C r , ... . As in the "Zero-Thickness" problem, we can reduce the

above equation into an algebriac equation for (in the iterative sense).

Again, define

/.W
-fV(x)

V 1x

Then f- represents the mean streamline.

Also, define

Then, referring to equation (4.2-20), it can be shown that

Z C)YoT 7< - :(f)
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-A-
+z J . )r )( C r ) 3 [

7)(sT ) (r 

-s ! K (r

(T) + S (-tr) K

/ ).- Ar

. Cr

3/(-r] [ - CTfr ]

and finally

AT (71)

(FSd M )

2
y' gj

C,~ f)G* X-b

I

(-) 1 g(t) - I
( -M+ S Cr) sA

L Sy (t)

4- Cr(t)

- C+ .,+)()- -

Combining these equations together, the "camber generator" becomes

a(T) A I

E:LCr) A

V7
T

. 7r ci

where

F,50t M
+::0

I

- 5P

+- .5 (T) (75eh t )r

2-T4)+ Cos X. y+(7) - f(-)jS.t .D ]

[ A' (k)- 6, t) '()j
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Af (k) = 2-

- [L (T) +5(r) K(-r)1( 4
AS L IC~

(4.2-21)-A-

4.3 Iteration process for the blade camber line

We choose a very similar iteration scheme used in the "Zero-Thickness"

problem. The iteration process consists of calculating the coefficients A-r,

1r , C. , ... using equations (4.2-14). Then, update 9 and / using

equations (4.2-11) and (4.2-13). Finally, update using equation (4.2-21).

In quantitative forms,

1. Compute

+ VTX +~

(G++ /.-(Gi-+1 )A+- Af +2r

(4.3-1)

&T A1- 13r f11 / /

( 1 f +')

(F50 M )

1 .4. / 1, )

+ A r
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II I

- #, + C + 2. C,

2. Update

:T Icr Lcr) '(Cr

4 (T) (] (4.3-2)

dX -5 (T) T

In order to start the above iteration process, we need to know not only

an initial guess for ) , but also for and . A discussion of the

"physical" reprsentations of and 3 is given in Appendix D.

4.4 Numerical method

A computer program is written to solve the inverse problem using

"partial smoothing" (refer to section 3.4). As mentioned in section 4.3, the

iteration process for consists of, in "partial smopthing" forms:

1. Guess 7 , as:



~1

V1K ( siv .2irX - / )

-0 + (T) I(-r) ( r T

2. Compute

(+f/?,)
Gr S /'(V') + _ATf"

3. Update

/
# 2A4

(1 "F )

- .3(F50M)

4. Check for convergence. If not, go back to step 2 to recompute

Ar, 6 with the updated values of 41 , T/ and

..- and continue this process until convergence in is
achieved.

As in the "Zero-Thickness" problem, the convergence

used during the iteration process is, at every location

criteria for

weL

require

Y1.4

-f ( X-) ERROR

for convergence to succeed.

After convergence has been achieved, we proceed to calculate the pressure

coefficients on the blade surfaces defined by:

/

~ /

-51-

+

+ 

/ V--/

At

+ S(T) a (T AT41)A I
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2.

C 
__nsc

where V is defined in equation (4.2-16), and Vn. is defined as

Finally, in order to accelerate convergence, we pre-calculate all leading

and trailing edges variables needed in the iteration process. The flow chart

for the computer program is shown in table 4.

The above iteration process requires computing derivatives. Two methods

of computing derivatives were investigated: the Spectral method (Chebyshev

collocation) [7], [81, and the finite difference method (central difference). The

finite difference method was chosen over the Spectral method method because

it is numerically more stable.

Numerical problems were encountered in the iteration process for

Due to "partial smoothing", this method is not able to resolve the singular

point in the source/sink distribution at the leading edge. It was found that

when approximately 11 points (depending on the value of the spacing A )

are used in the calculation, convergence in f is achieved in about 10

iterations. When more than 11 points are used in the calculation, the

iteration process fails to converge. We propose to use a filter to resolve this

problem. Studies of this numerical problem and the filtering method are

discussed in Appendix E.
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- 4.5 Design choices

In our method, there are two main input parameters available to the

designer: The blockage distribution T(C) and the loading distribution

V. (X) . As an example, we use analytical forms for both T(x) and

V (X) as inputs to our numerical code.

4.5.1 Blockage distribution

In our numerical example, the blockage distribution TQC) is chosen to

be of the form

T (X) x)

We define the maximum blockage parameter BLOCK as

BLOCK Z mgx

We restrict ourselves to the case where T = 0 at the trailing edge.

If T (4 ) 4 0, then a stagnation point must exist at the trailing edge.

We do not think that this is a good model of the real flow. In the actual

low speed flow situation, the potential flow outside the boundary layer is

pushed away from the trailing edge by the presence of the wake. Therefore,

we think that the condition T (4) = 0 is a better model for the real

flow giving more realistic pressure coefficients at the trailing edge. This

condition require 4., > 1. We note that this is not the restriction of our

method. h can be any real number .
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4.5.2 Loading distribution

In our numerical example, the loading distribution is taken to be of the

form

VC
V., P X (I -x

where c, and a can be any real numbers.

With these design choices, we will be able to study some effects of the

blockage and loading distributions on the pressure coefficients at the blade

surfaces. A more practical way would be to read in the thickness and loading

distributions at discrete points and use a numerical method to compute their

derivatives and integrals.

4.6 Numerical results

In this section, we will first discuss the limitations of our current

numerical code. Then, we will attempt to close the loop for our method using

a direct method. Finally, some results are presented.

Limitations of the current numerical code

Our current numerical code (using the iteration scheme of section 4.4) is

limited to the following cases:

1. when the axial chord is divided into 10 intervals or less (< 11
points), -f converges without using the filter. Otherwise, the
filter is needed for convergence in f to succeed.
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2. when the spacing to chord ratio 4 is of the order of 1 and
greater, f converges slow and fails to converge when the
convergence criteria ERROR is less than /0- .

These problems can be resolved if many more terms in the smoothing

series (equation(4.2-3)) are kept so that the singular point at the leading edge

can be resolved. However, we decide not to do so because the idea of the

"smoothing" technique is to be able to achieve high accuracy using very few

terms in the smoothing series.

Closing the loop

Our design method is supposed to find the blade shape which is supposed

to do two specified jobs: a certain amount of circulation, and a certain

loading distribution. Given these two parameters and the blockage

distribution, our numerical code computes the corresponding blade shape and

pressure coefficients at the blade surfaces.

Does this blade profile actually do the specified jobs? In an attempt to

answer this question, we use a direct method to compute the circulation and

the pressure coefficients of the blade shape obtained from our indirect method.

If there are agreements in these results between the two methods, then we

succeed to close the loop for our design method.

We choose the direct method developed by McFarland [101. It makes use

of the panel method. The numerical code has many options, some of which

are what we need to perform the comparason.

In general, results of the comparason show that:

- for the individual pressure coefficients, there are good agreements
between the two methods ( . 5%) away from the leading and
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trailing edges (.1< )( <.9). Near the edges, the two results differ
substantially (see example discussed below).

- for the loading (or pressure difference across the blade) distribution,
the two results agree within 5%.

- for the circulation (or comparing the oulet angle), the two results

agree well within 5%.

An example of closing the loop for our design problem is now presented

We have taken the case where:

- inlet angle o( = 0

- outlet angle o(g = 45'0

- BLOCK = .1

- spacing A = .5

- T (-Y

- 'V X o (/.x)

Table 4 and 5 show the numerical results of our indirect method using

11 points and 41 points respectively. Note that the two results agree well

within the error of the numerical scheme used to compute derivatives. Figures

3 and 4 show the corresponding blade shapes and pressure coefficients.

The pressure coefficients for the above blade shape (obtained from our

indirect method) are calculated using the direct method. Two options in the

direct method program are used:

1. Option 1 - the inlet flow condition is specified, and the program
uses the Kutta condition to determine the outlet flow condition.

2. Option 2 - both the inlet and outlet flow conditions are specified
(or the circulation is specified).
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Table 6 shows the results obtained using option 1. The results show

that:

- the exit flow angle is 45.420, compared to the specified outlet angle
of 45*.

- the loading distribution is of the specified shape (figure 5).

Table 7 shows the results obtained using option 2. The results are very

similar to those obtained using option 1.

Figure 6 shows a comparason of the pressure coefficients obtained from

the direct and indirect methods. It shows that the two results agree well

away from the leading and trailing edges. Near these edges, the pressure

coefficients obtained from the direct method show oscillations. At the trailing

edge, because our blade shape is thin, the direct method fails to fit a curve

through the control points giving negative thickness. Consequently, the Kutta

condition at the trailing edge is not satisfied, and the results near the edges

are not to be trusted.

We conclude that the blade shape obtained from our design method

succeed to do the two specified jobs. We were unable to close the loop

completely, but the individual pressure coefficients obtained from the two

methods do have the same general shape.

Comparason of the "Zero-Thickness" and "Finite-Thickness"
results in the zero blockage limit

It is found that, in the limit of T(x ) going to zero, the blade camber

lines obtained from the two theories are not the same. Although the two

theories themselves are the same in this limit, the results are not the same
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because the "Zero-Thickness" problem does not predict the presence of a

stagnation point at the leading edge while the "Finite-Thickness" problem does.

Table 8 shows an example of how the camber lines obtained from the

two theories compare. Plots of these two blade camber lines are shown in

figure 7.

Effects of the spacing to chord ratio on the blade camber

Figure 8 shows the effects of the spacing to chord ratio I on the

blade camber line. As 4 increases, a smaller number of blades are

available to do the same job resulting in highly cambered blades.

Effects of the maximum blockage on the pressure coefficients

Figure 9,10,11 show the effects of increasing the parameter BLOCK (the

maximum blockage) on the pressure coefficients. We have taken the case

where:

- inlet angle = 0*

- outlet angle = 5

- spacing to chord 6 = 0.5

- T X (I -x)

As the parameter BLOCK increases, the flow near the maximum

thickness location (in this example X* = .33333) accelerates due to the

Venturi effect. This effect can result in highly unfavorable pressure gradients

at both the upper and lower surfaces if the loading distribution is not chosen
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properly. Figure 11 shows such a situation. A better loading

distributionshould be sought for this example to give more acceptable pressure

coefficients.

Rounded leading edge example

Figure 12 shows an example of an inlet guide vane having a rounded

leading edge. Compare with figure 10 (this is a fair comparason since all

inputs in the two cases are the same except for the blockage distribution), we

see that the effect of the rounded leading edge is to further overexpand the

fluid near the leading edge. However, we do not think the current numerical

code can resolve the rounded leading edge case accurately because of the

limitations on the size of the computational intervals.

4.7 Design procedure

The numerical code outlined in section 4.5 can be used to explore the

effects of blade loading and blockage distributions on the behavior of the

pressure coefficients at the blade surfaces. Given some design requirements,

the designer can use the above program to find the "best" blade shape using a

trial and error method.

In this section, we present an example of a design procedure using our

numerical code. Suppose that we wish to design inlet guide vanes which can

do the following jobs:

- the flow is to be turned from oei = 0" to 4 = 456, with a
spacing to chord ratio A = .5.
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- the blockage distribution is to have an analytical shape of the form

X ( I- X ) 2- with the maximum blockage parameter

BLOCK = 0.1.

We seek a loading distribution which gives "good" pressure coefficients at

the blade surfaces (in terms of minimizing flow separation). We start the trial

and error process by choosing the loading distributions which is

1. highly loaded near the leading edge (maximum at X* = .33333).
Figure 13 shows the corresponding blade shape and pressure

coefficients.

2. highly loaded at midchord. Figure 14 shows the corresponding
blade shape and pressure coefficients.

3. highly loaded near the trailing edge (maximum at X*, = .66666).
Figure 15 shows the corresponding blade shape and pressure

coefficients.

Comparing the results, we conclude that, for the above example, case 1

gives the "best" pressure coefficients. In general, results show that by loading

high near the leading edge, the corresponding pressure coefficients are "good".

Figure 16 shows an example of a compressor blade after going through the

above trial and error process. Figure 17 shows an example of an impulse

blade going after going through the same process.
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Chapter 5 : Conclusion

A two-dimensional design method for highly-loaded blades was presented

in this thesis. Singularities are distributed on the blade camber lines to model

the presence of the blades. The non-linear theory is based in part on the

Clebsh formulation. A "smoothing" technique was used to solve for the blade

boundary conditions. Numerical examples was presented using a "partial

smoothing" form of the iteration scheme for the blade camber lines.

It was found that when the blades are assumed to be infinitely thin, the

blade camber lines can be solved through an iteration process of a set of

algebriac equations. The iteration process converges very fast ('.7 seconds

CPU time on the Digital VAX-11 computer) for the typical solidity range

found in turbomachines. The results compare very well with those obtained

from an "exact" method.

When the blades are assumed to have finite thickness, the "partial

smoothing" form of the iteration scheme for the blade camber lines fails to

resolve the singular point at the blade leading edge accurately. In order to

get high accuracy, an infinite number of terms in the smoothing series would

have to be kept, making the "smoothing" technique less attractive compare to

other techniques. A practical numerical code based on a "partial smoothing"

form of the iteration scheme for the blade camber lines was presented giving

very fast convergence solutions (s. 10 seconds CPU time on the Digital

VAX-11 computer) with satisfactory accuracy.
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INPUT

SPACING S
INLET ANGLE
OUTLET ANGLE
NUMBER OF POINTS
PARABOLIC LOADING

= 0.75
= 0.000
= 45.000
= 21

INPUT PROPORTIONAL TO x(1-x)

CONVERGENCE HISTORY OF F(X)

ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER
ITER

# 1
3 2
# 3
# 4
# 5
# 6
#7
# 8
# 9
#10
#11
#12
#13
#14
#15
#16
#17

ERRXAX
ERRMAX
ERRMAX
ERRMAX
ERREAX
ERRMAX
ERRMAX
ERRMAX
ERRMAX
ERRMAX
ERRAX
ERRMAX
ERRMAX
ERREAX
ERRMAX
ERRMAX
ERRIM

0.01456
0.00336
0.00127
0.00039
0.00027
0.00013
0.00011
0.00007
0.00006
0.00004
0.00003
0.00003
0.00002
0.00002
0.00001
0.00001
0.00001

AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT
AT

0 90000
0.60000
0.45000
0.55000
0 45000
0 .40000
0 45000
0. 50000
0 45000
0.50000
0.45000
0.50000
0.45000
0.50000
0.45000
0.50000
0.55000

Table 1 : Numerical example of 'Zero-Thickness' problem

X FM(X) FLOW ANGLE F(X) BLADE ANGLE

0.00000 0.00000 0.00000 0.00000 -9.10520
0.05000 0.00012 0.41538 -0.00809 -9.27549
0.10000 0.00095 1.60386 -0.01633 -8.61382
0.15000 0.00312 3.47644 -0.02324 -6.47547
0.20000 0.00720 5.93741 -0.02768 -2.95814
0.25000 0.01367 8.88065 -0.02841 2.22304
0.30000 0.02295 12.18862 -0.02380 8.79703
0.35000 0.03537 15.73517 -0.01293 15.43656
0.40000 0.05120 19.39206 0.00382 21.19087
0.45000 0.07062 23.03761 0.02583 26.04913
0.50000 0.09375 26.56504 0.05269 30.19280
0.55000 0.12062 29.88813 0.08403 33.76094
0.60000 0.15120 32.94323 0.11954 36.83603
0.65000 0.18537 35.68779 0.15893 39.48203
0.70000 0.22295 38.09645 0.20192 41.75705
0.75000 0.26367 40.15600 0.24821 43.68834
0.80000 0.30720 41.86034 0.29744 45.27878
0.85000 0.35312 43.20571 0.34918 46.50883
0.90000 0.40095 44.18653 0.40285 47 31881
0.95000 0 45012 44.79155 0.45763 47 54620
1.00000 0 50000 45.00000 0.51216 47 42213
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INPUT

SPACING S = 0.75
INLET ANGLE = 0.000
OUTLET ANGLE = 45.000
PARABOLIC LOADING INPUT PROPORTIONAL TO x(1-x)

Table 2 : Comparason of 'smoothing' and 'exact' results

EXACT SMOOTH EXACT SMOOTH
X F F BLADE ANGLE BLADE ANGLE

0o00000 0.00000 0.00000 -6.36362 -9.10520
0.05000 -0.00733 -0.00809 -8.77228 -9 27549
0.10000 -0.01498 -0.01633 -7 83866 -8.61382
0 15000 -0 02102 -0.02324 -531557 -6.47547
0.20000 -0 02428 -0.02768 -1.64080 -2.95814
0 25000 -0 02390 -0.02841 2.90811 2.22304
0 30000 -0 01923 -0.02380 8.06026 8.79703
0 35000 -0 00979 -0.01293 13.51490 15.43656
0 40000 0 00475 0.00382 18.96298 21.19087
0 45000 0 02450 0.02583 24.13298 26 04913
0 50000 0.04947 0.05269 28.83133 30 19280
0 55000 0.07947 0.08403 32.95549 33 76094
0 60000 0.11423 0.11954 36.48344 36 83603
0 65000 0 15338 0.15893 39.44676 39 48203
0 70000 0.19650 0.20192 41.90393 41.75705
0 75000 0 24316 0.24821 43.91742 43.68834
0 80000 0 29288 0.29744 45.53462 45.27878
0 85000 0 34517 0.34918 46.77274 46 50883
0 90000 0 39940 0.40285 47.59450 47.31881
0 95000 0 45473 0.45763 47.84251 47 54620
1.00000 0 50954 0.51216 46.68512 47 42213
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Inputs

Compute
Edge

Variables

Guess
f, 6', V'

Compute

A , B

Update

, ', f

No

converges?

< Yes

Compute
C

p

STOP

Table 3 Flow chart for the 'Finite-Thickness' problem
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INPUT PARAMETERS

UAX. BLOCKAGE 0.10000
EPACING = 0 500CO
INLET ANGLE = 0 00000
OUTLET ANGLE = 45 00000

NIBER OF POINTS IJK = 11
MAX. NUMBER OF ITERATIONS ALLOWED = 20
MAX. ERROR IN F(X) ALLOWED ERRMAX =
FILTERING OPTION = 0

0.000001

AND LOADING PARAMETERS
00
00
50
00

ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION

9
9
3
9
a
a

I------ERRMAX
2------ERRMAX
3------ERRMAX
4-------ERRUA1
5------ERRMAX
6------ERRMAX

=0.00376
=0. 00048
=0 00013
=0.00002
=0.00000
=0. 00000

AT X = 0.10000
AT X = 0.10000
AT X = 0.10000
AT X a 0.10000
AT I = 0.10000
AT X = 0.10000

X LOAD(X) () FM(X) F(X) Cp+ Cp-

00000
10000
20000
30000
40000
50000
60000
70000
80000
90000
00000

0 00000
1 09742
1 .37954
1 47839
1 46323
1 36328
1 19472
0 96783
0 68977
0 36581
0 00000

0 00000
0 01367
0 02160
0 .02481
0 02430
0 02109
0 01620
0 01063
0 00540
0 00152
0 00000

0.00000
0.00259
0.01335
0.03600
0.07164
0.12073
0.18316
0.25817
0 34412
0.43835
0.53713

0. 00000
-0.01371
-0.00982
0 01488
0. 05381
0.10615
0.17181
0.24986
0 33873
0.43595
0.53751

1 00000
0.21609
0.32123
0.35421
0.30674
0.21504
0.09294

-0.05235
-0 21089
-0.37577
-0.55867

1 .00000
-0 83669
-1.00828
-0 91697
-0'86721
-0.85185
-0.83185
-0 80053
-0.74507
-0.66037
-0 55867

Table 4 Numerical example of 'Finite-Thickness' problem
(without filter)

BLOCKAGE
A 1
B 2
C= 0
D 1

0
0
0.
0
0.
0
0.
0
0
0
1
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INPUT PARAMETERS

MAX. BLOCKAGE - 0.10000
SPACING a 0.50000
INLET ANGLE a 0.00000
OUTLET ANGLE * 45.00000

NUMBER OF POINTS IJK - 41
MAX. NUMBER OF ITERATIONS ALLOWED a 10
MAX. ERROR IN F(X) ALLOWED ERRMAX a

FILTERING OPTION a I

BLOCKAGE AND LOADING PARAMETERS

ITERATION
ITERATION
ITERAT ION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION
ITERATION

#
U
U
U
U

#

#

U
#
U

I------ERRMAX
2------ERRMAX
3------ERRMAX
4------ERRMAX
5------ERRMAX
6------ERRMAX
7------ERRMAX
8------ERRMAX
9------ERRMAX
10------ERRMAX

0.000100

se.01 190
-0.00676
-0.00388
=0.00223
=0.00127
a0. OW074
=0.00041
=0.00024
a0. 000 13
80.00009

AT
AT
AT
AT
AT
AT
AT
AT
AT
AT

LOAD(X) T(X)

0.00000
0.58000
0.79921
0.95307
1.07077
1.16390
1. 23856
1.29845
1.34604
1.38307
1.41086
1.43040
1.44248
1.44776
1.44677
1.43995
1.42769
1.41031
1.38810
1.36131
1.33017
1.29487
1. 25558
1.21248
1. 16570
1.11538
1.06164
1.00459
1.4433
0.889116
0.81-156
(1. 7-4522
0.b7302
0.59802
0.52030
0.43991
0.35692
0.27138
0. 18335
0.09287
0.00000

0.00000
0.00401
0.00761
0.01083
0.01367
0. 01615
0 .01829
0.02010
0.02160
0.02280
0.02373
0.02439
0.02481
0.02499
0.02495
0.02472
0.02430
0.02371
0.02297
0.02209
0.02109
0.01999
0.01879
0.0 1753
0 .0 1620
0.01483
0.01344
0.t - 1203
0.111063

0.(A4791
It 00662
o.00540
0.00426
0.00323
0.00231
0.00152
0.00088
0.00040
0.00010
0.00000

FM(X) F(X)

0.00000
0.00009
0.00048
0.00133
0.00273
0.00474
0.00741
0.01076
0.01484
0.01966
0.02523
0.03159
0.03873
0.04667
0.05543
0.06501
0.07541
0.08664
0.09870
0. 11159
0.12531
0. 13986
0. 15523
0. 17141
0. 18838
0.20613
0.22465
0.24390
0.26387
0 28452
0.30582
0.32773
0.35021
0.37320
0. 39667
0.42055
0.44478
0.46931
0. 49406
0.51896
0.54394

0.00000
-0.00398
-0.00772
-0.01066
-0.01245
-0.0 1297
-0.01217
-0.01010
-0.00680
-0.00234

0.00322
0.00982
0.01742
0.02599
0.03550
0.04592
0.05724
0.06943
0.08249
0.09639
0.11112
0. 12667
0. 14303
0.16016
0. 17804
0. 19667
0.21600
0.23602
0.25670
0.27800
0.29990
0.32237
0.34537
0.36888
0.39287
0.41729
0.44213
0.46732
0. 49282
0.51855
0.54434

Cp+ Cp-

1.00000
0.50002
0.00085
0.03782
0.08002
0. 13205
0. 17935
0.22816
0.27418
0.31633
0.34597
0.354196
0.34936
0. 32412
0.30901
0.30709
0.29402
0.27274
0.24809
0.22259
0. 19656
0.16941
0. 14059
0. 10993
0.07753
0.04360
0.00838

-0.02793
-0.06516
-0. 10315
-0. 14174
-0. 18080
-0.22020
-0.25988
-0. 29980
-0.34003
-0.38069
-0.42202
-0.46446
-0.50899
-0.55891

1.00000
0.24987

-0.61389
-0.66715
-0.71882
-0.75553
-0.79703
-0.83309
-0.86304
-0.88633
-0.90261
-0.91166
-0.91365
-0.90880
-0.89827
-0.88303
-0.86644
-0.85046
-0.84213
-0.83885
-0.83721
-0.83899
-0.83399
-0.82897
-0.82351
-0.81760
-0.81086
-0.80297
-0.79369
-0.78285
-0.77030
-0.75593
-0.73968
-0.72153
-0.70 153
-0.67980
-0.65653
-0.63202
-0.60669
-0.58137
-0.55891

Table 5 Numerical example of
(with filter)

'Finite-Thickness' problem

A
B
C
D

1.00
2.00
0.50
1.00

X
X
X
X
X
X
X
X
X
X

0.02500
0.02500
0.02500
0.02500
0.02500
0.02500
0.02500
0.02500
0.02500
0.02500

X

0.00000
0.02500
0.05000
0.07500
0. 10000
0. 12500
0. 15000
0. 17500
0.20000
0.22500
0.25000
0.275043
0.30000
0.32500
0.35000
0.37500
0.40000
0.42500
0.45000
0.47500
0.50000
0.52500
0.55000
0.57500
0.60000
0.62500
0.65000
0.67500
0.70000
0.72500
0.75000
0.77500
0. svokm
0.82500
0.85000
0.87500
0.90000
0.92500
0.95000
0.97500
1.00000

==
=
=

=
=
=
-
=
=
=
=
=
=
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CONTROL CONTROL POINT COORDINATE
POINT X Y

1
2
3
4
5
6
7
8
9

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

UN IFORM

0.987487
0.962497
0.937506
0.912511
0.887515
0.862519
0.837522
0.812525
0.787528
0.762531
0.737534
0. 712537
0.687539
0.662542
0.637544
0.612547
0.587549
0.562550
0.537552
0.512553
0.487553
0.462554
0.437553
0.412553
0.387552
0.362550
0.337548
0.312545
0.287541
0. 262536
0.237530
0.212523
0.187514
0.162502
0. 137490
0.112476
0.087465
0.062461
0.037470
0.014985
0.002499
0.002500
0.015400
0. 037500
0.06250 1
0.087505
0.112510
0.137514
0.162518
0.187521
0.212523
0.237525
0.262526
0.287527
0.312529
0.337530
0.362531
0.387533
0.412534
0.437536
0.462537
0.487538
0.512539
0.537540
0. 562540
0. 587541
0.612541
0.637541
0.662540
0.687540
0.712539
0.737539
0.762538
0.787537
0.812536
0.837535
0.862534
0.887533
0.912531
0.937527
0.962521
0.987512

ERROR iEPS) a

0.531406
0.505435
0.479427
0.4535 IS
0.427783
0.402295
0.377107
0.352270
0.327831
0.303837
0.280335
0.257369
0.234986
0.213232
0. 192150
0.171783
0.152174
0.133362
0. 115385
0.098279
0.082078
0.066815
0.052520
0.039225
0.026961
0.0 15759
0.005653
-0.003320
-0.011118
-0.0 17693
-0.022990
-0.026944
-0.029482
-0.030524
-0.029992
-0.027823
-0.023995
-0.018570
-0.011764
-0.004866
-0. 404 I828
0.0 )441 I
0.000041

-0.004047
-0.000039
0.000588
0.012081
0.0114531
0.007946
0.012296
0.017535
0.023614
0.030492
0.038138
0.046526
0.055641
0.065472
0.076015
0.087267
0.099228
0. 111899
0.125281
0. 139374
0.154177
0. 169688
0. 185903
0.202814
0.220415
0.238695
0.257642
0.277243
0.297486
0.318356
0.339838
0.361918
0.384581
0.407811
0.431589
0. 455891
0.480684
0.505916
0.531485

SOURCE NORMAL
DENSITY VELOCITY

-0.327305
-0.329590
-0.328757
-0.326162
-0.322227
-0.317136
-0.310993
-0.303809
-0.295573
-0.286240
-0.275760
-0. 264055
-0.251053
-0.236684
-0.220876
-0.203552
-0.184650
-0.164110
-0.141866
-0.117855
-0.092026
-0.064315
-0.034663
-0.003003
0.030739
0.066643
0.104813
0.145361
0. 188412
0.234096
0. 282508
0. 333655
0.387351
0.443059
0.499690
0.555407
0.607521
0.652563
0.685564
0.700727
0.709200

-0.448950
-0.451883
-0.457399
-0.442719
-0. 414927
-4).381 196
-0.345486
-0.310129
-0.276276
-0.244315
-0.214207
-0.185719
-0.158562
-0. 132463
-0.107195
-0.082593
-0.058547
-0.034989
-0.011901
0.010708
0.032818
0.054374
0.075340
0.095655
0.115273
0. 134157
0.152273
0. 169601
0.186136
0.201884
0.216868
0.231109
0.244641
0.257491
0.269679
0.281197
0.292010
0.302015
0.311029
0.318635
0.323538

0.000000
0.00000
0.0144)00
0.00 x)0
0.00004)0
0. 04)0000
0.000400
0.0404)00
0. 0W10
0.004)00
0.0.X)00
0.00)000
0.0000A)0
0.0044)40
0.004)000
0.001)00
0.00041)0
0.00)4o0
0 .00)000
0.000000
0.000000
0.000400
0. OW000
0.00X)00
0. 000000
0.00 14)
0.00)040W
0.000000
0.40414X10
0. 000000
0.000000
0 .04)4000
0.000000
0.000000
0.00000
0.0N0000
0.0 1000
0.0 x4x10
0.040A1)0
0.04 L%)410
0.04N4%400
0.004440
0.004X)0
0.00 144
0.00000
0.000)000
0. 044K410

0.of M %)0
0.01440
0.0)4)440

0.04x10
0.000000
0.0)000
0.04(N %)00
0.001410
0.00)00
0.00)000
0.044)4)00
0.00%)000
0.0~0000
0.04000
0.04.14x)00
0.0004)00
0 .00)4100
0.0))0o
0.000000
0.)4.11000
0.0)00400
0.04)0000
0.001000
0.0 (4))4
0.0 )44)0
0.0141414)
0.01414)4)
0.0)414)0
0.0414100
0.000000
0.4)0000
0.014141
0.00414)0
0.00000

TANGENTIAL PRESSURE
VELOCITY COEFFICIENT

-1.003151 -0.006311
-1.579879 -1.496018
-1.173611 -0.377364
-1.3179A)3 -0.736867
-1.304845 -0.702619
-1.312181 -0.721820
-1.316798 -e.733958
-1.3211)21 -0.745096
-1.324733 -0.754919
-1.3284028 -0.763659
-1.330985 -0.771520
-1.333702 -0.778762
-1.336256 -0.785580
-1.338725 -0.792184
-1.341169 -0.798733
-1.343636 -0.805356
-1.346141 -0.812096
-1.348704 -0.819002
-1.351329 -0.826091
-1.354002 -0.833322
-1.356702 -0.840639
-1.359482 -0.847975
-1.362056 -0.855198
-1.364601 -0.862137
-1.366939 -0.868523
-1.368936 -0.873986
-1.370391 -0.877972
-1.371003 -0.879651
-1.370336 -0.877822
-1.367744 -0.870723
-1.362293 -0.855842
-1.352654 -0.82%74
-l'.337004 -0.787580
-1.312949 -0.723835
-1.277559 -0.632158
-1.227688 -0.507219
-1.159363 -0.344123
-1.073582 -0.152578
-0.9418*498 0.175357
-0.993459 0.013040
-0.201021 0.959591
0.587520 0.654821
0.925071 0.144244
0.765250 0.414393
0.771431 0.404895
0.755696 0.428923
0.745731 0.443885
0.741692 0.44993
0.742463 0.448749
0.746854 0.442210
0.753821 0.431754
0.762583 0.418467
0.772603 6.403)84
0.783536 0.386071
0.795173 0.367700
0.807401 0.348104
0.820164 0.327331
0.833439 0.305379
0.847222 0.282214
0.861516 0.257791
0.876309 0.232082
0.891593 0.205062
0.907342 0. 176731
0.923510 0.147129
0. 944)051 0.116304
0.956890 0.084361
0.973947 0.051427
0.991135 0.017650
1.008358 -0.016786
1.025518 -0.051686
1.042525 -0.086858
1.059300 -0.122116
1.075786 -0.157315
1.091943 -0.192339
1.107753 -0.227118
1.123289 -0.261779
1.138090 -8.295250
1.156313 -0.337059
1.150741 -0.324205
1.227682 -0.507203
1.189794 -0.415610
1.242529 -0.543878

-0.7478'754E-03

CL m -0. 9088286
CD a 0. 2866034E-02
CIRCULATION - -0.4525191

POTENTIAL FL0 VELOCITY DIAGRAM
U PSTREAM VELOCITY - 0.89175 AT 0.00004 DEGREES
ONSET VELOCITY - 1.00000 AT 26.90546 DEGREES
DOWNSTREAM VELOCITY * 1.27056 AT 45.42360 DEGREES

*0@ NOTE: ALL VELOCITY QUANITIES ARE SCALED BY THE ONSET VELOCITY

Table 6 Results from direct method
(inlet condition specified)
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CONTROL
POINT

1
2
3
4
5
6
7
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DOUNSTREAM VELOCITY * 1.26491 AT 45.40)00 DEGREES

060 NOTE: ALL VELOCITY QUANITIES ARE SCALED BY THE ONSET VELOCITY 0*

Table 7 Results from direct method
(circulation specified)

PRESSURE
COEFFICIENT

-0.022692
-1.312211
-0.392604
-0.705682
-0.684161
-0.7106631
-0.722451
-0.736880
-0.749704
-0.761153
-0.771416
-0.78)740
-0.789322
-0.797387
-0.805123
-0.8 12696
-0. 82i 187
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0.253303
0.227456
0.21 11289
0.171798
0.142024
0.111014
0.07872
0.045724
0.011716

-0.022972
-0.058149
-0.093629
-0. 129239
-0. 164848
-0.211367
-0.235768
-0.271227
-0.3)5949
-0.348266
-0.344814
-0.5 10496
-0.442516
-0.606364
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INPUT

BLOCK = 0.0000
SPACING S = 0.75
INLET ANGLE = 0.000
OUTLET ANGLE = 45.000
PARABOLIC LOADING INPUT PROPORTIONAL TO x(1-x)

Table 8 Comparason of 'Zero-Thickness' and 'Finite-Thickness'

results in the zero blockage limit

x F( ) F( )
finite zero

thickness thickness
result result

0.00000 0.00000 0.00000
0.05000 -0.00849 -0.00809
0.10000 -0.01803 -0.01633
0.15000 -0.02680 -0.02324
0.20000 -0.03334 -0.02768
0.25000 -0.03620 -0.02841
0.30000 -0.03347 -0.02380
0.35000 -0.02376 -0.01293
0.40000 -0.00761 0.00382
0.45000 0.01410 0.02583
0.50000 0 04083 0.05269
0.55000 0.07215 0.08403
0.60000 0.10770 0.11954
0 65000 0.14715 0.15893
0 70000 0.19020 0.20192
0.75000 0.23654 0.24821
0 80000 0.28581 0.29744
0 85000 0.33757 0.34918
0 90000 0.39123 0.40285
0.95000 0.44600 0.45763
1.00000 0.50053 0.51216
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Figure 2 : Blade camber and mean streamline
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Figure 3 Blade shapes obtained from
'Smoothing' technique
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Figure 4 Pressure coefficients obtained from
'Smoothing' technique
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Figure 5 Pressure coefficients obtained from
direct method
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Figure 10 Effects of maximim blockage on Cp's
(BLOCK = 0.1)
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Figure 11 Effects of maximum blockage on Cp's
(BLOCK = 0.25)
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Figure 12 : Rounded leading edge inlet guide vane
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Figure 13 Effects of loading distribution on Cp's
(maximum loading at x = 1/3)
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Figure 14 Effects of loading distribution on Cp's
(maximum loading at x = 1/2)
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Figure 16 : Compressor blade
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Figure 17 : Impulse blade
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Appendix A : The Relationship between the Swirl Schedule and

the Pressure Difference across the Blade

Consider the cascade geometry shown below

Y+

dl~

Under the assumption of incompressible, inviscid and uniform inlet flow

condition, Bernoulli's equation is valid everywhere. We can write:

P+ 1p0-

Therefore

4AW d -E olwi approximati (A-i)

We can do the following approximation:

(V- + V,) a VT
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estimate ( \a -/ ), we consider the circulation along the closed

- - shown in the figure. From Kelvin's theorem, we can write

+ ++(A-2)

ff 4 fT
I'-

/ 9,) CA =-- -01 -r~) YV(X)

~0

where

=AX V J + ( 1')1

Substitute the above relations into (A-2), we obtain

and thus, in the limit of

Sv)V+

(4 -IT) Vr(K+ Ax) J

X -. 0

-I

Therefore, equation (A-1) reduces to

and we conclude that the pressure difference across the blade is directly

proportional to the swirl schedule V . We will call V the swirl

schedule or the loading distribution.

To

path@ -

Now {*-T

fr

.2~

-7

Pi AX

4T) VT I (X-#AX)

V t 4-
t1V OV
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Appendix B The Bound Vorticity

In this appendix, we will show the relationship between the bound

vorticity (vortices distributed on the blade camber lines to model their

presence) and the swirl schedule (or the gradient of the pitch average velocity

defined in chapter 2).

d1+ +

~@Y

A

Ldl+x

~ ~;0% 0

The flow is assumed to be incompressible and inviscid, and the far

upstream flow is assumed to be uniform. The flow is thus irrotational and

the vorticity must lie on the blade camber lines (see figure above). Therfore,

we require:

.JL . vco dt

Moreover, by vector identity

0 (B-1)
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07. - . 0 (B-2)

To satisfy both equations (B-1) and (B-2) and the conditon that the vorticity

direction must be normal to the x-y plane (2D assumption), we can write the

vorticity field as

-OL = A (.C) ( 7K( x 7&) (B-3)
~0V

where is the "periodic delta" function defined in Appendix C.

To find out what G is, consider the circulation around path C shown

in figure. we may write, by Stokes theorem,

V. Ott J. .of A (B-4)

C A
Note that the line integrals along path and cancel out each other exactly,

and by substituting equation (B-3) into the right hand side of equation (B-4),

along with the definition of the pitch average velocity, we can show that

and finally, by taking the limit as -). 0 , 6- in equation (B-3) is

defined as

G- - V
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Appendix C The Periodic Generalized Functions

The "periodic delta" function, the "sawtooth" function and the

"smoothing" functions are constructed in this appendix.

1. The "periodic delta" function

The "periodic delta" function may be expressed in a Fourier series of the

form

where 4 is the spacing between

the blade camber's surfaces.

bA / lr

blade camber lines, and c< represents

The plot of

-2.4

SP

- A

It has the property

fA y- ) (

for any integer Yt

looks like

W . W

vsO(

(() I

0

.0 0

A 3 A

/-10

v 91p-
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2. The "sawtooth" function

The "sawtooth" function may be expressed in a Fourier series of the

form

A Zitw

5(OC) =7T e

2-7 7L 1
(A

The plot of S vs oc looks like

I - .4

-2
A4 -A 0

\ 4
26

134

Its properties are:

- It has first derivative related to the "periodic delta" function by

3 1) = 4 (0 -- I

- It has zero average between O lines

= o
(V1-1) 4

- It has a jump in magnitude of A
crossed

everytime an oC surface is

- It reduces to a - polynomial form when (t -i) A < o<

4 
/ for any integer n. .Its polynomial form being

2.-
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3. The "smoothing" functions

The "smoothing" functions k (c)

:k&~) =Z
where

Their properties are:

- they have derivatives of the forms

17 1 k(& :I=j 4

- they have zero average between o

are defined as

k

VOs

lines

f P4C
- they have polynomial forms in thE

t, A for any integer it.

2I2

I3 (0) K (me)
720

intervals (rt.-)A <

-I- -

4-

PC

2<.

S---- - -
2 - 12. 2-9-

0

1123 ; tf

W 0
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Appendix D The "Physical" Representations of and 5
In this appendix, we will show the "physical" representations of

-A and . We will also find the strength of the vortices, sources and

sinks which model the presence of the blades.

Consider the pitch average velocity V of the 'Finite-Thickness'

problem. By definition

using equation (4.2-16) for , can be shown to be

+ A (D-1)V VX( Vr~)j
Since V-r x and Y.V are the gap average velocity components,

and -- S represent the x-component and y-component of the

"imaginary" flow in the "blade" region respectively. We expect these variables

to be proportional to the blockage distribution.

Consider the curl of V

V7 y ( \ _ ) (D-2)

In chapter 2, we have shown that if the vorticity is distributed along the

blade camber, then its strength is related to the gradient of the y-component

of the pitch average velocity. Equation (D-2) is indeed the case.

Consider the divergence of

vb V V +s- (D-3)-- /

Since the flow is incompressible, ( V. + ) represents the source/sink
S/ /

distribution. Note that the boundary conditions ( V + ) = 0

(equation(4.2-17)) at X = 0 and X = 1 are the conditions required for

the blade profile to close there.
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Appendix E Numerical Difficulties

In this appendix, we will attempt to understand the convergence problem

encountered in the iteration process for the blade camber line -f when

"partial smoothing" is used. We study the mathematical behavior of

and Y .

By combining A 13-, , and in the "partial smoothing"

forms of equations (4.3-1) and (4.3-2), we arrive at the following boundary

value problems:

) ( .)X -+ f(x)T - X.+

= V-rX - - + 12x) f (++ (3-(E-1)

with boundary conditions

X'(o) -. 0

and0

and

with

-({)- Y + F(x)}-'i(3-f'') Y'+ Y

V 
-9 + F(x) -2( /+ j')X -/I- (E- 2)

boundary conditions

(0) 0

where

x

-

=- VX 4
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F') 7(T (
Since itself is a function of and ,we have a boundary value

problem consisting of two coupled non-linear second order ordinary differential

equations. In solving them iteratively, we expect that certain difficulties can

arise.

The strut problem

We study the mathematical behavior of/S and S by first consider

the case where . is identically zero everywhere, but ~ is finite. This

is the case of a symmetric blade (or a strut). In this case, K is also

identically zero everywhere, and the above boundary value problem reduces to

ZFc-r) ()
4/ Z --- V(- - (E-3)

()0) TX-X r
with boundary conditions

-I/

VTx (i)

Consider the homogeneous solution of the above differential equation by

assuming to be of the form

Substituting it into equation (E-3), we obtain

Assume e " << 6' . Then
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J~ii)

Consider the case where A << 1. Then, by definition

and thus

.scr) AT

It can be shown that under the assumption of < 1, we can say

that E (T) and the assumption E" is justifiable, except

perhaps near X = 0 or 1.

Finally, we can write

'#V

As an example, let

) 2. A (bLOCK) X(..)

where BLOCK is defined in subsection 4.5.1 . Then, it can be shown that

//J AJ 4e.A" JLDCK

With the assumption that A << 1, we conclude that can

be a highly oscillating function, having a "natural frequency" of the order of

At AL(('
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Finally, we look at the amplitude of . By definition, i.e. equation

(4.2.13) in "partial smoothing" form

i 14 T...S TIf) 7b

Therefore, the above analysis shows that behaves like

(AT)

/~ /
and thus, the source/sink distribution ( + ) oscillates.

A computer program was written to solve the differential equation (E-3)

using the Chebyshev collocation technique [71, [8]. Numerical results show that

oscillates with a natural frequency in agreement with the above analysis.

In classical aerodynamics we know that, for a smooth blade with finite

thickness, the source/sink distribution used to model its presence should exhibit

like a "sine" wave with a singular point at the leading edge. Numerically, in

order to resolve this singular point, we would need an infinite number of terms

in the smoothing series. We conclude that in the case of "partial smoothing"

(by using only two terms in the smoothing series), we are unable to represent

the usual source/sink distribution. However, such a representation is also not

necessary.

Accordingly, we will call ( V. + ) the "modified" source/sink

distribution, and show that it can be used to produce corresponding blade

shapes satisfactorily. Thus we seek a practical method for the design problem,

using "partial smoothing", without necessarily having to go into more extensive

mathematical development.



-100-

The loaded blade problem

From the above discussion of the strut problem, we expect expect both

and to have oscillating behaviors when the blades are loaded.

Two iteration schemes for f were investigated using "partial smoothing".

We note that equations (E-1) and (E-2) have certain symmetry. Rewrite

them in operator forms:

I ~(E-4)

where

~~~T i0 1 C(.f'(÷]

- l (; ,*b )T

,st~.V +-
The boundary conditions remain the same as in equations (E-1) and (E-2).

Method 1

In this method, we attempt to solve equations (E-4) simultaneously for

/ and i using the Chebyshev collocation technique.

We express

(E-4) into matrix forms:

and 'S as Chebyshev series and convert equations
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- 95,3

which can be arranged in the form

[A] Ij~
2

bIs

are solved by inverting

{S13

the above matrix using an IMSL

subroutine [9].

Results show that when more than approximately 11 collocation points

are used in the calculation, convergence in ) cannot be achieved. and

V are found to oscillate and their Chebyshev coefficients fail to converge.

When around 51 points or more collocation points are used in the calculation,

the iteration process diverges rapidly. Two conclusions can be made from the

results of this method:

1. 4 and Y pocess oscillating behavior as predicted by the
analysis of the strut problem. By using more than 51 collocation
points, the numerical calculation tries to resolve the Gibbs
phenomenon at the leading edge, but fails to do so because of
"partial smoothing".

2. The iteration process can diverge rapidly because of the very
nature of the iteration process. We note that even though we are
solving X and Y simultaneously, we are in effect solving
equation (E-4) iteratively because - and its derivatives are

[A]

andX

[Ar j I Y j - [61f Yi
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updated at every iteration. We can therefore look at the iteration
process of method 1 as if we were attempting to solve for

.( and Y in the following manner:

a. First update

b. Then update

where vL- is the iteration level in the iteration process for f .
Since operators 0i and are both expected to have normal
mode solutions of oscillating behavior, we conclude that there is a
chance for a driven reasonance to occur during the iteration
process for -f- , which can lead to divergence of the iteration
scheme itself. We think that this is indeed the case. When too
many terms are kept in the Chebyshev series, higher modes are
present resulting in a greater chance for reasonance to occur.
When fewer terms (around 10) are kept in the Chebyshev series,
we are staying away from the natural frequency of the operators
J( and 4L resulting in a stable iteration process.

Method 2

In this method, we use the iteration process described in section 4.3

Derivatives are computed numerically using two methods: Chebyshev

collocation method, and finite difference method. Numerical results show that

similar problems as in method 1 were encountered here. This should be

expected, as observed above, because iterations are being used.

We decided to use method 2 for our design method because of two

reasons



-103-

1. method 2 is much more efficient than method 1 (faster, cheaper
and simpler). In method 1, we are required to invert a matrix at
each iteration of + . In method 2, we are required to compute
derivatives instead.

2. method 2 can easily be modified if we wish to keep more terms in
the smoothing series. Equations (E-1) and (E-2) are only valid when
the first two terms in the smoothing series are kept.

Finally, the finite difference scheme (central difference) is used to

compute derivatives because it is numerically more stable than the Chebyshev

collocation method.

A computer program was written using the above method. It is found

that when around 11 points are used in the calculations, convergence in

-fl is achieved in about 10 iterations. When more than around 20 points

are used in the calculation, 4 fails to converge. In order to resolve this

problem, we propose to use a filter. The calculation procedure is:

1. when more than 11 points are used in the calculation, iterate for
using a "filter".

2. when 11 points or less are used in the calculation, iterate for
without using the "filter".

Filtering method

Two different "filters" are developed for the above iteration scheme:

1. f is filtered using a least-squares chord-wise fitting method
[10]. The combination ( ' + 4'-- A-f) in equation (4.2-22) is
filtered using a fourth order polynomial. The motivation for using
a polynomial curve fitting method is that we expect itself be
represented by a polynomial of low order.

2. the pressure coefficients are filtered by taking the average of the
maximum and minimum envelopes of the CP curves. The
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C p curves are filtered only near the leading edge region (0 <
X < .4). The envelopes are constructed by straight lines going
through the maximum and minimum points of the Cp curves.
This procedure has been chosen to date for its simplicity, it clearly
admits improvement possibilities near the leading edge. But, till
now at least, this approach has compared adequately with known
results (see Text).
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Appendix F : Computer Code of "Zero-Thickness" problem

C ******************** e***********S******
C* *
C * PROGRAM NAME THIN FOR *
C * MAIN PROGRAM FOR INVERSE DESIGN OF COMPRESSOR BLADES *
C * 2-D INCOMPRESSIBLE. INVISCID, INFINITELY THIN THE *
C * LOADING DISTRIBUTION IS OF PARABOLIC FORM.
C. *

C * INPUTS S - SPACING
C * ALP1 - INLET ANGLE (DEGREE) *
C%* ALP2 -'OUTLET ANGLE (DEGREE) s

C * IJK - NUMBER OF POINTS
C * ITER - MAXIMUM NUMBER OF ITERATIONS ALLOWED *
C * ERR - CONVERGENCE CRITERIA 9ERROR*
C *
C *********************S************************

REAL X(101) .VMY(101) ,DVMT(1O1) .DDVMY (101) .FM(101) .A(101)

l.DA(1O1),FNEW(101).F(1O1).DF(1O1) .DDF(101).PLOT(3.101)
COMMON/SAOAI.BO.B1.PI. IJK.X.NMAX.COR

C
C READ STATEMENT
C

READ(1.*)S.ALP1.ALP2. IJK. ITER.ERR
WRITE(2. 50)S.ALP1.ALP2. IJK

so FORMAT(SX.'SPACING S = '.F6 3/5X.'INLET ANGLE ALPI = '.F7 3/
15X.'OUTLET ANGLE ALP2 = '.F7 3/SX,'NUMBER OF POINTS IJK =
1.13///)

C
C INITIALIZE VARIABLES FOR CALCULATION PURPOSE
C

NMAX=20
PI=3 141592654
RAD=57 29577951
TAN1=TAN( 017453294*ALP1)
TAN2=TAN( 017453294*ALP2)
XI JK=I JK-1
DX=1 /XIJK
XX=I +DX
SUM=0
DO 5 N=1.IJK
XN=N
SUM=SUM+(1 /(XN*XN))

5 CONTINUE
COR=1 6449341/SUM

C
C COMPUTE COMPUTATIONAL LOCATIONS
C

DO 10 1=1.IJK
J=1I JK+1-I
XX=XX-DX
X(I)=XX
PLOT (3, J)=X(I)

10 CONTINUE
C
C COMPUTE INPUT FOR PARABOLIC LOADING CASE
C

DO 15 I=1.IJK
J=IJK+I-I
XX=X(I)
CONST=6 *(TAN2-TAN1)
ViY(I)=CONST*( 5*XX*XX-XX*XX*XX/3 )+TAN1
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DV!Y(I)=CONST*XX*(1 -XX)
DDVMY(I)=CONST*(1 -2 *X)

FM(I)=CONST*(XX**3/6 -XX**4/12.)+TAN1*XX
PLOT(1.J)=FM(I)
DF(I)=VUY(I)
DDF(I)=DDVMY(I)
DEN=1 +DF(I)*DF(I)
F(I)=FM(I)+ 08333333*S*S*DYMY(I)*(-1.*DF(I)*DF(I)/DEN)

is CONTINUE
FNEW(IJK)=0
F(IJK)=0

C
C START ITERATION PROCESS FOR CAMBER LINE

OLDERR=100
DO 1 NIT=1.ITER

C
C COMPUTE A AND ITS DERIVATIVE
C

DO 100 I=1.IJK-1
DEN=I +DF(I)*DF(I)
A(I)=-DF(I)*DVIjY(I)/DEN
TERM1=-DEN*(DDF(I)*DVMY(I)+DF(I) *DDVMLT(I))
TERM2=2 *DF(I)*DF(I)*DDF(I)*DVMY(I)
DA(I)=(TERM1+TERM2)/DEN

100 CONTINUE
C
C COMPUTE EDGE VALUES
C

DEN0=1 +DF(IJK)**2
DEN1=1 +DF(1)**2
90=DDVMY(IJK)*(1 -2 *DF(IJK)*DF(IJK)/DENO)/DENO
B1=DDV1!Y(1)*(1 -2 *DF(1)*DF(1)/DEN1)/DEN1
AO=-2 *DF(IJK)*DDVMY(IJK)*(1 -DF(IJK)*DF(IJK)/DEN)/DENO
Al=-2 *DF(1)*DDVI-Y(1)*(I.-DF(I)*DF(I)/DENI)/DENI

C
C UPDATE CAMBER LINE F(X)
C

XNORM=-2 *FSU"J(IJK.F)/S
ERR*IAX=0
SUMERR=O
XLOC=-1
DO 101 I=1.IJK
DF(I)=VMY(I)+ 08333333*S*S*(-DDVYI(I)-A(I)*DDF(I)-DA(I)*DF(I))
1-2 *DFSUM(I.F.DF)/S

101 CONTINUE
DO 102 I=1.IJK-1
FNEW(I)=FM(I)+ 08333333*S*S*(-DV!Y(I)-A(I)*DF(I))-2 *FSUM(IF)/S
1-XNORM
ERROR=ABS(FNEW(I)-F(I))
SUMERR=SUMERR+ERROR
IF(ERROR GT ERRMAX)XLOC=X(I)
IF(ERROR GT ERRVAX)ERRMAX=ERROR

102 CONTINUE
C
C CHECK FOR CONVERGENCE IN F(X)
C

WRITE(2.55)NIT.ERRMAX.XLOC
55 FORMAT(1OX, 'ITER #'.I2.' - ERRMAX = .F7 5

1.' AT X = '.F8 5)
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AVGERR=SUMERR/XIJK
IF(ERRMAX.GT (1 1*OLDERR))WRITE(2.54)AVGERR

54 FORMAT(//2X.'***** ITERATION SCHEYE DIVERGES 'III

1 2X.' AVERAGE ERROR = ',F9.5)
IF(ERRMAX GT .(1 1*OLDERR))GO TO 998
IF(ERRMAX.LE ERR)GO TO 998

C
C UPDATE VALUES FOR NEXT ITERATION
C

DO 103 I=1.IJK-1
F(I)=FNEW(I)

103 CONTINUE
OLDERR=ERRMAX

C

1 CONTINUE
C
998 CONTINUE
Ck
eC OUTPUT
C

aRITE(2.60)
60 FORMAT(//T10,'X'.T25,'FM'.T37.'FLOW ANGLE'.T55.'F'.T67

1.'BLADE ANGLE'/)
DO 501 I=1.IJK
J=IJK+1-I
PLOT(2.I)=FNEW(J)
ANGLFM=RAD*ATAN(VMY(J))
ANGLF=RAD*ATAN(DF(J))
WRITE(2.61)X(J).FM(J).ANGLFM.FNEW(J).ANGLF

61 FORMAT(5(5X.F10 5))
501 CONTINUE
C

C CALL JCF PLOTTING SUBROUTINE
C

CALL QPICTR(PLOT.3.IJK.QT(1,2),QX(3).QLABEL(4)
1.QYLAB('BLADE (#2] - MEAN STREAMLINE (#1]')
1.QXLAB('AXIAL LOCATION X'))

C
STOP
END

C
C ***** ****es************.s**s*.*** *****s*
C
C COMPUTE FUNCTION FSUM
C

FUNCTION FSUY(I.F)
REAL F(101).X(101)
COMMON/S.AO.A1.BO.BI.PI.IJK.X.NMAX.COR
REAL LAMDM
SUM=
DO 100 M=1.N)AX

LAY.'DM=2 *PI*.I/S
DELFO=(F(I)-F(IJK))*LADM
DELF1=(F(I)-F(1))*LA!DM
TO=EXP(-LAMDM*X(I))/LAUDM*s3
T1=EXP(-LAMDM*(1 -X(I)))/LAMDM**3
TERMO=BO*COS(DELFO)+AO*SIN(DELFO)
TERMI=-B1*COS(DELF1)+AI*SIN(DELF1)
SUM=SUM+TO*TERM0*T1*TERM1
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Appendix G Computer Code of "Finite-Thickness" problem

C
C a
C * PROGRAM NAME THICK FOR a
C * MAIN PROGRAM FOR INVERSE DESIGN OF COMPRESSOR BLADES *
C * 2-D INCOMPRESSIBLE,INVISCID WITH FINITE THICKNESS *
C * USING THE CENTRAL DIFFERENCE METHOD TO COMPUTE a
C * DERIVATIVES a
C *

C
REAL X(101). T(101) ,DT(101).DDT(101).RS(101), RI (101).RJ(101)
1 ,VMX(101) .DVMX(101) ,DDVIIX(101) .VMT(I01) .DVMT(101)
1.DDVMY(101) . FM(101) .F(101) .FOLD(101) .DF(101) .DDF(101)
1. BETA (101) . DBETA (101) . DDBETA(101) .DELT (101) .DDELT (101)
1.DDDELT(101) .PHIHXB(101) .PHIHTB(101) ,DPHIHX(101) .DPHIHT(101)
1, XLOAD(101) .XILOAD(101),.CPT(101).CPB(101)
1, T(101),VXT(.101),VTT(101).VXB(101).VTB(101).PLOT(6, 101)
1. AAAI (10. 10) . OSC (101) , SMOSC (101), SMCF(100).OPT (101)
1.A(101).DA(1O1).DDA(101).8(101).DB(1O1)
REAL LAMDM
COMMON/COMM1/S. AO, A1. BO. Bl. PI
COMMON/COMM2/T, DT, DDT, RS.RI .R J.DVMX.DVMT.DDVMX.DDVMTI.FM
READ(5.*)BLOCK. S.ALP1.ALP2. IJK.NMAX. ITER,ERR.CA.CB.CC.CDNOPT
1. IPO'EER.BLADETBLADEB.PRESST.PRESSB
WRITE(1. 1)BLOCK.S. ALP1. ALP2. IJK, ITERERR.NDPT.CA.CBCC.CD

1 FORMAT(///SX. 'INPUT PARAMETERS'//TS. 'MAX BLOCKAGE = '.
IF10 S/T5.'SPACING '.F1O.5/T5.'INLET ANGLE = '.F10 5/
1T5,'OUTLET ANGLE = ',F10 5//
1T5. 'NUMBER OF POINTS IJK = '.13/
1T5. 'MAX NUMBER OF ITERATIONS ALLOWED = ',13/
iTS.'MAX ERROR IN F(X) ALLOWED ERRMAX = '.F10 6/
1TS. 'FILTERING OPTION = ',I1//T7. 'BLOCKAGE AND LOADING PARAMETERS'/
1T9.'A = '.F5.2/T9.'B = '.F5.2/T9.'C = '.F5.2/T9.'D = '.F5 2//)

C
C INITIALIZE VARIABLES FOR COMPUTATION
C

PI=3 141592654
RALP1= 017453293*ALP1
RALP2= 017453293*ALP2
RAD=57 .29577951
TAN1=TAN(RALPI)
TAN2=TAN(RALP2)
VYN= 5*(TAN1*TAN2)
VONSET=( +VYN**2)** 5
AMPT=S*BLOCK/(2 *((CA/(CA+CB))**CA)*((CB/(CA+CB))**CB))
XIJK=IJK-1
DX=1 /XIJK
XX=1 +DX
SUM=0
DO 666 N=1.NMAX
XN=N
SUM=SUM+(1 /(XN*XN))

666 CONTINUE
COR=1 644934068/SUM

C
C COMPUTE LOCATION
C

DO 20 I=1.IJK
XX=XX-DX
X(I)=XX
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20 CONTINUE
IF(NOPT.EQ.1)CALL SMAI(IJK.IPOWERXAAAI)

C
C COMPUTE THICKNESS INPUT
C

T(IJK)=0
T(I)=O
DO 21 I=2.IJK-1
XX=X(I)
T(I)=AMPT*(XX**CA)*(1 -XX)**CB

21 CONTINUE
CALL DERIV(IJKDX.T.DT)
DT (I)=0.
CALL DERIV(IJK.DX.DTDDT)

C
C COMPUTE INPUT LOADING
C

XLOAD(IJK)=0
XLOAD(1)=0
DO 22 I=2.IJK-1
XX=X(I)
XLOAD(I)=(XX**CC)*((1 -XX)*OCD)

22 CONTINUE
C
C GENERATE Y-COMPONENT GAP-AVERAGE VELOCITY
C

XLOADO=O.
CALL XINT(IJK.DX.XLOADO.XLOADXILOAD)
AMPV=(TAN2-TAN1)/XILOAD(1)
DO 23 I=1.IJK
VMY(I)=AMPV*XILOAD(I) +TAN1
DV!L'!(I) =AMPV*XLOAD(I)

23 CONTINUE
CALL DERIV(IJK.DX.DVMY.DDVMT)

C
C COMPUTE FUNCTIONS
C

DO 2 I=1.IJK
XX=X(I)
RS(I)= 5*S-T(I)
RI(I)=-(S*S/12 )+( S*S*T(I))-( 5*T(I)**2)
RJ(I)=-(S*S*T(I)/12.)+(.25*S*T(I)**2)-(T(I)**3/6.)
VMX(I)= 5*S/RS(I)
DVMX(I)=( 5*S*DT(I))/(RS(I)**2)
DDVMX(I)=( 5*S*DDT(I)/RS(I)**2)+(S*DT(I)**2/RS(I)**3)
DF(I)=VMY(I)/VMX(I) '
DDF(I)=(VMX(I)*DVMY(I)-VMY (I)*DVMX(I))/VMX(I)**2

2 CONTINUE
FM0=O
CALL XINT(IJK.DX.FMODF.FM)

C
C CALL SUBROUTINE TO COMPUTE EDGE VALUES
C

DDTH=2 *DDT(1)/S
RIO=RI (1)
VMY1=VMT ()
DDVLXI=DDVMX (1)
DDr1=DDV'Y (l)
FM1=FM(1)
DF1=VY(1) /VMX(1)
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F1=FM(1)
CALL EDGE(ERRNMAXS,TAN1.TAN2.DDTHRIOVMY1,DDVMX.DDVMY1
1. FI, FO, Fl. DFO. DFi. AO, Al. BO. B. CCR)
FOLD(IJK)=F0
FOLD(1)=F1
DF(IJK)=DFO
DF(I)=DF1
F(IJK)=F0
F(1)=F1

C
C GUESS F FOR ITERATION PURPOSE
C

DELFO=-2 *FSUM(IJK.FOLD.T.RSX..NMAX. COR)/S
DO 130 I=2.IJK-1
TER91=RJ(I)+RS(I)*RI(I)
TERM2=(-DVMY(I)-DF(I)*DVLX(I))/( +DF(I)**2)
DELF=-2 *(TERMI*TERM2+FSUV (I.FOLD.T.RSX.NMAX.COR))/S
FOLD(I)=FM(I)+DELF

130 CONTINUE
CALL DERIV(IJK.DX.FOLD.DF)
DF(IJK)=DFO
DF(1)=DFI

C
C CALL GUESSING SUBROUTINE FOR DBETA AND DDELT
C

CALL GUESS(IJK.S.X.T.DVMX.DDVYX.DBETADDBETA.DDELT.DDDELT)
C

WRITE(2.10)
10 FORMAT(5X.'GUESS INPUTS'//TIO.'X'.T25.'F'.T40.'BETA'.T55.'DELT'

1.T70. 'DXIX' . T85, 'DYY'/)
DO 11 J=1.IJK
I=IJK+1-J
DXX=DVMX(I)+DBETA(I)
DYY=-DVI.Y(I)+DDELT(I)
TRITE(2.12)X(I).FOLD(I),BETA(I),DELT(I).DXX.DTY

12 FORMAT(6(SX.F10 5))
11 CONTINUE

C ITERATION PROCESS FOR CAMBER LINE
C

NNNN=O
OLDERR=100
OLDER=100
DBETA (I JK)=-DVMX (I JK)
DBETA(1)=-DVMX(1)
DDELT(IJK)=DVM T(IJK)
DDELT(1)=DVMY(1)
DO 999 NNN=1.ITER
NNNN=NNNN+l

C
CALL HOMOB(NMAX.IJK.FOLD.T.RS.XPHIHXB.PHIHYB.COR)
CALL DERIV(IJKDX.PHIHXB.DPHIHX)
CALL DERIV(IJK.DX.PHIHYB.DPHIHY)

C
DO 110 I=1.IJK
DEN=1 *DF(I)**2
A(I)=(DF(I)*(-DVVY(I)+DDELT(I))+DMX(I)+DBETA(I))/DEN

110 CONTINUE
CALL DERIV(IJK.DX.A.DA)
CALL DERIV(IJK.DX.DA.DDA)
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C
DO 111 I=1.IJK
DEN=1 +DF(I)**2
B(I)=(DDVMY(I)-DDDELT(I)+A(I)*DDF(I)+2 *DA(I)*DF(I))/DEN

111 CONTINUE
CALL DERIV(IJK.DX.B.DB)

C
DO 112 I=2.IJK-1
TERM=DT(I)*(RS(I)*RI(I)+RJ(I))/RS(I)**2
DBETA(I)=RJ(I)*(DDA(I)-DB(I)*DF(I)-B(I)*DDF(I))/RS(I)
1+TERM*(DA(I)-B(I)*DF(I))-DPHIHX(I)
DDELT(I)=-RJ(I)*DB(I)/RS(I)-TERM*B(I)+DPHIHY(I)

112 CONTINUE
CALL DERIV(IJK.DX.DBETA.DDBETA)
CALL DERIV(IJK.DX.DDELT.DDDELT)

C
C COMPUTES CAMBER LINE
C

DO 155 I=1,IJK
OSC(I)=(-DVMY(I)+DDELT(I)-DF(I)*(DVMX(I)+DBETA(I)))/(1.+DF(I)**2)
OPT(I)=OSC(I)

155 CONTINUE
IF(NOPT.EQ 1)CALL SMOOTH(IJK.IPOwER.X.AAAI.oSC.sMOSC)

C
ERRMAX=0
SUMERR=0
XLOC=-1
DO 160 I=2.IJK-1
TERM1=RJ(I)+RS(I)*RI(I)
IF(NOPT EQ.1)OPT(I)=SMOSC(I)
DELF=-2 *(TERI1*OPT(I)+FSUM(I.FOLD.T.RS.XNMAXCOR))/S
F(I)=FM(I)+DELF-DELFO
ERROR=ABS(F(I)-FOLD(I))
SUL!ERR=SUMERR+ ERROR
IF(ERROR GT ERRMAX)XLOC=X(I)
IF(ERROR GT ERRMAX)ERRMAX=ERROR

160 CONTINUE
CALL DERIV(IJKDXF.DF)
DF(IJK)=DFO
DF(1)=DF1

C
C WRITE CONVERGENCE
C

IF(NOPT EQ 1)GO TO 165
WRITE(C.162)NNNNERRMAX.XLOC

162 FORYAT(15X. 'ITERATION #'.13.'- -. 'ERRMAX ='.F7 5
1.' AT X = '.F8 5)
IF(ERRMAX GT (1 .3*OLDERR))WRITE(1.163)AVGERR

163 FOR"AT(//2X. ***** ITERATION SCHEME DIVERGES 1''' *
1 2X.' AVERAGE ERROR = ',F9 5)
IF(ERRLAX GT (1 3*OLDERR))GO TO 998
IF(ERRMAX LE ERR)GO TO 998
GO TO 169

C
165 ERRAVG=SUMERR/XIJK

WRITE(1.166)NNNNERRAVG
166 FORMLAT(15X. 'ITERATION 8'.13.'------'.'ERRAVG ='.F7 5)

IF(ERRAVG.LE ERR)GO TO 998
C
C UPDATE VALUES
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C
169 DO 170 I=2.IJK-1

FOLD(I)=F(I)
170 CONTINUE

OLDERR=ERRMAX
OLDER=ERRAVG

C
999 CONTINUE
C
998 CONTINUE
C
C WRITE
C

WRITE(I.60)
60 FORMAT(//T1O. 'X'.T24. 'LOAD(X)'.T40. 'T(X)'.T55. 'FM(X)'.T70. 'F(X)'/)

DO 501 I=1.IJK
J=IJK+1-I
PLOT(1. I)=X(J)
PLOT(2.I)=F(J)
PLOT (3. I)=F(J)+T(J)
PLOT(4.I)=F(J)-T(J)
PLOT(S.I)=BLADET
PLOT(6.I)=BLADED
TER'=AMPV*XLOAD(J)
WRITE(1,61)XJ), TERM.T(J).FM(J).F()

61 FORMAT(5(5X.FIO 5))
501 CONTINUE

CALL QPICTR(PLOT.6.IJK.QY(2.3,4.5.6).QXU1).QLABEL(14)
1.QYLAB('BLADE SHAPE'),QXLAB('AXIAL LOCATION X'))

C
WRITE(2.70)

70 FORMAT(//X. 'OUTPUT'//T10. 'X'.T25. 'F'.T40. 'BETA'.T55. 'DELT'
1.T70,'DXX'.T85.'DY'/)
DO 71 J=1.IJK
I=IJK+1-J
DXX=DVi.X(I) +DBETA(I)
DTY=-DViY(I)+DDELT(I)
IF(NOPT EQ 0)WRITE(4.75)DBETAJ).DDELT(J)

75 FOR1-AT(2(2X.F1O 5))
RITE(2.72)X(I).F(I),BETA(I).DELT(I).DXX.DTT

72 FORMAT(5(5X.F10.5))
71 CONTINUE
C
C CALCULATE PRESSURE COEFFICIENT
C .

DO 800 1=1,IJK
T(I)=F(I)+T(I)

800 CONTINUE
CALL VEL(IJK,NMAX.COR..Y.FDF.DDF.RS.RI.RJ.PHIHXB.PHIHYB
1 .VX. DVX. DDVMX. VMY. DVW!. DDVMY. DBETA, DDBETA. DDELT. DDDELT
1.VXT.VTT)
DO 801 I=1.IJK
T(I)=F(I)+S-T(I)

801 CONTINUE
CALL VEL(IJK.N1AX.CR.X.YF.DF.DDF.RSRI.RJ.PHIHXB.PHIHYB
1 %.AlX.DV'MX.DDVMXVMYDVMYDDVEY.DBETADDBETA.DDELT.DDDELT
1,VXBVYB)
TRITE(I.799)

799 FORMAT//T10. 'X'.T25. 'Cp+'.T40. 'Cp-'.T53. '(delta)P'/)
DO 802 I=1.IJK
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VT=(VXT(I)**2*TT(I)**2)** 5
VB=(VXB(I)**2+VYB(I)**2)**.5
CPT(I)=1.-(VT/VONSET)**2

r CPB(I)=1.-(VB/VONSET)**2
802 CONTINUE
C
810 DO 804 I=1.IJK

J=IJK+1-I
DIFF=ABS(CPT(J)-CPB(J))
PLOT(2.I)=CPT(J)
PLOT(3.I)=CPB(J)
PLOT(4.I)=PRESST
PLCT(5.I)=PRESSB
WRITE(3. *)X(J).CPT(J).CPB(J).DIFF
WRITE(1.805)X M).CPT ().CPB(J).DIFF

805 FORMATC4(SX.F10 5))
804 CONTINUE

CALL QPICTR(PLOT.6.IJK,QT(2.3.4.5).QX(1).QLABEL(14)
1.QYLAB('PRESSURE COEFFICIENT Cp').QXLAB('AXIAL LOCATION X'))

C
C WRITE BLADE SHAPE TO A FILE FOR USE IN THE NASA DIRECT METHOD
C

DO 900 l1,IJK
WRITE(6.*)X(I)

900 CONTINUE
DO 901 I=2.IJK
J=IJK+1-I
WRITE(6. )X(J)

901 CONTINUE
DO 902 I=1.IJK
BSURF=F(I)-T(I)
WRITE(6.*)BSURF

902 CONTINUE
DO 903 1=2.IJK
J=IJK+1-I
TSURF=F(J)+T(J)
WRITE(6.*)TSURF

903 CONTINUE
C

STOP
END

C
C
C
C THIS FUNCTION COMPUTE FSU!(I)
C

FUNCTION FSUM(I.FOLD.T.RS.X.NMAXCOR)
REAL FOLD(101).T(101).RS(101).X(101)
CC21ON/COM1/S.AO.A1.B0. BDl.PI
REAL LA!DM
SUVA=0
DO 100 M=1.NMAX

LA!M1D^=2 *PI*XM/S
DELFO= (FOLDI) -FOLD (I JK)) *LAMDM

DELF1= (FOLDI)-FOLD(1))*LAMDM
TTT=SIN(LAMDMT(I)) /LAlDM+RS(I)*COS(LAMDM*T(I))
TO=TTT*EXP(-LAMDM*X(I))/LAMD**3
T1=TTT*EXP(-LAMDM*(1.-X(I)))/LAMDM**3
TERMO=B0*COS(DELFO)+AO*SIN(DELFO)
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TERM1=-B1*COS(DELF!)+AI*SIN(DELF1)
SUM=SUM+TO*TERMO+T1*TERM1

100 CONTINUE
FSUM=CDR*SUM
RETURN
END

C
C *s***********ss******s******ss*********s*
C

SUBROUTINE DERIV(IJK.DXF,DF)
REAL F(101).DF(101)
DF(IJK)=.S*(-F(IJK-2)+4 *F(IJK-1)-3 *F(IJK))/DX
DF(1)= 5*(3 *F(1)-4 *F(2)+F(3))/DX
DO 1 1=2.IJK-1
DF(I)=.S*(F(I-1)-F(I+1))/DX

1 CONTINUE
RETURN
END

C
C sgs***********g***********gs**s*************s***g*****
C

SUBROUTINE XINT(IJK.DX.XINTFO.F.XINTF)
REAL F(101) .XINTF (101)
SUM=XINTFO
XINTF(IJK)=SUM
DO 1 1=2.IJK
J=IJK+I-l
SUPM=SUM+ 5* (F (J)+F (J+1))*DX
XINTF(J)=SUM

I CONTINUE
RETURN
END

C
C *..*.**.s*.*e..s**.*s...se***********.s*os*.s**ss,*ss*ss*
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C
C SUBROUTINE EDGE EDGE FOR
C THIS SUBROUTINE CALCULATE EXACT LE AND TE VALUES
C IN ORDER TO ACCELERATE CONVERGENCE IN F(X)
C

SUBROUTINE EDGE(ERR.NLAX.S.TAN1.TAN2.DDTH,RIOVMY1
1,DDVMX1.DDVMT1.FM.FO.Fl.DFO.DF1.AO.A1.BO.B1.COR)
REAL LAMDM
PI=3 141592654

SF0=0
DFO=TANI
IC=0

100 SUMOI=O.
SUM11=0.
SUM02=0.
SUM22=0.
SUM03=0.
SUM33=0

SUM=O
DO 101 M=1.NMAX
XM=M
LAiDM=2 *PI*XM/S
DELF=LAMDM*(FO-Fi)
CC=EXP (-LADM) /LAMDM**2
SUMSIN=CC*SIN(DELF)
SUCDS=CC*COS(DELF)
SUMO1=SUM01+COR*SUMSIN
SUM11=SUM1 1 +COR*SUMCOS
SU102=SUU02*COR*SUMSIN/LAMDM
SUM22=SU22+COR*SUMCOS/LAMDM
SUM03=SUM03+COR*SUMSIN*LAMDM
SU-33=Sl233+COR*SUMCOS*LAMDM
SUMO0=SUM0O+COR/LAMDM**3
SU=SUM+CDR/LAMDM

101 CONTINUE
Z1=RIO*DDTH-(1 -DF1**2)
ZZZ=-(2 /RIO)*(SUMOI**2-SUM1I**2)
Z2=(- 5*RIO+ZZZ)*DDTH
Z22=( 5*RIO+ZZZ)*DDTH
Z3=(4 /RIO)*SUMO1*SUM11*DDTH
SA1=((2 *DDTH*(SUM1I+TAN1*SUM01))/RIO-DDVMXI)
SA2=((-2 *DDTH*(SUMO1-TAN1*SUM11))/RIO-DDVMI1)
SA3=ZI-Z2
SA4=2 *DF1+Z3
SA22=Z1-Z22
DEN=SA3*SA22+SA4*SA4
A1=(SAl*SA22+SA2*SA4)/DEN
B1=(SA2*SA3-SAI*SA43/DEN
A0=2 *(-A1*SUA111-B1*SUMO1-1 )/RIO
BO=2 *(A1*SULOI1-B1*SUM1I-TANI)/RIO
XNORM=-BO*SUMWO-A1*SU202+B1*SUM22
FTE=FM1-B0*SUL22+A0*SUM02+91*SUMOO-XNORM
DPHIHY=-SUM*BO+SUM33*BI-SUM03*A1
DPHIHX=SUU*AO-SUM03*B1-SUM33*A1
RATIO=(2 *DPHIHX-S*Ao)/(DPHIHX**2-.25*S*S*AO)
DFLE= 5*DPHIHY*RATIO
XNL".!TE=VT'1+ 75*B1*RIO+B0*SUM11+AO*SUM01
DENTE=1 * 75*A1*RIO+BO*SUL01+A0*SUM11
DFTE=XNUTE/DENTE
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ERI=ABS(FTE-F1)
ER2=ABS(DFTE-DF1)
ER3=ABS(DFLE-DFO)
F1=FTE
DFO=DFLE
DF1=DFTE
IC=IC+1
IF(ER1 GT.ERR.OR.ER2.GT.ERR.OR.ER3.GT.ERR)GO TO 100
RETURN
END
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C
C SUBROUTINE NAME GUESS FOR
C THIS SUBROUTINE INITIALIZE BETA AND DELTA
C TO START THE ITERATION PROCESS OF F(X)
C

SUBROUTINE GUESS(IJK. S,X, T.DVIMX.DDVMXDBETA. DDBETA.DDELT.DDDELT)
REAL DBETA(101).DDBETA(101).DDELT(101).DDDELT(101).DVMX(101).DVMY(101)
1.DDVMX(101) .DDVMY (101) .X(101) .T(101)

C
PI=3 141592654
DO 1 I=1.IJK
XX=X(I)
TCOS=COS(2 *PI*XX)
TSIN=SIN(2 *PI*XX)
DBETA (I)=-DVMX (I)*TCOS
DDBETA(I)=-DDVMX(I)*TCOS+2 *PI*DVUX(I)*TSIN
DDELT(I)=O.
DDDELT(I)=0.

1 CONTINUE
C

RETURN
END
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C
C SUBROUTINE NAME HOMOB FOR
C THIS SUBROUTINE CALCULATES THE HOKOGENEOUS
C TERMS PHIHXB AND PHIHYB
C

SUBROUTINE HOMOB(NMAXIJK.FT.RS,XPHIHXBPHIHYB.COR)
REAL F(101),X(101).T(101)RS(1O1)PHIHXB(1O1),PHIHTB(101)
CO'&ON/COMM1/SAOA1,BOB1.PI
REAL LAMDM
DO 200 I=1,fJK
SU'4X=o
SUMY=O
DO 100 M=,1NMAX
XM=M
LAM=2.*PI*XM/S
DELFO=(F(I)-F(IJK))*LADM
DELF1=(F(I)-F())*LADM
XSIN=SIN(LAMDM*T(I))
EXPO=EXP(-LAMDM*X(I))
EXPI=EXPC-LAMDM*(1 -X(I)))
SINO=SIN(DELFO)
SIN1=SIN(DELF1)
COS0=COS(DELF0)
COSI=COS(DELF1)
TO=XSIN*EXPO/LAMDM**3

T1=XSIN*EXP1/LAMDM**3
SUilX=SUMX+T0*(DO*SIN0-A0*COS0)+T1*(B1*SINI+AI*COS1)
SUMY=SUTY+TO*(-BO*COSO-AO*SINO)+T1*(-D1*COSI+A1*SIN1)

100 CONTINUE
PHIHXB(I) =COR*SUMX/RS (I)
PHIHYB(I)=COR*SUMY/RS(I)

200 CONTINUE
RETURN
END
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C
C SUBROUTINE NAME VEL.FOR
C THIS SUBROUTINE COMPUTES THE VELOCITY FIELD
C IN THE CASCADE REGION (REGION 2)
C

SUBROUTINE VEL(IJK,NMAX.COR,X.Y.FDF.DDF.RSRI.RJ.PHIHXB.PHIHYB
1. VmX, DVMX. DDVMX, VUY, DVMY, DDVMY. DBETA.DDBETA. DDELT, DDDELT. VX. VT)
REAL X(101).Y(101).F(101).DF(101).DDF(101).RS(101).RI(101).RJ(101)
1.PHIHXB(101).PHIHYB(101).VMX(101).DVMX(101).DDVMX(101).VMY(101)
1,DVY(101),DDVY(101).DBETA(101).DDBETA(101).DDELT(1O1)DDDELT(101)
1.VX(101).VY(101).TYX(101).TVT(101).AX(101).BX(101)
1.PHIHX(IO1).PHIHT(101)
COMMON/CO9M1/S.A0,A1.80,B.1PI

C
CALL HOMO(NMAX.IJK.F.X.Y.PHIHX.PHIHY.COR)

C
AX(IJK)=AO
AX(1)=A1
BX(IJK)=B0
BX(1)=B1
DO 200 1=2.1]K-1
DEN=(1 +DF(I)**2)**3
Xl=2.*DF(I)*(l +DF(I)**2)
X2=1 -DF(I)**4
X3=DDF(I)*(1 -3 *DF(I)**2)
X4=DF(I)*DDF(I)*(3 -DF(I)**2)
DXX=DVMX(I)+DBETA(I)
DDXX=DVIX(I)+DDBETA(I)
DYY=-DVMY(I)+DDELT(I)
DDTY=-DDVMY(I)+DDDELT(I)
AX(I) =(X1*DDYY+X2*DDXX+X3*DYY-X4*DXX)/DEN
BX(I)=(-X2*DDYY+X1*DDXX+X4*DYY+X3*DXX)/DEN
TVX(I)=(DYY-DF(I)*DXX)/(1 +DF(I)**2)
TVT(I)=(DXX+DF(I)*DYY)/(1 +DF(I)**2)

200 CONTINUE
C

DO 100 I=1.IJK
ALPHA=T(I)-F(I)
RSY= 5*S-ALPHA
RIY=-(S*S/12 )+( 5*S*ALPHA)-( 5*ALPHA**2)
CCC=RJ(I) /RS(I)
TERP!X=RSY*TVX(I)+(CCC+RIT)*AX(I)
TERMY=RSY*TVY(I)+(CCC+RIT)*BX(I)
VX(I)=VMX(I)+PHIHX(I)-PHIHXB(I)+TERMX
VY(I)=VMY(I)+PHIHY(I)-PHIHYB(I)+TERMY

100 CONTINUE
C

RETURN
END
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C
C SUBROUTINE NAME . HOMO FOR
C THIS SUBROUTINE CALCULATES THE HOMOGENEOUS
C TERMS PHIHX AND PHIHY
C

SUBROUTINE HOMO(NMAXIJ.FX.YPHIHX.PHIHY.COR)
REAL F(101).X(101).Y(101).PHIHX(101).PHIHY(101)
COLMON/COMM1/S, A0,A, .30, BPI
REAL LAMDM
DO 200 I=1.IJK
SUMX=O.
SUMY=0
DO 100 M=1,NMAX
XM=M
LAMDM=2.*PI*XM/S
DELFO=(Y(I)-F(IJK))*LAMDM
DELF1=(T(I)-F())*LAMDM
EXP0=EXP(-LAL'DM*X(I))
EXPI=EXP(-LAMDM*(1 -X(I)))
SINO=SIN(DELFO)
SIN1=SIN(DELFI)

COSO=COS(DELF0)
COS1=COS(DELFI)
T0=EXP0/LAMDM**2
TI=EXPI/LADM**2
SUIX=SUMX+TO*(-BO*SINO+AO*COSO)+T*(B1*SIN1+A1*COSI)
SUTY=SUMY+TO*(BO*COSO+AO*SINO)+T1*(BI*COSI-AI*SINI)

100 CONTINUE
PHIHX(I)=COR*SUMX
PHIHY(I)=COR*SUMY

200 CONTINUE
RETURN
END
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C
C SUBROUTINE NAME - SMOOTH FOR
C THIS SUBROUTINE SMOOTH A GIVEN FUNCTION F(X)
C USING A MODIFIED LEAST-SQUARE SCHEME
C

SUBROUTINE SMOOTH(IJK.IORDER.X.AI.FSMF)
REAL X(1o1).F(101).SMF(1o1).AI(10.10).B(10),SMCF(10)

C
DO 400 J=1.IORDER-1
SUM=0.
DO 500 I=1.IJK
SUM=SUM+(F(I)-F(IJK))*X(I)**J

500 CONTINUE
B(J)=SUM

400 CONTINUE
B(IORDER)=F(1)-F(IJK)

C
DO 100 I=1.IORDER
SUM=0
DO 200 J=1,IORDER
SUM=SUM+AI(I. J) *(J)

200 CONTINUE
SMCF(I)=SU 9

100 CONTINUE
C

DO 600 I=1.IJK
SUM=F(IJK)
DO 700 J=1,IORDER
SUM=SUM+SMCF(J)*(X(I)**J)

700 CONTINUE
SMF(I)=SUM

600 CONTINUE
C

RETURN
END
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C
: SUBROUTINE NAME SMAI FOR
C SUBROUTINE USED TO GENERATE MATRIX [ AI
C USED IN THE LEAST-SQUARE FITTING FILTER
C

SUBROUTINE SMAI(IJK.IORDER.X.AI)
REAL AI(10.10).B(10).WKAREA(20).X(1O1).XM(1g)

C
DO 100 I=2.2*IORDER
SU1d=0
DO 200 J=1,IJK
SU=SLA+X(J)**I

200 CONTINUE
XM(I-1)=SUM

100 CONTINUE
C

K=O
DO 10 I=1.IORDER
DO 20 J=1.IORDER
AI(I. J)=XM(K+J)

20 CONTINUE
K=K+1

10 CONTINUE
DO 300 J=i1.IORDER
AI(IORDER.J)=1.

300 CONTINUE
C

D1=-I

CALL LINV3F(AI.B.1.IORDER.10.DI.D2.WKAREA.IER)
C

RETURN
END
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C
C SUBROUTINE NAME : FILTER FOR
C THIS SUBROUTINE FILTER THE PRESSURE
C COEFFICIENTS
C

SUBROUTINE FILTER3(IJK.X.F.FFILT)
REAL X(101).F(101).FT(101).XT(101).FB(101),XB(101),FFILT(101)
XIJK=IJK-1
PI=3 141592654
DX=1./XIJK
IJ=(IJK+I)/2

C
NB=O
NT=0
I=IJ-1

100 I=I+1
IF(I GT. (IJK-1))CO TO 999
IF(F(I+1) CT F(I))GO TO 100
IF(I.EQ.IJ)G0 TO 20
NT=NT+1
FT(NT)=F(I)
XT(NT)=X(I)

200 I=I+1
IF(I.GT (IJK-1))GO TO 999

20 IF(F(I+1) LE.F(I))GO TO 200
NB=NB+1
FB(NB)=F(I)
XB(NB)=X(I)
GO TO 100

999 CONTINUE
FT (NT+1)=F (I JK)
FB(NB+1)=F (I JK)
XT (NT+1)=X (I JK)
XB(NB+1)=X (I JK)

C
NP=NT+1
CALL FIT(IJK.DX.NP.X.XT.F.FT)
NP=NB+
CALL FIT(IJK.DX.NP.X.XB.F.FB)
DO 700 I=1.IJK
FFILT(I)= 5*(FB(I)+FT(I))

700 CONTINUE
C

RETURN
END

C
C
C

SUBROUTINE FIT(IJK.DX.NP.XXTB.F.FTB)
REAL X(101).XTB(101).F(101),FTB(101).FFIT(10I)
1.XFILT(101),FILT1(101).FILT2(101).AAAI(10.10)

C
XNST=XTB(1)/DX
NST=I JK-IIFIX(XNST)
NST1=NST
DO 10 1=2.NP
Xm'=(FTB(I)-FTB(I-1))/(XTB(I)-XTB(I-1))
XB=FTB(I)-XM*XTB(I)
XJ=XTB(I)/DX
JJ=IJK-IIFIX(XJ)
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DO 20 N=NST.JJ
FFIT(N)=XM*X(N)+XB

20 CONTINUE
NST=JJ

10 CONTINUE
C

DO 30 I=1.NSTI
FTB(I)=F(I)

30 CONTINUE,
DO 31 I=NST1+1,IJK
FTB(I)=FFIT(I)

31 CONTINUE
C

N=0
DO 100 I=NST1,IJK-2
N=N+1
XFILT(N)=X(I)
FILT1 (N)=FTB (I)

100 CONTINUE
CALL SMAI(N.4,XFILT.AAAI)
CALL SLIOOTH(N.4,XFILT.AAAI.FILT1,FILT2)
N=0
DO 101 I=NST1.IJK-2
N=N+1
FTB(I)=FILT2(N)

101 CONTINUE
C

DO 200 I=NST1-3.IJK-3
FTB(I)= 3333*(FTB(I+1)+FTB(I)+FTB(I-1))

200 CONTINUE
DO 201 I=NST1-3.IJK-5
FTB(I)= 3333*(FTB(I+2)+FTB(I)+FTB(I-2))

201 CONTINUE
C

RETURN
END

C
C




