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ABSTRACT

A new coordinate and variable transformation for the two-dimensional

boundary layer equations is presented. The normal coordinate is stretched

with a scaling length determined by the local solution. The boundary

layer thickness is then essentially constant in computational space for

the most types of flows, including separation bubbles and rapidly grow-

ing turbulent boundary layers. Similarity solutions can be obtained for

all wedge flows.

Two finite difference schemes are presented: the Shifted Box Scheme

and the Double-Shifted Box Scheme. Both schemes are more resistant to

streamwise profile oscillations than the standard Keller's Box Scheme.

All governing equations, including the turbulence model, are solved

simultaneously as a fully coupled system. This is faster and more

robust than conventional weak-coupling iteration schemes. The solution

scheme implementation presented makes no restriction on one boundary

condition. Any point or integral quantity such as edge velocity, wall

shear, displacement thickness, or some functional relationship between

two or more of such quantities can be prescribed.

The behavior of the boundary layer solution near separation is

investigated. It is demonstrated that non-unique solutions always

exist whenever an adverse pressure gradient is specified. This bifurcation

of the solution is responsible for inability of calculations with

prescribed pressure or edge veloctiy to be carried past separation.
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INTRODUCTION

The primary purpose of this thesis is to develop a new, efficient,

versatile finite-difference method for the solution of the compressible

boundary layer equations. The method differs in several ways from the

other methods which currently exist, such as those of Carter [2] and

Cebeci and Smith (6). Most of these methods use some form of the un-

necessarily complicated Levy-Lees transformation, in which the stream-

wise node locations usually depend on the solution. To simplify the

application of the present method to viscous-inviscid coupling, the

streamwise coordinate is not transformed. The normal coordinate is

simply scaled by a length which is roughly proportional to the boundary

layer thickness for virtually all types of flow found in practice.

Thus the boundary layer always remains within the computational grid.

It is found that the popular Keller's Box Scheme discretization as

found in Cebeci and Bradshaw [4] is not suitable for solving the gover-

ning equations with the present transformation, since it is susceptible

to streamwise profile and wall shear stress oscillations. The reason

for this behavior is investigated and two new discretization schemes are

introduced to eliminate the problem.

Most real flow situations involve turbulence, and hence some form

of turbulence modeling is necessary for practical calculations. For

simplicity, the popular Cebeci-Smith two-layer algebraic eddy viscosity

model obtained from Cebeci and Smith (6] is used in this thesis.

In the Newton-Raphson procedure used to solve the non-linear finite

difference equations most methods found in literature neglect the coup-

ling between some of the governing equations. In particular, the eddy

viscosity formulas are not linearized, possibly in the belief that it is

not important or just to simplify programming. The solution method in

this thesis solves all governing equations simultaneously. This is

demonstrated to produce large reductions in computation time.

The final unique feature of this method is versatility. With most

other methods one is restricted to either a so-called direct mode, where

the edge velocity is prescribed, or an inverse mode, where the displa-

cement thickness is prescribed. This method makes no particular dis-

tinction between direct and inverse modes. Any quantity can be pre-
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scribed in lieu of the edge velocity or displacement thickness. This

feature is very useful for design work. For instance, by specifing a

zero wall shear everywhere one can determine the fastest pressure

recovery possible without separation. Efficient viscous-inviscid

coupling can be achieved by prescribing a functional relationship

between edge velocity and displacement thickness. Four different types

of prescribed quantities are programmed demonstrating the flexibility of

the solution scheme.

A secondary purpose of this thesis is is to investigate the well-

known inability of all direct solution schemes to calculate a solution

past a separation point. Using the developed program it is shown that

there are always two solutions to the finite difference equations when-

ever a decelerating edge velocity is prescribed and that near separation

these two solutions approach each other causing the failure of the

Newton-Raphson algorithm. It is also shown that it is possible to

prescribe an edge velocity for which there is no solution to the finite

difference equations.
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ANALYSIS

Equations (1-5) are the two-dimensional, compressible, boundary

layer equations written as a first-order system. An eddy viscosity and

turbulent Prandtl number have been included to allow for turbulence

modeling. Bars denote dimensioned quantites. The "e" subscript denotes

edge, or freestream quantities.

continuity:

i-momentum:

total enthalpy:

shear:

enthalpy flux:

+__) a(T) 0

-- anaue
PU . + 3 + e e dR

3x y
U n -+ p i - = -+ r, e -

q +-- + + -- =

(Pr Prtj ay r) -y

(1)

(2)

(3)

(4)

(5)

With the reference quantities L, po, Vo, To, ao = /yRTO, and

Re0 = poa0 L/po, non-dimensional variables are defined as follows:

SL

f -f = -l/ReO
PoaoL

ii
U = -

ao

T = 2 /Reo

T ==
poOPOa e

q = 3 /Reo0

It = t
110

where T represents the usual dimensioned stream function.

The computational coordinates x and r used in this analysis are

defined as:

x = x = y(7a-b)

h
ao

(6a-b)

(6c-e)

(6f-g)

(6h-i)

y = VReo
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A = A(x) is a scaling length which depends on the solution itself. It

will be defined later.

With the above definitions, equations (1-5) become:

puA& = (8)a n

af au af Bu _ T + due (9)
ana x ax a ee dx

af ah 3f h q (10)
a TI ax ax an T

TA= (V + Pt) au (11)

= + t- + 1 au (12)
Pr Prt) an ") a

Equations (8-12) are singular at a leading edge, and therefore

cannot be used to generate a similarity solution to start streamwise

marching. To remove this singularity, the dependent variables are

scaled with appropriate local reference values, giving the following

transformed variables (in uppercase):

F = where n =PeueA (13a-b)n

U= u H = h R = (13c-e)
ue he Pe

lx
S - 0 = 1- q (13f-g)

n ue n he

x dux x dhx dn (14a-c)
Bu Bh hn =ue dx he dx n dx

The resulting equation set with relevant boundary conditions is:

aF
RU = - (15)

as aU 3F) 3F 3U BF 3U)
- un - = -- - -T-- (16)+ Tj an +j (1 an) an ax ax an)
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+ - H= x(F9H - 3 (17)__ +j 3 n ana 3x 3 T

S = Pe eX + pt a (18)

kl~e.L' + t- +r) hie U (19)
n2 Pr Prt 3 r h e 371

Boundary conditions:

71 0: 1) U 0 (20a)

2) F = 0 (20b)

3) H = Hw or Q =Q (20c)

71 ne: 4) U 1 (20d)

5) H = 1 (20e)

In virtually all practical situations, the outer flow is adiabatic, and

hence Bh is zero. This quantity will therefore be ignored in the

ensuing discussion.

Using equations (15-20), the calculation of Falkner-Skan type^

similarity solutions is straightforward, provided the requirements for

similarity are satisfied. For similarity, the lefthand sides of equa-

tions (16) and (17) must be independent of x, and therefore Bu and

8n must be constants. By integrating equations (14a) and (14c), one

concludes that ue(x) and n(x) must be of the form:

ue(x) ~ x Bu n(x) - x On (21a-b)

To make the grouping peuex/n2 in equations (18) and (19)

independent of x, On must be related to u by

n + u (22)
2

Finally, of the remaining x-dependent quantities, Pe must be constant,

and ue 2/he and pt must be either constant or negligibly small near

the leading edge.

Fortunately, all these requirements are satisfied for laminar wedge

flows in the vicinity of the leading edge, provided that A(x) varies

with x as follows:
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A(x) x where = 2 (23a-b)

For the zero pressure gradient case (Bu = 0), Pe and ue 2/he are

indeed constant, assuring similarity. For (Bu > 0), near-stagnation

conditions exist in the vicinity of the leading edge. In this case,

Pe is nearly equal to its constant stagnation value, and ue2 /he

is negligible, again producing similarity within some small interval

close to the leading edge.

It only remains to specify the scaling length A to close equations

(15-19). Although A is arbitrary, it is desirable that it satisfy

equations (23a-b) so that similarity solutions can be obtained.

Ideally, A is proportional to some nominal boundary layer thickness 6

for nonsimilar as well as similar flows. If 6/A is constant, then the

boundary layer thickness in the computational x-n space is constant, and

grid extension is never necessary during marching calculations.

Several various definitions of A have been tried, including the

displacement thickness and the momentum thickness. The definition.

selected as most suitable is:

Ye "e

A(x) = U(1 - U) dy implying 1 U(1 - U) dn (24a-b)

0 0

This corresponds to the momentum thickness in the incompressible limit.

With this definition, the ratio 6/A varies by no more than 10% for such

diverse flows as laminar separation bubbles and rapidly growing turbu-

lent boundary layers.
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SOLUTION SCHEMES

To solve equations (15-19), three finite difference schemes were

tried (Figures 1-3):

1) Standard Keller's Box Scheme (KBS)

2) Shifted Box Scheme (SBS)

3) Double-Shifted Box Scheme (DBS)

When KBS is used to solve equations (15-19), the gradient parame-

ters (s) must be defined midway between the profiles if second-order

accuracy is to be maintained. This formulation has a serious drawback

in that it permits the occurence of streamwise profile oscillations with

little tendency to damp out (see Figure 4). This behavior is readily

explained by noting ,that equations (16) and (18) at the wall reduce to

u= k(x) (a 2)(25)

where k(x) is a weak function of x. Since Su is defined at the box

midpoints, equation (25) constrains the average of 32 U/an 2 between any

two successive streamwise stations:

k (32UI +32U
Bu - - i+ 1 (26)uij 2 302 )i+1 2- ajn2- (7 2 )iJ(6

Hence, at the wall, 32U/3 2 can have large amplitude excursions with

alternating signs and still satisfy the finite difference equations.

Figure 4 shows that the velocity profiles do indeed exhibit these fluc-

tuations following a disturbance. SBS and DBS eliminate this problem by

calculating the profiles midway between the x stations. This permits

Bu to be defined at the same position as the profiles:

Bu k -- (27)
i+f a2 i +f

Thus, the velocity profiles cannot oscillate at the wall because each

one is individually constrained (see Figure 5).

Both KBS and SBS result in systems with 5x5 blocks. In contrast,

DBS has only 3x3 blocks and was at first an attempt to reduce CPU times.

Although for a given number of grid points it does run faster, it also

has higher truncation errors. Further investigation revealed that for a

given level of accuracy, SBS and DBS require roughly the same CPU time.

Since SBS is simpler and requires less coding it is preferred over DBS.
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SOLUTION PROCEDURE

At each streamwise marching step, there are five unknowns for each

r station at streamwise station xi+i: F, U, H, S, and Q. In addi-
2

tion, there are two global (independent of ni) unknowns at xi+1:

uei+1, and n+ 1 . Although ue is often prescribed for typical

applications, it is convenient to always treat both ue and n as

unknown when the governing equations are discretized.

Since the discretized equations do not call for uei+1 or ni+,

but instead require the midpoint values uei+i and ni+i, the latter
2 2

are temporarily taken as the global unknowns while the profiles are

calculated. For convenience, the lack of a subscript will from now

on imply i+'. The discretized gradient parameters are given by:

B in (ue/uei) Bn in (n/ni) (28a-b)
in (x/xi) in (x/xi)

In effect, ue lies on a power curve in x between uei and uei+1, with

Bu being the exponent of x (likewise for n and Bn). This interpolation

scheme for ue and n was chosen because it allows arbitrarily large

streamwise steps in similar flows. Conventional linear interpolation of

ue and n does not have this property.

After ue, n, Bus Bn and the unknown profiles are calculated,

uei+1 and ni+1 are determined from the following relationships and

stored for the next marching step.

uei+i uei ni+1 n+ 1 = ni (29a-b)

Because the discretized equations for each marching step are coup-

led and highly non-linear, the Newton-Raphson method is used to solve

them iteratively. Following common practice, the iterates 6F, 6U, 6H,

6S, and 6Q are introduced in the linearization and discretization pro-

cess. For DBS, the iterates 6S and 6Q can be expressed as linear combi-

nations of the other iterates and are thus eliminated. See Appendix A

for discretization examples of equations (16) and (18).

The Cebeci-Smith two-layer eddy viscosity formulas given in Appen-

dix B contain the wall shear velocity U T and the normalized velocity

thickness Au. Their respective iterates 6 UT and 6Au are therefore
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included in the linearized equations.

Together with 6Us and 6Au, the global iterates 6ue and 6n are lumped

on the righthand side to effectively produce five block tridiagonal

systems with a common coefficient matrix of 5x5 (KBS and SBS) or 3x3

(DBS) blocks. The unknown column vector 6 contains the profile

iterates 6F, 6U, 6H (for DBS), and also 6S, and SQ (for KBS and SBS):

[ d]-= - Ue - n -SU g - 6Au (30)

All iterates (such as 6V and 6gt) which are not explicitly inclu-

ded in this system are expressed as linear combinations of the included

iterates. Equations (31-33) are three examples of how these combina-

tions are defined.

p Te 1 - u2/ 2 he
R = -- --- = (31a)

T H - U 2u2/ 2 he

6R = 6U + HraR) + Sue 3R (31b)

in (ue/uei)
Bu in(/i (32a)= ln (x/xi)

6SU = ue - 6ue 1 (32b)

'au Ue n (x/x)

outer pt = 0.0168 R /Reo Au n 'Ytr (33a)

6pt = 6R + 6Au --- + 6n (33b)
(aR F 1 j (n

Since 6R is not included in the block system, the 6R in equation (33b)

must still be eliminated by using equation (31b). Clearly, eliminating

iterates not included in the system consists of repeated application of

the chain rule of differentiation. Although very methodical, this

process can and does get rather tedious, particularly with the inner

eddy viscosity formula given in Appendix B. Nevertheless, the elimina-

tion is clearly worthwhile since it has a drastic effect on CPU time,

as will be demostrated shortly.

In turbulent flow, the normalized velocity thickness Au changes
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only slightly between Newton iterations. Its iterate can therefore be

safely dropped from equation (30), simplifying the computational task

somewhat. There is no noticable effect on the convergence rate.

After equation (30) is solved with a UL block factorization algo-

rithm, each profile iterate is expressed as a residue r minus the global

iterates times their respective influence coefficients a, b, and c:

[~]= [ii- Sue a]- sn [j- 6U TC] (34)

Since there are three unknowns left, namely Sue, 6n, and 6U ,
three more equations are necessary. One is obtained from the linearized

definition of the scaling length A (equation (24b)). Another equation

is obtained from the linearized definition of the wall shear velocity.

The third equation results when some arbitrary point or integral quanti-

ty is prescribed. The derivations of these equations are given in

Appendix C. Four different versions of the third equation are given,

corresponding to specified ue, Peue6* (i.e. mass defect), 6*, and T wall-

These four versions are implemented in the program listed in Appendix D.

Once the three global iterates Sue, 6n, and 6UT are calculated,

the profile iterates 6F, 6U, 6H (DBS), and also 6S, and 6Q (SBS and KBS)

are easily determined from (34). The profile quantities are then up-

dated and the process repeated to convergence.

Because all the governing equations are solved as a fully-coupled

system (i.e. the variations of all quantities are taken into account by

the chain rule elimination process), the entire system converges quad-

ratically for both laminar and turbulent flow. Typically, two to four

Newton iterations are needed per streamwise step. If the eddy viscosity

formulas were not linearized, the calculation time would increase dras-

tically for transitioning and turbulent flow, as shown in Figure 6. In

this example, transition was achieved by artificially varying the turbu-

lence intermittency factor in a continuous manner. Note that the higher

the Reynolds Number, the stronger the effect of the turbulence on the

momentum equation, and the higher the payoff of linearizing the eddy

viscosity.

The Reyhner-Flugge-Lotz approximation, which is applied to reyions

of reverse flow, consists of setting the streamwise convective terms

U DU/3x and U aH/3x to zero. This is necessary to avoid growth of
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numerical errors and to prevent a zone of dependence violation. All the

test cases run indicated that it is possible to retain the momentum

convection term U aU/ax in reverse flow simply by eliminating only its

contribution to the variable iterates, thus avoiding artificial growth

of numerical errors. This convection term is still retained in the

residues (i.e. the righthand side of (30)). The fact that such a

procedure results in stable calculations strongly suggests that upstream

convection plays a very small role in limited separation regions. Of

course, setting the variation of any term to zero adversely affects the

quadratic convergence of the overall system. However, the contribution

of the omitted terms is small, and as a result the number of iterations

per streamwise step in separated flow rarely exceeds five. The separa-

tion behavior results which are presented in the next section were

calculated using this modified Reyhner-Flugge-Lotz approximation.

Iter.

ReL'= 10 5

-- transition X

Iter.
30p not linearized

-10p linearized

2 ReLl= 1 /
20

10

Figure6 Effect of linearizing eddy viscosity on the
number of iterations per streamwise
station. Convergence criterion: &U < 1C
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RESULTS AND DISCUSSION

Using the solution scheme presented here it is possible to investi-

gate in detail the relationships between ue, 6* and wall shear at

any given x station with relative ease, since the calculation mode

(specified quantity) can be changed at any marching step. The separa-

tion behavior study given below was performed with SBS. DBS is a later

development, but is expected to reproduce the results of SBS.

We first assume that all global quantities at the i-1th and ith

stations, and the profiles midway between those two stations are known

(see Figure 2). Now consider the problem of calculating the ue and

profiles at xi+1/2 which correspond to a specified 6*. If this

specified 6* is deliberately varied in some systematic manner, a

relationship between ue and 6* (or, equivalently, between Bu and

86* = x/6* d6*/dx) can be determined. Figure 7a shows such a

relationship together with the corresponding wall shear at xi+1/2- In

this case the known upstream profile corresponds closely to the Blasius

profile for zero pressure gradient. Several surprising features are

apparent:

1) When Bu turns out to be negative, (i.e. ue is less than uei

and an adverse pressure gradient is present) there are two values of

6* and corresponding 86* which will produce this Bu. The numerical

solution bifurcates whenever Bu < 0.

2) The smaller 6* always gives a positive wall shear, the larger

6 * always gives a negative wall shear.

3) There is a minimum permissible 8 u and hence a minimum permissible

ue. If ue was specified to be less than this minimum, no solution

to the finite difference equations would exist.

4) The minimum ue occurs when the wall shear equals zero.

Assume now that a moderate adverse pressure gradient (Bu = -0.16)

is specified at xi+1/2. Figure 7a clearly shows that two distinct

solutions are possible. However, the 6* corresponding to attached

flow produces a smooth continuation from the preceding stations, while

the 6* corresponding to separated flow is ridiculously large and has a

radically different profile from the previous stations (see Figure 7b).

Because the initial guesses for the profiles are obtained directly from
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the previous station, the iterative solution scheme in this case always

converges on the "reasonable" leg of the bifurcating solution, since it

is the one closest to the initial guess.

This situation changes significantly if the known upstream profile

is close to separation. If the same pressure gradient parameter as in

the previous case is specified (Figure 8a), the two possible values of

6* are now quite close together. Furthermore, it is not clear which

solution is reasonable and which is not since the two possible profiles

are very nearly the same (see Figure 8b). Also note that Bu is local-

ly quite insensitive to B6 * in contrast to the case in Figure 7a.

This implies that specifying edge velocity poses a problem which is

ill-conditioned near separation. Of course, it is also possible to

specify a value ue which is below the minimum and therefore has no

solution. In either case, the iterative Newton-Raphson algorithm will

fail spectacularly if convergence to a specified ue is blindly at-

tempted near this point. On the other hand, it is easy to see that

convergence to a specified displacement thickness is well-conditioned at

separation.

The relationships between Bu and B6* shown in Figures 7 and 8

correspond to a freestream Mach Number of 0.0625, making the flow essen-

tially incompressible. To determine what effect compressibility might

have on solution behavior at separation, tests were also performed for

Mach Numbers of 0.80 and 1.50. There was no qualitative change in the

Bu-6 6* relationships shown in Figures 7 and 8.

It is highly unlikely that the bifurcation of the solution is due

to the modified Reyhner-Flugge-Lotz approximation, although this is

difficult to prove. It can only be stated here that at the separation

point, where the occurence of solution bifurcation is most important, no

upstream momentum convection exists.
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APPENDIX A

DISCRETIZATION EXAMPLES FOR SBS

The following shorthand definitions are used:

1) An overline ( ) implies ( )i-j , and lack of one ( ) implies ( )i+-

2) A tilde () implies ( )j+.

Example 1: x-Momentum, Equation (16)

Let L denote the discretized lefthand side of equation (16) at i+':2

L Sj+ - Sj
j+1 -

F
+ On

+ Su 1 -

j+1 + Fj Uj+1 - Uj

2 Tnj+1 - Tnj

U;+1 + U1 Fj+1 - Fj

2 Tj+1 - nj
(Al)

Similarly, L denotes the entire lefthand side of equation (16) at i-i.

The discretized righthand side of equation (16) is defined as:

RHS x +

2

F1+1 + Fj+1 - Fj - Fj U 1j + Uj - Uj+1 - U

2 (lj+l - nj) 2 (x - x)

Fj+1 + Fj - Fj+1  - Fj Uj+1 + j+1 - U1 - Uj

2 (x - R) 2 (nj+i - nj)

The complete discretized form of equation (16) is therefore:

1
- (L+L) = RHS
2

Introducing iterates L -* L + 6L and RHS + RHS + 6RHS gives:

6L - 2 6RHS = 2 RHS - L - L

Note that L contains only known quantities at R and therefore 6L = 0.

(A2)

(A3)

(A4)
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Before equation (A4) can be put into the block tridiagonal system

(30), the iterates 6L and 6RHS must first be expressed in terms of the

profile iterates 6F, 6U, 6S, and global iterates 6 ue, and 6n. This is

accomplished by straightforward differentiation:

r 3L (3L ' L_ (3L
6L = 6Fj+ 1  + 6Fj --- + 6Uj+1 + 6U

(3Fj+1 3Fjj (Uj+1) 3Uj

+ 6Sj+ -- + 6S4  --- + 6Bu (JL --- (A5)

(asj+) 3SjJ aB u J anJ

The iterate .RHS is similarly broken down.

The 6a iterates in equation (A5) must still be expressed in terms

of the profile and global iterates. Again, this is done by repeated

differentiation of the finite difference expressions for B as described

in the main text.

Example 2: Shear Definition, Equation (18)

The shear definition is discretized as:

Sj+1 + Si Peuex Uj+ - U (A6)

2 n2  (- +t j+1 - Ij

Again, iterates 6U, 6S, 6p, and the global iterates 6ue, and 6n are

introduced. The 6p iterates must further be reduced by differentiation

of the formulas for p and pt with respect to the profile and global

variables similar to the way 6L was reduced above. The formulas for p

and pt are given in Appendix B.
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APPENDIX B

MOLECULAR AND EDDY viscosITY FORMULAS

As in the Analysis section, a bar denotes a dimensioned quantity

and L, po, go, To, ao = /yRTo, Re0 = poa0 L/Vo are dimensioned

reference quantities.

Molecular Viscosity

Sutherland's Law as given by Schlichting [7) is:

0- s) -3
T I Tref + Tc

-f r=-where Tc = 110 K for air (Bi)
To Tref T + Tc

Tref is the temperature at which o = p. It is not necessary that

Tref = To. Using To to non-dimensionalize all temperatures gives

T 'I Tref + Tc 
(B2)

Tref T + Tc

In terms of the profile variables and ue, the local temperature T-is:

T = (y - 1) he H - 1 u2 U2 (B3)

Eddy Viscosity

This is the two-layer Cebeci-Smith model as given in Cebeci and

Smith [6]. Starting from the wall, the inner formula is used up to the

point where (Pt)inner > (It)outer. The outer formula is used from

there on.

Outer formula

Ye

t a f (Ue - U) dy Ytr where a = 0.0168 (B4)

0

Ytr is the intermittency factor which varies from 0 to 1 in the tran-

sition zone. Althouqh empirical formulas for Ytr are available, for

simplicity it is user-prescribed in the program listed in Appendix D.
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In the transformed variables, (B4) becomes:

pt =a R n Au o Ytr (B5)

ne

where AU = (1 - U) dt (B6)

0

Inner formula

For brevity, the inner eddy viscosity is given directly in terms of

the transformed variables..

= R n X2  (B7)

X = K 1 - exp (-) where K = 0.40 (B8)

A = 26 Peex P I Re- (.B9)
N n3  R U 0

1*
N = ( - 11.8 p+ (B10)

= Pe ee 1 (B11)

When p+ is linearized, the variations 6pw and 6Rw are approximated

by the local variations 6p and 6R. Since p and R do not vary substan-

tially across the inner layer or between Newton iterations, these are

good approximations, and hence convergence rate is not noticably

affected.
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APPENDIX C

GLOBAL ITERATE SOLUTION FOR SBS

After solution of the block tridiagonal system (30), the profile

iterates are in the following form (equation (34)):

6Fj = r1 .

6Ug = r2.-J

6H = r .
J

6Sj = r

6Qj = r,.

- 6ue a

-
6ue a2 -J

- 6ue a,.J
- Sue a41

- 6ue a,.
)

- 6n b

- 6n b2 -

- 6n b .

- 6n b

- 6n b,.

- 6U c

- 6UT c3 .

- 6U C4

- 6UT c .
.r

The residues r-and influence coefficients a, b, and c are known.

To determine the profile iterates 6F, 6U, 6H, 6S, and 6Q, three more

linearized relations are needed. These will produce a 3x3 system which

is then readily solved for 6ue, 6n, and 6UT:

Relation 1:

Relation 2:

Relation 3:

6ue Al + 6n B,

6 Ue A 2
6 ue A

+ 6n B 2

+ 6n B 3

+ 6UT C

+ 6UT C2

+ 6U C

The coefficients A, B, C, and D are derived below for each relation.

Relation 1

Equation (24b) restated:

Or, in discretized form:

1 e

1 = U(1 - U) dq

0

J-1

1 [U+1 + U. Uj+ + U-

j=1 ( 2 a)(1- 2 4 + j

Using the shorthand from Appendix A, and introducing iterates:

J-1 J-1

1= U(1 - U)(nj+1  - qj) + E ( 6 Uj~l + 6Uj)(: - U)(n1 g1 - ng)
j=1 j=1

(Cl)

(C2)

(C3)

(C4)

(C5)

D 2
=D2

(C6)

(C7)

(C8)

(C9a)

(C9b)

(C10)



26

By using equation (C2) to eliminate 6Uj and 6Uj+l, equation (CIO) is

readily put into the form of equation (C6). The coefficients are then

given by:

(a2 j+1 + a2j)

(b2 j+1 
2 j)

(C2 j+1 + c 2 j

( - U)
2

1 -
C- - U)
2

2 U

J-1

A1 =
j=1

J-1

B =
j=l

J-1

j=1

J-1
D=

j=1

(rij+1 - nj)

(nj+1 - flj)

(nj+1 - nj)

(Tij+1 - Bj)

U (1 - U) (nj+1 - flj)

U definition:
S 2

U, - j
or R 1 U2 = S,

Using the fact that U = 0 at the wall, R 1 is given by:

1 - U2/ 2 he
R1e (Cl

H1

Introducing iterates into equation (C12b) and linearizing (C13):

2 R1U, 6U, + U2 6R1  - 6S1  S1 - RjU2  (C1

6R1  - - 61 - - 6 ue (C
H, heHl

Using equations (C4) and (C15), equation (C14) can be put in the

form of equation (C7). The coefficients are given by:

3)

14)

15)

(Cl 1a)

(d2  + d ) ( - U)j+1 2 j 2

(Cl 1b)

(Cl 1c)

+

j=1

Relation 2:

(Cl 1d)

(Cl2a-b)
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A
2 = a

B 2 = b

C 2  = c

D2 = r 

- U2 -- aR 1  + h e
T H1 h 

1 eH 1

- U2 L- b

- U2 - c3 + 2 RjU

- U2 Li r 3 + S1 - R1 U2

Relation 3

This relation is completely arbitrary. However, for stable

calculations it must produce a well-posed problem. Four examples of

this relation are given, corresponding to the four mode options

implemented the program listed in Appendix D. The "sp" subscript

denotes a specified quantity.

Example 1: Edge velocity ue specified.

ue + 6ue = uesp

This can be put immediately in the form of equation (C8), with the

coefficients given by:

A 3 = 1 B 3 = 0 C = 0 D 3 = uesp - ue

(C17)

(Cl8a-d)

Example 2: Mass defect m = peue6* specified.

(C19)Peue6* + 6(peue6*) = msp

The displacement thickness 6* is expressed as:

TIe he

6* = A (1 - RU) d - (1 - -- ) dr1  O fle - Fj)
J" 37

(C20)

V

Using (C20), equation (C19) becomes:

6n (Te - Fj) - n 6Fj = msp - n (9e - FJ)

(Cl6a)

(C16b)

(Cl6c)

(C1 6d)

V

(C2)1 )
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Using equation (Cl) to eliminate the 6F iterate, equation (C21) is

readily put into the form of equation (C8). The coefficients are:

A3 = n a (C22a)

B, = n b + ne - Fj (C22b)

C3 = n c (C22c)

D = n r + Msp - n (ne - Fj) (C22d)

Example 3: Displacement thickness 6* specified.

6* + 6(6*) = 6*sp (C23)

From equation (C20)

6* A (ne - Fj) * n (ne - Fj) (C24a)
PeUe

Or, in linearized form:

T e -F 6 n n
6(6*) 6n - 6FJ - (ie - Fj) 6(pu)e (C24b)

Peue Peue Peue

The iterate 6(pu)e in equation (C24b) can be expressed solely in terms

of 6Ue as follows (Pst denotes edge stagnation density and M2 = U2/Te

is the edge Mach number squared):

T y-1 2 y-1

Pe Pst (y-1) he) Pst 1 2e (C25a)

6(pu)e = pe 6ue + ue6pe = Pe + ue ape 6 ue Pe(1 - 4) 6ue (C25b)

Substituting for 6(6*), and eliminating 6Fj, (C23) is put into the form

of equation (C8). The coefficients are:

A3 = A a - - ~f - Fj)(1 - M2) (C26a)

A 3 = A alj - ue (n Fe

B = A b + (C26b)
Peue

CS = A c (C26c)

D, = A r + 6 * - A (Te Fg) (C 2 6 d)



29

Example 4: Wall shear Tw specified.

Tw + 6Tw

From equations (13f) and (18):

- Tw
s p

(C27)

(C28)T = n u S1
x

Therefore,

n Ue S n n ue 6S
- Si 'ue + - Sj 'n +
x x x sp - Tw (C29)

As in previous examples, equation (C27) can be put in the form of

equation (C8), with the coefficients given by:

n ue n
A - a -1- + S1 (C30

x x

n ue Ue
B3 = - --- b1 + S1

x x

n ue
CS = - %.1

x

n ue
D, = - r + T - Tw

x sp

a)

(C30b)

(C30c)

(C30d)
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APPENDIX D

PROGRAM LISTING
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C
C

C This is file BLAKE.INC which is INCLUDED
C at compile time in each subroutine.
C

C

C
IMPLICIT REAL (M)

C
COMMON /CQ1/
COMMON /C05/

&

&C

COMMON

COMMON

COMMON

&

/C06/
/C07/
/C08/

COMMON /C09/

A(5,5,31),B(5,3,31),C(2,5,31),R(5,4,31)
F(31), U(31), H(31), S(31), Q(31),

FB(31),UB(31),HB(31),SB(31),QB(31),

MU(31),MUT(31),DETA(31),ETAEGEO,JJ
BH,BCON

XTR1,XTR2,TURB,UTAU,DUNORM

EPS,ITER,ITMAX,
REO,SRE,PR,PRT,GAM,GM1,TVIS,TVCON

DUE,DMS,DUT

C
C---- assorted quantities at X(I+1/2)

C

C UTAU = wall shear velocity (for inner eddy viscosity)

C DUNORM = normalized velocity thickness (for outer eddy viscosity)

C
= edge density

edge velocity
length scale
mass scale
disp. thickness
mom. thickness

mass defect
wall shear

(delta)
(n)
(d*)

(W)
(tau)

= Rhoe*Ue*Sc

= Rhoe*Ue*Dstar

/C10/ UE, MS, SC, MD, DS, SR, TH,

UEI, MSI, SCI, MDI, DSI, SRI,
UEIP,MSIP,SCIP,MDIP,DSIP,SRIP,

TE,EE,EEC,ME2,ME2C,PE,RHOE,TST,RST

/C11/ PPAR,UGUESS,RNU
/C12/ I,IEND,X(100),SPEC(100),RSTAG(100),TSTAG,

BETN, BETU, BETH, BETM, BETD, BETS,

BETNB,BETUB,BETHB,

XF,XB,XLOG,FLOG,SHPF,SHPBSPECF

/C13/ KODE,NSTR,NPFL,NSIM
/C14/ LINP,LFLO,LTTI,LSTRLPFL

/C15/ VUP(31),VHP(31),VUO(31),VHO(31),

TUP(31),THP(31),TUO(31),THO(31),

VUE(31),TUE(31),TMS(31),TUT(31)
/C16/ A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3

C

C

C
C

C

C

C
C
C

RHOE
UE =

SC =
MS =
DS =

TH =

MD =
SR =

COMMON

&

&

&

COMMON

COMMON

&

&

&C

COMMON

COMMON

COMMON

&

&

COMMON
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PROGRAM BLAKE

INCLUDE 'BLAKE.INC'

C

C

C * *

C * 2-D, Compressible Boundary-Layer Program *
C * Version 5.1 *

C * *

C * Turbulence Model: *
C * Cebeci-Smith Two Layer Eddy Viscosity *
C * *

C * Solution Scheme: *

C * Shifted Box Scheme, *
C * second order accurate for all grids. *
C * *
C * Options currently implemented *
C * (streamwise quantity prescribed: *
C * 1) Ue *

C * 2) Rhoe*Ue*Dstar ( = mass defect) *
C * 3) Dstar *

C * 4) Wall Shear *

C * *

C * Mark Drela August 1983 *

C * MIT Gas Turbine and Plasma Dynamics Lab *
C * *

C
C

CALL INPUT
C

IF(NSTR.GT.0) OPEN(UNIT=LSTR,NAME='STREAM.DAT' ,TYPE='NEW')
IF(NPFL.GT.O) OPEN(UNIT=LPFL ,NAME=' PROFIL.DAT' ,TYPE= 'NEW')

C

C---- generate starting solution between first two X stations
NSIM = 1

CALL SIMIL

C
C---- output first station solution from similarity solution

I = 1
CALL HEADER

CALL STROUT

C

C---- output profiles at X(1+1/2)

CALL PFLOUT
C

C---- march downstream
NSIM = 0
DO 1000 I=2, IEND-1

C
C------ calculate profiles at X(I+1/2)

CALL INIT
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CALL PROFL

C

C------ output edge and integral quantities at X(I)
CALL STROUT

C
C------ output profiles at X(I+1/2)

CALL PFLOUT

C
C------ set edge quantities at X(I+1)

CALL IPSET

C
1000 CONTINUE

C

C---- output edge and integral quantities at last X station
I = IEND
CALL STROUT

C

WRITE(LTTI,*) '[ BLAKE ]: Normal Termination'
C

CALL STOPIT

C

C The

END

SUBROUTINE STOPIT
INCLUDE 'BLAKE.INC'
CLOSE(UNIT=LSTR)

CLOSE(UNIT=LPFL)

STOP

END ! STOPIT

SUBROUTINE INPUT

INCLUDE 'BLAKE.INC'

C

C This routine reads the input files INPUT.DAT and FLOW.DAT
C

C==== Description of INPUT.DAT
C KODE option number...see label in main progam
C EPS convergence epsilon...recommended: 1.e-5
C ITMAX maximum number of Newton iterations... recommended: 20
C output flags: 0 = no output
C 1 = output every x station
C 2 = output every 2nd x station, etc.
C NSTR : STREAM.DAT output flag
C NPFL : PROFIL.DAT output flag
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C
C

C

C
C

C
C

C

C
C

C
C

C

C

C

C====
C

C
C
C

C

C

C

C---- set logical unit numbers
LINP = 1 ! global input file
LFLO = 2 ! streamwise station input file
LTTI = 5 ! terminal
LSTR = 7 ! streamwise output file
LPFL = 8 ! profile output file (caution! tends to get large real fast)

C
C---- read main input

OPEN(UNIT=LINP,NAME='INPUT.DAT',TYPE='OLD')

READ(LINP,*) KODE,EPS,ITMAX

READ(LINP,*) NSTR,NPFL
READ(LINP,*) REO,PR,PRT,GAM
READ(LINP,*) TSTAG,TVIS,TVCON
READ(LINP,*) XTR1,XTR2
READ(LINP,*) BH,BCON
READ(LINP,*) PPAR,UGUESS
READ(LINP,*) JJ,GEO,ETAE
CLOSE(UNIT=LINP)

C
SRE = SQRT(REO)
GM1 = GAM - 1.0

C
C---- generate normal grid

CALL GRID
C

C---- read streamwise station input
OPEN(UNIT=LFLO,NAME='FLOW.DAT',TYPE='OLD')
READ(LFLO,*) IEND

REO : reference Reynolds Number...mainly used in turbulence model
PR : Prandtl Number
PRT : turbulent Prandtl Number
GAM : Cp/Cv
TSTAG : freestream stagnation temperature
TVIS : temperature corresponding to reference viscosity
TVCON : 110 Kelvin normalized with reference temperature
XTR1,XTR2 : x positions marking beginning and end of transition zone
BH,BCON : constants in wall BC: bh*Hwall + (1-bh)*Qwall = bcon
PPAR : pressure gradient parameter x/ue due/dx at leading edge
UGUESS : initial edge velocity guess for KODEs 2 & 3 (see SIMIL)
JJ : number of normal grid lines
GEO : geometric grid stretching constant geo = dETAj+1/dETAj
ETAE : edge value of ETA.. .recommended: 14

Description of FLOW.DAT ==================
IEND : number of streamwise stations
X(I) : x value array
RSTAG(I) : stagnation density array
SPEC(I) : specified quantity array...interpreted according to KODE
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DO 4 I=1, IEND
READ(LFLO,*,END=5) X(I),RSTAG(I),SPEC(I)

4 CONTINUE
CLOSE(UNIT=LFLO)

C

RETURN

C
5 IEND = I - 1

WRITE(LTTI,*) '[ INPUT ]: Number of streamwise stations found
& was less than expected.'
WRITE(LTTI,*) ' IEND changed to ',IEND
CLOSE(UNIT=LFLO)

C
RETURN

END ! INPUT

SUBROUTINE GRID

INCLUDE 'BLAKE.INC'

C

C This routine calculates the DETA's for a geometric-
C progression-type normal grid which are then scaled
C to obtain the specified ETAE.

C

C
C---- calculate normal grid spacing DETA(J) ... ETA(J+1) = ETA(J) + DETA(J)

DETA(1) = 1.0

TEST = 1.0

DO 3 J=2, JJ-1
DETA(J) = GEO*DETA(J-1)

TEST = TEST + DETA(J)

3 CONTINUE

C

C---- scale DETA(J) to get specified ETAE
FUDGE = ETAE/TEST

DO 5 J=1, JJ-1
DETA(J) = FUDGE*DETA(J)

5 CONTINUE

RETURN
END ! GRID

SUBROUTINE SIMIL
INCLUDE 'BLAKE.INC'

C
C This routine calculates a similarity solution using the
C same transformation as the main program. The solution
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C is calculated midway between X(1) and X(2).
C The specified edge quantity is assumed to be in SPEC(2).
C Four types of similarity solutions are implemented
C corresponding to the four modes of the main program,
C although similarity with prescribed wall shear is
C probably not very useful due to the singular nature of
C the wall shear at a leading edge for certain cases.
C
C
C---- set prescribed gradient parameters

BETU = PPAR ! edge velocity gradient parameter
BETN = 0.5*(1.0 + BETU) ! mass scale "
BETH = 0. ! total enthalpy "

C
C---- these relationships must hold if there is similarity

BETM = 0.5*(1.0,+ BETU) ! mass defect
BETD = 0.5*(1.0 - BETU) ! disp. thickness "
BETS = 0.5*(3.0*BETU - 1.0) ! wall shear

C
C---- there is no upstream station for similarity, so...

BETUB = 0.
BETNB = 0.
BETHB = 0.

C
TURB = 0. ! no turbulence

C
XF = 0.5*(X(1) + X(2)) I similarity x position

C
TST = TSTAG ! similarity
RST = 0.5*(RSTAG(1) + RSTAG(2)) ! stagnation
PST = RST*TST/GAM ! quantities

C
C---- calculate Falkner-Skan Dstar, Theta, and Shear with empirical formulas...
C ...necessary for initial estimates to start the Newton-Raphson procedure

BM1 = 1.0 - BETU
DFS = 0.64791 + BM1*(.200 + BM1*(.22973 + .6431*BM1**3))
TFS = 0.29234 + BM1*(.125 + BM1*(.06660 + .1802*BM1**3))
SFS = 1.23259 - BM1*(.560 + BM1*(.18213 + .1584*BM1**3))
SHPF = DFS/TFS I shape parameter

C
C---- Similarity solutions with BETU=O and specified Mass Defect or Dstar
C- are non-unique if they exist at all. There is a high and low Mach Number
C- solution for each case. UGUESS is the first guess for Ue which will put
C- the Newton-Raphson solver on one of the two branches.
C---- But first we must see if UGUESS was given:
C

IF((KODE.EQ.2 .OR. KODE.EQ.3)
& .AND. BETU.EQ.0.0 .AND. UGUESS.EQ.0.0) GO TO 500

C
C---- set SPECF at XF for whatever KODE it may be

IF(KODE.EQ.1) SPECF = SPEC(2)*(XF/X(2))**BETU
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IF(KODE.EQ.2) SPECF = SPEC(2)*(XF/X(2))**BETM
IF(KODE.EQ.3) SPECF = SPEC(2)*(XF/X(2))**BETD

IF(KODE.EQ.4) SPECF = SPEC(2)*(XF/X(2))**BETS

C
C---- set specified quantity for some KODE

UE = SPECF 1 assumes KODE=1

MD = SPECF ! assumes KODE=2

DS = SPECF ! assumes KODE=3

SR = SPECF ! assumes KODE=4

C
C---- initialize UE for iteration for KODEs other than 1

IF(KODE.NE.1 .AND. BETU.EQ.0.0) UE = UGUESS
IF(KODE.EQ.2 .AND. BETU.GT.O.0) UE = (MD/DFS)**2/XF

IF(KODE.EQ.3 .AND. BETU.GT.O.0) UE = (DFS/DS)**2*XF

IF(KODE.EQ.4 .AND. BETU.GT.O.0) UE = (XF*(SR/SFS)**2)**(1./3.)

C
C---- initialize MS f'or iteration

EE = 0.5*GM1*UE**2/TST I edge kinetic energy/total enthalpy ratio

EEC = 1.0 - EE

RHOE = RST * EEC**(1.0/GM1) 1 edge density

MS = TFS*SQRT(RHOE*UE*XF) I first guess for mass scale

C
C---- set initial profiles ... simple polynomials are used

RNU = RHOE*UE*XF/MS**2
Z = 0.
DO 10 J=1, JJ 1 march up from the wall

FB(J) = 0.
UB(J) = 0.
HB(J) = 0.
SB(J) = 0.
QB(J) = 0.

C

H(J) = 1.0

U(J) = Z*(2.0-Z)
IF(Z.GT.1.0) U(J) = 1.0

C
R2 = EEC/(H(J) - EE*U(J)**2) I density at ETAj

IF(J.EQ.1) F(J) = 0.

IF(J.GT.1) F(J) = F(J-1) + 0.5*DETA(J)*(R2*U(J) + R1*U(J-1))
C

S(J) = RNU*2.0*(1.0 - Z)/7.5

IF(Z.GT.1) S(J) = 0.0
Q(J) = 0.0

C
Z = Z + DETA(J)/7.5
R1 = R2

10 CONTINUE
C

C---- initialize everything else for iteration

CALL ECALC ! edge quantities
CALL DCALC I Dstar, Dmom, and other thicknesses
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CALL VISC ! viscosity
C

DO 50 ITER=1, ITMAX Newton iteration loop
C

C------ fill blocks of tridiagonal system

CALL SETUP

C
C------ get base profile iterates and global iterate influence coefficients

CALL SOLVE
C
C------ get global variable iterates and corrected profile iterates

CALL DELTAS

C

C------ update profile variables

DUMAX = 0.0
DO 55 J=1, JJ

F(J) = F(J) + R(1,1,J)

U(J) = U(J) + R(2,1,J)
H(J) = H(J) + R(3,1,J)
S(J) = S(J) + R(4,1,J)
Q(J) = Q(J) + R(5,1,J)
DUMAX = AMAX1(DUMAX,ABS(R(2,1,J)))

55 CONTINUE

C
C------ update edge velocity UE and mass scale MS

UE = UE + DUE
MS = MS + DMS

C
C------ test for negative edge values (divergence)

IF(UE.LE.O.0) GO TO 600
IF(MS.LE.O.0) GO TO 700

C

C------ recalculate edge quantities

CALL ECALC

C

C------ recalculate DS, TH, MD, SC, and shape parameter

CALL DCALC
C

C------ recalculate viscosity

CALL VISC
C

C------ test for convergence
DGLBL = ABS(DMS)/MS + ABS(DUE)/UE
IF(DUMAX.LE.EPS .AND. DGLBL.LE.EPS) GO TO 900

C

50 CONTINUE ! end of Newton iteration loop
C

C

WRITE(LTTI,*) '[ SIMIL ]: Newton iteration did not converge.'
WRITE(LTTI,*) ' Max U velocity iterate : ',DUMAX

WRITE(LTTI,*) ' Ue + mass scale iterates : ',DGLBL
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IF(KODE.EQ.2 .AND. BETU.EQ.0.0)
& WRITE(LTTI,*) ' Specified Mass is possibly too small.'
IF(KODE.EQ.3 .AND. BETU.EQ.0.0)

& WRITE(LTTI,*)

CALL STOPIT

500 WRITE(LTTI,*) '[ SIMIL ]:
WRITE(LTTI,*)

CALL STOPIT

600 WRITE(LTTI,*) '[ SIMIL ]:
WRITE(LTTI,*)

CALL STOPIT

700 WRITE(LTTI,*) '[ SIMIL ]:
WRITE(LTTI,*)
CALL STOPIT

Specified Dstar is possibly too small.'

UGUESS must be given for inverse'
flat plate similarity solution.'

Negative edge velocity was calculated.'
Solution probably diverged.'

Negative mass scale was calculated.'
Solution probably diverged.'

C

C---- The normal graceful exit

900 WRITE(LTTI,*)'[ SIMIL ]: Similarity ...',ITER,' Iterations'

C---- set edge quantities for X(2) station
UEIP = UE*(X(2)/XF)**BETU

MSIP = MS*(X(2)/XF)**BETN
MDIP = MD*(X(2)/XF)**BETM
DSIP = DS*(X(2)/XF)**BETD
SRIP = SR*(X(2)/XF)**BETS

C

C---- set edge quantities for X(1) station...
C ... assume first that streamwise gradients are zero

UEI = UEIP

MSI = MSIP

MDI = MDIP

DSI = DSIP

C
C---- and if they are not zero...

IF(BETU.NE.O.0) UEI = UE*(X(1)/XF)**BETU
IF(BETN.NE.O.0) MSI = MS*(X(1)/XF)**BETN
IF(BETM.NE.O.0) MDI = MD*(X(1)/XF)**BETM
IF(BETD.NE.O.0) DSI = DS*(X(1)/XF)**BETD

C

C---- treat shear carefully, it might be infinite at leading edge...
SRI = 99.9999 ! ... or at least very large

IF(BETS.EQ.0.0) SRI = SRIP
IF(BETS.NE.0.0 .AND. X(1).GT.O.0) SRI = SR*(X(1)/XF)**BETS

C
C---- One last thing to take care of...
C ... for BETU > 0, warn if incompressibility assumption is invalid

MACH = SQRT(ME2)

IF(BETU.EQ.0.0 .OR. MACH.LE.0.05) RETURN ! the 0.05 is arbitrary

C

C

C

C

C
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C
WRITE(LTTI,*) '[ SIMIL ]: WARNING! Edge Mach number = ',MACH
WRITE(LTTI,*) ' Heat production might upset similarity.'
WRITE(LTTI,*) X(1) and/or X(2) should be smaller.'
RETURN I keep going anyway

C
END ! SIMIL

SUBROUTINE PROFL

INCLUDE 'BLAKE.INC'

C

C This routine calculates the BL profiles between
C the Ith and I+1th stations using Newton-Raphson.
C
C

DO 5 ITER=1, ITMAX I Newton iteration loop

C

C------ fill block tridiagonal system

CALL SETUP

C
C------ get uncorrected profile iterates and global influence coefficients

CALL SOLVE
C

C------ get global variable iterates and corrected profile iterates
CALL DELTAS

C

C------ update profiles and get max U iterate
DUMAX = 0.

DO 52 J=1, JJ
F(J) = F(J) + R(1,1,J)

U(J) = U(J) + R(2,1,J)
H(J) = H(J) + R(3,1,J)

S(J) = S(J) + R(4,1,J)
Q(J) = Q(J) + R(5,1,J)
DUMAX = AMAX1(DUMAX,ABS(R(2,1,J)))

52 CONTINUE

C
C------ update UE and/or MS

UE = UE + DUE
MS = MS + DMS

C UTAU will be updated from its definition in VISC

C
C------ check for divergence

IF(UE.LE.O.0) GO TO 10
IF(MS.LE.O.0) GO TO 11

C

C------ recalculate edge quantities

CALL ECALC
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C

C------ recalculate DS, TH, and all that
CALL DCALC

C
C------ recalculate gradient parameters

BETU = ALOG(UE/UEI)/FLOG
BETN = ALOG(MS/MSI)/FLOG

C

C------ recalculate UTAU, viscosity, and viscosity influence coefficients
CALL VISC

C
C------ check for convergence or lack thereof

DGLBL = ABS(DMS)/MS + ABS(DUE)/UE
IF(DUMAX.LE.EPS .AND. DGLBL.LE.EPS) GO TO 20

C
5 CONTINUE ! end of Newton iteration loop

C
C

WRITE(LTTI,*)

WRITE(LTTI,*)

WRITE(LTTI,*)

CALL STOPIT

10 WRITE(LTTI,*)

WRITE(LTTI,*)

CALL STOPIT

11 WRITE(LTTI,*)
WRITE(LTTI,*)

CALL STOPIT

20 WRITE(LTTI,*)
RETURN

'[ PROFL

'[ PROFL

'[ PROFL

]: CONVERGENCE FAILED at station ',I,'.5'
Max U velocity residual: ',DUMAX

Uedge + Mass residuals : ',DGLBL

]: Negative edge velocity was calculated.'
Solution probably diverged.'

]: Negative mass scale was calculated.'
Solution probably diverged.'

'[ PROFL 1: Station ',I,'.5 ... ',ITER,' Iterations'

END ! PROFL

SUBROUTINE ECALC

INCLUDE 'BLAKE . INC'
**** *** * *** **** * ** *******

This routine calculates edge
quantities at X(I+1/2).

EE = 0.5*GM1*UE**2/TST ! edge Kinetic Energy to enthalpy ratio...
EEC = 1.0 - EE ! ... its complement

TE = TST*EEC ! edge static temperature
RHOE = RST*EEC**(1.0/GM1) ! edge static density
PE = RHOE*TE/GAM ! edge static pressure

C

C

C

C

C
C
C
C
C
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ME2 = UE*UE/TE
ME2C = 1.0 - ME2

RNU = XF*RHOE*UE/MS**2
C

C

C

C

C
C

! edge Mach Number squared...
! ...its complement
! group in front of S and Q definitions

RETURN

END ! ECALC

SUBROUTINE DCALC
INCLUDE 'BLAKE . INC'
* *** * *** **** *** **** ************* *** *** **

This routine calculates the profile
parameters DS, TH etc. at 1+1/2

* **** ****** **************** **** * **** ****

DUNORM = 0. ! normalized velocity thickness for outer eddy viscosity
THNORM = 0. ! normalized momentum thickness
DO 10 J=1, JJ-1

THNORM = THNORM + (F(J+1)-F(J)) * (1.0 - 0.5*(U(J+1)+U(J)))
DUNORM = DUNORM + (1.0 - 0.5*(U(J+1)+U(J)))*DETA(J)

10 CONTINUE

C

C

C

DSNORM = ETAE - F(JJ)

SHPF = DSNORM/THNORM

SC = MS/(RHOE*UE)
TH = THNORM*SC

DS = DSNORM*SC
MD = RHOE*UE*DS

SR = MS*UE/XF*S(1)

C

C

! normalized displacement thickness

! shape parameter

normal scaling length
momentum thickness
displacement thickness
mass defect

! wall shear

RETURN

END 1 DCALC

SUBROUTINE INIT
INCLUDE 'BLAKE.INC'
** **** ***** ********************* ********* *

This routine initializes everything for
solution of profiles and edge quantities
between the Ith and I+1th stations.

*** *** *** **** *********** *************

C

C

C
C

C

C
C****
C

first, set stuff for the previous profile station 1-1/2 ***

!

!

!

!
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C---- set profiles at 1-1/2

DO 2 J=1, JJ

FB(J) = F(J)

UB(J) = U(J)
HB(J) = H(J)

SB(J) = S(J)
QB(J) = Q(J)

2 CONTINUE

C

C---- set gradient parameters at 1-1/2
BETUB = BETU

BETNB = BETN
BETHB = BETH

C

C---- set X value at 1-1/2

XB = XF

C

C---- set shape parameter at 1-1/2 for the output routines

SHPB = SHPF
C

C**** next, set stuff for station I
C
C---- set UEI, MSI, etc.

UEI = UEIP

MSI = MSIP
MDI = MDIP
DSI = DSIP
SRI = SRIP

C

C---- set known TST and PST

RST = 0.5*(RSTAG(I) + RSTAG(I+1))
TST = TSTAG

C

C**** finally, set or initialize stuff at 1+1/2 for iteration *

C

XF = 0.5*(X(I+1) + X(I))
XLOG = ALOG(X(I+1)/X(I))
FLOG = ALOG(XF/X(I))

C
C---- the normal power-curve interpolation of SPECF is done here...

C ... this is exact for similar flows

IF(KODE.NE.4) BSPEC = ALOG(SPEC(I+1)/SPEC(I))/XLOG
IF(KODE.NE.4) SPECF = SPEC(I)*(XF/X(I))**BSPEC
IF(KODE.EQ.1) BETU = BSPEC
IF(KODE.EQ.2) BETM = BSPEC

IF(KODE.EQ.3) BETD = BSPEC
C
C---- linear interpolation is used for wall shear since it might be negative...

C ... this is NOT exact for similar flows and requires smaller x steps

IF(KODE.EQ.4) SPECF = 0.5*(SPEC(I+1) + SPEC(I))
C
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C---- set or initialize UE and MS
UE = UEI*(XF/X(I))**BETU
MS = MSI*(XF/X(I))**BETN

C
C---- set known total enthalpy gradient parameter

BETH = 0. 1 since edge flow is adiabatic
C
C---- set turbulence weighting coefficient with cubic transition zone

XT = 0.5
IF(XTR1.NE.XTR2) XT = (2.0*XF - (XTR2+XTR1))/(XTR2-XTR1)
TURB = 0.5 + 0.25*(3.0*XT - XT**3)
IF(XF.LT.XTR1) TURB = 0.
IF(XF.GE.XTR2) TURB = 1.0

C

C---- calculate edge quantities and viscosity
CALL ECALC
CALL DCALC

CALL VISC

C
RETURN

END ! INIT

SUBROUTINE IPSET

INCLUDE 'BLAKE.INC'

C

C This routine sets streamwise quantities at
C I+1 after calculation of profiles at 1+1/2
C

C
C---- calculate gradient parameters for power curve extrapolation

BETM = ALOG(MD/MDI)/FLOG
BETD = ALOG(DS/DSI)/FLOG

C
C---- set quantities for the I+1th station

UEIP = UEI*(X(I+1)/X(I))**BETU
MSIP = MSI*(X(I+1)/X(I))**BETN ! power curve extrapolation
MDIP = MDI*(X(I+1)/X(I))**BETM ! for all these quantities
DSIP = DSI*(X(I+1)/X(I))**BETD ! ..................................

SRIP = 2.0*SR - SRI ! linear extrapolation for wall shear
C

RETURN

END ! IPSET

SUBROUTINE VISC
INCLUDE 'BLAKE.INC'
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C

C This routine calculates molecular and eddy viscosities using
C the current boundary layer profiles. Sutherland's formula and

C the Cebeci-Smith 2-layer turbulence model is used. Influence

C coefficients for viscosity variations are also calculated to

C give overall quadratic convergence.
C Viscosities are defined to be halfway between grid nodes:

C MU(J) is at (ETA(J+1)+ETA(J))/2, ditto for MUT(J)

C

C
C---- empirical turbulence constants

DATA VKAP, DAMPC, ALPHA,

& / 0.40, 26.0, 0.0168,
C

C---- zero out influence coefficients

DO 10 J=1, JJ
VUP(J) = 0.

VHP(J) = 0.

VUO(J) = 0.
VHO(J) = 0.

TUP(J) = 0.

THP(J) = 0.

TUO(J) = 0.

THO(J) = 0.

VUE(J) = 0.

TUE(J) = 0.

TMS(J) = 0.

TUT(J) = 0.
10 CONTINUE

C

PPC
11.8 /

C---- set wall shear velocity UTAU

T = 0.5*TST*(H(1) + H(2))
V1 = SQRT((T/TVIS)**3)*(TVIS+TVCON)/(T+TVCON)

SWALL = RNU*V1*(U(2)-U(1))/DETA(1)
RWALL = 2.0*EEC/(H(1) + H(2))

UTAU = SQRT(ABS(SWALL)/RWALL)
IF(UTAU.LT.1.E-04) UTAU = 1.E-04 ! zero UTAU is a no-no

C

C---- assorted shorthand

ECONST = SQRT(SRE*MS**3/(RHOE*UE*XF))
BCONST = ECONST*UTAU/DAMPC
DBDU = 0.
IF(NSIM.EQ.0) DBDU = 1.0/(UE*FLOG)

C

1 dBETU/due

C---- set pressure gradient correction factor PN

PTEMP = MU(1)/(ECONST*UTAU**3*RWALL**2)
PPLUS = BETU*PTEMP

PN2 = 1.0 - PPC*PPLUS

IF(TURB.GT.0.0 .AND. PN2.LE.O.0) GO TO 800

C

PN = SQRT(ABS(PN2))

! test if correction factor
! is imaginary (!)
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C
TR1 = H(1) - EE*U(1)**2

C

RUl = 2.0*EE*EEC*U(1)/TR1**2

RH1 = -EEC/TR1**2

RUE1 = -GM1*UE*(H(1) - U(1)**2)/(TST*TR1**2)

C
T1 = TST*TR1

R1 = EEC/TR1
ETA = 0.5*DETA(1)

C
CCC-- inner eddy viscosity loop

DO 20 J=1, JJ-1

JP = J+1

TR2 = H(JP) - EE*U(JP)**2

C
RU2 = 2.0*EE*EEC*U(JP)/TR1**2

RH2 = -EE/TR2**2

RUE2 = -GM1*UE*(H(JP) - U(JP)**2)/(TST*TR2**2)
C

T2 = TST*TR2
R2 = EEC/TR2
T = 0.5*(T1 + T2)

RHO = 0.5*(R1 + R2)

! dRj+1/dUj+1
! dRj+1/dHj+1
! dRj+1/due

1 temperature at J+1/2

! density at J+1/2

C

C------ test if temperature is negative

IF(T.LT.O.0) GO TO 700
C
C------ set molecular viscosity with Sutherland's formula

MU(J) = SQRT((T/TVIS)**3)*(TVIS+TVCON)/(T+TVCON)

MUT(J) = 0.
C

CCC---- set coefficients for molecular viscosity iterates (dmu)j

C
C dmu = (dmu/dU)dU + (dmu/dH)dH + ... etc

C
DMUDT = 0.5*MU(J)*(1.5/T - 1.0/(T+TVCON)) 1 dmu/dT

C

C------ Uj and

VUP(J)
VUO(J)

C

C------ Hj and

VHP(J)

VHO(J)

C

Uj+1 influence coefficients
= -DMUDT*2.0*TST*EE*U(JP)
= -DMUDT*2.0*TST*EE*U(J)

Hj+1 influence coefficients

= DMUDT*TST

= DMUDT*TST

C------ Ue influence coefficient
VUE(J) = -DMUDT*GM1*UE*(U(JP)**2 + U(J)**2)

! dmu/dUj+1
! dmu/dUj

! dmu/dHj+1
! dmu/dHj

I dmu/due

C
C------ don't bother calculating eddy viscosity if TURB = 0

IF(TURB.EQ.0.0) GO TO 205
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C

US = ABS(U(JP) - U(J))

SGN = 1.0

IF(U(JP).LT.U(J)) SGN = -1.0
BK = BCONST*PN*RHO/MU(J)
EK = 0.
IF(ETA*BK .LT. 30.0) EK = EXP(-ETA*BK)
YL = VKAP*ETA*(1.0 - EK)

VTP = RHO*YL*YL*MS*SRE/DETA(J)*TURB
C

C------ set inner eddy viscosity
MUT(J) = VTP*US

C

C------ calculate outer eddy viscosity
MUTOUT = ALPHA*RHO*MS*DUNORM*SRE*TURB

C
C------ go to outer viscosity loop if inner-outer

IF(MUT(J).GT.MUTOUT) GO TO 30
C

match point has been reached

CCC---- set coefficients for inner eddy viscosity iterates (dmut)j
C

C dmut = (dmut/dU)dU + (dmut/dH)dH + ... etc
C

CK = VKAP*ETA*ETA*EK
DK = 0.
IF(J.GT.1) DK = 2.0*CK*BK/YL

C

C------ Uj and Uj+1 influence coefficients
TUP(J) = SGN*VTP + 0.5*MUT(J)*RU2/RHO

& *(-VUP(J)/MU(J) + 0.5*RU2/RHO
& - 0.5*PPC*PPLUS/PN2*(VUP(J)/MU(1) -

TUO(J) = -SGN*VTP + 0.5*MUT(J)*RU2/RHO
& *(-VUO(J)/MU(J) + 0.5*RU1/RHO
& - 0.5*PPC*PPLUS/PN2*(VUO(J)/MU(1) -

C

+ MUT(J)*DK

0.5*RU2/RWALL))
+ MUT(J)*DK

0.5*RU1/RWALL))

! dmut/dUj+1

! dmut/dUj+1

C------ Hj and Hj+1 influence coefficients
THP(J) = 0.5*MUT(J)*RH2/RHO + MUT(J)*DK

& *(-VHP(J)/MU(J) + 0.5*RH2/RHO
& - 0.5*PPC*PPLUS/PN2*(VHP(J)/MU(1) - 0.5*RH2/RWALL))

THO(J) = 0.5*MUT(J)*RH1/RHO + MUT(J)*DK
& *(-VHO(J)/MU(J) + 0.5*RH1/RHO
& - 0.5*PPC*PPLUS/PN2*(VHO(J)/MU(1) - 0.5*RH1/RWALL))

C
C------ Ue influence coefficient

TUE(J) = MUT(J)*0.5*(RUE2+RUE1)/RHO + MUT(J)*DK
& *(-VUE(J)/MU(J) + 0.5*(RUE2+RUE1)/RHO - 0.5*EEC/UE
& - 0.5*PPC/PN2
& *(PTEMP*DBDU + 0.5*PPLUS*EEC/UE + PPLUS*VUE(1)/MU(1)
& + PPLUS/RWALL*2.0*GM1*UE/(TST*(H(1)+H(2))) ))

C
C------ Ms influence coefficient

! dmut/dHj+1

! dmut/dHj

! dmut/due
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TMS(J) = MUT(J)/MS + MUT(J)*DK*(1.5 + 0.75*PPC*PPLUS/PN2)/MS ! dmut/dms
C

C------ Utau influence coefficient
TUT(J) = MUT(J)*DK*(1.0 - 1.5*PPC*PPLUS/PN2)/UTAU ! dmut/dUtau

C

205 TR1 = TR2
RUl = RU2
RHi = RH2
RUE1 = RUE2
T1 = T2
R1 = R2
ETA = ETA + 0.5*(DETA(J)+DETA(JP))

20 CONTINUE

IF(TURB.EQ.0.0) RETURN

C

WRITE(LTTI,*) '[ VISC ]: WARNING! Streamwise station ',I
WRITE(LTTI,*) ' Inner turbulence model reached BL edge.'
WRITE(LTTI,*) Local Reynolds Number is too low.'

RETURN
C

CCC-- outer eddy viscosity loop

30 JSTART = J

DO 40 J=JSTART, JJ-1

JP = J+1

TR2 = H(JP) - EE*U(JP)**2

T2 = TST*TR2
R2 = EEC/TR2
RHO = 0.5*(R1 + R2) 1 density at J+1/2

T = 0.5*(T1 + T2) 1 temperature at J+1/2

C

IF(T.LT.O.0) GO TO 700
C

C------ set molecular and outer eddy viscosity

MU(J) = SQRT((T/TVIS)**3)*(TVIS+TVCON)/(T+TVCON)

MUT(J) = ALPHA*RHO*MS*DUNORM*SRE*TURB

C

CCC---- set coefficients for molecular viscosity iterates

DMUDT = 0.5*MU(J)*(1.5/T - 1.0/(T+TVCON))

C
C------ Uj and Uj+1 influence coefficients

VUP(J) = -DMUDT*2.0*TST*EE*U(JP)
VUO(J) = -DMUDT*2.0*TST*EE*U(J)

C

C------ Hj and Hj+1 influence coefficients

VHP(J) = DMUDT*TST
VHO(J) = DMUDT*TST

C
C------ Ue influence coefficient

VUE(J) = -DMUDT*GM1*UE*(U(JP)**2 + U(J)**2)
C

CCC---- set coefficients for outer eddy viscosity iterates
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C
C------ Uj and Uj+1 influence coefficients

TUP(J) = MUT(J)/RHO*EE*EEC*U(JP)/TR2**2
TUO(J) = MUT(J)/RHO*EE*EEC*U(J)/TR1**2

C
C------ Hj and Hj+1 influence coefficients

THP(J) = -0.5*MUT(J)/RHO*EE/TR2**2
THO(J) = -0.5*MUT(J)/RHO*EE/TR1**2

C

C------ Ue influence coefficient
TUE(J) = -0.5*MUT(J)/RHO*GM1*UE/TST

& *(H(JP)-EE*U(JP)**2 + H(J)-EE*U(J)**2)
C

C------ Ms influence coefficient
TMS(J) = MUT(J)/MS

C
C------ Utau influence coefficient

TUT(J) = 0. ! no wall shear effect on outer eddy viscosity
C

401 TR1 = TR2

T1 = T2

R1 = R2

40 CONTINUE

C

RETURN

C

700 WRITE(LTTI,*) '[ VISC 1: Negative temperature calculated.'
WRITE(LTTI,*) ' Solution probably diverged.'
CALL STOPIT

C

800 WRITE(LTTI,*) '[ VISC ]: Negative dUe/dx correction factor.'
WRITE(LTTI,*) ' Local Reynolds Number is too low or'
WRITE(LTTI,*) ' dUe/dx is too high to be corrected for.'
CALL STOPIT

C

END ! VISC

SUBROUTINE SETUP

INCLUDE 'BLAKE.INC'

C

C This routine sets up the block-tridiagonal system for either

C the similarity (NSIM=1) or marching problem (NSIM=0).

C Influence coefficients for variations of molecular and eddy
C viscosities are received from subroutine VISC and incorporated
C into the block matrix to obtain overall quadratic convergence.
C

C

IP = I+1
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IM = I-1
C

IF(NSIM.EQ.1) XBAR = 0. ! XBAR multiplies the
IF(NSIM.EQ.0) XBAR = 0.5*(XF+XB)/(XF-XB) 1 x-dependent terms

C

C---- set variational conversion factors for BETU and BETN...

C ... dBETU = DBDU x dUE ; dBETN = DBDN x dMS
DBDU = 0. ! for similarity, dBETU

DBDN = 0. 1 and dBETN are zero
IF(NSIM.EQ.0) DBDU = 1.0/(UE*FLOG)
IF(NSIM.EQ.0) DBDN = 1.0/(MS*FLOG)

C

DO 2 J=1, JJ

DO 21 N=1, 5

DO 211 L=1, 5
A(LNJ) = 0.
IF(N.LE.3) B(L,N,J) = 0.

IF(L.LE.2) C(L,N,J) = 0.
IF(N.LE.4) R(L,N,J) = 0.

211 CONTINUE

21 CONTINUE

2 CONTINUE
C

CCC-- set first A and C blocks and righthand sides

C
C---- first line: F = 0 wall boundary condition

A(1,1,1) = 1.0

R( 11,1 ) = -F(1)

C
C---- second line: U = 0 boundary condition

A(2,2,1) = 1.0

R(2,1,1) = -U(1)

C

C---- third line: bh H + (1-bh) Q = bcon boundary condition

A(3,3,1) = BH
A(3,5,1) = 1.0 - BH

R(3,1,1) = BCON + (BH-1.0)*Q(1) - BH*H(1)
C

DO 1000 J=1, JJ-1

C
C---- set shorthand definitions
C

JP = J+1

C

FS = F(JP) + F(J)

US = U(JP) + U(J)

HS = H(JP) + H(J)
C

FD = F(JP) - F(J)

UD = U(JP) - U(J)

HD = H(JP) - H(J)
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C
FY = FD + FB(JP) - FB(J)

FX = FS - FB(JP) - FB(J)

C
UY = UD + UB(JP) - UB(J)

UX = US - UB(JP) - UB(J)

C
HY = HD + HB(JP) - HB(J)

HX = HS - HB(JP) - HB(J)

C
C

SEP = 1.0 ! separation trigger

IF(US .LE. 0.) SEP = 0. 1 for Reyhner-Flugge-Lotz approximation

C

C---- x-momentum

A(4,1,J) = 0.5*( BETU*US + BETN*UD + XBAR*(UX*SEP + UY))
A(4,2,J) = 0.5*(-BETU*FD - BETN*FS - XBAR*(FY*SEP + FX))

A(4,4,J) = -1.0

C
C(1,1,J) = 0.5*(-BETU*US + BETN*UD + XBAR*(-UX*SEP + UY))
C(1,2,J) = 0.5*(-BETU*FD + BETN*FS + XBAR*(-FY*SEP + FX))
C(1,4,J) = 1.0

C
R(4,1,J) = 0.5*XBAR*(FY*UX*SEP - FX*UY)

& - (SB(JP)-SB(J)

& + BETUB*(DETA(J) - 0.5*(UB(JP)+UB(J))*(FB(JP)-FB(J)))

& + BETNB*0.5*(FB(JP)+FB(J))*(UB(JP)-UB(J)))
& - (S(JP)-S(J)

& + BETU*(DETA(J) - 0.5*US*FD)

& + BETN*0.5*FS*UD)
C

R(4,2,J) = (DETA(J) - 0.5*US*FD)*DBDU
R(4,3,J) = 0.5*FS*UD*DBDN

C
C---- energy

A(5,1,J) = 0.5*( BETH*HS + BETN*HD + XBAR*(HX*SEP + HY))
A(5,3,J) = 0.5*(-BETH*FD - BETN*FS - XBAR*(FY*SEP + FX))

A(5,5,J) = -1.0

C
C(2,1,J) = 0.5*(-BETH*HS + BETN*HD + XBAR*(-HX*SEP + HY))
C(2,3,J) = 0.5*(-BETH*FD + BETN*FS + XBAR*(-FY*SEP + FX))
C(2,5,J) = 1.0

C
R(5,1,J) = 0.5*XBAR*(FY*HX*SEP - FX*HY)

& - (QB(JP)-QB(J)

& - BETHB*0.5*(HB(JP)+HB(J))*(FB(JP)-FB(J))

& + BETNB*0.5*(FB(JP)+FB(J))*(HB(JP)-HB(J)))
& - (Q(JP)-Q(J)

& - BETH*0.5*HS*FD

& + BETN*0.5*FS*HD)
R(5,3,J) = 0.5*FS*HD*DBDN



52

C

CCC-- continuity ---
C

TR1 = H(J) - EE*U(J)**2

TR2 = H(JP) - EE*U(JP)**2

R1 = EEC/TR1

R2 = EEC/TR2

C

B(1,1,JP) = -1.0

B(1,2,JP) = -0.5*DETA(J)*R1 - DETA(J)*EE*EEC*(U(J)/TR1)**2
B(1,3,JP) = 0.5*DETA(J)*U(J)/TR1**2*EEC

C
A(1,1,JP) = 1.0

A(1,2,JP) = -0.5*DETA(J)*R2 - DETA(J)*EE*EEC*(U(JP)/TR2)**2

A(1,3,JP) = 0.5*DETA(J)*U(JP)/TR2**2*EEC
C

R(1,1,JP) = -F(JP) + F(J) + 0.5*DETA(J)*(R2*U(JP) + R1*U(J))

R(1,2,JP) = 0.5*DETA(J)*GM1*UE/TST
& *(U(J)*(H(J)-U(J)**2)/TR1**2 + U(JP)*(H(JP)-U(JP)**2)/TR2**2)

C

C---- shear
ST = (MU(J)+MUT(J))*UD/DETA(J)
DSDV = 2.0*RNU*UD/DETA(J)

C
B(2,1,JP)
B(2,2 ,JP)

&
B(2,3,JP)

A(2,1 ,JP)
A(2,2 ,JP)

&
A(2,3,JP)

A(2,4,JP)

R(2,1 ,JP)
R(2,2 ,JP)
R(2,3,JP)

R(2,4,JP)

+

A(4,1 ,J)

-DSDV*(VUO(J)+TUO(J))

A(4,2,J)

-DSDV*(VHO(J)+THO(J))

C(1,1 ,J)

-DSDV*(VUP(J)+TUP(J))

C(1,2,J)

-DSDV*(VHP(J)*THP(J))

2.0

+ 2.*RNU*(MU(J)+MUT(J))/DETA(J)

- 2.*RNU*(MU(J)+MUT(J))/DETA(J)

2.0*RNU*ST - (S(JP) + S(J)) + R(4,1,J)

-DSDV*(VUE(J)+TUE(J)) - 2.0*ST*ME2C*RNU/UE + R(4,2,J)
-DSDV*TMS(J) + 4.0*ST*RNU/MS + R(4,3,J)
-DSDV*TUT(J) + R(4,4,J)

C
C---- heat flow

TPR = MU(J)/PR + MUT(J)/PRT

VPR = MU(J)*(1.0 - 1.0/PR)

QT = (TPR*HD + VPR*EE*US*UD)/DETA(J)
DQV = 2.0*RNU*(HD/PR + (1.0-1.0/PR)*EE*US*UD)/DETA(J)
DQT = 2.0*RNU*HD/PRT/DETA(J)

C
B(3,1 ,JP)

B(3,2 ,JP)
B(3,3,JP)

&

= A(5,1,J)

=-DQV*VUO(J) - DQT*TUO(J) + 4.*RNU*VPR*EE*U(J)/DETA(J)
=-DQV*VHO(J) - DQT*THO(J) + 2.*RNU*TPR/DETA(J)
+ A(5,3,J)

C

C
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C
A(3,1 ,JP)

A(3,2 ,JP)
A(3,3,JP)

&

A(3 ,5 ,JP)

R(3,1 ,JP)
R(3,2,JP)

&

&

R(3,3,JP)
R(3,4,JP)

1000 CONTINUE

= C(2,1,J)
=-DQV*VUP(J) - DQT*TUP(J) - 4.*RNU*VPR*EE*U(JP)/DETA(J)

=-DQV*VHP(J) - DQT*THP(J) - 2.*RNU*TPR/DETA(J)

+ C(2,3,J)
= 2.0

= 2.0*RNU*QT - (Q(JP) + Q(J)) + R(5,1,J)
= -DQV*VUE(J) - DQT*TUE(J)

- 2.0*QT*ME2C*RNU/UE - 4.0*RNU*VPR*GM1*UE/TST*US*UD

+ R(5,2,J)
= -DQT*TMS(J) + 4.0*QT*RNU/MS + R(5,3,J)

= -DQT*TUT(J) + R(5,4,J)

1 end of J loop
C
CCC-- fill last A adld B blocks and righthand side vectors

C
C---- fourth line: U = 1 edge boundary condition

A(4,2,JJ) = 1.0

R(4,1,JJ) = 1.0 - U(JJ)

C
C---- fifth line: H = 1 edge boundary condition

A(5,3,JJ) = 1.0

R(5,1,JJ) = 1.0 - H(JJ)

C

RETURN

END ! SETUP

SUBROUTINE SOLVE

INCLUDE 'BLAKE.INC'

C
C This routine solves the block-tridiagonal system for the Newton-Raphson

C Deltas and global iterate influence coefficients. These are returned

C in the Rj vectors. A small amount of pre-processing was done in SETUP

C to obtain zero rows and columns in the C and B blocks:

d R..R
d R..R

R..R

C . R..R
A d R..R

0 0 0 0 0
0 0 0 0 0

C= 0 0 0 0 0
* ** * *

* * * * *

* * *0 oj
* * *0 0

B * **0 0
* **0 0
* * *0 0

C

C

CCC** Backward sweep: Elimination of upper block diagonal (C's).

DO 1 J=JJ, 1, -1

IF(J.EQ.JJ) GO TO 13

C

C

C
C

C

C
C

C
C

JA C
B A

B

C

B
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C
CCC---- calculate diagonal Aj block and modified righthand side (Rj's)

C resulting from elimination of Cj block.

C

&

&

111

&

&

112
11

JP = J+1
DO 11 K=1, 2

DO 111 L=1, 3
A(K+3,LJ) = A(K+3,LJ) - (C(K,1,J)*B(1,LJP)

+ C(K,2,J)*B(2,L,JP) + C(K,3,J)*B(3,L,JP)
+ C(K,4,J)*B(4,L,JP) + C(K,5,J)*B(5,L,JP))

CONTINUE

DO 112 L=1, 4

R(K+3,LJ) = R(K+3,LJ) - (C(K,1,J)*R(1,L,JP)

+ C(K,2,J)*R(2,L,JP) + C(K,3,J)*R(3,L,JP)
+ C(K,4,J)*R(4,L,JP) + C(K,5,J)*R(5,L,JP))

CONTINUE
CONTINUE

C -1

CCC---- multiply Bj block and righthand side Rj vectors by (Aj)
C using Gaussian elimination.

C
13 DO 14 NP=1, 4

NP1 = NP+1
C
C--------

1311
131

C

C
C--------

C
C--------

132

C

find max pivot index NX

NX = NP
DO 131 N=NP1, 5

IF(ABS(A(N,NP,J))-ABS(A(NX,NP,J))) 131,131,1311

NX = N

CONTINUE

PIVOT = 1.0/A(NX,NP,J)

switch pivots
A(NX,NP,J) = A(NP,NP,J)

switch rows & normalize pivot row

DO 132 L=NP1, 5

TEMP = A(NX,L,J)*PIVOT
A(NX,L,J) = A(NP,L,J)
A(NP,L,J) = TEMP

CONTINUE

DO 133 L=1, 3
TEMP = B(NX
B(NX,L,J) =
B(NP,L,J) =

CONTINUE

,L,J)*PIVOT

B(NP,L,J)
TEMP

C
DO 134 L=1, 4

TEMP = R(NX,LJ)*PIVOT

133



55

134

C

C--------

1351

135
C

R(NX,L,J) = R(NP,L,J)
R(NP,L,J) = TEMP

CONTINUE

forward eliminate everything

DO 135 K=NP1, 5
DO 1351 L=NP1, 5

A(KLJ) = A(KLJ) - A(K,NP,J)*A(NP,L,J)

CONTINUE

B(K,1,J) = B(K,1,J) - A(K,NP,J)*B(NP,1,J)

B(K,2,J) = B(K,2,J) - A(K,NP,J)*B(NP,2,J)

B(K,3,J) = B(K,3,J) - A(K,NP,J)*B(NP,3,J)

R(K,1,J) = R(K,1,J) - A(K,NP,J)*R(NP,1,J)

R(K,2,J) = R(K,2,J) - A(K,NP,J)*R(NP,2,J)

R(K,3,J) = R(K,3,J) - A(K,NP,J)*R(NP,3,J)

R(K,4,J) = R(K,4,J) - A(K,NP,J)*R(NP,4,J)
CONTINUE

14 CONTINUE

C

C------ solve for last row

PIVOT = 1.0/A(5,5,J)
B(5,1,J) = B(5,1,J)*PIVOT
B(5,2,J) = B(5,2,J)*PIVOT
B(5,3,J) = B(5,3,J)*PIVOT

R(5,1,J) = R(5,1,J)*PIVOT
R(5,2,J) = R(5,2,J)*PIVOT
R(5,3,J) = R(5,3,J)*PIVOT

R(5,4,J) = R(5,4,J)*PIVOT
C
C------ back substitute everything

DO 15 NP=4, 1, -1

NP1 = NP+1

DO 141 L=NP1, 5

B(NP,1,J) = B(NP,1,J) - A(NP,L,J)*B(L,1,J)

B(NP,2,J) = B(NP,2,J) - A(NP,L,J)*B(L,2,J)

B(NP,3,J) = B(NP,3,J) - A(NP,L,J)*B(L,3,J)

R(NP,1,J) = R(NP,1,J) - A(NP,LJ)*R(L,1,J)

R(NP,2,J) = R(NP,2,J) - A(NP,L,J)*R(L,2,J)

R(NP,3,J) = R(NP,3,J) - A(NP,L,J)*R(L,3,J)

R(NP,4,J) = R(NP,4,J) - A(NP,L,J)*R(L,4,J)

141 CONTINUE

15 CONTINUE

1 CONTINUE

C

CCC** Forward sweep: Back substitution using lower block diagonal (Bj's).

DO 2 J=2, JJ
JM = J-1
DO 21 L=1, 4

DO 211 N=1, 5

R(NLJ) = R(NLJ)
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& - (R(1,LJM)*B(N,1,J) + R(2,L,JM)*B(N,2,J) + R(3,L,JM)*B(N,3,J))
211 CONTINUE

21 CONTINUE

2 CONTINUE
C

RETURN

END

SUBROUTINE DELTAS

INCLUDE 'BLAKE.INC'

C

C This routine calculates the iterates of
C global unknowns and uses them to correct
C the profile iterates using the influence

C coefficients calculated by SOLVE.

C
C

C---- calculate RNORM and its global iterate influence coefficients

RNORM = 0.
DNRES = 0.

DNDUE = 0. ! dNorm/due
DNDMS = 0. ! dNorm/dn
DNDUT = 0. ! dNorm/dUtau

DO 100 J=1, JJ-1
JP = J+1

UMID = 0.5*(U(JP) + U(J))

RNORM = RNORM + UMID*(1.0 - UMID)*DETA(J)

DNRES = DNRES + DETA(J)*(0.5 - UMID)*(R(2,1,JP) + R(2,1,J))
DNDUE = DNDUE + DETA(J)*(0.5 - UMID)*(R(2,2,JP) + R(2,2,J))

DNDMS = DNDMS + DETA(J)*(0.5 - UMID)*(R(2,3,JP) + R(2,3,J))

DNDUT = DNDUT + DETA(J)*(0.5 - UMID)*(R(2,4,JP) + R(2,4,J))

100 CONTINUE

C

C**** Set up system for DUE, DMS, and DUT

C

C---- first line ... drive RNORM to 1

Al = DNDUE

B1 = DNDMS

C1 = DNDUT

D1 = RNORM - 1.0 + DNRES

C

C---- second line ... drive current Utau to UTAU

RWALL = EEC/H(1) ! density at wall

RHW = -EEC/H(1)**2 ! dRw/dHw

RUE = -GM1*UE/TST/H(1) ! dRw/due

C
A2 = R(4,2,1) - UTAU**2 *(RHW*R(3,2,1) - RUE)

B2 = R(4,3,1) - UTAU**2 * RHW*R(3,3,1)
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C2 = R(4,4,1) - UTAU**2 * RHW*R(3,4,1) + 2.0*RWALL*UTAU
D2 = R(4,1,1) - UTAU**2 * RHW*R(3,1,1) + S(1) - RWALL*UTAU**2

C

C---- third line ... drive (whatever's specified) to specified value
IF(KODE.EQ.1) CALL KODE1
IF(KODE.EQ.2) CALL KODE2
IF(KODE.EQ.3) CALL KODE3
IF(KODE.EQ.4) CALL KODE4

C

3X3 system:

IA1 B1 C11 IDUEI ID11

II I
IA2 B2 C2 X DMS = D21

1A3 B3 C3 DUT ID31

C---- solve 3x3 system for global iterates
10 CALL GSOLVE

C

CCC-- correct profile iterates
DO 12 J=1, JJ

R(1,1,J) = R(1,1,J) - DUE*R(1,2,J) - DMS*R(1,3,J) - DUT*R(1,4,J)

R(2,1,J) = R(2,1,J) - DUE*R(2,2,J) - DMS*R(2,3,J) - DUT*R(2,4,J)
R(3,1,J) = R(3,1,J) - DUE*R(3,2,J) - DMS*R(3,3,J) - DUT*R(3,4,J)
R(4,1,J) = R(4,1,J) - DUE*R(4,2,J) - DMS*R(4,3,J) - DUT*R(4,4,J)

R(5,1,J) = R(5,1,J) - DUE*R(5,2,J) - DMS*R(5,3,J) - DUT*R(5,4,J)
12 CONTINUE

C

RETURN

END ! DELTAS

SUBROUTINE GSOLVE
INCLUDE 'BLAKE.INC'

C

C---- solve
DET =

&

&
DUE =

&

&

&

&

3x3 system by using Cramer's rule
A3*(B1*C2 - C1*B2)
-B3*(A1*C2 - C1*A2)
+C3*(A1*B2 - B1*A2)
(D3*(B1*C2 - C1*B2)
-B3*(D1*C2 - C1*D2)
+C3*(D1*B2 - B1*D2))/DET

DMS = (A3*(D1*C2

-D3*(A1*C2
+C3*(A1*D2

DUT = (A3*(B1*D2

-B3*(A1*D2
+D3*(A1*B2

- C1*D2)
- C1*A2)
- D1*A2))/DET

- D1*B2)

- D1*A2)

- B1*A2))/DET

C--
C--

C--

C--

C--

C--
C--
C
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C

RETURN

END ! GSOLVE

C

C
C Each KODEn routine sets up the third line of the 3x3 system for the
C global iterates which is then solved in DELTAS. Quadratic convergence
C to some specified quantity (stored in SPECF) is then achieved.
C

C
C

SUBROUTINE KODE1
INCLUDE 'BLAKE.INC'

C

C---- Ue specified
C

A3 = 1.0

B3 = 0.
C3 = 0.

D3 = SPECF - UE

C

RETURN

END ! KODE1

SUBROUTINE KODE2
INCLUDE 'BLAKE.INC'

C
C---- Rhoe*Ue*Dstar (= mass defect) specified
C

A3 = MS*R(1,2,JJ)
B3 = MS*R(1,3,JJ) + ETAE - F(JJ)
C3 = MS*R(1,4,JJ)
D3 = MS*R(1,1,JJ) + SPECF - MD

C

RETURN

END ! KODE2

SUBROUTINE KODE3
INCLUDE 'BLAKE.INC'

C
C---- Dstar specified
C

A3 = SC*R(1,2,JJ) - SC/UE*(ETAE - F(JJ))*ME2C
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B3 = SC*R(1,3,JJ) + (ETAE - F(JJ))/(RHOE*UE)
C3 = SC*R(1,4,JJ)
D3 = SC*R(1,1,JJ) + SPECF - DS

C
RETURN

END ! KODE3

SUBROUTINE KODE4
INCLUDE 'BLAKE.INC'

C

C---- Wall Shear specified
C

A3 = MS*UE/XF*R(4,2,1) - MS/XF*S(1)

B3 = MS*UE/XF*R(4,3,1) - UE/XF*S(1)
C3 = MS*UE/XF*R(4,4,1)
D3 = MS*UE/XF*R(4,1,1) + SR - SPECF

C
RETURN

END ! KODE4

SUBROUTINE HEADER

INCLUDE 'BLAKE.INC'
C

IF(NSTR.EQ.0) RETURN
C

IF(KODE.EQ.1) WRITE(LSTR,1001)
IF(KODE.EQ.2) WRITE(LSTR,1002)

IF(KODE.EQ.3) WRITE(LSTR,1003)

IF(KODE.EQ.4) WRITE(LSTR,1004)
WRITE(LSTR,1050) REO
WRITE(LSTR,2000)

RETURN
C

1001 FORMAT(1l CODE 1: Ue prescribed')
1002 FORMAT('1 CODE 2: Mass defect prescribed')
1003 FORMAT('1 CODE 3: Dstar prescribed')
1004 FORMAT('1 CODE 4: Wall shear prescribed')
1050 FORMAT('O RE =',E12.4)
2000 FORMAT('O Sta',6X,'x',7X,'Ue',6X,'Mach',

& 6X,'Pe',8X,'m',6X,'Shear',4X,'Dstar',

& 4X,'Dmom',6X,'H',7X,'Te',6X,'Twall',2X,'Heat flux'/

& 1X,115('- ))
END ! HEADER
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SUBROUTINE STROUT
INCLUDE 'BLAKE.INC'

C
C This routine outputs X(I) station quantities to
C unit LSTR. If needed, profile values at X(I) are
C interpolated from X(I-1/2) and X(I+1/2).
C

C
IF(NSTR.EQ.0) RETURN
IF(MOD(INSTR).NE.0) RETURN

C
C---- set weights for interpolation ... similarity case

WF = 1.0 ! 1+1/2 weight
WB = 0. ! 1-1/2 weight
IF(NSIM.EQ.1) GO TO 3

C
IF(I.LT.IEND) GO TO 2

C----- set weights for extrapolation ... I = IEND case (unless I < 3)
IF(I.LT.3) GO TO 3

WF = (X(I) - X(I-2)) / (X(I-1) - X(I-2))

WB = (X(I-1) - X(I)) / (X(I-1) - X(I-2))

UEI = UEIP

MSI = MSIP

MDI = MDIP

DSI = DSIP

SRI = SRIP

C
IF(I.EQ.IEND) GO TO 3

C----- set weights for interpolation ... normal case
2 WF = (X(I) - X(I-1)) / (X(I+1) - X(I-1))

WB = (X(I+1) - X(I)) / (X(I+1) - X(I-1))

C
3 TSTI = TSTAG

RSTI = RSTAG(I)
C

EEI = 0.5*GM1*UEI**2/TSTI

TEI = TSTI*(1.0 - EEI)

REI = RSTI*(1.0 - EEI)**(1.0/GM1)

PEI = REI*TEI/GAM
MACH = UEI/SQRT(TEI)

C

SHPI = SHPF*WF + SHPB*WB
THI = DSI/SHPI

C

SX = WF*S(1) + WB*SB(1)

QX = WF*Q(1) + WB*QB(1)
HX = WF*H(1) + WB*HB(1)

TWALL = TSTI*HX

C
SHEAR = 0.
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HFLUX = 0.
IF(X(I).GT.O.0) SHEAR = MSI*UEI/X(I)*SX
IF(X(I).GT.O.0) HFLUX = -MSI*TSTI/(GM1*X(I))*QX

C
WRITE(LSTR,1000) I,X(I),UEI,MACH,PEI,MDI,SHEAR,

& DSI,THI,SHPI,TEI,TWALL,HFLUX

RETURN
C

1000 FORMAT(1X,I4,8F9.4,F8.3,3F9.4)

END ! STROUT

SUBROUTINE PFLOUT

INCLUDE 'BLAKE.INC'

C
C This routine outputs profiles
C at X(I+1/2) to unit LPFL.
C

C
IF(NPFL.EQ.0) RETURN

IF(MOD(I,NPFL).NE.0) RETURN
C

MACH = UE/SQRT(TE)

C
WRITE(LPFL,1000)

WRITE(LPFL,1010) I,XF,DS,TH,UE,MACH
WRITE(LPFL,1011) SC,RHOE,BETU,SHPF

WRITE(LPFL,1020)

C
C---- extrapolate wall viscosity

VJ = MU(1) - DETA(1)*(MU(2)-MU(1))/(DETA(2)+DETA(1))

VTJ = 0.

ETA = 0.
DO 10 J=1, JJ

RHO = EEC/(H(J) - EE*U(J)**2)

IF(J.EQ.1 .OR. J.EQ.JJ) GO TO 101

C------- interpolate viscosities to grid nodes

VJ = (DETA(J)*MU(J-1) + DETA(J-1)*MU(J))/(DETA(J)+DETA(J-1))
VTJ = (DETA(J)*MUT(J-1) + DETA(J-1)*MUT(J))/(DETA(J)+DETA(J-1))

101 WRITE(LPFL,1050) J,ETA,F(J),U(J),S(J),RHO,H(J),Q(J),VJ,VTJ

ETA = ETA + DETA(J)

10 CONTINUE

WRITE(LPFL,1070)

RETURN

C
1000 FORMAT('1',94(1=1))

1010 FORMAT('0I =',13,'.5 X =',F9.5,' Dstar =',F8.4,
& ' Dmom =',F8.4,' Ue =',F8.4,' Mach =',F8.4)

1011 FORMAT('OY scale =',F1O.6,' Rhoe =',F8.4,
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& ' BETAu =',F8.4,' shape parameter =',F6.3)
1020 FORMAT('0',94('-')/'o J',6X,'Eta',8X,'F',9X,'U',9X,'S',

& 9X,'R',9X,'H',9X,'Q',10X,'Mu',7X,'Mut'/
& 1X,3('-'),3X,7('-'),3X,7('-'),3X,7('-'),3X,7('-'),
& 3X,7('-'),3X,7(1-'),3X,8('-'),3X,7('-'),3X,7(1-'))

1050 FORMAT(1XI3,6F10.5,F11.6,2F10.5)
1070 FORMAT('O',94('-'))

END ! PFLOUT


