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ABSTRACT

The phenomenon of incompressible boundary layer separation and the

existing methods of predicting it are discussed. The failure of these

theories in many cases clearly indicates a need for further investigation.

A program is proposed that, it is hoped, will improve the present

situation. The study is directed primarily at turbulent flow, but the

laminar case is treated as well.

A theoretical method is presented which involves the ability of the

boundary layer to transfer momentum to the fluid near the wall by shear

stress.

The apparatus, which has already been built for the experimental in-

vestigation, is described. Due to its flexibility, the apparatus should

prove valuable in comparing and improving methods of predicting separation.
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INTRODUCTION

The well known phenomenon that occurs when the flow near a solid bound-

ary, such as an airfoil, ceases to follow the boundary is known as boundary

layer separation, or stall. The usual two-dimensional model is quite clear

-- fluid near the wall that has been retarded by viscous stresses is unable

to continue into a region of increasing pressure. The separation point is

defined as the point where (u) = 0, or where tw = 0. However, in three-

dimensional flow the picture is not quite so clear. Except in special cases

(singular points) the velocity gradient and shear stress at the wall remain

finite. The separation point is then defined as the point where the limit-

ing streamlines leave the wall. A general description of separation in

three-dimensional flow was given recently by Taylor( 1). For turbulent

boundary layers the concept is still more difficult, even for two-dimen-

sional flow. As noted by Kline (2), there is no definite point of separ-

ation, but usually a somewhat unsteady region.

Undoubtably, boundary layer separation, or stall, is of great impor-

tance in fluid mechanics. The design of any device involving fluid flow

is likely to be critically dependent upon the phenomenon of separation.

Such devices include pumps, compressors, turbines, propellers, wings, vanes,

hull shapes, etc. In general, without some knowledge of separation, very

little can be said about the flow even outside the boundary layer.

Because of the importance, a great deal of work has already been done

in this general field. However, there is still considerable doubt as to

the value of the methods so far proposed for predicting stall. Several

theories were compared recently by Stewart(3). Figure 1, which was taken

from Stewart's paper, clearly demonstrates the unreliability of these theo-

ries. In most cases, somewhat conservative rules, such as the lift coef-

ficient for airfoils and pressure rise for diffusers, are used in design.
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After a critical discussion concerning the present theories, Clauser(4)

concludes that "the field is still wide open for the advent of a reliable

method for predicting the behavior of turbulent layers under the influence

of pressure gradients".

TURBULENT BOUNDARY LAYER THEORY

The theory of turbulence dates back to 0. Reynolds, who first intro-

duced the velocity in terms of a mean and fluctuating component into the

Navier-Stokes equations. Later Prandtl, in his famous boundary layer ap-

proximations, simplified the equations of motion for flow near a solid

boundary. The resulting equation for turbulent boundary layers is usually

written

'yu u 1 ( u D u1 5x +va-y p ax + 7 y- a y (

where -pu'v' is the Reynolds shear stress.

However, the difficulties involved in solving equation (1) have led to

the use of integral techniques. The von KaTman momentum integral equation,

which can be derived by directly integrating equation (1) or by a control

volume approach, is usually written in its two-dimensional form

dQ + (H + 2) 2 d Cf
dx U dx 2 (2)

Equation (2) contains three unknowns; the momentum thickness, the shape

factor and the skin friction. The skin friction for pressure gradients is

somewhat uncertain, but perhaps one of the most reliable equations so far

proposed is that of Ludwieg and Tillmann (5

IU9) -. 268 -. 678H
Cf = 0.246 K7) 10 (3)

which was based on heat transfer measurements. Since the skin friction term

is relatively small in an adverse pressure gradient, a flat plate equation

of the form

Cf = const. x (4)
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is often -used with equation (2).

Then, with a mean value of H, which might partly compensate for the

error involved in using the flat plate skin friction, equation (2) can be

integrated as outlined by Schlichting( 6 ) or Thwaites(7).

) = [C + a U dx

where a, b and n are constants.

Due to poor agreement with some experimental data, especially near

separation, several recent investigators have questioned the validity of

equation (2) (Refs. 8-11). Most of these authors have suggested the add-

ition of terms containing the variation of pressure across the boundary

layer and Reynolds normal stress (puIP). Clauser () suggests, however, that

the discrepancies are due mainly to three-dimensional flow. The use of

equation (2) might be questionable, but the integrated form (5) has been

found to agree reasonably well with much of the experimental data for the

momentum thickness.

In predicting separation, however, there has been no such general ag-

reement with experiment. Several attempts (Refs. 12-14) have been made to

develop a criterion for separation of the form

0 dU
R const.

which corresponds to the Pohlhausen parameter for laminar flow. These at-

tempts, which assume that the tendency of the boundary layer to separate

is only a function of local conditions, have not been too successful in

general. As pointed out by Prandtl, one would expect the rate of change in

the velocity profile, not the profile itself, to be related to this local

parameter.

Most recent methods make use of the assumption that the velocity pro-

files form a one-parameter family, H, which has been verified reasonably
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well by experiment. The usual assumption is that separation occurs when

the shape factor, H, reaches a value of approximately 2.5. Since values of

1.8 to 2.8 have been quoted, this criterion has also received much crit-

icism. However, one is mainly interested in predicting the pressure rise

to separation, and H always increases sharply with pressure above a

value of 2.0 -- above this value, the fluid near the wall has very little

dynamic pressure. The uncertainties involved in determining experiment-

ally the value of H at separation are probably due to the unsteadiness

of the boundary layer itself and cannot be avoided.

The usual procedure, then, is to find an equation for the shape fac-

tor (Refs. 7, 11, 15-23 and 26) of the form

dH 0 dU
9 a = f(R,H) - - + g(R, H) (7)

Many of the investigators attempt to find this relation by purely empir-

ical means, such as von Doenhoff and Tetervin(l6 ). Others use semi-emp-

irical methods; for example, Spence (20)assumes a universal velocity pro-

file holds for y S 9 and obtains ,an expression from the differential equa-

tion (1). The coefficients, f and g, in equation (7) are compared in Ref-

erence (26) for several methods.

Some of the most successful methods so far make use of an energy equa-

tion (Refs. 11, 18, 22 and 23), which is derived by multiplying equation

(1) by u and integrating. After making the usual assumption of a one

parameter family, the energy equation can be reduced to one of the form

(7). One limitation to this approach is the appearance of a dissipation

term;

ftdau/U)
U y dy

0

which must be approximated from experiment.

Truckenbrodt's method , which is outlined by Schlichting (6), uses

the energy equation. The dissipation term is evaluated from the work of
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Rotta ). One of the main advantages of this method is that the shape

factor as well as the momentum thickness is obtained in integrated form.

PROPOSED METHOD

As the boundary layer proceeds in an adverse pressure gradient, all

of the fluid experiences essentially the same pressure rise, and would suf-

fer the same loss in dynamic pressure were it not for shear stress. Since

the fluid near the wall has very little momentum, it must receive momentum

from the outer layers in order to avoid separation. The shear stress is

much greater in a turbulent boundary layer and it can experience a much

greater pressure rise without separation than a laminar layer. It seems,

then, that a method based on the distribution of turbulent shear stress,

or ability to transfer momentum, would be a necessary approach.

By equating the forces on the partial control volume (similar. to the

method used by Rohsenow( for condensate boundary layers)

y u u +du

the shear stress can be expressed

w = w + y + .f pu'dy -u .f pudy
dx Dx f ax (8

0 0

By using the power law velocity profile,

where n ='S~ H-1

equation (8) can be integrated across the boundary layer to obtain a shape

factor equation

dH = I 1 dU - H-l 1 r+ Cf H(H+1) (H-l)
,dx U dx H 1 (H+) 57 pU + o(H+l) 2 (9)

0

An alternate approach consists of taking the moment of the momentum

flux through the control volume
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u - u+du

dx

The resulting equation,

d uly dy _ U fudy - uvdy = U I '1 dy 10)
0 a 0

can be combined with the momentum equation (2), using the power law profiles,

to obtain equation (9). The above expressions can also be derived by mul-

tiplying equation (1) by y and integrating. This approach was used by

Tetervin and Lin(25) to obtain a general integral equation that contained

both the energy and moment of momentum equations. Granville(26 )used equa-

tion (9) as derived by Tetervin and Lin.

Although the velocity profiles can best be represented by a law such

as that suggested by Coles(27), these laws involve the shear stress, tw.

The simplicity and general experimental agreement of the power law tend to

justify its use. As with the momentum equation, it might be expected that

the error caused by using an approximate velocity profile would not be too

great. In order to check this assumption, profiles of the form

u 1- m -1

were tried with very similar results.

Figure 2 shows the result of comparing equation (9) with the data of

Schubauer and Klebanoff (28), where the turbulent shear stress was deter-

mined by hot-wire measurements. The agreement is very good when the shear

(27)
stress is reduced by 30%, as suggested by Coles . The dotted lines show

the effect of a slight increase in pressure on the shape factor.

Equation (9) is very similar to that obtained from the energy method,

as would be expected since the energy equation can be derived by multiply-

ing equation (1) by u = f(y) and the moment of momentum by y itself.
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However, since the moment of momentum is directly connected to the shape

and is definitely conserved, as opposed to the kinetic energy, the present

analysis might have a sounder physical basis. Also, equation (9) contains

the integral of the shear stress alone, which should be easier to deter-

mine than the dissipation function. With an assumption for the shear

stress or dissipation term, both methods reduce to an equation of the

form (7). However, only these terms need to be determined from experi-

mental data.

It can be seen that equation (7) is made up of two terms; one a pres-

sure term that tends to increase H towards separation and the other a

shear stress term that decreases H. Several investigators have suggested

that the shear stress term is relatively small (Refs. 29-30), which might

be expected in sufficiently large adverse pressure gradients, and can be

approximated by a mean value. However, this is not always the case -- for

example, both terms are equal in an equilibrium boundary layer, where dH = 0.

It might be noted that when dH = 0, equation (7) reduces to one of the form

(6).

The statement that the first term in equation (7) is due to pressure

rise alone is not exactly true, since some viscous action is necessary to

hold the power law velocity profiles, especially near the wall. It appears

that this viscous action is always present and important, except possibly

at a shock wave or sharp bend.

In order to use the present method, some means of predicting the dis-

tribution of turbulent shear stress must be developed. One attempt is

based on flat plate data, where the shear stress, and thus the turbulent

viscosity, can be determined by equation (8). Approximately the same re-,

sult is obtained using the data for pipe flow given by Schlichting (6 with

the radius replaced by S.



-8-

If it is assumed that the turbulent viscosity obtained in this way,

0.01 -i Z

also applies to the boundary layer in an adverse pressure gradient, the

turbulent shear stress can be expressed

0.011 (H-H) (12)

The shear stress from equation (12), as shown in Figure 3, agrees with the

data of Schubauer and Klebanoff(28) much better than than proposed by Fed-

iaevsky(32):

Z -Z'w [1 -4 ( S du3 [y(l -d3(( + 2(y 4 (13)
j.PtJ -pJ L PU +)~I 3(ZX\~ + S) U -3 +

Equation (12) can now be integrated for the shear stress term in equa-

tion (9).

, U 2 d y = . 4 4 H U o( 1 )

This result has been plotted in Figure 3 for comparison with the data

of Reference (28), which has been reduced by 30% to give more reasonable

values at the wall.

Granville assumed

0

to be that obtained from flat plate data.

Although the present analysis needs further development and simpli-

fication, it seems quite promising thus far. The method may be summarized

as follows:

1) momentum integral equation (2)

2) assumption of power law velocity profiles

3) shape factor equation (9)

4) skin friction equation (3) or (4)
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5) assumption that equation (12) applies for adverse pressure
gradients, which results in equation (14)

The present method has been developed for two-dimensional flows, but

it can easily be extended for axisymmetric and three-dimensional cases.

However, when the boundary layer is skewed, some further assumptions must

be made regarding the cross-flow velocity profiles. The analysis will then

provide a theoretical method of determining the importance of three-dimen-

sionality on separation.

Laminar Boundary Layers

The difficulties involved with series solutions have also led to in-

tegral techniques for laminar boundary layers. The best known of these

methods is that of Pohlhausen, where the shape factor is related to the

pressure gradient by the local parameter

A= gdU
Sdx

However, according to this method separation occurs when A= -12, while

the exact solutions of Hartree and Howarth, as well as the experiment of

Schubauer(33) show separation at A = -5. (The Pohlhausen method and the

exact solutions are outlined by Schlichting(6)).

As with the energy method, the present method should also apply for

laminar boundary layers. However, a different assumption must be made for

the velocity profiles. The profiles that have been used here (Fig. 4)

U 5=(2 - ) + p~ /+

satisfy the boundary conditions; =

=, u = 0 U=, _u
U

D wla ,lu= 0Dy Zw/i

The resulting thickness and shape equations can be written

.o + M(P) 9 dU -Y N(P)
dx U dx U@ (15)
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p(p) dP dU + q() (16)

where M(P), N(p), P(p) and Q(P)

are given in Figure 5. Separation occurs at a value of P of -2.0.

For the case of zero pressure gradient, P =-.360. Equation (15) then

yields

t-v = 0.335 PU x(17)

where the constant corresponds to the value of .332 obtained from the

exact Blasius solution.

In the case of wedge flow (U = Ux ) the present analysis gives sim-

ilar profiles with the shape factor related to m by

m = (1-2M)Q-2N

For separation, m = -.0927 compared to the exact Hartree solution of -.091.

Experimental Apparatus

An apparatus, which was suggested by Professor P. G. Hill, has already

been built in the Gas Turbine Laboratory for an experimental study of tur-

bulent boundary layer separation. The test section (Fig. 6) consists of an

annulus between a 5 1/2 inch plastic cylinder and a 15 inch porous metal

cylinder. The boundary layer to be studied grows along the plastic cylinder,

and can be measured at any position. Velocity profiles are taken by a total

pressure probe inserted through the porous metal. The adverse pressure grad-

ient is obtained by closing the end of the annulus with an adjustable plate,

which causes the flow to diffuse through the porous cylinder. Static pres-

sures are measured by a row of static taps along the plastic cylinder,

which can be rotated or moved axially to any position. The pressure dis-

tribution can be controlled by simply varying the amount of open area along

the porous cylinder.
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An apparatus of this particular type has several distinct advantages

that may be summarized as follows:

1) the factors affecting the boundary layer; pressure distri-
bution, thickness and length (or Reynolds number) can eas-
ily be controlled

2) measurements can be made at any position

3) the flow is quite steady, even with separation

4) undesired corner and secondary flow effects are eliminated

5) the boundary layrer can be made skewed or collateral

Since the boundary layer is thin compared to the radius of the plas-

tic cylinder, the effect of transverse curvature is neglected as a first

approximation. If necessary, the above equations can be transformed to

include this effect for comparison with the experiments. In case of zero

pressure gradient the effect of transverse curvature has been calculated

(similar to the method used by Eckert(3l)) assuming a skin friction equa-

tion of the form (4). The result for the momentum thickness can be written

Scyl. @f.p.[l + (18)

This result has been experimentally verified on the above apparatus.

Preliminary Results

Some preliminary tests have been made with the above apparatus in

order to demonstrate the effect of different factors upon the maximum pres-

sure rise before separation. Figure 7 shows the effect of pressure distri-

bution. It can be seen that the pressure coefficient (Cp = ) can bep P U62.

nearly doubled by simply changing the pressure distribution, with all other

factors remaining constant. The advantage of early deceleration may be ex-

plained by the greater ability of a thin boundary layer to transfer momen-

tum to the retarded flow by turbulent shear stress.

Figure 8 shows the effect of three-dimensionality on separation. The

three-dimensional flow was obtained by closing the open area on top of the
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porous cylinder. The pressure coefficient was increased to approximately

0.85 on the top of the cylinder, where the retarded flow is removed from

the boundary layer, and decreased to 0.5 on the bottom, where it collects.

The corresponding C for two-dimensional flow was 0.6.

An example of an experiment designed to isolate the effect of turbul-

ent shear stress in avoiding separation (the function g in equation (7))

is shown in Figure 9. The pressure was increased very rapidly and then

held constant over a considerable length. It can be seen that the shear

stress causes the shape factor to return to the original value fairly quickly.

Summary of Program

1. Evaluation of Existing Contributions to the Problem

Due to the great importance of the problem, a vast amount of work has

been done in this and related fields. However, as comparison with the ex-

perimental data clearly shows, there is still no universally satisfactory

method for predicting boundary layer separation. Since most of the theories

are ultimately based on experiment, they do correlate some of the data, but

there is no means of knowing when they are reliable. Almost all of the me-

thods so far proposed consist of the following elements:

1) the assumption that the velocity profiles can be described
by one parameter, the shape factor

2) the momentum integral equation

3) an empirical skin friction equation

4) an expression for the shape factor, H

It is in the determination of the shape factor, by which separation is to

be predicted, that the methods differ and often fail.

The results of some of the existing theories have been compared (Refs.

3, 6, 7, 26), but there is still a definite need for an ordered evaluation

of the state of the field. The evaluation should attempt to identify the
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essential elements of the methods -- their relative strength and weakness

and an explanation for when atd wby they fail.

Most of the work that has been done so far is for two-dimensional flow,

while in reality, this is seldom the case. It is usually assumed that the

effect of three-dimensionality is negligible, but a quantitative examination

is definitely needed.

2. Proposed Theoretical Method

The proposed method (page 5) for the determination of the shape factor

is based on the fundamental law of motion. Since the boundary layer is of

finite thickness, two equations may be used to improve on existing integral

methods -- one force and one moment. An assumption must be made for the

velocity profiles, but this is apparently not critical. The resulting ex-

pression for turbulent flow agrees with the result of Tetervin atid Lin(25),

who used a mathematical rather than a physical approach. A preliminary

check of the fundamental equation (9) is shown in Figure 2.

As pointed out by Granville (26), the most critical part of the method

for turbulent flow is the determination of the shear stress across the

boundary layer. The proposed method is based on well-established flat

plate and pipe flow data, and is compared with experiment in Figure 3. For

laminar flow the shear stress term can be integrated directly.

The theory has been discussed for two-dimensional flow, but it can be

extended for three-dimensional cases.

The validity of the approximate method for laminar flow can be checked

with the known exact solutions of Hartree and Howarth as well as experi-

mental data, such as the Schubauser ellipse. The agreement for zero pres-

sure gradient is shown in Figure 4. However, for turbulent boundary layers

the test must rely entirely on experiment.
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3. Experimental Methods

An apparatus (Fig. 6) has been built for the investigation of turbul-

ent separation. The boundary layer to be studied is located on the inner

cylinder. The static pressure is measured by wall taps spaced 2 inches

apart. Velocity profiles can be taken at any position by a total pressure

probe with a micrometer traversing mechanism. If necessary, other facil-

ities are available, including the possibility of hot-wire turbulence meas-

urements.

The apparatus has several distinct advantages over previous types.

The boundary layer can be made skewed or definitely collateral, as desired;

the factors affecting the boundary layer, such as pressure distribution and

Reynolds number, can be easily controlled; and the flow is steady. By this

means experimental data over a wide range of conditions can be obtained to

compare and improve the theoretical methods.

Some preliminary results, as discussed on page 11, are shown in

Figures 7 - 9.
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LIST OF SYMBOLS

H Turbulent shape factor, S*/Q

p Static Pressure

q Dynamic Pressure, i PUE

R Reynolds Number, UO/A

u Mean velocity parallel to the wall

u' Fluctuating velocity parallel to the wall

v Mean velocity perpendicular to the wall

v' Fluctuating velocity perpendicular to the wall

U Free stream velocity

x Coordinate parallel to the wall

y Coordinate perpendicular to the wall

C Pressure coefficient, A p/-i pU

C Skin friction coefficient, rw/i pU

@ Laminar shape factor

Boundary layer thickness

6* Displacement thickness

9 Momentum thickness

E Turbulent viscosity

p Density

q- Shear stress

'i Shear stress at the wall

Y' Kinematic viscosity
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