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ABSTRACT

A theoretical method to estimate the effect of axial velocity
change through a cascade was investigated. The change of axial velocity
was reproduced ‘5y distributing sinks and sources within the blade pas-
'sa.ges, and the concluslons are set forth in some simple formulae. Some
graphs for the mumerical evaluation of the performance of NACA 65 ﬂeries
cascades were prepared, and several examples were compared with experi-

menteal data.
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1. INTRODUCTION

The study of cascade performance, as a result of a changing axial
velocity within the blade pé;ssages, is important in the design of axial
flow turbomachinery. In most of the multi-stage axial flow compressors
and turbines, the magnitude of axial velocity varies considerably from
the first to the last stage, because of the design requirements. Small
axial velocity changes accumulate from each stage. Therefore, it is
somewhat inexact to use the experimental data of cascade tests which are
obtained under the condition of constant axial velocity, without any cor-
rection.

There is another reason why this problem is importent. In the usual
cascade wind tunnel test, owing to the development of & boundary layer
on the surface of the side wall of the cascade, the axial velocity in-
creases at the midspan through the cascade. In order to keep the axial
velocity constant, the boundary layer must be sucked off in some way,
making the experimental technigue more time consuming. Therefore, if
the experimental data without any boundary la.yer‘remové.l can be cor-
rected to the case of constant axial velocity, there 1s a certain pos-
8ibility of reducing the difficulty of cascade testing very much.

N. 8tholz (1), S. Katzoff (2) and W. R. Hawthorne (3) wanted to solve
this problem and éevised. sonme equé.tions to correct such an effect. How-
ever, since their treatment was based on & simple one-dimensional con-

sideration, it seems to be insufficient to explain Buch & gomplicated
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phencmendtn. J. R. Erwin and J. C. Emery (4) proposed three empirical
methods to correct the turning angle but, aé the authors themselve”s‘ said
they didn't cover any of the experimental evidence. Later, T. Kawasaki (5)
carried out a method based on the two-dimensional treatment. In his method,
he put & concentrated source at the middle point of the blade passage cor-
responding to the increment of the axial velocity. However, there is some
doubt whether or not it is proper to express the effect of the axial ve-
locity increment by such a concentrated singularity. The method here de-
veloped is Pased on the idea that sources are distributed in the whole
domain of the blade passage, corresponding to the increase or decrease of
the axial velocity. This assumption seems to be a more accurate expres-
sion of the phenomenon.

Generally speaking, there are many factors which would be related to
the change of axial velocity. They are; hub ratios at the inlet and exit
of the stages, accumulation of boundary leyer thickness through stages, ef-
fect of compressibility, effect of secondary flow and leakage or extraction
at any stage. In most cases, one might consider that all of these effects
appear separately. The method here described can cover all of the eff;ci:ts
mentioned above, except the effect of compressibility and secondary flow.
The correction regerding these two factors must be taken into account in a

proper way, if it is necessary.



2. FLAT PLATE CASCADES

First consider a most simplified cascade, that is, the cascade com-
posed. of flat plates. In this theoretical consideration the following
basic.ressumptions are presupposed; flow is steady, two-dimensional, non-

viscous and incompressible.
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The cascade to be considered is composed of flat plates, whose chord
length is ¢, spacing is s, stagger angle is ’&? . At the inlet of the
cascade flow is quite uniform, and its direction is changed by the cas-
cade, flowing off to the right. In the cascade, from E. == % Cos? to

Z = % cos? , the axial velocity of the flow is accelerated-(or in-

./

versely, decelerated) from vy to Vvgp-
In such a case our problem is to determine the performance of the
cascade. That is, given the values of mean velocity direction measured

from the chord line a, the magnitude v, and the changing condition of axial



.
velocity within the blade passage A’Vg( g) , calculate the value of the
circulation around a blade I” as a function of 74 , N = S/C‘ , ~x LV
and A'l/a(g) . In this paper, variations of axial velocity were treated
as a function of g only, and independent of 7 .

To solve this problem, we divide the flow into three elementary parts:
(1) Flow around the given cascade with a given mean velocity
vector, without any change of axial velocity.

(11) Flow consisting of a source and sink distribution only,
corresponding to the given exial velocity change (the
boundary condition is not satisfied).

(i11) Flow to cancel the normal velocities on the blade sur-
face which were induced by the flow (ii), and an ad-
ditional circulation to satisfy the Kutte-Joukowski's
condition at trailing edge.-

By superimposing the three elementary flows above, we can obtain the flow

which satisfies all the prescribed c¢onditions.

2 - 1. Flow (i)

The solution of Flow (i) is already well known, and in this paper

the conclusive equation only shall be given,

7= 4S8 Ksincl — 4 ——----(1)
/l + 2K*S 27 + K*

where, Y  is a parameter depending upon the values of the blade pitch-

chord ratio A, , and the stagger angle ’D’ . Although the functionsgl

relation < = f ( )\, '07) is rather complicated, we can easily

find it in the numerical tebles (6).



2 - 2. Flow (ii)

q(%)

(L

-sws? o

N c
NI ' 3 Cos?¥

Next the relation between the source or sink distribution and the varia-
tion of axial velocity must be examined. Consider the source distribution
spread over the belt-wise domain from gs-g-cosi to 'g = %wsﬁ, .
The strength of source per unit area is expressed by 7 , and it is a func-
tion of E only.

Velocity induced at an arbitrary point ( go , 7,, ) by this source
distribution can be easily calculated by the law of Biot Savart, and is

written as follows,

(.SD o0 0 %005'3 oo o
AVY =L f ($) 239 yzogn _ L S izy PSC iz of o
T 2 Scas? 7aq§ y ?Sso 7,,C/ oor



wmere r= J(8-3)+ (1-%:)°

C059= j_‘zfo .
J &30+ (1-90)°

Equation (2) can be integrated at once, and the result is as follows:

Sfi < cos¥
AVal(Y) = ()dg — L (e
‘-;-Cus;" g 2 f-g.oo.n? ik 3

The second term on the right hand side of the above equation is one half
of the fluid volume welled out.per unit length of 7 - dire'ction,‘ and

therefore, it is identically equal to ('% ~Va; ). So we have,

a%(s) = §

—

g
ot ¢1(£)¢4!:‘_'Tﬁz :élﬁk: _____ (3)

or, in differential form

den.) ——— o~
g =4 @)

Equations (3) and (4) show the conclusive relation between the source dis-
tribution é.nd the axial velocity change. Whatever the change of axial ve-
locity in ; - direction may be we can now find the corresponding source
distribution wﬁich satisfies the given axial velocity change, so long as

the derivatives of 41,5. with respect to § “have finite valles.

2 - 3. Flow (iii)

Flow (i), of course, satisfies the boundary rcond‘ltion on the blade
surface ; however, Flow (ii) does not satisfy the boundary condition alone.
Therefore, in order to cancel the normal velocity on the blade surface,

Flow (1i1) must now be considered.



The acceleration A’VZ\( g ) of the axial velocity between the blade

bassages causes & normal velocity component on the blade surface, as fol-
1 :
e AVn = Sin7-aVa

S0, to cancel this normal velocity the following normel velocity shall be
added on the blade surface,
AVi = —SnT-AVEL - - —— (8
This means that the flow wells out on the upper (or lower) surface and
Sucks the same magnitude into the opposite surface. As a whole , the flow
field can be considered as consisting of a doublet disti'ibution as 1s sche-
matically shown in the Figure. As can be seen easily from this figure,
there occurs a flow from the upper surfeace to the lower surface sui'round‘-
| ing the trailing edge T. This induces infinite velocity at T, and is in-
consistent with the hypothesis of Kutta-Joukowski, so there occurs another
circulation A7 around the blade to cancel the infinite velocity at T.
A]" is nothing more than the change of circulation caused by axial ve-
locity change, and vhat we want is to be able to .ca.].cula.te the value of
AJ"  as a function of the prescribed conditions. |
Now we shell comsider the present problem on the transformed im-

aginary plane of the camplex mmber T =Tr€ 00.
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The mapping function of flat plate cascade is already well known,

and is written in the following equation.

S [y 115 LAV S.L.E I
where z = x + iy, g=re 0% a =g+
A By Eq. (6), the outer domain of

cascade as shown on Page ‘7 can
be transformed conformally to the

outer domain of unit circle in

; - plane. An illustration of

the singular points on the S -

plane is given in the Figure to

A
the left. Substituting G =6€'°
we get the following relation between the blade surface and the unit

circle:

=S GaBlanh” 2RO | g tan! 293D sy
T 1+ K /- Kk
| | -(7)
Y=nscesd , h= 0,4/, %2 ---

4

The argument 97- » which corresponds to the trailing edge of the blade

is calculated by the next equation.
2
tan & T__._'_:_.Lrani e e (8)

~ After the preparatory description given above, the characteristics of
Flow (iii) must be analyzed in detail. By the law of continuity, the
normal veiocity component J(8) on the unit circle is expressed as a

function of the normal velocity component A“Vy on the blade surface



as follows:

Substituting Eq. (5) into the above equation, we get,

7(0) = - ST am(x) 94X
d 17;{9 can be obtained by differentiating Eq. (7) with respect to

0, and the result is:

GO) = Sin¥ eV (X) 25K (Hr)CosB SO = (I-k?)SiTeos 8
T I-2K 0326+ r ¥
By the above equation the distribution of sources (or sinks) on the unit

c:.rcle, corresponda.ng to the normal velocity on a blade, can be calculated
a5 8 function of the argument ©.

On the other hand, let us consider the flow around the unit circle,
vhich wells the fluid volume Q outside of the it circle at an arbitrary
point £ =€'® . e complex velocity potential of this flow cen be

expressed as follows:
- N ‘O o) 1
Fo=8 e ~-e' S /e —-K t
A (3-e'%)— a2 c9 (zr')(
Hence the velocity of induced flow u at a point Xgpon the surface of the

RL
blade due to & source of strength Q placed at a point x 1s given by the

following equation, assuming X and xocorre5pond to § - e'e and

et G0 re spectively.

d; dz =g,

1

—=Q |- 2k* ous!é."‘*\' { Sh(6-6,) __2K5in20, }

4SK{(|+kl)as«a’son0° (”Iwk‘):mima 1=CoS(0-8,) 1=2K*¢o326,tk”
- == (I0)
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Replacing Q of Eq. (10) by (&) of Eq. (9), integrating over the unit
circle and using the condition >3 q(z) w0, the induced yelocity

at the point x, is given by the following relation,

idef {B6) =~ SinY [ - 2ricos20, + Y .
g (e, 27 {(1+)x2) o3850 = (1= 2) sind cas e, |

S97+21l' {(H_Kz)mgrme -(1- Ki)rnufcm‘é}hr\IDO &) d O

I g R
6+ 20— — {l- k"wsze-hk"}{l—cos(&o 6)}

In the neighborhood of the trailing edge i.e. =6+ ¢€ , where €
‘ is & very smell angle,

9.,-0-27

Ug (O + e):-_-——“z‘w":})( s:nxf AVE(X) '*""’éf"e) e - (12)

vhere, K-/-o-z»c'-cosn’-o-vr’%) K'= I-2r'os26+k? 1,

the ; - plane, the complex velocity potential of the flow due to the cir-
culation of strength Af' around each blade is given by the follgwing
relation.
=iar{ k)= by (T L)) - - -
R=g g (V) = Iy (T ) (/3)

Hence the velocity L(ar &t the point X, due to this flow becomes

- AT (Y =n%) _———— (%
Uop (6:) = ANS{+ ) 3T 3 B0 = (1= ) F 056, } S

and in the neighborhood of the trailing edge becomes,

Ap(1=wY) _ _ ____@s)
4sxeJK

The circulation 1s determined from the above-mentioned condition i.e.

Uq(6) + Uap (&) = O

‘[AT' \VT—D‘ 6) =
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and hence,

=25k (=r%) . 9
o=~ 288l g

(16) is the conclusive equation, which gives the value to correct the

67 +27T
AV(x) ’*“5;(9*“9) 46 —-- (16)

circﬁlation around the blade due to the prescribed axial velocity change.

2 - 4, Analogy with Thin Aerofoil Theory

The above mentioned theoretical considerations are quite simllar in
mathematical procedure to those of "thin serofoil theory” (7), developed
by Hirose and Hudimoto about ten years ago. In their work, they expressed
the effect of the shape of camber lines by doublets distributed on the

chord line. Their result was the following formula:

oviaw
— 25Kk (1-k¥) ,,(al.‘l I+ Cos (67 ~8) A6 ——— (1
r = j (Vsink =V ios= 57y e 7

In this equation, denotes the circulation around a blade, and y is the

ordinate of a given camber line, while the other symbole are the same as
they appear elsewhere in this paper. From Eq. (17), the effect of only

the camber line is obtailned by setting @ = 0°. Therefore, in this case,

- GT‘PZT
o 2SRO-KYY 12 0sl61=8) 4o yyy

T/K & x K’
Comparing Eqs. (16) and (17) ; 1t can be seen that the following anslogy

exists between theAflow cha.riging axial velocity through a flat plate cas-

cade and the flow through a cambered cascade.
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Therefore, if the changing state of axial velocity through a flat plate

cascade is given by the formula,
)
n
AVa = 3 (XY - --- (19°A)
v Nn=se

then, the camber lines of a corresponding cascade in a constant axial ve-

locity field with a zero attack angle, can be calculated by the following

) + ConsX. -—- (19-8)

equation. __ - tf

From the above considerations, it can now be proved, that the flow around
a cascade, which has & changing axial velocity, has & direct, close correla-
tion with the flow through a slightly cambered wing lattice. This conclu-
sion is also seen intuitively, since the change Qf axial. velocity between
blade passages means the deformation of blade shape itself. Here, the
most important matter to be recognized is the limitation of the above “a.nal-
OgYy -

Although Egs. (16) and (17) have quite the same form, their meanings
are substanially different. Eg. (16) is the exact solution of the flow
through a flat plate cascade with an axial velocity change, however, Eq.
(17), unlike Eq.(16), is an approximate solution and is applicable only
for a very slightly cambered wing lattice. Because of this it is not
quite correct to use Eq. 17 for the case of a finite, cambered blade.
Therefore, the analogy given by Eq. (18) is correct only for the small
cambered profile, or inversely only for a small rate of axial velocity
change. On the other hand, if the change rate of axial velocity becomes
large, Eq. (16) gives the exact solution of cascade performance.

Therefore, speaking purely mathematically, the treatment of Hirose

and Hudimoto, gave not only the spproximate solution through cascades of
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slightly cambered blade profile with constant axial velocity, but also
offered, ten years ago, the exact solution of changing axial velocity:
through flat plate cascades. Unfortunately, they were not aware of such

a8 physical meaning at that time.

2 - 5. Linear Axial Velocity Change

In the case of a linear axial velocity change in the x - direction,
Eg. (19-A) can be expressed as follows:

,A'V&,_: x ’Vi;-'qf?: (ZC’)
v e T v

where, ‘Vj; is the axial velocity at the inlet, ‘Waz is the axial ve-

locity at the exit of the cascade. By the above analogy, this corresponds
to a cascade composed of parabolic cambered blades with constant axial ve-
locity and zero angle of attack. The corresponding cambered profile is

expressed by the following equation.

Lo 53 Ma=Var (X)

v—zs— 3
Hence, the relation between the rate of change of axial velocity and the

magnitude of camber f/c of a corresponding persbolic camber line can be

written as follows.
f—-‘.\‘mz’ Voz =Vay ——--(21)

g8V

Now substituting Eg. (20) into (16), we obtain,
ap = -25K(=K% W =Wy S,M,ger"‘”‘ 1+ 65(67-8) o
K ¢ ;

Substituting Eq. (7) into the above equation, we get finally,

AP __ 2AYRO-kY V=T
ve = N2 v ST X

S +27

inrmma— - wle S VOV Y FEN 0 F . ree——

ér I+K% - k*

ssBlandy 2R LSS L on iy bl meé] H-Ces(ar -6
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Although this defi‘nite j.nte_gra.tion has already been solved by Hirose and
ﬁudimoto, thelr mathematical pi'oc'edures are somewhat interesting, so they

shall he reproduced:

We put P(e) = co,sa’mlr'_z'_%ﬁ + SiaVTE ;.,‘k:;}ie
w -k

and expand ‘-F( ®) in a Fourier Series such as:

o0 >0 ’
Y(8)=Z Chtesne+ Z cdn Sihné
nso h=1

2o Cosn® n
s e 1 = IK o520 T € I — w? ) W ’

c , when h is oded

I} M|
2Kk sy d 2K sy
: > 2 FR) = ’
2m+1 . 2|

hence, C\zm.'.' =

M= 0, ), 2, ———-

Ov+2¥ .
and S T (9) |+COS(9T -6)6(5 = 2 _(_:_(?Jih-‘or JO;'\YSO‘HDT E K4m+.
e-r(P K’ - 1=kt + I+rn® /aze 2m+

=7TJ—K- [o B
w(1-w*) [ 2 L

Substituting the above equation into Eq. (20), we get the following con-

élt;sive equation.

ATinY ) +

— A r - - 2 Lﬂir - /l’\(/ [ — ka‘ . e — (2 3)
(t'(\u""l’\az)s I= b

Fig. 1 shows the result of & numerical calculation of the above eguation,

v}hich glives the correction values for the circulation due to the change of

axial velocity as a function of pitch-chord ratio )\ and stagger angle ?’ .

Now, from the following figure, & concrete method can be suggested
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for correcting the velocity tri-
englegs in the case of accelerated
or decelerated axiel velocity to
that of constant axial velocity.
’ The practical drawing method is
4*74_;)‘ as seen at the left. Suppose

the prescribed velocity triangle

is as shown by arrows (solid lines)

Axis of the Figure. First, we draw the
mean sxial velocity line m - m.
Second, from the tops of both a.frows, draw two parallel straight lines L - L
and L' - L', which are inclined to the axial direction by an angle CUJ' .

LO{ has the following physical meaning.

tan l«Of = A7
The values of Wf can easily be found in Fig. 1, if the values of pitch-

chord ratio A and stagger angle ’i are knowﬂ. Then, the two points of in-
terséction of the linesm - mand L - L, m - m and L' - L' correspond re-
spectively to the velocity vectors at the inlet and exit of the cascade
with a constant axial velocity. In Fig. 1, the most useful domain for
practical purposes is shown by the shaded area. In this Mn, tan u}‘f
seems to vary from 0.3 to 0.9, and for the most practical purposes it will

be enough to put tan Wf = 0.5 for the usual axial flow compressor design.

2 - 6. Correction of the Turning Angle

In the procedures of the foregoing considerations, '‘the mean of the

inlet and exit velocity vectors is taken as the standard velocity, for the
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sake of mathematical simplicity. On the other hand, what we usually want
to get is the turning angle through the cascade keeping the inlet wvelocity
vector constant. Therefore, it would be necessary to refer to the method
of turning angle correction in order to keep the inlet velocity vector con-
stant.

It has already been proven elsewhere (8) that the following general

relationship nolds for all kinds of cascades.
tan Bow= 05 + T lauf, —---- 249

Where, Bl 1s the inletv velocity direction meagured frqm the axis, Ba is

the same one at exit, and Q@ , (7 are the constants peculiar to the

prescribed cascade profiles and their physical arrangements. (% and
g7 are expressed by the following equetions, 1f the conformal mepping

of their boundaries into the unit circle is possible (9).

\
+ W - 2¢CosO7
0 = —
Tk +2cCos
= N & --— (25)
G4 (4o + ) SinGT

(- K)( &+« +2ceséy)

Now, let the values of Bl, 32 vhich are obtained by the drawing procedure
and shown in the foregoing paragraph to be Blo and ‘320 respectively, and

expand both sides of Eq. (2k) in & Taylor Series, that is;
2 ‘
o Sec o (B= B )+ o=y 4+ oy e Bo + 7 vec Bo( B = Fra) 4o

Thus, in the vicinity of the origin of expansion, there exists the following
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approximating relation

SeCB (B: -Res) = o sec’ P (B = Pio)

Putting,
AB=PR-Pe , 8B = fBi-frc,

we obtain this relation:

AR, = COSFI ) AR --—-- (26)

Ces Bio
The above equation is valid for all kinds of profiles, and in the case of

a flat plate cascade, we ¢an deduce Eq. (26) from Eq. (1) and (8). Using
the above result, we can obtain the correction values A Ba of the exit
angle Ba, which correspond to the required chenge A4 Bl of the inlet angle
Bl. Fig. 2 shows the values of 07 for flat plate cascades as a function
of pitch-chord ratio A and stagger angle 1? + It can be seen from this
figure, that in the vicinity of & pitch-chord ratio A = 1, all of the
values of CT; are very near 0.05. This means, for normal values of turn-
ing angle, the correction value A 52 of the exit angle is nearly 0.1° per
degree‘of inlet angle adjustment. Therefore, in most cases, it does not
seeq necessary to correct the exit angle. However, in the case of pitch-
chord ratioc larger than 1.2 and large stagger angle such as 4#> = 60°,
the values of exit angle correction might exceed 0.5° or more per degree

of inlet angle adjustment. In such cases, correction of exlt angle should

be taken into account.
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3. CASCADE COMPOSED OF ARBITRARILY SﬁAPED BLADES

To approach the more practical
solution, let's consider the flow
through cascades composed of ar-
bitrarily shaped blades. There
‘are several methods to solve such
8 problem involving a small per-
turbation based on the solution
of flat plate cascades. 1In this

paper, one of the simplest approxi-

mation theories similar to the

Hudimoto method (6) shall be a-

dopted. Since we reqyine very

small quantities in the final
result, we shall consider only

the first approximation as sufficiknt for our purposes.

3 - l. General Equations

Consider a cascade composed of an arbitrary blade shape such as ‘the
figure above. The whole blade shape is supposed to be prescribed by the

following equation

Now let's consider the source distribution corresponding to the axial
velocity change from val to vaa. Restricting our problem to the case of
uniformly distributed sources, the strength of source per unit area (7

must first be determined. In this case, defining the cross sectional
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area of the blade as A, the whole quantity of fluid Q welled out from the
one passage between two adjacent blades is,

Q= g.(cScas 2 —A)
and this m;lst coincide with the change of axial velocity before and after

the cascade, therefore,
(Vaz — Va,)S =9 (SCcosT—A)

hence, — Vo —V5,) S -—————— 28
7 cscosv— A ¥

Finally, using Eq. (4), the apparent change of exial velocity is glven

‘r;y the following eqﬁa{:ion.

- Va
ava= DAL Z oo (29)
where )
B = —2
CS cos

B is the "blocking ratio" of the passage by the blade, and in the usual
case of tﬁe axial flow cémpressor cascade, it has always small value
around O.l1.

Then, the local apparént axial velocity change A‘V,‘. at any point P
on the blade surface, brings a normal velocity component AVp to the
| blade surface at this point.

The relation between AVp and AV is as follows,
AV, = ~Sin(S+P) aVy ————— (30)

where , ' TML (S‘ — (;{Z-

and (Y is given numerically, since the blade shape is presgcribed by Eg.

(27). Assuming & &« 1 , so that &-‘_—‘d%x, O&V5 becomes

é.s f‘ollows.

AVH = — %&S'&\Afyg\-\ —_— Sl\nT\A'Da ————— (3/)
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In the above equation, the second term on the right hand side is the same
as Eq. (5). Therefore, all we have to do, is to solve for the first term
only, aﬁd- superimpose it onto the solution of a flat plate cascade. Now,
considering the first term only, the radial velocity distribution around

the unit circle becomes,

R et
dlf) Foes
w6 =g ¢ (a—a) -----G

On the other hand, let's consider the flow which cancels the normal ve-
lociﬁy around the unit circle. First, to satisfy the boundary condition,
a quantity of fluid ¢. A must be sucked into the unit circle. Further-
more, considering that the quantity of fluid q'A must be sucked into
the blade from an infinite distance in both directions perpendicular to

the cascade axis, the following complex velocity potential function is

given.
9Af),, Sk s+-§} i AT
W =9A log 2— K leg 2 X » A
ar | J Tow T I IRt nz:l g n
where , T = T 6"1‘97

Using Eq. (28) the above equation can be rewritten in the following form.

C (V= Var) 7\3 rlﬁj S - T!'< §""ﬁ}

w =

4mr Bl T-k + =g T+ K
o0
+ C(%z — W) Z, En ';,',,F" ---- (33)
-'.97-

where 'S’ = g€
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From the above eq_ua.tlon, the radial velocity v and the ta.ngentia.l velocity

vO on the unit circle become:

Ta =€ (Y%, ~Ve) AB _CVaz = Va) AB ¥ 3 "

— cos 2n8
2T -8 r 1—B n=!
- C (V& -~'1’51)‘§’n (EntCesn®’+Fp3inn®’) - —(34-'A)
Vo= — C(Vae = 1) S n(En S0 = Fy cosn’) - _(348)
: n=, »

Therefore, setting Eq. (32) and Eq. (34-A) equal, we can determine the
-iralues of the Fourier Seriés En and Fh as follows.
Y x
d & €™ _aB
daé |-B I-8 a2

_AB_ ¥
- -_——— 5
-5 "Z_'K Cos zne =s)

Now, we can calculate the tangential velocity on the unit circle using

o0
Z n(E, tesng’y Fasinne’) =
=

Eq. (34-B) and the determined values of En and [y .

At the trailing edge,

M3

nFn—--(36)

4

(’L‘Né)efgo = € (Vaz =Y

However, the tangential velocity at the trailing edge, due to the com-

plex velocity potential given by Eq. (13) is;

To ) =_ ATl K o
From Egs. (36) and (37), can be determined as follows.
7 AT 27 :- K¥ &

ha-as - A EARET
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Now we can calculate the value of the circulation, which corresponds to
the first term of Eq. (31). Therefore, superimposing this onto the solu-
tion of the flat plsate caéca.de, we can calculate the correction value for

the circulation in the case of an.arbitrarily prescribed blade profile.

3 - 2. Caleculsation for NACA 65 - Series Compressor Cascades

Since the calculation for each case is a rather laborious one, for
convenience it is preferable to make some numerical graphs for certein
blade profile series. In this paper, numerical graphs for the rapid
characteristic estimation of NACA 65 - Series Compressor Cascades were
prepared. NACA 65 - Series blade profiles consist of a camber line and
thickness distribution, and both values change proportionally to some
"designation” with the distribution remaining constant. The designation
for camber line is C(,o » which expresses the 1ift coefficient in
the case of an isoclated wing. The designa.tion for thickness is the "value
of the maximum thickhé(ss", and in this paper, iet us designate it -temjo-
rarily t.

Now, as it can be seen fram the above description, taking the chord
line as the abscissa x, the ordinate y on the blade surface can be ex-
pressed by.the following equation:

\Lj = :"/C + Ye
where, Vc represents the ordinate of the camber line, y{- represents
the ordinate of thickness only, the + sign is taken for the upper surface

and the - sign for the lower surface. Furthermore, we can write:

Y= Cox(Yedy opo & —%—y (Yede,
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Hence
’ dy _ dY. dy‘t
w=xX(gr) ot B (T leaes - G

where Bo is a blocking ratio corresponding to to and t, is some standard
thickness ratio.

Substituting Eq. (39) into Eq. (35) we can write,

(“‘s‘) Z cos 7
( + wne’) = Go=ko C B
Z n{E,tesn®’+ Fpsin€’) ;

J d(-%‘)teto )\ A2 an - 9}
+ B{B, od0 ekt LY T

Then, we divide the above equation into two parts as follows:

| ZN(E.Ces 9’.'- Fa Sa ’@' r’(c )Q =.0 x
Py (C nCesh < mh “_'B ’ e CceSY
Z N +E Cesne’r 4 F mWh©’) = | d( )t;t. CosT— )\ z '{
het ( - | "SD‘h ) Bl Bo 2T " e 2

Finally, putting

¥ oo
- 27 -k
lan We = ~ "R .,z=,”'°F'"'
¥ oe
1an o, = 2L L=k

We get the following conclusive equation

ar
(’Viz ‘-V;o) S
In Fig. 3, tan e and tan W¢ are shown for the case of Co =10,

= o W, = feun wt

t =0 , and Clo = 0, t = 0.1 respectively. It can be seen from the previous
description that the solutions for all other combinations of Clo and t can

be easily found from this numerical graph.

®
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4. CORRECTION FOR SECONDARY FLOW

As was briefly mentioned in the introﬁuction, secondaxry. ,flow occuring
in the passages of a cascade due to boundary layer causes the deviation of
turning angle. Usually, this factorvca.n be gonsj.dered almost independent
bf the phenomena considered in previous sections.

Therefore, to reach a more accurate solution, we must add the cor-
fectidn value for secondary flow to our calculation. For the correction
of secondary flow, it 1s considered appropriate to use the Otsuka's method
(10). Otsuka deVéloPed the secondary flow theories built by Squire-Winter
(ll) » Preston (12), and Smith (13), and devised a convenient formula to
éstimate the devié.tion of turning'aggle due to the secondary flow in the
passages of cascades.

According to his theory, deviation of the turning angle 5 owlng to

the secondary flow can be calculated by the next éq_ua.tion.

r‘__ AW; - CoS Bl (Sl‘ﬂpo S"”pl) (40> |

v Wing oS By \ Ces pz— St p,
Where, WTM is the megnitude of average inlet velocity along the span,
AW] 1s the locally accelerated inlet velocity caused by the existence
of & boundary layer on the inelt side wall.
Using Eq. (40) and the‘ experimental value of Awl-/ Wiv o+ Ve
can estimate the value of ; » which must be superimposed into our cal-
culations. Fig. 4 shows the fe;lliés of J. / _:’__l'_r_l_ for various inlet

'
sngles Bl and exit angles Bz. .
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. 5. NUMERICAL EXAMPLES

To confirm the validity of the theory, comparisons were made with
several sets of experimental data. All of the experimental data here
used (14), (4), (15) were collected from the publications on hand. All
of the déta wére for NACA 65 Series Compressor Cascades using low speed
wind tunnels. In them, turning angles are plotted against attack angles
for the cases of both solid wall and porous wall. In the latter case,
two-dimensional flow is supposed to be maintained at the middle of the
span. For both cases, all data gave the rate of axial velocity change

’Uﬁz Va » before and after the cascades. Now starting with the
value for solid wall, what we want to do is to correct the effect of sec-
ondary flow and the effect of axial velocity change on them, and to com-
pare the final curve to that of the porous wall.

In the first group of data (14) (from Fig. 5 to Fig. 10), the value
of lQ?UZ/’quhq was estimated to be 0.03, according to the velocity
distribution shown in the report. In all figures, thin solid lines express
the value for the porous wall; thin dotted lines show the value for the
solid wall, while thick solid lines show the results of calculations
started from solid wall data.

Since the NASA porous wall data (4) (Fig. 11) uses a somewhat dif-
ferent value compared with the other report (15), in this paper the value
of the lémter wa.s ﬁdopted as thé value of the porous wall experiment. The
last date (Fig. 12) came from M.I.T. (16) and in this case, as the data
of a decelerated case was also presented, it was used in comperison, and
the result ;s glven by the dot-dash line in the figures. In the deceler-

ated case, since the secondary flow theory no longer has its meaning, the
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correction for the secondary flow was omitted. In both the NASA and MIT
data, because of the lack of description of inlet velocity distribution,

it was assumed that A'Wi/ 'W:-m = 0.1 temporary.

6. CONCLUSIONS

In this paper, a general methqd was developed for the evaluation of
ca.sca.de performance with accelerated or decelerated axial velocity. For
the series of NASA 65 Series Compressor Cascades especially, numerical
graphs for practical use were presented. From the camparison of the
theory with the da.ta,*from several experiments, we see that good agree-
m’enﬁ exists between them. However, there still remains some descrepancy.
On the one hand, it seems to depend upon the accuracy of the cascade test-
ing technique itself: on the other hand, the more complicated factors
such as the effect of viscosity might affect the performance, which is
beyond the scope of the present treatment. Restricting the discussion
to the procedure treated here, the accuracy of the calculation would be
doubtful in the more highly cambered blade or in a narrower spacing than
the present example, because of the invalidity of the simple conformal
ﬁra.nsformation function used. Fortunately, such a difficult case would

not appear frequently in the practical design of axial flow compressors.
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