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ABSTRACT

A theoretical method to estimate the effect of axial velocity

change through a cascade was investigated. The change of axial velocity

was reproduced by distributing sinks and sources within the blade pas-

sages, and the conclusions are set forth in some simple formulae. Some

graphs for the numerical evaluation of the performance of NACA 65 eries

cascades were prepared, and several examples were compared with experi-

mental data.
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1. INTRODUCTION

The study of cascade performance, as a result of a changing axial

velocity within the blade passages, is important in the design of axial

flow turbomachinery. In most of the multi-stage axial flow compressors

and turbines, the magnitude of axial velocity varies considerably from

the first to the last stage, because of the design requirements. Small

axial velocity changes accumulate from each stage. Therefore, it is

somewhat inexact to use the experimental data of cascade tests which are

obtained under the condition of constant axial velocity, without any cor-

rection.

There is another reason why this problem is important. In the usual

cascade wind tunnel test, owing to the development of a boundary layer

on the surface of the side wall of the cascade, the axial velocity in-

creases at the midspan through the cascade. In order to keep the axial

velocity constant, the boundary layer must be sucked off in some way,

making the experimental technique more time consuming. Therefore, if

the experimental data without any boundary layer remov&l can be cor-

rected to the case of constant axial velocity, there is a certain pos-

sibility of reducing the difficulty of cascade testing very much.

N. Ztholz (1), S. Katzoff (2) and W. R. Hawthorne (3) wanted to solve

this problem and devised some equations to correct such an effect. How-

ever, since their treatment was based on a simple one-dimensional con-

sideration, it seems to be insufficient to explain such a pomplicated
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phenomenon. J. R. Erwin and J. C. Emery (4) proposed three empirical

methods to cozrect the turning angle but, as the authors themselves said

they didn't cover any of the experimental evidence. Later, T. Kawasaki (5)

carried out a method based on the two-dimensional treatment. In his method,

he put a concentrated source at the middle point of the blade passage cor-

responding to the increment of the axial velocity. However, there is some

doubt whether or not it is proper to express the effect of the axial ve-

locity increment by such a concentrated singularity. The method here de-

veloped is based on the idea that sources are distributed in the whole

doain of the blade passage, corresponding to the increase or decrease of

the axial velocity. This assumption seems to be a more accurate expres-

sion of the phenomenon.

Generally speaking, there are many factors which would be related to

the change of axial velocity. They are; hub ratios at the inlet and exit

of the stages, accumulation of boundary layer thickness through stages, ef-

fect of compressibility, effect of secondary flow and leakage or extraction

at any stage. In most cases, one might consider that all of these effects

appear separately. The method here described can cover all of the effects

mentioned above, except the effect of compressibility and secondary flow.

The correction regarding these two factors must be taken into account in a

proper way, if it is necessary.
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2. FLAT PLATE CASCADES

First consider a most simplified cascade, that is, the cascade com-

posed of flat plates. In this theoretical consideration the following

basic assumptions are presupposed; flow is steady, two-dimensional, non-

viscous and incompressible.
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The cascade to be considered is composed of flat plates, whose chord

length is c, spacing is s, stagger angle is ' . At the inlet of the

cascade flow is quite uniform, and its direction is changed by the cas-

cade, flowing off to the right. In the cascade, from 0 C3i to

C , the axial velocity of the flow is accelerated (or in-

versely, decelerated) from val to va2.

In such a case our problem is to determine the performance of the

cascade. That is, given the values of mean velocity direction measured

from the chord line a, the magnitude v, and the changing condition of axial
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velocity within the blade passage A (Q), calculate the value of the

circulation around a blade r as a function of 1 =.S/c ,'(V

and . In this paper, variations of axial velocity were treated

as a function of t only, and independent of 7 .

To solve this problem, we divide the flow into three elementary parts:

(i) Flow around the given cascade with a given mean velocity

vector, without any change of axial velocity.

(ii) Flow consisting of a source and sink distribution only,

corresponding to the given axial velocity change (the

boundary condition is not satisfied).

(iii) Flow to cancel the normal velocities on the blade sur-

face which were induced by the flow (ii), and an ad-

ditional circulation to satisfy the Kutta-Joukowski's

condition at trailing edge9

By superimposing the three elementary flows above, we can obtain the flow

which satisfies all the prescribed conditions.

2 - 1. Flow (i)

The solution of Flow (i) is already well known, and in this paper

the conclusive equation only shall be given,

4 KS-----

where, )( is a parameter depending upon the values of the blade pitch-

chord ratio 7\ , and the stagger angle I . Although the functional

relation )C = f (A, -) is rather complicated, we can easily

find it in the numerical tables (6).
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2 - 2. Flow (ii)
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Next the relation between the source or sink distribution and the varia-

tion of axial velocity must be examined. Consider the source distribution

spread over the belt-wise domain from E C.4 to : C4S

The strength of source per unit area is expressed by , and it is a func-

tion of 5 only.

Velocity induced at an arbitrary point ( e ,j ) by this source

distribution can be easily calculated by the law of Biot Savart, and is

written as follows,
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where ( ) (1_10)t

Equation (2) can be integrated at once, and the result is as follows:

&W( I)m5 V145---f. 's'l

The second term on the right hand side of the above equation is one half

of the fluid volume welled out sper unit length of - direction) and

therefore, it is identically equal to (lk - 1, ). So we have,

ur(Inds' (3)
2

or, in differential form

Equations () and (4) show the conclusive relation between the source dis-

tribution and the axial velocity change. Whatever the change of axial ve-

locity in - direction may be we can now find the corresponding source

distribution which satisfies the given axial velocity change, so long as

the derivatives of t l with respect to have finite valJtes.

2 - 5. Flow (iii)

Flow (i), of course, satisfies the boundary condition on the blade

surface; however, Flow (ii) does not satisfy the boundary condition alone.

Therefore, in order to cancel the normal velocity on the blade surface,

Flow (iii) must now be considered.
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The acceleration A () of the axial velocity between the blade

passages causes a normal velocity component on the blade surface, as fol-

lows:

So, to cancel this normal velocity the following normal velocity shall be

added on the blade surface

This means that the flow wells out on the upper (or lower) surface and

sucks the same magnitude into the opposite surface. As a whole, the flow

field can be considered as consisting of a doublet distribution as is sche-

matically shown in the Figure. As can be seen easily from this figure,

there occurs a flow from the upper surface to the lower surface surround-

ing the trailing edge T. This induces infinite velocity at T, and is in-

consistent with the hypothesis of Kutta-Joukowski, so there occurs another

circulation 4 r around the blade to cancel the infinite velocity at T.

ar is nothing more than the change of circulation caused by axial ve-

locity change, and what we want is to be able to calculate the value of

A7 Pas a fUnction Qf the prescribed conditions.

Now we shall ctmljder the present problem on the transformed im-

aginary plane of the complex number S=re
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The mapping function of flat plate cascade is already well known,

and is written in the following equation.

S - I + K '+K
S. --- + er o J -)

where z =x + iy, ,+ -4

By Eq. (6), the outer domain of

cascade as shown on Page 7 can

be transformed conformally to the

outer domain of unit circle in

0 K) - plane. An illustration of

the singular point s on the 5 -
plane is given in the Figure to

the left. Substituting {

we get the following relation between the blade surface and the unit

circle:

7 " I -+ K I. Y
s C~?ai~A 2KU~e ~J-(7)

, n, -

The argument '9 , which corresponds to the trailing edge of the blade

is calculated by the next equation.

After the preparatory description g;ven above, the characteristics of

Flow (iii) must be analyzed in detail. By the law of continuity, the

normal velocity component C(9) on the unit circle is expressed as a

function of the normal velocity component A Vr, on the blade surface
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as follows:

Substituting Eq. (5) into the above equation, we get,

() - S.k i sA&( X )
d 1

dr/d& can be obtained by differentiating Eq. (7) with respect to

Q, and the result is:

(G) = Sld &ro (X) 2SK ( i+&)C*3 & -)S (CO
Ir I - 2 K XC-0 2 J+ >*

By the above equation the distribution of sources (or sinks) on the unit

circle, corresponding to the normal velocity on a blade, can be calculated

as a function of the argument 9.

On the other hand, let us consider the flow around the unit circle,

which wells the fluid Volume Q outside of the WUit circle at an arbitrary

point e . The complex velocity potential of this flow can be

expressed as follows:

Ir 4-I 47r( d

Hence the velocity of induced flow u at a point xoon the surface of the

blade due to a source of str4ngth Q placed at a point x is given by the

following equation, assuming X and xcorrespond to and

e ~ respectively.

4 (I F ) \

----- (le)
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Replacing Q of Eq. (10) by 9'(G) of Eq. (9), integrating over the unit

circle and using the condition ZqCX) n, the induced'Velocity

at the point xo is given by the following relation,

s- { 2 aGtO4a + K'-4 o e,-

In the neighborhood of the trailing edge i.e. & T where E

is a very small angle,

.I+2K

where, K . .K*S, 2(+ K1- - nCo 2 4 In

the , - plane, the c-mplex velocity potential of the flow due to the cir-

culation of strength d r around each blade is given by the follQwing

relation.

Hence the velocity Uap at the point xo due to this flow becomes

4<S0 w)cosi1#~6oe -( Ie)M cr9
and in the neighborhood of the trailing edge beccmes,

itap ( 84 (Ar 0 - --- -15

4S K c N/
The circulation is determined from the above-mentioned condition i.e.

te( -+ ( 07 0=
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and hence,

S T 2 " .+ (

Eq. (16) is the conclusive equation, which gives the value to correct the

circulation around the blade due to the prescribed axial velocity change.

2 - 4. Analogy with Thin Aerofoil Theory

The above mentioned theoretical considerations are quite similar in

mathematical procedure to those of "thin aerofoil theory" (7), developed

by Hirose and Hudimoto about ten years ago. In their work, they expressed

the effect of the shape of camber lines by doublets distributed on the

chord line. Their result was the following formula:

GTl2 T

In this equation, denotes the circulation around a blade, and y is the

ordinate of a given camber line, while the other symbolo are the same as

they appear eldewhere in this paper. From Eq. (17), the effect of only

the camber line is obtained by setting a = 00. Therefore, in this case,

OT -t2r
- 2 ( - d Y C+ co(&T-G

Comparing Eqs. (16) and (17), it can be seen that the following analogy

exists between the flow changing axial velocity through a flat plate cas-

cade and the flow through a cambered. cascade.

cdX
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Therefore, if the changing state of axial velocity through a flat plate

cascade is given by the formula,

at -- V qI-A)

then, the camber lines of a corresponding cascade in a constant axial ve-

locity field with a zero attack angle, can be calculated by the following

equation. V

C nei h+U ~C

From the above considerations, it can now be proved, that the flow around

a cascade, which has a changing axial velocity, has a direct, close correla-

tion with the flow through a slightly cambered wing lattice. This conclu-

sion is also seen intuitively, since the change of axial velocity between

blade passages means the deformation of blade shape itself. Here, the

most important matter to be recognized is the limitation of the above anal-

ogy.

Although Eqs. (16) and (17) have quite the same form, their meanings

are substanially different. Eq. (16) is the exact solution of the flow

through a flat plate cascade with an axial velocity change, however, Eq.

(17), unlike Eq. (16), is an approximate solution and is applicable only

for a very slightly cambered wing lattice. Because of this it is not

quite correct to use Eq. 17 for the case of a finite, cambered blade.

Therefore, the analogy given by Eq. (18) is correct only for the small

cambered profile, or inversely only for a small rate of axial velocity

change. On the other hand, if the change rate of axial velocity becomes

large, Eq. (16) gives the exact solution of cascade performance.

Therefore, speaking purely mathematically, the treatment of Hirose

and Hudimoto, gave not only the approximate solution through cascades of
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slightly cambered blade profile with constant axial velocity, but also

offered, ten years ago, the exact solution of changing axial velocity

through flat plate cascades. Unfortunately, they were not aware of such

a physical meaning at that time.

2 - 5. Linear Axial Velocity Change

In the case of a linear axial velocity change in the x - direction,

Eq. (19-A) can be expressed as follows:

Ct
where, 'V is the axial velocity at the inlet, a2 is the axial ve-

locity at the exit of the cascade. By the above analogy, this corresponds

to a cascade composed of 'parabolic cambered blades with constant axial ve-

locity and zero angle of attack. The corresponding cambered profile is

expressed by the following equation.

C 2C
Hence, the relation between the rate of change of axial velocity and the

magnitude of camber f/c of a corresponding parabolic camber line can be

written as follows.

Now substituting Eq. (20) into (16), we obtain,

I !,/1lr #-em0(&T-G) C,

Substituting Eq. (7) into the above equation, we get finally,

AT .- _ s'~ 'z"~ m'

---2 2 2)
--- (2+



Although this definite integration has already been solved by Hirose and

Hudimoto, their mathematical procedures are somewhat interesting, so they

shall be reproduced:

We put 0' z PC Cos X& .._4 IOC

and expand y ( ) in a Fourier Series such as:

) Z Cn c Gs + Z ci.rA'

then, z1rK' when n 6s) even,

C , W/7(n n iS Ocdd

hence, C 1

Pv+ zrt 4n + 1

2~+2

(M - a 0, '#'2, -

and T IP)+C ar d .. +
OT i-4IoTL / t~2oK~vl

Fig. I shows the result of a numerical calculation of the above equation,

which gives the correction Values for the circulation due to the change of

axial velocity as a function of pitch-chord ratio )\ and stagger angle .

Now, from the following figure, a concrete method can be suggested:
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for correcting the velocity tri-

angles in the case of accelerated

or decelerated axial velocity to

that of constant axial velocity.

The practical drawing method is

as seen at the left. Suppose

the prescribed velocity triangle

_____ is as shown by arrows (solid lines)

of the Figure. First, we draw the

mean axial velocity line m - m.

Second, from the tops of both arrows, draw two parallel straight lines L - L

and L' - L', which Are inclined to the axial direction by an angle .

(A~I has the following physical meaning.

The values of Wf can easily be found in Fig. 1, if the values of pitch-

chord ratio ?\ and stagger angle i are known. Then, the two points of in-

tersection of the lines m - m and L - L, m - m and L' - L' correspond re-

spectively to the velocity vectors at the inlet and exit of the cascade

with a constant axial velocity. In Fig. 1, the most useful domain for

practical purposes is shown by the shaded area. In this domain, tan Wf

seems to vary from 0.3 to 0.9, and for the most practical purposes it will

be enough to put tan Wf = 0.5 for the usual xial flow compressor design.

2 - 6. Correction of the Turning Angle

In the procedures of the foregoing considerations, the mean of the

inlet and exit velocity vectors is taken as the standard velocity, for the



sake of mathemtical simplicity. On the other hand, what we usually want

to get is the turning angle through the cascade keeping the inlet velocity

vector constant. Therefore, it would be necessary to refer to the method

of turning angle correction in order to keep the inlet velocity vector con-

stant.

It has already been proven elsewhere (8) that the following general

relationship holds for all kinds of cascades.

Where, Pl is the inlet velocity direction measured. from the axis, 32 is

the saae one at exit, and Q , (1 are the constants peculiar to the

prescribed cascade profiles and their physical arrangements. Q0 and

17/ are expressed by the following eqUations, if the conformal mapping

of their boundaries into the unit circle is possible (9).

Now, let the values of Pl', 2 which are obtained by the drawing procedure

and shown in the foregoing paragraph to be 10 and P20 respectively, and

expand both sides of Eq. (24) in a Taylor Series, that is;

Thus, in the vicinity of the origin of expansion, there exists the following
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approximating relation

Putting,

we obtain this relation:

,) C' (2-6)
The above equation is valid for all kinds of profiles, and in the case of

a flat plate cascade, we can deduce Eq. (26) from Eq. (1) and (8). Using

the above result, we can obtain the correction values d 12 of the exit

angle 32, which correspond to the required change d 1 of the inlet angle

3. Fig. 2 shows the values of e for flat plate cascades as a function

of pitch-chord ratio X and stagger angle 1 . It can be seen from this

figure, that in the vicinity of a pitcU- chord ratio .= 1, all of the

values of TJ are very near 0.05. This means, for normal values of turn-

ing angle, the correction value O 2 of the exit angle is nearly 0.10 per
2

degree of inlet angle adjustment. Therefore, in most cases, it does not

seem necessary to correct the exit angle. However, in the case of pitch-

chord ratio larger than 1.2 and large stagger angle such as = 60*,

the values of exit angle correction might exceed 0.5* or more per degree

of inlet angle adjustment. In such cases, correction of exit angle should

be taken into account.



3. CASCADE COMPOSED OF ARBITFARILY OMAPED BLADES

A\h

A

/

the first approximation as sufficiant

To approach the more practical

solution, let's consider the flow

through cascades composed of ar-

bitrarily shaped blades. There

are several methods to solve such

a problem involving a small per-

turbation based on the solution

of flat plate cascades. In this

paper, one of the simplest approxi-

mation theories similar to the

Hudimoto method (6) shall be a-

dopted. Since we requipe very

small quantities in the final

result, we shall consider only

for our purposes.

3 - 1. General Equations

Consider a cascade composed of an arbitrary blade shape such as the

figure above. The whole blade shape is supposed to be prescribed by the

following equation

Now let's consider the source distribution corresponding to the axial

velocity change from v to v . Restricting our problem to the case of

uniformly distributed sources, the strength of source per unit area 9
must first be determined. In this case, defining the cross sectional



area of the blade as A, the whole quantity of fluid Q welled out from the

one passage between two adjacent blades is,

6z= C S( c s T",O- A)
and this must coincide with the change of axial velocity before and after

the cascade, therefore,

O/'- 2 - '1/3a I S -= 1( S C cis -Ir - A)

hence, ('- /) (

c s COVs - A
Finally, using Eq. (4), the apparent change of axial velocity is given

by the following equation.

- - (29)

where

c s cs -e

B is the "blocking ratio" of the passage by the blade, and in the usual

case of the axial flow compressor cascade, it has always small value

around 0.1.

Then, the local apparent axial velocity change A&6 at any point P

on the blade surface, brings a normal velocity component 4V9I to the

blade surface at this point.

The relation between A'4, and jML is as follows,

All? e Sl (6+' lop Ai ---- (3 0)

where, d i

and 5' is given numerically, since the blade shape is prescribed by Eq.

(27). Assuming &(<I , so that X O 4 , V becomes

as follows.

15 f---r/
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In the above equation, the second term on the right hand side is the same

as Eq. (5). Therefore, all we have to do, is to solve for the first term

only, and superimpose it onto the solution of a flat plate cascade. Now,

considering the first term only, the radial velocity distribution around

the unit circle becomes,

de dy

-d(+) _ CPd & CI-0

On the other hand, let's consider the flow which cancels the normal ve-

locity around the unit circle. First, to satisfy the boundary condition,

a quantity of fluid J, must be sucked into the unit circle. Further-

more, considering that the quantity of fluidq-A must be sucked into

the blade from an infinite distance in both directions perpendicular to

the cascade axis, the following complex velocity potential function is

given.

where I ' -7

Using Eq. (28) the above equation can be rewritten in the following form.

Chere- AB __

4rI-a Is K

where Or
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From the above equation, the radial velocity v and the tangential velocity
r

V0 Onl the unit circle become:

_ c VCI AB
I-8 n - ,-8 -viK C2M S 2-

C(WIM c n ( E, Cos n 0, F.S#,n"6'9) - -- - (34-IA)

4o (
'V =-C 'S Z n E n 3M6

Therefore, setting Eq. (32) and Eq. (34-A) equal, we can determine the

values of the Fourier Series Ers and

d
9rgOt

Fr as follows.

. e
C, s

AS

-A - -
1-8 132-r

K C4 2 G

Now, we can calculate the tangential velocity on the unit circle using

Eq. (34-B) and the determined values of En and F,,

At the trailing edge,

00

C M - ) ne- - (36)

However, the tangential velocity at the trailing edge, due to the com-

plex velocity potential given by Eq.

(36) and (37),

'p

-41r

27r
K

can be determined as follows.

Zlr
('~$~L- 'v~,) S K ~i

(3~&)

(13) is;

From Eqs.

?rO Cos n ')- - - -(34- 8)

(I W o 0= 0

VzO S
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Now we can calculate the value of the circulation, which corresponds to

the first term of Eq. (3l). Therefore, superimposing this onto the solu-

tion of the flat plate cascade, we can calculate the correction value for

the circulation in the case of an-arbitrarily prescribed blade profile.

3 - 2. Calculation for NACA 65 - Series Compressor Cascades

Since the calculation for each case is a rather laborious one, for

convenience it is preferable to make some numerical graphs for certain

blade profile series. In this paper, numerical graphs for the rapid

characteristic estimation of NACA 65 - Series Compressor Cascades were

prepared. NACA 65 - Series blade profiles consist of a camber line and

thickness distribution, and both values change proportionally to some

"designation" with the distribution remaining constant. The designation

for camber line is CCO , which expresses the lift coefficient in

the case of an isolated wing. The designation for thickness is the "value

of the maximum thickness", and in this paper, let us designate it 4empo-

rarily t.

Now, as it can be seen from the above description, taking the chord

line as the abscissa x, the ordinate y on the blade surface can be ex-

pressed by the following equation:

V h !/C

where, j1  represents the ordinate of the camber line, 9t represents

the ordinate of thickness only, the + sign is taken for the upper surface

and the - sign for the lower surface. Furthermore, we can write:

0 YC tJ M-t%
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Hence,

d = CI X ( , -)dX dZ C',= .~ D
d-yt ---- (39)

where B0 is a blocking ratio corresponding to to and to is some standard

thickness ratio.

Substituting Eq. (39) into Eq.

c( n Pi+ Fsttn )

(35) we can write,

d( -C)C0 )CW k

SB
1-13 f . d(1)4 ,

8. do C 27r 27r ,

Then, we divide the above equation into two parts as follows:

n~' Pi

Z.(@ E'
Vo.

-a

B
I-.,

Finally, putting

t~in OL7T

A K he ol
We get the following conclusi-ve equation

7'VC,, to ) 4 t-'i A,

In Fig. 3, tan (&A and tan 4* are shown for the case of Cco = /-0 ,
t = 0, and C10 = 0, t = 0.1 respectively. It can be seen from the previous

description that the solutions for all other combinations of C10 and t can

be easily found from this numerical graph.

'I:.

to'st

Ich

C

is. dip Col z elms~

d~fe4* 4'#*
C )

9 Fn
M=1
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4. CORRECTION FOR SECONDARY FLOW

As was briefly mentioned in the introduction, secondary flow occuring

in the passages of a cascade due to boundary layer causes the deviation of

turning angle. Usually, this factor can be considered almost independent

of the phenomena considered in previous sections.

Therefore, to reach a more accurate solution, we must add the cor-

rection value for secondary flow to our calculation. For the correction

of secondary flow, it is considered appropriate to use the Otsuka's method

(10). Otsuka developed the secondary flow theories built by Squire-Winter

(11), Preston (12), and Smith (13), and devised a convenient formula to

estimate the deviation of turning angle due to the secondary flow in the

passages of cascades.

According to his theory, deviation of the turning angle S owing to

the secondary flow can bp calculated by the next equation.

* |d4 CoSI~(s vT

Where, INrIM is the magnitude of average inlet velocity along the span,

hbt/ is the locally accelerated inlet velocity caused by the existence

of a boundary layer on the inelt side wall.

Using Eq. (40) and the experimental value of A , we

can estimate the value of , which must be superimposed into our cal-

cUations. Fig. 4 shows the values of S U for various inlet

angles and exit angles j3
12
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5. NUMERICAL EXAMPLES

To confirm the validity of the theory, comparisons were made with

several sets of experimental data. All of the experimental data here

used (14), (4), (15) were collected from the publications on hand. All

of the data were for NAQA 65 Series Compressor Cascades using low speed

wind tunnels. In them, turning angles are plotted against attack angles

for the cases of both solid wall and porous wall. In the latter case,

two-dimensional flow is supposed to be maintained at the middle of the

span. For both cases, all data gave the rate of axial velocity chazige

'1 / , before and after the cascades. Now starting with the

value fdr solid wall, what we want to do is to correct the effect of sec-

ondary flow and the effect of axial velocity change on them, and to com-

pare the final curve to that of the porous wall.

In the first group of data (14) (from Fig. 5 to Fig. 10), the value

of W was estimated to be 0.03, according to the velocity

distribution shown in the report. In all figures, thin solid lines express

the value for the porous wall, thin dotted lines show the value for the

solid wall, while thick solid lines show the results of calculations

started from solid wall data.

Since the NASA porous wall data (4) (Fig. 11) uses a somewhat dif-

ferent value compared with the other report (15), in this paper the value

of the latter was adopted as the value of the porous wall experiment. The

last data (Fig. 12) came from M.I.T. (16) and in this cast, as the data

of a decelerated case was also presented, it was used in comparison, and

the result is given by the dbt-dash line in the figures. In the deceler-

ated case, since the secondary flow theory no longer has its meaning, the
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correction for the secondary flow was omitted. In both the NASA and MIT

data, because of the lack of description of inlet velocity distribution,

it was assumed that = 0.1 temporary.

6. CONCLUSIONS

In this paper, a general method was developed for the evaluation of

cascade performance with accelerated or decelerated axial velocity. For

the series of NASA 65 Series Compressor Cascades especially, numerical

graphs for practical use were presented. From the comparison of the

theory with- the datafrom several experiments, we see that good agree-

ment exists between them. However, there still remains some descrepincy.

On the one hand, it seems to depend upon the accuracy of the cascade test-

ing technique itself: on the other hand, the more complicated factors

such as the effect of viscosity might affect the performance, which is

beyond the scope of the present treatment. Restricting the discussion

to the procedure treated here, the accuracy of the calculation would be

doubtful in the more highly cambered blade or in a narrower spacing than

the present example, because of the invalidity of the simple conformal

transformation function used. Fortunately, such a difficult case would

not appear frequently in the practical design of axial flow compressors.
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