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TWO-DIMENSIONAL TRANSONIC AERODYNAMIC DESIGN AND ANALYSIS

USING THE EULER EQUATIONS

by

Mark Drela

Abstract

A method is developed for the solution of the steady two-dimensional

Euler equations with viscous corrections for transonic design and ana-

lysis problems. The steady finite volume integral equations are formu-

lated on an intrinsic streamline grid, and are solved using a global

Newton method. Conservative differencing together with artificial bulk

viscosity in supersonic regions permit correct shock capturing. The

design capability of the method stems from the streamline-based grid

and Newton solution method, which allow both direct and inverse boun-

dary conditions and constraints to be readily applied to the governing

equations. For all boundary condition types, the effects of boundary

layers and wakes on the inviscid flow are modeled by the displacement

thickness concept. The boundary layer and wake parameters are des-

cribed by compressible integral boundary layer equations which are

coupled to the inviscid flow and are included in the global Newton

solution scheme. This coupling procedure gives stable convergence for

flows with limited separation regions. A transition criterion based on

the Orr-Sommerfeld equation is developed and applied to transitional

separation bubbles. Accurate drag predictions are obtained for sub-

sonic and shocked transonic airfoils. Design examples involving air-

foils and cascades are presented.
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1. INTRODUCTION

Numerical solution of the fundamental governing equations of fluid

flow is a very powerful aid to aerodynamic design. The traditional

approach to design is to rely on wind tunnel data or even actual flight

data as a guide for improvement. Unfortunately, both tunnel tests and

flight tests are time consuming and extremely expensive, particularly

in the transonic flow regime. This sets a severe limit on the amount

of detailed design improvement which can be accomplished in a given

cost and time schedule. The use of numerical simulation rather than

wind tunnel testing to predict aerodynamic characteristics greatly

increases the amount of design refinement which can be performed. This

is due to both the relatively low cost of computation and the ease with

which design changes can be made and evaluated.

Many numerical design algorithms of greatly varying sophistication

and complexity have been developed to date. Virtually all of these can

be classified as either inverse methods or optimization methods.

Inverse methods deal with the determination of the body geometry which

will produce a given surface pressure distribution. The methods of

Lighthill [32,33], Tranen [48), Carlson [5], Volpe and Melnik [51], and

Bauer, Garabedian, Korn, and Jameson [1] fall into this category. Opti-

mization methods typically involve the linking of a direct aerodynamic

solver, which accepts a body geometry as input, with an optimization

algorithm to minimize some object function, such as drag or the integ-

rated difference between the actual and target pressure distributions.

Examples of such an approach are those of Vanderplaats [49], and Hicks

[26].

Each category has its advantages and disadvantages. The inverse

methods are relatively fast but usually leave the designer with only

indirect control over the body geometry via the specified pressure

distribution. Some methods, such as those of Carlson [5], and the

Boeing PANAIR design option [431, also treat the more general mixed-
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inverse problem. Here, the geometry is prescribed on part of the body

and the pressure is prescribed on the rest. This gives the designer

somewhat better control over the overall geometry. The optimization

methods generally give the designer more control over non-aerodynamic

features, since they permit arbitrary constraints to be imposed on the

final design. They also allow multi-point design provided a suitable

object function can be defined. On the negative side, the optimization

methods can require as much as two orders of magnitude more computer

time than the inverse methods. For this reason, they currently cannot

be used for routine design work in an industrial environment.

The design aspect of the design/analysis method developed in this

thesis falls under the category of inverse methods with mixed-inverse

capability. It has several features, however, which distinguish it

from the inverse methods listed above. Virtually all compressible flow

design methods developed to date are based on either a linearized-panel

or a full-potential formulation. The present method is based on a

conservative formulation of the Euler equations to permit accurate

analysis of shocked transonic flows. An equally important feature is

the method's computational speed. For airfoil grids which give better

than engineering accuracy, a direct sonItinn requireq nn mnra CPTT t-ime

than a state-of-the-art time-marching Euler solver. For cascade grids,

the present method is considerably faster. In addition, an inverse

solution with the present method requires roughly the same amount of

CPU time as a direct solution, making the method fast enough to be used

in interactive design/analysis sessions on a minicomputer. Finally,

the present method incorporates a new boundary-layer coupling procedure

which permits accurate loss predictions in both design and analysis

calculations with or without limited separation regions. This inclusion

of the boundary layer calculation does not significantly add to the

computation time.

An important feature of the present design/analysis method which

further enhances its speed is that the change between design and ana-
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lysis modes and vice versa is through a simple boundary condition

switch. A solution of a design problem is thus guaranteed to be a

solution of an analysis problem with the same geometry and freestream

conditions. This represents a considerable CPU time savings over

inverse methods such as those of Tranen [48] and Carlson [51, whose

design solutions do not exactly satisfy the discrete equations of

motion and hence require additional analysis calculations to verify any

design solution. Another important feature is that design solutions

can be performed with the boundary layer coupling included. With this

option, a coupled viscous analysis does not have to be performed to

verify a design solution since the design solution is already a solu-

tion to the analysis problem. This again results in significant CPU

time savings.

* * *

Transonic flow fields are governed by the full Reynolds-averaged

Navier-Stokes equations. However, the viscous effects in high Reynolds

number flows of interest are confined to thin boundary layers and

wakes, and the Euler equations can be used to describe the inviscid

part of the flow. The further assumption of irrotational flow would

result in the potential equation, which can be solved more economically

than the Euler equations. However, the potential equation does not

capture shocks properly because it cannot allow vorticity production,

and has non-unique solutions in certain Mach number ranges as shown by

Salas et al [41). As a result, the potential equation can give large

errors in shocked flows, and for this reason the Euler equations are

solved here instead.

The present design/analysis method is based on a novel discretiza-

tion and solution technique for the steady Euler equations. The dis-

cretization is based on an intrinsic grid in which one set of coordi-

nate lines corresponds to streamlines and hence there is no convection

across the corresponding faces of the conservation cells. This type of

coordinate system is very attractive for the steady state Euler equa-

14



tions. Both the continuity and energy equations are replaced by the

simple conditions of constant mass flux and stagnation enthalpy in each

streamtube, thus reducing the number of unknowns per grid node from

four to two. With conventional finite-volume discretization, all four

equations and four unknowns per grid node must be retained in general,

and only the energy equation can be eliminated in the special case of

constant upstream total enthalpy. Another advantage of a streamline

grid is that there is no numerical diffusion of entropy or enthalpy,

these quantities being only convected along streamtubes. The only way

signals propagate between streamtubes is through the streamline geo-

metry and through the pressure field. Thus, a streamline-coordinate-

based scheme faithfully reproduces the analytic information propagation

mechanisms of the steady Euler equations. The older streamline curva-

ture methods, such as that of Novak [391, take full advantage of these

properties of intrinsic coordinates. However, the streamline curvature

methods are not conservative and their iterative solvers tend to be

unstable in supersonic regions. This makes them unsuitable for shocked

transonic flows. The present streamtube formulation is fully conser-

vative, and together with artificial bulk viscosity and a stable Newton

solution procedure, shocked transonic flows can be readily computed.

The key feature of the present discretization scheme which permits

inverse solutions to be performed is that since the streamline grid

evolves as part of the solution, the airfoil shape (which is defined by

two particular streamlines) can evolve as well. In the discrete equa-

tions, it is as easy to specify that the surface pressure match some

given distribution as it is to specify that the surface streamlines

match the airfoil shape. Special constraints must be imposed to ensure

the resulting body shape is closed. These constraints can be identi-

fied with the classical prescribed-velocity constraints of Lighthill

[32]. For incompressible flow, Lighthill proved that specifying both

the freestream pressure and the surface pressure distribution leads to

an ill-posed problem and/or an open body shape if the surface pressure
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distribution does not satisfy certain integral constraints. Volpe and

Melnik [51] conclude that constraints also exist for compressible

potential flow, and their inverse calculation procedure is designed to

satisfy these constraints.

To accurately predict the drag on an airfoil, some sort of boun-

dary layer and wake calculation must be performed. The traditional

approach is to use the pressure distribution from a purely inviscid

calculation as input to a direct boundary layer and wake calculation.

An implicit assumption in this procedure is that the boundary layers

and wake do not significantly affect the inviscid pressure distribu-

tion. For transonic flows such an assumption is questionable, and for

separating flows it is outright wrong. In the case of transonic flow,

the strong effect of the viscous layers on the inviscid flow is prima-

rily due to the overall sensitivity of the transonic flowfield to sur-

face perturbations, especially if shock waves are present. At separa-

tion, the strong viscous effect is due to the theoretically infinite

sensitivity of the displacement thickness to pressure gradient varia-

tions.

A much more accurate viscous calculation procedure which mostly

eliminates the errors inherent in the small-viscous-effect assumption

is to take account of the presence of the viscous layers in the invis-

cid calculation. This procedure is commonly referred to as boundary

layer coupling. As analyzed by Lighthill (341, the leading order

effect of the viscous layers is to displace the inviscid flow away from

the body or wake by a distance equal to the displacement thickness.

The classical boundary layer coupling approach is to first perform a

purely inviscid calculation, and use the resulting pressure distribu-

tion to obtain a displacement thickness distribution. This displace-

ment thickness is then used to modify the effective body shape which is

then used to recalculate a new inviscid pressure distribution, and the

process is repeated. Unfortunately, this process tends to be unstable

unless the geometry updating step is severely underrelaxed, as was
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shown by Wigton and Holt [561. The underrelaxation leads to very poor

convergence rates and high computational costs. Also, if separation

occurs, the direct boundary layer calculation cannot continue, and the

classical coupling approach will invariably fail. A method which most-

ly eliminates these difficulties is the semi-inverse coupling approach

where the boundary layer calculation is performed in the inverse mode

with the displacement thickness or the mass defect prescribed. The

resulting pressure distribution is then compared with the inviscid

pressure distribution and the difference is used to obtain a new dis-

placement thickness or mass defect distribution from some interaction

law formula (Carter [61). A refinement of this procedure is the quasi-

simultaneous coupling approach (Veldman [501, Edwards and Carter [17]),

where the specified displacement thickness or mass defect distribution

is updated simultaneously with the boundary layer calculation.

The coupling approach developed in this thesis is fundamentally

different from the classical, semi-inverse, or quasi-simultaneous

methods. Instead of the usual space-marching boundary layer solution

every viscous-inviscid iteration, the boundary layer equations for all

streamwise stations are included in the global Newton system and solved

together with the inviscid equations as a fully-coupled system. There

are many advantages of this approach as compared with the other coupl-

ing methods. One advantage is that an interaction law is not required,

since the Newton solution procedure automatically propagates the vis-

cous displacement effects throughout the domain every iteration. This

gives a very robust coupling algorithm. Another advantage is that the

very rapid convergence rate of the Newton procedure produces computa-

tion times which are nearly the same as for purely inviscid cases.

Hence the computational cost penalty for the viscous coupling is

essentially negligible.

The Newton solution procedure is an integral part of the overall

design and analysis method developed in this thesis. Conventional

Euler solvers use pseudo-time marching procedures to converge the
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unsteady Euler equations to steady state. The present method solves

the steady state Euler equations directly. Furthermore, most of the

equations associated with the inverse and boundary layer coupling

problems are not readily put into unsteady forms, making time marching

even less applicable. The Newton method, however, is applicable to any

well-posed linear or non-linear system of equations.

One of the features of the Newton solution method is that, unlike

a time-marching method, it converges extremely rapidly once the par-

tially converged solution is close to the exact solution. This is a

very valuable property in interactive design work, where after some

starting solution is calculated, design changes are usually made in

small increments. Hence, after a typical design change the resulting

design problem will have a good starting approximation from the pre-

vious solution and will thus converge very rapidly. Typically, only

one or two Newton iterations are required for minor prescribed-pressure

distribution changes. On a minicomputer such as a VAX-11/780, this re-

presents between 40 seconds and 4 minutes of CPU time for engineering-

accuracy grids. Clearly the method is fast enough for interactive use.

Another advantage of the Newton solution method is that it allows

the calculation of sensitivities with respect to global parameters at

virtually no additional cost. The usual method of obtaining a global

parameter sensitivity--by perturbing the parameter, calculating a new

solution, and taking a finite difference quotient--is expensive and is

subject to numerical noise. With the Newton method, the calculation of

additional solutions is not necessary. For example, in addition to the

usual lift and drag coefficients CL and CD, analytically-accurate sen-

sitivities such as &CL/a, aCD/3 , and aCD/aM, are obtained from a

single point calculation. The result is that integral quantities such

as CL can be easily prescribed since the sensitivity aCL/am is all that

is required to drive the angle of attack a to a specified CL. Other

sensitivities such as 3CD/aM can be used to monitor the onset of

transonic drag rise as design calculations are carried out.
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* * *

It must be mentioned here that the necessary stability and well-

posedness analyses of the streamtube formulation which form the core

of the present design/analysis method were derived and presented in the

PhD thesis of Michael Giles [191. Giles also performed detailed order

of accuracy studies which clearly show the streamtube formulation to be

second-order accurate, at least for shock-free flows. Thus, Giles'

thesis is a solid foundation on which the design and boundary layer

coupling capabilities of the present work are built.

The presentation approach in this thesis is to first derive the

Euler equations as discretized with the basic streamtube formulation,

which is done in Chapter 2. The boundary conditions and constraints

necessary to close the direct problem are presented in Chapter 3.

Chapter 4 describes the Newton solution procedure and implementation in

detail. The inverse problem theory and discrete formulation are pre-

sented in Chapter 5, together with the linearizations necessary for the

Newton method. In Chapter 6, the integral boundary layer formulation,

transition criterion, and coupling procedures are derived. The modifi-

cations to the inviscid Newton solver which must be made to solve the

coupled boundary layer problem are also presented in Chapter 6.

Finally, results and concluding remarks are given in Chapters 7 and 8.
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2. STEADY STATE EQUATIONS

2.1 Euler Equations

The discrete Euler equation set is derived from the integral form

of the steady state, two-dimensional Euler equations. The integral

equations are applied to a closed control volume C with outward unit

normal i, as shown in Figure 2.1.

as/

n

Figure 2.1 Control volume for integral Euler equations

Mass equation pq n ds = 0 (2.1)

Momentum equation (p(q-fn)q + p R) ds = 0 (2.2)

Energy equation pq*n ht ds = 0 (2.3)

The discrete Euler equations used are an approximation to these

equations in which the curve C is the boundary of an area usually re-

ferred to as a conservation cell. This approach is standard in compu-

tational fluid dynamics, but a unique feature of this implementation is

that the cells are defined such that one pair of opposing faces are

streamlines of the flow and so there is no mass flux across them. Thus

the only contribution to the above integrals from these two faces is

the pressure term in equation (2.2). This means that the density and
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velocity need only be defined on the other two faces. Also, the direc-

tion of the velocity must somehow be related to the local geometry to

be consistent with the statement that two of the faces are streamlines.

A feature of this formulation which also is the basis of streamline

curvature schemes but which is not found in standard time-marching

Euler solvers is that the grid is not known a priori and must be deter-

mined as part of the solution.

A typical conservation cell is shown in Figure 2.2. The geometry

variables (x,y) are located at the grid nodes marked x. The cell nodes

marked as - are defined to be at the midpoints of the lines connecting

the grid nodes. The upper and lower bent faces of the cell are the

streamline faces across which there is no mass flux. In this chapter,

the geometry node numbering convention shown in Figure 2.2 is used when

discussing the discrete Euler equations for a particular cell.

X,~~X Y Y 3Y7X X 2, y ,

Figure 2.2 Conservation cell and defining geometry locations

Four vectors which need to be defined are the vectors along the

faces of the cell, which are illustrated in Figure 2.3. For the bent

streamline faces the vectors are the vector sum of the two parts.
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Figure 2.3 Conservation cell face vectors

1 + +9 1 - -
A = i(x +x+) - -(x +x )
x1. 2 1 2 2 1 2

1 + + 1 --
A = -(x2+x+) - 1(x +x )
x2 2 2 3 2 2 3

- 1- -
B = -(x -x )x 2 3 1

+ 1 + +
B = 3(x -)

1 + + 1 - -
A = (y1+y2) -(yl+y2)

1 + + 1- -
A =-(y+y) 2+y)

Y2 2( 2 3 f22 3)

B = (y-y)

+ 1 + +
B = (y3-y)

Two additional vectors which it is convenient

which is the average of B and B+ , and N, which is

and A
2

1 - +
S = -(B +B )x 2 x x

N1=N = -(A +A )
x 2 x, X2

(2.4a,b)

(2.4c,d)

(2.4e,f)

(2.4g,h)

to define are S,

the average of A

1 - +
S = -(B +B)
y 2 y y

N = -(A +A
y 2 yi Y2

(2.5a,b)

(2.5c,d)

Since the nodes (x1,y1 ),(x 2 ' y+ ),(x 3 ' 3) and (x1,y ),(x2' 2 ' 3

are defined to lie on streamlines, the local velocity direction must be

related to them. This is accomplished by defining the unit flow vector
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g1 to be tangent to the line joining the average of nodes 1 and 1 to

the average of nodes 2 and 2-. The unit flow vector sz is defined

similarly. Both are shown in Figure 2.4, and their definitions are

given below.

Figure 2.4 State variables and unit velocity s vectors

s =(x2 -+x2)/2 - (x+x )/2 s = (y2+y2)/2 - (y+y )/2 (2.6a,b)

S (2 2 , , s = s is (2.6c-e)
S x1  y1  x xI y1  y1

s = (x,+x+)/2 - (x2-+x 2 )/2 , s = (y+y)/2 -(y+y)/2 (2.7a,b)
X2 33 22Y 2  +y 3/ y2 y2)/

S=(2 2 , = s /s , s =s /s (2.7c-e)
X 2  y2 x 2  x 2  2 y 2  y 2  2

The velocity at the midpoint of the left face of the conservation

cell is thus defined to have direction 2 and magnitude q. so that

q = q 1 sZ. The final geometric quantities to be defined are the normal

areas An, and An 2, which are the vector dot products of the unit velo-

city vectors and the normal area vectors of the faces. Since A and A2
are defined along the faces, not normal to them, the actual definitions

of An and An2 are,

23



A = s A -s A is s , A = s A -s A 2 =s xA | (2.8a,b)
nj xi Y1 Y1 x1 n2 X2 Y2 Y2 X2 12X 21

where the operator | is defined to mean taking the scalar component

in the third (out of plane) dimension, and will only be applied to

vectors having only a component in the third dimension. It is

important to note that the scalar value given by I I may be positive or

negative depending on the direction of the vector. The operator | I
does not return the absolute value and so is an unconventional

operator, but one that is very convenient in this application.

The flow variables p, q, and p, denoting the density, speed and

pressure, are located at the midpoints of the faces which are not

streamlines, as shown in Figure 2.4. Another pressure variable, de-

noted differently by H for clarity, is located on the streamline faces

where, as previously noted, no other flow variables are required.

The discrete mass equation is simply a statement that the mass

flux along a streamtube is a constant.

m = p q1Anj P2q2An2 (2.9)

With due regard to the directions of the vectors A 1,A2 ,B and B

the discrete approximations to the x and y-components of the integral

form of the momentum equation (2.2) are,

mq s - mq s + p A - p A + H B - H B

+ - 1 + - + -
= mq s - mq s + (p -p )N + (H-H)S + y(H++ -P -P )(By-B )

ix 2 X 2  1 2 y y 2(fl 2 y y

= 0 (2.10)

mqs -mqs -pA +pA -IRB + HBi y~ 2 y2  1 xi 2 x2  x x

+ - 1 + - + -
= mq s - mq s - (p -p )N - (H-HI)s - -( +n -P -p )(B -B)

iy1  2 y 2  1 2 x x 2 1 2 x x

=0 (2.11)
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The step from the first line to the second line in these two equations

is achieved using the definitions of S and N, and the identity
4.+ 4- 4 30.
B -B =A2 - A.

The energy equation reduces to the statement that the stagnation

enthalpy is constant along a streamtube, although of course the value

of the stagnation enthalpy, like the value of the mass flux, may vary

from one streamtube to another.

Y Pi 1 2 'Y p 2 2ht-+ 2 - +, 2 q 2 (2.12)
Y-1 p y-1 p 2

2.2 Auxiliary pressure relation

The discrete Euler equations given above require an additional

relation to constrain the average value of H in each cell. In a uni-

form flow, the pressure p on the normal cell faces (Figure 2.4) is

related to p and q through the mass equation (2.9) and energy equation

(2.12). However, the streamline cell face pressure n can take on any

value, since the momentum equation (2.11) only constrains the differ-

ence between n- and H+. For consistency the average local value of R

must be approximately equal to the average local value of p with the

equality becoming exact in the limit Ax,Ay+O. This is achieved most

simply by requiring that

S + 1 = + p2 (2.13)

which constrains the average of the pressures on each pair of opposing

faces to be the same. Equation (2.13) is called the H-equation.

Although many other constraints between p and n can be formulated,

(2.13) is the simplest constraint which is also second order accurate.

Also, it will ultimately produce the same number of unknowns as equa-

tions in the global equation set as shown by Giles [19].

One problem with the x and y-momentum equations (2.10-11) and the
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I-equation (2.13) is that they are transparent to the sawtooth grid

oscillations shown in Figure 2.5.

conservation cells geometry

I - _ _ _ _

Figure 2.5 Grid sawtooth oscillations

These oscillations are neutrally stable, and normally are adequately

inhibited by solid-wall boundary conditions. For inverse boundary con-

ditions, however, it is desirable to eliminate them completely. One

way to do this is to correct the average of the H pressures for the

sawtooth-induced streamtube area change in the middle of the cell. The

H-equation is therefore modified to

11+ p 1 + p + 2P (2.14)

A possible way to relate the pressure correction change Pc to the

streamtube area change is to use the isentropic pressure-area relation

Ap/p yM /(1-M ) AA/A. The corresponding discrete form for Pc (- Ap)

in uniform flow would be

P E YM 2/(1-M 2 ) Ac- (A +A (2.15)
c A c 2 nj n 2

where Ac is related to the grid geometry as shown in Figure 2.6.
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In! In 2

Figure 2.6 Quantities for isentropic nI correction

Using equation (2.15) to define PC is not appropriate for several

reasons. Numerical experiments revealed that the amount of pressure

correction given by equation (2.15) is about an order of magnitude more

than is necessary to prevent the grid sawtooth from appearing. Also,

the pressure correction was found to cause instabilities in supersonic

regions. A form for Pc which takes these considerations into account

and is also applicable to non-uniform grids is

M M2 2 |SixS 2t - lsixs 2 2

P =2 ISxN (2.16)
c 2

0 , M >1

1 2 1 2 2where M == -+p2(M + M2) (2.17a-b)

The vectors si, s2 , s1, s2 are related to the local streamline geometry

as shown in Figure 2.6. The factor k in (2.16) typically lies in the

range 0.05 < k < 0.20 . With k=1 and uniform flow, the modified PC

definition (2.16) reduces to the isentropic pressure-area relation in

the incompressible limit M << 1.

It is useful at this point to resolve the discrete x and y-momen-

tum equations (2.10) and (2.11) into local streamwise and normal momen-

27



tum equations in the directions of S and N, respectively. By taking

S times equation (2.10) plus S times equation (2.11), and using the
x y

general I equation (2.14), the S-momentum equation is obtained.

mqf - mq f + p - p + P +B +B = 0 (2.18)
1 1 2 2 2 c |SxNI

where f = + + , = 4+(2.19a-b)

SxN| ISXN

Likewise, by taking N times equation (2.10) and N times equation
x y

(2.11), the N-momentum equation is obtained.

mqig - mq2g + II - H + + P -A-+2 = 0 (2.20)
c SxNJ

s1 -N s2 -N
where g = + + , g = + (2.21a-b)

ISxNI 2 ISxNI

In Drela, Giles and Thompkins [14], it is shown that equations (2.18)

and (2.20) with Pc=0 reduce to the streamline curvature equations in

the limit of infinite grid resolution, and hence are a consistent dis-

cretization of the Euler equations.

2.3 Artificial dissipation

In supersonic zones the discrete Euler equations are ill-posed

without the addition of some form of artificial numerical dissipation,

as is shown by the analysis in Appendix D. One way to make the equa-

tions well-posed is through the introduction of upwinded density (also

termed "artificial compressibility") in the mass equation. This idea

was first used by Eberle [16] for the transonic potential equation, and

was later used by Wornom [57] for the quasi-one-dimensional Euler

equations. Giles [19] successfully applied this form of artificial
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dissipation to the the present Euler equation discretization to obtain

stable transonic solutions. In this thesis, a form of artificial

dissipation analogous to bulk viscosity will be used. Based on the

stability analysis given in Appendix A, the S and N-momentum equa-

tions are modified to

B xBI
mq 1f - m 2 f + p1 - p2 + P - 4--- = 0 (2.22)

+ IA1xA 2 I
mq1g,- mq 2 g2 + n - f + P c = 0 (2.23)

where 1 and q2 are upwinded speeds defined by

El = q1 - A (q -q0 ) (2.24a)

2 = q2 - A2 (q2q1) (2.24b)

The analysis in Appendix A suggests that a good definition for A is

2
M 2_M 2 2(225

2 1 2

Thus, dissipation in the form of speed upwinding is introduced wherever

the local cell maximum Mach number M exceeds the threshold value Mc.

For numerical stability, Mc has to be somewhat less than unity, and is

usually chosen to be approximately 0.90.

2.4 U pressure elimination

To minimize the number of variables in the Newton solution method

to be described in Chapter 4, it is necessary to eliminate the H vari-

ables from the N-momentum equation (2.23). H+ is eliminated simply by

adding the f-equation (2.14) to the N-momentum equation (2.23), giving

IA1XA2I
mq1g9- mqg 2 P - p + P c -*-- - 2P = -2H (2.26)

i 2 1 2IS |S N|J
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Similarly, H- is eliminated by subtracting the H-equation from the N-

momentum equation, yielding

IAixA2I +mqg - mq2g + p + p + P -- + 2P = 211
1 2 1 2 C x|IS C

(2.27)

To eliminate the H variables from equations (2.26) and (2.27), we note

that f for streamtube j is in fact the same quantity as n+ for stream-

tube j-1 as shown in Figure 2.7.

\- - - \ -

j streamtube

j-1 streamtube

Figure 2.7 H. and H+ pressure equivalence

By adding equation (2.26) at i,j to equation (2.27) at i,j-1, the so-

called reduced N-momentum equation results.

2 11 ij - 211. .
1,J

- IAIXA2 I1
MCI g + p + p + P -x- j- + 2P[m191 - 292 1 2 c I xN-) c

IS NJ .0j-l

IA1XA2 I
+ mq1g1 - mC 29 2 - pi - p2 + P --j-x+ 2Pc

SSXNJ j
=0 (2.28)

Together with the S-momentum equation (2.22), the reduced N-momentum

equation (2.28) is now ready to be tackled by the Newton solution algo-
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rithm to be described in Chapter 4.

2.5 Streamtube inlet boundary condition

The analytic Euler equations require two thermodynamic variables

to be specified at a subsonic inlet. One is already specified in the

form of the stagnation enthalpy, which is in fact prescribed along the

entire streamtube. The other thermodynamic quantity which is specified

only at the inlet of each streamtube is the stagnation density,

P=P(1 +-1 M2 -1Y~) =P(1 1 2 -1/(Y-1)
Pt 1(1 + 2 M = P1 - q 1) (2.29)

where the subscript "i" now denotes the variables at the inlet face.

2.6 Global Variables and Equations

Every discrete equation and variable presented so far is associa-

ted with some particular node or location in the rectangular computa-

tional grid. However, for the airfoil and cascade problems which are

addressed in this thesis, there are certain variables and equations

which aren't associated with any particular node. These are termed

"global" variables and equations. A few examples are cascade inlet and

outlet flow slopes, airfoil circulation, and freestream flow angle of

attack. Often, the equations which constrain these variables are

obvious, such as a specified inlet flow slope or a specified freestream

angle of attack. Other constraints are more subtle and must be ob-

tained from physical insight. An example is the Kutta condition, which

must be applied to the cascade and airfoil problems to fix the outlet

flow slope and the circulation, respectively. Global variables and

equations will be introduced and discussed as they arise for each

problem category in the subsequent chapters.
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3. DIRECT PROBLEM

This chapter will present the boundary conditions encountered in

the solution of the direct, or analysis problem. In addition, certain

global variables and constraints which arise in the direct problem will

also be addressed. Treatment will be restricted to cascade and isola-

ted airfoil geometries. The grid in each case is a logical rectangle

with the indexing system shown in Figure 3.1.

2
3--

j 2+1
1 .2 11E -- IE '

Figure 3.1 Grid indexing for cascade and isolated airfoil

Note that for the airfoil case, the streamline index j starts with the

value of 1 at the airfoil suction surface, and then "wraps around" at

j, to end up with the value of J at the pressure surface. There is a

dummy streamtube between the streamlines j = j00 and j = j.+1 where the

governing equations will be replaced by the far field boundary condi-

tions of a lifting airfoil.

3.1 Solid Wall Boundary Conditions

The wall boundary conditions which are required to close the

entire system of equations for both cascades and airfoils are extremely

simple. At a solid wall, the only physical boundary condition is that
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the flow is tangent to the surface. In the discrete equations, this is

implemented by requiring that each wall streamline lie on the wall

itself, as shown in Figures 3.2 and 3.3.

slope 0 (Kutta)

0 00

Figure 3.2 Cascade boundary conditions

+ compressible vortex 8 source

cLmnzO "'l
20 ~(K utt a)

Figure 3.3 Isolated Airfoil boundary conditions

A local coordinate n in the direction perpendicular to the solid wall

is defined at each node. As will be described in detail in Chapter 4,

the grid nodes are restricted to move only along this normal coordi-

nate, with the node spacing along the airfoil surface being prescribed.

The solid wall boundary conditions are therefore
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An. = 0
i,l

i i si (.abLE TE (3.la-b)
An. = 0

. i,J

where An is the gap between the wall and the surface streamline as

shown in Figures 3.2 and 3.3. These boundary conditions still allow

the surface grid nodes to slide along the airfoil. Such sliding occurs

in the case of a blunt leading edge, where the position of the stagna-

tion point on the airfoil is a result of the calculation. This aspect

of the direct problem will be treated later in this chapter. In Chap-

ter 6, equations (3.la-b) will be modified to account for the viscous

displacement thickness. It is interesting to note that no other bound-

ary conditions are required by the discrete Euler equation set. In

particular, the wall H pressures do not have to be extrapolated from

the field interior, as in most time-marching Euler solvers, but are a

result of the calculation.

On the part of each stagnation streamline which does not lie on

the airfoil surface, two boundary conditions are required. One is a

geometry continuity condition:

An. = 0 , K i i -L1 and i +1 K i K 1-1 (3.2)
LE TE

Here, Ani denotes the gap between streamlines j=1 and j=J as shown in

Figure 3.2. The other boundary condition is a pressure continuity

condition:

1. - 1. = 0 , 2 K i K i -1 and i +1 K i K I-1 (3.3)
i,1 i,J-1 LE TE

The H pressures in equation (3.3) are easily related to the other

local variables by using equations (2.26) and (2.27). All of the

equations above are applied to both cascades and isolated airfoils.

For the cascade case, equations (3.2) and (3.3) can be interpreted as

periodicity conditions.
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3.2 Cascade Far-field Boundary Conditions

In the cascade problem, the discrete Euler equation set requires

geometric boundary conditions for the streamline endpoints, one at the

inlet (i = 1) and one at the outlet (i = I). For consistency, these

boundary conditions must allow the flow to become invariant along each

streamtube far upstream and far downstream of the cascade. The sim-

plest approach would be to set the vertical spacing between the stream-

line nodes such that the cross-sectional area of each streamtube is

proportional to its mass flux. Unfortunately, this boundary condition

would be incorrect if the entropy differed between streamtubes because

of nonzero inlet vorticity or shock entropy generation. A boundary

condition which is still valid for non-isentropic flows is to specify

that all the streamline segments between the inlet plane (i=l) and the

plane just inside (i=2) have a common slope Sinl. This is expressed as

x = S inl 1 K j J (3.4)
x ., - x .

'n
,3 1,j

Likewise, the outlet streamlines are constrained to have the outlet

slope Sout.

I - I- ,

x1  j - I1 'j = S out I j J (3.5)
x .' - x . out

Sinl and Sout are two global variables which have been introduced into

the equation set. To retain a closed system, two additional equations

must be introduced to constrain them. An appropriate equation to

constrain Sinl is to simply set it to some specified value:

Sil - S. = 0 (3.6)

At the outlet, a flow slope can be specified as well. However, this

will in general produce a large pressure jump across the stagnation

streamline at the sharp trailing edge. In the corresponding physical

situation this cannot occur since vorticity will be shed until the

pressure jump across the trailing edge is zero. This is a viscous

mechanism which establishes the ciculation and hence the lift on any
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airfoil-like body, and the zero-pressure jump is the well-known Kutta

condition. With viscous Navier-Stokes solvers, and also with conven-

tional Euler solvers which have numerical viscosity, the Kutta condi-

tion becomes satisfied automatically. In potential solvers, which have

no dissipation, the Kutta condition must be set explicitly. Since the

present streamtube Euler solver does not have any numerical viscosity

in subsonic regions, it is necessary to explicitly impose the Kutta

condition here as well.

r. - J. = 0 (3.7)
ITE'1 TE'

Note that the Kutta condition (3.7) is in fact the same equation as the

pressure-continuity boundary condition (3.3) which is applied to all

the all the wake and and inlet stagnation streamline points. However,

equation (3.7) is considered a global equation since it is used to

constrain the global variable Sout, just like the global equation (3.6)

constrains the global variable Sinl-

3.3 Airfoil Far-Field Boundary Conditions

As shown in Appendix B, the leading order behavior for the velo-

city potential P at a large distance from the airfoil is given by the

superposition of a uniform flow, a vortex, a source, and the two com-

ponents of a doublet. The potential of this combination is

r I Dx cosO Dy sinG
= R - - 0 + - In(F) + - + --

2Tr 2T 2i ? 2i r

(rM,.) 2 ln(P) cos3G
+ E cosO + F (3.8)

where

= + 0 = arctan 2= -M (3.9a-c)

and

E + 1 3- -1 +1 Y+ 1)
E = 4 - + F - 1 -- + -- (3.9d-e)
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Here, i and ? are transformed coordinates aligned with the freestream.

They are related to the physical coordinates x and y, the freestream

angle of attack a, and to the freestream Mach number M. by the follow-

ing shift, rotation, and scaling transformation:

= (x-x) cos(a) + (y-y0 ) sin(a) (3.10a)

= -(x-x ) sin(a) + (y-y ) cos(a) (3.10b)

x and y are the physical coordinates of the point where the far field

vortex, source, and doublet are centered. This point is usually taken

to be on the airfoil chord line at the 25% chord position.

The velocity potential 0 in equation (3.8) is used to determine

the static pressure which is imposed as a boundary condition along the

top and bottom streamlines (j = j, j,.+1).

+ qW 2 2) Y-1 -1.. = -pt 2 + + 2 2 i K I- (3.11a)
1,.12t 1,)oo

2_ _

= 1 + 0 . 2 K i K I-1 (3.11b)
&,4 tt' -~,1W+1 -+1)

The Cartesian velocity components Ox and 0 in (3.11a-b) are given by

(0 ) = cosC ) - sina (0 ) (3.12a)
x x ~ 0 cijY Pj

(0 ) sina ( ) + cosa (0 ) (3.12b)
y x' .. y ~ I

where the transformed velocity components 0- and 0. are obtained by
x y

differentiation of the $ definition (3.8). The resulting expressions

are rather tedious and are best obtained from the code listing.

Three new global unknowns have been introduced into the system by

using equations (3.11a-b) as far-field boundary conditions: the angle

of attack a, far-field circulation r, and far-field source strength E.

Therefore, three new constraints must be introduced. The appropriate
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constraint on r is the Kutta condition that was used to fix the outlet

slope (and hence the circulation) in the cascade case.

fT. - 1 T = 0 (3.7)i ,E'1 i ,E'J-1

To constrain the angle of attack, two approaches are possible.

One is to simply specify the angle of attack.

a - aspec =0 (3.13)

The other approach is to specify the lift, which in turn is related to

the integrated pressure loads over the airfoil surface.

'TE

Lspec 2 (-i+-,J +i-1,J ,J-1 i+1,1- 1 i,1 (3.14)

i1 LE

Thus, either the lift or the angle of attack can be specified. The

quantity which is not specified is then a result of the calculation. It

is worthwhile to mention here that in shock-free flows, the quantity

peqoj always equals the lift obtained from surface pressure integration

to within a small truncation error. This is viewed as evidence of the

consitency of the present discretization scheme.

The far-field source strength Z, which is only present in shocked

flows and/or in flows with boundary layer coupling, is related directly

to the stagnation pressure and displacement thickness at the outlet as

shown in Appendix B.

J-1
* 131 r

Z= 6 t + - m. (3.15)
outlet j1.(pu)+0 p u 3

where

01 N-' Y-1
2 POO- 2 y po

(u) = (2h ) -- JY - t]Y (3.16)+ t p y-1 ht p

The two doublet strengths Dx and Dy are determined by two minimi-

zation conditions as described in Appendix B. In discrete form, these
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conditions are

j +1 I-1apox a

Ay - ".x -- Ay OA = 0 (3.17)
X y + - D 3D X)+1+-

j=jOO i=1 x 2

j00+1 I 1

X Yy - 0 Ox - y Xox = 0 (3.18)
.(D . . i+l j FaD aD Xi+1~

Here, Ax and Ay imply

Ax= x. l - x J Ay = y . - y. .

and Ox, Oy, aox/8Dx, etc., are evaluated at the midpoint coordinates

xi+1,j + x yi+1,j + y.
X+1 - 2 - 2
+,J 2 +22

The validity of the doublet constraints (3.17) and (3.18) has been

confirmed by cases where the exact doublet strength is known, such as

in the case of the incompressible flow around a circular cylinder or a

very thin airfoil. In general, the calculated doublet qtrength qa"s1c

the exact value to within a few percent.

At the inlet and outlet planes, the airfoil case requires the same

geometric boundary conditions as the cascade case. The setting of a

uniform slope at the inlet and outlet of a cascade flowfield is justi-

fied on the grounds that the periodic pressure disturbances due to the

individual cascade airfoils decay exponentially upstream and downstream

of the cascade as shown by Giles [19]. Setting all the streamlines to

be parallel is inappropriate for the airfoil case, however, because of

the relatively slow 1/r and I/r 2 type of decay of the far-field vor-

tex, source, and doublet velocity field. This slow decay causes the

streamline direction to vary significantly across the inlet and outlet

boundaries of a reasonably sized domain. Therefore, it is better to

let the prescribed streamline slope vary according to the streamline

pattern of a uniform flow with a superimposed compressible vortex,

source, and doublet. Hence, at the inlet and oulet boundaries, each
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streamline segment is constrained to be parallel to the local velocity

whose components O and Dy are given by equations (3.12a-b). At the

inlet, this is expressed by the following cross-product:

(x . - x j) (0 y) 1j + (D ) -

- y2  ( 1,j + (= ) = 0 1 < j < J (3.19)

At the outlet plane, the corresponding condition is:

x . - x , ($ ) +($) -
I-,3 I, y, y /

(YI 1 'ij - Y 1,J (I ) , + (o X) = 0 1 j i J (3.20)

I-1 ,3 I'j)

3.4 Blunt leading edge treatment

A body with a blunt leading edge requires special treatment at the

stagnation point if a physically realistic solution is to be obtained.

In particular, the position of the stagnation point on the airfoil

cannot be assumed a priori, but clearly must be a result of the solu-

tion. Therefore, the stagnation point grid node (at i=iLE and j=1,J)

must be free to slide on the airfoil surface. To prevent grid cross-

overs, the other surface grid nodes must also slide in a way which

maintains a good grid distribution. In the present formulation, the

relative spacings between grid nodes on the suction side are kept

proportional to the total suction side arc length between the stagna-

tion point and the trailing edge. The same is done for the pressure

side. Hence, as the stagnation point slides on the surface, the other

nodes on and near the surface also slide proportionally in an accor-

dion-like fashion, as illustrated in Figure 3.4.
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Figure 3.4 Surface node movement tied to stagnation point movement

The movement of the surface nodes does not modify any of the gov-

erning equations or boundary conditions presented so far. The only

consequence will arise in the Newton solution procedure to be described

in Chapter 4. In effect, the position of each surface node is now

dependent on the new global variable sLE, which the position of the

stagnation point grid node on the airfoil in terms of arc length mea-

sured counterclockwise around the airfoil from trailing edge to trail-

ing edge. The appropriate global equation to constrain sLE is a zero

pressure jump across the stagnation streamline at the stagnation point,

or in other words a leading edge Kutta condition.

' LE' - LE' 1 U

In cases involving a sharp leading edge, the stagnation point is

assumed to be fixed at the leading edge, and the global variable sLE

does not exist. Because the global equation (3.21) can no longer be en-

forced, a pressure jump across the leading edge will generally result.

According to incompressible potential theory, this pressure jump should

be infinite. Given the finite available grid resolution in the present

scheme, however, the resulting pressure jump will be merely large.

* * *

Together with the solid wall, periodicity, and far-field boundary

conditions presented in this chapter, and with the interior equations

presented in Chapter 2, the entire equation set for the direct problem

is complete. The Newton solution procedure for the equations is pre-

sented next in Chapter 4.
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4. SOLUTION PROCEDURE

Chapters 2 and 3 have presented all the steady state equations

obtained from the discretization of the Euler equations, and their

associated boundary conditions for the direct problem. This chapter

will describe the Newton method which is used to solve this system of

nonlinear equations. The modifications to the method necessary for

solution of the inverse and boundary layer coupling problems will be

presented as they arise in subsequent chapters.

4.1 The Newton method

The Newton method is a well-established algorithm for solving

nonlinear scalar or vector equations. For a scalar nonlinear equation

of the form

f(u) = 0 (4.1)

the Newton solution procedure at some iteration level v is

f(u )+1 f(u '+6u ~ f(u ) + f (u ) 6u = 0 (4.2a)

V I
6uV = - f(uV) / f(uv) (4.2b)

uV+1 = uV + 6u (4.2c)

This procedure converges quadratically (i.e. 6uV+1 (6uv) ) provided

the current solution u is sufficiently close to the exact solution.

For a vector of equations F and a vector of unknowns U, the Newton

procedure is essentially the same.

F(U) = 0 (4.3)

F(Uv+1 F(U V+6UV ~ F(UV) + [ F 6UV = 0 (4.4a)

-1

6U = - F(U ) (4.4b)v [aV
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Uv+1 = UV + 6U (4.4c)

The expression [3F/aUI in equations (4.4a) and (4.4b) is the Jacobian

matrix whose (i,j) entry is the partial derivative of the i'th equation

in F with respect to the j'th variable in U, evaluated at Uv. The

convergence for the vector equation is quadratic for a sufficiently
V

accurate U , just as in the scalar case. The primary difficulty with

the vector equation is that a linear system of equations (4.4b) must be

solved at each iteration, unlike the corresponding scalar equation

(4.2b) which merely requires a single division. The Jacobian matrix

which arises from the linearization of all the discrete Euler and boun-

dary layer equations for the cases presented in this thesis can be as

large as 9000 x 9000. However, it is an extremely sparse and highly

structured matrix of bandwidth 69, and thus can be solved economically

by Gaussian block elimination.

An alternative approach to solving equation (4.4b) at each itera-

tion is to use some sort of iterative relaxation algorithm. Jespersen

[27] has tried this solution approach with a conventional finite-volume

discretization. He considered the linear system to be too large to be

solved efficiently by direct methods, probably because his discretiza-

tion required four unknowns per node in contrast to the two unknowns

per node required by the streamtube formulation. Jesperson's approach

was to solve the linear Newton equations by an iterative Gauss-Seidel

method accelerated using multigrid, a technique developed by Brandt

[4] for solving elliptic equations. His results showed no particular

speed advantage over conventional time-marching. Giles [191 has

formulated and tested an iterative solver for equation (4.4b) which

required a preconditioner and was limited to subsonic flow. His re-

sults showed that even for the finest grids which might be used for

typical engineering calculations, the Gaussian elimination solver was

faster, more robust and simpler than the iterative solver, and also

handled transonic flows without difficulty. Needless to say, further
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efforts at iterative solution were dropped.

4.2 Newton linearization

In the present application the vector of functions F in equations

(4.3-4) includes all of the discrete Euler equations, boundary condi-

tions, global constraints, and boundary layer equations. To minimize

the computational cost of solving equation (4.4b) it is desirable to

use the smallest possible number of unknowns in the vector 6U. To

achieve this, each grid node will be restricted to move perpendicular

to the local streamline, so that the node position changes 6x and Sy

can be replaced the single change Sn. Here, n is a local coordinate

perpendicular to the streamline passing through that node. To further

reduce the number of unknowns, the linearized inviscid equations must

be manipulated so that only the density and streamline position changes

6p and 6n are left as independent variables. There are two basic

approaches to this task. To clarify their differences, they will first

be presented in a simplified, symbolic form. The much simpler app-

roach, which is the one used in the program, will then be applied to

the discrete equation set.

The first and perhaps most obvious approach is to explicitly ex-

press the discrete equations in terms of only p and n, and then differ-

entiate. For instance, the S-momentum equation (2.22) has the form

F(S,N,s,q,p) = 0 (4.5)

where

S = S(x(n), y(n)) N = N(x(n), y(n)) s = s(x(n), y(n)) (4.6a-c)

and q = q(p,A) p = p(p,q) A = A(x(n),y(n)) (4.6d-f)

Node indices, subscripts, and other ornaments have been suppressed for

the sake of clarity. The functional dependencies q(p,A) and p(p,q) are

obtained from the mass and energy equations (2.9) and (2.12). In prin-

ciple, equation (4.5) can be expressed explicitly in terms of p and n

by fully expanding the functional dependencies S(x,y), x(n), y(n),
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q(p,A), etc., and then linearized by differentiation with respect to p

and n:

F(p,n) = 0 (4.7)

6F(p,n) aF6P + -F6n (4.8)
ap an

The difficulty with this approach is that F(p,n) is an absurdly com-

plicated expression and aF/ap and aF/an are much worse. Coding them

for the necessary evaluation at each iteration level would be rather

impractical.

The second, simpler approach is to break down the differentiation

in equation (4.6b) into a sequence of much simpler steps by invoking

the chain rule, and then assembling the individual steps at the Fortran

level. This process is illustrated in the following example. First,

the expressions for x and y are linearized. As mentioned previously,

each grid node is constrained to move in the direction of the unit vec-

tor n perpendicular to the streamline, and hence the changes 6x and 6y

are simply given by

6x = yn = n 6n y= 6n = n 6n (4.9a-b)

Since n is prescribed before each iteration, its components nx and ny
are known constants. Next, the changes in S, N, s, A are obtained by

straightforward chain-rule differentiation of their definitions.

as as a6x + - sy aN 6x + - y (4.10a-b)
ax ay ax ay

as as AA
6s = 6x + L 6y 6A = -A 6x + LA 6y (4.11a-b)ax ay ax ay

Derivatives with respect to x and y such as aS/ax and aN/ay, which are

relatively simple expressions, are readily evaluated at the current

iteration level and stored. For the current iteration, they thus be-

come constants which trivially relate 6S, 6N, 6s, 6A and the indepen-

dent variables 6x and 6y.
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Next, the change Sq is expressed in the same manner as 6A was.

The definition q(p,A) is obtained from the mass equation (2.9) and is

differentiated to give

Sq ~ 6p + 6A (4.12)

The derivatives aq/ap and aq/aA are very simple expressions which are

evaluated at the current iteration level and stored. Likewise, the

expression for the change 6p is obtained by differentiation of its

definition p(p,q) derived from the energy equation (2.12).

6p p+ q (4.13)
ap aq

Again, the simple expressions ap/ap and ap/aq are evaluated and stored.

Now that all the intermediate expressions such as q(p,A) and

p(p,q) have been linearized, the next step is to linearize F(S,N,s,q,p)

itself.

SF + 6N + aFs + aF Sp (4.14)asS+&N a-s + q + F

The derivatives in equation (4.14), which again are relatively simple

expressions, are evaluated and stored as usual. The final step is to

use equations (4.9) through (4.13) to express the changes SS, 6N, 6s,

Sq, 6p in equation (4.14) in terms of only the independent variables 6p

and Sn. By direct substitution,

SF ~ aFaq + aKF P 6Paq p ap a

(F N aF as 8F as aF aq aA aF ap aq aA ax
-Nx + S as ax + aq A ax ap aq A ax) an

+ aF aN aF as aF as aF aq aA aF ap aqaA Sn (15+) +y + +6n (4.15)t.M-aay a sa y a 3s ay qaAay a p aq a-Aay) D 'an)

Since all the derivatives have already been calculated and stored, this

final step is trivially done at the Fortran level.

Using the chain rule to break down the linearization process as
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illustrated above is clearly the preferred linearization method, for

reasons of both clarity and efficiency. This linearization method will

now be applied to all the governing Euler equations and direct prob-

lem boundary conditions.

4.3 Jacobian structure

Before the linearized equations are derived, it is helpful to

visualize the zone of dependence, or "molecule" of each discrete equa-

tion. For an IxJ grid, there are (I-2)x(J-1) S-momentum equations

(2.22) and (I-2)x(J-2) reduced N-momentum equations (2.28) to be

solved. The molecule of each of these equations is shown in Figure

4.1. Other equations, such as airfoil far field boundary conditions

involve global variables such as 6r and/or 6a.

ji -X
x j+1

. streamtube j +1

i- I I

1-2 i- streamtube j

i+1

i+1

Reduced N-momentum S - momentum

Figure 4.1 Zones of dependence of discrete Euler equations

When Newton's method is applied to these discrete equations, the

linear system which results involves a block matrix with four block

diagonals, plus a separate block column for the global variable entries

and separate block row for the global equations. The structure of this

linear Newton system is shown below.
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1 1 1 1 1

B2 A2  C2  U2  62

Z3 B 3 A3  C3  U3 63

Z. B. A. C. U. x 6. = R. (4.16)
1 1 1 1 1 11

Z B A CU R

Z B A CG G A

zI I3 I, I6,R

_ 1 2 3 1 Ii g g_ _ g

Here, 6. denotes the vector of the unknowns Sn and 6p at streamwise

station i, and A denotes the vector of global unknowns such as 6F and

6a which are not associated with individual nodes. The vector R. con-

tains the negated residuals of the S-momentum and reduced N-momentum

equations and boundary conditions for streamwise station i, evaluated

at the current solution. The vector R contains negated global equa-
g

tion (such as the Kutta condition or prescribed-lift condition) resid-

uals evaluated at the current solution. All the block elements making

up the large Jacobian coefficient matrix in (4.16) contain the deriva-

tives of the residuals on the righthand side, again evaluated at the

current solution. The block matrices Z., B., A., C, contain the cor-

responding Jacobian entries for Sn and 6p (i.e. the residual deriva-

tives with respect to n and p), and the U. block contains the Jacobian

entries for global unknowns such as 6r and Sa which typically appear in

the boundary conditions. The G. blocks contain the global equation

Jacobian entries for 6n and 8p, and the G block contains the global
g

equation entries for the global variables.
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The structure of each block line in (4.16) reflects the molecules

of the individual S-momentum, reduced N-momentum, and boundary condi-

tion equations. Figure 4.2 shows how the individual molecule nodes are

divided between the Z., B., A., and C. blocks.
1 1 1 1

Z, B1 ~.

i-2
i-1 -

i+1
Reduced N-momentum

Az i

1-2 x
i-

S-momentum

Figure 4.2 Division of variables between Jacobian matrix blocks

The linearized reduced N-momentum equations and periodicity boundary

conditions are grouped in the top half of each block line, and the

linearized S-momentum equations are grouped in the bottom half. This

produces the block structure shown in Figures 4.3 and 4.4. The 6n

entries are denoted by x, and the 6p entries are denoted by o.
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S-momentum
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Figure 4.3
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- BC (3.2)

reduced
N-momentum
equations

+- BC (3.3)

S-momentum
equations

A. block

Figure 4.4

C. block

A. and C. block structure (2 K i K I-1)
1 1

Note that the row containing the linearized geometry continuity

boundary condition (3.2) is empty except for the two Sn entries in the

A block. The row containing the linearized pressure continuity bound-

ary condition (3.3) has extra entries since equation (3.3) spans cells

in the l'st and J-1'th streamtubes. At a streamwise station where the

l'st and J-1'th streamtubes adjoin a solid surface, such as in a cas-
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cade passage or at an airfoil surface location, the fixed-streamline

boundary conditions (3.la) and (3.1b) replace geometry and pressure

continuity conditions. This will result in the rows labeled "BC (3.2)"

and "BC (3.3)" in Figures 4.3 and 4.4 above to be totally devoid of

entries except for one on the main diagonal of the A. block.

The block structure shown in Figures 4.3 and 4.4 is misleading for

an isolated airfoil case, since it does not indicate the far-field

boundary conditions for an airfoil. In the isolated airfoil case, the

jo'th and j.+1'th lines of each block do not contain the reduced N-

momentum equations, but the linearized far field conditions (3.11a) and

(3.11b) instead. These conditions will still result in the j.'th and

j.+1'th lines having the same form as the reduced N-momentum equation.

At the inlet and outlet planes, which correspond to the first and

last block rows of the Newton system (4.16), the block structure is

also different from that shown in Figures 4.3 and 4.4.

At the inlet (i=l), the Z. and B. blocks do not exist. The upper
1 1

halves of the A. and C. blocks contain either the linearized inlet
1 1

slope conditions (3.6) for the cascade case, or the linearized flow

angle conditions (3.19) for the airfoil case. The lower halves of the

A and C blocks contain the linearized inlet stagnation density condi-

tion (2.29). Figure 4.5 shows this block structure.
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inlet
stagnation
density
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Figure 4.5 A and C block structure

At the outlet (i=I), the C. block does not exist. The Z. block is usu-

ally all zeroes, although it doesn't have to be. The upper halves of

of the B. and A. blocks contain the same flow angle conditions as at
1 1

the inlet. The lower halves of the B. and A. blocks contain only dummy
1 1

equations since the variables Sp do not exist for i=I. This block

structure is shown in Figure 4.6.

6 1P1

x

X

x

Xl

B block

dummy
variables

x

X

X

X
xX

' 1
'1

1
'1

A1 block

outlet
flow angle
conditions

dummy
equations

Figure 4.6 and B block structure
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4.4 Discrete system linearization

In the program, the general linearization procedure is to sequen-

tially sweep down each streamtube, calculating and storing the various

residuals and Jacobian entries for each streamwise location. When the

program visits a particular cell, it can calculate all the entries for

the S-momentum equation, since the S-momentum equation spans only that

one cell. This is not possible for the reduced N-momentum equation,

since it spans two cells in two adjacent streamtubes. Sweeping down

two streamtubes simultaneously would be computationally inefficient and

a poor solution to the problem. The procedure adopted is to add on to

the Jacobian elements the current cell's contribution to the two re-

duced N-momentum equations it influences. After the Jacobian entries

of the interior equations are stored, the boundary condition entries

are calculated and stored.

4.4.1 Interior Euler equations

At the beginning of iteration v, p , x , y at all grid nodes are

known. For the sake of clarity, the iteration index "v" will be omit-

ted from all quantities, unless otherwise stated. For each streamtube,

all the geometric quantities are evaluated using equations (2.4-2.8),

and also equations (2.19a-b) and (2.21a-b). In general, the Cartesian

displacements 6x and 6y of each node are expressed in terms of a local

movement 6n along a predefined direction vector R perpendicular to the

local streamline, plus a movement proportional to 6sLE along another

predefined direction. As described in Chapter 3, 6sLE is the movement

of the stagnation point grid node at a blunt leading edge. For the

sake of clarity, the grid node position dependence on 6sLE will be

ignored until the end of this chapter. The consequences of this depen-

dence will then be discussed.

Because each node is defined to move a distance 6n along the pre-

defined direction vector fi, the Cartesian variations 6x and 6y can be
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trivially related to Sn when needed. Hence, all geometric quantities

are first linearized in terms of the variations 6x and Sy.

The streamwise vector s2 variation 6s2 is easily related to 6x and

6y by inspection of its definition (2.7a-b).

6s; = ( 6x' + 6x3 - 6x' - 6x , 6y + 6y - 6y - 6y (4.17)

The variation 6s is similarly expressed in terms of 6x and Sy. In

practice, only variables subscripted by "2" need to be calculated,

since the "i" quantities were calculated and stored for the upstream

cell and hence are already available.

The variation 6s 2 (s2 being the modulus of s2 ) is expanded in terms

of 6x and 6y as follows.

1 4 4 as + as x as +
6s - s -6s 2 6x + 2 6X + + -2 Sy + ... (4.18)

2 3x+ 3 ax- 3 ay+ 3
2 3 3 3

As described in Section 4.2, the horde of sensitivities such as as /ax
2 3

and as 2/3x  is calculated and stored. These are as numerous as they are

simple and hence are best obtained from the code listing.

As in the case of 6s2 above, the variation 6A2 can be easily ob-

tained in terms of 6x and 6y from its definition (2.4c-d).

+ 1 + + - - + + - -

6A -16x + 6x - 6x - 6x , 6y + 6y - 6y- 6y (4.19)
2 2 3 2 3 2 3  2  3  2

For instance, 3A /3x+ = (1/2 , 0) , and 3A /ay (0 , -1/2).
2 3 2 2

With 6s2 , 6s 2 , and 6A 2 written in terms of 6x and Sy, the normal

area variation 6A is expressed in terms of 6x and 6y as follows.
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s 2xA2 I A( n2 +6S
6A-n (16 2 2 2x6A52 - 1A 2 x6s2 6s 2  (4.20)

2 s2 s2 s2

As described in Section 4.2, sensitivities such as 8An 3x+ which are

needed to relate 6An2 and 6x3 are obtained by substituting expressions
n2 3

for 6A2, 6s2 , and 6s2 into (4.20). At the Fortran level, this only in-

volves a chain rule multiplication sequence as illustrated earlier in

Section 4.2.

aA aA BA 3A as aA as
n2 n 2  X 2 + n 2  X 2 + n 2  2(4.21)

ax+ aA ax+ as ax+ as ax+
3 XA 3 Xs 3 2 3

Expressing the variations of all the other geometric quantities like

6|SxN| follows naturally. The basic procedure is to expand the varia-

tions of cross and dot-products, such as

_). .). 1 64. + . 4) .
61 xNI = 1Ix6NI - INx6-S , 5(s 2S) = S6S + Ss (4.22,23)

from which sensitivities such as alSxNl/ax are formed using the chain

rule. The nitty-gritty details are best obtained from the code listing.

The remainder of the linearization process deals primarily with the

thermodynamic variables. The mass equation

m = p2 q2A (2.9)

is used to calculate q and to express 6q in terms of 6p and 6An'

m aq aq
q = q (P ,A ) = -> 6q = -- 2 Sp + -_2 6A (4.24a-b)

2 2 n 2  pA ap 2 A n2

The following sensitivities are evaluated and stored:
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aq q
-2 _ .2

ap 2 p 2

q2 q 2
3A A

n 2 n2

Next, p is calculated as a function of p and q using the energy equa-

tion,

h = 2 +
tY-1 P 2

1 2
-q
2 2

(2.12)

which implies,

P2 =2 (P2 'q2)

y-1 12
p 2 (-~~ t(ht - 2 6Sp2 = ap 2

ap 2

ap
P 2 + 2 6q (4.26a-b)

2 3q 2

where

8p y-1

2 - - p 2q 2

The artificial bulk viscosity coefficient

- ma= 1 - -
2 YM2.

M2 = max(M ,M )
1 2

is linearized by straightforward differentiation.

(2.25)

Using the relation

1/M = (y-1)(ht/q - 1/2), the following sensitivities are obtained.

3a 2 y-1 htx2 -2M -- 3
aq c y

ax
-2 = 0

ax 2 y- ht
, q2  2M - -
3q 2 y q

if q > q2

if q < q

of course, both 8X2 3q1 and aX2 /aq 2 are zero if X. is zero.

The upwinded speed q2 = (1-X 2)q2 + X 2q1 is linearized as follows.

(4.25a-b)

ap 2  - p2

ap p2 - 2
T

(4.27a-b)

ax
a2 - 0
aq 1

(4.28a)

(4.28b)

42



2 - X + (q -q )-
aq 2 (q2 3q1

2 - 2-A + (q -q )-2

aq 2 2 aq

At this point, the S-momentum equation residual Rs defined by

B xB I
R s m f - mqf + p1 - p + P -+ = 0 (2.22)

s 1 2 2 2 C ISxMI

can be linearized in a more or less straightforward fashion.

6R = m16ff - mq26f2 + mf164 - mf26C2 + 6 p- 6P2

|B xB 1 +- + B xB | +
+ ++6p + p + B xB|-P + 26 1SxNj

1|SxN| c c I SxNj C SxN|
(4.30)

As described in Section 2.2, all of the variations in (4.30) such as

6f, 6p, Pc, are expressed in terms of the primitive variables 6p and

6n by using previously calculated sensitivities such as ap/ap, ap/aAn,

aAn/ax, etc.

The reduced N-momentum equation is simply the difference between

the two H pressures

211. - 211 .
L,j-1 1,J

=-0 (2.28)

where

211.
I1F)

and

211

IAlXA2ImI 1g- mq292 pPi ~ 2 + Pc -+ xN - 2P

F I|ALxA2 I
mq g1 - mqg + p + p + P ++--~- + 2P1 292 1 2 c |SxNj c)

I SxNI -1

(2.26)

(2.27)

Equation (2.28) linearizes to

- 2 6H.
I,]

= 2H . - 2H .
1,) i,j-l

As mentioned earlier, the contributions from the j'th and j-l'th
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streamtubes are added onto the appropriate Jacobian entries separately

for efficiency. The linearization of the contribution f~ of the j'th

streamtube is very similar to that of the S-momentum equation.

2 611 = -mq Sg + mq2g2 - mg 64 + mg26 2 + 6p 1 + 6p 2

A IxA | 1 AxA 2
+ I -2 - 2 6P + P j 4 6A 1XA 2  - P 4-02 6SxN1 (4.32)

SxNI )x c ISxNi

The H. . residual contribution from the neighboring cell got added on

when the program swept through the j-1'th streamtube.

4.4.2 Boundary conditions

The linearized form of the inlet stagnation density condition,

Pt =P1 (1 - - q2 -l (Y-1)=
2htt ( t 2h t (2.29)

is

Pt q pt
S P + 2 6q - Pt (4.33)

41 (T-1)(t 3/ ) pe

As usual, the 6q variation is expressed in terms of 6p and 6n and the

resulting coefficients are stored in the Jacobian matrix.

The linearized form of the solid wall boundary conditions (3.la-b)

is simply

6n. = -An. (4.34a)
i,1 i,1

Sn = An (4.34b)
i,J i,J

which drives the gap Ani between the wall and the wall streamline to

zero. The geometry continuity condition (3.2) is very similar to the

solid wall and in linearized form is
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6n. - 6n. = -an. (4.35)
i,1 i,J a.

where Ani is the gap between the 1'st and J'th streamlines as shown in

Figures 3.2 and 3.3.

The linearized streamline pressure continuity condition (3.3) is

the same as the reduced N-momentum equation (4.31)

611 - 6 . = 1I - .11 (4.36)
i,1 iJ-1 1,J-1 1,1

except that (4.36) straddles the 1'st and J-1'th streamtubes in "wrap

around" fashion. The 61 variations are expressed in terms of only 6p

and 6n in the same manner as in the reduced N-momentum equation.

The cascade inlet slope constraint

2,j l,j = S (3.4)
x .- x . mil
2,j 1,j

easily linearizes to

6y j- 6y 1 . - Sin 6x2 , - 6x 1 j - (x 2, - x1 j 6Sinl

inl 2,j "1,j) 1,j 2,j.

This linearized equation is distinguished from all the previous ones in

that it contains the global variable variation 6S. 1 . The coefficient

(x 1 . - x2,) will therefore appear in the U1 block in equation (4.16).

The linearization of oulet slope condition (3.5), which contains6S out'
will likewise have an entry in block U V

The airfoil inlet, outlet, and far-field boundary conditions

(3.19), (3.20), (3.11), and (3.12) are linearized in more or less the

same manner as the cascade inlet and outlet slope constraints. Instead

of 6S. and 6S , however, the variations 6r and 6a will appear.
T il out

These will result in entries in all the U. blocks in the system (4.16).
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As mentioned at the beginning of Section 4.4.1, the Cartesian

displacements 6x and 6y of each grid node will in general depend on the

global variable 6sLE as well as the local displacement 6n. The only

consequence of this dependence is the appearance of a Jacobian entry

for 6sLE in each linearized equation which involves 6x and 6y.

4.4.3 Global equations

At this point, the only equations which still need to be linear-

ized are the global equations which have residuals and Jacobian entries

in the bottom part of the Newton system (4.16). The procedure used to

linearize global equations is identical to the chain rule process used

for the interior equations and boundary conditions in the two previous

sections. For example, the lift constraint

1TE

R -L - - H (R.+-)I.- (R. -R. ). = 0 (3.16)
L spec 2 L i+1,Ji-1,Ji,J-l 1+1,1 1-1,1 i,1

linearizes to

TE

2 (R+1,J -1,-lJ iJ-1 i+1,1- i-1,1 il

i=iLE

+ (6x. -SR. )H. - (6R. -ISR ). -R (4.38)
+ +i,J- 1-,J'i,J-1 i+1,1 i-ii 1,) L

The variations 6R and 6Y are related to 6x, 6y, and 6a through the R

and ? definitions (3.14a-b). Equation (4.38) will result in Jacobian

entries occurring in the G blocks for iLE K i TE and also in the

G block because of the 6a dependence.
g

Other global equations are linearized in the same manner. The

details are best obtained from the code listing. Once this is accom-

plished, the linear Newton system is complete, and is solved by the

procedure described next.
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4.5 Gaussian elimination block solver

The linearized Newton system as it is given by (4.16) is not in

the most convenient form for solution. In particular, the global

equations and the global variable Jacobian entries disturb the system's

block structure. To simplify the solution procedure, system (4.16) is

rewritten as the two separate systems (4.39) and (4.40) shown below.

A C

B2 2

Z3 B3

C2

A3

z.I

C3

B. A.
1 1

C.
1

A

B

Z

C

A

B

G 1 6 +
S1 + G.6. +I I

x

2

3

6.

R

R3 2

R.

R

R

RI

U2

U
3

K
+ G6 + G A = R

I I g g g

U

Uy

A 9(4.39)
g

(4.40)

Equation (4.39) is now a "standard" block system with multiple right-

hand sides, which is readily solved by a standard block-elimination

algorithm, such as the one described in detail by Giles [19]. The

basic solution procedure is to first sweep down from the first row,

eliminating the B and Z blocks and thereby modifying the C blocks. The

modified C blocks are then eliminated in a backward sweep from the I'th

line. The resulting solution has the form

6. = r. - U.A
S 1 i g 1 K i K I (4.41)

By substituting this into the linearized global equation system (4.40),
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a system which involves only the global unknowns is obtained.

G~ - G u - ... - G.u. - ... - Gjg
lg -G1 U i ui GI UI] Ag

Rg G1  ... - G.r. - ... - (4.42)

This small (usually 6x6 at most) linear system is easily solved to ob-

tain the global variable vector A , which in turn is substituted back

into (4.41) to obtain the local variable solution vector 6. (1<iKI).

4.6 Updating the solution

Usually, the updating of the solution consists of simply adding on

the density and geometry changes.

v+1 V
P. = P. + r 6p. . (4.43a)

v+1 V
x.. = x. + r (n n. . + n' 6sL) (4.43b)

V+1 V
y. . = y. . + r n Sn. . + n' s )(4.43c)

1,J 1,J

Here, n' denotes the direction vector (not a unit vector) along which a

grid node moves in response to the stagnation grid point movement. The

quantity r is an under-relaxation factor which is usually set to unity,

giving the standard Newton method. For the first few Newton itera-

tions, however, it is necessary to use r < 1 to prevent non-physical

situations such as negative densities from occurring. The value r is

chosen so that the density never changes by more than a factor of 2.

This rather arbitrary clamp gives robust convergence even with very

strong initial transients.
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5. INVERSE PROBLEM

5.1 Full inverse formulation

The boundary conditions presented in Chapter 3 have dealt with the

direct problem. A body geometry was prescribed, and the flow field and

surface pressures were a result of a calculation. An alternative to

this procedure is the inverse problem, where surface pressures are

prescribed and geometry is calculated as a result. A straightforward

implementation of this idea is to replace the fixed-wall boundary cond-

ition (3.25) with the condition that the wall pressure at each grid

node on the body surface equal some specified value.

-. = p. c i L i i iTE (5.1a)
spec

1. = . , i s i i (5.1b)
i,J-1 i LE TE

spec

The inverse problem is not quite that simple, however. Since the grid

nodes on the suction and pressure surfaces at the leading and trailing

edge stations i=iLE and i=iTE are free to move, there is no guarantee

that the resulting body will be closed there. Hence, two requirements

which must be imposed on the equations are that the leading and

trailing edge gaps be zero, as is illustrated in Figure 5.1.

An. = 0 (5.2a)
1LE

An. = 0 (5.2b)
'TE
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(TE cdosure)

F,

Figure 5.1 Full inverse boundary conditions

The problem with the closure constraints (5.2a-b) is that they are two

new equations which have been introduced into the overall equation set,

while introducing no new unknowns. Hence the inverse problem as posed

above is overconstrained. This impasse can be resolved by considering

the work of Lighthill [32], [33], who formulated an exact solution to

the inverse problem for airfoils and cascades in incompressible poten-

tial flow using conformal mappings between the physical and circle

plane domains. Perhaps his most significant result is the proof that

the speed (or equivalently, the pressure) distribution on the body

cannot be prescribed arbitrarily. If w is the angular coordinate in

the circle plane into which the airfoil is transformed, q(w) is the

speed on the airfoil surface, and q, is the freestream speed, then the

following three integral constraints must hold for the inverse problem

to be well-posed and for the airfoil to be closed.
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in cos w dw 0 (5.3a-c)

0 Usin w,

For compressible flow, constraints such as (5.3a-c) cannot be written

down, although it is safe to assume that they exist.

Volpe and Melnik [51] have formulated what can be considered a

compressible extension of Lighthill's formulation. Instead of the

incompressible conformal mapping techniques, they resort to finite

volume full-potential solutions with Dirichlet boundary conditions and

a geometry updating procedure based on the resulting transpiration

velocity. To make sure that the compressible equivalents of con-

straints (5.3a-c) can be satisfied, Volpe and Melnik [51] use a pres-

cribed speed distribution of the form

q(w) = q0 (F(s(w)/s ) + P F 1 (w) + P 2 F (w) (5.4)

where s is the arc length along the airfoil. F 0 , F and F2 are given

shape functions and P1, P2 , and q. are parameters determined as part of

the inverse solution to obtain leading and trailing edge closure, and

to enforce consistency between the freestream and surface speeds.

In the present inverse formulation, only two additional free

parameters appear to be necessary, since there are only the two closure

constraints (5.2a-b) to be satisfied. This paradox is illuminated

somewhat by noting the way in which Volpe and Melnik prescribe the

surface speed. Their equation (5.4) fixes the fractional arc length

position of the stagnation point on the airfoil, or at least ties it to

two of the free parameters. In the present scheme, the relative arc

lengths of the pressure and suction surfaces are not constrained by the

prescribed-pressure conditions (5.la-b). Hence, the position of the

stagnation point on the fractional arc length around the airfoil can be

considered as the "missing" degree of freedom which is actually impli-
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citly contained in the present formulation.

To include the required two degrees of freedom in the present

scheme, equations (5.la-b) have been modified into a form similar to

equation (5.4).

. = p. + A F + A F (5.5a)
i,1 1 1 1- 2 2-(.a

spec 1 1

f. = fi + A F  + A F (5.5b)i,J-1 i Ispi 2 2 (5spec11

A1 , A2 are two unknowns which, together with the closure conditions

(5.2a-b), result in a well-posed inverse problem. F and F are some-1 2

what arbitrary shape functions of position on the airfoil. Here they

are chosen to be simple sine loops, as shown in Figure 5.1.

F = sin(fTa.) F = sin(2To.) (5.6a-b)

ai is the fractional arc length from the leading to the trailing edge.

The free parameters included in (5.5a,b) represent an "error" in

the prescribed pressure distribution which must be accepted. Perhaps a

more lighthearted view might be that they are automatic adjustments

made by the solver to the aerodynamic specifications to make sure the

airfoil can be manufactured. In either view, the effect of the free

parameters can be restricted to limited regions on the surface by

appropriately setting the weighting shape functions F and F .
1 2

The full-inverse problem as formulated above is not well-posed

without some constraint on the rigid-body motion of the whole grid and

airfoil. In the present scheme, this rigid-body motion is eliminated

by simply fixing the leading edge point in space.

6n. L' = 0 (5.7)
1LE'

The additional free parameter in the system is either the outlet slope

Sout in the cascade case, or the circulation F in the airfoil case.
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These quantities, which are related to the total lift on the airfoil,

must be left as unknowns since they cannot be determined beforehand

from the specified surface pressures (5.5a,b). The free parameter

terms and geometry which are known only after the calculation are also

needed. If the lift is to be prescribed exactly, another free para-

meter and shape function must be added to (5.5a,b).

5.2 Mixed inverse formulation

In addition to the full-inverse formulation described above, the

program implementing the algorithms described in this thesis also

handles the mixed-inverse formulation, where the pressure is pre-

scribed on part of the airfoil, and the geometry is prescribed on the

rest. This can in fact be considered a generalization of both the

direct and full-inverse formulations, since either the prescribed-

pressure or the prescribed-geometry parts can in principle encompass

the whole airfoil. The ability to mix the two formulations in arbi-

trary proportions is an extremely useful feature which gives the de-

signer much more overall control over the both the aerodynamic and

geometric properties of the airfoil than is present with either

formulation alone. The mixed-inverse formulation implemented in the

computer program permits the prescribed-pressure part to be on one side

of the airfoil at any one time. This restriction, which was made for

the sake of simplicity, does not significantly impair the capabili-

ties of the method. This is because the two airfoil sides are usually

tailored separately at different operating points.

The portion of the airfoil which has a prescribed-pressure condi-

tion imposed on it is termed the "freewall segment." If the endpoint

indices of the freewall segment are denoted by 1 and i2 , then the

mixed inverse boundary conditions are expressed as
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I+. = l~ +AF + A F , i ii8a)
, 1 1 1i 2 21 1 258a
s spec I i

An.. = 0 , elsewhere on airfoil (5.8b)

The subscript j is either 1 or J-1 depending on whether the freewall

segment is on the suction or pressure side, respectively. The free

parameters A and A2 have been included in (5.8a) to allow the imposi-

tion of geometry continuity conditions at the freewall segment end-

points. These are analogous to the leading and trailing edge closure

conditions (5.2a-b) for the full-inverse problem described above. Re-

ferring to Figure 5.2, these continuity constraints are

An. . = 0 An. = 0 (5.9a-b)
1 1 ,J3 1 2 ,J3

Again, the shape functions F and F2 are quite arbitrary, and here they

are chosen to be simple linear functions over the freewall segment as

indicated in Figure 5.2.

F = (a. - a ) / (a - ad (5. lna)
1 1' 2 1

F2  = (a. -a ) / (2 - a ) (5.10b)

a and a denote the values of a at i and i2.
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Figure 5.2 Mixed inverse geometry continuity conditions

As formulated, the closure constraints (5.9a-b) enforce geometric

continuity at the freewall segment but not slope continuity. In prac-

tice this is not a problem, since any slope discontinuities which might

appear are either not noticable or small enough to be ignored. Never-

theless, it is desirable to have the option of an explicit slope-conti-

nuity constraint imposed at the freewall segment endpoints. The

simplest approach is to fix the points immediately inside the freewall

segment endpoints in addition to fixing the endpoints themselves.

An. . = 0 An . = 0 (5.11a-b)
1 +l,j i -1,j

1. 5 2 5

As before, two additional degrees of freedom must also be introduced,

otherwise the problem will be overconstrained. This is accomplished by

adding more terms to the prescribed-pressure condition (5.6).

f~ = spe + A F + A F + A F + A F , i K i K i (5.12)
1e 11 1i22 5 44 2

s spec1 2 i1

The new shape functions F and F are again arbitrary, but they must

be sufficiently different from the other shape functions to keep the

influence of the four free parameters A .... A distinct enough for a

well-posed problem. A good choice for F and F but by no means the

only one is
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F3i = exp(3F2 ) F = exp(3F )

where F and F are defined by (5.10a-b).
1 2

The situation where a slope constraint is most likely to be nece-

ssary is when a freewall segment endpoint is very close to a stagnation

point at the leading edge, say within three nodes or so. Near stagna-

tion points, the geometry tends to be very sensitive to the prescribed

pressure, and most full-inverse formulations in literature use some

sort of smoothing or a prescribed-curvature constraint at the stagna-

tion point. This geometry sensitivity can also lead to an ill-condi-

tioned mixed-inverse problem if the local leading edge geometry is not

sufficiently constrained. Fixing the slope at such an endpoint helps

the situation considerably. This is not without negative side effects,

however, as the extra terms in the prescribed pressure expression

(5.12) usually result in a larger discrepancy between the specified and

resultant pressure distributions. It is useful to note that it is

perfectly acceptable to use only one of the rightmost free parameter

Lltrm 11 i (..L2) and I..Only O.nJe= OfL tIhe SLoJ COnstrD - raintsL. -0 ( 5 .1 1a -. ) h0 /, thu

keeping the number of "error" terms in (5.12) to a minimum.

5.3 Inverse problem Newton solution

The interior S and reduced N-momentum equations in the inverse

problem are identical to those in the direct problem. The only differ-

ences arise in the boundary conditions. In particular, the block

structure shown in Figures 4.3 and 4.4 will only differ in the lines

labeled "BC (3.2)" and "BC (3.3)". In these two lines, the prescribed

pressure conditions (5.5) or (5.12) replace the fixed-wall condition

(3.2). In the mixed inverse case, the fixed-wall condition is replaced

only in the block lines corresponding to the freewall segment stations.

The linearized specified-pressure boundary condition (5.5a) is
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611 -SA F - 6A F = H. + A F + A F - i (5.14)
i,1 1 2 21 ispec 1 221 1,1

The 6n variation is readily expressed in terms of the primitive vari-

ables 6p and 6n as described in Chapter 4. The SA and 6A2 variations

are global unknowns whose Jacobian entries are placed in the U. blocks

in the Newton system (4.16).

The closure constraint (5.2a) in linearized form is

6n. - Sn. = -An. (5.14)

1LE'1 LE'LE

This is a global equation and hence its Jacobian entries are placed in

the G. block in the system (4.16).
'LE
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6. BOUNDARY LAYER COUPLING

In this chapter, the integral compressible boundary layer equa-

tions used in the viscous/inviscid coupling mode of the solver are

derived. Also, the coupling relations and modified Euler boundary

conditions through which the boundary layer and wake affect the invis-

cid flow are presented. A fundamental assumption used in this formula-

tion is that the only effect of the boundary layer and wake is to

displace the inviscid flow away from the physical body to create an

effective "displacement body." The accuracy of this assumption was

investigated by Lighthill [34], who showed it to be accurate provided

the ratio of boundary layer thickness to streamline radius of curvature

is small. For most aerodynamic flows of interest, this assumption is

valid virtually everywhere, with the possible exception of the trailing

edge region. A related source of error is the breakdown of the bound-

ary layer approximation itself, caused by a significant normal pressure

gradient in the boundary layer. This normal pressure gradient can be

caused by streamline curvature at the trailing edge, and also by shock

wave impingement. Melnik [38] has developed higher-order corrections

for these problem areas which appear to improve accuracy. In this the-

sis these additional corrections will not be considered, since the de-

velopment of the basic integral closure formulation and the coupling

formulation are the primary goals here. Even without the corrections,

the results agree well with experiment as will be demonstrated later.

6.1 The integral boundary layer equations

The starting point of any boundary layer calculation method is the

Prandtl boundary layer equations:

mass: a(pu) + a(Pv)= 0 (6.1)

au apv ud
momentum: P, u -- + pv d=pu.-- +3- (6.2a)
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au
T = P pu'v' (6.2b)

aht aht 3Q
enthalpy: pu T- + PV (6.3a)

y ht 1 a
+ P 2 -- ph'v' (6.3b) Pr 8l ar an

These equations are expressed in local streamwise and normal wall coor-

dinates , The streamwise and normal velocity components are u,v,

T denotes the total shearing plus Reynolds stress, and Q denotes an en-

thalpy flux. Edge quantities are denoted by the subscript "e". Modern

finite-difference techniques can rapidly solve these equations provided

appropriate models for the Reynolds stress and the Reynolds heat trans-

port are introduced. In this thesis, the older integral approach to

solving these equations will be taken. The only reason for this is

that the large number of unknowns introduced by the finite difference

approach would make simultaneous solution of the boundary layer equa-

tions and inviscid flow field by the Newton method prohibitively expen-

sive. Only adiabatic flows with near-unity Prandtl numbers will be

considered. This restriction permits the enthalpy profile to be fairly

accurately related to only the velocity profile and the temperature re-

covery factor. As a result, the enthalpy equation (6.3) can be dropped.

The equations which will be tackled by the integral approach are

readily derived from the Prandtl equations (6.1-3). By formally

integrating equation (6.2) across the boundary layer, the well-known

von Karman momentum integral equation results.

dG Cf E due(6.4)- -- = -- - - + 2 - Me(.4
0 d& 8 2 e uedE

The momentum and displacement thicknesses e and 6, and skin friction

coefficient Cf are defined as follows.
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=u6* = f1- dJ Cf 2 T 6.5a-c)
U Pue Pu P Peue W

0 0

If equation (6.2) is first multiplied through by u and then integrated,

the kinetic energy integral equation results:

( d6* (26** M2) due- = -,2CD - ~7 + 3 - Med(6.6)
a d& ued&

The kinetic energy and density thicknesses 6* and 6**, and dissipation

coefficient CD are defined by

u= - u 2 d,, 6= 1- dri = a dn (6.7a-c)
ue )pue pue CD PeueI T

It is useful at this point to define the following three shape

parameters:

6* * _ * ** _6 **
H H = H = (6.8a-c)

By using these shape parameter definitions, and subtracting off equa-

tion (6.4) from equation (6.6), the momentum and kinetic energy

equations can be written as

( dO Cf 2) & due
- (H + 2 - Me (6.9)

6 dE 0 2 ued&

E dH* 2CD Cf 2H** & due
- - = -- 0- 2 ---+ 1 -H (6.10)

H * d& 6 H* 8 2 CH ued&

Equation (6.10) above will now be referred to as the shape parameter

equation.

6.2 Laminar closure

The. momentum and shape parameter equations (6.9) and (6.10) are

valid for both laminar and turbulent boundary layers, as well as for

free wakes. The fundamental difficulty with them is that they contain
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more than two independent variables and hence some assumptions about

the additional unknowns will have to be made if any discernable prog-

ress toward their solution is to ensue. Primarily through the personal

preference of the author, the two dependent variables are defined to be

the momentum and displacement thicknesses 6 and 6*. The edge velocity

ue and edge Mach number Me can be related to the inviscid flow, and

hence do not constitute additional unknowns. A simple count shows that

four undefined variables remain: Cf, CD, H*, and H**.

For compressible, adiabatic flow, the following assumptions about

functional dependencies will be made:

H* = H*(Hk,Me,Ree) H** = H **(Hk, Me) (6.11a-b)

Cf = Cf(Hk,MeReg) CD = CD(Hk,Me,Reg) (6.11c-d)

Here Hk is the kinematic shape parameter, which is defined with the

density across the boundary layer assumed constant. It is well known

that compressible and incompressible velocity profiles have very nearly

the same shapes. This naturally suggests that in compressible flow the

above relations should be based on the kinematic shape parameter, which

depends solely on the velocity profile. Whitfield [531 has developed

an empirical expression for Hk in terms of the conventional shape para-

meter and edge Mach number:

H - 0.290 Me
H k (6.12)
k 1 + 0.113 Me

This expression assumes adiabatic flow and non-unity Prandtl number

(of air), and in reference [53] is shown to be quite accurate up to

Me = 3. Here it used for both laminar and turbulent flows.

To deduce the relationships (6.11a-d), some velocity profile

family of one or more parameters must be assumed to represent all flows

to be computed. For the laminar case, the most obvious choice is the
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Falkner-Skan one-parameter family of profiles. By solving the

Falkner-Skan equation with prescribed shape parameter by the finite

difference method described in Drela [13], the following curve fits

have been obtained:

(Hk-4)2
1.515 + 0.076 , Hk < 4Hk

1.515 + 0.040 (Hk-4) (6.13a)

1.515 + 0.040 ., Hk > 4
Hk ,H>

and H* = (Hk + 0.028Me) / (1 + 0.014Me) (6.13b)

(7.4-Hk)2
-.067 + 0.01977 Hk1 , Hk < 7.4

Cf Hk-1
Ree = (6.14)

-.067 + 0.022 1,Hk > 74

0.207 + 0.00205 (4-Hk)5.5  , Hk < 4

2 CD I
Ree -- =(6.15)

0.207 - 0.003 (Hk-4 ) , Hk > 4

The additional small compressibility correction in the energy shape

parameter relation (6.13b) was obtained from Whitfield [54]. Whit-

field's compressibility corrections for the skin friction coefficient

and dissipation coefficient, based on Coles' law of corresponding sta-

stations (reference [111), drop out for the laminar case. Hence,

relations (6.14) and (6.15) have no compressibility corrections other

than those for Hk'

The expression for the density thickness shape parameter H** which

will be used here is one developed by Whitfield [54].

H = Hk - + 0.251 Me (6.16)

This shape parameter is negligible for low subsonic flows, and has only
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a small effect in typical transonic flows. The above expression will

be used for both turbulent and laminar flows.

The laminar closure relations (6.13-15) are plotted in Figure 6.1.

1.7

H*k

1.6

1.5

2 3 Hk 4 5 6

0.4
ReCf

0.3

0.2

0. 1

0.0

-0.2 3 4 6

0.26

1Hyes CD
0.24

0.22

0.20

2 3 Hk 4 s 6

Figure 6.1 Laminar closure relations
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When substituted into equations (6.9) and (6.10), a system of two ODE's

in the three variables e, 61*, and ue results. If ue is prescribed,

then a so-called direct boundary layer problem for e and 6* results.

If' 6* is prescribed, an inverse problem for 6 and ue results. Incom-

pressible calculations of both types have been performed for arbitrary

ue and 6* distributions and compared with the results of the correspon-

ding finite difference calculation and also the well-known one-equation

Thwaites' method [71. One sample comparison is shown in Figure 6.2.

........ one equation (Thwaites')
-------- two equation (present)

5- _ finite difference

.............. .... . u e
'4.

.-H

3.

2.

1.

Figure 6.2 Comparison of present formulation, finite difference,

and Thwaites' methods for incompressible laminar flow

The present and finite difference results are essentially within plot-

ting accuracy. This level of accuracy can be attributed to two fac-

tors. Firstly, almost any laminar velocity profile which can be com-

puted or measured is very nearly the same As a valkner-Skan profilm
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with the same shape parameter. This makes the empirical relations

(6,13-15) very accurate for all flows (at least in the incompressible

case). Secondly, the use of two differential equations rather than one

permits the renouncing of any local-similarity assumption in the sense

that the local shape parameter and wall shear do not exclusively depend

on the local pressure gradient or some transformed equivalent.

Thwaites' method, which uses only one equation and hence must assume

some sort of local similarity, cannot compare to the accuracy of the

two-equation formulation, as Figure 6.2 shows. In particular, the

two-equation method has the proper singular behavior at separation and

is exact (to within the accuracy of the correlations) for similar

flows, whereas Thwaites' method has neither of these features.

6.3 Turbulent closure

For turbulent flow, the task of obtaining empirical relations

similar to (6.13-15) is much more formidable. "Exact" numerical solu-

tions to the boundary layers equations are no longer possible due to

the presence of the Reynolds stress in equation (6.2b), which must be

empirically related to the mean flow. Compounding the problem is that

turbulent boundary layers have a two-layer structure, with the thick-

ness of each layer scaling differently on the local Reynolds number

Re8 . Therefore, a one-parameter velocity profile family cannot adequa-

tely describe all turbulent boundary layers. This contrasts with the

laminar velocity profiles, which have no Reynolds number dependence and

a one-parameter profile family suffices.

To formulate a two-parameter turbulent velocity profile, an

empirical relation for the skin friction coefficient is necessary. The

reason for this is that in turbulent flow the skin friction is the

primary scaling parameter for the wall layer. To date, many skin-

friction formulas have been proposed and tested against experimental

data. The one employed here is due to Swafford [45].
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F f0.3 e-13H+ Hk
FCf = 0Re 174+0.3Hk + .00011 tanh(4-.7) -

(log ( )

where

(6.17)

Fc = + 0.2M2) 2

This function (for Me=O) together with the laminar Cf function (6.14)

is shown in Figure 6.3 for various Reynolds numbers. It is reassuring

to note that the laminar and turbulent curves are very similar near

Ree = 400. This is close to the minimum Reynolds number at which a

turbulent boundary layer can exist.

Re,

400

750
1500
5000

Re, z 5000

..............

2 3 Hk

-- turbulent

.

-laminar

'4 5

Figure 6.3 Turbulent skin friction correlation

To determine a relation for H*, an analytic expression for the

velocity profile originally derived by Swafford [45] is used. The

profile is the sum of two matched asymptotic solutions: an inner solu-

tion encompassing the laminar sublayer and the buffer layer, and an

outer solution comprising the outer layer, or wake.

= -u-- arctan(.09y+) + - ) tanh2(a(rl/8)b
ue ue .09 ue U.18)

(6.18)

where
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_ = f
ue 2j 1Cf I y + =RUr pu

y1
(6. 19a-c)

The two constants a and b can calculated for any given 6 and 6* by

using the skin friction formula (6.17) and by substituting the velocity

profile expression (6.18) into the 6 and 6* definitions (6.5a,b).

This produces a coupled, non-linear 2x2 implicit system for a and b

which is solved numerically by the Newton method.

Swafford's velocity profile formula (6.18) has been used by Whit-

field [55] and Thomas [46] as a basis for integral boundary layer

methods. They assume the limit of infinite Reynolds number (y+ -+ 00) in

order to form the H*-H correlation. In effect, this simplification

replaces the inner layer by an equivalent wall slip velocity imposed on

the outer layer, which almost completely eliminates the dependence of

the H*-H relation on the Reynolds number. The present author feels

this is an unnecessary simplification which tends to produce erratic

behavior in transition regions where the Reynolds number Re8 is usually

low. Using the unsimplified equation (6.18), the following expres-

sion has been derived for the energy thickness shape parameter H* after

much trial and error:

first define H, = 3.0 + 400
Re8

1.6
4 1. 6 (HO - HkO

1.505 + + 0.165 - -__
Re 8 /Ree Hk

Hk=

1.505 + -
Re8

+ (Hk - H 0 ) 2 - + .007 ln(Re)4 2kHk - H0 +

, Hk < H,

(6.20)

, Hk > H,

Relation (6.13b) is used to obtain H* from H*. This rather cumbersome

function is plotted in Figure 6.4 for several values of Re8 , together

with the laminar H* function (6.13). Note that the laminar and turbu-
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lent curves nearly coalesce for low Reynolds numbers.

2.0

1.9

H*
-- turbulent

1.8 laminar

Re.

5000
1. 7 .1500

' . 750
- .400

1.6.

1. 5

2 3 Hk 4 5 6

Figure 6.4 Turbulent shape parameter correlation

The most difficult correlation to derive in the turbulent case is

for the dissipation coefficient, primarily because it depends the Reyn-

olds stress distribution across the boundary layer. There have been

two distinct approaches to determining a disspation coefficient for-

mula. Thomas [46] and Le Balleur [29] have employed the slip velocity

concept for the wall layer, together with some eddy viscosity hypo-

thesis for the outer layer. In their approach, the integral in the

dissipation coefficient definition (6.7) is broken up into two distinct

contributions--one from the wall layer, and one from the outer (wake)

layer. As sketched in Figure 6.5, a typical turbulent boundary layer

is composed of a wall layer with nearly constant total shear stress and

an outer layer where the wake velocity profile and an effective eddy
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viscosity are assumed to determine the total shear stress.

the simple half-cosine wake velocity profile of Coles [10),

uout = us + (ue - us) sin2 J ( outer layer ) (6.21)

and the eddy viscosity formula of Clauser [9],

pt = K p ue6 * , K = 0.0168 ( outer layer )

the disspation coefficient integral can be approximated by

00 00

CD 1 T a ~ 1 'Ws + K ue6* 2 du2  (6.23)
Peue a Peue outer

where us is the slip velocity as shown in Figure 6.5.

n,

wake layer

wall layer
U --

us Tw

Figure 6.5 Typical turbulent velocity and total shear profiles

The slip velocity is usually deduced from the universal law of the wall

and the skin friction coefficient. Assuming that the displacement

thickness in the eddy viscosity formula (6.22) is only due to the wake

velocity profile, the dissipation coefficient expression (6.23) becomes

(6.24)CD ~ -f + ( - s3D 2 ue 16 u

This is the same expression employed by Le Balleur [29].
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Another approach to deriving an expression for the dissipation

coefficient, and the one adopted in this thesis, is based on the equi-

librium boundary layer concept originally postulated and experimentally

confirmed by Clauser [9). As is well known, laminar boundary layers

are self-preserving (or similar) if the Falkner-Skan pressure gradient

parameter /ue due/dE is constant everywhere. These special flows were

the basis for the laminar closure relations given above. Clauser in

his experiments managed to produce turbulent boundary layer flows

analogous to the Falkner-Skan family which are self-preserving. In

particular, if the pressure gradient parameter 0 given by

S= 2 (6.25)
Twd& Cf ued&

is constant, the modified shape parameter G, defined by

G S Hk 1 (6.26)
Hk V/Cf/2

is also constant. Hence, for these special flows, G is only a function

of (. An empirical expression for this relationship is

G = 6.7 /1 + 0.75 5 (6.27)

Clauser's experiments were at low Mach numbers, so in the above rela-

tions the usual compressibility correction of replacing H by Hk was

made. Green et al. [24] used a formula of the same form as (6.27) but

with an additional compressibility correction and with slightly differ-

ent numerical constants to develop an improved version of the well-

known Head's entrainment method. Both equation (6.27) and Green's

relation are shown in Figure 6.6, which is mostly reproduced from ref-

erence [24]. Green's additional compressibility correction lies well

within the experimental scatter and is neglected here.
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Figure 6.6 Equilibrium G-0 locus

Using the definitions of G and 0, equation (6.27) can be rearrang-

ed to give the equilibrium pressure gradient in terms of the shape

parameter and skin friction coefficient.

6*due 1 Cf (Hk - 1)

ued, .75 2 o.7 H jJ
(equilibrium)

To obtain the much sought-after dissipation coefficient formula, the

above equilibrium relations are introduced into the shape parameter

equation (6.10). First, we note that Cf is primarily a function of H

(the dependence on Ree is weak). Hence it follows from (6.28) that in

equilibrium layers H must be nearly constant. Furthermore, because H*

has already been assumed to be a function of H (again, its dependence

on Ree is weak), H* must also be a constant. Noting that H-2H**/H* ~ Hk

and setting the streamwise derivative of H* to zero in the shape para-

meter equation (6.10), we have
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( 2CD E Cf ( - E due
0 - -H e2- Hk) du (equilibrium) (6.29)

6 H 6 2 ued&

Using equation (6.28) to eliminate the velocity gradient, equation

(6.28) can be rearranged into

2CD Cfr k- ) 3

- = - - 1)- + 0.03 (6.30)
H 2 k 3 Hk

This formula for the dissipation coefficient, despite having been

derived solely from a special class of equilibrium flows, is now

assumed to apply to all turbulent flows in general. As with the

majority of useful statements about turbulent flow, this is mostly a

leap of faith, justified primarily by the argument that in the laminar

formulation decoupling the local dissipation coefficient from the local

pressure gradient led to substantial accuracy gains.

A rather interesting fact is that formula (6.30) for the dissipa-

tion coefficient bears a striking resemblance to the slip velocity-

based formula (6.24). Perhaps this should not be too surprising, since

Clauser's equilibrium flow experiments and the slip velocity concept

are the basis of his eddy viscosity expression (6.22), the latter being

an essential part of the slip velocity-based formula (6.24). Despite

their close resemblance, the author feels that (6.30) is a stronger

statement than (6.24), simply because it uses the results of the

experimentally derived G( ) relation directly, without recourse to any

eddy viscosity or slip velocity assumptions. The slip velocity concept

will still be used to correct the dissipation coefficient for upstream

history in the following section.

6.4 Upstream history: The lag equation

The turbulent dissipation coefficient expression (6.30) as it

stands depends only on the shape parameter H and the local Reynolds

number Rea (H* and Cf are functions of H and Ree). Because the
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definition of CD (6.7c) involves a velocity gradient-weighted

integral of the Reynolds stress, expression (6.30) also implies that

the Reynolds stresses depend only the local boundary layer parameters.

This assumption is quite valid in boundary layers whose turbulence

production and dissipation mechanisms are in near equilibrium

(Clauser's self-preserving boundary layers are of this type). In

fact, nearly all algebraic turbulence models make some such local

equilibrium assumption. However, there is abundant experimental

evidence (Goldberg [221, Kline et al [281) that there are significant

upstream history effects on Reynolds stresses. These history effects

are most important in flows with an adverse pressure gradient

increasing in severity downstream, and in "relaxing" flows, where an

adverse pressure gradient is suddenly removed. An example of the

former flow occurs near the trailing edge of an aft-loaded airfoil. An

example of a relaxing flow is the near wake immediately behind the

trailing edge.

One of the first attempts to introduce upstream history effects

into a boundary layer calculation method was first made by Bradshaw and

Ferriss [2,3]. They renounced the usual eddy viscosity assumption by

treating the Reynolds stress as an additional unknown and introduced a

stress-transport equation of the form

3 (-u'v') 3 (-u'v')

&E 2a, 3 2a,

3

(-UI v1) au (-u'v') 3(diffusion)
811 L 3
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which is derived from the exact turbulent kinetic energy transport

equation with appropriate thin shear layer assumptions and a postulated

proportionality between turbulent kinetic energy u' 2 + v' 2 
+ w' 2 and

Reynolds stress -u'v', a, being the constant of proportionality.

The dissipation length L is equal to Kf (the mixing length) in the wall

layer and roughly 0.0756 in the outer layer, 6 being the thickness of

the boundary layer.

It is possible to significantly simplify equation (6.31) for use

in an integral boundary layer formulation without losing its physical

content. Green et al [241 consider the point of maximum Reynolds

stress as being representative of the Reynolds stress level for the

entire boundary layer. A useful non-dimensional quantity in this

context is the shear stress coefficient C :

C = -2 (-u'v') (6.32)
Uema

Green assumes that at the maximum shear stress point, L is equal to the

conventional mixing length. Hence, at the max shear stress point, the

velocity gradient is given by

__u 12
-u I (-u'v') (6.33)3rj L max

Using the above relations for C and 3u/&q, and neglecting normal

convection, the Reynolds stress transport equation (6.31) can be

written as

6 dC Ue 6  2 2 _(diffusion) 26 du
= 2a, -e - (C - C ) - d- - e (6.34)

CT d, U L Teq T 3fl u de

where the entire equation is applied at the maximum shear stress point.

(CT)eq is the value of shear stress coefficient which would occur if

the local boundary layer was part of an equilibrium flow. After

obtaining equation (6.34), Green goes on to derive a rather elaborate

formulation for the diffusion term. Here, such complications are
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avoided by discarding outright the last two terms in equation (6.43),

on the grounds that the other two terms generally form the dominant

balance in (6.43). Thomas [46] makes the same simplification in his

integral formulation. Equation (6.34) thus becomes

1 1
T = c (C - C ) (6.35)

CT d Teq T

Using the commonly accepted values a, = .15, ue/u = 1.5, and L/6 = .08,

Green obtains Kc = 5.6. In the present formulation, the value Kc = 4.2

was adopted in equation (6.35) since it seemed to produce the best re-

sults for virtually nearly all the test cases calculated.

The only task which remains is to relate 6 and (Ct)eq to the dis-

sipation coefficient and the other boundary layer parameters. An

expression for 6 was obtained from Green et al [24] and simplified

slightly to produce

6 = 63.15 + 1.721) + 6* (6.36)
Hk _ 1

By invoking the slip-velocity concept, with its distinct wall and wake

contributions, the dissipation coefficient formula (6.30) for equi-

librium flows is written as

2CD - Cf U + C (1 - U ) (6.37)
H * 2 s Teq s

where the non-dimensional slip velocity Us = us/ue and the equilibrium

shear stress coefficient (CT)eq are now defined by

U = - 1) (6.38)

H* 0.03 Hk - 3
and C =- (6.39)

teq 2 1 - Us Hk

These definitions are arrived upon by the simple requirement that the

two dissipation coefficient formulas (6.30) and (6.37) become identical
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in equilibrium flows where CT = (C T)eq. The resulting non-equilibrium

formula for the dissipation coefficient is finally given by

2 CD _ Cf+ 2
-- 1)- + - C (1 - U )(6.40)

H2Hk )3 H* T s

where Us is given by its definition (6.38).

A physical interpretation of (6.40) is as follows. The dissipa-

tion coefficient is composed of a wall and a wake contribution, each of

which is composed of a shear stress scale and a velocity scale. The

wall contribution from the wall layer, given by the term in (6.40)

containing the wall shear coefficient Cf, is determined strictly by the

local boundary layer parameters, since Cf is a function of Re8 and Hk-

This is consistent with the notion of a universal wall layer, which is

known from a preponderence of experimental data to be unaffected by

upstream history. The wake contribution, given by the rightmost term

in (6.40) does not depend strictly on the local conditions, since CT is

governed by the rate equation (6.35) and will spatially lag its local

equilibrium value (CT)eq. This models the relatively slow response of

the wake layer Reynolds stresses to the local conditions. However

crude this modeling may be, it is still preferable to the

local-equilibrium assumption, which was convincingly shown in the 1968

Stanford Conference [281 to give poor results for rapidly changing

flows. In slowly changing flows, CT closely follows (CT)eq and any

inaccuracies in the rate equation (6.35) are irrelevant.

6.5 Wakes

The integral momentum and shape parameter equations (6.9) and

(6.10) remain valid for a free wake if the terms containing the wall

shear coefficient Cf are discarded. The problem is then reduced to

formulating the necessary closure relations (6.11a-d) which are valid

for free wakes. For laminar wakes, this problem is resolved by noting

that laminar wakes do not occur in aerodynamic flows of interest as a
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rule. This is because the inflection velocity profiles invariably

present in free wakes make a good habitat for exponentially-growing

disturbances which rapidly break down into turbulence. At momentum

thickness Reynolds numbers greater than -50, this process is extremely

rapid, making the concept of a "laminar wake" mostly a contradiction in

terms. Clearly, only turbulent free wake closure relations need to be

developed.

As it turns out, the turbulent boundary layer closure relations

already developed above describe turbulent wakes quite well if the wall

shear coefficient Cf is simply set to zero. This is because the "wake"

layer of a boundary layer is nearly indistinguishable in its properties

from a free wake (hence the name). By setting Cf = 0, the wall layer

contribution to the dissipation coefficient CD in equation (6.40) dis-

appears, and what is left adequately describes the dissipation coeffi-

cient in a free wake. The turbulent energy thickness shape parameter

definition (6.23) is used unchanged for wakes. This is justified on

the grounds that a free wake is essentially a turbulent boundary layer

sans the wall layer, the latter contributing very little to the H*-H

correlation. A similar argument leads to the the use of the H** defi-

nition (6.16) for free wakes without changes.

The lag equation (6.35) should in principle be modified to reflect

the more vigorous mixing processes observed in wakes, which tend to

increase the dissipation and speed up the rate at which the maximum

shear stress coefficient C. approaches its equilibrium value. Green

makes such a modification to his lag-entrainment method. His argument

is that a wake (which is treated as two boundary layers with zero Cf)

is roughly twice as thick as its two halves and hence its largest

eddies will be twice as large, resulting in increased mixing rates.

However, Green's argument holds only for symmetric or nearly-symmetric

wakes. In a typical near-wake behind a lifting airfoil, the thickness-

es between the upper and lower wakes can differ by more than a factor

of ten. In such a situation, the largest eddy scale in the near wake

91



cannot differ significantly from that in the thicker boundary layer at

the trailing edge. Although elaborate correction schemes involving the

degree of wake assyietry can be envisioned, this thesis circumvents

this quagmire altogether by using the unchanged lag equation (6.35) for

all turbulent free wakes. It must be kept in mind that the lag equa-

tion is itself a correction to the basic boundary layer formulation, so

neglecting to correct a correction can hardly be criticized.

6.6 Transition

The problem of transition is actually composed of two distinct

problems: determining the point of the onset of transition, and formu-

lation of the governing boundary layer equations in the transition

region itself. To predict the onset of transition, a spatial-amplifi-

cation theory based on the Orr-Sommerfeld equation is used here (also

known in literature as the e9 method). The boundary layer formulation

used in the transition region is derived from simple intermittency-

weighted averages of the laminar and turbulent correlations developed

above (also known in literature as ad-hoc but workable nevertheless).

The Orr-Sommerfeld equation (derived and discussed extensively in

Obremski, Morovkin, and Landahl [40], and in Mack [351) governs the

growth and decay of infinitesimal wave-like disturbances in two or

three-dimensional shear layers. Since the unstable growth of disturb-

ances is known to be the precursor of free transition in boundary

layers, the calculation of the growth of such disturbances via the

Orr-Sommerfeld equation is a fairly sound basis for transition predic-

tion. The procedure in this thesis is to integrate the growth rate of

the disturbance with the most unstable frequency downstream from the

point of instability to obtain the amplitude of that disturbance.

Transition is assumed to occur when the integrated amplitude has grown

by more than a factor of e9 (~ 8100). This is a wholly empirical

assumption and is perhaps the weakest link in the method. The exponent

"9" actually can vary between about 7 and 11 depending on quantities
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such as free stream turbulence, surface roughness, and background noise

level as discussed in Cebeci and Bradshaw [7). These effects will not

be considered here.

Appendix D describes the method used to derive the spatial ampli-

fication curve envelopes in H-wRee parameter space using the Falkner-

Skan profile family. As done by Gleyzes et al [21], the envelopes

are approximated by straight lines for computational expediency. The

equation for a typical amplification ratio envelope is

ln(A/A) = n = sH) {Ree - Ree(H)} (6.41)

where the slope dfi/dRee and the critical Reynolds number Ree0  are

given by

dRe = 0.01 (E2.4H - 3.7 + 2.5 tanh[1.5(H-3.1)]) + 0.25J1 (6.42)

log Reg0 = 1.415 - .489 tanh( - 12.9 + + .440 (6.43)

Figure 6.7 shows the envelopes defined by equations (6.41-43) together

with the actual amplification curves calculated from the Orr-Sommerfeld

equation.
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Figure 6.7 Orr-Sommerfeld spatial amplification curves

For similar flows H is constant, and Ree is uniquely related to

the streamwise coordinate &~. Hence, equation (6.41) immediately gives

the amplitude ratio 5 as a unique function of E.The onset of transi-

tion then occurs at the point where -n=9. For non-similar flows, it is

more physically realistic to use E as the spatial amplification coor-

dinate rather than Ree. Using some basic properties of the Falkner-

Skan profile family, the conversion from Ree to is accomplished as

follows.
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_ d dRee _ d de 2(6.44)
dE dRee d& dRee 2 UedE ) Pe e

Using the empirical relations

2
pPui6 (H) = (6.54H - 14.07)/H (6.45)

pIe&

and !Lu = m(H) = .058 ( -2 0.068 , (6.46)ued( H-1 8 (H)

the spatial amplification rate is expressed as a function of H and e.

diii e~=~~Hm(H) +
(H,O) = H) Re+ 1 Z(H) (6.47)

This amplification rate can then be integrated downstream from the in-

stability point &cr (where Ree = Ree0).

()= dii (6.48)

&cr

Again, the onset of transition occurs at the point where n = 9.

In the actual implementation of the present transition criterion,

equation (6.48) is not used directly. Instead, the differential ampli-

fication equation (6.47) is discretized and solved as part of the

global Newton system. The transition onset location can thus be pro-

perly linearized. This is a much more robust procedure than if the

integral equation (6.48) was used to explicitly set the transition

onset location every iteration.

For compressible flows, the only modification is to replace the

shape parameter H in equations (6.41-47) by the kinematic shape para-

meter Hk. This is justified on the grounds that the velocity profile

shape is by far the most dominant characteristic which determines the

amplification rates.

Although the point of transition onset has been defined, there is
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still the problem of formulating the governing equations in the transi-

tion region itself. The fundamental problem here is that it is nearly

impossible to make useful quantitative statements about transitioning

flows. Tried and true principles such as the law of the wall and the

law of the wake deal with the class of equilibrium or near-equilibrium

layers, to which transitioning flow certainly does not belong.

The simple transition formulation in this thesis hinges on the

close similarity of the laminar and turbulent Cf and H* correlations at

the low Reynolds numbers typically found at transition. Because of

this close correspondence, the precise manner in which the changeover

from the laminar to turbulent correlations is made has been found to

have little effect on the overall development of the boundary layer.

At the particular streamwise station itr immediately following transi-

tion onset, the actual values of Cf and H* used in the discrete equa-

tions are taken to be weighted averages of the laminar and turbulent

values, with weighting factors of (1-ytr) and Ytr, respectively. For

instance, the actual H* used in the equations at i=itr is given by

H* = (1-ytr) H*laminar + Ytr H*turbulent (6.49)

An analogous expression is used for Cf. The factor Ytr is related to

the amplification ratio hi at i=itr by the expression

n 1 - 9 1
Ytr = (d,/dE) I i = i (6.50)

1 1 i-i

with Ytr = 0 for i < itr and Ytr=' for i > itr'

In contrast to Cf and H*, the laminar and turbulent dissipation

coefficients differ substantially even at low Reynolds numbers, with

the turbulent dissipation coefficient being markedly larger. The turb-

ulent Reynolds stresses (represented by CT), which are the cause of the

turbulent dissipation being higher than the laminar dissipation, cer-

tainly do not develop instantaneously at transition onset, but build up

gradually. In the present formulation, this gradual build-up is crude-
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ly modeled by the shear coefficient rate equation (6.35). At i = itr'
the shear stress coefficient C. is taken to be 0.7 times its equilib-

rium value, and is then allowed to approach its equilibrium value as

usual via equation (6.35). No semblance of physical correctness is

claimed in this admittedly ad-hoc scheme, since the rate equation

(6.35) certainly does not apply to transitioning flows. Most other

workers [7,29], model the gradual dissipation build-up by applying the

averaging form (6.49) to all relevant quantities, including the dissip-

ation coefficient, and varying Ytr continuously from 0 to 1 in the

transition zone according to various empirical formulas. It must be

stressed, however, that the exact form of the switch from the laminar

to the turbulent correlations does not appear to markedly affect the

overall development of the boundary layer, probably because the momen-

tum and shape parameter equations prevent rapid changes in the all-

important momentum thickness and shape parameter distributions. In

this view, the primary virtues of the present transition formulation

are that it produces a reasonable streamwise transition length and that

it can be incorporated into the global Newton system.

6.7 Discretization

Figure 6.8 shows the location of the boundary layer variables in

relation to the inviscid grid, with the subscript "i" denoting station

i-1 and 12" denoting station i. The subscript "a" denotes a simple

average between the two stations. For instance,

0 - 1 (0 + 02) (6.51)
a 2f 1 2
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Figure 6.8 Boundary layer variable locations (suction side)

There are three differential equations to be discretized: the

momentum equation (6.9), the shape parameter equation (6.10), and the

shear stress coefficient lag equation (6.40). The dependent variables

are defined to be 0, 6*, and E/. The edge velocity is also unknown,

but as mentioned earlier, it is related to the inviscid variables and

is not an additional unknown. In the laminar portions, i 5 itr, the

amplification rate equation (6.47) replaces the lag equation (6.40),

and the amplification ratio ni replaces Ic as the dependent variable.

The momentum equation (6.9) is discretized with central two-point

differences for accuracy.

ln(/ -- - + H+ 2 - Me~ = 0 (6.52)

ln(2 2 0 2 oa) ln(_2f 1

where Cf = Cf(Hka, Rea, Mea) as given by (6.14) and/or (6.17).

Logarithmic differencing of the derivative terms is used because it is

exact in similar flows, and thus tends to diminish discretization

errors from large Ae/E values which occur near the leading edge. At
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the first boundary layer station (i = iLE+1), the boundary layer is

assumed to be similar and these derivative terms are set to their known

values obtained from similar boundary layer theory (Cebeci and Bradshaw

[71). For the particular case of a blunt leading edge with a stagna-

tion point, &/ue due/d& = 1 and &/9 dO/dE = 0.

In discretizing the shape parameter equation (6.10) it is conv-

enient to define

-2CD
CD H * (6.53)

CD H

Again using central two-point differences for accuracy, the shape

parameter equation (6.10) is discretized as

ln(H*/H*) &a f - H* * 2 ln(ue2 /uej)2 1 + - a - CD + - + 1 - H = 0 (6.54)
In(&2 /&) a .. 2 H n(2/ (6.54a a

where Cf = Cf(Hka , Rea , Mea ) as given by (6.14) and/or (6.18),

CD = CD(Hka, Rea, Mea) as given by (6.16) and/or (6.48),

and H** = H (Hka, Mea) as given by (6.17)

Special care must be taken in discretizing the shear stress coef-

ficient lag equation. In high Reynolds number flows, the presence of

the small quantity 6 on the left hand side of equation (6.35) makes it

spatially stiff. To avoid any numerical difficulties, it is discre-

tized using Backward Euler where the derivatives are differenced bet-

ween & and &2 as before, but the right hand source term is evaluated

at & 2 instead of at the midpoint.

1 1

2 Ct2 - C

2 -1 K Ceq - CT2  = 0 (6.55)
C 2  

- E c =2T 2 2 1

99



where 6 = 23.15 + Hk 2 J + 6*

2 2 * 12
and C =2C (H , Hk ) as given by (6.39).

eq2 eq 2 2

In the laminar portion (i itr), the above equation is replaced

by the discretized amplification equation (6.47).

52 - -h1 dfi 1
-(Hk) (Hk2 ) + 1 Z(H k 2 =0 (6.56)

- El d 2 2 e2

6.8 Coupling and boundary conditions

The presence of a boundary layer or wake modifies the solid-wall

boundary condition (3.1) which is applied to the inviscid equations.

Without the boundary layer, the boundary condition is simply the speci-

fication of the surface streamline position. With the boundary layer

present, this condition is replaced by a constraint that the inviscid

surface streamline is displaced from the solid wall by the distance An

which is equal to the displacement thickness * (Figure 6.8).

*n. (6.57)
3. 1

In the wake the prescribed conditions are that the wake thickness An is

equal to the sum of the upper and lower 6* values (Figure 6.9), and

that there is no pressure jump across the wake.

* + 6* = An. (6.58)
u. 2.i
1 1

I+ - 1 = 0 (6.59)
i,J-1 i,1

Note that equation (6.59) is merely the same pressure-periodicity

boundary condition used in the purely inviscid cascade and airfoil

cases as described in Chapter 3. Also, if 6* = 0, equations (6.58) and

(6.59) reduce to the inviscid solid wall and geometry-continuity bound-
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ary conditions described in Chapter 3.

L TE

/n /
x3

Figure 6.9 Wake displacement thickness

The only remaining coupling condition which must be satisfied is

that the boundary layer edge velocity ue used in the boundary layer

equations is equal to the local inviscid velocity q at the edge of the

boundary layer. The simplest approach is to take the inviscid

velocities from the surface streamtube and average them to the boundary

layer station, as shown in Figure 6.8.

1 -0
ue 2 (q i + q i_) (6.60)

Unfortunately, the above definition for ue is transparent to the grid

sawtooth mode described in Chapter 2, and hence ue is also transparent

to the sawtooth mode in 6*. One of the features of the boundary layer

equations is that at separation they do not constrain perturbations in

6* (this is the cause of the much-cursed separation singularity).

Hence, there is nothing left to constrain the sawtooth mode in 6* in

the vicinity of separation, leading to a very ill-conditioned system of

equations complete with attendant numerical instabilities. The cure to
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this problem is to correct ue in equation (6.60) for the sawtooth mode

using isentropic velocity-streamtube area relations. This is complete-

ly analogous to the pressure correction in equation (2.14) used to

correct the H pressures for the sawtooth grid mode. Here, the ue

definition is modified to

Ue = -(q + q )+ q
2 2 i iic

2 2 Is-1x s*21 - IS x S21
k q M (M -1) 2 1

t2 ISxN

(6.61)

2
M < 1

2
M > 1

(6.62)

1
and q = - (q + q_ )

2 1 2 2
M = 1 (M + M ) , k = 0.2

The - vectors in equation (6.62) are defined by the grid as shown in

Figure 2.5.
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6.9 Jacobian structure modifications

Because the edge velocity ue is defined in terms of the inviscid

speed q, and the inviscid wall streamline is offset from the wall by

the viscous displacement thickness *, the boundary layer equations and

the inviscid Euler equations are a fully-coupled system. The procedure

to solve this coupled system is to modify the solid-wall boundary

conditions (3.1a-b) to account for the viscous displacement, and to

linearize the discrete boundary layer equations -(6.52), (6.54), (6.55),

and include them into the global Newton system. This necessitates

modifying the Jacobian block structure described in Chapter 4.

Three discrete boundary layer equations {(6.52), (6.54), (6.55)}

are associated with each streamwise node on each of the two airfoil

sides. Hence, there are a total of six new equations which have to be

included into each block line of the Newton system (4.16). At

streamwise stations which do not have boundary layers or a wake pre-

sent, namely ahead of the leading edge, dummy equations are included to

maintain the same block size throughout the domain.

Figure 6.10 shows how all the variables entering the boundary

layer equations are divided up between the Z., B., A., and C. blocks.

In laminar regions, C2 is replaced by the amplification ratio i.

Aci
C.

~X

Figure 6.10 Division of boundary layer variables (turbulent)
between Jacobian matrix blocks
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The inviscid variables 6p and Sn enter the equations because ue is ex-

pressed in terms of the inviscid speed q which in turn is expressed in

in terms of p and the streamline geometry. The six extra equations are

placed at the bottom of each block row, and the boundary layer variable

columns are placed at the right of each block. For the A. block, this

gives the structure shown in Figure 6.11. As in Chapter 4, the Sn en-

tries are denoted by x, and the 6p entries are denoted by o. The new

boundary layer variable entries are denoted by * .

6p .i,1+J-1

1

6C2

SB suction side

66*

6C2

60 pressure side

as*

x * 1
X Xx ' 0

X XX 0 0
X XX 0 0

X XX 0 0
XI

X X 0

X X 0x X ' 0 0

XX 0

xx x' 0 o '

0 ***

x x 0 o

X X 0'
X X 0'

x x '0

An=6* coupling condition (6.57)

reduced
N-momentum
equations

An=6* coupling condition (6.57)

S-momentum
equations

CT lag equation suction
momentum equation side
shape par. equation
CT lag equation pressure
momentum equation side
shape par. equation

Figure 6.11 Modified A. block structure (i LE < i !: I-1)
1L
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The structure of the B. block is identical to that of the A. block

shown in Figure 6.9 except for the lines labeled "An=6* coupling condi-

tion" being empty. The Z. block, in addition to having the coupling

condition lines empty, also has all the boundary layer variable columns

empty. The C. block differs from its inviscid form shown in Figure 4.4

only in having the Sn entries in the additional six bottom lines.

It is important to point out that it is possible to use the bound-

ary layer coupling formulation with the full or mixed-inverse problem.

At streamwise stations where the pressure is prescribed, one or both of

the linearized An=6 * coupling condition lines in the block shown in

Figure 6.11 are replaced by the usual linearized prescribed-pressure

boundary condition (5.13).

6.10 Boundary layer equation linearization

The linearization procedure for the discrete boundary layer equa-

tions is essentially the same as that for the discrete Euler equations.

For example, the momentum equation

ln(O,,/B) ( Cf ( , ln(uQ,/uA)
R = ~ 2 --a + + 2 -me = 0 (6.52)

m ln(E/2 )l e 2 a L aeI n(,

linearizes to

(6 6 1 , 6.1 C 62 ln(ue2/uej) ~2 
- .S - _a -6C - f + -6Me 

2 ) ln(& 2 /1 a 2 8 ea t a a ln(&,2 /&
2 e2 a ae o

+ (H + 2-M2) (_Ue 2  
6 Ue -R (6.64)

ln(&,2 A I ue 2  Ue) m

2
Since Cf = Cf(Hka, Ree , Mea) , the variation 6Cf is expressed as

aCf aCf aCf 2
6Cf C- 6Hk + 6Ree + a 6Me (6.65)

8Hk a Rea e
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The variations of Hk , Re6 , and Mea , are in turn broken down using

their definitions, until only the primitive variables 6C2, 69, 66*, 6n,

and 6p remain. As for the discrete Euler equations, this chain rule

process is done at the Fortran level, and the details are best obtained

from the program listing.
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7. RESULTS

The main goal of the test cases presented here is to demonstrate

the accuracy of the boundary layer coupling procedure and to prove that

the inverse design algorithm works. Giles [19] has already quantita-

tively demonstrated the second-order accuracy of the streamtube Euler

discretization scheme, and the stability and rapid convergence of the

Newton solution procedure. Here, only run times will be given instead

of detailed convergence histories. A Perkin-Elmer 3242 computer was

used for all the calculations. This machine is roughly equivalent in

performance to a VAX 11/780. The test cases are summarized below.

The first test case deals with a Joukowsky airfoil for which an

exact solution is known in the incompressible limit. This case is

intended primarily to investigate the effects of approximating a theo-

retically infinite domain with a finite computational domain.

Three test cases involve the RAE 2822 supercritical airfoil. Two

will be compared with experiment to demonstrate the accuracy of the

turbulent integral boundary layer formulation for transonic flow with

and without shock-induced separation. The third case will demonstrate

the redesign of the suction side of the 2822 airfoil using the mixed-

inverse design option. This redesign eliminates wave drag and yields a

21% predicted drag reduction from the original 2822 drag.

A severe test of the performance of the boundary layer and wake

formulation is afforded by a NACA 4412 airfoil being operated with

substantial trailing edge stall. Comparison with experiment is given

in the separated region which extends well into the wake.

The transition prediction algorithm is tested on a low Reynolds

number airfoil with large transitional separation bubbles. The length

of the bubbles, which critically depends on the location of transition,

is compared with experiment.

The full-inverse algorithm is tested in the redesign of an empi-

rically-derived supercritical compressor cascade. A pressure distribu-

tion which eliminates the shock is specified and the corresponding

geometry is calculated.
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7.1 Joukowsky airfoil

The particular Joukowsky airfoil and reference solution used for

this case is derived from the incompressible potential flow around the

generating circle centered at (-0.1,0.1) in the circle plane with a 40

freestream angle of attack. This configuration is then conformally

mapped into the physical domain by the Joukowsky transformation. The

resulting airfoil geometry was used in a series of direct Euler calcu-

lations at a freestream Mach number of 0.05 and-a 4 angle of attack.

The compressibility effects are below plotting accuracy, which allows a

meaningful comparison with the exact solution. The distance r, to the

outer boundary was varied from .75 to 5 airfoil chords, while retaining

a 132x32 grid. Farfield representations with and without the doublet

terms were used. Five Newton iterations (15 CPU minutes) were required

for each point. The resulting calculated lift coefficients are plotted

in Figure 7.1.1.

1.20 e f ar field vortex + doublet

e far field vortex

CL

132w 32 grid

1.10

1 2 3 4 5

Figure 7.1.1 Effect of domain size for isolated airfoil

For the vortex-only far field representation, the lift quickly

asymptotes to a value about 1/3 percent below the exact value as the

distance of the outer boundary is increased. The error slowly grows

again as the domain size is increased further due to the decrease in
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grid resolution. With the doublet terms included, the error in lift is

substantially smaller for small domains. This effect is particularly

noticable in transonic cases, since the substantial transonic blockage

effects are properly represented by the far field doublet. A rapid

increase in the lift error occurs for the rather absurdly small domain

size of r./c < 1, where modeling the airfoil by point singularities is

certainly suspect. For the grid size used here (and the associated

computational time and cost), it appears that placing the outer boun-

dary about 2 chords away cetainly gives good accuracy if the far

field doublet is included. The calculated pressure distribution for

r./c = 2 with the far field doublet is compared with the exact distri-

bution in Figure 7.1.2.

-2.0 MACH a 0.050
ALFA a 4.000
CL a 1.1700
CO a 0.00000

-1.5 aM * -0.1510

CP L/D - 0.00

-1.0

-0.5

0.0

0.5
+exact

- calculated
1.0

Figure 7.1.2 Calculated and exact Cp distributions

for Joukowsky airfoil

The agreement is quite good. The grid near the airfoil is shown

in Figure 7.1.3. The square-root pressure singularity at the trailing

edge requires the extra grid resolution there. For the other airfoil

cases presented here, the inlet and outlet boundaries are Placed 1.5 to
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2 chords away, and the streamline boundaries are placed 3/V1-M, chords

away in accordance with the Prandtl-Glauert scaling law.

Figure 7.1.3 Converged grid near Joukowsky airfoil
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7.2 RAE 2822 supercritical airfoil: fully attached flow

The RAE 2822 is a 12% thick airfoil of moderate camber with sub-

critical design conditions of M.=0.66, CL=0. 5 6 . Experiments performed

at substantially higher Mach numbers (documented in reference [12])

produced supercritical flow with a moderate-strength shock wave on the

suction surface. The calculation in this example corresponds to Case 6

(MO=0.726, CL=0. 7 4 3 ) of reference [121. Figure 7.2.1 shows the calcu-

lated viscous, inviscid, and measured pressure distributions for this

case. The comparison is made at the same CL due to uncertainties in

the experimental angle of attack due to ventilated tunnel wall effects.

The transition for the viscous calculation was forced at the 3% chord

location on both airfoil surfaces as in the experiment.

-1.5.

CP

-1.0

-0.5i

0.0.

0.5

.-. .. . .a --------

a CL CD CM
+ experiment 2.92 .743 .0127 -.095

viscous 2.43 .743 .0124 -.087
inviscid 2.43 .972 .0115 -. 130

- - - inviscid 1.60 .743 .0016 -. 121

Figure 7.2.1 Calculated and experimental pressure distributions

for RAE 2822 airfoil (M,. = 0.726 , Re = 6.5e6)
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One of the two inviscid pressure distributions in Figure 7.2.1 was

obtained by specifing the same CL as the viscous case, and the other by

specifying the same angle of attack as the viscous case. This

comparison shows the dramatic effects boundary layers and wakes have on

transonic flowfields, even at fairly high Reynolds numbers. Clearly,

accounting for viscous effects substantially increases the accuracy of

transonic flow predictions. The comparison of the calculated and

measured boundary layer parameters is shown in Figures 7.2.2 and 7.2.3.

The overall agreement is good. Ten Newton iterations (30 CPU minutes)

were required for this calculation, which was performed on a 32x132

grid.

.01 A 0 experiment A

viscous A
0/c

01 1.0 X/c

Figure 7.2.2 Measured and calculated suction suface S* and 9

distributions for RAE 2822 (Case 6 of ref.[12])
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4.0

H

3.0

2.0

1.0

0.0
1.0 X/c

Figure 7.2.3 Measured and calculated suction and pressure

surface H distributions for RAE 2822

It must be mentioned that virtually all the discrepancies between

the calculations and experiments can be "eliminated" by adjusting the

experimental conditions slightly. For instance, increasing M,. from

0.726 to 0.728 gives nearly perfect agreement for the shock position,

CD, and CM. Since the reported uncertainty in the experimental M" is

0.001, any better comparison would most likely be fortuitous.
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7.3 RAE 2822 supercritical airfoil: shock-induced separation

Case 10 of reference [12] was performed on the same experimental

setup as Case 6 above. The higher value of M,=0.750 produced a limited

separation region immediately behind the shock wave with reattachment

occurring before the trailing edge. The separation was reportedly

visualized by the surface oil-flow technique. Figure 7.3.1 shows the

calulated viscous and measured pressure distributions.

-1.5

CP

-1.0

-0.5

0.0 *0

0.5 O, CL CD CM

+ experiment 3.19 .743 .0242 -.106

1.0 viscous 2.65 .743 .0251 -.100

Figure 7.3.1 Calculated and experimental pressure distributions

for RAE 2822 airfoil (M. = 0.750 , Re = 6.2e6)

The CD is about twice that in Case 6, meaning that here the

airfoil is well past the drag-divergence Mach number. The comparison

between the Case 10 experiment and the viscous calculation is quite

reasonable. In particular, the drag, the boundary layer parameters,

and the extent of the separation bubble are predicted quite well, as

115



shown in Figures 7.3.2 and 7.3.3. A close-up of the 132x32 grid (same

size as for Case 6 above) is shown in Figure 7.3.4. Eleven Newton

iterations (33 CPU minutes) were required for this calulation.

A

A

.01

0 6/C

00

1.0 X/c

Figure 7.3.2 Measured and calculated suction surface 6* and 6

distributions for RAE 2822 (Case 10 of ref.[12])
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H

3.0

2.0

1.0

0.0
1.0

Figure 7.3.3 Measured and calculated suction and pressure

surface H distributions for RAE 2822
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Figure 7.3.4 Converged grid near RAE 2822 airfoil
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7.4 Mixed inverse RAE 2822 redesign with boundary layer coupling

To reduce the wave drag on any shocked airfoil, it is of course

necessary to weaken or eliminate the shock wave in the flowfield. The

RAE 2822 Case 6 was chosen as a good candidate for such a drag reduc-

tion. A mixed inverse calculation was performed with the freewall

segment encompassing nearly the entire suction surface. Starting with

the calculated pressure distribution obtained from Case 6 above, a

smoothed-out pressure distribution was somewhat arbitrarily specified

over the freewall segment as shown in Figure 7.4.1.

p 0... direct output
0.30 inverse input

++++ inverse output .1.300

0.400 ...... ..- ***. 1.200

1.100

0.00 0.900

0.70000
0.0.700

0..700

0.500

0. S o - .SOO

e .40+

0.900
0.300

0.7200

0.0.100

Figure 7.4.1 Pressure distributions for RAE mixed redesign

The mixed inverse calculation was started from the converged Case

6 solution, and required five additional Newton iterations (16 minutes)

to converge to machine zero. The boundary layer coupling option was

retained for this calculation. The resulting pressure distribution is

shown in Figure 7.4.1 together with the direct and specified pressure

distributions. The inverse output differs from the inverse input be-

cause of the presence of the two degrees of freedom in equation (5.7a),
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which automatically modify the input pressure to achieve geometry con-

tinuity at the freewall segment enpoints. The shock has indeed been

eliminated, resulting in a substantial drag reduction, as shown in

Table 7.1. The freestream angle of attack was allowed to float to main-

tain the original lift coefficient. Figure 7.4.2 shows the geometry

comparison between the original and modified airfoils, and Figure 7.4.3

shows the Mach number contours for the original and modified solutions.

Table 7.1

Comparison of original and modified RAE 2822

Experimental Computed Computed

RAE 2822 RAE 2822 modified

alpha 2.92 2.43 2.55

CL .743 .743 .743

CM -.095 -.087 -.086

wave CD .0019 .0001

viscous CD .0105 .0101

Total CD .0127 .0124 .0102
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Vertical scale modified
magnif ied

5x

original

1x

Figure 7.4.2 Comparison

before and

of RAE 2822

after mixed

0.9

airfoil geometry

redesign

0.9

1.0

1.1

Figure 7.4.3 Mach number contours before and after RAE 2822

mixed redesign

121



7.5 NACA 4412 airfoil: trailing edge stall

The ability to calculate flowfields with a limited trailing edge

separated region is important since as the angle of attack is increas-

ed, typical aft-loaded airfoils reach maximum lift coefficient after

the trailing edge begins to stall. Reference [25] reports an experi-

ment where detailed measurements were made of the separated boundary

layer and wake on a NACA 4412 airfoil at near-maximum CL conditions.

At the experimental angle of attack of 12.15*, separation took place at

about the 80% chord position. Since boundary layer parameters are to

be compared, the calculation was done at an angle of attack (a = 13.8*)

which matched the observed separation point. Figure 7.5.1 shows the

calculated pressure distribution.

-2.0 MACH a 0.180
ALFA - 13.800
CL a 1.5760

-1.5 CD - 0.02275
CM z -0.0372

CP L/D - 69.28

-0.5

0.0

0.5

1.0

Figure 7.5.1 Computed pressure distribution for NACA 4412 airfoil

Not matching a is further justified on the grounds that separating

122



flows are very sensitive to disturbances, and that the reported tunnel

wall corrections were quite significant. Since the separation position

is fairly sensitive to disturbances, the author feels that it is a good

parameter to match when making comparisons.

The computed boundary layer parameters are compared to experimen-

tal values in Figures 7.5.2 and 7.5.3.

.05-

A

A

9 experiment

calculat ion
AL

.4A

A

A A 67

0I/

1.0 X/C

Figure 7.5.2 Calculated and measured 4412 suction surface 6* and e
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8.0

H e experiment
- calculation

6.0-

4.0

2.0

0.0
1.0 X/C

Figure 7.5.3 Calculated and measured 4412 suction surface H

The agreement with experiment is quite good, considering that the usual

boundary layer approximations are rather badly strained in the separa-

tion region.

The other purpose of this case besides boundary layer verification

is to demonstrate that the streamline-based grid itself is capable of

accommodating large angles of attack and high leading edge edge suction

peaks. Figure 7.5.4 shows the converged streamline grid in the vicini-

ty of the airfoil. Note the large void due to the viscous displacement

surface. The leading edge blowup in Figure 7.5.5 shows that the

streamlines negotiate the blunt leading edge and suction peak quite

well.
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Figure 7.5.4 Converged streamline grid near NACA 4412 airfoil

Figure 7.5.5 NACA 4412 leading edge grid detail
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7.6 LA203A airfoil: Transitional separation bubbles

The LA203A airfoil is a representative aft-loaded airfoil designed

specifically for low Reynolds number applications. Liebeck and Camacho

[30] give detailed pressure distributions for this section obtained

from an experiment in a low-turbulence wind tunnel. Profile drag was

by the usual wake-traverse method. A calculation was performed for one

particular experimental run at a chord Reynolds number of 250,000 and a

lift coefficient of 1.08. The low Reynolds number resulted in exten-

sive laminar separation bubbles on both sides of the airfoil. A sepa-

ration bubble is very clearly discernable from a surface pressure

distribution since it induces a pressure plateau which is terminated by

a very strong adverse pressure gradient region at reattachment. Figure

7.6.1 shows the measured and calculated pressure distributions.

-1.5-

CP

-1.01

-0.5

0.0

0.5'
cc C cc C04

* experiment 4.00 1.08 0.0150 -.178

- calculation 3.20 1.08 0.0151 -.167

Figure 7.6.1 Calculated and experimental pressure distributions

for LA203A airfoil (M., = 0.100 , Re = 250,000)
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The transition prediction algorithm determined the point of tran-

sition in the calculation. In both the suction and pressure surface

boundary layers this occurred at the end of the separation bubbles,

quickly forcing reattachment and thus setting the bubble length. As

can be seen in Figure 7.6.1, the bubble lengths are predicted quite

accurately, in particular on the suction side, implying that the tran-

sition location was accurately predicted. Another important point to

note is that the drag and moment coefficients are also accurately pre-

dicted. The nearly exact agreement of the drag coefficient is better

than might be expected, since the very low Reynolds number puts into

question the turbulent closure relations presented in Chapter 6.

Entire drag polars at Re = 250,000 and Re = 375,000 were also

performed for the LA203A airfoil and compared with experimental polars

in Figure 7.6.2. The comparison is quite good, with maximum CL values

being accurately predicted.
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7.7 Supercritical cascade: Full-inverse redesign

This case is intended to demonstrate the ability of the

full-inverse design option to redesign an originally shocked cascade

such that shock-free operation is obtained. The base shocked solution

was obtained by first "designing" a reasonable-looking compressor

airfoil by the French curve method, and calculating a direct inviscid

solution for an inlet Mach number of 0.7. The solution required seven

Newton iterations (10 CPU minutes) to converge.. Figure 7.7.1 shows

part of the 25x122 grid used in the calculation. A supersonic region

with a peak Mach number of 1.42 and terminated by a strong shock wave

occurred on the suction surface. Figure 7.7.2 shows the calculated

Mach number contours.
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Figure 7.7.1 Grid used for supercritical cascade
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Figure 7.7.2 Mach number contours for direct calculation

To eliminate the shock, a smoothed-out pressure distribution was

specified on the suction surface of the cascade airfoil and input into

the full-inverse option. The pressure specified on the pressure sur-

face was the same as that resulting from the direct calculation. The

inverse input and output distributions are shown in Figure 7.7.3 toge-

ther with the original direct output distribution. The inverse input

and output differ because of the free parameters which were introduced

into the specified pressure distribution (5.5a-b) to enforce leading
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and trailing edge closure. An additional free parameter was also

introduced so that the global constraint of an invariant blade lift

(i.e. stage work) could be imposed. The inlet conditions were also

held fixed.

M- . . . direct output
- inverse input
+ + + + inverse output

* +
* 4

4

4

a

1.300

1.200

1.100

1.000

0.900

*0.800

* 0.700

*0.600

*0.500-o.Soo

0.300
- 0.200

0.100

Figure 7.7.3 Pressure distributions for cascade redesign

Figure 7.7.4 shows the new cascade airfoil geometry and computed

Mach numbers resulting from the inverse calculation, which was restart-

ed from the direct solution and required four additional Newton itera-

tions (5 CPU minutes) to converge. Note that the shock is completely

absent.
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Figure 7.7.4 Mach number contours for redesigned cascade

The original and new cascade airfoil geometries are compared

in Figure 7.7.5. An unintentional favorable result of the inverse

calculation is that the new blade is substantially thicker than the

original, and thus would be more structurally favorable. In principle,

a cross-sectional area or bending moment of inertia could be imposed

explicitly as a global constraint. Of course, an additional free

parameter and shape function would have to be added to the prescribed

pressure distribution (5.5a-b) for each new constraint, so that the
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resulting inverse problem remains well-posed.

redesigned

original

Figure 7.7.5 Original and new cascade airfoil geometries
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8. CONCLUSIONS

8.1 Euler equation discretization

This thesis develops a method of discretizing the steady Euler

equations on an intrinsic streamline grid. Such a coordinate system

has many attractive features not found in conventional fixed grids.

The mass and energy equations are replaced by the simple algebraic

conditions of constant mass flux and total enthalpy along each stream-

tube. Only the momentum equations need to be solved, giving computa-

tional economy. Another feature of a streamline coordinate system is

that there is no numerical diffusion of entropy or enthalpy; signals

propagate between streamtubes only via streamline geometry and the

pressure field. Furthermore, only physical boundary conditions are

required to close the discrete equation set. Numerical boundary con-

ditions are unnecessary. Streamline coordinates have been employed

previously by the streamline curvature methods, which solve the Euler

equations in differential form and hence do not treat shocks properly.

The present formulation solves the Euler equations in integral form

which ensures the proper Rankine-Hugoniot shock jumps in the limit of

infinite grid resolution.

8.2 Inverse problem formulation

The present streamline-based discretization of the steady equa-

tions permits the usual solid-wall boundary condition to be easily

replaced by an inverse boundary condition, where the surface pressure

is prescribed instead. The body geometry then deforms to achieve the

specified pressure. Closure and geometry continuity constraints are

rigorously enforced through the introduction of free parameters into

the prescribed pressure distribution. Discrepancies between the speci-

fied and calculated pressure distributions resulting from the free

parameters are typically sufficiently small so as not to impair the

effectiveness of the design algorithm. Both the mixed-inverse and

full-inverse problems have been formulated and tested on airfoil and
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compressor cascade geometries. The airfoil redesign was aimed at the

elimination of shock waves in the flowfield with the lift coefficient

and freestream conditions held fixed. This goal which was achieved,

resulting in a predicted 21% profile drag reduction. The compressor

cascade redesign was also aimed at shock wave elimination under the

constraint of fixed stage work. This goal was also achieved, elimina-

ting shock losses and incidentally producing a substantially thicker

airfoil.

8.3 Compressible integral boundary layer formulation

The compressible boundary layer formulation developed in this

thesis makes use of the standard disspation closure, meaning that the

integral momentum and kinetic energy equations are used to describe the

streamwise evolution of the boundary layer parameters. The laminar

closure relations used in the present formulation are based on the

Falkner-Skan family of profiles. For turbulent flow, the very impor-

tant dissipation coefficient correlation is derived directly from the

dissipation equation and the experimental G- locus. The more common

approach of assumed profiles and eddy-viscosity models is not required.

It is shown that the resulting dissipation function still has the same

form as that derived from assumed profiles. Excellent accuracy of the

laminar formulation is demonstrated by comparison with an effectively

exact finite difference calculation. The accuracy of the turbulent

formulation for attached and separated flows is demonstrated by

comparisons with experiments.

The implementation of the present boundary layer formulation uses

the common e9 transition prediction method. Disturbance amplification

rates are integrated downstream from the point of instability until

some empirically derived critical amplification factor is reached, at

which point transition occurs. The amplification rates are integrated

with respect to the physical streamwise coordinate. It is argued that

this is more physically realistic than the more commonly used integra-
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tion with respect to momentum thickness Reynolds number. In the pre-

sent formulation, the critical Reynolds numbers and amplification rates

are derived from finite-difference solutions to the Orr-Sommerfeld

equation using the Falkner-Skan profiles. From these solutions, simple

algebraic expressions for the critical Reynolds number and amplifica-

tion rates are obtained. The transition prediction algorithm is tested

in a calculation of a low Reynolds number airfoil with large transi-

tional separation bubbles. The bubble lengths, which critically depend

on the location of transition, are accurately predicted.

8.4 Boundary layer coupling formulation

The boundary layer formulation derived in this thesis is inter-

acted with the inviscid flow via the displacement thickness using a

novel calculation procedure. All other current interaction calculation

methods involve iteration between the viscous and inviscid solvers

using some approximate model for the viscous flow in the inviscid

calculation and vice versa. The present formulation dispenses with

such iteration altogether by simply solving the interacted inviscid and

viscous equations as a fully-coupled system. This is a robust proce-

dure which permits the calculation of strong interaction problems such

as trailing edge stall, shock-induced separation, and transitional

separation bubbles. The additional CPU time required for a viscous

calculation is only a small fraction of the time required to perform a

purely inviscid calculation. Furthermore, the viscous option can be

retained with the full-inverse or mixed-inverse boundary conditions,

permitting viscous effects to enter into design calculations.

8.5 Newton solution procedure

The discrete steady Euler equations, boundary conditions, discrete

boundary layer equations, coupling conditions, and global constraints

are all solved simultaneously as a fully-coupled system by the Newton

method. This thesis describes a chain-rule-based linearization process

which makes solution of such a large and complex system by the Newton
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method feasible. The thesis also describes a treatment of the global

constraints which preserves the orderly structure of the large Newton

system and thus simplifies its solution. The demonstrated speed of the

Newton solution procedure makes it at least as fast as state-of-the-art

time-marching Euler solvers for airfoils, and substantially faster for

cascades. Since the viscous and design options do not significantly

add to the computation time, and small input changes yield quadratic

convergence, it is felt that the current design/analysis system as a

whole is unparalleled in speed. The possibility of rapid interactive

execution on a minicomputer, plus the ease of switching between analy-

sis and design modes and enforcement of arbitrary global constraints

all significantly add to the effectiveness of a designer.
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APPENDIX A

Artificial Bulk Viscosity Stability Analysis

Steady transonic flow calculations require some sort of artificial

dissipation primarily to exclude non-physical solutions to the Euler

equations in the form of expansion shocks. Artificial dissipation

prevents such solutions from appearing by ensuring that entropy will

always increase across shock waves. The primary, mechanism of entropy

production in shock waves, namely bulk viscosity, has been lost in the

process of simplifying the Navier-Stokes equations to the Euler equa-

tions. The artificial dissipation which is added to the inviscid Euler

equations in the present formulation in supersonic regions is qualita-

tively similar to this "lost" bulk viscosity and thus permits proper

calculation of shocked flows. This is analogous to the subsonic Kutta

condition, which artificially replaces the "lost" viscous mechanism of

circulation establishment via vorticity shedding. The effective bulk

viscosity (which is generally much greater than physical bulk viscos-

ity), automatically produces shock waves which are just thick enough to

be resolved by the available grid spacing.

Well-established potential flow calculation methods generally

employ a different form of artificial dissipation, namely density

upwinding (also called "artificial compressibility"). Giles [19) also

used density upwinding with the present Euler discretization scheme to

obtain stable transonic solutions. The present artificial bulk visco-

sity formulation was derived by Giles [unpublished) as a more physi-

cally realistic alternative to density upwinding. His analysis is

presented below.

Consider a uniform compressible flow in a constant area channel.

The Euler equations which govern this flow are

pq = m = constant (A.1)

144



m (q -XAx ) + p = constant (A.2)

yp + q = constant (A.3)
y-1 P 2

The artificial bulk viscosity is introduced via the derivative term in

the momentum equation (A.2). The coefficient X, whose proper value

will be determined shortly is 0(1), and Ax is a small length scale

which will be set to the local grid spacing in the discrete analysis

given later.

Each variable is now expressed as the sum of a base value and a

perturbation, denoted by an overbar and an apostrophe, respectively.

p = P(1+p') p = (1+p') q = 4 + aq' (A.4a-c)

where d denotes the local speed of sound.

Substituting these variables into equations (A.1-3) and neglecting

second order terms, the resulting linearized equations are:

Mp' + q' = 0 (A.4)

YM q' - Aax + p' = 0 (A.5)

p - p' + (y-1)Mq' = 0 (A.6)

where M = 4/a is the Mach number of the base flow.

Eliminating p' and p' between equations (A.4-6) gives a first

order ODE for q'.

dq'r 1
kq' = 0 where k = 1 2) (A.7)dx Xfaxy

Equation (A.7) has exponential solutions of the form

q' c ekx (A.8)

The most important characteristic of solution (A.8) is that k changes

sign through M=1. In supersonic regions k>O, which means that pertur-

bations decay away exponentially upstream with a length constant of
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O(Ax). In subsonic regions, such perturbations decay away downstream.

This behavior permits perturbation solutions which mimic a normal shock

where M goes through unity, since the perturbations decay away from the

shock to uniform flow on both sides. Figure A.1 illustrates this be-

havior.

X

Figure A.1 "Boundary layer" behavior of perturbation solutions

The discrete counterpart of the continuous system (A.1-3) can be

expressed as

p2q 2 = m = constant (A.9)

m (q2- X(q 2 - q1) + p 2 = constant (A.10)

Y p2  1 2
2 + - q = constant (A.11)

Y-1 p 2  2 2

Where the subscripts "i" and "2" denote two adjacent nodes separated by

the distance Ax. Using the perturbation forms (A.4a-c), the above dis-

crete equations become

Mp' + q' = 0 (A.12)
2 2

YM(q' - X(q' - q')) + p' = 0 (A.13)
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p' - p' + (y-1)q' = 0
2 2 2

(A.14)

Eliminating p' and p' from equations (A.12-14), the following differ-

ence equation for q' results.

(A - A )q' - Aq' = 0 , where A = -1- 2) (A.15a-b)
C 2 . C M

The solution to equation (A.15a) is

q! z , where z = (A.16a-b)
c

and i is the spatial node index.

Consistency with the analytic equations requires that the direc-

tion of perturbation decay is upstream for supersonic flow, and down-

stream for subsonic flow.

For subsonic flow: M < 1, implying Ac < 0 and z < 1

From (A.16a) it can be seen that q' will decay downstream (i increas-

ing) and consistency is always achieved.

For supersonic flow: M > 1, giving three cases depending on value of A

1) A > AC => 1 < z < 0

This gives the proper exponential decay upstream (i decreasing).

2) Ac > A > Ac/2 => -o < z < -1

This still gives upstream exponential decay, but since z is nega-

tive, it can be seen from (A.16a) that the perturbation q' will

alternately change sign with each successive node, giving an

oscillatory decay.

3) Ac/2 > A > 0 => -1 < z < 0

This case produces exponential decay downstream, making the dis-

crete equations inconsistent with the analytic system.

The consequence of having an insufficient level of artificial

dissipation as in case 3) above is that the Jacobian of the Newton
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solution procedure will be nearly singular if shocks or sonic lines are

present. In such a situation it would be impossible to obtain a con-

verged transonic flow solution. The proper level of artificial dissi-

pation is influenced by other considerations besides numerical stabi-

lity. The sharpest shocks are obtained when A = Ac, which produces the

most rapid perturbation decay possible. Because the artificial dissi-

pation is an "error term" in the Euler equation discretization propor-

tional to A, the smallest truncation errors result when A = Ac/ 2 , which

is its minimum value for numerical stability. Another consideration is

the applicability (or lack thereof) of the above uniform 1-D analysis

to the much more interesting case of non-uniform 2-D flow. This dic-

tates a "margin of safety" where the stabilizing dissipation is intro-

duced at high subsonic conditions rather than at M=1 exactly. The

actual formula used for A is

c

[1 2 

(A.17)
M>M:-

c Y

M is now the local Mach number and Mc is a threshold Mach number above

which the dissipation coefficient A is nonzero. Typically, Mc is set

to lie between 0.80 and 0.95, depending on the strength of shock waves

expected in the solution.
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APPENDIX B

Airfoil Far Field

In this Appendix the leading order far field behavior for tran-

sonic flow past an isolated airfoil is derived. For simplicity, the

coordinate system is aligned with the subsonic freestreamn flow u..

Since the present numerical method requires a boundary condition

to be imposed on the outer streamline, it is useful to analyze the far

field behavior of the velocity potential t. The far field flow is

isentropic and hence irrotational, apart from the entropy wake due to

the shock, and so the governing equation for the velocity potential is

(pox)x + (Po) = 0 (B.1)

U2

where p = ot t( + 2) (B.2)

A perturbation potential 0 is now defined by

= + $ 4 = 0 (B.3a-b)
x U00 x y u B y

With the assumption $x, *y << 1, the first and second order terms of

(B.1) give the following equation (Liepmann and Roshko [31]).

(1-M ) ( + 0 = M2 ((Y+1)$x + (Y-1)OxOyy + 2$y x (B.4)
00 xx yy 00 xx y Y)x

A Prandtl-Glauert coordinate transformation,

2

4) where = (1-M )2 (B.5)

transforms equation (B.4) into

2 Y+l y-1 2
$ + $ = M --. 0 $ + - , $. + - I $ (B.6)Rx yy Y_ xyRRRRry Y yy
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2 _2 0
In the limit xR+ + , where V$ -+ 0, the lowest order solution

satisfies the Laplacian lefthand side of (B.6), and is expressed as

$ - ln(F) - - (B.7)
2'rr 21r

2 
where 0 E arctan (9/2) and P - (2 +p2)Y

Physically this statement means that in the far field the airfoil

appears to first order to be the sum of a vortex of strength F and a

source of strength Z. The vortex is due to the circulation around the

airfoil, and the source is due to the shock produced entropy change,

and also includes the effects of the viscous wake in Chapter 6.

1
The next higher order solution $ to equation (B.6) consists of

doublet terms and is related to the airfoil cross-sectional area, or

"blockage", and to the pitching moment on the airfoil. An inhomogene-
2 0

ous term proportional to (FM.) from the lower order solution $ also

appears. The inhomogeneous term from the source is neglected here.

2
Dx coso Dy sin® rr M. ln(F) cos3

$-+ - - + - E cos + F - (B.8)
2Tr P 21T P P P 0

where

E = - -- + --- and F = - +
4 3a 16 g

The net perturbation velocity potential $ which governs the airfoil far

field is then simply

0 1
$ = $ + $ (B.9)

The velocity potential $ as defined above contains the quantities

Z, F, Dx, Dy which must be properly constrained for a well posed prob-

lem. An appropriate constraint on r is the Kutta condition as dis-

cussed in Chapter 3. E is calculated directly from the difference
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between the actual mass flux in the wake infinitely far downstream and

the mass flux of the equivalent irrotational, isentropic flow.

E = J ( -uJdy = J ( u dm (B.10)

wake

Z has two contributions. The first term is due to the inviscid entropy

wake behind a shock, and the other is due to the viscous wake.

E = . + E (B.11)Sv

Ideally, one would like to evaluate integral (B.10) very far down-

stream. If it is evaluated near the airfoil, the airfoil's pressure

field will affect the value of pu in the integrand and thus cause

errors in Z. However, the far-downstream value of ou can be accurately

calculated from the local stagnation pressure, since the stagnation

pressure is invariant along any streamline behind the airfoil. Using

the known values of the far-field stagnation enthalpy ht and static

pressure p,, this is done as follows.

u = 2ht 1 - **JY (B.12)

and,

Y-

p = (B.13)

Hence, pu =f (ht' t' OO) and so the contribution Zi to the integral in

(B.10) from the entropy wake due to the shock can be written as

. p - u dm (B.14)

T o u to t' inePOO POOUi0so

The contribution to the integral in (B.10) from the viscous wake

151



is simply the wake displacement thickness far downstream.

Z = 6 +(B.15)

It is still necessary to define the doublet coefficients Dx and

Dy in equation (B.8) since it is needed to define the full potential (D

in the far field. As described in Chapter 3, 0 is used to determine

the pressures which are specified as boundary conditions on the top and

bottom streamlines. Barring truncation errors and terms in $ of higher

order than $ , these boundary conditions should produce streamlines

which lie in the direction of V4. It is therefore appropriate to define

the doublet coefficients Dx and Dy in * such that the integral

I E - V4 x S ds (B.16)
2

is minimized. The integration is performed over the top and bottom

streamline boundaries and 9 is the unit vector parallel to the stream-

line. The conditions which determine Dx and Dy are then

S v x _ -xs I ds = 0 (B.17)
x3Dx 

a3I 3DX

- V4 x -x ds = 0 (B.18)
3Dy 3Dy

In effect, Dx and DY are chosen such that the two farthest streamlines

lie along V$ as closely as possible.
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APPENDIX C

Airfoil Drag Calculation

The total drag on an isolated airfoil can be calculated using a

momentum balance. Coordinate axes are chosen so that the freestream

velocity u. is in the x direction. A control volume with outward unit

normal R is constructed around the airfoil such that two of its bound-

aries are. streamlines. The drag D on the airfoil can now be expressed

by a surface integral over the control volume.

D = - (P-P)n + (pu-n)uJ ds (C.1)

p-p,= 0(r ) and n = 0(r ) on the streamline sides and the length

of these two sides is O(r), so the integral contribution from these two

sides is at most 0(r- ) and hence can be neglected. The integral con-

tribution from the other two sides can be rewritten as,

.mtot

S  J - P+ u, dm (C.2)

I 0
where the integration variable now is dm = pu dy , the incremental mass

flux through the control volume, and subscripts "1" and "2" denote the

inlet and outlet values, respectively. For streamtubes which are not

in either the viscous wake or the entropy wake behind a shock, p-p. and

-1 2  -2
u-u are both 0(r ) so the integrand is + u1 -u2 + 0(r ). How-

ever for isentropic streamtubes dp + pu du = 0 and hence the integrand

is 0(r2 ) and so the integral over isentropic streamtubes can be neg-

lected. Finally the viscous and entropy wakes have widths of 0(1) so

the contribution of the pressure term can be neglected. This leaves

the following simple expression for the total drag.
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D = (u 1 -u2 ) dm (C.3)

where the integral is over the viscous wake and the entropy wake due to

a shock as shown in Figure C.1.

U2

-~1

-.3-I
H
-'rn-I

Figure C.1 Momentum defect in shock and viscous wakes

This equation is still approximate, containing errors of O(r )

which disappear in the limit r-+. In calculating the drag due to a

shock this equation can be made exact by using the stagnation pressure.

The velocity is related to the pressure, stagnation pressure, and

stagnation enthalpy by,

q2 = 2ht1 - (C.4)

Thus the drag is given by,

=-
2 121

D = (2h t) 1 dmn (C.5)
2i
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The range of integration in (C.3) was over the streamtubes lying

in the viscous wake or coming through the shock. In (C.5) however the

integrand is zero for isentropic streamtubes so the integration may be

taken over all of the streamtubes, thus simplifying the programming.

Also because equation (C.5) only involves stagnation pressure, which is

invariant after the flow passes through the shock, the calculated drag

is independent of r, and so is exact because it is exact in the limit

r-m.

This method of determining the total drag has two main advantages

over the alternate method, which is to integrate the pressure and shear

stress on the airfoil surface. The first is that for subsonic airfoils

at high Reynolds number the numerical truncation error in numerically

integrating the pressure may be comparable in magnitude to the total

drag. With the method outlined here the only drag contribution comes

from the wake and is equal to peu,., where e is the viscous plus the

shock wake momentum thickness. This method has much lower numerical

errors.

The second advantage is that the pressure drag on the airfoil is

very sensitive to errors in the angle of attack, so if the effective

angle of attack is slightly different from the far-field angle of

attack which is prescribed the difference can cause a significant

change in the calculated drag. The momentum balance method by contrast

is insensitive to such discrepancies and so it is probably more accu-

rate particularly when the far-field boundary is only a few chord

lengths from the airfoil.
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APPENDIX D

Orr-Somerfeld Amplification Curve Calculation

The two-dimensional Orr-Sommerfeld equation governs the growth or

decay of infinitesimal wavelike disturbances in parallel shear flows.

It is derived from the unsteady Navier-Stokes equations with suitable

thin-shear-layer and parallel-flow simplifications. A detailed deriva-

tion and discussion is given in Cebeci and Bradshaw [6]. Here it will

suffice to say that a disturbance streamfunction of the form

4(E,n,t) = $(q) e-i(aE - wt) (D.1)

is added to some base solution of the governing equations, where ,n

are suitably non-dimensionalized streamwise and normal shear layer

coordinates, and t is the time coordinate. When the higher powers of $

are neglected, the 4th-order Orr-Sommerfeld equation results. With

= d/dp, it is written below as a first-order system.

(' = $1 (D.2a)

2
$' = a $ + $ (D.2b)

$' = $ (D.2c)
23

$' = a 2 + iR((au-W)02 - au"(0 (D.2d)

Appropriate boundary conditions are:

=O: $=0 (D.3a)

=0 (D.3b)

+-: $+ + iR(au- ))42 = 0 (D.3c)

$3 + 2 - iR( u-w)( 1 + a) = 0 (D.3d)
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Here R is the Reynolds number formed with the reference quantities,

and u = u(n) is the given velocity profile about which the perturbation

is taken. The two wall boundary conditions (D.3a-b) are simply the

usual no-transpiration and no-slip conditions, and the two far-field

boundary conditions (D.3c-d) ensure that 0 is well behaved as n-).

In general, $, a, w are all complex. The spatial amplification

problem results when a is complex and w is real. In particular, u(n),

R, and w are prescribed, and the homogeneous Orr-Sommerfeld equation

(D.2) and its boundary conditions (D.3) form an eigenvalue problem for

the complex wavenumber a. Equations (D.2) and (D.3) are readily

discretized using a second order accurate finite-difference box scheme

with complex Fortran arithmetic. Because of the homogeneity of the

problem, it is appropriate to impose the normalization condition

n=: $2 = 1 + i (D.4)

as an additional equation. Newton's method is applied to the resulting

nonlinear system for the nodal unknowns $, $ , $2' *3' and the global

unknown a. This produces a block tridiagonal system with complex 4x4

blocks and two righthand sides which is very rapidly solved by a stan-

dard block elimination algorithm.

From (D.1), it is clear that the sought-after spatial growth rate

of the disturbance field is equal to Im(a). The overall procedure

which was used to generate the amplification curves in Figure 6.7 for

each velocity profile shape parameter H is as follows.

* Generate the appropriate Falkner-Skan velocity profile u(q;H)

* For each of about 10 distinct frequencies wR

- Determine the instability range of R ( for which Im(a) < 0 )

- For each of about 15 values of R in the instability range

- Solve equations (D.2-4) to obtain a(R)

- Spline and integrate Im(a) over R to get the amplification ratio
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APPENDIX E

Grid Generation

Initial grid generation

The initial grid generation uses an elliptic generation method

developed by Thompson [471. The position of grid nodes on the airfoil

surface, stagnation streamline and far-field boundary are specified by

the user through an input file. The grid points in the interior are

determined by the elliptic differential equations,

E + E = 0 (E.1)Exx &y7

nr + = 0 (E.2)

which defines a transformation from physical space (x,y) to computa-

tional space (E,n). After interchanging dependent and independent

variables, the above two equations become,

a x - 2P x + Y X = 0 (E.3)

a y - 2 y + Y y = 0 (E.4)

where

a = x + y , = x x + yy y = x + y (E.5a-c)

In the computational space the line E=0 corresponds to the physi-

cal inlet boundary, the line &=1 corresponds to the outlet boundary,

the line q=0 corresponds to the stagnation streamline and suction

surface of the airfoil, and the line q=1 corresponds to the stagnation

streamline and the pressure surface (displaced upwards by one pitch in

the case of a cascade). The grid is defined to be uniformly spaced

in the E direction, but since the lines n=constant are to be approxima-

tely streamlines the spacing in the 9 direction is defined to be

proportional to the fractional mass flux through each streamtube.

Equations (E.3) and (E.4) are solved using SLOR (successive line
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over-relaxation), with ca,,y held fixed during each iteration and then

updated afterwards. Convergence is achieved in about 20 iterations and

the resultant grid is often so good an initial guess that it can hardly

be distinguished from the final grid obtained from the full Euler

calculation. This is not so surprising since the initial streamline

grid is the incompressible solution for a given stagnation streamline

because n satisfies the incompressible streamfunction equation (E.1).

Grid Redistribution

During the Newton iterations the discrete Euler equations deter-

mine the movement of the grid nodes in the direction normal to the

streamlines, but there is nothing in the physics of the problem to

determine the streamwise movement of the grid nodes. This is complete-

ly arbitrary, and is only really important near the leading edge where

large movements of the leading edge stagnation point can distort the

grid. To correct this a slightly modified version of the grid-genera-

tion algorithm is used occasionally to redistribute the grid nodes to

maintain a good grid. The modification consists of weighting the An
metrics in the finite difference expression of (E.4) by 1/p, where o is

the local density obtained from the latest Newton iteration Tn A

parallel flow with a normal entropy gradient, such as a far shock wake,

this produces the correct streamtube area distribution. In non-paral-

lel flows, this modification tends to preserve the compressible stream-

line pattern generated by the Euler solver.
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