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ACTION OF LONGEST ELEMENT ON

A HECKE ALGEBRA CELL MODULE

G. Lusztig

Dedicated to the memory of Robert Steinberg

Introduction

0.1. The Hecke algebra H (over A = Z[v, v−1], v an indeterminate) of a finite
Coxeter group W has two bases as an A-module: the standard basis {Tx; x ∈ W}
and the basis {Cx; x ∈ W} introduced in [KL]. The second basis determines a
decomposition of W into two-sided cells and a partial order for the set of two-
sided cells, see [KL]. Let l : W −→ N be the length function, let w0 be the longest
element of W and let c be a two-sided cell. Let a (resp. a′) be the value of the
a-function [L3, 13.4] on c (resp. on w0c). The following result was proved by
Mathas in [MA].

(a) There exists a unique permutation u 7→ u∗ of c such that for any u ∈ c we

have Tw0
(−1)l(u)Cu = (−1)l(w0)+a′

v−a+a′

(−1)l(u
∗)Cu∗ plus an A-linear combina-

tion of elements Cu′ with u′ in a two-sided cell strictly smaller than c. Moreover,
for any u ∈ c we have (u∗)∗ = u.
A related (but weaker) result appears in [L1, (5.12.2)].

A result similar to (a) which concerns canonical bases in representations of
quantum groups appears in [L2, Cor. 5.9]; now, in the case where W is of type
A, (a) can be deduced from loc.cit. using the fact that irreducible representations
of the Hecke algebra of type A (with their canonical bases) can be realized as 0-
weight spaces of certain irreducible representations of a quantum group with their
canonical bases.

As R. Bezrukavnikov pointed out to the author, (a) specialized for v = 1 (in the
group algebra of W instead of H) and assuming that W is crystallographic can
be deduced from [BFO, Prop. 4.1] (a statement about Harish-Chandra modules),
although it is not explicitly stated there.

In this paper we shall prove a generalization of (a) which applies to the Hecke
algebra associated to W and any weight function assumed to satisfy the properties
P1-P15 in [L3,§14], see Theorem 2.3; (a) corresponds to the special case where the
weight function is equal to the length function. As an application we show that
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2 G. LUSZTIG

the image of Tw0
in the asymptotic Hecke algebra is given by a simple formula

(see 2.8).
I thank Matthew Douglass for bringing the paper [MA] to my attention. I thank

the referee for helpful comments.

0.2. Notation. W is a finite Coxeter group; the set of simple reflections is denoted
by S. We shall adopt many notations of [L3]. Let ≤ be the standard partial order
on W . Let l : W −→ N be the length function of W and let L : W −→ N be a weight
function (see [L3, 3.1]) that is, a function such that L(ww′) = L(w) + L(w′) for
any w,w′ in W such that l(ww′) = l(w) + l(w′); we assume that L(s) > 0 for any
s ∈ S. Let w0,A be as in 0.1 and let H be the Hecke algebra over A associated
to W,L as in [L3, 3.2]; we shall assume that properties P1-P15 in [L3, §14] are
satisfied. (This holds automatically if L = l by [L3,§15] using the results of [EW].
This also holds in the quasisplit case, see [L3,§16].) We have A ⊂ A′ ⊂ K where
A′ = C[v, v−1], K = C(v). Let HK = K ⊗A H (a K-algebra). Recall that H has
an A-basis {Tx; x ∈ W}, see [L3, 3.2] and an A-basis {cx; x ∈ W}, see [L3, 5.2].
For x ∈ W we have cx =

∑
y∈W py,xTy and Tx =

∑
y∈W (−1)l(xy)pw0x,w0ycy (see

[L3, 11.4]) where px,x = 1 and py,x ∈ v−1Z[v−1] for y 6= x. We define preorders
≤L,≤R,≤LR on W in terms of {cx; x ∈ W} as in [L3, 8.1]. Let ∼L,∼R,∼LR

be the corresponding equivalence relations on W , see [L3, 8.1] (the equivalence
classes are called left cells, right cells, two-sided cells). Let¯: A −→ A be the ring
involution such that vn = v−n for n ∈ Z. Let ¯ : H −→ H be the ring involution
such that fTx = f̄T−1

x−1 for x ∈ W, f ∈ A. For x ∈ W we have cx = cx. Let

h 7→ h† be the algebra automorphism of H or of HK given by Tx 7→ (−1)l(x)T−1
x−1

for all x ∈ W , see [L3, 3.5]. Then the basis {c†x; x ∈ W} of H is defined. (In the
case where L = l, for any x we have c†x = (−1)l(x)Cx where Cx is as in 0.1.) Let
h 7→ h♭ be the algebra antiautomorphism of H given by Tx 7→ Tx−1 for all x ∈ W ,
see [L3, 3.5]; for x ∈ W we have c♭x = cx−1 , see [L3, 5.8]. For x, y ∈ W we have
cxcy =

∑
z∈W hx,y,zcz, c

†
xc

†
y =

∑
z∈W hx,y,zc

†
z, where hx,y,z ∈ A. For any z ∈ W

there is a unique number a(z) ∈ N such that for any x, y in W we have

hx,y,z = γx,y,z−1va(z) + strictly smaller powers of v

where gx,y,z−1 ∈ Z and gx,y,z−1 6= 0 for some x, y in W . We have also

hx,y,z = γx,y,z−1v−a(z) + strictly larger powers of v.

Moreover z 7→ a(z) is constant on any two-sided cell. The free abelian group
J with basis {tw;w ∈ W} has an associative ring structure given by txty =∑

z∈W γx,y,z−1tz; it has a unit element of the form
∑

d∈D ndtd where D is a subset
of W consisting of certain elements with square 1 and nd = ±1. Moreover for
d ∈ D we have nd = γd,d,d.

For any x ∈ W there is a unique element dx ∈ D such that x ∼L dx. For a
commutative ring R with 1 we set JR = R ⊗ J (an R-algebra).
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There is a unique A-algebra homomorphism φ : H −→ JA such that φ(c†x) =∑
d∈D,z∈W ;dz=d hx,d,zndtz for any x ∈ W . After applying C⊗A to φ (we regard C

as an A-algebra via v 7→ 1), φ becomes aC-algebra isomorphism φC : C[W ]
∼
−→ JC

(see [L3, 20.1(e)]). After applying K⊗A to φ, φ becomes a K-algebra isomorphism

φK : HK
∼
−→ JK (see [L3, 20.1(d)]).

For any two-sided cell c let H≤c (resp. H<c) be the A-submodule of H
spanned by {c†x, x ∈ W,x ≤LR x′ for some x′ ∈ c} (resp. {c†x, x ∈ W,x <LR

x′ for some x′ ∈ c}). Note that H≤c,H<c are two-sided ideals in H. Hence
Hc := H≤c/H<c is an H,H bimodule. It has an A-basis {c†x, x ∈ c}. Let Jc be
the subgroup of J spanned by {tx; x ∈ c}. This is a two-sided ideal of J . Similarly,
Jc

C
:= C⊗ Jc is a two-sided ideal of JC and Jc

K := K ⊗ Jc is a two-sided ideal of
JK .

We write E ∈ IrrW whenever E is a simple C[W ]-module. We can view E as a
(simple) JC-module E♠ via the isomorphism φ−1

C
. Then the (simple) JK -module

K ⊗C E♠ can be viewed as a (simple) HK -module Ev via the isomorphism φK .
Let E† be the simple C[W ]-module which coincides with E as a C-vector space
but with the w action on E† (for w ∈ W ) being (−1)l(w) times the w-action on E.
Let aE ∈ N be as in [L3, 20.6(a)].

1. Preliminaries

1.1. Let σ : W −→ W be the automorphism given by w 7→ w0ww0; it satisfies
σ(S) = S and it extends to aC-algebra isomorphism σ : C[W ] −→ C[W ]. For s ∈ S
we have l(w0) = l(w0s)+l(s) = l(σ(s))+l(σ(s)w0) hence L(w0) = L(w0s)+L(s) =
L(σ(s)) + L(σ(s)w0) = L(σ(s)) + L(w0s) so that L(σ(s)) = L(s). It follows that
L(σ(w)) = L(w) for all w ∈ W and that we have an A-algebra automorphism
σ : H −→ H where σ(Tw) = Tσ(w) for any w ∈ W . This extends to a K-algebra
isomorphism σ : HK −→ HK . We have σ(cw) = cσ(w) for any w ∈ W . For any

h ∈ H we have σ(h†) = (σ(h))†. Hence we have σ(c†w) = c†
σ(w) for any w ∈ W .

We have hσ(x),σ(y),σ(z) = hx,y,z for all x, y, z ∈ W . It follows that a(σ(w)) = a(w)
for all w ∈ W and γσ(x),σ(y),σ(z) = γx,y,z for all x, y, z ∈ W so that we have a ring
isomorphism σ : J −→ J where σ(tw) = tσ(w) for any w ∈ W . This extends to an
A-algebra isomorphism σ : JA −→ JA, to a C-algebra isomorphism σ : JC −→ JC
and to a K-algebra isomorphism σ : JK −→ JK . From the definitions we see that
φ : H −→ JA (see 0.2) satisfies φσ = σφ. Hence φC satisfies φCσ = σφC and φK

satisfies φKσ = σφK .

We show:

(a) For h ∈ H we have σ(h) = Tw0
hT−1

w0
.

It is enough to show this for h running through a set of algebra generators of H.
Thus we can assume that h = T−1

s with s ∈ S. We must show that T−1
σ(s)Tw0

=

Tw0
T−1
s : both sides are equal to Tσ(s)w0

= Tw0s.

Lemma 1.2. For any x ∈ W we have σ(x) ∼LR x.
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From 1.1(a) we deduce that Tw0
cxT

−1
w0

= cσ(x). In particular, σ(x) ≤LR x.
Replacing x by σ(x) we obtain x ≤LR σ(x). The lemma follows.

1.3. Let E ∈ IrrW . We define σE : E −→ E by σE(e) = w0e for e ∈ E. We
have σ2

E = 1. For e ∈ E,w ∈ W , we have σE(we) = σ(w)σE(e). We can view

σE as a vector space isomorphism E♠
∼
−→ E♠. For e ∈ E♠, w ∈ W we have

σE(twe) = tσ(w)σE(e). Now σE : E♠ −→ E♠ defines by extension of scalars a

vector space isomorphism Ev −→ Ev denoted again by σE . It satisfies σ
2
E = 1. For

e ∈ Ev, w ∈ W we have σE(Twe) = Tσ(w)σE(e).

Lemma 1.4. Let E ∈ IrrW . There is a unique (up to multiplication by a scalar
in K − {0}) vector space isomorphism g : Ev −→ Ev such that g(Twe) = Tσ(w)g(e)
for all w ∈ W, e ∈ Ev. We can take for example g = Tw0

: Ev −→ Ev or g = σE :
Ev −→ Ev. Hence Tw0

= λEσE : Ev −→ Ev where λE ∈ K − {0}.

The existence of g is clear from the second sentence of the lemma. If g′ is another
isomorphism g′ : Ev −→ Ev such that g′(Twe) = Tσ(w)g

′(e) for all w ∈ W, e ∈ Ev

then for any e ∈ Ev we have g−1g′(Twe) = g−1Tσ(w)g
′(e) = Twg

−1g′(e) and using

Schur’s lemma we see that g−1g′ is a scalar. This proves the first sentence of the
lemma hence the third sentence of the lemma.

1.5. Let E ∈ IrrW . We have

(a)
∑

x∈W

tr(Tx, Ev)tr(Tx−1 , Ev) = fEv
dim(E)

where fEv
∈ A′ is of the form

(b) fEv
= f0v

−2aE + strictly higher powers of v

and f0 ∈ C− {0}. (See [L3, 19.1(e), 20.1(c), 20.7].)
From Lemma 1.4 we see that λ−1

E Tw0
acts on Ev as σE . Using [L4, 34.14(e)]

with c = λ−1
E Tw0

(an invertible element of HK) we see that

(c)
∑

x∈W

tr(TxσE , Ev)tr(σ
−1
E Tx−1 , Ev) = fEv

dim(E).

Lemma 1.6. Let E ∈ IrrW . We have λE = vnE for some nE ∈ Z.

For any x ∈ W we have

tr(σEc
†
x, Ev) =

∑

d∈D,z∈W ;d=dz

hx,d,zndtr(σEtz, E♠) ∈ A′

since tr(σEtz, E♠) ∈ C. It follows that tr(σEh,Ev) ∈ A′ for any h ∈ H. In
particular, both tr(σETw0

, Ev) and tr(T−1
w0

σE , Ev) belong to A′. Thus λE dimE

and λ−1
E dimE belong to A′ so that λE = bvn for some b ∈ C − {0} and n ∈ Z.

From the definitions we have λE |v=1 = 1 (for v = 1, Tw0
becomes w0) hence b = 1.

The lemma is proved.
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Lemma 1.7. Let E ∈ IrrW . There exists ǫE ∈ {1,−1} such that for any x ∈ W
we have

(a) tr(σE†Tx, (E
†)v) = ǫE(−1)l(x)tr(σET

−1
x−1 , Ev).

Let (Ev)
† be the HK -module with underlying vector space Ev such that the

action of h ∈ HK on (Ev)
† is the same as the action of h† on Ev. From the

proof in [L3, 20.9] we see that there exists an isomorphism of HK -modules b :

(Ev)
† ∼
−→ (E†)v. Let ι : (Ev)

† −→ (Ev)
† be the vector space isomorphism which

corresponds under b to σE† : (E†)v −→ (E†)v. Then we have tr(σE†Tx, (E
†)v) =

tr(ιTx, (Ev)
†). It is enough to prove that ι = ±σE as a K-linear map of the vector

space Ev = (Ev)
† into itself. From the definition we have ι(Twe) = Tσ(w)ι(e)

for all w ∈ W, e ∈ (Ev)
†. Hence (−1)l(w)ι(T−1

w−1e) = (−1)l(w)T−1
σ(w−1)

ι(e) for all

w ∈ W, e ∈ Ev. It follows that ι(he) = (−1)l(w)Tσ(h)ι(e) for all h ∈ H, e ∈ Ev.
Hence ι(Twe) = Tσ(w)ι(e) for all w ∈ W, e ∈ Ev. By the uniqueness in Lemma 1.4

we see that ι = ǫEσE : Ev −→ Ev where ǫE ∈ K − {0}. Since ι2 = 1, σ2
E = 1, we

see that ǫE = ±1. The lemma is proved.

Lemma 1.8. Let E ∈ IrrW . We have nE = −aE + aE† .

For x ∈ W we have (using Lemma 1.4, 1.6)

(a) tr(Tw0x, Ev) = tr(Tw0
T−1
x−1 , Ev) = vnE tr(σET

−1
x−1 , Ev).

Making a change of variable x 7→ w0x in 1.5(a) and using that Tx−1w0
= Tw0σ(x)−1

we obtain

fEv
dim(E) =

∑

x∈W

tr(Tw0x, Ev)tr(Tw0σ(x)−1 , Ev)

= v2nE

∑

x∈W

tr(σET
−1
x−1 , Ev)tr(σET

−1
σ(x), Ev).

Using now Lemma 1.7 and the equality l(x) = l(σ(x−1)) we obtain

fEv
dim(E) = v2nE

∑

x∈W

tr(σE†Tx, (E
†)v)tr(σE†Tσ(x−1), (E

†)v)

= v2nE

∑

x∈W

tr(σE†Tx, (E
†)v)tr(Tξ−1σE† , (E†)v)

= v2nEf(E†)v dim(E†).

(The last step uses 1.5(c) for E† instead of E.) Thus we have fEv
= v2nEf(E†)v .

The left hand side is as in 1.5(b) and similarly the right hand side of the form

f ′
0v

2nE−2a
E† + strictly higher powers of v

where f0, f
′
0 ∈ C−{0}. It follows that −2aE = 2nE−2aE† . The lemma is proved.
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Lemma 1.9. Let E ∈ IrrW and let x ∈ W . We have

(a) tr(Tx, Ev) = (−1)l(x)v−aE tr(tx, E♠) mod v−aE+1C[v],

(b) tr(σETx, Ev) = (−1)l(x)v−aE tr(σEtx, E♠) mod v−aE+1C[v].

For a proof of (a), see [L3, 20.6(b)]. We now give a proof of (b) along the same
lines as that of (a). There is a unique two sided cell c such that tz|E♠

= 0 for
z ∈ W − c. Let a = a(z) for all z ∈ c. By [L3, 20.6(c)] we have a = aE . From the
definition of cx we see that Tx =

∑
y∈W fycy where fx = 1 and fy ∈ v−1Z[v−1]

for y 6= x. Applying † we obtain (−1)l(x)T−1
x−1 =

∑
y∈W fyc

†
y; applying¯we obtain

(−1)l(x)Tx =
∑

y∈W f̄yc
†
y. Thus we have

(−1)l(x)tr(σETx, Ev) =
∑

y∈W

f̄ytr(σEc
†
y, Ev)

=
∑

y,z∈W,d∈D;d=dz

f̄yhy,d,zndtr(σEtz, E♠).

In the last sum we can assume that z ∈ c and d ∈ c so that hy,d,z = γy,d,z−1v−a

mod v−a+1Z[v]. Since f̄x = 1 and f̄y ∈ vZ[v] for all y 6= x we see that

(−1)l(x)tr(σETx, Ev) =
∑

z∈c,d∈D∩c

γx,d,z−1ndv
−atr(σEtz, E♠) mod v−a+1C[v].

If x /∈ c then γx,d,z−1 = 0 for all d, z in the sum so that tr(σETx, Ev) = 0; we have
also tr(σEtx, E♠) = 0 and the desired formula follows. We now assume that x ∈ c.
Then for d, z as above we have γx,d,z−1 = 0 unless x = z and d = dx in which case
γx,d,z−1nd = 1. Thus (b) holds again. The lemma is proved.

Lemma 1.10. Let E ∈ IrrW . Let c be the unique two sided cell such that tz|E♠
=

0 for z ∈ W − c. Let c′ be the unique two sided cell such that tz|(E†)♠ = 0 for
z ∈ W − c′. We have c′ = w0c.

Using 1.8(a) and 1.7(a) we have

(a) tr(Tw0x, Ev) = vnE tr(σET
−1
x−1 , Ev) = vnE ǫE(−1)l(x)tr(σE†Tx, (E

†)v).

Using 1.9(a) for E and 1.9(b) for E† we obtain

tr(Tw0x, Ev) = (−1)l(w0x)v−aE tr(tw0x, E♠) mod v−aE+1C[v],

tr(σE†Tx, (E
†)v) = (−1)l(x)v−a

E† tr(σE†tx, E
†
♠) mod v−a

E†+1C[v].
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Combining with (a) we obtain

(−1)l(w0x)v−aE tr(tw0x, E♠) + strictly higher powers of v

= vnE ǫEv
−a

E† tr(σE†tx, E
†
♠) + strictly higher powers of v.

Using the equality nE = −aE + aE† (see 1.8) we deduce

(−1)l(w0x)tr(tw0x, E♠) = ǫEtr(σE†tx, E
†
♠).

Now we can find x ∈ W such that tr(tw0x, E♠) 6= 0 and the previous equality
shows that tx|(E†)♠ 6= 0. Moreover from the definition we have w0x ∈ c and x ∈ c′

so that w0c ∩ c′ 6= ∅. Since w0c is a two-sided cell (see [L3, 11.7(d)]) it follows
that w0c = c′. The lemma is proved.

Lemma 1.11. Let c be a two-sided cell of W . Let c′ be the two-sided cell w0c =
cw0 (see Lemma 1.2). Let a = a(x) for any x ∈ c; let a′ = a(x′) for any x′ ∈ c′.

The K-linear map Jc

K −→ Jc

K given by ξ 7→ φ(va−a′

Tw0
)ξ (left multiplication in

JK) is obtained from a C-linear map Jc

C
−→ Jc

C
(with square 1) by extension of

scalars from C to K.

We can find a direct sum decomposition Jc

C
= ⊕m

i=1E
i where Ei are simple

left ideals of JC contained in Jc

C
. We have Jc

K = ⊕m
i=1K ⊗ Ei. It is enough to

show that for any i, the K-linear map K ⊗ Ei −→ K ⊗ Ei given by the action of
φ(va−a′

Tw0
) in the left JK -module structure of K⊗Ei is obtained from a C-linear

map Ei −→ Ei (with square 1) by extension of scalars from C to K. We can find
E ∈ IrrW such that Ei is isomorphic to E♠ as a JC-module. It is then enough to

show that the action of va−a′

Tw0
in the left HK -module structure of Ev is obtained

from the map σE : E −→ E by extension of scalars from C to K. This follows
from the equality va−a′

Tw0
= σE : Ev −→ Ev (since σE is obtained by extension of

scalars from a C-linear map E −→ E with square 1) provided that we show that
−nE = a − a′. Since nE = −aE + aE† (see Lemma 1.8) it is enough to show
that a = aE and a′ = aE† . The equality a = aE follows from [L3, 20.6(c)]. The
equality a′ = aE† also follows from [L3, 20.6(c)] applied to E†, c′ = w0c instead
of E, c (see Lemma 1.10). The lemma is proved.

Lemma 1.12. In the setup of Lemma 1.11 we have for any x ∈ c:

(a) φ(va−a′

Tw0
)tx =

∑

x′∈c

mx′,xtx′

(b) φ(v2a−2a′

T 2
w0

)tx = tx

where mx′,x ∈ Z.

Now (b) and the fact that (a) holds with mx′,x ∈ C is just a restatement of

Lemma 1.11. Since φ(va−a′

Tw0
) ∈ JA we have also mx′,x ∈ A. We now use that

A ∩C = Z and the lemma follows.
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Lemma 1.13. In the setup of Lemma 1.11 we have for any x ∈ c the following
equalities in Hc:

(a) va−a′

Tw0
c†x =

∑

x′∈c

mx′,xc
†
x′ ,

(b) v2a−2a′

T 2
w0

c†x = c†x

where mx′,x ∈ Z are the same as in Lemma 1.12. Moreover, if mx′,x 6= 0 then
x′ ∼L x.

The first sentence follows from Lemma 1.12 using [L3, 18.10(a)]. Clearly, if
mx′,x 6= 0 then x′ ≤L x which together with x′ ∼LR x implies x′ ∼L x.

2. The main results

2.1. In this section we fix a two-sided cell c of W ; a, a′ are as in 1.11. We
define an A-linear map θ : H≤c −→ A by θ(c†x) = 1 if x ∈ D ∩ c, θ(c†x) = 0 if
x ≤LR x′ for some x′ ∈ c and x /∈ D ∩ c. Note that θ is zero on H<c hence it can
be viewed as an A-linear map Hc −→ A.

Lemma 2.2. Let x, x′ ∈ c. We have

(a) θ(c†
x−1c

†
x′) = ndx

δx,x′va + strictly lower powers of v.

The left hand side of (a) is

∑

d∈D∩c

hx−1,x′,d =
∑

d∈D∩c

γx−1,x′,dv
a + strictly lower powers of v

= ndx
δx,x′va + strictly lower powers of v.

The lemma is proved.
We now state one of the main results of this paper.

Theorem 2.3. There exists a unique permutation u 7→ u∗ of c (with square 1)
such that for any u ∈ c we have

(a) va−a′

Tw0
c†u = ǫuc

†
u∗ mod H<c

where ǫu = ±1. For any u ∈ c we have ǫu−1 = ǫu = ǫσ(u) = ǫu∗ and σ(u∗) =

(σ(u))∗ = ((u−1)∗)−1.

Let u ∈ c. We set Z = θ((va−a′

Tw0
c†u)

♭va−a′

Tw0
c†u). We compute Z in two

ways, using Lemma 2.2 and Lemma 1.13. We have

Z = θ(c†
u−1v

2a−2a′

T 2
w0

c†u) = θ(c†
u−1c

†
u) = ndu

va + strictly lower powers of v,
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Z = θ((
∑

y∈c

my,uc
†
y)

♭(
∑

y′∈c

my′,uc
†
y′)) =

∑

y,y′∈c

my,umy′,uθ(c
†

y−1c
†
y′)

=
∑

y,y′∈c

my,umy′,undy
δy,y′va + strictly lower powers of v

=
∑

y∈c

ndy
m2

y,uv
a + strictly lower powers of v

=
∑

y∈c

ndu
m2

y,uv
a + strictly lower powers of v

where my,u ∈ Z is zero unless y ∼L u (see 1.13), in which case we have dy = du.
We deduce that

∑
y∈c

m2
y,u = 1, so that we have my,u = ±1 for a unique y ∈ c

(denoted by u∗) and my,u = 0 for all y ∈ c−{u∗}. Then (a) holds. Using (a) and
Lemma 1.13(b) we see that u 7→ u∗ has square 1 and that ǫuǫu∗ = 1.

The automorphism σ : H −→ H (see 1.1) satisfies the equality σ(c†u) = c†
σ(u) for

any u ∈ W ; note also that w ∈ c ↔ σ(w) ∈ c (see Lemma 1.2). Applying σ to (a)
we obtain

va−a′

Tw0
c†σ(u) = ǫuc

†
σ(u∗)

in Hc. By (a) we have also va−a′

Tw0
c†
σ(u) = ǫσ(u)c

†

(σ(u))∗ in Hc. It follows that

ǫuc
†

σ(u∗) = ǫσ(u)c
†

(σ(u))∗ hence ǫu = ǫσ(u) and σ(u∗) = (σ(u))∗.

Applying h 7→ h♭ to (a) we obtain

va−a′

c†
u−1Tw0

= ǫuc
†

(u∗)−1

in Hc. By (a) we have also

va−a′

c†
u−1Tw0

= va−a′

Tw0
c†
σ(u−1)

= ǫσ(u−1)c
†

(σ(u−1))∗

in Hc. It follows that ǫuc
†

(u∗)−1 = ǫσ(u−1)c
†

(σ(u−1))∗ hence ǫu = ǫσ(u−1) and

(u∗)−1 = (σ(u−1))∗. Since ǫσ(u−1) = ǫu−1 , we see that ǫu = ǫu−1 . Replacing

u by u−1 in (u∗)−1 = (σ(u−1))∗ we obtain ((u−1)∗)−1 = (σ(u))∗ as required. The
theorem is proved.

2.4. For u ∈ c we have

(a) u ∼L u∗,

(b) σ(u) ∼R u∗.

Indeed, (a) follows from 1.13. To prove (b) it is enough to show that
σ(u)−1 ∼L (u∗)−1. Using (a) for σ(u)−1 instead of u we see that it is enough
to show that (σ(u−1))∗ = (u∗)−1; this follows from 2.3.
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If we assume that
(c) any left cell in c intersects any right cell in c in exactly one element

then by (a),(b), for any u ∈ c,
(d) u∗ is the unique element of c in the intersection of the left cell of u with

right cell of σ(u).
Note that condition (c) is satisfied for any c if W is of type An or if W is of type
Bn (n ≥ 2) with L(s) = 2 for all but one s ∈ S and L(s) = 1 or 3 for the remaining
s ∈ S. (In this last case we are in the quasisplit case and we have σ = 1 hence
u∗ = u for all u.)

Theorem 2.5. For any x ∈ W we set ϑ(x) = γw0dw0x−1 ,x,(x∗)−1 .

(a) If d ∈ D and x, y ∈ c satisfy γw0d,x,y 6= 0 then y = (x∗)−1.
(b) If x ∈ c then there is a unique d ∈ D ∩ w0c such that γw0d,x,(x∗)−1 6= 0,

namely d = dw0x−1 . Moreover we have ϑ(x) = ±1.

(c) For u ∈ c we have ǫu = (−1)l(w0d)ndϑ(u) where d = dw0u−1 .

Appplying h 7→ h† to 2.3(a) we obtain for any u ∈ c:

(d) va−a′

(−1)l(w0)Tw0
cu =

∑

z∈c

δz,u∗ǫucz mod
∑

z′∈W−c

Acz′ .

We have Tw0
=

∑
y∈W (−1)l(w0y)p1,w0ycy hence Tw0

=
∑

y∈W (−1)l(w0y)p1,w0ycy.

Introducing this in (d) we obtain

va−a′
∑

y∈W

(−1)l(y)p1,w0ycycu =
∑

z∈c

δz,u∗ǫucz mod
∑

z′∈W−c

Acz′

that is,

va−a′
∑

y,z∈W

(−1)l(y)p1,w0yhy,u,zcz =
∑

z∈c

δz,u∗ǫucz mod
∑

z′∈W−c

Acz′ .

Thus, for z ∈ c we have

(e) va−a′
∑

y∈W

(−1)l(y)p1,w0yhy,u,z = δz,u∗ǫu.

Here we have hy,u,z = γy,u,z−1v−a mod v−a+1Z[v] and we can assume than z ≤R

y so that w0y ≤R w0z and a(w0y) ≥ a(w0z) = a′.
For w ∈ W we set sw = nw if w ∈ D and sw = 0 if w /∈ D. By [L3, 14.1] we have

p1,w = swv
−a(w) mod v−a(w)−1Z[v−1] hence p1,w = swv

a(w) mod va(w)+1Z[v].

Hence for y in the sum above we have p1,w0y = sw0yv
a(w0y) mod va(w0y)+1Z[v].

Thus (e) gives

va−a′ ∑

y∈c

(−1)l(y)sw0yγy,u,z−1va(w0y)−a − δz,u∗ǫu ∈ vZ[v]
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and using a(w0y) = a′ for y ∈ c we obtain

∑

y∈c

(−1)l(y)sw0yγy,u,z−1 = δz,u∗ǫu.

Using the definition of sw0y we obtain

(f)
∑

d∈D∩w0c

(−1)l(w0d)ndγw0d,u,z−1 = δz,u∗ǫu.

Next we note that
(g) if d ∈ D and x, y ∈ c satisfy γw0d,x,y 6= 0 then d = dw0x−1 .

Indeed from [L3,§14, P8] we deduce w0d ∼L x−1. Using [L3, 11.7] we deduce
d ∼L w0x

−1 so that d = dw−1

0
x−1 . This proves (g).

Using (g) we can rewrite (f) as follows.

(h) (−1)l(w0)(−1)l(d)ndγw0d,u,z−1 = δz,u∗ǫu

where d = dw0u−1 .
We prove (a). Assume that d ∈ D and x, y ∈ c satisfy γw0d,x,y 6= 0, y 6= (x∗)−1.

Using (g) we have d = dw0x−1 . Using (h) with u = x, z = y−1 we see that
γw0d,x,y = 0, a contradiction. This proves (a).

We prove (b). Using (h) with u = x, z = x∗ we see that

(i) (−1)l(w0d)ndγw0d,x,(x∗)−1 = ǫu

where d = dw0x−1 . Hence the existence of d in (b) and the equality ϑ(x) = ±1
follow; the uniqueness of d follows from (g).

Now (c) follows from (i). This completes the proof of the theorem.

2.6. In the case where L = l, ϑ(u) (in 2.5(c)) is ≥ 0 and ±1 hence 1; moreover,

nd = 1, (−1)l(d) = (−1)a
′

for any d ∈ D ∩ w0c (by the definition of D). Hence we

have ǫu = (−1)l(w0)+a′

for any u ∈ c, a result of [MA].
Now Theorem 2.5 also gives a characterization of u∗ for u ∈ c; it is the unique

element u′ ∈ c such that γw0d,u,u′−1 6= 0 for some d ∈ D ∩ w0c.
We will show:
(a) The subsets X = {d∗; d ∈ D ∩ c} and X ′ = {w0d

′; d′ ∈ D ∩ w0c} of c

coincide.
Let d ∈ D∩c. By 2.5(b) we have γw0d′,d,(d∗)−1 = ±1 for some d′ ∈ D∩w0c. Hence
γ(d∗)−1,w0d′,d = ±1. Using [L3, 14.2, P2] we deduce d∗ = w0d

′. Thus X ⊂ X ′.
Let Y (resp. Y ′) be the set of left cells contained in c (resp. w0c). We have
♯(X) = ♯(Y ) and ♯(X ′) = ♯(Y ′). By [L3, 11.7(c)] we have ♯(Y ) = ♯(Y ′). It follows
that ♯(X) = ♯(X ′). Since X ⊂ X ′, we must have X = X ′. This proves (a).
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Theorem 2.7. We have

φ(va−a′

Tw0
) =

∑

d∈D∩c

ϑ(d)ǫdtd∗ mod
∑

u∈W−c

Atu.

We set φ(va−a′

Tw0
) =

∑
u∈W putu where pu ∈ A. Combining 1.12(a), 1.13(a),

2.3(a) we see that for any x ∈ c we have

φ(va−a′

Tw0
)tx = ǫxtx∗ ,

hence
ǫxtx∗ =

∑

u∈c

pututx =
∑

u,y∈c

puγu,x,y−1ty.

It follows that for any x, y ∈ c we have

∑

u∈c

puγu,x,y−1 = δy,x∗ǫx.

Taking x = w0d where d = dw0y ∈ D ∩ w0c we obtain

∑

u∈c

puγw0dw0y,y−1,u = δy,(w0dw0y)∗ǫw0dw0y

which, by 2.5, can be rewritten as

p((y−1)∗)−1ϑ(y−1) = δy,(w0dw0y)∗ǫw0dw0y
.

We see that for any y ∈ c we have

pσ(y∗) = δy,(w0dw0y)∗ϑ(y
−1)ǫw0dw0y

.

In particular we have pσ(y∗) = 0 unless y = (w0dw0y)
∗ in which case

pσ(y∗) = p(σ(y))∗) = ϑ(y−1)ǫy.

(We use that ǫy∗ = ǫy .) If y = (w0dw0y)
∗ then y∗ ∈ X ′ hence by 2.6(a), y∗ = d∗

that is y = d for some d ∈ D. Conversely, if y ∈ D then w0y
∗ ∈ D (by 2.6(a)) and

w0y
∗ ∼L w0y (since y∗ ∼L y) hence dw0y = w0y

∗. We see that y = (w0dw0y)
∗ if

and only if y ∈ D. We see that

φ(va−a′

Tw0
) =

∑

d∈D∩c

ϑ(d−1)ǫdt(σ(d))∗ +
∑

u∈W−c

putu.

Now d 7→ σ(d) is a permutation of D∩ c and ϑ(d−1) = ϑ(d) = ϑ(σ(d)), ǫσ(d) = ǫd.
The theorem follows.
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Corollary 2.8. We have

φ(Tw0
) =

∑

d∈D

ϑ(d)ǫdv
−a(d)+a(w0d)td∗ ∈ JA.

2.9. We set Tc =
∑

d∈D∩c
ϑ(d)ǫdtd∗ ∈ Jc. We show:

(a) T2
c =

∑
d∈D∩c

ndtd;
(b) txTc = Tctσ(x) for any x ∈ W .

By 2.7 we have φ(va−a′

Tw0
) = Tc + ξ where ξ ∈ JW−c

K :=
∑

u∈W−c
Ktu. Since

Jc

K , JW−c

K are two-sided ideals of JK with intersection zero and φK : HK −→ JK
is an algebra homomorphism, it follows that

φ(v2a−2a′

T 2
w0

) = (φ(va−a′

Tw0
))2 = (Tc + ξ)2 = T

2
c
+ ξ′

where ξ′ ∈ JW−c

K . Hence, for any x ∈ c we have φ(v2a−2a′

T 2
w0

)tx = T2
c
tx so that

(using 1.12(b)): tx = T2
ctx. We see that T2

c is the unit element of the ring Jc

K .
Thus (a) holds.

We prove (b). For any y ∈ W we have TyTw0
= Tw0

Tσ(y) hence, applying φK ,

φ(Ty)φ(v
a−a′

Tw0
) = φ(va−a′

Tw0
)φ(Tσ(y))

that is, φ(Ty)(Tc+ ξ) = (Tc+ ξ)φ(Tσ(y)). Thus, φ(Ty)Tc = Tcφ(Tσ(y))+ ξ1 where

ξ1 ∈ JW−c

K . Since φK is an isomorphism, it follows that for any x ∈ W we have

txTc = Tctσ(x) mod JW−c

K . Thus (b) holds.

2.10. In this subsection we assume that L = l. In this case 2.8 becomes

φ(Tw0
) =

∑

d∈D

(−1)l(w0)+a(w0d)v−a(d)+a(w0d)td∗ ∈ JA.

(We use that ϑ(d) = 1.)

For any left cell Γ contained in c let nΓ be the number of fixed points of the
permutation u 7→ u∗ of Γ. Now Γ carries a representation [Γ] of W and from
2.3 we see that tr(w0, [Γ]) = ±nΓ. Thus nΓ is the absolute value of the integer
tr(w0, [Γ]). From this the number nΓ can be computed for any Γ. In this way we
see for example that if W is of type E7 or E8 and c is not an exceptional two-sided
cell, then nΓ > 0.
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