

MIT Open Access Articles

Action of longest element on a Hecke algebra cell module

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

Citation: Makar, A. B. et al. "Formate Assay in Body Fluids: Application in Methanol Poisoning." Biochemical Medicine 13.2 (1975): 117–126.

As Published: http://dx.doi.org/10.2140/pjm.2015.279.383

Publisher: Mathematical Sciences Publishers

Persistent URL: http://hdl.handle.net/1721.1/105144

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

arXiv:1406.0452v3 [math.RT] 27 Jun 2015

ACTION OF LONGEST ELEMENT ON A HECKE ALGEBRA CELL MODULE

G. Lusztig

Dedicated to the memory of Robert Steinberg

INTRODUCTION

0.1. The Hecke algebra \mathcal{H} (over $\mathcal{A} = \mathbf{Z}[v, v^{-1}]$, v an indeterminate) of a finite Coxeter group W has two bases as an \mathcal{A} -module: the standard basis $\{T_x; x \in W\}$ and the basis $\{C_x; x \in W\}$ introduced in [KL]. The second basis determines a decomposition of W into two-sided cells and a partial order for the set of twosided cells, see [KL]. Let $l: W \to \mathbf{N}$ be the length function, let w_0 be the longest element of W and let \mathbf{c} be a two-sided cell. Let a (resp. a') be the value of the \mathbf{a} -function [L3, 13.4] on \mathbf{c} (resp. on $w_0\mathbf{c}$). The following result was proved by Mathas in [MA].

(a) There exists a unique permutation $u \mapsto u^*$ of \mathbf{c} such that for any $u \in \mathbf{c}$ we have $T_{w_0}(-1)^{l(u)}C_u = (-1)^{l(w_0)+a'}v^{-a+a'}(-1)^{l(u^*)}C_{u^*}$ plus an \mathcal{A} -linear combination of elements $C_{u'}$ with u' in a two-sided cell strictly smaller than \mathbf{c} . Moreover, for any $u \in \mathbf{c}$ we have $(u^*)^* = u$.

A related (but weaker) result appears in [L1, (5.12.2)].

A result similar to (a) which concerns canonical bases in representations of quantum groups appears in [L2, Cor. 5.9]; now, in the case where W is of type A, (a) can be deduced from *loc.cit*. using the fact that irreducible representations of the Hecke algebra of type A (with their canonical bases) can be realized as 0-weight spaces of certain irreducible representations of a quantum group with their canonical bases.

As R. Bezrukavnikov pointed out to the author, (a) specialized for v = 1 (in the group algebra of W instead of \mathcal{H}) and assuming that W is crystallographic can be deduced from [BFO, Prop. 4.1] (a statement about Harish-Chandra modules), although it is not explicitly stated there.

In this paper we shall prove a generalization of (a) which applies to the Hecke algebra associated to W and any weight function assumed to satisfy the properties P1-P15 in [L3,§14], see Theorem 2.3; (a) corresponds to the special case where the weight function is equal to the length function. As an application we show that

Supported in part by National Science Foundation grant DMS-1303060.

the image of T_{w_0} in the asymptotic Hecke algebra is given by a simple formula (see 2.8).

I thank Matthew Douglass for bringing the paper [MA] to my attention. I thank the referee for helpful comments.

0.2. Notation. W is a finite Coxeter group; the set of simple reflections is denoted by S. We shall adopt many notations of [L3]. Let \leq be the standard partial order on W. Let $l: W \to \mathbf{N}$ be the length function of W and let $L: W \to \mathbf{N}$ be a weight function (see [L3, 3.1]) that is, a function such that L(ww') = L(w) + L(w') for any w, w' in W such that l(ww') = l(w) + l(w'); we assume that L(s) > 0 for any $s \in S$. Let w_0, \mathcal{A} be as in 0.1 and let \mathcal{H} be the Hecke algebra over \mathcal{A} associated to W, L as in [L3, 3.2]; we shall assume that properties P1-P15 in [L3, §14] are satisfied. (This holds automatically if L = l by [L3,§15] using the results of [EW]. This also holds in the quasisplit case, see [L3,§16].) We have $\mathcal{A} \subset \mathcal{A}' \subset K$ where $\mathcal{A}' = \mathbf{C}[v, v^{-1}], K = \mathbf{C}(v).$ Let $\mathcal{H}_K = K \otimes_{\mathcal{A}} \mathcal{H}$ (a K-algebra). Recall that \mathcal{H} has an \mathcal{A} -basis $\{T_x; x \in W\}$, see [L3, 3.2] and an \mathcal{A} -basis $\{c_x; x \in W\}$, see [L3, 5.2]. For $x \in W$ we have $c_x = \sum_{y \in W} p_{y,x} T_y$ and $T_x = \sum_{y \in W} (-1)^{l(xy)} p_{w_0 x, w_0 y} c_y$ (see [L3, 11.4]) where $p_{x,x} = 1$ and $p_{y,x} \in v^{-1}\mathbf{Z}[v^{-1}]$ for $y \neq x$. We define preorders $\leq_{\mathcal{L}}, \leq_{\mathcal{R}}, \leq_{\mathcal{LR}}$ on W in terms of $\{c_x; x \in W\}$ as in [L3, 8.1]. Let $\sim_{\mathcal{L}}, \sim_{\mathcal{R}}, \sim_{\mathcal{LR}}$ be the corresponding equivalence relations on W, see [L3, 8.1] (the equivalence classes are called left cells, right cells, two-sided cells). Let $\bar{}: \mathcal{A} \to \mathcal{A}$ be the ring involution such that $\overline{v^n} = v^{-n}$ for $n \in \mathbb{Z}$. Let $\overline{:} \mathcal{H} \to \mathcal{H}$ be the ring involution such that $\overline{fT_x} = \overline{f}T_{x^{-1}}^{-1}$ for $x \in W, f \in \mathcal{A}$. For $x \in W$ we have $\overline{c_x} = c_x$. Let $h \mapsto h^{\dagger}$ be the algebra automorphism of \mathcal{H} or of \mathcal{H}_K given by $T_x \mapsto (-1)^{l(x)} T_{x^{-1}}^{-1}$ for all $x \in W$, see [L3, 3.5]. Then the basis $\{c_x^{\dagger}; x \in W\}$ of \mathcal{H} is defined. (In the case where L = l, for any x we have $c_x^{\dagger} = (-1)^{l(x)} C_x$ where C_x is as in 0.1.) Let $h \mapsto h^{\flat}$ be the algebra antiautomorphism of \mathcal{H} given by $T_x \mapsto T_{x^{-1}}$ for all $x \in W$, see [L3, 3.5]; for $x \in W$ we have $c_x^{\flat} = c_{x^{-1}}$, see [L3, 5.8]. For $x, y \in W$ we have $c_x c_y = \sum_{z \in W} h_{x,y,z} c_z, c_x^{\dagger} c_y^{\dagger} = \sum_{z \in W} h_{x,y,z} c_z^{\dagger}$, where $h_{x,y,z} \in \mathcal{A}$. For any $z \in W$ there is a unique number $\mathbf{a}(z) \in \mathbf{N}$ such that for any x, y in W we have

 $h_{x,y,z} = \gamma_{x,y,z^{-1}} v^{\mathbf{a}(z)}$ + strictly smaller powers of v

where $g_{x,y,z^{-1}} \in \mathbf{Z}$ and $g_{x,y,z^{-1}} \neq 0$ for some x, y in W. We have also

$$h_{x,y,z} = \gamma_{x,y,z^{-1}} v^{-\mathbf{a}(z)}$$
 + strictly larger powers of v

Moreover $z \mapsto \mathbf{a}(z)$ is constant on any two-sided cell. The free abelian group J with basis $\{t_w; w \in W\}$ has an associative ring structure given by $t_x t_y = \sum_{z \in W} \gamma_{x,y,z^{-1}} t_z$; it has a unit element of the form $\sum_{d \in \mathcal{D}} n_d t_d$ where \mathcal{D} is a subset of W consisting of certain elements with square 1 and $n_d = \pm 1$. Moreover for $d \in \mathcal{D}$ we have $n_d = \gamma_{d,d,d}$.

For any $x \in W$ there is a unique element $d_x \in \mathcal{D}$ such that $x \sim_{\mathcal{L}} d_x$. For a commutative ring R with 1 we set $J_R = R \otimes J$ (an R-algebra).

There is a unique \mathcal{A} -algebra homomorphism $\phi : \mathcal{H} \to J_{\mathcal{A}}$ such that $\phi(c_x^{\dagger}) = \sum_{d \in \mathcal{D}, z \in W; d_z = d} h_{x,d,z} n_d t_z$ for any $x \in W$. After applying $\mathbf{C} \otimes_{\mathcal{A}}$ to ϕ (we regard \mathbf{C} as an \mathcal{A} -algebra via $v \mapsto 1$), ϕ becomes a \mathbf{C} -algebra isomorphism $\phi_{\mathbf{C}} : \mathbf{C}[W] \xrightarrow{\sim} J_{\mathbf{C}}$ (see [L3, 20.1(e)]). After applying $K \otimes_{\mathcal{A}}$ to ϕ , ϕ becomes a K-algebra isomorphism $\phi_K : \mathcal{H}_K \xrightarrow{\sim} J_K$ (see [L3, 20.1(d)]).

For any two-sided cell \mathbf{c} let $\mathcal{H}^{\leq \mathbf{c}}$ (resp. $\mathcal{H}^{<\mathbf{c}}$) be the \mathcal{A} -submodule of \mathcal{H} spanned by $\{c_x^{\dagger}, x \in W, x \leq_{\mathcal{LR}} x' \text{ for some } x' \in \mathbf{c}\}$ (resp. $\{c_x^{\dagger}, x \in W, x <_{\mathcal{LR}} x' \text{ for some } x' \in \mathbf{c}\}$). Note that $\mathcal{H}^{\leq \mathbf{c}}, \mathcal{H}^{<\mathbf{c}}$ are two-sided ideals in \mathcal{H} . Hence $\mathcal{H}^{\mathbf{c}} := \mathcal{H}^{\leq \mathbf{c}}/\mathcal{H}^{<\mathbf{c}}$ is an \mathcal{H}, \mathcal{H} bimodule. It has an \mathcal{A} -basis $\{c_x^{\dagger}, x \in \mathbf{c}\}$. Let $J^{\mathbf{c}}$ be the subgroup of J spanned by $\{t_x; x \in \mathbf{c}\}$. This is a two-sided ideal of J. Similarly, $J_{\mathbf{C}}^{\mathbf{c}} := \mathbf{C} \otimes J^{\mathbf{c}}$ is a two-sided ideal of $J_{\mathbf{C}}$ and $J_{K}^{\mathbf{c}} := K \otimes J^{\mathbf{c}}$ is a two-sided ideal of J_{K} .

We write $E \in \operatorname{Irr} W$ whenever E is a simple $\mathbb{C}[W]$ -module. We can view E as a (simple) $J_{\mathbb{C}}$ -module E_{\bigstar} via the isomorphism $\phi_{\mathbb{C}}^{-1}$. Then the (simple) J_K -module $K \otimes_{\mathbb{C}} E_{\bigstar}$ can be viewed as a (simple) \mathcal{H}_K -module E_v via the isomorphism ϕ_K . Let E^{\dagger} be the simple $\mathbb{C}[W]$ -module which coincides with E as a \mathbb{C} -vector space but with the w action on E^{\dagger} (for $w \in W$) being $(-1)^{l(w)}$ times the w-action on E. Let $\mathbf{a}_E \in \mathbb{N}$ be as in [L3, 20.6(a)].

1. Preliminaries

1.1. Let $\sigma: W \to W$ be the automorphism given by $w \mapsto w_0ww_0$; it satisfies $\sigma(S) = S$ and it extends to a **C**-algebra isomorphism $\sigma: \mathbf{C}[W] \to \mathbf{C}[W]$. For $s \in S$ we have $l(w_0) = l(w_0s) + l(s) = l(\sigma(s)) + l(\sigma(s)w_0)$ hence $L(w_0) = L(w_0s) + L(s) = L(\sigma(s)) + L(\sigma(s)w_0) = L(\sigma(s)) + L(w_0s)$ so that $L(\sigma(s)) = L(s)$. It follows that $L(\sigma(w)) = L(w)$ for all $w \in W$ and that we have an \mathcal{A} -algebra automorphism $\sigma: \mathcal{H} \to \mathcal{H}$ where $\sigma(T_w) = T_{\sigma(w)}$ for any $w \in W$. This extends to a K-algebra isomorphism $\sigma: \mathcal{H}_K \to \mathcal{H}_K$. We have $\sigma(c_w) = c_{\sigma(w)}$ for any $w \in W$. For any $h \in \mathcal{H}$ we have $\sigma(h^{\dagger}) = (\sigma(h))^{\dagger}$. Hence we have $\sigma(c_w^{\dagger}) = c_{\sigma(w)}^{\dagger}$ for any $w \in W$. We have $h_{\sigma(x),\sigma(y),\sigma(z)} = h_{x,y,z}$ for all $x, y, z \in W$. It follows that $\mathbf{a}(\sigma(w)) = \mathbf{a}(w)$ for all $w \in W$ and $\gamma_{\sigma(x),\sigma(y),\sigma(z)} = \gamma_{x,y,z}$ for all $x, y, z \in W$ so that we have a ring isomorphism $\sigma: J \to J$ where $\sigma(t_w) = t_{\sigma(w)}$ for any $w \in W$. This extends to an \mathcal{A} -algebra isomorphism $\sigma: J_{\mathcal{A}} \to J_{\mathcal{A}}$, to a **C**-algebra isomorphism $\sigma: J_{\mathbf{C}} \to J_{\mathbf{C}}$ and to a K-algebra isomorphism $\sigma: J_{\mathcal{A}} \to J_{\mathcal{A}}$. From the definitions we see that $\phi: \mathcal{H} \to J_{\mathcal{A}}$ (see 0.2) satisfies $\phi\sigma = \sigma\phi$. Hence $\phi_{\mathbf{C}}$ satisfies $\phi_{\mathbf{C}}\sigma = \sigma\phi_{\mathbf{C}}$ and ϕ_K satisfies $\phi_K \sigma = \sigma\phi_K$.

We show:

(a) For $h \in \mathcal{H}$ we have $\sigma(h) = T_{w_0} h T_{w_0}^{-1}$.

It is enough to show this for h running through a set of algebra generators of \mathcal{H} . Thus we can assume that $h = T_s^{-1}$ with $s \in S$. We must show that $T_{\sigma(s)}^{-1}T_{w_0} = T_{w_0}T_s^{-1}$: both sides are equal to $T_{\sigma(s)w_0} = T_{w_0s}$.

Lemma 1.2. For any $x \in W$ we have $\sigma(x) \sim_{\mathcal{LR}} x$.

From 1.1(a) we deduce that $T_{w_0}c_x T_{w_0}^{-1} = c_{\sigma(x)}$. In particular, $\sigma(x) \leq_{\mathcal{LR}} x$. Replacing x by $\sigma(x)$ we obtain $x \leq_{\mathcal{LR}} \sigma(x)$. The lemma follows.

1.3. Let $E \in \operatorname{Irr} W$. We define $\sigma_E : E \to E$ by $\sigma_E(e) = w_0 e$ for $e \in E$. We have $\sigma_E^2 = 1$. For $e \in E, w \in W$, we have $\sigma_E(we) = \sigma(w)\sigma_E(e)$. We can view σ_E as a vector space isomorphism $E_{\bigstar} \xrightarrow{\sim} E_{\bigstar}$. For $e \in E_{\bigstar}, w \in W$ we have $\sigma_E(t_w e) = t_{\sigma(w)}\sigma_E(e)$. Now $\sigma_E : E_{\bigstar} \to E_{\bigstar}$ defines by extension of scalars a vector space isomorphism $E_v \to E_v$ denoted again by σ_E . It satisfies $\sigma_E^2 = 1$. For $e \in E_v, w \in W$ we have $\sigma_E(T_w e) = T_{\sigma(w)}\sigma_E(e)$.

Lemma 1.4. Let $E \in \text{Irr}W$. There is a unique (up to multiplication by a scalar in $K - \{0\}$) vector space isomorphism $g: E_v \to E_v$ such that $g(T_w e) = T_{\sigma(w)}g(e)$ for all $w \in W, e \in E_v$. We can take for example $g = T_{w_0} : E_v \to E_v$ or $g = \sigma_E :$ $E_v \to E_v$. Hence $T_{w_0} = \lambda_E \sigma_E : E_v \to E_v$ where $\lambda_E \in K - \{0\}$.

The existence of g is clear from the second sentence of the lemma. If g' is another isomorphism $g': E_v \to E_v$ such that $g'(T_w e) = T_{\sigma(w)}g'(e)$ for all $w \in W, e \in E_v$ then for any $e \in E_v$ we have $g^{-1}g'(T_w e) = g^{-1}T_{\sigma(w)}g'(e) = T_w g^{-1}g'(e)$ and using Schur's lemma we see that $g^{-1}g'$ is a scalar. This proves the first sentence of the lemma hence the third sentence of the lemma.

1.5. Let $E \in \operatorname{Irr} W$. We have

(a)
$$\sum_{x \in W} \operatorname{tr}(T_x, E_v) \operatorname{tr}(T_{x^{-1}}, E_v) = f_{E_v} \dim(E)$$

where $f_{E_v} \in \mathcal{A}'$ is of the form

(b)
$$f_{E_v} = f_0 v^{-2\mathbf{a}_E} + \text{ strictly higher powers of } v$$

and $f_0 \in \mathbf{C} - \{0\}$. (See [L3, 19.1(e), 20.1(c), 20.7].)

From Lemma 1.4 we see that $\lambda_E^{-1} T_{w_0}$ acts on E_v as σ_E . Using [L4, 34.14(e)] with $c = \lambda_E^{-1} T_{w_0}$ (an invertible element of \mathcal{H}_K) we see that

(c)
$$\sum_{x \in W} \operatorname{tr}(T_x \sigma_E, E_v) \operatorname{tr}(\sigma_E^{-1} T_{x^{-1}}, E_v) = f_{E_v} \dim(E).$$

Lemma 1.6. Let $E \in \operatorname{Irr} W$. We have $\lambda_E = v^{n_E}$ for some $n_E \in \mathbb{Z}$.

For any $x \in W$ we have

$$\operatorname{tr}(\sigma_E c_x^{\dagger}, E_v) = \sum_{d \in \mathcal{D}, z \in W; d = d_z} h_{x, d, z} n_d \operatorname{tr}(\sigma_E t_z, E_{\bigstar}) \in \mathcal{A}'$$

since $\operatorname{tr}(\sigma_E t_z, E_{\bigstar}) \in \mathbb{C}$. It follows that $\operatorname{tr}(\sigma_E h, E_v) \in \mathcal{A}'$ for any $h \in \mathcal{H}$. In particular, both $\operatorname{tr}(\sigma_E T_{w_0}, E_v)$ and $\operatorname{tr}(T_{w_0}^{-1}\sigma_E, E_v)$ belong to \mathcal{A}' . Thus $\lambda_E \dim E$ and $\lambda_E^{-1} \dim E$ belong to \mathcal{A}' so that $\lambda_E = bv^n$ for some $b \in \mathbb{C} - \{0\}$ and $n \in \mathbb{Z}$. From the definitions we have $\lambda_E|_{v=1} = 1$ (for $v = 1, T_{w_0}$ becomes w_0) hence b = 1. The lemma is proved. **Lemma 1.7.** Let $E \in \text{Irr}W$. There exists $\epsilon_E \in \{1, -1\}$ such that for any $x \in W$ we have

(a)
$$\operatorname{tr}(\sigma_E^{\dagger}T_x, (E^{\dagger})_v) = \epsilon_E(-1)^{l(x)}\operatorname{tr}(\sigma_E T_{x^{-1}}^{-1}, E_v).$$

Let $(E_v)^{\dagger}$ be the \mathcal{H}_K -module with underlying vector space E_v such that the action of $h \in \mathcal{H}_K$ on $(E_v)^{\dagger}$ is the same as the action of h^{\dagger} on E_v . From the proof in [L3, 20.9] we see that there exists an isomorphism of \mathcal{H}_K -modules $b : (E_v)^{\dagger} \xrightarrow{\sim} (E^{\dagger})_v$. Let $\iota : (E_v)^{\dagger} \to (E_v)^{\dagger}$ be the vector space isomorphism which corresponds under b to $\sigma_{E^{\dagger}} : (E^{\dagger})_v \to (E^{\dagger})_v$. Then we have $\operatorname{tr}(\sigma_{E^{\dagger}}T_x, (E^{\dagger})_v) = \operatorname{tr}(\iota T_x, (E_v)^{\dagger})$. It is enough to prove that $\iota = \pm \sigma_E$ as a K-linear map of the vector space $E_v = (E_v)^{\dagger}$ into itself. From the definition we have $\iota(T_w e) = T_{\sigma(w)}\iota(e)$ for all $w \in W, e \in (E_v)^{\dagger}$. Hence $(-1)^{l(w)}\iota(T_{w^{-1}}^{-1}e) = (-1)^{l(w)}T_{\sigma(w^{-1})}^{-1}\iota(e)$ for all $w \in W, e \in E_v$. It follows that $\iota(he) = (-1)^{l(w)}T_{\sigma(h)}\iota(e)$ for all $h \in \mathcal{H}, e \in E_v$. Hence $\iota(T_w e) = T_{\sigma(w)}\iota(e)$ for all $w \in W, e \in E_v : E_v \to E_v$ where $\epsilon_E \in K - \{0\}$. Since $\iota^2 = 1, \sigma_E^2 = 1$, we see that $\epsilon_E = \pm 1$. The lemma is proved.

Lemma 1.8. Let $E \in \operatorname{Irr} W$. We have $n_E = -\mathbf{a}_E + \mathbf{a}_{E^{\dagger}}$.

For $x \in W$ we have (using Lemma 1.4, 1.6)

(a)
$$\operatorname{tr}(T_{w_0x}, E_v) = \operatorname{tr}(T_{w_0}T_{x^{-1}}^{-1}, E_v) = v^{n_E}\operatorname{tr}(\sigma_E T_{x^{-1}}^{-1}, E_v).$$

Making a change of variable $x \mapsto w_0 x$ in 1.5(a) and using that $T_{x^{-1}w_0} = T_{w_0\sigma(x)^{-1}}$ we obtain

$$f_{E_v} \dim(E) = \sum_{x \in W} \operatorname{tr}(T_{w_0 x}, E_v) \operatorname{tr}(T_{w_0 \sigma(x)^{-1}}, E_v)$$
$$= v^{2n_E} \sum_{x \in W} \operatorname{tr}(\sigma_E T_{x^{-1}}^{-1}, E_v) \operatorname{tr}(\sigma_E T_{\sigma(x)}^{-1}, E_v).$$

Using now Lemma 1.7 and the equality $l(x) = l(\sigma(x^{-1}))$ we obtain

$$f_{E_v} \dim(E) = v^{2n_E} \sum_{x \in W} \operatorname{tr}(\sigma_{E^{\dagger}} T_x, (E^{\dagger})_v) \operatorname{tr}(\sigma_{E^{\dagger}} T_{\sigma(x^{-1})}, (E^{\dagger})_v)$$
$$= v^{2n_E} \sum_{x \in W} \operatorname{tr}(\sigma_{E^{\dagger}} T_x, (E^{\dagger})_v) \operatorname{tr}(T_{\xi^{-1}} \sigma_{E^{\dagger}}, (E^{\dagger})_v)$$
$$= v^{2n_E} f_{(E^{\dagger})_v} \dim(E^{\dagger}).$$

(The last step uses 1.5(c) for E^{\dagger} instead of E.) Thus we have $f_{E_v} = v^{2n_E} f_{(E^{\dagger})_v}$. The left hand side is as in 1.5(b) and similarly the right hand side of the form

$$f'_0 v^{2n_E - 2\mathbf{a}_{E^{\dagger}}} + \text{strictly higher powers of } v$$

where $f_0, f'_0 \in \mathbb{C} - \{0\}$. It follows that $-2\mathbf{a}_E = 2n_E - 2\mathbf{a}_{E^{\dagger}}$. The lemma is proved.

Lemma 1.9. Let $E \in IrrW$ and let $x \in W$. We have

(a) $\operatorname{tr}(T_x, E_v) = (-1)^{l(x)} v^{-\mathbf{a}_E} \operatorname{tr}(t_x, E_{\bigstar}) \mod v^{-\mathbf{a}_E+1} \mathbf{C}[v],$

(b)
$$\operatorname{tr}(\sigma_E T_x, E_v) = (-1)^{l(x)} v^{-\mathbf{a}_E} \operatorname{tr}(\sigma_E t_x, E_{\bigstar}) \mod v^{-\mathbf{a}_E+1} \mathbf{C}[v].$$

For a proof of (a), see [L3, 20.6(b)]. We now give a proof of (b) along the same lines as that of (a). There is a unique two sided cell **c** such that $t_z|_{E_{\bigstar}} = 0$ for $z \in W - \mathbf{c}$. Let $a = \mathbf{a}(z)$ for all $z \in \mathbf{c}$. By [L3, 20.6(c)] we have $a = \mathbf{a}_E$. From the definition of c_x we see that $T_x = \sum_{y \in W} f_y c_y$ where $f_x = 1$ and $f_y \in v^{-1} \mathbf{Z}[v^{-1}]$ for $y \neq x$. Applying [†] we obtain $(-1)^{l(x)} T_{x^{-1}}^{-1} = \sum_{y \in W} f_y c_y^{\dagger}$; applying ⁻ we obtain $(-1)^{l(x)} T_x = \sum_{y \in W} \bar{f}_y c_y^{\dagger}$. Thus we have

$$(-1)^{l(x)} \operatorname{tr}(\sigma_E T_x, E_v) = \sum_{y \in W} \bar{f}_y \operatorname{tr}(\sigma_E c_y^{\dagger}, E_v)$$
$$= \sum_{y, z \in W, d \in \mathcal{D}; d = d_z} \bar{f}_y h_{y, d, z} n_d \operatorname{tr}(\sigma_E t_z, E_{\bigstar}).$$

In the last sum we can assume that $z \in \mathbf{c}$ and $d \in \mathbf{c}$ so that $h_{y,d,z} = \gamma_{y,d,z^{-1}} v^{-a}$ mod $v^{-a+1}\mathbf{Z}[v]$. Since $\bar{f}_x = 1$ and $\bar{f}_y \in v\mathbf{Z}[v]$ for all $y \neq x$ we see that

$$(-1)^{l(x)}\operatorname{tr}(\sigma_E T_x, E_v) = \sum_{z \in \mathbf{c}, d \in \mathcal{D} \cap \mathbf{c}} \gamma_{x, d, z^{-1}} n_d v^{-a} \operatorname{tr}(\sigma_E t_z, E_{\bigstar}) \mod v^{-a+1} \mathbf{C}[v].$$

If $x \notin \mathbf{c}$ then $\gamma_{x,d,z^{-1}} = 0$ for all d, z in the sum so that $\operatorname{tr}(\sigma_E T_x, E_v) = 0$; we have also $\operatorname{tr}(\sigma_E t_x, E_{\bigstar}) = 0$ and the desired formula follows. We now assume that $x \in \mathbf{c}$. Then for d, z as above we have $\gamma_{x,d,z^{-1}} = 0$ unless x = z and $d = d_x$ in which case $\gamma_{x,d,z^{-1}}n_d = 1$. Thus (b) holds again. The lemma is proved.

Lemma 1.10. Let $E \in \text{Irr}W$. Let \mathbf{c} be the unique two sided cell such that $t_z|_{E_{\bigstar}} = 0$ for $z \in W - \mathbf{c}$. Let \mathbf{c}' be the unique two sided cell such that $t_z|_{(E^{\dagger})_{\bigstar}} = 0$ for $z \in W - \mathbf{c}'$. We have $\mathbf{c}' = w_0 \mathbf{c}$.

Using 1.8(a) and 1.7(a) we have

(a)
$$\operatorname{tr}(T_{w_0x}, E_v) = v^{n_E} \operatorname{tr}(\sigma_E T_{x^{-1}}^{-1}, E_v) = v^{n_E} \epsilon_E (-1)^{l(x)} \operatorname{tr}(\sigma_{E^{\dagger}} T_x, (E^{\dagger})_v).$$

Using 1.9(a) for E and 1.9(b) for E^{\dagger} we obtain

$$\operatorname{tr}(T_{w_0x}, E_v) = (-1)^{l(w_0x)} v^{-\mathbf{a}_E} \operatorname{tr}(t_{w_0x}, E_{\bigstar}) \mod v^{-\mathbf{a}_E+1} \mathbf{C}[v],$$
$$\operatorname{tr}(\sigma_{E^{\dagger}} T_x, (E^{\dagger})_v) = (-1)^{l(x)} v^{-\mathbf{a}_{E^{\dagger}}} \operatorname{tr}(\sigma_{E^{\dagger}} t_x, E_{\bigstar}^{\dagger}) \mod v^{-\mathbf{a}_{E^{\dagger}}+1} \mathbf{C}[v].$$

Combining with (a) we obtain

 $(-1)^{l(w_0x)}v^{-\mathbf{a}_E}\operatorname{tr}(t_{w_0x}, E_{\spadesuit}) + \text{strictly higher powers of } v$ $= v^{n_E}\epsilon_E v^{-\mathbf{a}_{E^{\dagger}}}\operatorname{tr}(\sigma_{E^{\dagger}}t_x, E_{\spadesuit}^{\dagger}) + \text{strictly higher powers of } v.$

Using the equality $n_E = -\mathbf{a}_E + \mathbf{a}_{E^{\dagger}}$ (see 1.8) we deduce

$$(-1)^{l(w_0x)}\operatorname{tr}(t_{w_0x}, E_{\spadesuit}) = \epsilon_E \operatorname{tr}(\sigma_{E^{\dagger}} t_x, E_{\spadesuit}^{\dagger}).$$

Now we can find $x \in W$ such that $\operatorname{tr}(t_{w_0x}, E_{\bigstar}) \neq 0$ and the previous equality shows that $t_x|_{(E^{\dagger})_{\bigstar}} \neq 0$. Moreover from the definition we have $w_0x \in \mathbf{c}$ and $x \in \mathbf{c'}$ so that $w_0\mathbf{c} \cap \mathbf{c'} \neq \emptyset$. Since $w_0\mathbf{c}$ is a two-sided cell (see [L3, 11.7(d)]) it follows that $w_0\mathbf{c} = \mathbf{c'}$. The lemma is proved.

Lemma 1.11. Let \mathbf{c} be a two-sided cell of W. Let $\mathbf{c'}$ be the two-sided cell $w_0\mathbf{c} = \mathbf{c}w_0$ (see Lemma 1.2). Let $a = \mathbf{a}(x)$ for any $x \in \mathbf{c}$; let $a' = \mathbf{a}(x')$ for any $x' \in \mathbf{c'}$. The K-linear map $J_K^{\mathbf{c}} \to J_K^{\mathbf{c}}$ given by $\xi \mapsto \phi(v^{a-a'}T_{w_0})\xi$ (left multiplication in J_K) is obtained from a \mathbf{C} -linear map $J_{\mathbf{C}}^{\mathbf{c}} \to J_{\mathbf{C}}^{\mathbf{c}}$ (with square 1) by extension of scalars from \mathbf{C} to K.

We can find a direct sum decomposition $J_{\mathbf{C}}^{\mathbf{c}} = \bigoplus_{i=1}^{m} E^{i}$ where E^{i} are simple left ideals of $J_{\mathbf{C}}$ contained in $J_{\mathbf{C}}^{\mathbf{c}}$. We have $J_{K}^{\mathbf{c}} = \bigoplus_{i=1}^{m} K \otimes E^{i}$. It is enough to show that for any *i*, the *K*-linear map $K \otimes E^{i} \to K \otimes E^{i}$ given by the action of $\phi(v^{a-a'}T_{w_{0}})$ in the left J_{K} -module structure of $K \otimes E^{i}$ is obtained from a **C**-linear map $E^{i} \to E^{i}$ (with square 1) by extension of scalars from **C** to *K*. We can find $E \in \operatorname{Irr} W$ such that E^{i} is isomorphic to $E_{\mathbf{A}}$ as a $J_{\mathbf{C}}$ -module. It is then enough to show that the action of $v^{a-a'}T_{w_{0}}$ in the left \mathcal{H}_{K} -module structure of E_{v} is obtained from the map $\sigma_{E} : E \to E$ by extension of scalars from **C** to *K*. This follows from the equality $v^{a-a'}T_{w_{0}} = \sigma_{E} : E_{v} \to E_{v}$ (since σ_{E} is obtained by extension of scalars from a **C**-linear map $E \to E$ with square 1) provided that we show that $-n_{E} = a - a'$. Since $n_{E} = -\mathbf{a}_{E} + \mathbf{a}_{E^{\dagger}}$ (see Lemma 1.8) it is enough to show that $a = \mathbf{a}_{E}$ and $a' = \mathbf{a}_{E^{\dagger}}$. The equality $a = \mathbf{a}_{E}$ follows from [L3, 20.6(c)]. The equality $a' = \mathbf{a}_{E^{\dagger}}$ also follows from [L3, 20.6(c)] applied to $E^{\dagger}, \mathbf{c}' = w_{0}\mathbf{c}$ instead of E, \mathbf{c} (see Lemma 1.10). The lemma is proved.

Lemma 1.12. In the setup of Lemma 1.11 we have for any $x \in \mathbf{c}$:

(a)
$$\phi(v^{a-a'}T_{w_0})t_x = \sum_{x' \in \mathbf{c}} m_{x',x} t_{x'}$$

(b)
$$\phi(v^{2a-2a'}T^2_{w_0})t_x = t_x$$

where $m_{x',x} \in \mathbf{Z}$.

Now (b) and the fact that (a) holds with $m_{x',x} \in \mathbf{C}$ is just a restatement of Lemma 1.11. Since $\phi(v^{a-a'}T_{w_0}) \in J_{\mathcal{A}}$ we have also $m_{x',x} \in \mathcal{A}$. We now use that $\mathcal{A} \cap \mathbf{C} = \mathbf{Z}$ and the lemma follows.

Lemma 1.13. In the setup of Lemma 1.11 we have for any $x \in \mathbf{c}$ the following equalities in $\mathcal{H}^{\mathbf{c}}$:

(a)
$$v^{a-a'}T_{w_0}c_x^{\dagger} = \sum_{x'\in\mathbf{c}} m_{x',x}c_{x'}^{\dagger},$$

(b)
$$v^{2a-2a'}T^2_{w_0}c^{\dagger}_x = c^{\dagger}_x$$

where $m_{x',x} \in \mathbf{Z}$ are the same as in Lemma 1.12. Moreover, if $m_{x',x} \neq 0$ then $x' \sim_{\mathcal{L}} x$.

The first sentence follows from Lemma 1.12 using [L3, 18.10(a)]. Clearly, if $m_{x',x} \neq 0$ then $x' \leq_{\mathcal{L}} x$ which together with $x' \sim_{\mathcal{LR}} x$ implies $x' \sim_{\mathcal{L}} x$.

2. The main results

2.1. In this section we fix a two-sided cell **c** of W; a, a' are as in 1.11. We define an \mathcal{A} -linear map $\theta : \mathcal{H}^{\leq \mathbf{c}} \to \mathcal{A}$ by $\theta(c_x^{\dagger}) = 1$ if $x \in \mathcal{D} \cap \mathbf{c}$, $\theta(c_x^{\dagger}) = 0$ if $x \leq_{\mathcal{LR}} x'$ for some $x' \in \mathbf{c}$ and $x \notin \mathcal{D} \cap \mathbf{c}$. Note that θ is zero on $\mathcal{H}^{<\mathbf{c}}$ hence it can be viewed as an \mathcal{A} -linear map $\mathcal{H}^{\mathbf{c}} \to \mathcal{A}$.

Lemma 2.2. Let $x, x' \in \mathbf{c}$. We have

(a)
$$\theta(c_{x^{-1}}^{\dagger}c_{x'}^{\dagger}) = n_{d_x}\delta_{x,x'}v^a + strictly lower powers of v.$$

The left hand side of (a) is

$$\sum_{d \in \mathcal{D} \cap \mathbf{c}} h_{x^{-1}, x', d} = \sum_{d \in \mathcal{D} \cap \mathbf{c}} \gamma_{x^{-1}, x', d} v^a + \text{ strictly lower powers of } v$$
$$= n_{d_x} \delta_{x, x'} v^a + \text{ strictly lower powers of } v.$$

The lemma is proved.

We now state one of the main results of this paper.

Theorem 2.3. There exists a unique permutation $u \mapsto u^*$ of **c** (with square 1) such that for any $u \in \mathbf{c}$ we have

(a)
$$v^{a-a'}T_{w_0}c_u^{\dagger} = \epsilon_u c_{u^*}^{\dagger} \mod \mathcal{H}^{<\mathbf{c}}$$

where $\epsilon_u = \pm 1$. For any $u \in \mathbf{c}$ we have $\epsilon_{u^{-1}} = \epsilon_u = \epsilon_{\sigma(u)} = \epsilon_{u^*}$ and $\sigma(u^*) = (\sigma(u))^* = ((u^{-1})^*)^{-1}$.

Let $u \in \mathbf{c}$. We set $Z = \theta((v^{a-a'}T_{w_0}c_u^{\dagger})^{\flat}v^{a-a'}T_{w_0}c_u^{\dagger})$. We compute Z in two ways, using Lemma 2.2 and Lemma 1.13. We have

$$Z = \theta(c_{u^{-1}}^{\dagger}v^{2a-2a'}T_{w_0}^2c_u^{\dagger}) = \theta(c_{u^{-1}}^{\dagger}c_u^{\dagger}) = n_{d_u}v^a + \text{ strictly lower powers of } v,$$

$$Z = \theta((\sum_{y \in \mathbf{c}} m_{y,u} c_y^{\dagger})^{\flat} (\sum_{y' \in \mathbf{c}} m_{y',u} c_{y'}^{\dagger})) = \sum_{y,y' \in \mathbf{c}} m_{y,u} m_{y',u} \theta(c_{y^{-1}}^{\dagger} c_{y'}^{\dagger})$$
$$= \sum_{y,y' \in \mathbf{c}} m_{y,u} m_{y',u} n_{d_y} \delta_{y,y'} v^a + \text{ strictly lower powers of } v$$
$$= \sum_{y \in \mathbf{c}} n_{d_y} m_{y,u}^2 v^a + \text{ strictly lower powers of } v$$
$$= \sum_{y \in \mathbf{c}} n_{d_u} m_{y,u}^2 v^a + \text{ strictly lower powers of } v$$

where $m_{y,u} \in \mathbf{Z}$ is zero unless $y \sim_{\mathcal{L}} u$ (see 1.13), in which case we have $d_y = d_u$. We deduce that $\sum_{y \in \mathbf{c}} m_{y,u}^2 = 1$, so that we have $m_{y,u} = \pm 1$ for a unique $y \in \mathbf{c}$ (denoted by u^*) and $m_{y,u} = 0$ for all $y \in \mathbf{c} - \{u^*\}$. Then (a) holds. Using (a) and Lemma 1.13(b) we see that $u \mapsto u^*$ has square 1 and that $\epsilon_u \epsilon_{u^*} = 1$.

The automorphism $\sigma : \mathcal{H} \to \mathcal{H}$ (see 1.1) satisfies the equality $\sigma(c_u^{\dagger}) = c_{\sigma(u)}^{\dagger}$ for any $u \in W$; note also that $w \in \mathbf{c} \leftrightarrow \sigma(w) \in \mathbf{c}$ (see Lemma 1.2). Applying σ to (a) we obtain

$$v^{a-a'}T_{w_0}c^{\dagger}_{\sigma(u)} = \epsilon_u c^{\dagger}_{\sigma(u^*)}$$

in $\mathcal{H}^{\mathbf{c}}$. By (a) we have also $v^{a-a'}T_{w_0}c^{\dagger}_{\sigma(u)} = \epsilon_{\sigma(u)}c^{\dagger}_{(\sigma(u))^*}$ in $\mathcal{H}^{\mathbf{c}}$. It follows that $\epsilon_u c^{\dagger}_{\sigma(u^*)} = \epsilon_{\sigma(u)}c^{\dagger}_{(\sigma(u))^*}$ hence $\epsilon_u = \epsilon_{\sigma(u)}$ and $\sigma(u^*) = (\sigma(u))^*$.

Applying $h \mapsto h^{\flat}$ to (a) we obtain

$$v^{a-a'}c_{u^{-1}}^{\dagger}T_{w_0} = \epsilon_u c_{(u^*)^{-1}}^{\dagger}$$

in $\mathcal{H}^{\mathbf{c}}$. By (a) we have also

$$v^{a-a'}c_{u^{-1}}^{\dagger}T_{w_0} = v^{a-a'}T_{w_0}c_{\sigma(u^{-1})}^{\dagger} = \epsilon_{\sigma(u^{-1})}c_{(\sigma(u^{-1}))^*}^{\dagger}$$

in $\mathcal{H}^{\mathbf{c}}$. It follows that $\epsilon_u c_{(u^*)^{-1}}^{\dagger} = \epsilon_{\sigma(u^{-1})} c_{(\sigma(u^{-1}))^*}^{\dagger}$ hence $\epsilon_u = \epsilon_{\sigma(u^{-1})}$ and $(u^*)^{-1} = (\sigma(u^{-1}))^*$. Since $\epsilon_{\sigma(u^{-1})} = \epsilon_{u^{-1}}$, we see that $\epsilon_u = \epsilon_{u^{-1}}$. Replacing u by u^{-1} in $(u^*)^{-1} = (\sigma(u^{-1}))^*$ we obtain $((u^{-1})^*)^{-1} = (\sigma(u))^*$ as required. The theorem is proved.

2.4. For $u \in \mathbf{c}$ we have

(a)
$$u \sim_{\mathcal{L}} u^*,$$

(b)
$$\sigma(u) \sim_{\mathcal{R}} u^*$$

Indeed, (a) follows from 1.13. To prove (b) it is enough to show that $\sigma(u)^{-1} \sim_{\mathcal{L}} (u^*)^{-1}$. Using (a) for $\sigma(u)^{-1}$ instead of u we see that it is enough to show that $(\sigma(u^{-1}))^* = (u^*)^{-1}$; this follows from 2.3.

If we assume that

(c) any left cell in **c** intersects any right cell in **c** in exactly one element then by (a),(b), for any $u \in \mathbf{c}$,

(d) u^* is the unique element of **c** in the intersection of the left cell of *u* with right cell of $\sigma(u)$.

Note that condition (c) is satisfied for any **c** if W is of type A_n or if W is of type B_n $(n \ge 2)$ with L(s) = 2 for all but one $s \in S$ and L(s) = 1 or 3 for the remaining $s \in S$. (In this last case we are in the quasisplit case and we have $\sigma = 1$ hence $u^* = u$ for all u.)

Theorem 2.5. For any $x \in W$ we set $\vartheta(x) = \gamma_{w_0 d_{w_0 x^{-1}}, x, (x^*)^{-1}}$.

(a) If $d \in \mathcal{D}$ and $x, y \in \mathbf{c}$ satisfy $\gamma_{w_0 d, x, y} \neq 0$ then $y = (x^*)^{-1}$.

(b) If $x \in \mathbf{c}$ then there is a unique $d \in \mathcal{D} \cap w_0 \mathbf{c}$ such that $\gamma_{w_0 d, x, (x^*)^{-1}} \neq 0$, namely $d = d_{w_0 x^{-1}}$. Moreover we have $\vartheta(x) = \pm 1$.

(c) For $u \in \mathbf{c}$ we have $\epsilon_u = (-1)^{l(w_0 d)} n_d \vartheta(u)$ where $d = d_{w_0 u^{-1}}$.

Appplying $h \mapsto h^{\dagger}$ to 2.3(a) we obtain for any $u \in \mathbf{c}$:

(d)
$$v^{a-a'}(-1)^{l(w_0)}\overline{T_{w_0}}c_u = \sum_{z \in \mathbf{c}} \delta_{z,u^*}\epsilon_u c_z \mod \sum_{z' \in W-\mathbf{c}} \mathcal{A}c_{z'}$$

We have $T_{w_0} = \sum_{y \in W} (-1)^{l(w_0 y)} p_{1,w_0 y} c_y$ hence $\overline{T_{w_0}} = \sum_{y \in W} (-1)^{l(w_0 y)} \overline{p_{1,w_0 y}} c_y$. Introducing this in (d) we obtain

$$v^{a-a'} \sum_{y \in W} (-1)^{l(y)} \overline{p_{1,w_0 y}} c_y c_u = \sum_{z \in \mathbf{c}} \delta_{z,u^*} \epsilon_u c_z \mod \sum_{z' \in W-\mathbf{c}} \mathcal{A} c_{z'}$$

that is,

$$v^{a-a'} \sum_{y,z \in W} (-1)^{l(y)} \overline{p_{1,w_0 y}} h_{y,u,z} c_z = \sum_{z \in \mathbf{c}} \delta_{z,u^*} \epsilon_u c_z \mod \sum_{z' \in W-\mathbf{c}} \mathcal{A} c_{z'}.$$

Thus, for $z \in \mathbf{c}$ we have

(e)
$$v^{a-a'} \sum_{y \in W} (-1)^{l(y)} \overline{p_{1,w_0y}} h_{y,u,z} = \delta_{z,u^*} \epsilon_u.$$

Here we have $h_{y,u,z} = \gamma_{y,u,z^{-1}} v^{-a} \mod v^{-a+1} \mathbf{Z}[v]$ and we can assume than $z \leq_{\mathcal{R}} y$ so that $w_0 y \leq_{\mathcal{R}} w_0 z$ and $\mathbf{a}(w_0 y) \geq \mathbf{a}(w_0 z) = a'$.

For $w \in W$ we set $s_w = n_w$ if $w \in \mathcal{D}$ and $s_w = 0$ if $w \notin \mathcal{D}$. By [L3, 14.1] we have $p_{1,w} = s_w v^{-\mathbf{a}(w)} \mod v^{-\mathbf{a}(w)-1} \mathbf{Z}[v^{-1}]$ hence $\overline{p_{1,w}} = s_w v^{\mathbf{a}(w)} \mod v^{\mathbf{a}(w)+1} \mathbf{Z}[v]$. Hence for y in the sum above we have $\overline{p_{1,w_0y}} = s_{w_0y} v^{\mathbf{a}(w_0y)} \mod v^{\mathbf{a}(w_0y)+1} \mathbf{Z}[v]$. Thus (e) gives

$$v^{a-a'} \sum_{y \in \mathbf{c}} (-1)^{l(y)} s_{w_0 y} \gamma_{y,u,z^{-1}} v^{\mathbf{a}(w_0 y)-a} - \delta_{z,u^*} \epsilon_u \in v \mathbf{Z}[v]$$

and using $\mathbf{a}(w_0 y) = a'$ for $y \in \mathbf{c}$ we obtain

$$\sum_{y \in \mathbf{c}} (-1)^{l(y)} s_{w_0 y} \gamma_{y, u, z^{-1}} = \delta_{z, u^*} \epsilon_u.$$

Using the definition of s_{w_0y} we obtain

(f)
$$\sum_{d\in\mathcal{D}\cap w_0\mathbf{c}} (-1)^{l(w_0d)} n_d \gamma_{w_0d,u,z^{-1}} = \delta_{z,u^*} \epsilon_u.$$

Next we note that

(g) if $d \in \mathcal{D}$ and $x, y \in \mathbf{c}$ satisfy $\gamma_{w_0 d, x, y} \neq 0$ then $d = d_{w_0 x^{-1}}$. Indeed from [L3,§14, P8] we deduce $w_0 d \sim_{\mathcal{L}} x^{-1}$. Using [L3, 11.7] we deduce $d \sim_{\mathcal{L}} w_0 x^{-1}$ so that $d = d_{w_0^{-1} x^{-1}}$. This proves (g).

Using (g) we can rewrite (f) as follows.

(h)
$$(-1)^{l(w_0)}(-1)^{l(d)}n_d\gamma_{w_0d,u,z^{-1}} = \delta_{z,u^*}\epsilon_u$$

where $d = d_{w_0 u^{-1}}$.

We prove (a). Assume that $d \in \mathcal{D}$ and $x, y \in \mathbf{c}$ satisfy $\gamma_{w_0 d, x, y} \neq 0, y \neq (x^*)^{-1}$. Using (g) we have $d = d_{w_0 x^{-1}}$. Using (h) with $u = x, z = y^{-1}$ we see that $\gamma_{w_0 d, x, y} = 0$, a contradiction. This proves (a).

We prove (b). Using (h) with $u = x, z = x^*$ we see that

(i)
$$(-1)^{l(w_0d)} n_d \gamma_{w_0d,x,(x^*)^{-1}} = \epsilon_u$$

where $d = d_{w_0 x^{-1}}$. Hence the existence of d in (b) and the equality $\vartheta(x) = \pm 1$ follow; the uniqueness of d follows from (g).

Now (c) follows from (i). This completes the proof of the theorem.

2.6. In the case where L = l, $\vartheta(u)$ (in 2.5(c)) is ≥ 0 and ± 1 hence 1; moreover, $n_d = 1$, $(-1)^{l(d)} = (-1)^{a'}$ for any $d \in \mathcal{D} \cap w_0 \mathbf{c}$ (by the definition of \mathcal{D}). Hence we have $\epsilon_u = (-1)^{l(w_0)+a'}$ for any $u \in \mathbf{c}$, a result of [MA].

Now Theorem 2.5 also gives a characterization of u^* for $u \in \mathbf{c}$; it is the unique element $u' \in \mathbf{c}$ such that $\gamma_{w_0 d, u, u'^{-1}} \neq 0$ for some $d \in \mathcal{D} \cap w_0 \mathbf{c}$.

We will show:

(a) The subsets $X = \{d^*; d \in \mathcal{D} \cap \mathbf{c}\}$ and $X' = \{w_0 d'; d' \in \mathcal{D} \cap w_0 \mathbf{c}\}$ of \mathbf{c} coincide.

Let $d \in \mathcal{D} \cap \mathbf{c}$. By 2.5(b) we have $\gamma_{w_0 d', d, (d^*)^{-1}} = \pm 1$ for some $d' \in \mathcal{D} \cap w_0 \mathbf{c}$. Hence $\gamma_{(d^*)^{-1}, w_0 d', d} = \pm 1$. Using [L3, 14.2, P2] we deduce $d^* = w_0 d'$. Thus $X \subset X'$. Let Y (resp. Y') be the set of left cells contained in \mathbf{c} (resp. $w_0 \mathbf{c}$). We have $\sharp(X) = \sharp(Y)$ and $\sharp(X') = \sharp(Y')$. By [L3, 11.7(c)] we have $\sharp(Y) = \sharp(Y')$. It follows that $\sharp(X) = \sharp(X')$. Since $X \subset X'$, we must have X = X'. This proves (a). Theorem 2.7. We have

$$\phi(v^{a-a'}T_{w_0}) = \sum_{d \in \mathcal{D} \cap \mathbf{c}} \vartheta(d) \epsilon_d t_{d^*} \mod \sum_{u \in W - \mathbf{c}} \mathcal{A} t_u.$$

We set $\phi(v^{a-a'}T_{w_0}) = \sum_{u \in W} p_u t_u$ where $p_u \in \mathcal{A}$. Combining 1.12(a), 1.13(a), 2.3(a) we see that for any $x \in \mathbf{c}$ we have

$$\phi(v^{a-a'}T_{w_0})t_x = \epsilon_x t_{x^*},$$

hence

$$\epsilon_x t_{x^*} = \sum_{u \in \mathbf{c}} p_u t_u t_x = \sum_{u, y \in \mathbf{c}} p_u \gamma_{u, x, y^{-1}} t_y.$$

It follows that for any $x, y \in \mathbf{c}$ we have

$$\sum_{u \in \mathbf{c}} p_u \gamma_{u,x,y^{-1}} = \delta_{y,x^*} \epsilon_x$$

Taking $x = w_0 d$ where $d = d_{w_0 y} \in \mathcal{D} \cap w_0 \mathbf{c}$ we obtain

$$\sum_{u \in \mathbf{c}} p_u \gamma_{w_0 d_{w_0 y}, y^{-1}, u} = \delta_{y, (w_0 d_{w_0 y})^*} \epsilon_{w_0 d_{w_0 y}}$$

which, by 2.5, can be rewritten as

$$p_{((y^{-1})^*)^{-1}}\vartheta(y^{-1}) = \delta_{y,(w_0d_{w_0y})^*}\epsilon_{w_0d_{w_0y}}.$$

We see that for any $y \in \mathbf{c}$ we have

$$p_{\sigma(y^*)} = \delta_{y,(w_0 d_{w_0 y})^*} \vartheta(y^{-1}) \epsilon_{w_0 d_{w_0 y}}.$$

In particular we have $p_{\sigma(y^*)} = 0$ unless $y = (w_0 d_{w_0 y})^*$ in which case

$$p_{\sigma(y^*)} = p_{(\sigma(y))^*)} = \vartheta(y^{-1})\epsilon_y.$$

(We use that $\epsilon_{y^*} = \epsilon_y$.) If $y = (w_0 d_{w_0 y})^*$ then $y^* \in X'$ hence by 2.6(a), $y^* = d^*$ that is y = d for some $d \in \mathcal{D}$. Conversely, if $y \in \mathcal{D}$ then $w_0 y^* \in \mathcal{D}$ (by 2.6(a)) and $w_0 y^* \sim_{\mathcal{L}} w_0 y$ (since $y^* \sim_{\mathcal{L}} y$) hence $d_{w_0 y} = w_0 y^*$. We see that $y = (w_0 d_{w_0 y})^*$ if and only if $y \in \mathcal{D}$. We see that

$$\phi(v^{a-a'}T_{w_0}) = \sum_{d \in \mathcal{D} \cap \mathbf{c}} \vartheta(d^{-1}) \epsilon_d t_{(\sigma(d))^*} + \sum_{u \in W - \mathbf{c}} p_u t_u.$$

Now $d \mapsto \sigma(d)$ is a permutation of $\mathcal{D} \cap \mathbf{c}$ and $\vartheta(d^{-1}) = \vartheta(d) = \vartheta(\sigma(d)), \epsilon_{\sigma(d)} = \epsilon_d$. The theorem follows. Corollary 2.8. We have

$$\phi(T_{w_0}) = \sum_{d \in \mathcal{D}} \vartheta(d) \epsilon_d v^{-\mathbf{a}(d) + \mathbf{a}(w_0 d)} t_{d^*} \in J_{\mathcal{A}}.$$

2.9. We set $\mathfrak{T}_{\mathbf{c}} = \sum_{d \in \mathcal{D} \cap \mathbf{c}} \vartheta(d) \epsilon_d t_{d^*} \in J^{\mathbf{c}}$. We show: (a) $\mathfrak{T}_{\mathbf{c}}^2 = \sum_{d \in \mathcal{D} \cap \mathbf{c}} n_d t_d$; (b) $t_x \mathfrak{T}_{\mathbf{c}} = \mathfrak{T}_{\mathbf{c}} t_{\sigma(x)}$ for any $x \in W$.

By 2.7 we have $\phi(v^{a-a'}T_{w_0}) = \mathfrak{T}_{\mathbf{c}} + \xi$ where $\xi \in J_K^{W-\mathbf{c}} := \sum_{u \in W-\mathbf{c}} Kt_u$. Since $J_K^{\mathbf{c}}, J_K^{W-\mathbf{c}}$ are two-sided ideals of J_K with intersection zero and $\phi_K : \mathcal{H}_K \to J_K$ is an algebra homomorphism, it follows that

$$\phi(v^{2a-2a'}T_{w_0}^2) = (\phi(v^{a-a'}T_{w_0}))^2 = (\mathfrak{T}_{\mathbf{c}} + \xi)^2 = \mathfrak{T}_{\mathbf{c}}^2 + \xi'$$

where $\xi' \in J_K^{W-\mathbf{c}}$. Hence, for any $x \in \mathbf{c}$ we have $\phi(v^{2a-2a'}T_{w_0}^2)t_x = \mathfrak{T}_{\mathbf{c}}^2 t_x$ so that (using 1.12(b)): $t_x = \mathfrak{T}_{\mathbf{c}}^2 t_x$. We see that $\mathfrak{T}_{\mathbf{c}}^2$ is the unit element of the ring $J_K^{\mathbf{c}}$. Thus (a) holds.

We prove (b). For any $y \in W$ we have $T_y T_{w_0} = T_{w_0} T_{\sigma(y)}$ hence, applying ϕ_K ,

$$\phi(T_y)\phi(v^{a-a'}T_{w_0}) = \phi(v^{a-a'}T_{w_0})\phi(T_{\sigma(y)})$$

that is, $\phi(T_y)(\mathfrak{T}_{\mathbf{c}}+\xi) = (\mathfrak{T}_{\mathbf{c}}+\xi)\phi(T_{\sigma(y)})$. Thus, $\phi(T_y)\mathfrak{T}_{\mathbf{c}} = \mathfrak{T}_{\mathbf{c}}\phi(T_{\sigma(y)}) + \xi_1$ where $\xi_1 \in J_K^{W-\mathbf{c}}$. Since ϕ_K is an isomorphism, it follows that for any $x \in W$ we have $t_x\mathfrak{T}_{\mathbf{c}} = \mathfrak{T}_{\mathbf{c}}t_{\sigma(x)} \mod J_K^{W-\mathbf{c}}$. Thus (b) holds.

2.10. In this subsection we assume that L = l. In this case 2.8 becomes

$$\phi(T_{w_0}) = \sum_{d \in \mathcal{D}} (-1)^{l(w_0) + \mathbf{a}(w_0 d)} v^{-\mathbf{a}(d) + \mathbf{a}(w_0 d)} t_{d^*} \in J_{\mathcal{A}}.$$

(We use that $\vartheta(d) = 1$.)

For any left cell Γ contained in **c** let n_{Γ} be the number of fixed points of the permutation $u \mapsto u^*$ of Γ . Now Γ carries a representation $[\Gamma]$ of W and from 2.3 we see that $\operatorname{tr}(w_0, [\Gamma]) = \pm n_{\Gamma}$. Thus n_{Γ} is the absolute value of the integer $\operatorname{tr}(w_0, [\Gamma])$. From this the number n_{Γ} can be computed for any Γ . In this way we see for example that if W is of type E_7 or E_8 and **c** is not an exceptional two-sided cell, then $n_{\Gamma} > 0$.

References

- [BFO] R.Bezrukavnikov, M.Finkelberg and V.Ostrik, Character D-modules via Drinfeld center of Harish-Chandra bimodules, Invent.Math, 188 (2012), 589-620.
- [EW] B.Elias and G.Williamson, The Hodge theory of Soergel bimodules, arXiv:1212.0791.

- [KL] D.Kazhdan and G.Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
- [L1] G.Lusztig, Characters of reductive groups over a finite field, Ann.of Math. Studies, Princeton Univ.Press, 1984.
- [L2] G.Lusztig, Canonical bases arising from quantized enveloping algebras II, Common trends in mathematics and quantum field theories, ed.T.Eguchi et al., Progr.of Theor. Phys. Suppl., vol. 102, 1990, pp. 175-201.
- [L3] G.Lusztig, Hecke algebras with unequal parameters, CRM Monograph Ser.18, Amer. Math. Soc., 2003.
- [L4] G.Lusztig, Character sheaves on disconnected groups VII, Represent. Th. 9 (2005), 209-266.
- [MA] A.Mathas, On the left cell representations of Iwahori-Hecke algebras of finite Coxeter groups, J.London Math.Soc. 54 (1996), 475-488.

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139