

MIT Open Access Articles

Action of longest element on a Hecke algebra cell module

The MIT Faculty has made this article openly available. *[Please](https://libraries.mit.edu/forms/dspace-oa-articles.html) share* how this access benefits you. Your story matters.

Citation: Makar, A. B. et al. "Formate Assay in Body Fluids: Application in Methanol Poisoning." Biochemical Medicine 13.2 (1975): 117–126.

As Published: http://dx.doi.org/10.2140/pjm.2015.279.383

Publisher: Mathematical Sciences Publishers

Persistent URL: <http://hdl.handle.net/1721.1/105144>

Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons [Attribution-Noncommercial-Share](http://creativecommons.org/licenses/by-nc-sa/4.0/) Alike

ACTION OF LONGEST ELEMENT ON A HECKE ALGEBRA CELL MODULE

G. LUSZTIG

Dedicated to the memory of Robert Steinberg

INTRODUCTION

0.1. The Hecke algebra \mathcal{H} (over $\mathcal{A} = \mathbf{Z}[v, v^{-1}]$, v an indeterminate) of a finite Coxeter group W has two bases as an A-module: the standard basis $\{T_x; x \in W\}$ and the basis $\{C_x; x \in W\}$ introduced in [KL]. The second basis determines a decomposition of W into two-sided cells and a partial order for the set of twosided cells, see [KL]. Let $l: W \to \mathbb{N}$ be the length function, let w_0 be the longest element of W and let **c** be a two-sided cell. Let a (resp. a') be the value of the **a**-function [L3, 13.4] on **c** (resp. on w_0 **c**). The following result was proved by Mathas in [MA].

(a) *There exists a unique permutation* $u \mapsto u^*$ *of* **c** *such that for any* $u \in \mathbf{c}$ *we* $have T_{w_0}(-1)^{l(u)}C_u = (-1)^{l(w_0)+a'}v^{-a+a'}(-1)^{l(u^*)}C_{u^*}$ plus an A-linear combina*tion of elements* $C_{u'}$ *with* u' *in a two-sided cell strictly smaller than* **c**. Moreover, *for any* $u \in \mathbf{c}$ *we have* $(u^*)^* = u$ *.*

A related (but weaker) result appears in [L1, (5.12.2)].

A result similar to (a) which concerns canonical bases in representations of quantum groups appears in $[L2, Cor. 5.9]$; now, in the case where W is of type A, (a) can be deduced from *loc.cit.* using the fact that irreducible representations of the Hecke algebra of type A (with their canonical bases) can be realized as 0weight spaces of certain irreducible representations of a quantum group with their canonical bases.

As R. Bezrukavnikov pointed out to the author, (a) specialized for $v = 1$ (in the group algebra of W instead of \mathcal{H}) and assuming that W is crystallographic can be deduced from [BFO, Prop. 4.1] (a statement about Harish-Chandra modules), although it is not explicitly stated there.

In this paper we shall prove a generalization of (a) which applies to the Hecke algebra associated to W and any weight function assumed to satisfy the properties P1-P15 in $[L3,\S14]$, see Theorem 2.3; (a) corresponds to the special case where the weight function is equal to the length function. As an application we show that

Supported in part by National Science Foundation grant DMS-1303060.

the image of T_{w_0} in the asymptotic Hecke algebra is given by a simple formula (see 2.8).

I thank Matthew Douglass for bringing the paper [MA] to my attention. I thank the referee for helpful comments.

0.2. *Notation. W* is a finite Coxeter group; the set of simple reflections is denoted by S. We shall adopt many notations of [L3]. Let \leq be the standard partial order on W. Let $l: W \to \mathbb{N}$ be the length function of W and let $L: W \to \mathbb{N}$ be a weight function (see [L3, 3.1]) that is, a function such that $L(ww') = L(w) + L(w')$ for any w, w' in W such that $l(ww') = l(w) + l(w')$; we assume that $L(s) > 0$ for any $s \in S$. Let w_0, A be as in 0.1 and let H be the Hecke algebra over A associated to W, L as in [L3, 3.2]; we shall assume that properties P1-P15 in [L3, $\S14$] are satisfied. (This holds automatically if $L = l$ by [L3, §15] using the results of [EW]. This also holds in the quasisplit case, see [L3,§16].) We have $A \subset A' \subset K$ where $\mathcal{A}' = \mathbf{C}[v, v^{-1}], K = \mathbf{C}(v)$. Let $\mathcal{H}_K = K \otimes_{\mathcal{A}} \mathcal{H}$ (a K-algebra). Recall that \mathcal{H} has an A-basis $\{T_x; x \in W\}$, see [L3, 3.2] and an A-basis $\{c_x; x \in W\}$, see [L3, 5.2]. For $x \in W$ we have $c_x = \sum_{y \in W} p_{y,x} T_y$ and $T_x = \sum_{y \in W} (-1)^{l(xy)} p_{w_0x,w_0y} c_y$ (see [L3, 11.4]) where $p_{x,x} = 1$ and $p_{y,x} \in v^{-1} \mathbb{Z}[v^{-1}]$ for $y \neq x$. We define preorders $\leq_{\mathcal{L}}, \leq_{\mathcal{R}}, \leq_{\mathcal{LR}}$ on W in terms of $\{c_x; x \in W\}$ as in [L3, 8.1]. Let $\sim_{\mathcal{L}}, \sim_{\mathcal{RR}}, \sim_{\mathcal{LR}}$ be the corresponding equivalence relations on W , see [L3, 8.1] (the equivalence classes are called left cells, right cells, two-sided cells). Let $\vec{a} \rightarrow \vec{A}$ be the ring involution such that $\overline{v^n} = v^{-n}$ for $n \in \mathbb{Z}$. Let \overline{v} : $\mathcal{H} \to \mathcal{H}$ be the ring involution such that $\overline{fT_x} = \overline{f}T_{x^{-1}}^{-1}$ for $x \in W, f \in \mathcal{A}$. For $x \in W$ we have $\overline{c_x} = c_x$. Let $h \mapsto h^{\dagger}$ be the algebra automorphism of H or of \mathcal{H}_K given by $T_x \mapsto (-1)^{l(x)} T_{x^{-1}}^{-1}$ for all $x \in W$, see [L3, 3.5]. Then the basis $\{c_x^{\dagger}; x \in W\}$ of H is defined. (In the case where $L = l$, for any x we have $c_x^{\dagger} = (-1)^{l(x)} C_x$ where C_x is as in 0.1.) Let $h \mapsto h^{\flat}$ be the algebra antiautomorphism of H given by $T_x \mapsto T_{x^{-1}}$ for all $x \in W$, see [L3, 3.5]; for $x \in W$ we have $c_x^{\flat} = c_{x^{-1}}$, see [L3, 5.8]. For $x, y \in W$ we have $c_x c_y = \sum_{z \in W} h_{x,y,z} c_z, c_x^{\dagger} c_y^{\dagger} = \sum_{z \in W} h_{x,y,z} c_z^{\dagger}$, where $h_{x,y,z} \in \mathcal{A}$. For any $z \in W$ there is a unique number $a(z) \in N$ such that for any x, y in W we have

$$
h_{x,y,z} = \gamma_{x,y,z^{-1}} v^{\mathbf{a}(z)} +
$$
strictly smaller powers of v

where $g_{x,y,z^{-1}} \in \mathbf{Z}$ and $g_{x,y,z^{-1}} \neq 0$ for some x, y in W. We have also

$$
h_{x,y,z} = \gamma_{x,y,z^{-1}} v^{-\mathbf{a}(z)} +
$$
strictly larger powers of v.

Moreover $z \mapsto \mathbf{a}(z)$ is constant on any two-sided cell. The free abelian group $\sum_{z\in W} \gamma_{x,y,z^{-1}} t_z$; it has a unit element of the form $\sum_{d\in\mathcal{D}} n_d t_d$ where $\mathcal D$ is a subset J with basis $\{t_w; w \in W\}$ has an associative ring structure given by $t_x t_y =$ of W consisting of certain elements with square 1 and $n_d = \pm 1$. Moreover for $d \in \mathcal{D}$ we have $n_d = \gamma_{d,d,d}$.

For any $x \in W$ there is a unique element $d_x \in \mathcal{D}$ such that $x \sim_{\mathcal{L}} d_x$. For a commutative ring R with 1 we set $J_R = R \otimes J$ (an R-algebra).

There is a unique A-algebra homomorphism $\phi : \mathcal{H} \to J_{\mathcal{A}}$ such that $\phi(c_{x}^{\dagger}) =$ $\sum_{d \in \mathcal{D}, z \in W; d_z = d} h_{x,d,z} n_d t_z$ for any $x \in W$. After applying $\mathbf{C} \otimes_{\mathcal{A}}$ to ϕ (we regard \mathbf{C} as an A-algebra via $v \mapsto 1$), ϕ becomes a **C**-algebra isomorphism $\phi_{\mathbf{C}} : \mathbf{C}[W] \xrightarrow{\sim} J_{\mathbf{C}}$ (see [L3, 20.1(e)]). After applying $K \otimes_{\mathcal{A}}$ to ϕ , ϕ becomes a K-algebra isomorphism $\phi_K : \mathcal{H}_K \xrightarrow{\sim} J_K$ (see [L3, 20.1(d)]).

For any two-sided cell **c** let $\mathcal{H}^{\leq c}$ (resp. $\mathcal{H}^{< c}$) be the A-submodule of \mathcal{H} spanned by $\{c_x^{\dagger}, x \in W, x \leq_{\mathcal{LR}} x' \text{ for some } x' \in \mathbf{c}\}\$ (resp. $\{c_x^{\dagger}, x \in W, x <_{\mathcal{LR}}\}$ x' for some $x' \in \mathbf{c}$). Note that $\mathcal{H}^{\leq \mathbf{c}}$, $\mathcal{H}^{<\mathbf{c}}$ are two-sided ideals in \mathcal{H} . Hence $\mathcal{H}^c := \mathcal{H}^{\leq c}/\mathcal{H}^{< c}$ is an \mathcal{H}, \mathcal{H} bimodule. It has an A-basis $\{c_x^{\dagger}, x \in c\}$. Let J^c be the subgroup of J spanned by $\{t_x; x \in \mathbf{c}\}\$. This is a two-sided ideal of J. Similarly, $J_{\mathbf{C}}^{\mathbf{c}} := \mathbf{C} \otimes J^{\mathbf{c}}$ is a two-sided ideal of $J_{\mathbf{C}}$ and $J_K^{\mathbf{c}} := K \otimes J^{\mathbf{c}}$ is a two-sided ideal of J_K .

We write $E \in \text{IrrW}$ whenever E is a simple $\mathbb{C}[W]$ -module. We can view E as a (simple) J_C-module E_{\spadesuit} via the isomorphism $\phi_{\mathbf{C}}^{-1}$. Then the (simple) J_K-module $K \otimes_{\mathbf{C}} E_{\spadesuit}$ can be viewed as a (simple) \mathcal{H}_K -module E_v via the isomorphism ϕ_K . Let E^{\dagger} be the simple $\mathbf{C}[W]$ -module which coincides with E as a C-vector space but with the w action on E^{\dagger} (for $w \in W$) being $(-1)^{l(w)}$ times the w-action on E. Let $\mathbf{a}_E \in \mathbf{N}$ be as in [L3, 20.6(a)].

1. Preliminaries

1.1. Let $\sigma : W \to W$ be the automorphism given by $w \mapsto w_0ww_0$; it satisfies $\sigma(S) = S$ and it extends to a **C**-algebra isomorphism $\sigma : \mathbf{C}[W] \to \mathbf{C}[W]$. For $s \in S$ we have $l(w_0) = l(w_0s) + l(s) = l(\sigma(s)) + l(\sigma(s)w_0)$ hence $L(w_0) = L(w_0s) + L(s)$ $L(\sigma(s)) + L(\sigma(s)w_0) = L(\sigma(s)) + L(w_0s)$ so that $L(\sigma(s)) = L(s)$. It follows that $L(\sigma(w)) = L(w)$ for all $w \in W$ and that we have an A-algebra automorphism $\sigma: \mathcal{H} \to \mathcal{H}$ where $\sigma(T_w) = T_{\sigma(w)}$ for any $w \in W$. This extends to a K-algebra isomorphism $\sigma : \mathcal{H}_K \to \mathcal{H}_K$. We have $\sigma(c_w) = c_{\sigma(w)}$ for any $w \in W$. For any $h \in \mathcal{H}$ we have $\sigma(h^{\dagger}) = (\sigma(h))^{\dagger}$. Hence we have $\sigma(c_w^{\dagger}) = c_{\sigma}^{\dagger}$ $\overline{G}_{\sigma(w)}$ for any $w \in W$. We have $h_{\sigma(x),\sigma(y),\sigma(z)} = h_{x,y,z}$ for all $x,y,z \in W$. It follows that $\mathbf{a}(\sigma(w)) = \mathbf{a}(w)$ for all $w \in W$ and $\gamma_{\sigma(x),\sigma(y),\sigma(z)} = \gamma_{x,y,z}$ for all $x, y, z \in W$ so that we have a ring isomorphism $\sigma: J \to J$ where $\sigma(t_w) = t_{\sigma(w)}$ for any $w \in W$. This extends to an A-algebra isomorphism $\sigma : J_A \to J_A$, to a C-algebra isomorphism $\sigma : J_C \to J_C$ and to a K-algebra isomorphism $\sigma: J_K \to J_K$. From the definitions we see that $\phi: \mathcal{H} \to J_{\mathcal{A}}$ (see 0.2) satisfies $\phi \sigma = \sigma \phi$. Hence $\phi_{\mathbf{C}}$ satisfies $\phi_{\mathbf{C}} \sigma = \sigma \phi_{\mathbf{C}}$ and ϕ_{K} satisfies $\phi_K \sigma = \sigma \phi_K$.

We show:

(a) For $h \in \mathcal{H}$ we have $\sigma(h) = T_{w_0} h T_{w_0}^{-1}$.

It is enough to show this for h running through a set of algebra generators of H . Thus we can assume that $h = T_s^{-1}$ with $s \in S$. We must show that $T_{\sigma(s)}^{-1}$ $\frac{v^{-1}}{\sigma(s)}T_{w_0}=$ $T_{w_0}T_s^{-1}$: both sides are equal to $T_{\sigma(s)w_0} = T_{w_0s}$.

Lemma 1.2. *For any* $x \in W$ *we have* $\sigma(x) \sim_{\mathcal{LR}} x$ *.*

From 1.1(a) we deduce that $T_{w_0} c_x T_{w_0}^{-1} = c_{\sigma(x)}$. In particular, $\sigma(x) \leq_{\mathcal{LR}} x$. Replacing x by $\sigma(x)$ we obtain $x \leq_{\mathcal{LR}} \sigma(x)$. The lemma follows.

1.3. Let $E \in \text{IrrW}$. We define $\sigma_E : E \to E$ by $\sigma_E(e) = w_0e$ for $e \in E$. We have $\sigma_E^2 = 1$. For $e \in E, w \in W$, we have $\sigma_E(we) = \sigma(w)\sigma_E(e)$. We can view σ_E as a vector space isomorphism $E_{\spadesuit} \stackrel{\sim}{\to} E_{\spadesuit}$. For $e \in E_{\spadesuit}, w \in W$ we have $\sigma_E(t_w e) = t_{\sigma(w)} \sigma_E(e)$. Now $\sigma_E : E_{\spadesuit} \to E_{\spadesuit}$ defines by extension of scalars a vector space isomorphism $E_v \to E_v$ denoted again by σ_E . It satisfies $\sigma_E^2 = 1$. For $e \in E_v, w \in W$ we have $\sigma_E(T_w e) = T_{\sigma(w)} \sigma_E(e)$.

Lemma 1.4. Let $E \in \text{IrrW}$. There is a unique (up to multiplication by a scalar *in* $K - \{0\}$ *vector space isomorphism* $g: E_v \to E_v$ *such that* $g(T_w e) = T_{\sigma(w)} g(e)$ *for all* $w \in W$, $e \in E_v$. We can take for example $g = T_{w_0} : E_v \to E_v$ or $g = \sigma_E$: $E_v \to E_v$. Hence $T_{w_0} = \lambda_E \sigma_E : E_v \to E_v$ where $\lambda_E \in K - \{0\}.$

The existence of g is clear from the second sentence of the lemma. If g' is another isomorphism $g' : E_v \to E_v$ such that $g'(T_w e) = T_{\sigma(w)} g'(e)$ for all $w \in W, e \in E_v$ then for any $e \in E_v$ we have $g^{-1}g'(T_w e) = g^{-1}T_{\sigma(w)}g'(e) = T_w g^{-1}g'(e)$ and using Schur's lemma we see that $g^{-1}g'$ is a scalar. This proves the first sentence of the lemma hence the third sentence of the lemma.

1.5. Let $E \in \text{IrrW}$. We have

(a)
$$
\sum_{x \in W} \text{tr}(T_x, E_v) \text{tr}(T_{x^{-1}}, E_v) = f_{E_v} \dim(E)
$$

where $f_{E_v} \in \mathcal{A}'$ is of the form

(b)
$$
f_{E_v} = f_0 v^{-2a_E} + \text{ strictly higher powers of } v
$$

and $f_0 \in \mathbf{C} - \{0\}$. (See [L3, 19.1(e), 20.1(c), 20.7].)

From Lemma 1.4 we see that λ_E^{-1} $E^{-1}T_{w_0}$ acts on E_v as σ_E . Using [L4, 34.14(e)] with $c = \lambda_E^{-1} T_{w_0}$ (an invertible element of \mathcal{H}_K) we see that

(c)
$$
\sum_{x \in W} tr(T_x \sigma_E, E_v) tr(\sigma_E^{-1} T_{x^{-1}}, E_v) = f_{E_v} dim(E).
$$

Lemma 1.6. *Let* $E \in \text{IrrW}$ *. We have* $\lambda_E = v^{n_E}$ *for some* $n_E \in \mathbf{Z}$ *.*

For any $x \in W$ we have

$$
\operatorname{tr}(\sigma_E c_x^{\dagger}, E_v) = \sum_{d \in \mathcal{D}, z \in W; d = d_z} h_{x,d,z} n_d \operatorname{tr}(\sigma_E t_z, E_{\spadesuit}) \in \mathcal{A}'
$$

since $\text{tr}(\sigma_E t_z, E_{\spadesuit}) \in \mathbb{C}$. It follows that $\text{tr}(\sigma_E h, E_v) \in \mathcal{A}'$ for any $h \in \mathcal{H}$. In particular, both $tr(\sigma_E T_{w_0}, E_v)$ and $tr(T_{w_0}^{-1} \sigma_E, E_v)$ belong to \mathcal{A}' . Thus $\lambda_E \dim E$ and λ_E^{-1} dim E belong to \mathcal{A}' so that $\lambda_E = bv^n$ for some $b \in \mathbf{C} - \{0\}$ and $n \in \mathbf{Z}$. From the definitions we have $\lambda_E|_{v=1} = 1$ (for $v = 1, T_{w_0}$ becomes w_0) hence $b = 1$. The lemma is proved.

Lemma 1.7. *Let* $E \in \text{IrrW}$ *. There exists* $\epsilon_E \in \{1, -1\}$ *such that for any* $x \in W$ *we have*

(a)
$$
\operatorname{tr}(\sigma_{E^{\dagger}}T_x, (E^{\dagger})_v) = \epsilon_E(-1)^{l(x)} \operatorname{tr}(\sigma_E T_{x^{-1}}^{-1}, E_v).
$$

Let $(E_v)^{\dagger}$ be the \mathcal{H}_K -module with underlying vector space E_v such that the action of $h \in \mathcal{H}_K$ on $(E_v)^{\dagger}$ is the same as the action of h^{\dagger} on E_v . From the proof in [L3, 20.9] we see that there exists an isomorphism of \mathcal{H}_K -modules b: $(E_v)^\dagger \stackrel{\sim}{\to} (E^{\dagger})_v$. Let $\iota : (E_v)^\dagger \to (E_v)^\dagger$ be the vector space isomorphism which corresponds under b to $\sigma_{E^{\dagger}} : (E^{\dagger})_v \to (E^{\dagger})_v$. Then we have $\text{tr}(\sigma_{E^{\dagger}} T_x, (E^{\dagger})_v) =$ $\text{tr}(tT_x,(E_v)^{\dagger})$. It is enough to prove that $\iota = \pm \sigma_E$ as a K-linear map of the vector space $E_v = (E_v)^{\dagger}$ into itself. From the definition we have $\iota(T_w e) = T_{\sigma(w)} \iota(e)$ for all $w \in W, e \in (E_v)^{\dagger}$. Hence $(-1)^{l(w)} \iota(T_{w^{-1}}^{-1}e) = (-1)^{l(w)} T_{\sigma(w^{-1})}^{-1} \iota(e)$ for all $w \in W, e \in E_v$. It follows that $\iota(he) = (-1)^{l(w)} T_{\sigma(h)} \iota(e)$ for all $h \in \mathcal{H}, e \in E_v$. Hence $\iota(T_w e) = T_{\sigma(w)} \iota(e)$ for all $w \in W, e \in E_v$. By the uniqueness in Lemma 1.4 we see that $\iota = \epsilon_E \sigma_E : E_v \to E_v$ where $\epsilon_E \in K - \{0\}$. Since $\iota^2 = 1$, $\sigma_E^2 = 1$, we see that $\epsilon_E = \pm 1$. The lemma is proved.

Lemma 1.8. *Let* $E \in \text{IrrW}$ *. We have* $n_E = -\mathbf{a}_E + \mathbf{a}_{E^{\dagger}}$ *.*

For $x \in W$ we have (using Lemma 1.4, 1.6)

(a)
$$
\operatorname{tr}(T_{w_0x}, E_v) = \operatorname{tr}(T_{w_0}T_{x^{-1}}^{-1}, E_v) = v^{n_E} \operatorname{tr}(\sigma_E T_{x^{-1}}^{-1}, E_v).
$$

Making a change of variable $x \mapsto w_0x$ in 1.5(a) and using that $T_{x^{-1}w_0} = T_{w_0\sigma(x)^{-1}}$ we obtain

$$
f_{E_v} \dim(E) = \sum_{x \in W} \text{tr}(T_{w_0x}, E_v) \text{tr}(T_{w_0\sigma(x)^{-1}}, E_v)
$$

$$
= v^{2n_E} \sum_{x \in W} \text{tr}(\sigma_E T_{x^{-1}}, E_v) \text{tr}(\sigma_E T_{\sigma(x)}, E_v).
$$

Using now Lemma 1.7 and the equality $l(x) = l(\sigma(x^{-1}))$ we obtain

$$
f_{E_v} \dim(E) = v^{2n_E} \sum_{x \in W} \text{tr}(\sigma_{E^{\dagger}} T_x, (E^{\dagger})_v) \text{tr}(\sigma_{E^{\dagger}} T_{\sigma(x^{-1})}, (E^{\dagger})_v)
$$

= $v^{2n_E} \sum_{x \in W} \text{tr}(\sigma_{E^{\dagger}} T_x, (E^{\dagger})_v) \text{tr}(T_{\xi^{-1}} \sigma_{E^{\dagger}}, (E^{\dagger})_v)$
= $v^{2n_E} f_{(E^{\dagger})_v} \dim(E^{\dagger}).$

(The last step uses 1.5(c) for E^{\dagger} instead of E.) Thus we have $f_{E_v} = v^{2n_E} f_{(E^{\dagger})_v}$. The left hand side is as in 1.5(b) and similarly the right hand side of the form

$$
f_0'v^{2n_E-2{\bf a}_{E^\dagger}} + \mbox{strictly higher powers of } v
$$

where $f_0, f'_0 \in \mathbf{C} - \{0\}$. It follows that $-2\mathbf{a}_E = 2n_E - 2\mathbf{a}_{E^{\dagger}}$. The lemma is proved.

Lemma 1.9. *Let* $E \in \text{IrrW}$ *and let* $x \in W$ *. We have*

(a) $\operatorname{tr}(T_x, E_v) = (-1)^{l(x)} v^{-\mathbf{a}_E} \operatorname{tr}(t_x, E_{\spadesuit}) \mod v^{-\mathbf{a}_E+1} \mathbf{C}[v],$

(b) $\operatorname{tr}(\sigma_E T_x, E_v) = (-1)^{l(x)} v^{-\mathbf{a}_E} \operatorname{tr}(\sigma_E t_x, E_{\spadesuit}) \mod v^{-\mathbf{a}_E+1} \mathbf{C}[v].$

For a proof of (a) , see [L3, 20.6(b)]. We now give a proof of (b) along the same lines as that of (a). There is a unique two sided cell **c** such that $t_z|_{E_\bullet} = 0$ for $z \in W - \mathbf{c}$. Let $a = \mathbf{a}(z)$ for all $z \in \mathbf{c}$. By [L3, 20.6(c)] we have $a = \mathbf{a}_E$. From the definition of c_x we see that $T_x = \sum_{y \in W} f_y c_y$ where $f_x = 1$ and $f_y \in v^{-1} \mathbb{Z}[v^{-1}]$ for $y \neq x$. Applying [†] we obtain $(-1)^{l(x)}T_{x^{-1}}^{-1} = \sum_{y \in W} f_y c_y^{\dagger}$; applying⁻we obtain $(-1)^{l(x)}T_x = \sum_{y \in W} \bar{f}_y c_y^{\dagger}$. Thus we have

$$
(-1)^{l(x)} \text{tr}(\sigma_E T_x, E_v) = \sum_{y \in W} \bar{f}_y \text{tr}(\sigma_E c_y^{\dagger}, E_v)
$$

$$
= \sum_{y,z \in W, d \in \mathcal{D}; d = d_z} \bar{f}_y h_{y,d,z} n_d \text{tr}(\sigma_E t_z, E_{\spadesuit}).
$$

In the last sum we can assume that $z \in \mathbf{c}$ and $d \in \mathbf{c}$ so that $h_{y,d,z} = \gamma_{y,d,z^{-1}} v^{-a}$ mod $v^{-a+1}\mathbf{Z}[v]$. Since $\bar{f}_x = 1$ and $\bar{f}_y \in v\mathbf{Z}[v]$ for all $y \neq x$ we see that

$$
(-1)^{l(x)} tr(\sigma_E T_x, E_v) = \sum_{z \in \mathbf{c}, d \in \mathcal{D} \cap \mathbf{c}} \gamma_{x,d,z^{-1}} n_d v^{-a} tr(\sigma_E t_z, E_{\spadesuit}) \mod v^{-a+1} \mathbf{C}[v].
$$

If $x \notin \mathbf{c}$ then $\gamma_{x,d,z^{-1}} = 0$ for all d, z in the sum so that $\text{tr}(\sigma_E T_x, E_v) = 0$; we have also $tr(\sigma_E t_x, E_{\spadesuit}) = 0$ and the desired formula follows. We now assume that $x \in \mathbf{c}$. Then for d, z as above we have $\gamma_{x,d,z^{-1}} = 0$ unless $x = z$ and $d = d_x$ in which case $\gamma_{x,d,z^{-1}} n_d = 1$. Thus (b) holds again. The lemma is proved.

Lemma 1.10. Let $E \in \text{IrrW}$. Let **c** be the unique two sided cell such that $t_z|_{E_\blacktriangle} =$ 0 *for* $z \in W - c$. Let c' be the unique two sided cell such that $t_z|_{(E^{\dagger})_{\blacktriangle}} = 0$ *for* $z \in W - \mathbf{c}'$. We have $\mathbf{c}' = w_0 \mathbf{c}$.

Using $1.8(a)$ and $1.7(a)$ we have

(a)
$$
\operatorname{tr}(T_{w_0x}, E_v) = v^{n_E} \operatorname{tr}(\sigma_E T_{x^{-1}}^{-1}, E_v) = v^{n_E} \epsilon_E (-1)^{l(x)} \operatorname{tr}(\sigma_{E^{\dagger}} T_x, (E^{\dagger})_v).
$$

Using 1.9(a) for E and 1.9(b) for E^{\dagger} we obtain

$$
\operatorname{tr}(T_{w_0x}, E_v) = (-1)^{l(w_0x)} v^{-\mathbf{a}_E} \operatorname{tr}(t_{w_0x}, E_{\spadesuit}) \mod v^{-\mathbf{a}_E+1} \mathbf{C}[v],
$$

$$
\operatorname{tr}(\sigma_{E^{\dagger}} T_x, (E^{\dagger})_v) = (-1)^{l(x)} v^{-\mathbf{a}_E \dagger} \operatorname{tr}(\sigma_{E^{\dagger}} t_x, E_{\spadesuit}^{\dagger}) \mod v^{-\mathbf{a}_{E^{\dagger}}+1} \mathbf{C}[v].
$$

Combining with (a) we obtain

 $(-1)^{l(w_0x)}v^{-\mathbf{a}_E}\text{tr}(t_{w_0x},E_{\spadesuit}) + \text{strictly higher powers of } v$ $= v^{n_E} \epsilon_E v^{-\mathbf{a}_{E^{\dagger}}} \text{tr}(\sigma_{E^{\dagger}} t_x, E^{\dagger}_{\bullet}) + \text{strictly higher powers of } v.$

Using the equality $n_E = -\mathbf{a}_E + \mathbf{a}_{E^{\dagger}}$ (see 1.8) we deduce

$$
(-1)^{l(w_0x)} \text{tr}(t_{w_0x}, E_{\clubsuit}) = \epsilon_E \text{tr}(\sigma_{E^{\dagger}} t_x, E_{\spadesuit}^{\dagger}).
$$

Now we can find $x \in W$ such that $tr(t_{w_0x}, E_{\bullet}) \neq 0$ and the previous equality shows that $t_x|_{(E^{\dagger})_\spadesuit} \neq 0$. Moreover from the definition we have $w_0x \in \mathbf{c}$ and $x \in \mathbf{c}'$ so that $w_0 \mathbf{c} \cap \mathbf{c}' \neq \emptyset$. Since $w_0 \mathbf{c}$ is a two-sided cell (see [L3, 11.7(d)]) it follows that $w_0 \mathbf{c} = \mathbf{c}'$. The lemma is proved.

Lemma 1.11. Let **c** be a two-sided cell of W. Let **c**' be the two-sided cell w_0 **c** = $\mathbf{c}w_0$ *(see Lemma 1.2). Let* $a = \mathbf{a}(x)$ *for any* $x \in \mathbf{c}$ *; let* $a' = \mathbf{a}(x')$ *for any* $x' \in \mathbf{c}'$ *.* The K-linear map $J_K^c \to J_K^c$ given by $\xi \mapsto \phi(v^{a-a'}T_{w_0})\xi$ (left multiplication in J_K) is obtained from a C-linear map $J_C^c \rightarrow J_C^c$ (with square 1) by extension of *scalars from* C *to* K*.*

We can find a direct sum decomposition $J_{\mathbf{C}}^{\mathbf{c}} = \bigoplus_{i=1}^{m} E^i$ where E^i are simple left ideals of $J_{\mathbf{C}}$ contained in $J_{\mathbf{C}}^{\mathbf{c}}$. We have $J_{K}^{\mathbf{c}} = \bigoplus_{i=1}^{m} K \otimes E^{i}$. It is enough to show that for any i, the K-linear map $K \otimes E^i \to K \otimes E^i$ given by the action of $\phi(v^{a-a'}T_{w_0})$ in the left J_K -module structure of $K \otimes E^i$ is obtained from a C-linear map $E^i \to E^i$ (with square 1) by extension of scalars from C to K. We can find $E \in \text{IrrW}$ such that E^i is isomorphic to E_{\spadesuit} as a $J_{\mathbf{C}}$ -module. It is then enough to show that the action of $v^{a-a'} T_{w_0}$ in the left \mathcal{H}_K -module structure of E_v is obtained from the map $\sigma_E : E \to E$ by extension of scalars from C to K. This follows from the equality $v^{a-a'}T_{w_0} = \sigma_E : E_v \to E_v$ (since σ_E is obtained by extension of scalars from a C-linear map $E \to E$ with square 1) provided that we show that $-n_E = a - a'$. Since $n_E = -a_E + a_{E^{\dagger}}$ (see Lemma 1.8) it is enough to show that $a = \mathbf{a}_E$ and $a' = \mathbf{a}_{E^{\dagger}}$. The equality $a = \mathbf{a}_E$ follows from [L3, 20.6(c)]. The equality $a' = \mathbf{a}_{E^{\dagger}}$ also follows from [L3, 20.6(c)] applied to E^{\dagger} , $\mathbf{c}' = w_0 \mathbf{c}$ instead of E , c (see Lemma 1.10). The lemma is proved.

Lemma 1.12. In the setup of Lemma 1.11 we have for any $x \in \mathbf{c}$:

(a)
$$
\phi(v^{a-a'}T_{w_0})t_x = \sum_{x' \in \mathbf{c}} m_{x',x}t_{x'}
$$

(b)
$$
\phi(v^{2a-2a'}T_{w_0}^2)t_x = t_x
$$

where $m_{x',x} \in \mathbf{Z}$.

Now (b) and the fact that (a) holds with $m_{x',x} \in \mathbb{C}$ is just a restatement of Lemma 1.11. Since $\phi(v^{a-a'}T_{w_0}) \in J_{\mathcal{A}}$ we have also $m_{x',x} \in \mathcal{A}$. We now use that $\mathcal{A} \cap \mathbf{C} = \mathbf{Z}$ and the lemma follows.

Lemma 1.13. In the setup of Lemma 1.11 we have for any $x \in \mathbf{c}$ the following equalities in $\mathcal{H}^{\mathbf{c}}$:

(a)
$$
v^{a-a'}T_{w_0}c_x^{\dagger} = \sum_{x' \in \mathbf{c}} m_{x',x}c_{x'}^{\dagger},
$$

(b)
$$
v^{2a-2a'}T_{w_0}^2c_x^{\dagger} = c_x^{\dagger}
$$

where $m_{x',x} \in \mathbf{Z}$ are the same as in Lemma 1.12. Moreover, if $m_{x',x} \neq 0$ then $x' \sim_{\mathcal{L}} x$.

The first sentence follows from Lemma 1.12 using $[L3, 18.10(a)]$. Clearly, if $m_{x',x} \neq 0$ then $x' \leq_{\mathcal{L}} x$ which together with $x' \sim_{\mathcal{LR}} x$ implies $x' \sim_{\mathcal{L}} x$.

2. The main results

2.1. In this section we fix a two-sided cell c of W ; a, a' are as in 1.11. We define an A-linear map $\theta : \mathcal{H}^{\leq c} \to \mathcal{A}$ by $\theta(c_x^{\dagger}) = 1$ if $x \in \mathcal{D} \cap c$, $\theta(c_x^{\dagger}) = 0$ if $x \leq_{\mathcal{LR}} x'$ for some $x' \in \mathbf{c}$ and $x \notin \mathcal{D} \cap \mathbf{c}$. Note that θ is zero on $\mathcal{H}^{<\mathbf{c}}$ hence it can be viewed as an \mathcal{A} -linear map $\mathcal{H}^{\mathbf{c}} \to \mathcal{A}$.

Lemma 2.2. *Let* $x, x' \in \mathbf{c}$ *. We have*

(a)
$$
\theta(c_{x^{-1}}^{\dagger}c_{x'}^{\dagger}) = n_{d_x}\delta_{x,x'}v^a + \text{ strictly lower powers of } v.
$$

The left hand side of (a) is

$$
\sum_{d \in \mathcal{D} \cap \mathbf{c}} h_{x^{-1}, x', d} = \sum_{d \in \mathcal{D} \cap \mathbf{c}} \gamma_{x^{-1}, x', d} v^a + \text{ strictly lower powers of } v
$$

= $n_{d_x} \delta_{x, x'} v^a + \text{ strictly lower powers of } v.$

The lemma is proved.

We now state one of the main results of this paper.

Theorem 2.3. *There exists a unique permutation* $u \mapsto u^*$ *of* **c** *(with square 1) such that for any* $u \in \mathbf{c}$ *we have*

(a)
$$
v^{a-a'} T_{w_0} c_u^{\dagger} = \epsilon_u c_{u^*}^{\dagger} \mod \mathcal{H}^{<\mathbf{c}}
$$

where $\epsilon_u = \pm 1$ *. For any* $u \in \mathbf{c}$ *we have* $\epsilon_{u^{-1}} = \epsilon_u = \epsilon_{\sigma(u)} = \epsilon_{u^*}$ *and* $\sigma(u^*) =$ $(\sigma(u))^* = ((u^{-1})^*)^{-1}.$

Let $u \in \mathbf{c}$. We set $Z = \theta((v^{a-a'}T_{w_0}c_u^{\dagger})^{\dagger}v^{a-a'}T_{w_0}c_u^{\dagger})$. We compute Z in two ways, using Lemma 2.2 and Lemma 1.13. We have

$$
Z = \theta(c_{u^{-1}}^{\dagger} v^{2a-2a'} T_{w_0}^2 c_u^{\dagger}) = \theta(c_{u^{-1}}^{\dagger} c_u^{\dagger}) = n_{d_u} v^a + \text{ strictly lower powers of } v,
$$

$$
Z = \theta((\sum_{y \in \mathbf{c}} m_{y,u} c_y^{\dagger})^{\flat} (\sum_{y' \in \mathbf{c}} m_{y',u} c_{y'}^{\dagger})) = \sum_{y,y' \in \mathbf{c}} m_{y,u} m_{y',u} \theta(c_{y^{-1}}^{\dagger} c_{y'}^{\dagger})
$$

\n
$$
= \sum_{y,y' \in \mathbf{c}} m_{y,u} m_{y',u} n_{d_y} \delta_{y,y'} v^a + \text{ strictly lower powers of } v
$$

\n
$$
= \sum_{y \in \mathbf{c}} n_{d_y} m_{y,u}^2 v^a + \text{ strictly lower powers of } v
$$

\n
$$
= \sum_{y \in \mathbf{c}} n_{d_u} m_{y,u}^2 v^a + \text{ strictly lower powers of } v
$$

where $m_{y,u} \in \mathbf{Z}$ is zero unless $y \sim_{\mathcal{L}} u$ (see 1.13), in which case we have $d_y = d_u$. We deduce that $\sum_{y \in \mathbf{c}} m_{y,u}^2 = 1$, so that we have $m_{y,u} = \pm 1$ for a unique $y \in \mathbf{c}$ (denoted by u^*) and $m_{y,u} = 0$ for all $y \in \mathbf{c} - \{u^*\}$. Then (a) holds. Using (a) and Lemma 1.13(b) we see that $u \mapsto u^*$ has square 1 and that $\epsilon_u \epsilon_{u^*} = 1$.

The automorphism $\sigma : \mathcal{H} \to \mathcal{H}$ (see 1.1) satisfies the equality $\sigma(c_u^{\dagger}) = c_{\sigma}^{\dagger}$ $\frac{1}{\sigma(u)}$ for any $u \in W$; note also that $w \in \mathbf{c} \leftrightarrow \sigma(w) \in \mathbf{c}$ (see Lemma 1.2). Applying σ to (a) we obtain

$$
v^{a-a'} T_{w_0} c_{\sigma(u)}^{\dagger} = \epsilon_u c_{\sigma(u^*)}^{\dagger}
$$

in \mathcal{H}^c . By (a) we have also $v^{a-a'} T_{w_0} c_{\sigma(u)}^{\dagger} = \epsilon_{\sigma(u)} c_{(\sigma(u))^*}^{\dagger}$ in \mathcal{H}^c . It follows that $\epsilon_u c_{\sigma(u^*)}^{\dagger} = \epsilon_{\sigma(u)} c_{(\sigma(u))^*}^{\dagger}$ hence $\epsilon_u = \epsilon_{\sigma(u)}$ and $\sigma(u^*) = (\sigma(u))^*$.

Applying $h \mapsto h^{\flat}$ to (a) we obtain

$$
v^{a-a'}c_{u^{-1}}^{\dagger}T_{w_0}=\epsilon_u c_{(u^*)^{-1}}^{\dagger}
$$

in \mathcal{H}^c . By (a) we have also

$$
v^{a-a'}c_{u^{-1}}^{\dagger}T_{w_0} = v^{a-a'}T_{w_0}c_{\sigma(u^{-1})}^{\dagger} = \epsilon_{\sigma(u^{-1})}c_{(\sigma(u^{-1}))^*}^{\dagger}
$$

in \mathcal{H}^c . It follows that $\epsilon_u c^{\dagger}_{(u^*)^{-1}} = \epsilon_{\sigma(u^{-1})} c^{\dagger}_{(\sigma(u^{-1}))^*}$ hence $\epsilon_u = \epsilon_{\sigma(u^{-1})}$ and $(u^*)^{-1} = (\sigma(u^{-1}))^*$. Since $\epsilon_{\sigma(u^{-1})} = \epsilon_{u^{-1}}$, we see that $\epsilon_u = \epsilon_{u^{-1}}$. Replacing u by u^{-1} in $(u^*)^{-1} = (\sigma(u^{-1}))^*$ we obtain $((u^{-1})^*)^{-1} = (\sigma(u))^*$ as required. The theorem is proved.

2.4. For $u \in \mathbf{c}$ we have

(a)
$$
u \sim_{\mathcal{L}} u^*
$$
,

(b)
$$
\sigma(u) \sim_{\mathcal{R}} u^*
$$
.

Indeed, (a) follows from 1.13. To prove (b) it is enough to show that $\sigma(u)^{-1} \sim_{\mathcal{L}} (u^*)^{-1}$. Using (a) for $\sigma(u)^{-1}$ instead of u we see that it is enough to show that $(\sigma(u^{-1}))^* = (u^*)^{-1}$; this follows from 2.3.

If we assume that

(c) *any left cell in* c *intersects any right cell in* c *in exactly one element* then by (a),(b), for any $u \in \mathbf{c}$,

(d) u ∗ *is the unique element of* c *in the intersection of the left cell of* u *with right cell of* $\sigma(u)$ *.*

Note that condition (c) is satisfied for any **c** if W is of type A_n or if W is of type B_n $(n \geq 2)$ with $L(s) = 2$ for all but one $s \in S$ and $L(s) = 1$ or 3 for the remaining $s \in S$. (In this last case we are in the quasisplit case and we have $\sigma = 1$ hence $u^* = u$ for all u .)

Theorem 2.5. *For any* $x \in W$ *we set* $\vartheta(x) = \gamma_{w_0 d_{w_0 x - 1}, x, (x^*)^{-1}}$ *.*

(a) If $d \in \mathcal{D}$ and $x, y \in \mathbf{c}$ *satisfy* $\gamma_{w_0d,x,y} \neq 0$ then $y = (x^*)^{-1}$.

(b) If $x \in \mathbf{c}$ then there is a unique $d \in \mathcal{D} \cap w_0 \mathbf{c}$ such that $\gamma_{w_0 d, x, (x^*)^{-1}} \neq 0$, *namely* $d = d_{w \circ x^{-1}}$ *. Moreover we have* $\vartheta(x) = \pm 1$ *.*

(c) For $u \in \mathbf{c}$ *we have* $\epsilon_u = (-1)^{l(w_0 d)} n_d \vartheta(u)$ *where* $d = d_{w_0 u^{-1}}$ *.*

Appplying $h \mapsto h^{\dagger}$ to 2.3(a) we obtain for any $u \in \mathbf{c}$:

(d)
$$
v^{a-a'}(-1)^{l(w_0)}\overline{T_{w_0}}c_u = \sum_{z \in \mathbf{c}} \delta_{z,u^*} \epsilon_u c_z \mod \sum_{z' \in W - \mathbf{c}} \mathcal{A}c_{z'}.
$$

We have $T_{w_0} = \sum_{y \in W} (-1)^{l(w_0 y)} p_{1,w_0 y} c_y$ hence $\overline{T_{w_0}} = \sum_{y \in W} (-1)^{l(w_0 y)} \overline{p_{1,w_0 y}} c_y$. Introducing this in (d) we obtain

$$
v^{a-a'}\sum_{y\in W}(-1)^{l(y)}\overline{p_{1,w_0y}}c_yc_u=\sum_{z\in\mathbf{c}}\delta_{z,u^*}\epsilon_u c_z \mod \sum_{z'\in W-\mathbf{c}}\mathcal{A}c_{z'}
$$

that is,

$$
v^{a-a'}\sum_{y,z\in W}(-1)^{l(y)}\overline{p_{1,w_0y}}h_{y,u,z}c_z=\sum_{z\in\mathbf{c}}\delta_{z,u^*}\epsilon_u c_z\mod\sum_{z'\in W-\mathbf{c}}\mathcal{A}c_{z'}.
$$

Thus, for $z \in \mathbf{c}$ we have

(e)
$$
v^{a-a'} \sum_{y \in W} (-1)^{l(y)} \overline{p_{1,w_0y}} h_{y,u,z} = \delta_{z,u^*} \epsilon_u.
$$

Here we have $h_{y,u,z} = \gamma_{y,u,z^{-1}} v^{-a} \mod v^{-a+1} \mathbf{Z}[v]$ and we can assume than $z \leq_{\mathcal{R}}$ y so that $w_0 y \leq_{\mathcal{R}} w_0 z$ and $\mathbf{a}(w_0 y) \geq \mathbf{a}(w_0 z) = a'$.

For $w \in W$ we set $s_w = n_w$ if $w \in \mathcal{D}$ and $s_w = 0$ if $w \notin \mathcal{D}$. By [L3, 14.1] we have $p_{1,w} = s_w v^{-\mathbf{a}(w)} \mod v^{-\mathbf{a}(w)-1} \mathbf{Z}[v^{-1}]$ hence $\overline{p_{1,w}} = s_w v^{\mathbf{a}(w)} \mod v^{\mathbf{a}(w)+1} \mathbf{Z}[v].$ Hence for y in the sum above we have $\overline{p_{1,w_0y}} = s_{w_0y}v^{\mathbf{a}(w_0y)} \mod v^{\mathbf{a}(w_0y)+1}\mathbf{Z}[v].$ Thus (e) gives

$$
v^{a-a'}\sum_{y\in\mathbf{c}}(-1)^{l(y)}s_{w_0y}\gamma_{y,u,z^{-1}}v^{\mathbf{a}(w_0y)-a}-\delta_{z,u^*}\epsilon_u\in v\mathbf{Z}[v]
$$

and using $\mathbf{a}(w_0 y) = a'$ for $y \in \mathbf{c}$ we obtain

$$
\sum_{y \in \mathbf{c}} (-1)^{l(y)} s_{w_0 y} \gamma_{y, u, z^{-1}} = \delta_{z, u^*} \epsilon_u.
$$

Using the definition of s_{w_0y} we obtain

(f)
$$
\sum_{d \in \mathcal{D} \cap w_0 \mathbf{c}} (-1)^{l(w_0 d)} n_d \gamma_{w_0 d, u, z^{-1}} = \delta_{z, u^*} \epsilon_u.
$$

Next we note that

(g) *if* $d \in \mathcal{D}$ *and* $x, y \in \mathbf{c}$ *satisfy* $\gamma_{w_0d,x,y} \neq 0$ *then* $d = d_{w_0x^{-1}}$ *.* Indeed from [L3,§14, P8] we deduce $w_0d \sim_{\mathcal{L}} x^{-1}$. Using [L3, 11.7] we deduce $d \sim_{\mathcal{L}} w_0 x^{-1}$ so that $d = d_{w_0^{-1}x^{-1}}$. This proves (g).

Using (g) we can rewrite (f) as follows.

(h)
$$
(-1)^{l(w_0)} (-1)^{l(d)} n_d \gamma_{w_0 d, u, z^{-1}} = \delta_{z, u^*} \epsilon_u
$$

where $d = d_{w_0u^{-1}}$.

We prove (a). Assume that $d \in \mathcal{D}$ and $x, y \in \mathbf{c}$ satisfy $\gamma_{w_0d,x,y} \neq 0, y \neq (x^*)^{-1}$. Using (g) we have $d = d_{w_0x^{-1}}$. Using (h) with $u = x, z = y^{-1}$ we see that $\gamma_{w_0d,x,y} = 0$, a contradiction. This proves (a).

We prove (b). Using (h) with $u = x, z = x^*$ we see that

$$
\text{(i)} \qquad \qquad (-1)^{l(w_0 d)} n_d \gamma_{w_0 d, x, (x^*)^{-1}} = \epsilon_u
$$

where $d = d_{w_0x^{-1}}$. Hence the existence of d in (b) and the equality $\vartheta(x) = \pm 1$ follow; the uniqueness of d follows from (g) .

Now (c) follows from (i). This completes the proof of the theorem.

2.6. In the case where $L = l$, $\vartheta(u)$ (in 2.5(c)) is ≥ 0 and ± 1 hence 1; moreover, $n_d = 1$, $(-1)^{l(d)} = (-1)^{a'}$ for any $d \in \mathcal{D} \cap w_0$ **c** (by the definition of \mathcal{D}). Hence we have $\epsilon_u = (-1)^{l(w_0) + a'}$ for any $u \in \mathbf{c}$, a result of [MA].

Now Theorem 2.5 also gives a characterization of u^* for $u \in \mathbf{c}$; it is the unique element $u' \in \mathbf{c}$ such that $\gamma_{w_0 d, u, u'^{-1}} \neq 0$ for some $d \in \mathcal{D} \cap w_0 \mathbf{c}$.

We will show:

(a) *The subsets* $X = \{d^*; d \in \mathcal{D} \cap \mathbf{c}\}\$ *and* $X' = \{w_0 d'; d' \in \mathcal{D} \cap w_0 \mathbf{c}\}\$ *of* \mathbf{c} *coincide.*

Let $d \in \mathcal{D} \cap \mathbf{c}$. By 2.5(b) we have $\gamma_{w_0 d', d, (d^*)^{-1}} = \pm 1$ for some $d' \in \mathcal{D} \cap w_0 \mathbf{c}$. Hence $\gamma_{(d^*)^{-1},w_0d',d} = \pm 1$. Using [L3, 14.2, P2] we deduce $d^* = w_0d'$. Thus $X \subset X'$. Let Y (resp. Y') be the set of left cells contained in c (resp. w_0 c). We have $\sharp(X) = \sharp(Y)$ and $\sharp(X') = \sharp(Y')$. By [L3, 11.7(c)] we have $\sharp(Y) = \sharp(Y')$. It follows that $\sharp(X) = \sharp(X')$. Since $X \subset X'$, we must have $X = X'$. This proves (a).

Theorem 2.7. *We have*

$$
\phi(v^{a-a'}T_{w_0}) = \sum_{d \in \mathcal{D} \cap \mathbf{c}} \vartheta(d) \epsilon_d t_{d^*} \mod \sum_{u \in W - \mathbf{c}} \mathcal{A}t_u.
$$

We set $\phi(v^{a-a'}T_{w_0}) = \sum_{u \in W} p_u t_u$ where $p_u \in \mathcal{A}$. Combining 1.12(a), 1.13(a), 2.3(a) we see that for any $x \in \mathbf{c}$ we have

$$
\phi(v^{a-a'}T_{w_0})t_x = \epsilon_x t_{x^*},
$$

hence

$$
\epsilon_x t_{x^*} = \sum_{u \in \mathbf{c}} p_u t_u t_x = \sum_{u, y \in \mathbf{c}} p_u \gamma_{u, x, y^{-1}} t_y.
$$

It follows that for any $x, y \in \mathbf{c}$ we have

$$
\sum_{u \in \mathbf{c}} p_u \gamma_{u,x,y^{-1}} = \delta_{y,x^*} \epsilon_x.
$$

Taking $x = w_0d$ where $d = d_{w_0y} \in \mathcal{D} \cap w_0c$ we obtain

$$
\sum_{u \in \mathbf{c}} p_u \gamma_{w_0 d_{w_0 y}, y^{-1}, u} = \delta_{y, (w_0 d_{w_0 y})^*} \epsilon_{w_0 d_{w_0 y}}
$$

which, by 2.5, can be rewritten as

$$
p_{((y^{-1})^*)^{-1}}\vartheta(y^{-1}) = \delta_{y,(w_0d_{w_0y})^*}\epsilon_{w_0d_{w_0y}}.
$$

We see that for any $y \in \mathbf{c}$ we have

$$
p_{\sigma(y^*)} = \delta_{y,(w_0d_{w_0y})^*} \vartheta(y^{-1}) \epsilon_{w_0d_{w_0y}}.
$$

In particular we have $p_{\sigma(y^*)} = 0$ unless $y = (w_0 d_{w_0y})^*$ in which case

$$
p_{\sigma(y^*)} = p_{(\sigma(y))^*)} = \vartheta(y^{-1})\epsilon_y.
$$

(We use that $\epsilon_{y^*} = \epsilon_{y}$.) If $y = (w_0 d_{w_0 y})^*$ then $y^* \in X'$ hence by 2.6(a), $y^* = d^*$ that is $y = d$ for some $d \in \mathcal{D}$. Conversely, if $y \in \mathcal{D}$ then $w_0 y^* \in \mathcal{D}$ (by 2.6(a)) and $w_0y^* \sim_{\mathcal{L}} w_0y$ (since $y^* \sim_{\mathcal{L}} y$) hence $d_{w_0y} = w_0y^*$. We see that $y = (w_0d_{w_0y})^*$ if and only if $y \in \mathcal{D}$. We see that

$$
\phi(v^{a-a'}T_{w_0}) = \sum_{d \in \mathcal{D} \cap \mathbf{c}} \vartheta(d^{-1}) \epsilon_d t_{(\sigma(d))^*} + \sum_{u \in W - \mathbf{c}} p_u t_u.
$$

Now $d \mapsto \sigma(d)$ is a permutation of $\mathcal{D} \cap \mathbf{c}$ and $\vartheta(d^{-1}) = \vartheta(d) = \vartheta(\sigma(d)), \epsilon_{\sigma(d)} = \epsilon_d$. The theorem follows.

Corollary 2.8. *We have*

$$
\phi(T_{w_0}) = \sum_{d \in \mathcal{D}} \vartheta(d) \epsilon_d v^{-\mathbf{a}(d) + \mathbf{a}(w_0 d)} t_{d^*} \in J_{\mathcal{A}}.
$$

2.9. We set $\mathfrak{T}_{\mathbf{c}} = \sum_{d \in \mathcal{D} \cap \mathbf{c}} \vartheta(d) \epsilon_d t_{d^*} \in J^{\mathbf{c}}$. We show: (a) $\mathfrak{T}_{\mathbf{c}}^2 = \sum_{d \in \mathcal{D} \cap \mathbf{c}} n_d t_d;$ (b) $t_x \mathfrak{T}_c = \mathfrak{T}_c t_{\sigma(x)}$ for any $x \in W$.

By 2.7 we have $\phi(v^{a-a'}T_{w_0}) = \mathfrak{T}_c + \xi$ where $\xi \in J_K^{W-c} := \sum_{u \in W-c} K t_u$. Since $J_K^{\mathbf{c}}$, $J_K^{W-\mathbf{c}}$ are two-sided ideals of J_K with intersection zero and $\phi_K : \mathcal{H}_K \to J_K$ is an algebra homomorphism, it follows that

$$
\phi(v^{2a-2a'}T_{w_0}^2) = (\phi(v^{a-a'}T_{w_0}))^2 = (\mathfrak{T}_c + \xi)^2 = \mathfrak{T}_c^2 + \xi'
$$

where $\xi' \in J_K^{W-\mathbf{c}}$. Hence, for any $x \in \mathbf{c}$ we have $\phi(v^{2a-2a'}T_{w_0}^2)t_x = \mathfrak{T}_{\mathbf{c}}^2 t_x$ so that (using 1.12(b)): $t_x = \mathfrak{T}_{\mathbf{c}}^2 t_x$. We see that $\mathfrak{T}_{\mathbf{c}}^2$ is the unit element of the ring $J_K^{\mathbf{c}}$. Thus (a) holds.

We prove (b). For any $y \in W$ we have $T_yT_{w_0} = T_{w_0}T_{\sigma(y)}$ hence, applying ϕ_K ,

$$
\phi(T_y)\phi(v^{a-a'}T_{w_0}) = \phi(v^{a-a'}T_{w_0})\phi(T_{\sigma(y)})
$$

that is, $\phi(T_y)(\mathfrak{T}_c + \xi) = (\mathfrak{T}_c + \xi)\phi(T_{\sigma(y)})$. Thus, $\phi(T_y)\mathfrak{T}_c = \mathfrak{T}_c\phi(T_{\sigma(y)}) + \xi_1$ where $\xi_1 \in J_K^{W-\mathbf{c}}$. Since ϕ_K is an isomorphism, it follows that for any $x \in W$ we have $t_x \mathfrak{T}_c = \mathfrak{T}_c t_{\sigma(x)} \mod J_K^{W-c}$. Thus (b) holds.

2.10. In this subsection we assume that $L = l$. In this case 2.8 becomes

$$
\phi(T_{w_0}) = \sum_{d \in \mathcal{D}} (-1)^{l(w_0) + \mathbf{a}(w_0 d)} v^{-\mathbf{a}(d) + \mathbf{a}(w_0 d)} t_{d^*} \in J_{\mathcal{A}}.
$$

(We use that $\vartheta(d) = 1$.)

For any left cell Γ contained in c let n_{Γ} be the number of fixed points of the permutation $u \mapsto u^*$ of Γ. Now Γ carries a representation [Γ] of W and from 2.3 we see that $tr(w_0, [\Gamma]) = \pm n_\Gamma$. Thus n_Γ is the absolute value of the integer $tr(w_0, [\Gamma])$. From this the number n_{Γ} can be computed for any Γ. In this way we see for example that if W is of type E_7 or E_8 and c is not an exceptional two-sided cell, then $n_{\Gamma} > 0$.

REFERENCES

- [BFO] R.Bezrukavnikov, M.Finkelberg and V.Ostrik, Character D-modules via Drinfeld center of Harish-Chandra bimodules, Invent.Math, 188 (2012), 589-620.
- [EW] B.Elias and G.Williamson, The Hodge theory of Soergel bimodules, [arXiv:1212.0791](http://arxiv.org/abs/1212.0791).

- [KL] D.Kazhdan and G.Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
- [L1] G.Lusztig, Characters of reductive groups over a finite field, Ann.of Math. Studies, Princeton Univ.Press, 1984.
- [L2] G.Lusztig, Canonical bases arising from quantized enveloping algebras II, Common trends in mathematics and quantum field theories, ed.T.Eguchi et al., Progr.of Theor. Phys. Suppl., vol. 102, 1990, pp. 175-201.
- [L3] G.Lusztig, Hecke algebras with unequal parameters, CRM Monograph Ser.18, Amer. Math. Soc., 2003.
- [L4] G.Lusztig, Character sheaves on disconnected groups VII, Represent.Th. 9 (2005), 209-266.
- [MA] A.Mathas, On the left cell representations of Iwahori-Hecke algebras of finite Coxeter groups, J.London Math.Soc. 54 (1996), 475-488.

Department of Mathematics, M.I.T., Cambridge, MA 02139