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Abstract 

A detailed mechanistic model for solid oxide electrolyte direct carbon fuel cell (SO-

DCFC) is developed while considering the thermo-chemical and electrochemical 

elementary reactions in both the carbon bed and the SOFC, as well as the meso-scale 

transport processes within the carbon bed and the SOFC electrode porous structures. The 

model is validated using data from a fixed bed carbon gasification experiment and the 

SO-DCFC performance testing experiments carried out using different carrier gases and 
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at various temperatures. The analyses of the experimental and modeling results indicate 

the strong influence of the carrier gas on the cell performance. The coupling between 

carbon gasification and electrochemical oxidation on the SO-DCFC performance that 

results in an unusual transition zone in the cell polarization curve was predicted by the 

model, and analyzed in detail at the elementary reaction level. We conclude that the 

carbon bed physical properties such as the bed height, char conversion ratio and fuel 

utilization, as well as the temperature significantly limit the performance of the SO-

DCFC.  

Key words: solid oxide electrolyte; direct carbon fuel cell; elementary reaction; 

modeling; heterogeneous chemistry 

1．Introduction 

     Direct carbon fuel cells (DCFCs) have been examined both theoretically and 

experimentally recently by in a number of research centers and laboratories because of 

their potential as power sources in portable and stationary systems. DCFCs are generally 

divided into two main categories [1, 2]: (1) Direct carbon fuel cells based on high 

temperature, solid oxide electrolyte fuel cells (SOFCs), using a molten metal (tin) at the 

anode, also known as liquid tin anode SOFCs (LTA-SOFC); (2) direct carbon fuel cells 

based on high temperature, solid oxide electrolyte fuel cells (SO-DCFC) or molten 

carbonate fuel cells (MCFCs), using a mixture of molten carbonates at the anode.  

     This work is focuses on the solid oxide electrolyte direct carbon fuel cells (SO-DCFC) 

which are capable of conversing chemical energy in the solid carbon fuel into electricity. 

These offer a number of advantages over the traditional carbon conversion technologies 
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as well as alternative DCFCs such as: the abundance of the fuel source, high theoretical 

efficiency, high CO2 emission reduction potential, relatively higher reaction activity 

ascribed to its high operating temperatures, and avoidance of liquid electrolyte 

consumption, leakage and corrosion [3]. Due to these advantages, some researchers have 

investigated DFFCs for application in large-scale power plants [4, 5] considering their 

potential merits for high efficiency and emission reduction. 

     SO-DCFC performance improvement relies on optimal electrochemical reactions, 

carbon gasification and mass transport processes. Since experimental studies on SO-

DCFC are rather complex, expensive, and time-consuming, comprehensive mathematical 

models are essential for the technology development. A validated mechanistic model 

would offer means to gain insight into the complex physical phenomena governing fthe 

uel cell performance that is not readily accessible experimentally, and it can also be 

useful tool for cell design and operating condition optimization.  

     Modeling and experimental studies of SO-DCFCs have been reported recently by 

several researchers [6-9]. Numerous SOFC models considering the intricate 

interdependency among ionic and electronic conduction, gas transport phenomena, and 

electrochemical processes have been reported in the literatures for pure hydrogen, syngas 

or methane [10-20]. Hecht et al. [21] further reported a multi-step heterogeneous 

elementary reaction mechanism for CH4 reforming using Ni as catalyst. Janardhanan et al. 

[22] developed an extended version of the mechanism evaluated for temperatures 

between 220oC and 1700oC. We also developed a transient elementary reaction model 

coupled with anodic elementary heterogeneous reactions (adsorption/desorption and 

water-gas-shift reactions) and electrochemical kinetics for syngas operation (mixtures of 
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H2, H2O, CO, CO2 and N2) based on an anode supported button cell [3]. For the full 

DCFC modeling, Liu et al [23] developed a comprehensive model of molten carbonate 

DCFC (MC-DCFC) by considering global electrochemical kinetics, mass and charge 

balance. Li et al. [24] further improved this model, and took into consideration both the 

anodic electrochemical reaction mechanism and the effects of carbon fuel micro-

structures.  The anodic reaction mechanisms with carbon black and graphite fuels were 

discussed further.  

     Zhao et al. [25] developed the SO-DCFC model with carbon fuel from CH4 cracking. 

The model considered the global carbon gasification reactions, and analyzed the effect of 

exchange current density and the anodic CO diffusion coefficients on the cell 

performance. However, the simulation results were not experimentally validated, and the 

detailed carbon gasification kinetics and the diffusion processes within the carbon bed 

were not considered.  

     From the discussions above, it is clear that most of the kinetic modeling studies on 

SO-DCFCs have focused on the fuel cell reaction kinetics, while detailed mechanistic 

models coupling the carbon fuel bed and fuel cell reactions and transport processes are 

rarely reported. In order to obtain the requisite insight into this coupling  and to enable 

the optimization of the overall performance of the fuel cell system, it is essential to 

develop a combined mechanistic model based on the carbon gasification mechanism and 

the SOFCs anode mechanism. Furthermore, for a given mathematical model, most of the 

model parameters are determined from previous experiments or from the literature, some 

are adjusted to ensure good agreement between the model results and the new 
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experimental data. In order to ensure model reliability, both comprehensive experimental 

tests and model validations are needed. 

     In this paper, a comprehensive elementary reaction mechanism for the SO-DCFC is 

developed by coupling the electrochemical reactions, charge transport and mass transport 

processes within the SOFC and the thermo-chemistry of the carbon bed. The model is 

validated using experimental data obtained for simple carbon bed gasification setup as 

well as for the SO-DCFC testing setup with different anode carrier gases and at various 

carbon bed temperatures.  The effects of the operating temperatures, carrier gas 

composition and carbon bed properties on the SO-DCFC performances are systematically 

investigated.  

2.   Experiment 

2.1 SOFC button cell structure and fabrication 

     A Ni/Yttria-stabilized zirconia (YSZ) cermet electrode was used in SOFC button cells 

that were fabricated by the Shanghai Institute of Ceramics, Chinese Academy of Sciences 

(SICCAS) [26]. It consisted of a Ni/YSZ anode support layer (680μm), a Ni/ScSZ anode 

active interlayer (15μm), a ScSZ electrolyte layer (20μm), and a lanthanum strontium 

manganate (LSM)/ScSZ cathode layer (15μm).  The diameter of the cathode was 1.3 cm 

and the diameters of all other layers were 2.6 cm. Before testing, silver paste was 

deposited on the anode and the cathode surfaces by screen-printing for current collection. 

2.2 DCFC testing setup and apparatus  

     The single carbon bed setup is illustrated in Fig. 1 [26]. A quartz tube loaded with 

carbon fuel is formed as fixed bed and embedded in another quartz tube taht is heated in a 
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furnace keeping stable at the working temperature. CO2 flows into the tube through the 

inlet. For more detailed description see ref. [22].   

     The SO-DCFC system experimental setup plus the carbon bed are shown in Fig. 2 (a) 

[26]. The button cell is located at the end of two coaxial alumina tubes and is impacted by 

an alumina plate which is strained by springs. The Pt mesh is used as the cathode current 

collector and is fixed to the porous cathode with silver paste screen-printed on the surface. 

The oxidant flows into the inner tube to the cathode and passes through the porous Pt 

mesh. A Ni felt (thickness 2 mm) is fixed to the anode support layer with silver paste to 

collect anode current. The carrier gases are introduced to the inlet of the carbon bed 

which is  surrounded by an alumina tube. Due to the porous structure of foamed Ni felt, 

the anode gases can reach the anode easily. For both the anode and the cathode, Pt wires 

are used as voltage and current probes. A glass ring is used as sealant to separate the 

anode gas and cathode gas. The impacted alumina plate with a through-hole of the same 

diameter of the cell cathode is used to strain the carbon bed. The layout of the carbon bed 

is exhibited in Fig. 2 (b). A ring Ni felt is used for auxiliary current collection. The 

carbon bed is loaded in the middle of cell anode and a thick Ni felt at the bottom. 

     All of the devices are enclosed in one quartz tube and heated by a furnace to the 

operational temperature. Pure H2 is passed through the chamber for 1 h to fully reduce the 

anode at a flow rate of 50 sccm (Standard Cubic Centimeter per Minute). Then, two kinds 

of carrier gases, with different flow rates and at various temperatures are introduced into 

the system. All the carbon fuel used is amorphous carbon black (Black Pearls 2000, GP-

3848, Cabot Company), the particle diameter of which is ranged in 150 to 200 µm after 

grinding and screening. 
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Fig. 1 Single carbon bed experimental system for carbon reaction kinetics 

Fig. 2 Experimental setup of SO-DCFC system  

2.3 Carbon bed gasification experiments 

     Fig. 1 describes the carbon gasification experimental setup. Argon carrier gas with 

flow rate of 100 sccm is used to purge the gas chamber for one hour. The carbon bed is 

then heated at a rate of 30oC min-1 under the inert Ar atmosphere. Next, CO2 with flow 

rate at 40 sccm is introduced into the bed while the bed temperature is kept at 900, 925 or 

950oC. The gaseous product compositions are determined using Gas Chromatography. In 

practice, the gas produced via bed gasification is sampled every 3 minutes. The total mass 

of the gas is obtained using Simpson Integral Law. The carbon conversion ratio Xc

defined as the net removal of the solid carbon from the bed carbon through gasification is 

calculated by the following expression:  

                                                     
02

COmXc
m

=                                                          (1) 

where COm is the total mass of carbon in CO gas and 0m stands for the overall mass of 

initial carbon fuel.  

2.4 SO-DCFC performance characterization 

     The SO-DCFC is experimentally tested in different gaseous atmospheres at various 

temperatures for the carbon bed and the fuel cell.  The cell polarization curves are 

measured using a four-probe method with an electrochemical workstation (IM6ex, 

Zahner-GmbH, Germany). The SO-DCFC is kept at OCV condition for 30 minutes 

before the polarization curve was measured.  First, the carbon bed is packed with 50 mg 
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Black Pearls. CO2 or Ar gas with different flow rates (40sccm Ar, 0sccm Ar and 40sccm 

CO2) is introduced to the inlet of the carbon bed inlet, and air with flow rate at 100sccm 

is introduced to the cathode. Polarization curves are measured at 800oC for both the 

carbon bed and fuel cell. Second, 300 mg Black Pearls are loaded in the carbon bed and 

the fuel cell setup is heated up to 850oC. 50 sccm CO2 is flown into the bed and 100 sccm 

O2 into the cathode chamber. Then, the polarization curves are obtained at bed 

temperatures of 800, 850, 900 and 950oC.  

3.   Model development 

3.1 Model assumptions and geometry 

     The following assumptions are made: 

(1) The gases are ideal gases; 

(2) The temperature within the cell and the carbon bed is uniform. All parameters 

are evaluated at the given temperature; 

(3) The electrochemical mechanism and the carbon gasification mechanism are 

modeled using a set of elementary reactions that represent chemical reactivity 

at the molecular scale; 

(4) The charge transfer reactions take place at the three phase boundary (TPB) as 

;         

(5) The microstructures of the electrodes are stable and homogeneous during the 

experiment. The distributions of the two conducting phases (electronic and 

ionic) in the electrodes are uniform. 
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     A one-dimensional (1D) geometry for SO-DCFC is also assumed for the domains and 

the boundaries labeled in Fig. 3. A 1D model is developed for the SO-DCFC with the 

above assumptions and simplified model geometry.                                              

Fig. 3 SO-DCFC model calculation domains and boundaries 

3.2 Governing equations 

3.2.1. Carbon gasification mechanism in the carbon bed and the SOFCs anode 
mechanism  

     The carbon gasification mechanism used in this paper is summarized and reduced 

from the reported carbon gasification reaction mechanisms in the published literature [27, 

28]. The detailed reaction parameters are shown in table 1. 

Table 1Reduced heterogeneous reaction mechanism for carbon gasification and 

mechanism on the Ni-based catalysts 

     A simplified heterogeneous SOFCs anodic reactions mechanism described in the work 

of Hecht et al. [29], Janardhanan and Deutschmann [30] and Zhu and Kee [31] is applied. 

Elementary reactions and the corresponding kinetic parameters are also listed in Table 1. 

The net molar production rate of gaseous or surface species in a heterogeneous reaction 

and the reaction rate of each elementary reaction can be explained by mass action kinetics 

formulations as described in detail in our previous studies [26]. 

3.2.2 Equations for the carbon gasification process 

     The overall carbon gasification reaction is given as 2 2C CO CO+ = , which can be 

modeled using a seven elementary reaction mechanism, as showed in Table 1. The 
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gasification mechanism yields the following expression for the net rate of carbon atom 

removal from the bulk carbon, ,i CR  [32] (in unit of kg m-2 s-1): 

            , 22 3 4 4= { [ ( )]+ [ ][ ( )]+ [ ( )]- [ ][ ]}i C fC r fR M k O C k CO O C k CO C k C CO                 (2)              

where CM   is the mole weight of carbon.  

The carbon conversion ratio cx  satisfies the following differential equation [32]: 

                                      ,C
1 1- = =

(1- )
c c

gC i
c c

dm dx S R
m dt x dt

                                            (3) 

gCS is the specific surface area of the char in unit of m2 kg-1[32]: 

                                         , 0= 1 ln (1- )gC gC cS S xψ−                                                  (4)  

where ψ is the structural parameter of the solid carbon fuel. The higher the value of 

ψ , the greater the micro-porosity of the char. The overall net molar reaction rates of CO 

and CO2 according to the mechanism are: 

        
1 2 3 2

4

1

f 4r 5

2[ ( ) ( ) ( )][ ] [ ]+ [ ]+2 [CO ][ ]

         - [C ][CO]+ [ ( )]- [ ( )][CO]
f rCO f

f

C k k k
k k

R k
CO C k CO C

CO O C O C O C= −
                         (5) 

   2 1 2 1 3 2 5[ ][ ] [ ( )][ ] [ ( )][ ] [ ][ ( )]CO f f rR k CO C k O C CO k O C CO k CO CO C= − + − +            (6)  

     Adsorbed species concentrations change due to the combined effect of the chemical 

reaction and the evolution of the surface area of the carbonaceous fuel. Accounting for 

these changes, the evolution in O(C) and CO(C) concentrations are described in the 

equations below [28] 
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         ,1 2 1 2
[ ( )] ={ [ ][ ]- [ ][ ( )]- [ ( )]}+ [ ( )]f i Cf r

d O C k C CO k CO O C k O C A O C R
dt

               (7)  

     ],4 4 5
[ ( )] = { [ ][ ]- [ ( )]- [ ][ ( ) ]}+ [ ( )]f i Cf r

d CO C k C CO k CO C k CO CO C A CO C R
dt

        (8) 

where 
2 2

,0
2

,0 2
gC gC

gC gC

S S
A

S S
ψ 

= −  
 

 , [ ] [ ( )] [ ( )]sitesfC c O C CO C= − −   

and sitesc is the surface carbon site concentration. 

     For the carbon bed, the gas phase mass conservation coupled with the Darcy’s law 

gives [33]: 

                               (9) 

                                            =u Pκ
η

− ∇                                                        (10) 

where κ is the permeability of the carbon bed, η is the gas dynamic viscosity and ρ is the 

gas density,ε and pε are the bed and carbon particle porosities, respectively.  

     At the anode surface, the current density is expressed as surfi . According to the 

electrochemical reaction, the flux of CO or CO2 equals to / (2 )surfi F . Thus, the Darcy 

velocity is: 

                   0 2( )/
2
surf

z CO CO
i Mu M

F
ρ= −=                                                  (11) 
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     The transports of CO and CO2 through the carbon bed are governed by the following 

convection-diffusion-reaction equation [33]: 

                                            (12)
 

                                           _ 2=eff CO CO

bed

D Dε
τ

                                                       (13) 

where bedτ  is the tortuosity of the carbon bed. 

3.2.3. Equations for processes in SOFCs 

     Heterogeneous chemistry (Tabel 2 Eqs. (14) - (19)) at the surface of the fuel cell 

anode is used. The surface adsorbates are assumed to be uniformly distributed over the Ni 

surface. The species molar production rates depend on the gaseous species concentration 

and the surface species concentration, which are expressed by the coverage. The coverage 

kθ  is the fraction of the surface active sites covered by the adsorbed species k. It is 

assumed that the total number of surface active sites is conserved and the saturation 

sorbent capacity is described by the maximum surface sites density Г [34]. The 

uncovered Ni surface is treated as a dummy surface species. 

     Theoretical formulation and computational modeling of elementary charge-transfer 

chemistry have been suggested by different researchers [35–39]. Here, the anode 

electrochemical reactions were taken from the model of the patterned SOFC anode [40] 

and validated by the polarization curves and EIS experimental results. CO charge transfer 

pathway is considered in this study as .  
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Table 2 gives the electrode and electrolyte electrochemistry equations from Eq. (20) to 

Eq. (37) and mass balance equations from Eq. (38) to Eq. (41). 

Table 2 Summary of model equations for different processes in SO-DCFCs
 

 

3.3 Boundary conditions 

     According to the operation conditions and model simplifications, the boundary 

conditions of the charge, mass and momentum balances’ partial differential equations  are 

listed in Table 3. 

     The boundary conditions “insulation” and “continuity” indicate that the partial 

derivative is zero or the flux of the variables is continuous at the boundary, respectively. 

_gas inc  and _gas cac  in the table are the molar concentrations of gaseous species at the inlet 

of the carbon bed and the cathode. “Pressure” 0P  stands for the ambient pressure 

condition. At the interface of the anode and the carbon bed, the boundary conditions for 

the surface species are “insulation”, which is different from the gaseous species. This is 

because there is no surface species out of the anode. In addition, the gaseous species 

exchange between the carbon bed and the fuel cell anode due to the electrochemical 

reaction results in the flux at the corresponding interface 2( )
2
surf

i O On C C
i M M

F
q −= . caV  is the 

cell operation voltage in the calculation.  

Table 3 Boundary conditions 
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3.4 Model parameters 

     The charge and mass balance equations from the model development section require 

the effective reaction area, the TPB area and the TPB length. The parameter TPBS can be 

formulated using the percolation theory and the particle coordination number of the 

binary random packing of spheres [41, 42, 43]. Similar to the calculation of TPBS , the 

parameter TPBL  (TPB length) can also be calculated. Table 4 lists the porosity, mean pore 

diameter, TPBS  and NiS  in each layer. The material conductivities and other parameters 

are shown in Table 5 [26, 44, 45, 46]. 

Table 4 Pore structure parameters in porous electrode 

 

Table 5 Properties and parameters for model calculation 

 

3.5 Solution method 

     Model calculations are performed using the finite element commercial software 

COMSOL MULTIPHYSICS®. The button cell performance is calculated at a given cell 

voltage. The average current density at a given cell voltage is derived from the local ionic 

current density in the electrolyte layer. A complete polarization curve is generated by 

setting different cell voltages. 

4.   Results and discussion 

4.1. Model calibration and validation 

     The mechanistic model of the SOFC operating on gaseous fuels has been validated in 

our previous work [22]. The predicted and experimental polarization curves for various 
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CO/CO2 mixtures at 750/800/850oC were obtained. The predicted polarization curves 

agree well with the experimental data at 800oC with 10% CO, 90% CO2 and 40% CO, 60% 

CO2, which are the base cases for model calibration. For more detailed description of the 

calibration and validation see ref. 22. 

     Table 1 shows the kinetic data of the seven elementary reactions of the carbon 

gasification mechanism for the Black Pearls 2000 used in this paper. In order to verify the 

kinetic data from Lee et al. [32], a single bed carbon gasification experiment was 

conducted.  

 

Fig. 4 Char conversion ratio to time at 900/925/950oC both for experiments and 

simulation 

     The experimental and simulation results shown in Fig. 4 indicate that the modeling 

results (solid lines) agree well with the experimental data.  Thus, the carbon gasification 

mechanism is applicable to the carbon fuel used in this study. In addition, it is clear that 

the carbon gasification rate increases as the bed temperature is raised. 

4.2 The effects of the anode carrier gas on the SO-DCFC performance 

     Fig. 5 shows the experimental and simulated polarization curves with Ar and CO2 as 

carrier gases at different flow rates. The simulation results generally fit the experimental 

data well, especially for predicting the anomalous curve shape at 0 sccm Ar flow rate (no 

argon gas input while almost completely argon throughout the carbon bed for the initial 

condition) at 800oC. Moreover, the corresponding experimental power density of the fuel 

cell are measured and plotted as function of the current density in Fig. 6.   



16 
 

Fig. 5 I-V curves at different anode gaseous conditions 

Fig. 6 Experimental power density curves at different anode gaseous conditions 

     When the gas at the carbon bed inlet is pure CO2 flowing at the rate of  40 sccm, the 

limiting current density is around twice as that in an Ar atmosphere flowing at the same 

flow rate. The CO2 rich atmosphere can promote the CO production reaction via the 

Boudouard reaction, which raises the electrochemical reaction rate. On the other hand, 

when the anode chamber is flooded with Ar, the cell performance is severely limited, 

especially when the anode is purged at a high Ar flow rate (e.g. 40sccm in the 

experiment). 

     Another interesting phenomenon is that there exists a current density sluggish period 

(the “S” shaped curve for the 0sccm Ar inlet condition in Fig. 5 and Fig. 8&9) in which 

the cell current density remains nearly the same while the cell voltage falls. The “S” 

shaped curve reflects the coupling between the solid carbon gasification reactions and the 

cell electrochemical reactions at the conditions where the consumption, production and 

diffusion of CO2 in the whole system play important roles. 

Fig. 7 Distributions of CO and CO2 throughout the SO-DCFC system 

Fig. 8 Net production and consumption of CO2 in the SO-DCFC 

 

Fig. 9 Averaged concentration variation of CO and CO2 in both carbon bed and fuel 

cell 
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     In order to explore this coupling in more detail, Fig. 7, Fig. 8 and Fig. 9 show the 

modeling results at the same anode conditions: 0sccm Ar flows at 800oC. All plots are 

obtained for the same polarization process as in Fig. 5.  Fig. 7 shows that the gradients of 

CO or CO2 concentration in the cell anode are much larger than those in the carbon bed, 

indicating that the CO production rate by carbon gasification reaction is slower than its 

consumption by the electrochemical oxidation reaction.  CO diffuses from the carbon bed 

where it is produced to the cell anode where it is consumed .  Fig. 8 shows that the CO2 

production at the anode and consumption at the carbon fit similar “S” shapes to that of 

the current density. Fig. 9 shows the gaseous species concentration evolution, also 

exhibiting the “S” shaped polarization curve.  

 From 125 s to 225 s, the current density exhibits a transition that corresponds to 

the “S” shaped part of the polarization curve for zero Ar flow. We call this time period as 

the “transition zone”. Before the transition zone, that is at lower current, CO accumulated 

during the heat-up period is quickly consumed by the electrochemical oxidation reaction 

resulting in a peak of CO2 concentration in the fuel cell followed by a peak in the carbon 

bed. The rising dashline shows the delay associated with CO2 diffusion from the cell to 

the carbon bed and the difference between CO2 reaction rates in the carbon bed and the 

fuel cell. During the transition period, CO2 concentration in the fuel cell anode begins to 

drop because of the growing CO2 diffusion rate and the receding CO2 production rate, 

caused by the drop in the CO concentration that limits the electrochemical oxidation 

reactions. Meanwhile, CO2 in the carbon bed gradually accumulates, which is shown on 

the right-hand side of the second (descending) arrow following the transition zone. This 

analysis demonstrates that the gas transport between the carbon bed and the fuel cell 
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impacts the cell performance, limiting the fuel supply to the anode at intermodeiate 

currents. 

     Furthermore, according to Fig. 6, the experimental maximum power density is around 

274W m-2 which occurs in the “transition zone” at 0 sccm Ar primarily due to the 

coupling between the gasification and electrochemistry via CO-CO2 transport between 

the carbon bed and the anode, as described above. The peak power density occurs in the 

condition of “0 sccm argon” which, however, is followed by a drastic decline in the cell 

performance as the current increases slightly. Thus, according to the experimental data, it 

is better to operate with CO2 as the anode carrier. 

4.3 The effects of the carbon bed temperature  

     The carbon bed temperature has multiple effects on the cell performance. Fig. 10 

depicts the experimental and predicted polarization curves at different carbon bed 

temperatures described in part 2.4 in detail. The modeling results match the experimental 

data. Both of the experimental and simulated data suggest that, as the carbon bed 

operational temperature increases, the cell performance improves and the open circuit 

voltage increases.  A higher carbon bed temperature results in higher carbon gasification 

rate, and thus more CO is produced for the electrochemical reaction. Moreover, it can be 

seen that the SO-DCFC performance is limited by the relatively low reaction rate of 

carbon gasification.  Although the cell can operate on CO at 800oC, under gasification 

conditions, the impact of the gas diffusion on polarization results in the low  CO 

concentration at the cell anode. 

Fig. 10 Polarization curves for different carbon bed temperature 
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     A sensitivity analysis was conducted to evaluate the impact of the gasification 

elementary reactions on the maximum power density when artificially increasing or 

reducing the gasification rate by 20 percent. The temperature is fixed at 800oC, and 40 

sccm CO2 flows into the carbon bed. Fig. 11 shows the modeling results, which indicate 

that the elementary reactions RR.1  and RR.2 

+ ( )b fC O C CO C→ +  are the primary limiting elementary reaction steps for carbon 

gasification .  Fig. 12 further shows the elementary reaction rates of RR.1 and RR.2 in the 

carbon bed at 800oC and 900oC, suggesting faster rates for these two elementary reactions 

at higher temperature. In summary, the results from Fig. 11&12 indicate that the better 

overall performance of the cell at higher temperature can be ascribed to the higher carbon 

gasification reaction rates of the two elementary reactions of RR.1 and RR.2.  

Fig. 11 Relative change of maxP for the sensitivity analysis of carbon gasification 

elementary reactions. 

Fig. 12 Elementary reaction rates of RR.1 and RR.2 in carbon bed at 800oC and 

900oC  

     Fig. 13 shows the CO2 concentration distribution along the carbon bed and the fuel 

cell anode. Since the CO produced by gasification in the carbon bed diffuses towards 

both ends – the bed inlet and the fuel cell anode -, the CO concentration plots show 

convex shapes. The corresponding concave distribution of CO2 leads to the carbon 

gasification reaction shown in Fig. 12 for the two key elementary reaction steps RR.1 and 

RR.2. 
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Fig. 13 Concentration distributions of CO2 and adsorbed oxygen species O(C) at 

800oC and 900oC 

     Moreover, the surface concentration of adsorbed oxygen species O(C), which is an 

important intermediate species for carbon gasification in reaction RR.1 and RR.2 is 

shown in Fig. 13. It is clear that the O(C) surface concentration has the same trend as the 

two reaction rates, which implies the dominatant roles of reaction RR.1 and RR.2 for 

carbon gasification processes. 

4.4 The effects of the fuel cell working voltages and the carbon bed geometry 

Fig. 14 Power density P and carbon utilization charη curves for different cell work 

voltages 

     Fig.14 depicts the modeling results for the cell power density and carbon utilization at 

different operating voltages (90%, 80%, 60% 50% and 40% of the OCV are selected) at 

800oC with 40 sccm CO2 as the anode carrier gas. Here, the carbon utilization is defined 

by the following expression: 

                                                                             (43) 

Where 0r is the bed radius, surfi  is the current density at the interface between bed and cell 

anode, COR  is the net production rate of CO in the carbon bed. The numerator in the 

expression stands for the equivalent consumption of carbon per unit time purely due to 

the electrochemical reaction  at the interface of 

carbon bed and cell anode, while the denominator is the total equivalent carbon 
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consumption per unit time in carbon bed. Specifically, according to the Boudouard 

Reaction 2 2CO C CO+ = , the net rate of carbon consumption equals to half of the net 

production rate of CO, resulting in the net production of CO per unit bed height and per 

unit time expressed as (1 / 2) CO gCR m S
H
   . Thus the total net production rate of CO is 

obtained by integrating (1 / 2) CO gCR m S
H
   along the carbon bed height showed as the 

denominator in the expression of carbon utilization above.    

     Fig.14 indicates that when the cell voltage is lower, at around 60% of OCV, the output 

power density P is close to the maximum value. Moreover, the effect of the intrinsic 

carbon bed properties, such as the carbon conversion and the carbon utilization (averaged 

over the carbon bed) on the performance are also important. Fig. 15 reveals the 

relationship between the carbon conversion and carbon utilization. It shows that the 

carbon utilization stays almost the same while the conversion increases up to 0.65 and 

then sharply rises resulting mainly from the fast consumption of the carbon bed. 

Analyzing the data presented in Fig. 14 and Fig. 15, we conclude that the optimized 

working condition for the SO-DCFC is 60% of OCV, corresponding to an averaged 

carbon conversion of 0.65, which is the limit before the carbon bed replinshed. This 

operating condition ensures that the fuel cell is at a relatively stable working environment 

with a steady power density of about 190W m-2 and carbon utilization of some 30% and 

at a relatively high output voltage of 60% OCV. 

Fig. 15 The relationship between carbon utilization chareta and conversion cX  
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     The carbon bed height is another key parameter, when the radius of the bed is fixed at 

the same value as the cell cathode. The working voltage of fuel cell is set to 60% of the 

OCV, which is the optimized condition described above, while the bed height is arranged 

between 0.001m to 0.1m, as illustrated in Fig. 16.  

 

Fig. 16 Power density and carbon utilization degree for different carbon bed heights 

     Fig. 16 shows that a higher carbon bed height ensures higher carbon utilization, and 

improves the power density. However, it should be noted that these two parameters do 

not continue to increase beyond a certain bed height (e.g. larger than 0.1 m for the present  

conditions). In fact, the cell performance is limited by both the carbon bed height and the 

carbon utilization. With increasing of the bed height, more CO is supplied to the anode 

hence raising the power density.  When the carbon bed is high enough, the cell 

performance is not be limited by the CO production rate anymore but mainly by the 

electrochemical reaction rate. At the same time, the carbon utilization basically stays 

constant or even falls down.  

5. Conclusion 

      A mechanistic SO-DCFC model is developed by considering the thermochemical and 

electrochemical elementary reactions in both the carbon bed and the SOFC, as well as the 

transport processes within carbon bed and within SOFC electrode porous structures. The 

model is validated using the data from both fixed bed carbon gasification experiments 

and the SO-DCFC performance tests carried out with different carrier gases and at 

various temperatures. The analyses of the experimental and the modeling results show the 
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strong influence of the carrier gases on the cell performance. Namely, a higher CO2 flow 

rate at the carbon bed inlet contributes to a better cell performance with the maximum 

power density of nearly 213 W m-2 at temperature of 800oC. On the other hand, higher 

argon flow rate results in worse cell performance with the maximum power density of 

nearly 274 W m-2 at the same temperature.   

     The coupling of the carbon fuel gasification and the electrochemical oxidation on the 

SO-DCFC performance which result in a transition zone of the cell polarization curve 

was predicted and analyzed at the elementary reaction level. The elementary reactions of 

RR.1 and RR.2 are found to be of key importance for the carbon gasification process. 

According to the numerical simulation, higher temperature leads to faster reaction rates 

of the two key elementary reactions RR.1 and RR.2 providing more CO for the 

electrochemical reaction in the anode. As a consequence, higher bed temperature enables 

better cell performance.   

     In addition, it is shown that the carbon bed physical properties such as bed height, char 

conversion as well as the temperature are closely related to the cell performance. Higher 

carbon bed height benefits the output power density and ensures larger carbon utilization 

until it reaches a saturation value (e.g. 0.1m for the current simulative situation).  
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Fig. 1 Single carbon bed experimental system for carbon reaction kinetics 
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Fig. 2 Experimental setup of SO-DCFC system  
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Fig. 3 SO-DCFC model calculation domains and boundaries 
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Fig. 

4 Char conversion ratio to time at 900/925/950oC both for experiments and 

simulation 
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 Fig. 5 I-V curves at different anode gaseous conditions 
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Fig. 

6 Experimental power density curves at different anode gaseous conditions 
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Fig. 7 Distributions of CO and CO2 throughout the SO-DCFC system 
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Fig. 

8 Net production and consumption of CO2 in the SO-DCFC 

  

 

0 50 100 150 200 250 300 350
0.00

1.50x10-7

3.00x10-7

4.50x10-7

6.00x10-7

7.50x10-7

9.00x10-7

 

 
CO

2 p
ro

du
ct

io
n 

or
 c

on
su

m
pt

io
n 

(m
ol

 s
-1
)

Time(s)

 CO2 production, anode
 CO2 consumption, carbon bed



39 
 

 

Fig. 9 Averaged concentration variation of CO and CO2 in both carbon bed and fuel 

cell 
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Fig. 10 Polarization curves for different carbon bed temperature 
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* The 

relative change of maxP is expressed as: max 0 0( ) /P P P−  where 0P is the maximum power density without changing 

the elementary reaction rates artificially  

Fig. 11 Relative change of maxP for the sensitivity analysis of carbon gasification 

elementary reactions. 
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Fig. 

12 Elementary reaction rates of RR.1 and RR.2 in carbon bed at 800oC and 900oC 
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Fig. 

13 Concentration distributions of CO2 and adsorbed oxygen species O(C) at 800oC 

and 900oC 
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Fig. 

14 Power density P and carbon utilization charη curves for different cell work 

voltages 
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Fig. 

15 The relationship between carbon utilization chareta and conversion cX  
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Fig. 16 Power density and carbon utilization degree for different carbon bed heights 
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Nomenclature 

                 pre-exponential factor in sticking coefficient expression 
A                  pre-exponential factor (in terms of cm, mol and s) 

                 temperature exponent in sticking coefficientexpression 
c                   concentration (mol m−3) 

bC                 bulk carbon atom 
sitesc               surface carbon site concentration (mol m-2) 

fC                 free carbon site 
( )O C            adsorbed oxygen atom species on carbon site 

( )CO C         adsorbed carbon monoxide species on carbon site 
dlC                specific double-layer capacitance (F m−2) 
id                  activation energy in sticking coefficient expression (J mol−1) 

D                 diffusion coefficient (m2 s−1) 
E                 activation energy (kJ mol−1) 

caE               parameter in Eq. (37) (130 kJ mol−1) 
chareta           carbon utilization degree 

F                 Faraday constant (96,485 C mol−1) 
0i                  exchange current density (A m−2) 
surfi               current density at the interface of carbon bed and cell anode 
FI                 volumetric Faradaic current (A m−3) 
( )j s             species of j adsorbed on the surface of Ni 

k                  reaction rate constant (in terms of m, mol and s) 
K                 number of species 

jM               molecular weight (kg mol−1) 
  n        temperature exponent fraction number of electronic or ionic conductor            particles 

en                 number of electrons participating in the reaction 
tn                 total number of particles per unit volume 

N                number of the reactions 
p                 pressure (Pa) 
P                 whole range connection probabilities of same kinds of particles 
Q                 source term of charge balance equations (A m−3) 

elr                mean radius of the electronic conductor particle (m) 

ia

ib
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R                 gas constant (8.314 J mol-1 K-1) 
,i CR                net rate of the removal of the carbon atoms from the bulk carbon (kg m-2 s-1) 
kR                source term of mass balance equations (kg m−3 s−1) 

s


                 molar production rate (mol m−2 s−1 ) 
0S                initial sticking coefficient  
effS              effective reaction area per unit volume (m2 m−3) 

gCS                 specific surface area of the activated carbon (m2 kg-1) 
,0gCS             initial specific surface area of the activated carbon (m2 kg-1 

NiS               Ni active surface area per unit volume (m2 m−3) 
STBS             TPB active area per unit volume (m2 m−3) 

u                    velocity of gaseous species (m s-1) 

bedV               volume of carbon bed 

jV , kV          diffusion volume 
W                molecular weight of the gas-phase species in sticking coefficient reaction (kg mol−1) 

cx                   carbon conversion ratio 

kx                  molar fraction of gas-phase species k  
Z                  coordination number 
 
Greek letters 
α                 transfer coefficient 
β                 tuning parameter (Ω −1 m−2) 
γ                  parameter modeling the rate constant from sticking coefficient 
Γ                  surface sites density (mol m−2) 
ε                  porosity 

kiε                parameter modeling the species coverage 

pε                carbon particle porosity 
η                  overpotential (V) 
κ                  permeability (m s-1) 
θ                  contact angle between the electronic and ionic conductors particles (rad) 

kθ                 surface coverage of species k  
kiµ               parameter modeling the species coverage 

ν                  stoichiometric coefficient 
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σ                 conductivity (S m−1) 
τ                  tortuosity 
χ                 species symbol 
ψ                 structural parameter of carbonaceous fuel 

Subscripts 
ac              anode chamber 
act              active layer 
an               anode 
ca               cathode 
ec               electrochemical reactions 
el                electronic conductor particles 
elec            electronic 
g                 gas-phase species 
i                  reactions index 
io                ionic conductor particles 
ion              ionic 
k                 species index 
Kn              Knudsen 
OCV          open circuit voltage 
ref              reference 
s                  surface species 
sp                support layer 
 
Superscripts 
0                 parameter at equilibrium conditions 
bulk            bulk phase 
eff               effective 
TPB            three-phase boundary 
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Table 1Reduced heterogeneous reaction mechanism for carbon gasification and 

mechanism on the Ni-based catalysts 

Carbon gasification mechanism 

Elementary reactions       Aa     σb (kJ mo-1) Ea (kJ mol-1) 

RR.1f f
2 f

r
CO +C CO+O(C)    5e-3 -- 185e3 

RR.1r 108 -- 89.7e3 
RR.2 b fC +O(C) CO+C→  1e13 28e3 375e3 
RR.3 b 2C +CO +O(C) 2CO+O(C)→  1e-4 -- 58e3 
RR.4f f

f
r

C +CO CO(C)    0.89 -- 148e3 
RR.4r 1e13 53e3 455e3 
RR.5 2 fCO+CO(C) CO +2C→  1.01e7 -- 262e3 
The heterogeneous reaction mechanism on the Ni-based catalysts 
Adsorption and desorption reactions 

Ac (cm, mol, s) nc     Ec (kJ mol-1) 

R.1f f
2 r

O +Ni(s)+Ni(s) O(s)+O(s)    1e-2 -- 0 
R.1r 4.283e23 -- 474.95 
R.2f f

2 2r
CO +Ni(s) CO (s)    1e-5 -- 0 

R.2r 6.447e7 -- 25.98 
R.3f 

f

r
CO +Ni(s) CO(s)    

5e-1 -- 0 

R.3r 
3.563e11 -- 111.27 

( )CO sθ d -50.0 
Surface reactions 
R.4f 

f

r
C(s)+O(s) CO(s)+Ni(s)    

5.2e23 -- 148.10 

R.4r 
1.354e22 -3 116.12 

( )CO sθ d                -50.0 

R.5f f
2r

CO(s)+O(s) CO (s)+Ni(s)    
2e19 -- 123.6 

( )CO sθ d -50.0 
R.5r 4.563e23 -1 89.32 

a Arrhenius parameters for the rate constants are written in the form: exp( / )k A E RT= −   
b For k2 and k4r, the activated energy is fit to the normal distribution because the activated energy for 
species in the two reactions is not the same all through the carbon surface sites: 

 
2

20

( )1exp( ) exp( )
22

aE EEk A dE
RT σπσ

+∞ −
= − −∫   

c Arrhenius parameters for the rate constants are written in the form: exp( / )k ATn E RT= −  
 d Coverage-dependent activation energy 
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Table 2 Summary of model equations for different processes in SO-DCFCs 

Processes                                  Model equations 

Anode Ni/YSZ electrode heterogeneous chemistry
 

Gaseous adsorption-desorption reactions      
1 1

g s g sK K K K

k k k k
k k

ν χ ν χ
+ +

= =

′ ′′⇒∑ ∑      (14)                                          

Net molar production rates         ( )
1 1

g sK KN
ki

k ki ki i k
i k

s k cνν ν
+

′

= =

′′ ′= −∑ ∏  (15) 

Rate constant  
1

exp exp
g s

i ki

K K
n i ki k

i i k
k

Ek AT
RT RT

µ ε θ
θ

+

=

   = − −   
   

∏        (16) 

Rate constant of adsorption reactions  
0

2
i

i
S RTk

Wγ π
=
Γ

               (17) 

sK

ki
k

γ ν ′=∑      (18) 

 0 expib i
i i

dS a T
RT

 = − 
 

   (19)
 

Electrode electrochemistry 
Current source                          0,an ca TPBQ i L=                   (20) 
Length-specific current density      220, ct,f ( ) ( ) ct,b CO( ) ( )

2 ( )an YSZ CO Ni Ni O YSZ
i F k c c k c c ⋅⋅= −   (21) 

Charge transfer reaction rate constants      0
ct,f ct,f exp (1 ) e

an
n Fk k
RT

α η = − − 
 

       (22) 

0
ct,b ct,b exp e

an
n Fk k
RT
α

η =  
 

          (23) 

Anode electrode overpotential          , , ,an elec an ion an ref anV V Vη = − −      (24) 

                                2

( )2

0,0
ct,f 0 0

TPB (YSZ)2
CO Ni

COi
k

FL c c
=  (25) 

2

2-

0,CO0
ct,b 0 0

TPB CO(Ni) O (YSZ)
2

i
k

FL c c
=  (26) 

Exchange current density          2

2 20, exp( )CO
CO CO

G
i k

RT
∆

= −  (27) 

 
Charge balance 
Electrode charge balance equations         ( )eff

iV Qσ∇ − ∇ =         (28) 

Ionic charge at the cathode electrode        ( )eff
ion,pos ion,pos ion,posV Qσ∇ − ∇ =  (29)    

                                        
( )2

2

TPB
O ee

0, TPB,ca bulk
O

1
exp exp caca

ca

c n Fn Fi S
c RT RT

α ηα η  −   = − − −       
  (30) 

Electronic charge at the cathode electrode , , , ,( )
eff

elec ca elec ca elec ca ion caV Q Qσ∇ − ∇ = = − (31) 

Ionic charge at the anode electrode      , , ,( )
eff

ion an ion an ion pos anV Q Qσ∇ − ∇ = =     (32) 
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Electronic charge at the anode electrode    , , ,( )elec an elec an elec an anV Q Qσ∇ − ∇ = = −  (33) 

Ionic charge at the electrolyte   , ,( ) 0eff
ion electrolyte ion electrolyteVσ∇ − ∇ =   (34) 

Cathode local overpotential       ca elec,ca ion,ca ref,caV V Vη = − −    (35) 

Open circuit voltage (OCV)           
2

2

O
ca

OCV O
an

ln
e

pRTV
n F p

 
=  

 
             (36) 

Cathode exchange current density        ( )2
0.25Oca

0,ca caexp
4

ERTi p
F RT

β  = − 
 

   (37) 

 
Mass balance       

Mass balance in a porous electrode        ( ),g eff
,g ,g

k
k k k

c
D c R

t
ε
∂

+∇ − ∇ =
∂

     (38)   

1

eff
eff eff
,mole ,Kn

1 1
k

k k

D
D D

−
 

= +  
 

                              (39) 

Cathode Faraday’s law                 
2

elec,ca
O 4

Q
R

F
=                 (40)  

Gaseous and surface species    ( )
22

eff eff

1 1

g sK KN
ki

k k ki ki i k
i k

R S s S k cνν ν
+ ++

′

= =

′′ ′= ⋅ = ⋅ −∑ ∏  (41)  
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Table 3 Boundary conditions 

Boundary Ionic charge Electronic charge Mass balance Momentum balance 

B.C 1a — —   _gas inc  Pressure 0P  

B.C 2 Insulation 0   Continuity for gaseous 
species 

Inward flux inq /Insulation for 
surface species 

B.C 3 Continuity Continuity Continuity Continuity 

B.C 4 Continuity Insulation Insulation Insulation 

B.C 5 Continuity Insulation Insulation Insulation 

B.C 6 Insulation 
caV  _gas cac  Pressure 0P  

a model geometric boundaries are labeled in Fig. 3 
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Table 4 Pore structure parameters in porous electrode 

Cell layer Porosity Mean pore 
diameter(µm) 

STPB(m2 m-3) LTPB(m m-3) SNi( m2 m-3) 

Anode support 
layer 

0.335 0.193 2.22e5 2.76e7 3.97e6 

Anode active 
layer 

0.335 0.129 3.33e5 6.20e7 5.96e6 

Cathode layer 0.335 0.161 2.66e5 3.97e7 -- 
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Table 5 Properties and parameters for model calculation 

Property and parameter Value or expression Unit 

Ionic conductivity ( ionσ )       

ScSZ 6.92E4exp(-9681/T) S m-1 
YSZ 3.34E4exp(-10300/T) S m-1 

Electronic conductivity ( eleσ )   

LSM 4.2E7/Texp(-1150/T) S m-1 

Ni 3.27E6-1065.3T S m-1 

Equivalent ionic conductivity of electrolyte layer ( electrolyteσ ) -3.622E-5T2+0.083T-46.343a   S m-1 

Concentration of oxygen interstitial in the YSZ( 2 ( )YSZO
c − ) 4.45E4 mol m-2 

Concentration of oxygen vacancy in the YSZ( ( )YSZc ) 4.65E3 mol m-2 

Maximum surface sites density (Γ ) 2.6E-5 mol m-2 

Cathode tortuosity ( caτ ) 3.0 — 

Ni felt current collector porosity 0.6b — 
a Experimentally measured 
b As received 
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