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Modeling reverse osmosis element design using superposition and an analogy to
convective heat transfer
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Abstract

Accurate models for concentration polarization (CP), the buildup of solutes at the membrane–solution interface in
reverse osmosis (RO) channels, are critical for predicting system performance. Despite its empirical success, many
modeling approximations employed in the derivation of the oft-used stagnant film model seem to limit the model’s
applicability to real systems. In addition, many existing models for CP use an average mass transfer coefficient with
a local mass transfer driving force, which leads to incorrect predictions for the osmotic pressure at the membrane–
channel interface. In this work, we reduce the Zydney-transformed governing equations for solute mass transfer to an
analogous convective heat transfer problem. We then apply the principle of superposition to fit solutions from the heat
transfer problem to the RO channel boundary conditions, yielding a solution that correctly and consistently combines a
local transport coefficient with a local mass transfer driving force. The resulting expression for RO element sizing and
rating shows good agreement with experimental data and provides a theoretical basis for CP modeling that captures
the characteristic growth of the mass transfer boundary layer not accounted for by many existing, more empirical
models. The model has important consequences for the design of RO systems with high permeability membranes, as
the decrease in membrane resistance in these systems leads to a relative increase in the importance of CP in system
performance.

Keywords: Concentration polarization, Mass transfer, Convection, Membrane transport, Reverse osmosis, Stagnant
Film Model

Nomenclature

Roman Symbols
A Membrane permeability, m3/Pa s
D Diffusivity, m2/s
Dh Hydraulic diameter, 2H, m
fos Modified van ’t Hoff coefficient, Pa
H Channel height, m
hm Mass transfer coefficient, kg/m2 s
h Heat transfer coefficient, W/m2 K
k Thermal conductivity, W/m K
L Length, m
j Mass flux, kg/m2 s
n Wall normal direction
p Hydraulic pressure, Pa
U Characteristic streamwise velocity, m/s
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1Joint first author

UT Characteristic streamwise velocity, m/s
Uω Characteristic streamwise velocity, m/s
~uω Velocity for the transformed problem, m/s
~uT Velocity for the analogous HT problem,

m/s
~u Velocity, m/s
v Permeate volumetric flux, m3/m2s
vs Suction velocity, m/s
Vs Characteristic suction velocity, m/s
w Mass fraction
x∗ Inverse Graetz Number, x/(Re Sc Dh)

Greek Symbols
α Thermal diffusivity, m2/s
δ Mass transfer boundary layer thickness, m
µ Dynamic viscosity, kg/m s
ξ Dummy integration variable
π Osmotic pressure, Pa
ρ Density, kg/m3

ω Pseudo-concentration
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Dimensionless Groups

MTU Mass transfer units, ∆pAL/(v f ,0H)
Nu Nusselt number, hL/k
PeL Peclet number, UL/D
Pe⊥ Transverse Peclet number,

DhA(∆p − fosw0)/D
Pr Prandtl number, µ/ρα
Re Reynolds number, ρUDh/µ
RR Recovery ratio, 2v̄L/(v f ,0H)
Sc Schmidt number, µ/ρD
Sh Sherwood number, hmDh/D
S̃h Local Sherwood number for spatially

varying permeate flux
SR f Feed osmotic pressure ratio

Subscripts

0 Inlet
b Bulk
f Feed
L Outlet
n Wall normal direction
p Permeate
n Wall tangential direction
w Wall, i.e., membrane surface

1. Introduction

In reverse osmosis (RO), the rejection of solutes by
the membrane causes a buildup of solutes at the mem-
brane surface, which increases the local osmotic pres-
sure and retards water flux through the membrane. This
phenomenon is known as concentration polarization
(CP). Accurate prediction of the osmotic pressure—
or equivalently, the solute concentration—at the mem-
brane surface in RO systems is thus a critical problem
for predicting the permeate flux, which in turn is es-
sential for membrane sizing and techno-economic op-
timization. Good models for CP are even more im-
portant in systems using ultrapermeable membranes
(UPMs) [1–3], as the higher permeability leads to a rel-
atively larger mass transfer resistance from CP. In addi-
tion, high solute concentrations at the membrane surface
can lead to fouling or scaling, which reduce the effective
membrane surface area and increase maintenance cost.
With improved predictability of solute concentrations at
the membrane, such issues can be better prevented.

Almost fifty years ago, Michaels [4] applied the stag-
nant film model to specify the solute concentration at
the membrane surface as a function of the bulk con-
centration and the permeate flux. Despite its analytical
simplicity, the classic stagnant film approach involves

several limitations, including the use of a conductive-
like mass transfer coefficient and a wall-normal veloc-
ity that is invariant through the mass transfer boundary
layer. The details of the approximations used to develop
of the stagnant film model will be presented in Sec. 2.

Many improved analyses of concentration polariza-
tion in membrane channels are based on simplified
mass transfer equations allowing for analytical or semi-
analytical solutions of the problem [5–9]. However,
most of these models are still limited by modeling ap-
proximations such as a constant permeate flux through
the boundary layer and an axially invariant permeate
flux. Further, many models rely on empirical correla-
tions for the mass transfer coefficient, and/or incorrectly
link an average mass transfer coefficient with a local
driving force. Numerical methods [10–13] have been
applied to overcome the drawbacks associated with the
simplified models, but are computationally intensive
and can be difficult to generalize.

The contribution of this article is threefold. First,
following the approach of Zydney [14], we transform
the governing species conservation equations to derive
a model for concentration polarization that mathemati-
cally resembles the stagnant film, but which relaxes sev-
eral of the often-stated modeling approximations. Sec-
ond, we show how, under certain conditions, mass trans-
fer coefficients for the film can be obtained by analogy
to convective heat transfer, a subject for which a vast
theoretical and experimental literature is available. Fi-
nally, we use the principle of superposition to develop
a new model for membrane performance (recovery ra-
tio, or permeate flux) as a function of operating condi-
tions, system geometry, and mass transfer coefficients.
The latter are obtained from constant wall flux solutions
to the governing transport equations. Results from the
model are benchmarked against measurements, existing
models in the literature, and solutions from direct nu-
merical simulation. The results show better predictive
performance at high degrees of concentration polariza-
tion, as would be found in systems with UPMs.

2. Development of the Stagnant Film Model

A stagnant film (Fig. 1) assumes that there are no
axial variations in the mass transfer boundary layer
(MTBL) thickness, the solute concentration, and the
solvent flux, leading to a 1-D problem. Application
of the stagnant film model to concentration polarization
was first presented by Michaels [4] and is derived by
balancing the convective solute flux (ρvnw) towards the
membrane with the counter-diffusive flux of solute away
from the membrane that results from membrane solute
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Figure 1: As the solute is pulled convectively towards
the wall, js, under the influence of the solvent suction
through the wall, jw, a counter-diffusive flux of the so-
lute back towards the bulk develops. In a stagnant film,
all properties vary only in the y-coordinate.

rejection. Axial variations in both the permeate veloc-
ity and the solute concentration gradient are neglected,
resulting in the following equation for species conser-
vation:

ρvnw − ρD
dw
dn

= 0, (1)

where n is the unit vector that points normal to the mem-
brane surface into the solution and −vn is the permeate
velocity, or volumetric flux. The mixture density is de-
noted ρ, w is the solute mass fraction, and D is the diffu-
sivity of the solute in the solvent. Although the typical
RO feed may contain multiple solutes, here we lump
them together, modeling solute diffusivity with a single
value D.

Taking the permeate velocity as constant through the
MTBL allows Eq. (1) to be integrated across the MTBL
thickness δ, yielding the proportionality between the
permeate flux and the logarithm of the bulk-to-wall con-
centration ratio that is the hallmark of the stagnant film
model:

vn =
D
δ

ln
(

ww

wb

)
. (2)

The term D/δ is the mass transfer conductance based
on the logarithmic concentration driving force, and is
constant in the stagnant film model.

However, in long but narrow membrane channel
flows, the concentration boundary layer can grow to
cover a significant portion of the—or even the entire—
channel height. Some key limitations of the stagnant
film model mentioned in literature (see, e.g., [9, 15] for
a description), revolve mostly around the simplification
to 1-D, and include:

• neglecting axial convection near the membrane
surface,

• neglecting the influence of the permeate flux on the
boundary layer thickness,

• neglecting axial variation in the permeate flux,

• assuming fully developed velocity and concentra-
tion profiles.

In spite of these limitations, however, models that
use a logarithmic driving force to characterize the dif-
fusion of solute across the MTBL have achieved con-
siderable predictive success. In the following section,
we follow the approach of Zydney [14], who showed
that the mathematical form of the stagnant film model,
albeit with a different mass transfer coefficient, can be
derived using far fewer approximations than those listed
above.

3. Zydney’s Transformation and the Analogous
Heat Transfer Problem

3.1. Transformation Using a Pseudo-Concentration
Zydney [14] uses a transformation of variables to

show that the logarithmic concentration driving force
that characterizes the stagnant film model is the correct
driving force for the coupled convective and diffusive
transport near the membrane surface. In this section,
we adhere to Zydney’s general idea [14] that validates
the form of the stagnant film model by transforming
the transport equation of a passive scalar (the solute).
For simplicity, but without loss of generality, the gov-
erning equations are presented in two dimensions. For
a spatially-invariant density, the species conservation
equation can be written in terms of solute mass fraction
w, which yields

∂w
∂t

+ ux
∂w
∂x

+ uy
∂w
∂y

= D
(
∂2w
∂x2 +

∂2w
∂y2

)
, (3)

where ~u = (ux, uy) is the velocity field and D is the mass
diffusivity of the solute in the solution. At the permeable
boundary, i.e., the membrane surface, the no solute flux
boundary condition is

−ρD
∂w
∂n
− ρwvn = 0. (4)

A non-zero term on the right hand side of Eq. (4) can
be added to account for solute permeation through the
membrane, but we will restrict ourselves to the case of
full solute rejection for simplicity.

Along the impermeable boundary or a symmetry
plane, there is no solute flux:

∂w
∂n

= 0. (5)
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For the case that density changes by the solute/solvent
mixture are small (i.e., Dρ/Dt = 0), the x and y momen-
tum equations read, respectively

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= −

1
ρ

∂p
∂x

+
µ

ρ

(
∂2ux

∂x2 +
∂2ux

∂y2

)
,

(6)

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
= −

1
ρ

∂p
∂y

+
µ

ρ

(
∂2uy

∂x2 +
∂2uy

∂y2

)
,

(7)

which, together with the continuity equation,

∂ux

∂x
+
∂uy

∂y
= 0, (8)

describe the fluid motion. Normal to the membrane sur-
face, the boundary condition is

un = −vn, (9)

and the boundary condition for the impermeable wall is
simply un = 0. Tangent to the membrane surface and
the impermeable wall, the no slip boundary condition
applies:

ut = 0. (10)

The solution to these momentum and species conser-
vation equations differs from solutions for momentum
and energy equations in typical internal convective flow
problems only by the boundary condition at the perme-
able wall. The impact of this boundary condition is sig-
nificant owing to high mass transfer rates through the
membrane in RO membrane channels. Consequently,
the analogy between heat and mass transfer that is ap-
plied to low-rate mass transfer problems cannot be di-
rectly applied to RO.

A possible way to solve the problem at hand is by in-
troducing a pseudo-concentration, ω, as shown by Zyd-
ney [14] and also used in other studies [16]. For w > 0,
the pseudo-concentration is defined by the relationship

∂ω

∂w
=

1
w
. (11)

Substituting the pseudo-concentration into the solute
transport equation reveals an equation of similar math-
ematical form to the original, but with two additional
terms:

∂ω

∂t
+ux

∂ω

∂x
+uy

∂ω

∂y
= D


∂2ω

∂x2 +
∂2ω

∂y2 +

(
∂ω

∂x

)2

+

(
∂ω

∂y

)2

︸             ︷︷             ︸
additional terms

 .
(12)

Along the membrane surface, the transformed boundary
condition is

−D
∂ω

∂n
= vn. (13)

At the impermeable wall or the symmetry plane, the
boundary condition becomes

∂ω

∂n
= 0. (14)

If we define a mass transfer coefficient based on the
pseudo-concentration in the usual manner,

hm =
−D ∂ω

∂n

∣∣∣
w

(ωw − ωb)
, (15)

the boundary condition prescribed by Eq. (13) reduces
to none other than a mass transfer coefficient times a
logarithmic concentration driving force, mirroring the
mathematical form of the stagnant film model:

vn = −D
∂ω

∂n

∣∣∣∣∣
w

= hm (ωw − ωb) = hm ln
(

ww

wb

)
. (16)

This is a key finding of Zydney [14], and it explains
the empirical success of the stagnant film model in de-
scribing concentration polarization in RO channels, de-
spite the modeling approximations required in its de-
velopment. The logarithmic concentration driving force
appears solely as a result of the solute-flux boundary
condition and the transformation of the concentration
variable. Consequently, mass transfer coefficients de-
fined by Eq. (15)—without reducing the problem to 1-
D—can accurately describe solute mass transfer in RO
channels where MTBL growth can be significant.

Although the pseudo-concentration transformation
increases the complexity of the solute transport equation
by introducing two new terms, the boundary condition
at the membrane surface collapses to a simpler Neu-
mann boundary condition, where the counter-diffusion
gradient depends only on the local permeate flux. Note
that the momentum equations and boundary conditions
are not affected by the transformation, such that the per-
meable wall boundary condition still influences the ve-
locity field. Rearranging equation (12) into a more sug-
gestive form yields

∂ω

∂t
+

(
ux − D

∂ω

∂x

)
︸         ︷︷         ︸

uω,x

∂ω

∂x
+

(
uy − D

∂ω

∂y

)
︸         ︷︷         ︸

uω,y

∂ω

∂y

= D
(
∂2ω

∂x2 +
∂2ω

∂y2

)
. (17)
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Figure 2: Local profiles of the pseudo-concentration (black line), the wall-normal velocity uy (red solid line), and the
correction to the pseudo-velocity vy (red dashed line) for an inlet Reynolds number of Re = 32, channel dimensions
H = 0.8 mm, L = 1 m, membrane permeability A = 1 L/m2 h bar, a hydraulic pressure ∆p = 65 bar, and an NaCl
solution with inlet salinity w0 = 35 g/kg.

Written as such, equation (17) shows that the trans-
formed problem for the pseudo-concentration ω with
the impermeable wall boundary condition is analogous
to the well-known convective heat transfer problem
with an imposed temperature gradient at the wall if the
pseudo-velocity field described by uω,x and uω,y is equal
to the velocity field of the heat transfer problem uT,x and
uT,y. In such cases, solutions for the local transport num-
ber in convective heat transfer can be used to calculate
hm in RO channels. (The full, transformed governing
equations are given in Appendix C)

3.2. The Analogous Convective Heat Transfer Problem
Now we seek to show how solutions to internal con-

vective heat transfer problems can be used to solve the
transformed governing equations discussed above. For a
perfect analogy, the governing equations and boundary
conditions must be identical; here the boundary condi-
tions are identical, but the governing equations are only
approximately identical, as follows.

The two velocity fields ~uω and ~uT are identical if both
the governing equations and the boundary conditions
match. Strictly identical are the boundary conditions
for the permeable wall, where

un = −vn = D
∂ω

∂n
, (18)

which, in the transformed problem leads to uω,n = 0.
This is identical to the zero wall-normal velocity b.c. in

the convective heat transfer problem, uT,n = 0. The ve-
locity field boundary condition at the impermeable wall
or symmetry plane is also identical.

In order for the governing equations (mass, momen-
tum, and species conservation) to be approximated by
the convective heat transfer problem, ~uω should be equal
to ~uT. Three conditions, as quantified by three dimen-
sionless groups, must be fulfilled for this equivalence to
hold: (1) negligible axial diffusion; (2) small changes
in ux; and (3) equality of the suction velocity and the
counterdiffusion velocity throughout the MTBL.

Along the x-coordinate, the first condition is fulfilled
so long as ux � −D(∂ω/∂x). For the scalings ux ∼ U,
and (∂ω/∂x) ∼ ∆ω/L, we see this is fulfilled when

D∆ω

UL
� 1, (19)

or
ln(wL/w0)

PeL
� 1, (20)

which is true for typical RO elements. The axial Peclet
number, PeL = UL/D, and is generally around 107 to
108 for typical salt solutions and crossflow velocities.
For a 15% element recovery, ln(wL/w0) ≈ 0.2, so the
LHS of Eq. (20) is between about 10−8 and 10−9 and the
condition is fulfilled.

The second condition, a near-constant x-coordinate
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analogous HT problem
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Figure 3: Governing equations and boundary conditions for the original problem in concentration w, the transformed
problem in psuedo-concentration ω, and the analogous heat transfer problem in T . Equivalence of the original and
transformed problem is complete. The analogy to convective heat transfer holds under the conditions where the
velocity field is not significantly impacted by the permeate flux and axial diffusion.

velocity field, is fulfilled for small recovery ratios, i.e.,

Qp

Q f ,0
� 1, (21)

where Qp is the volume flow rate of permeate, and Q f ,0
is the inlet volume flow rate of feed. This is generally
fulfilled for single RO elements, which typically have
recovery ratios near 15% or less. (Nevertheless, model
predictions show good agreement with the full problem
solution beyond this limit, as discussed in Sec. 5.)

Along the y-coordinate, uω,y is equivalent to the ve-
locity field in the absence of suction, uT,y, under the fol-
lowing conditions. First, if we neglect the inertia terms
in the y-direction momentum equation, it becomes lin-
ear, so we can superpose solutions. Thus, we can write
uy = uT,y + vs, where vs is the velocity associated with
suction at the boundary. When vs is approximately equal
to the counter-diffusion flux D(∂ω/∂y), uω,y = uT,y =

uy −D(∂ω/∂y). Thus, when vs ≈ D(∂ω/∂y), uω,y ≈ uT,y.
We check this approximate equality by scaling the terms
as follows: vs ∼ Vs, and D(∂ω/∂y) ∼ D∆ω/δ. Thus, the
two terms are approximately equal when

Vs ∼
D∆ω

δ
, (22)

where δ is the MTBL thickness. From scaling argu-
ments on the continuity equation (assuming the condi-
tion specified by Eq. (20) is also fulfilled),

U
L
∼

UT,y + Vs

H
, (23)

where we have taken the hydrodynamic length scale in
y to be equal to the channel height, as the hydrodynamic

entrance length is typically < 1% of the channel length.
Solving for Vs and substituting into Eq. (22), with some
rearrangement, the condition for the equivalence of Vs
and the counterdiffusion flux becomes

UHδ
DL∆ω

1 +
UT,yδ

D∆ω

∼ 1. (24)

For the case where the y velocity in the absence of
suction is zero, i.e., for a fully developed duct flow, the
condition above reduces to

Pe1/2
L

H
L

ln
(

w0

wL

) ( x
L

)1/2
∼ 1, (25)

where we have used the well-established boundary layer
scaling law δ ∼ x(Re · Sc · x/Dh)−1/2 [17] to describe
the growth of the MTBL thickness. For typical RO
channels, this is fulfilled for a portion of the channel, but
not the entire channel, as seen in Fig. 2, which shows the
crosswise concentration profile in a mass transfer chan-
nel at different dimensionless locations x∗ = x/(Dh ·Re ·
Sc). A symmetry boundary condition is applied at the
channel half-height (y = 0.4 mm).

At all x∗, the wall-normal velocity uy and the correc-
tion to the velocity, D(∂ω/∂y), coincide at the channel
wall, such that the no-flux boundary condition for the
pseudo-velocity uω,n = 0 is fulfilled. In the developing
region of the MTBL, the two velocity profiles diverge
towards the channel center. However, beyond the in-
let region, the velocity profiles coincide. Figure 3 sum-
marizes the equations valid in the original, transformed,
and analogous convective heat transfer problem.

6



x

u0 = Re ν/Dh

vn:

w0 = const. y
ww

wb

channel centerline
boundary layer profile

permeate flux

Figure 4: Schematic of a reverse osmosis channel. The two membrane walls on both sides introduce symmetry
boundary condition. The grey highlighted areas illustreate concentration profiles at different locations.

4. Model Development

In this section, we develop a model for RO element
sizing and rating using the principle of superposition
and the analogy between mass transfer in RO channels
and convective heat transfer, as described above. To do
so, we superpose constant wall heat flux solutions from
heat transfer theory to match the varying wall flux b.c.
in RO channels. We first present the development of
an expression for the permeate flow rate as a function
of geometry and inlet conditions, and generalize the ex-
pression using dimensionless parameters to yield an im-
proved effectiveness (ε)–MTU relationship.

4.1. Dimensional Model

We approximate the feed channel in a spiral-wound
RO element as a 2D channel, as shown in Fig. 4: as
the MTBL develops, the effect of CP increases, and the
permeate flux is reduced. Based on the definition of the
Sherwood number

Sh =
hmDh

D
, (26)

and the transformed no salt flux b.c. (Eq. 13), the local
permeate flux can be written

v(x) =
D
Dh

S̃h(x) ln
(

ww

wb

)
, (27)

where S̃h(x) is in general the local Sherwood number
obtained for the streamwise-varying Neumann bound-
ary condition at the permeable walls, Eq. (13). Note that
the equation above is equivalent to Eq. (16), replacing
the local mass transfer coefficient by the local Sherwood
number.

Because the governing transport equation is linear,
sums of solutions are also solutions—this is the prin-
ciple of superposition. Under this principle, convective
heat transfer problems with arbitrary variations in wall

heat flux can be solved by weighted integration of uni-
form heat flux solutions [18, 19]. An illustrative exam-
ple of the principle is given in Appendix A, which re-
sults in an explicit expression for the dimensionless heat
transfer coefficient (Eq. (A.7)).

By analogy to Eq. (A.7), the local Sherwood number
at the position x for v(x) = v0 + f (x) is given by

S̃h(x) =

v(x)︷            ︸︸            ︷
v0 +

∫ x

0

∂v
∂ξ

dξ

v0
Sh(x) +

∫ x
0

∂v(ξ)
∂ξ

1
Sh(x−ξ) dξ

. (28)

The equation above states that the local Sherwood num-
ber at position x is a result of the history of the imposed
boundary condition from the channel entrance up to the
position x. For typical expressions like Sh = f (Re,Sc)
taken from solutions to the analogous HT problem, Sc
and Re are generally treated as constants, even though
Re decreases in streamwise direction due to the perme-
ate mass loss in RO channels. (See Sec. 3.2 for the va-
lidity of this approximation.) Combining equations (27)
and (28) and dividing both sides by v(x) yields

v0

Sh(x)
+

∫ x

0

∂v
∂ξ

1
Sh(x − ξ)

dξ =
D

DH
ln

(
ww

wb

)
. (29)

The bulk solute concentration wb increases in stream-
wise direction (x) as solvent permeates through the
membrane and out of the feed channel. For perfect so-
lute rejection, solute is conserved in the feed channel,
and

wb = w0
1

1 −
∫ x

0
2v(ξ)
Hv f ,0

dξ
, (30)

where w0 is the bulk concentration at the inlet of the
membrane channel. The factor of two appears as per-
meate flows out of the top and bottom of the feed chan-
nel.

From solution–diffusion theory [20], the local perme-
ate flux is specified by

v(x) = A (∆p − πw) , (31)

7



where we have neglected the retarding influence of the
osmotic pressure of the permeate stream, consistent
with our no solute permeation approximation. Using
van ’t Hoff’s linear law for osmotic pressure (π = fos w),
the permeate flux can be rewritten in terms of the salt
concentration at the membrane surface, ww:

v(x) = A (∆p − fosww) . (32)

Substituting Eq. (30) into Eq. (29), solving for ww,
and inserting the result into Eq. (32) yields an expres-
sion for the local permeate flux as a function of inlet
conditions, geometry, and the local Sh:

v(x) = A∆p −
A fosw0

1 −
∫ x

0
2v(ξ)
Hv f ,0

dξ
exp

[(
v0

Sh(x)

+

∫ x

0

∂v
∂x

1
Sh(x − ξ)

dξ
)

Dh

D

]
. (33)

The net permeate flow through the membrane surface
per unit length, v̄L, is obtained by integrating the above
expression over the entire channel length L:

v̄L =

∫ L

0

A∆p −
A fosw0

1 −
∫ x

0
2v(ξ)
Hv f ,0

dξ
exp

[(
v0

Sh(x)

+

∫ x

0

∂v
∂x

1
Sh(x − ξ)

dξ
)

Dh

D

]}
dx. (34)

4.2. Dimensionless Model

We now proceed to rewrite the above relationship for
the permeate flow in dimensionless form to illustrate the
major design trade-offs between geometry, inlet condi-
tions, and permeate production. With some manipu-
lation, the equation above in a dimensionless fashion
yields

v̄L
v f ,0 H

=
∆pAL
v f ,0 H

−
A fosw0L
v f ,0 H

×

∫ 1

0

exp
[(

1
Sh(x) +

∫ x
0

∂v/v0
∂ξ

1
Sh(x−ξ) dξ

)
Dhv0

D

]
1 −

∫ x
0

2v(ξ)
Hv f ,0

dξ

 d
( x

L

)
.

(35)

Examination of Eq. (35) reveals the following dimen-
sionless quantities, the first three of which are as defined

by Banchik et al. [21]:

MTU =
∆pAL
v f ,0H

, (36)

RR =
2v̄L

v f ,0H
, (37)

SRf =
fosw0

∆p
, (38)

Pe⊥ =
DhA (∆p − fosw0)

D
. (39)

The mass transfer units (MTU) is a dimensionless
mass exchanger size analogous to the number of trans-
fer units (NTU) commonly used for heat exchangers.
The feed stream osmotic pressure ratio, SR f , scales the
inlet osmotic pressure to the hydraulic pressure differ-
ence; in effect, it is a dimensionless measure of the
inlet flux. The recovery ratio (RR), here defined vol-
umetrically, is the volume flow rate of permeate per
unit feed. The maximum recovery ratio that can be ob-
tained in a system is limited by the osmotic pressure ra-
tio RRmax = 1 − SR f [21]. Finally, the transverse Peclet
number, Pe⊥, falls out of the mass transfer expression,
and scales the inlet permeate flux against the counter-
diffusive solute flux. Together with Sh, Pe⊥ scales the
influence of CP. If the Peclet number is high, CP be-
comes more important in the desalination process.

Inserting the dimensionless variables into Eq. (35),
RR can be expressed as a function of MTU, SRf , Pe⊥,
and the local Sh as

RR = 2 ·MTU ×
[
1 − SR f

×

∫ 1

0

exp
[
Pe⊥

(
1

Sh(x) +
∫ x

0
∂v/v0
∂ξ

1
Sh(x−ξ) dξ

)]
1 −

∫ x
0

dRR
dξ dξ

 d
( x

L

) ,
(40)

where the integrand 2v/(Hv f ,0) = dRR/dx. The nu-
merator of the outer integrand encapsulates the effect of
concentration polarization using superposition; as this
term goes to unity, the expression reduces to Eq. (11)
in [21], as shown in Appendix B.

Equations (34) and (40) can be integrated numerically
using a variety of schemes [22], including a simple Rie-
mann sum. Because v(x) is a function of v′(x) = ∂v/∂x,
v′(0) is required to start the numerical integration. By
Eq. (32), v′(0) = −A fosw′w(0). But at x = 0, the
MTBL thickness is zero, and so ww = wb, or equiva-
lently πw = πb. Consequently, the evolution of ww at
x = 0 is given by differentiating Eq. (30) with respect to
x, which yields

∂v
∂x

∣∣∣∣∣
x=0

= −A fos
dww

dx

∣∣∣∣∣
x=0

= −A fosw0
2v0

Hv f ,0
. (41)
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The present modeling approach has two distinct ad-
vantages over traditional approaches that use stagnant
film theory with an average mass transfer coefficient.
First, by combining Zydney’s transformation and the
analogy to convective heat transfer, we have a well-
founded theoretical basis for CP in RO channels. In
contrast to empirically derived correlations of the form
Sh = C · Reα · Scβ, solutions to and scaling laws from
well-known laminar flow, constant flux heat transfer
problems can describe the solute mass transfer phenom-
ena under robust, quantitative constraints (see Sec. 3.2).
Moreover, the present model correctly combines a local
mass transfer coefficient with a local mass transfer driv-
ing force, ensuring theoretical consistency and there-
fore improved predictability. Second, by accounting
for a varying mass transfer coefficient along the channel
length, the model allows for an optimization of channel
geometry and hydrodynamic design. Such an optimiza-
tion is not possible with models that lump mass transfer
characteristics into a single, averaged coefficient.

4.3. Effectiveness Relationship

By introducing one additional variable, the maximum
recovery ratio, we can manipulate the RR–MTU model
into the desired ε–MTU relationship. Effectiveness ε
is defined as the ratio of the total permeate flow rate to
the maximum possible permeate flow rate for the given
hydraulic pressure, ∆p, and the inlet osmotic pressure,
fosw0,

ε =
RR

RRmax
=

RR
1 − SR f

. (42)

A detailed derivation of effectiveness is provided in
Banchik et al. [21]. For large membrane sizes (equiva-
lently, large MTU), ε approaches one. In ε–MTU terms,
Eq. (40) becomes

ε =
2 ·MTU
1 − SR f

×
[
1 − SR f

×

∫ 1

0

exp
[
Pe⊥

(
1

Sh(x) +
∫ x

0
∂v/v0
∂ξ

1
Sh(x−ξ) dξ

)]
1 −

∫ x
0

dRR
dξ dξ

 d
( x

L

) .
(43)

The MATLAB code provided in the supplementary ma-
terial (REFERENCE BY EDITOR) can be used to ob-
tain solutions to Eq. (43).

5. Results and Validation

To evaluate the model’s predictive potential, we use
a Graetz solution for the local Sh and benchmark the

results for RR and ε against: (1) direct numerical simu-
lation; (2) a typical modeling approach that uses a con-
stant Sh; and (3) experimental data.

5.1. Effectiveness–MTU Diagram

To integrate Eq. (43) we require an expression for
Sh. From classical scaling laws, the hydrodynamic en-
try length is much smaller (. 2%) than typical ele-
ment lengths, so we assume a developed velocity pro-
file at the channel inlet. However, owing to the high
Sc that characterizes many salt solutions (typically near
700 [23]), the mass transfer entry length is much larger
than the hydrodynamic entry length, and approaches el-
ement length scales. Consequently, we cannot neglect
developing flow effects in the MTBL.

Solutions to the problem of a thermally develop-
ing, hydrodynamically developed duct flow, the Graetz-
Lévêque Problem, are well-known [17, 24]. Applying
the analogy described in Sec. 3.2, we take the approxi-
mation to the Graetz solution [19] for a constant second-
kind b.c. (uniform wall heat flux, H), replacing the Nus-
selt number, Nu, by Sh and the Prandtl number, Pr, by
Sc to find

Sh =


1.490x−1/3

∗ , for x∗ ≤ 0.0002,
1.490x−1/3

∗ − 0.4, for 0.0002 < x∗ ≤ 0.001
8.235 + 8.68(103x∗)−0.506

× exp(−164x∗), for x∗ > 0.001,
(44)

where x∗ is the inverse Graetz number x∗ = x/(Dh ·

Re · Sc). For large values of x∗, the correlation limits to
8.235, the value for a fully developed, 2-D channel flow.
Equation (44) is valid for laminar flow, which is the typ-
ical hydrodynamic regime in RO. A plot of Eq. (44) is
shown in red in Fig. 5, and display the characteristic 1/3
Graetz scaling for developing laminar flow.

In the present study, we choose to model a channel
without spacers. However in a recent study by the au-
thors [25], spacers are found not to influence the devel-
oping character of the concentration boundary layer if
the channel flow is stationary, i.e. without periodic or
non-periodic oscillations. Thus, in the Graetz number
scaling, spacers will only affect the coefficient on x∗,
and not the characteristic exponent (1/3) in the develop-
ing region or the asymptote in the developed region.

With the above expressions for Sh, we can integrate
Eq. (43), yielding the results shown in Fig. 6. As ex-
pected, CP has a greater effect in decreasing ε as Pe⊥
increases. A larger Pe⊥ (driven, e.g., by a higher mem-
brane permeability) corresponds to a higher initial flux,
which increases the reactive counterdiffusion flux, or
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Figure 6: ε–MTU curves for increasing values of the transverse Peclet number, Pe⊥: as the effects of CP become more
significant, correctly accounting for variations in the local mass transfer coefficient becomes more important, as seen
by comparison to DNS and traditional, average Sh modeling approaches (classical stagnant film model). The present
model (local) agrees well with results from DNS over the entire parameter (MTU, SRf , Pe⊥) space, but the average
Sh approach breaks down for high Pe⊥. Kinks in the dotted lines correspond to non-smooth breaks in the correlation
for Sh (Eq. (46)).

10



Inverse Graetz number (x/(Re·Sc·Dh))1/2
10-2 10-1

Sh
er

wo
od

 n
um

be
r

10

15

20

25
30

6

Pe⊥ = 10

Pe⊥ = 20
Pe⊥ = 50

NuH = 8.235

NuT = 7.54

ShH

Figure 5: The local Sherwood number for various trans-
verse Peclet numbers from direct numerical simulation
shows the 1/3 Graetz scaling that characterizes develop-
ing laminar flow is valid for a range of typical transverse
Peclet numbers. Despite the permeate mass loss, the Sh
still trends to a near constant for developed flow. The
red curve shows the classical Graetz solution for a con-
stant wall flux, which limits to an upper bound on the
DNS results. Note that all curves converge to a value
that is located between the constant value (for NuT, uni-
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Figure 7: Relative deviation of the reduced model so-
lutions based on the direct numerical simulation results
for Pe⊥ = 50 and SRf = [0.1; 0.3; 0.5; 0.7]. The aver-
age Sh model generally tends to overpredict the effec-
tiveness, whereas the local Sh model (the present work)
tends to underpredict effectiveness. For low effective-
ness values, the overprediction of the average Sh model
can exceed 20%, whereas the local Sh model does not
deviate from the DNS results by more than 6%. The
agreement between DNS results and the local Sh model
also increases for higher values of SRf .

a smaller solute diffusivity, which increases the mass
transfer resistance. Both of these effects retard the per-
meate flux across the membrane, meaning a larger MTU
(reflected by a greater length or length times permeabil-
ity) is required to achieve high ε.

5.2. Comparison to Fully Resolved Numerical Simula-
tions

In order to validate the model and its approxima-
tions (as discussed in Sec. 3.2), we compare the model
results to solutions obtained via direct numerical sim-
ulation (DNS). Two-dimensional DNS of a stationary
empty channel flow are conducted by the finite volume
method employed in the open-source software package
OpenFOAM2. More details on the method can be found
in [25]. The stationary continuity, species conservation,
and momentum equations are solved with the SIMPLE
algorithm (Semi-Implicit Method for Pressure Linked
Equations) in the entire two-dimensional channel for
the boundary conditions outlined in Sec. 3.1. A con-
stant pressure gradient between channel inlet and out-

2www.openfoam.org
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let is applied, resulting in a parabolic, developed veloc-
ity profile at the channel inlet. Owing to the bound-
ary condition for the velocity at the membrane surface,
the flow rate (and Reynolds number) in the feed chan-
nel decrease along the channel length. Consistent with
the other models in this work and elsewhere in liter-
ature, constant fluid properties were used, which has
been shown to have a small effect on the results [15].

As seen in Figs. 6 and 7, the agreement between the
present model and the DNS results confirms that the
simplifications in the analogy to convective heat transfer
(Sec. 3.2) hold for a wide range of typical RO operating
conditions and geometries, deviating from DNS results
by a maximum of 6%. Disagreement is generally worst
at high recovery ratios (high ε, low SR f ), where feed
velocity changes significantly along the channel length,
and the approximation of constant ux begins to break
down. However, at large RR and MTU, the MTBL be-
comes developed, and Sh becomes independent of Re;
in these cases the neglect of corrections to the stream-
wise velocity is no longer relevant. This provides evi-
dence that the present model is valid outside the limita-
tion stated by Eq. (21).

5.3. Comparison to Average Sh Models
The dashed lines in Fig. 6 show the ε–MTU rela-

tionship for a constant (average) Sh. As is typical in
many RO models, this approach incorrectly combines
an average mass transfer coefficient with a local loga-
rithmic concentration driving force to evaluate the ef-
fects of CP. Such an approximation is only valid when
the mass transfer coefficient does not vary significantly
along the streamwise coordinate, which is not the case
for a developing MTBL. For a constant, average Sh, the
ε–MTU relationship reduces to (see Eq. (43))

dε =

1 −
exp

(
Pe⊥

/
Sh

)
SR f

1 − ε(1 − SR f )

 dMTU
1 − SR f

, (45)

where

Sh =


2.236x−1/3

∗ , for x∗ < 0.001,
2.236x−1/3

∗ + 0.9, for 0.001 ≤ x∗ < 0.01,
8.235 + 0.0364/x∗, for x∗ ≥ 0.01.

(46)
is the Sherwood number relationship presented in [19].

As the effects of CP increase at higher Pe⊥, the dis-
agreement between the average Sh model and the DNS
results increase, up to a maximum of 20% at Pe⊥ = 50.
As shown in Fig. 7, the present model is in better agree-
ment with the DNS results at these higher Pe⊥, where

capturing the variation in Sh becomes more important.
This disagreement is a consequence of a fundamental
mismatch: an average mass transfer coefficient cannot
be used with a local driving force to accurately com-
pute a local flux. The apparent predictive ability of this
approach at low Pe⊥ and SR f is only a consequence of
the smaller effects of CP on overall performance under
those conditions.

5.4. Comparison to experimental data
In addition to DNS results, we validate the present

model against the experimental data of Song and
Tay [26]. In their experimental study, a system of com-
mercial RO elements (ESPA-2540) was investigated.
Owing to their investigated RO system, two important
aspects have to be considered in the modeling process.

The membrane resistance provided by Song and Tay
relates the local driving pressure difference to the lo-
cal permeate flux. The permeate flux is linked with the
equation of salt conservation to the local salt concen-
tration. However, in this direct relation a factor of two
(see Eq. (34)) is missing, which accounts for the spiral
wound membrane, where each feed channel is confined
by two membrane walls. Thus, the one-side membrane
resistance is twice the resistance given in their paper.
The definition of the membrane resistance has no in-
fluence on model results without concentration polar-
ization. However, the redefined membrane resistance
decreases the local permeate flux and thus the effect of
concentration polarization.

A further important aspect in modeling concentration
polarization of a membrane system is the modular de-
sign. The experimental system consisted of four spi-
ral wound RO elements, each of 1 m in length (ESPA-
2540). The membrane modules are connected but the
intermediate section allows for mixing, such that the de-
velopment of the concentration boundary layer restarts
at the beginning of each element.

Figure 8 shows the model results in comparison to
experimental data for three different feed velocities and
a range of applied pressures. The dashed lines corre-
spond to model results without the effect of CP, which
coincide with model results presented in their study. In-
cluding the effects of CP, we obtain the thick solid line
(four separate membrane modules) and the dotted line
(one 4 m long membrane module). Although model re-
sults without CP fit already well with the experimental
data, a better agreement is obtained if CP is accounted
for.

Figure 9 reveals the effect of multiple membrane
modules by showing the local decrease in permeate flux
over the length of the module. For the single membrane
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lines) the effect of CP. The effect of multiple membrane
modules is shown by the dotted line which illustrates
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age permeate flux is significantly higher when the mass
transfer boundary layer is destroyed between elements.

module, the permeate flux decreases continuously as a
result of increasing concentration boundary layer and
the increasing bulk concentration. For the four modules
of one meter each, the permeate flux exhibits sudden
jumps caused by the renewing concentration boundary
layer. Due to the increase in bulk concentration, the per-
meate flux generally decreases along flow direction.

5.5. Limitations in spacer-filled channel flows

The theoretical approach developed in this study us-
ing the principle of superposition is generally valid if the
equation governing mass transfer is linear. This does not
limit the approach to laminar or stationary flows. Fur-
ther, a previous study showed that the classical Graetz
scaling for the mass transfer entrance length is also valid
for spacer-filled channels if the flow is stationary; this
scaling behavior loses validity with the onset of tempo-
ral oscillations in the flow field [25]. As such, correla-
tions for the local Sherwood number (required for the
present model) in spacer-filled channels are more spe-
cific to individual channel designs. The identification
of self-similarities in the transitional region (beyond the
onset of oscillatory flow) is thus an important step in
modeling real membrane processes with spacer-filled
channels.

5.6. Consequences for High Permeability RO

As ultrapermeable membranes continue to be devel-
oped in an effort to reduce the fixed and operating costs
of RO, the mass transfer resistance across the mem-
brane will decrease. Consequently, concentration polar-
ization will become a more dominant resistance—and
thus source of inefficiency—in RO systems. Accurate
modeling of CP at higher permeabilities is thus critical
to optimizing performance in these new systems [3].

6. Conclusions

In this study, we have developed a new model for re-
verse osmosis element sizing and rating with a more
fundamental basis than existing models that use em-
pirical correlations for solute mass transfer coefficients.
Using Zydney’s transformation of the species equation,
the solute b.c. reduces to a simpler Neumann bound-
ary condition, similar to the energy equation in convec-
tive heat transfer with an imposed wall heat flux. We
derive three dimensionless constraints that determine
when this analogy between solute mass transport and
convective heat transfer holds, and use the superposition
theorem to account for streamwise variations in perme-
ate flux.
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The resulting integral model is benchmarked against
direct numerical simulation (DNS) and experimental
data. We find good agreement between the present
model and both benchmarks. The model is also com-
pared to a typical RO modeling approach that uses a
single, average mass transfer coefficient like the stag-
nant film model. Here, we find the present model
predicts DNS results better than models using an av-
erage mass transfer coefficient, particularly for high
permeate fluxes. This has important implications for
proposed new RO systems with ultra-permeable mem-
branes (UPM), where CP will become a more dominant
effect in limiting system performance and traditional
modeling approaches break down.
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Appendix A. Principle of superposition

To illustrate the principle of superposition, we solve
for the steady-state temperature distribution of a channel
flow heated by an imposed, non-uniform boundary heat
flux. First, consider the case of a step change in the
boundary condition (Figure A.10): the wall heat flux
jumps from qA to qB = qA + δq at the location x0. For
0 < x < x0, the temperature field ∆TA is the solution
to the energy equation for a uniform heat flux qA (light
grey area). For the known solutions to b.c.’s qA and δq,
the relationship between heat flux and temperature is

qA = hA∆TA (A.1)
δq = hδq∆Tδq (A.2)

The local heat transfer coefficient h depends on the co-
ordinate x and the onset of the heat flux (0 for qA and x0
for δq).

Because the energy equation is linear, we can obtain
the temperature at any position x > x0 by adding the so-
lution for the incremental (uniform) heat flux δq to the
solution for qA. Then, for x > x0, the overall temper-
ature difference ∆T , as shown by the dotted line in the

bottom plot of Fig. A.10, results from superimposing
the two solutions which yields

∆T (x) = ∆TA(x) + ∆Tδq(x − x0) (A.3)

Inserting the expressions given in Eqs. (A.1) and (A.2)
into the above leads to

∆T =
qA

hA
+
δq
hδq
≡

q

h̃
(A.4)

The term on the right hand side introduces a definition
of a local heat transfer coefficient that relates the local
heat flux and driving temperature difference. Rearrang-
ing the equation above, we find

h̃(x) =
qA + δq

qA
hA(x) +

δq
hδq(x−x0)

x > x0 (A.5)

For the case of a continuous variation in the local heat
flux described by an arbitrary function q(x), the local
heat transfer coefficient at the location x can be general-
ized to

h̃(x) =

q(x)︷            ︸︸            ︷
q0 +

∫ x

0

∂q
∂x

dξ

q0
h0(x) +

∫ x
0

∂q
∂ξ

1
h(x−ξ) dξ

(A.6)

which can be written in dimensionless form as a Nusselt
number based on length scale L as

Ñu(x) =
q0 +

∫ x
0

∂q
∂ξ

dξ
q0

Nu(x) +
∫ x

0
∂q(ξ)
∂ξ

1
Nu(x−ξ) dξ

(A.7)

Appendix B. Zero Mass Transfer Resistance Limit

When concentration polarization effects are negligi-
ble, i.e., in the limit of zero mass transfer resistance in
the feed channel, we expect the model to reduce to the
ε–MTU model [21] with no concentration polarization.
Beginning with Eq. (34), we take the limit as D→ ∞:

lim
D→∞

v(x) = lim
D→∞

{
A∆P −

A fosw0

1 −
∫ x

0
v(ξ)

(v) f ,0
dξ

× exp
[

Dh

ρD

(
v0

Sh(x)
+

∫ x

0

∂v(x)
∂x

1
Sh(x − ξ)

dξ
)] }

,

(B.1)

which reduces to

v(x) = A∆P −
A fosw0

1 −
∫ x

0
v(ξ)

(ρv) f ,0
dξ
. (B.2)
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Figure A.10: Illustration of the principle of superposi-
tion applied to a heat transfer case with a spatially non-
uniform heat flux.

Recasting the above in dimensionless form, using the
following definitions

d(RR)
dx

=
v(x)
v f ,0

MTU =
∆P x
v f ,0H

SR f =
fosw0

∆P
(B.3)

yields

d(RR)
dx

=
d(MTU)

dx

1 − SR f
1

1 −
∫ x

0
d(RR)

dξ dξ

 , (B.4)

or

d(RR) =

(
1 −

SR f

1 − RR

)
d(MTU), (B.5)

which is identical to Eq. (11) in Banchik et al. [21] for
the case of β = 1, i.e., no concentration polarization.

Appendix C. Transformed Momentum Equations

Conditions for the equality of the governing equa-
tions can be obtained by rewriting the conservation

equations in terms of the pseudo-velocity, ~uω. The con-
tinuity equation becomes

∂uω,x
∂x

+
∂uω,y
∂y

+ D
(
∂2ω

∂x2 +
∂2ω

∂y2

)
= 0. (C.1)

The momentum equation in the x-direction (the y-
coordinate momentum equation is analogous) becomes

∂uω,x
∂t

+ D
∂2ω

∂x∂t

+uω,x
∂uω,x
∂x

+ D
(
∂uω,x
∂x

∂ω

∂x
+ uω,x

∂2ω

∂x2 + D
∂2ω

∂x2

∂ω

∂x

)
+uω,y

∂uω,x
∂x

+ D
(
∂uω,x
∂x

∂ω

∂y
+ uω,y

∂2ω

∂x2 + D
∂2ω

∂x2

∂ω

∂y

)
= −

1
ρ

∂p
∂x

+
µ

ρ

[
∂2uω,x
∂x2 +

∂2uω,x
∂y2 + D

(
∂3ω

∂x3 +
∂3ω

∂x∂y2

)]
.

(C.2)

Solving the equations for the pseudo-velocity with the
non-permeable boundary condition is strictly identical
to the set of equations (3) and (6)–(8) using the per-
meable wall boundary condition. The additional terms
of the pseudo-concentration arising in the momentum
and continuity equation are corrections to the velocity
field caused by the permeate flux. Introducing the local
counter-diffusion velocity vD,x = D ∂ω

∂x and vD,y = D ∂ω
∂y

clarifies the interpretation:

∂uω,x
∂t

+
∂vD,x

∂t

+uω,x
∂uω,x
∂x

+

(
vD,x

∂uω,x
∂x

+ uω,x
∂vD,x

∂x
+ vD,x

∂vD,x

∂x

)
+uω,y

∂uω,x
∂x

+

(
vD,y

∂uω,x
∂x

+ uω,y
∂vD,x

∂x
+ vD,y

∂vD,x

∂x

)
= −

1
ρ

∂p
∂x

+
µ

ρ

(
∂2uω,x
∂x2 +

∂2uω,x
∂y2 +

(
∂2vD,x

∂x2 +
∂2vD,x

∂y2

))
.

(C.3)

In order to apply local or overall correlations for the
transport number from the analogous solution to the
convective heat transfer problem thus requires we ne-
glect all corrections to the velocity field caused by the
pseudo-concentration; i.e., all terms involving vD,x and
vD,y in Eq. (C.3).
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