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Abstract

The structure of time-scales in systems of the form x = A(S)x is related

to the invariant factors of A(M) when this matrix is over the ring of

functions analytic at 0. This relationship motivates the study of

invariant factor assignment in the matrix A(C) + B(S) K(£) by choice of

K(g). Results on this problem have implications for assignment of time-

scales by state feedback in systems of the form x = A(C)x + B(c)u. Work

in this direction is presented.
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1. Introduction

Perturbed, linear, time-invariant systems of the form

x(t) = A(C)x(t) + B(£)u(t) (1.1)

are the focus of this paper. Here x and u are n- and m-dimensional state

and control vectors respectively; c is a small positive perturbation

parameter; and A(C), B(£) are analytic at £ = 0.

We shall show that an algebraic approach to the study of the above

system, with A(S), B(S) considered as matrices over the (local) ring W

of functions of £ that are analytic at £ = 0, leads to new perspectives

and results on multiple-time-scale behavior in this system. Proofs are

omitted here, but relevant ones will appear in the final version.

We begin with the undriven situation, where

x = A(C)x . (1.2)

We assume, with no essential loss of generality, that A(£) is nonsingular

for c in (0, £0), for some s0 > 0; the situation of interest is where A(O)

is singular. Section 2 reviews a familiar special case of this, namely

the class of two-time-scale systems extensively studied by Kokotovic and

co-workers, [1], [2], in the so-called explicit form

[il]1 All A121 rx1l
x2] [ A 2 1 A2 2

1
2 (1.3)

(The forms actually used in [1], [21 can be brought to (1..3) by a simple

change of time-scale.) The section then outlines the extension of these

results, to multiple-time-scale decompositions of systems of the form (1.2),



that have recently been obtained by Coderch et al., [3].

The procedure suggested in [3] for extracting and displaying the

multiple-time-scale structure of (1.2) is described in terms of

operations such as projection and pseudo-inversion. We complement that

viewpoint in this paper by presenting a slightly more concrete version of

it that turns out to be very fruitful. Our procedure is the natural

generalization of the one used for (1.3), and makes clear the role of

the invariant factors of A(s) (in the ring W), a role that is suggested

(but not developed) in [3]. This algorithm is presented in Section 3; the

basis for it is a transformation of A(£) to Smith form, which is outlined

in that section.

Section 4 turns to questions of feedback control of time-scales in

the system (1.1), assuming state feedback of the form

u = K(E)x , (1.4)

with K(£) again a matrix over W. Noting the above interpretation of

invariant factors of the system matrix, the question of invariant-factor

assignment in A(E) + B(E)K(E) is raised and, for the case of left-coprime

A(£) and B(E), answered rather completely. To actually assign time-scales

by such feedback requires that certain stability conditions be also satisfied,

but our invariant factor results show what the limits are.
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2. Background

A special case of (1.2) that has received a great deal of attention

in the control literature, see [1], [2], is the system (1.3). It is

-1
known that, if All and A - A21 A A12 are nonsingular, the

eigenvalues of (1.3) occur in two groups, one being of order 1 and lying

"close" to the eigenvalues of All, and the other being of order £ and close

-1
to the eigenvalues of £ (A22 - A21 All A12). If both the latter matrices

are Hurwitz, then the system exhibits well-behaved two-time-scale

structure, in the following sense:

I xl(t)-f E) xs (t) + 0()

[X2(t)] = [( + ((] , t > 0, (2.1)

x2 (t) X2s (St) + 0(c)

where

kxf =All Xlf Xlf = xl(0)

-1
is = -11 A12 X2 s and

2s= (A22 AA AA 12) X2s, X (0) = x(0)

The subscripts s and f denote slow and fast subsystems.

For some appropriate constant, nonsingular matrix T, it can be

shown that

lim sup IITeA(£)t T - ed I = 0, (2.2)
A+0 t>0

where the block diagonal matrix Ad is given byd
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Ad = , A2 2 = A2 2 - A21 All A12 . (2.3)

0 EA22

(2.2) and (2.3) provide an alternative definition of what it means to

have well-behaved two-time-scale structure.

The above decomposition has found significant applications. Two

criticisms that may, however, be noted are: firstly, that the system is

assumed given in the explicit form (1.3); and secondly, that the

nonsingularity assumptions on All and A22 restrict the system behavior

to two time scales. Recent work of Coderch et al., [3], has attempted

to address both objections. It starts with the more general form (1.2),

assuming however that a Taylor series for A(E) is given. It is then

shown that an expression of the form (2.2) holds, with a different T and

with Ad of the form

Ad E (2.4)

The A ambove govern behavior at the various time scales. They are obtained

through a rather elaborate, though systematic sequence of operations on the

Taylor series coefficients of A(C), involving cascaded projections onto

progressively "slower" subspaces. The convergence in (2.2) is proved under

a so-called semi-stability condition on matrices derived from the Taylor

series; this condition implies that the A.i are Hurwitz.
1.
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With this as background, the role of Section 3 may be stated more

clearly. We show in that section that the Smith decomposition of A(C)

over the ring W makes possible a change of variables in (1.2) that

brings it to what can be termed the explicit form of (1.2). This form

is the natural extension of that in (1.3) to the case of multiple-time-

scales. It is then shown that a simple nested iteration of the familiar

procedure of [1] used for (1.3) will result in (2.2), and directly give

the A. of (2.3); it is assumed, for (2.2), that the A. are Hurwitz. We
1 1

also show that the same result is obtained by application of the procedure

in [3] to the explicit form of (1.2).

While the above approach provides some valuable additional perspectives

on known results, the real pay-off appears in the results on feedback

control, described in Section 4.
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3. An Algebraic Transformation for Multiple-Time-Scale Decomposition

A transformation of (1.2) that more explicitly displays its

amenability to multiple-time-scale decomposition is obtained by employing

the Smith decomposition of A(C) over the ring W of functions of £ that

are analytic at 0; see [4] and [5] for example.

It is easily seen that W is a Euclidean ring, with the degree of

a scalar being defined as the order of the first nonzero term in its

2 3
Taylor expansion (e.g. C ± s + £ + ... has degree 2). A(£) therefore

has the Smith decomposition

A(£) = P(S)D(£)Q(S) , (3.1)

where P, D, Q are all nxn matrices over W; P, Q are unimodular, i.e.

iP(O)I i 0 and IQ(O0) 3 0; and*

il

S I 0

D(S) = . , (3.2)

where 0 < i1 <-< i . (We have used the assumption that A(£) is non-

singular in the neighborhood of 0 in writing (3.2); in the more general case,

some of the diagonal terms would be 0). Actual computation of such decomposi-

tions is discussed in [4] and [5]. (In the terminology of [5], what is required

is to transform A(S) to the matrix D(S) Q(s), which is "row-reduced at 0",

-1
through row operations embodied in P (X).)

* The identity matrices I may have different dimensions.
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Using (3.1), (1.2) becomes

x = P(8)D(C)Q(C)x . (3.3)

Because P(£) is unimodular, P (- ) exists in the neighborhood of 0. Let

-1
y = P (£)x (3.4)

to obtain what we shall term the explicit form of (1.2):

y = D()Q (c)P(c)y . (3.5)

Now, noting that Q(c)P(E) is unimodular, we denote the nonsingular

matrix Q(O)P(O) by A, and study the related system

z = D(S)Az , A = Q(O)P(0) . (3.6)

This, by (.3.2), is of the form

A. -r A z

2 1 2m A 1 

(3.7)

m m
m Aml . . . . m m

We term (3.7) the reduced explicit form of (1.2), since it is obtained

by simplifying the explicit form (3.5). (We have assumed, with no loss of

generality, that il = 0; this can always be obtained by a change of time

scale in (1.2).) The partitioning indicated in (3.7) will be explained

shortly.

The rest of this section is devoted to establishing the following:

1. The system (3.7) can, under a natural set of stability conditions,



-9-

be decomposed to exhibit well-behaved multiple-time-scale

structure. The decomposition procedure is a natural extension

of the familiar one of [1] for (1.3). It is also shown to yield

an equivalent decomposition to that obtained by the procedure

in [3].

2. When (3.7) has a well-behaved multiple-time-scale structure,

(1.2) has this same structure as well, and

lim sup [lx - P(0) zil = 0 . (3.8)
E+0 t>0

To establish these results, note first that the indicated partitioning

of (3.7) puts it in the form (1.3), so that the familiar decomposition

procedure of [1], [2] can be used. We then get, as in (2.1), the following

decomposition into slow and fast subsystems:

(t 1 (t) + zls(t) + O(C)

1Zl~~~~~t)~ = ,(3.9a)

Z2,m(t Lz2s (St) + 0() J

where

z2,m _m, (3.9b)

ilf = All Zlf '(3.9c)

-1
Zls =- A 1 [A12 . A1 ] Z2s (3.9d)
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A22 A2mLs m-l z = , (3.9e)

and

-1
A = A -A. A A . (3.9f)

13 13 11 11 lj

The decomposition holds under the condition that the subsystems in (3.9c)

and (3.9e) are stable.

Observe now that the system in (3.9e) is itself in reduced explicit form,

and may be subjected to the same procedure. Iteration of this (Schur

complementation)procedure leads to a decomposition into m subsystems of the

form

·(i) (i).(i) (i i = 1 to m, (3.10)

where the Ai are given by
1

(i)
A =A.. ,
i 11

with

-1
(k) (k-l) (k-l) (k-l) (k-l)

A ij = A i k 1 13 iik Akk Ak

and

(0)
A. = A..

ij 13

(1)
The Aij in (3.9e) are actually A.. in the present notation, and Zlf

of (3.9c) is z (1 ) of (3,10). Also, the Ai in (3.10) are precisely those

referred to in (2.2), (2.4). Under the assumption that the Ai are Hurwitz,

we find that (3.7) has well-behaved time-scales. The number of variables

of (3.7) at each time-scale is precisely given by the degrees ik of the

invariant factors of A(c) (which appear on the diagonal of (3.2)).
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With this result in hand, the rest of the results listed above are

fairly directly obtained. The detailed development is deferred to the

final paper.
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4. Assignment of Time-Scales by State Feedback

The results of Section 3 have established the role of the invariant

factors (i.e. entries of D(C) in (3.2)) of the matrix A(C) in determining

the time-scales of the undriven system (1.2). For the driven system (1.1),

it is now natural to ask what freedom there is in (re-) assigning time-scales

by application of the state feedback of (1.4). This feedback yields the

closed-loop system

x = F(5)x, F(6) = A(s) + B(s) K(s) . (4.1)

A key question, then, is the question of invariant factor assignment:

what freedom is there in assigning the invariant factors of F(s) by choice

of K(6)? The following theorem provides a result in this direction.

Theorem: Assume that A(s), B(s) are left coprime, i.e. that [A(O) B(O)]

has full row rank. (Recall that A and B have dimensions nxn and nxm respectively.)

Let b denote the rank of B(O).

1. F(£) can have no more than b non-unit invariant factors.

Jl jb
2. There exists a K(s) such that F(s) has £ ,...,£ as its

invariant factors, for arbitrary non-negative integers jl ".' b

(with the convention that 6 = 0).

The existence of well-behaved multiple-time-scale structure in (4.1) that

corresponds to the above invariant-factor structure can be guaranteed if the

various Fi (defined as the Ai were) turn out to be Hurwitz.

Some results are also available for the case of non-coprime A(s), B(s).

In this case, F(S) is of the form

F(s) = W(6)F(s), F(£) = A(s) + B(E)K(s) , (4.2)

where W(s) is a greatest common left divisor of A(s), B(s), and A(s), B(s)

are left coprime. If the invariant factors of F(s), W(s) and F(s) are denoted
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by fi(E), wi(E) and fi (£) and ordered such that the i-th one divides

the (i + l)-th one, we will have

wi(E)Ifi(£) and fi( £ )| (4.3)

The first divisibility condition in (4.3) shows that every invariant

factor of F(E) must contain the corresponding invariant factor of W(E).

The fi (E) are governed by the above Theorem, and conclusions about the

f. (E) can then be drawn from the second divisibility condition in (4.3).

Conclusion

A promising basis for an algebraic treatment of time-scale structure

and assignment in linear, time-invariant systems has been presented. A

wide range of research questions has thereby been exposed, and preliminary

results have been outlined.
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